101
|
Orlov M, Vaida F, Finney OC, Smith DM, Talley AK, Wang R, Kappe SH, Deng Q, Schooley RT, Duffy PE. P. falciparum enhances HIV replication in an experimental malaria challenge system. PLoS One 2012; 7:e39000. [PMID: 22745697 PMCID: PMC3383717 DOI: 10.1371/journal.pone.0039000] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/15/2012] [Indexed: 01/09/2023] Open
Abstract
Co-infection with HIV and P. falciparum worsens the prognosis of both infections; however, the mechanisms driving this adverse interaction are not fully delineated. To evaluate this, we studied HIV-1 and P. falciparum interactions in vitro using peripheral blood mononuclear cells (PBMCs) from human malaria naïve volunteers experimentally infected with P. falciparum in a malaria challenge trial.PBMCs collected before the malaria challenge and at several time points post-infection were infected with HIV-1 and co-cultured with either P. falciparum infected (iRBCs) or uninfected (uRBCs) red blood cells. HIV p24Ag and TNF-α, IFN-γ, IL-4, IL-6, IL-10, IL-17, and MIP-1α were quantified in the co-culture supernatants. In general, iRBCs stimulated more HIV p24Ag production by PBMCs than did uRBCs. HIV p24Ag production by PBMCs in the presence of iRBCs (but not uRBCs) further increased during convalescence (days 35, 56, and 90 post-challenge). In parallel, iRBCs induced higher secretion of pro-inflammatory cytokines (TNF-α, IFN-γ, and MIP-1α) than uRBCs, and production increased further during convalescence. Because the increase in p24Ag production occurred after parasitemia and generalized immune activation had resolved, our results suggest that enhanced HIV production is related to the development of anti-malaria immunity and may be mediated by pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Marika Orlov
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Florin Vaida
- Department of Family and Preventive Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Olivia C. Finney
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - David M. Smith
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Angela K. Talley
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Ruobing Wang
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Stefan H. Kappe
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Qianqian Deng
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Robert T. Schooley
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Patrick E. Duffy
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Laboratory of Malaria Immunology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland, United States of America
| |
Collapse
|
102
|
Tiba F, Nauwelaers F, Sangare L, Coulibaly B, Mrosek V, Kräusslich HG, Böhler T. Constitutive activation and accelerated maturation of peripheral blood T cells in healthy adults in Burkina Faso compared to Germany: the case of malaria? Eur J Med Res 2012; 16:519-25. [PMID: 22112357 PMCID: PMC3351894 DOI: 10.1186/2047-783x-16-12-519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE It is not exactly known how frequent exposure to Plasmodium falciparum shapes the peripheral blood T-cell population in healthy West Africans. METHODS The frequency of peripheral blood CD4(+) lymphocytes responding to Plasmodium falciparum merozoite surface protein 1 (PfMSP-1) by production of interferon-gamma (IFN-γ), interleukin-2 (IL-2) or tumor necrosis factor-alpha (TNF-α) was determined using a commercially available flow cytometric activation assay (FastImmune) in 17 healthy adults in Nouna, Burkina Faso. T-cell activation and maturation in peripheral blood of healthy adults in Burkina Faso (n=40) and Germany (n=20) were compared using immunophenotyping and three-colour flow cytometry. RESULTS Significant numbers of PfMSP-1 -specific CD4(+) lymphocytes producing IFN-γ, IL-2 and/or TNF-α were detected in 14 healthy adults in Nouna. Cytokine profiles showed predominant production of IFN-γ and TNF-α. Compared to Germans, Burkinabé showed markedly lower proportions of CCR7+ CD45RA+ naive CD4(+) cells and slightly higher frequencies of CD95(+)CD4(+) T-cells and of CD38(+) CD8(+) T-cells. The median antibody-binding capacity of CD95(dim) CD4(+) T-cells in Burkinabé was more than twice the value observed in Germans (263 vs. 108 binding sites per cell, p<0.0001). CONCLUSIONS We hypothesize that an IFN-γ-induced increase in the expression level of CD95 on CD4(+) lymphocytes may lower the activation threshold of resting naive CD4(+) T-cells in healthy adults living in Burkina Faso. Bystander activation of these cells deserves further study as a molecular mechanism linking strong IFN-γ responses against Plasmodium falciparum to decreased susceptibility to parasitemia observed in specific ethnic groups in West Africa.
Collapse
Affiliation(s)
- F Tiba
- Department of Infectious Diseases, Virology, University of Heidelberg, INF324, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
103
|
Plasmodium yoelii blood-stage antigens newly identified by immunoaffinity using purified IgG antibodies from malaria-resistant mice. Immunobiology 2012; 217:823-30. [PMID: 22658767 DOI: 10.1016/j.imbio.2012.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/07/2012] [Indexed: 12/12/2022]
Abstract
As the search for an effective human malaria vaccine continues, understanding immune responses to Plasmodium in rodent models is perhaps the key to unlocking new vaccine strategies. The recruitment of parasite-specific antibodies is an important component of natural immunity against infection in blood-stage malaria. Here, we describe the use of sera from naturally surviving ICR mice after infection with lethal doses of Plasmodium yoelii yoelii 17XL to identify highly immunogenic blood-stage antigens. Immobilized protein A/G was used for the affinity-chromatography purification of the IgGs present in pooled sera from surviving mice. These protective IgGs, covalently immobilized on agarose columns, were then used to isolate reactive antigens from whole P. yoelii yoelii 17XL protein extracts obtained from the blood-stage malaria infection. Through proteomics analysis of the recovered parasite antigens, we were able to identify two endoplasmic reticulum lumen proteins: protein disulfide isomerase and a member of the heat shock protein 70 family. Also identified were the digestive protease plasmepsin and the 39 kDa-subunit of eukaryotic translation initiation factor 3, a ribosome associated protein. Of these four proteins, three have not been previously identified as antigenic during blood-stage malaria infection. This procedure of isolating and identifying parasite antigens using serum IgGs from malaria-protected individuals could be a novel strategy for the development of multi-antigen-based vaccine therapies.
Collapse
|
104
|
Memory B cells are a more reliable archive for historical antimalarial responses than plasma antibodies in no-longer exposed children. Proc Natl Acad Sci U S A 2012; 109:8247-52. [PMID: 22566630 DOI: 10.1073/pnas.1200472109] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Humans respond to foreign antigen by generating plasma Abs and memory B cells (MBCs). The Ab response then declines, sometimes to below the limit of detection. In contrast, MBCs are generally thought to be long-lived. We tested and compared Plasmodium falciparum (Pf)-specific Ab and MBC responses in two populations of children: (i) previously exposed children who had documented Pf infections several years ago, but minimal exposure since then; and (ii) persistently exposed children living in a separate but nearby endemic area. We found that although Pf-specific plasma Abs were lower in previously exposed children compared with persistently exposed children, their cognate MBCs were maintained at similar frequencies. We conclude that serological analysis by itself would greatly underestimate the true memory of Pf-specific Ab responses in previously exposed children living in areas where Pf transmission has been reduced or eliminated.
Collapse
|
105
|
Offeddu V, Thathy V, Marsh K, Matuschewski K. Naturally acquired immune responses against Plasmodium falciparum sporozoites and liver infection. Int J Parasitol 2012; 42:535-48. [DOI: 10.1016/j.ijpara.2012.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/18/2012] [Accepted: 03/24/2012] [Indexed: 10/28/2022]
|
106
|
Freitas do Rosario AP, Langhorne J. T cell-derived IL-10 and its impact on the regulation of host responses during malaria. Int J Parasitol 2012; 42:549-55. [PMID: 22549022 DOI: 10.1016/j.ijpara.2012.03.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 03/02/2012] [Accepted: 03/24/2012] [Indexed: 02/04/2023]
Abstract
Despite intense research, malaria still is the one of the most devastating diseases killing more people than any other parasitic infection. In an attempt to control the infection, the host immune system produces a potent pro-inflammatory response. However, this response is also associated with complications, such as severe anaemia, hypoglycaemia and cerebral malaria. This pronounced production of pro-inflammatory cytokines response is a common feature of malaria caused by parasites infecting humans as well as rodents and primates. A balance between pro- and anti-inflammatory responses may be fundamental to the elimination of the parasite without inducing excessive host pathology. IL-10 is a key cytokine that has been shown to have an important regulatory function in establishing this balance in malaria. Here we discuss which cells can produce IL-10 during infection, and present an overview of the evidence showing that T-cell derived IL-10 plays an important role in regulating malaria pathology. Many different subsets of T cells can produce IL-10, however, evidence is accumulating that it is effector Th1 CD4(+) T cells which provide the crucial source that down-regulates inflammatory pathology during blood-stage malaria infections.
Collapse
|
107
|
Migration and malaria in europe. Mediterr J Hematol Infect Dis 2012; 4:e2012014. [PMID: 22536477 PMCID: PMC3335816 DOI: 10.4084/mjhid.2012.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 02/06/2011] [Indexed: 12/18/2022] Open
Abstract
The proportion of imported malaria cases due to immigrants in Europe has increased during the lasts decades, with higher rates associated with settled immigrants who travel to visit friends and relatives (VFRs) in their country of origin. Cases are mainly due to P. falciparum and Sub-Saharan Africa is the most common origin. Clinically, malaria in immigrants is characterised by a mild clinical presentation including asymptomatic or delayed malaria cases and low parasitic levels. These characteristics may be explained by a semi-immunity acquired after long periods of time exposed to stable malaria transmission. Malaria cases among immigrants, even asymptomatic patients with sub-microscopic parasitemia, could increase the risk of transmission and cause the reintroduction of malaria in certain areas that have adequate vectors and climate conditions. Moreover, imported malaria cases in immigrants can also play an important role in the non-vector transmission out of endemic areas, through blood transfusions, organ transplantation or congenital transmission or occupational exposures. Consequently, outside of endemic areas, malaria screening should be carried out among recently arrived immigrants coming from malaria endemic countries. The aim of screening is to reduce the risk of clinical malaria in the individual as well as to prevent autochthonous transmission of malaria in areas where it has been eradicated.
Collapse
|
108
|
Kusi KA, Dodoo D, Bosomprah S, van der Eijk M, Faber BW, Kocken CHM, Remarque EJ. Measurement of the plasma levels of antibodies against the polymorphic vaccine candidate apical membrane antigen 1 in a malaria-exposed population. BMC Infect Dis 2012; 12:32. [PMID: 22299616 PMCID: PMC3317819 DOI: 10.1186/1471-2334-12-32] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/02/2012] [Indexed: 11/24/2022] Open
Abstract
Background Establishing antibody correlates of protection against malaria in human field studies and clinical trials requires, amongst others, an accurate estimation of antibody levels. For polymorphic antigens such as apical membrane antigen 1 (AMA1), this may be confounded by the occurrence of a large number of allelic variants in nature. Methods To test this hypothesis, plasma antibody levels in an age-stratified cohort of naturally exposed children from a malaria-endemic area in Southern Ghana were determined by indirect ELISA. Titres against four single PfAMA1 alleles were compared with those against three different allele mixtures presumed to have a wider repertoire of epitope specificities. Associations of antibody levels with the incidence of clinical malaria as well as with previous exposure to parasites were also examined. Results Antibody titres against PfAMA1 alleles generally increased with age/exposure while antibody specificity for PfAMA1 variants decreased, implying that younger children (≤ 5 years) elicit a more strain-specific antibody response compared to older children. Antibody titre measurements against the FVO and 3D7 AMA1 alleles gave the best titre estimates as these varied least in pair-wise comparisons with titres against all PfAMA1 allele mixtures. There was no association between antibody levels against any capture antigen and either clinical malaria incidence or parasite density. Conclusions The current data shows that levels of naturally acquired antigen-specific antibodies, especially in infants and young children, are dependent on the antigenic allele used for measurement. This may be relevant to the interpretation of antibody titre data from measurements against single PfAMA1 alleles, especially in studies involving infants and young children who have experienced fewer infections.
Collapse
Affiliation(s)
- Kwadwo A Kusi
- Department of Parasitology, Biomedical Primate Research Centre, Postbox 3306, 2280, GH Rijswijk, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
109
|
Plasmodium falciparum malaria in the Peruvian Amazon, a region of low transmission, is associated with immunologic memory. Infect Immun 2012; 80:1583-92. [PMID: 22252876 DOI: 10.1128/iai.05961-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The development of clinical immunity to Plasmodium falciparum malaria is thought to require years of parasite exposure, a delay often attributed to difficulties in developing protective antibody levels. In this study, we evaluated several P. falciparum vaccine candidate antigens, including apical membrane antigen 1 (AMA-1), circumsporozoite protein (CSP), erythrocyte binding antigen 175 (EBA-175), and the 19-kDa region of merozoite surface protein 1 (MSP1(19)). After observing a more robust antibody response to MSP1(19), we evaluated the magnitude and longevity of IgG responses specific to this antigen in Peruvian adults and children before, during, and after P. falciparum infection. In this low-transmission region, even one reported prior infection was sufficient to produce a positive anti-MSP1(19) IgG response for >5 months in the absence of reinfection. We also observed an expansion of the total plasmablast (CD19(+) CD27(+) CD38(high)) population in the majority of individuals shortly after infection and detected MSP1-specific memory B cells in a subset of individuals at various postinfection time points. This evidence supports our hypothesis that effective antimalaria humoral immunity can develop in low-transmission regions.
Collapse
|
110
|
Brown WC. Adaptive immunity to Anaplasma pathogens and immune dysregulation: implications for bacterial persistence. Comp Immunol Microbiol Infect Dis 2012; 35:241-52. [PMID: 22226382 DOI: 10.1016/j.cimid.2011.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 11/30/2011] [Accepted: 12/06/2011] [Indexed: 12/15/2022]
Abstract
Anaplasma marginale is an obligate intraerythrocytic bacterium that infects ruminants, and notably causes severe economic losses in cattle worldwide. Anaplasma phagocytophilum infects neutrophils and causes disease in many mammals, including ruminants, dogs, cats, horses, and humans. Both bacteria cause persistent infection - infected cattle never clear A. marginale and A. phagocytophilum can also cause persistent infection in ruminants and other animals for several years. This review describes correlates of the protective immune response to these two pathogens as well as subversion and dysregulation of the immune response following infection that likely contribute to long-term persistence. I also compare the immune dysfunction observed with intraerythrocytic A. marginale to that observed in other models of chronic infection resulting in high antigen loads, including malaria, a disease caused by another intraerythrocytic pathogen.
Collapse
Affiliation(s)
- Wendy C Brown
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, United States.
| |
Collapse
|
111
|
Teirlinck AC, McCall MBB, Roestenberg M, Scholzen A, Woestenenk R, de Mast Q, van der Ven AJAM, Hermsen CC, Luty AJF, Sauerwein RW. Longevity and composition of cellular immune responses following experimental Plasmodium falciparum malaria infection in humans. PLoS Pathog 2011; 7:e1002389. [PMID: 22144890 PMCID: PMC3228790 DOI: 10.1371/journal.ppat.1002389] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 10/05/2011] [Indexed: 01/09/2023] Open
Abstract
Cellular responses to Plasmodium falciparum parasites, in particular interferon-gamma (IFNγ) production, play an important role in anti-malarial immunity. However, clinical immunity to malaria develops slowly amongst naturally exposed populations, the dynamics of cellular responses in relation to exposure are difficult to study and data about the persistence of such responses are controversial. Here we assess the longevity and composition of cellular immune responses following experimental malaria infection in human volunteers. We conducted a longitudinal study of cellular immunological responses to sporozoites (PfSpz) and asexual blood-stage (PfRBC) malaria parasites in naïve human volunteers undergoing single (n = 5) or multiple (n = 10) experimental P. falciparum infections under highly controlled conditions. IFNγ and interleukin-2 (IL-2) responses following in vitro re-stimulation were measured by flow-cytometry prior to, during and more than one year post infection. We show that cellular responses to both PfSpz and PfRBC are induced and remain almost undiminished up to 14 months after even a single malaria episode. Remarkably, not only ‘adaptive’ but also ‘innate’ lymphocyte subsets contribute to the increased IFNγ response, including αβT cells, γδT cells and NK cells. Furthermore, results from depletion and autologous recombination experiments of lymphocyte subsets suggest that immunological memory for PfRBC is carried within both the αβT cells and γδT compartments. Indeed, the majority of cytokine producing T lymphocytes express an CD45RO+ CD62L- effector memory (EM) phenotype both early and late post infection. Finally, we demonstrate that malaria infection induces and maintains polyfunctional (IFNγ+IL-2+) EM responses against both PfRBC and PfSpz, previously found to be associated with protection. These data demonstrate that cellular responses can be readily induced and are long-lived following infection with P. falciparum, with a persisting contribution by not only adaptive but also (semi-)innate lymphocyte subsets. The implications hereof are positive for malaria vaccine development, but focus attention on those factors potentially inhibiting such responses in the field. A decade into the 21st century, malaria remains responsible for an intolerable global health burden and an effective vaccine is sorely needed. Compounding the many technical hurdles in developing such a vaccine, (naturally-acquired) immunity to malaria is generally perceived to be short-lived, although direct evidence from field studies is conflicting. To overcome this issue, we measured the development of immune responses against the malaria parasite Plasmodium falciparum in human volunteers undergoing experimental malaria infections for the first time, allowing a uniquely detailed analysis thereof. We found that cellular immune responses against two clinically-relevant life-stages of the parasite are not only rapidly acquired following even a single malaria infection, but also remain virtually undiminished over a year later – an unprecedented measurement. These findings refute conclusively the notion that an intrinsic defect exists in either the development or persistence of cellular immune responses against malaria. This realization, in conjunction with a growing recognition that such responses are indeed associated with clinical protection against malaria, markedly enhances the prospect of one day developing a successful vaccine. Simultaneously, however, these results re-focus attention on the question of why the development of long-lived immune responses is often inhibited under conditions of natural exposure.
Collapse
Affiliation(s)
- Anne C. Teirlinck
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Matthew B. B. McCall
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Meta Roestenberg
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Anja Scholzen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Rob Woestenenk
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of General Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Andre J. A. M. van der Ven
- Department of General Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Cornelus C. Hermsen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Adrian J. F. Luty
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
112
|
Stephens R, Culleton RL, Lamb TJ. The contribution of Plasmodium chabaudi to our understanding of malaria. Trends Parasitol 2011; 28:73-82. [PMID: 22100995 DOI: 10.1016/j.pt.2011.10.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 12/23/2022]
Abstract
Malaria kills close to a million people every year, mostly children under the age of five. In the drive towards the development of an effective vaccine and new chemotherapeutic targets for malaria, field-based studies on human malaria infection and laboratory-based studies using animal models of malaria offer complementary opportunities to further our understanding of the mechanisms behind malaria infection and pathology. We outline here the parallels between the Plasmodium chabaudi mouse model of malaria and human malaria. We will highlight the contribution of P. chabaudi to our understanding of malaria in particular, how the immune response in malaria infection is initiated and regulated, its role in pathology, and how immunological memory is maintained. We will also discuss areas where new tools have opened up potential areas of exploration using this invaluable model system.
Collapse
Affiliation(s)
- Robin Stephens
- University of Texas Medical Branch, Departments of Microbiology and Immunology and Internal Medicine, Division of Infectious Diseases, 301 University Boulevard, Galveston, TX 77555-0435, USA
| | | | | |
Collapse
|
113
|
Nogaro SI, Hafalla JC, Walther B, Remarque EJ, Tetteh KKA, Conway DJ, Riley EM, Walther M. The breadth, but not the magnitude, of circulating memory B cell responses to P. falciparum increases with age/exposure in an area of low transmission. PLoS One 2011; 6:e25582. [PMID: 21991321 PMCID: PMC3186790 DOI: 10.1371/journal.pone.0025582] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/06/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Malaria caused by Plasmodium falciparum remains a major cause of death in sub-Saharan Africa. Immunity against symptoms of malaria requires repeated exposure, suggesting either that the parasite is poorly immunogenic or that the development of effective immune responses to malaria may be impaired. METHODS We carried out two age-stratified cross-sectional surveys of anti-malarial humoral immune responses in a Gambian village where P. falciparum malaria transmission is low and sporadic. Circulating antibodies and memory B cells (MBC) to four malarial antigens were measured using ELISA and cultured B cell ELISpot. FINDINGS AND CONCLUSIONS The proportion of individuals with malaria-specific MBC and antibodies, and the average number of antigens recognised by each individual, increased with age but the magnitude of these responses did not. Malaria-specific antibody levels did not correlate with either the prevalence or median number of MBC, indicating that these two assays are measuring different aspects of the humoral immune response. Among those with immunological evidence of malaria exposure (defined as a positive response to at least one malarial antigen either by ELISA or ELISPOT), the median number of malaria-specific MBC was similar to median numbers of diphtheria-specific MBC, suggesting that the circulating memory cell pool for malaria antigens is of similar size to that for other antigens.
Collapse
Affiliation(s)
- Sarah I. Nogaro
- Medical Research Council Laboratories, Fajara, Banjul, The Gambia
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julius C. Hafalla
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Brigitte Walther
- Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - Edmond J. Remarque
- Department of Parasitology, Biomedical Primate Research Centre, GJ Rijswijk, The Netherlands
| | - Kevin K. A. Tetteh
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David J. Conway
- Medical Research Council Laboratories, Fajara, Banjul, The Gambia
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eleanor M. Riley
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael Walther
- Medical Research Council Laboratories, Fajara, Banjul, The Gambia
- * E-mail:
| |
Collapse
|
114
|
Flateau C, Le Loup G, Pialoux G. Consequences of HIV infection on malaria and therapeutic implications: a systematic review. THE LANCET. INFECTIOUS DISEASES 2011; 11:541-56. [PMID: 21700241 DOI: 10.1016/s1473-3099(11)70031-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite recent changes in the epidemiology of HIV infection and malaria and major improvements in their control, these diseases remain two of the most important infectious diseases and global health priorities. As they have overlapping distribution in tropical areas, particularly sub-Saharan Africa, any of their clinical, diagnostic, and therapeutic interactions might have important effects on patient care and public health policy. The biological basis of these interactions is well established. HIV infection induces cellular depletion and early abnormalities of CD4+ T cells, decreases CD8+ T-cell counts and function (cellular immunity), causes deterioration of specific antigen responses (humoral immunity), and leads to alteration of innate immunity through impairment of cytolytic activity and cytokine production by natural killer cells. Therefore, HIV infection affects the immune response to malaria, particularly premunition in adolescents and adults, and pregnancy-specific immunity, leading to different patterns of disease in HIV-infected patients compared with HIV-uninfected patients. In this systematic review, we collate data on the effects of HIV on malaria and discuss their therapeutic consequences. HIV infection is associated with increased prevalence and severity of clinical malaria and impaired response to antimalarial treatment, depending on age, immunodepression, and previous immunity to malaria. HIV also affects pregnancy-specific immunity to malaria and response to intermittent preventive treatment. Co-trimoxazole (trimethoprim-sulfamethoxazole) prophylaxis and antiretroviral treatment reduce occurrence of clinical malaria; however, these therapies interact with antimalarial drugs, and new therapeutic guidelines are needed for concomitant use.
Collapse
Affiliation(s)
- Clara Flateau
- Service des Maladies Infectieuses et Tropicales, Hôpital Tenon, AP-HP, University Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|
115
|
Increased interleukin-10 and interferon-γ levels in Plasmodium vivax malaria suggest a reciprocal regulation which is not altered by IL-10 gene promoter polymorphism. Malar J 2011; 10:264. [PMID: 21917128 PMCID: PMC3196927 DOI: 10.1186/1475-2875-10-264] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/14/2011] [Indexed: 01/01/2023] Open
Abstract
Background In human malaria, the naturally-acquired immune response can result in either the elimination of the parasite or a persistent response mediated by cytokines that leads to immunopathology. The cytokines are responsible for all the symptoms, pathological alterations and the outcome of the infection depends on the reciprocal regulation of the pro and anti-inflammatory cytokines. IL-10 and IFN-gamma are able to mediate this process and their production can be affected by single nucleotide polymorphisms (SNPs) on gene of these cytokines. In this study, the relationship between cytokine IL-10/IFN-gamma levels, parasitaemia, and their gene polymorphisms was examined and the participation of pro-inflammatory and regulatory balance during a natural immune response in Plasmodium vivax-infected individuals was observed. Methods The serum levels of the cytokines IL-4, IL-12, IFN-gamma and IL-10 from 132 patients were evaluated by indirect enzyme-linked immunosorbent assays (ELISA). The polymorphism at position +874 of the IFN-gamma gene was identified by allele-specific polymerase chain reaction (ASO-PCR) method, and the polymorphism at position -1082 of the IL-10 gene was analysed by PCR-RFLP (PCR-Restriction Fragment Length Polymorphism). Results The levels of a pro- (IFN-gamma) and an anti-inflammatory cytokine (IL-10) were significantly higher in P. vivax-infected individuals as compared to healthy controls. The IFN-gamma levels in primoinfected patients were significantly higher than in patients who had suffered only one and more than one previous episode. The mutant alleles of both IFN-gamma and IL-10 genes were more frequent than the wild allele. In the case of the IFNG+874 polymorphism (IFN-gamma) the frequencies of the mutant (A) and wild (T) alleles were 70.13% and 29.87%, respectively. Similar frequencies were recorded in IL-10-1082, with the mutant (A) allele returning a frequency of 70.78%, and the wild (G) allele a frequency of 29.22%. The frequencies of the alleles associated with reduced production of both IFN-gamma and IL-10 were high, but this effect was only observed in the production of IFN-gamma. Conclusions This study has shown evidence of reciprocal regulation of the levels of IL-10 and IFN-gamma cytokines in P. vivax malaria, which is not altered by the presence of polymorphism in the IL-10 gene.
Collapse
|
116
|
Abstract
Acquired immune deficiency syndrome (AIDS), malaria and tuberculosis collectively cause more than five million deaths per year, but have nonetheless eluded conventional vaccine development; for this reason they represent one of the major global public health challenges as we enter the second decade of the twenty-first century. Recent trials have provided evidence that it is possible to develop vaccines that can prevent infection by human immunodeficiency virus (HIV) and malaria. Furthermore, advances in vaccinology, including novel adjuvants, prime-boost regimes and strategies for intracellular antigen presentation, have led to progress in developing a vaccine against tuberculosis. Here we discuss these advances and suggest that new tools such as systems biology and structure-based antigen design will lead to a deeper understanding of mechanisms of protection which, in turn, will lead to rational vaccine development. We also argue that new and innovative approaches to clinical trials will accelerate the availability of these vaccines.
Collapse
|
117
|
Borrmann S, Matuschewski K. Protective immunity against malaria by 'natural immunization': a question of dose, parasite diversity, or both? Curr Opin Immunol 2011; 23:500-8. [PMID: 21719266 DOI: 10.1016/j.coi.2011.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/29/2011] [Indexed: 10/18/2022]
Abstract
Plasmodium undergoes an obligate liver phase before the onset of malaria, which is caused exclusively by cyclic propagation of the parasite inside erythrocytes. The diagnostically inaccessible and clinically silent pre-erythrocytic expansion phase is a promising target for inducing sterilizing immunity against reinfections. Recent studies in rodent and human malaria models called attention to the induction of potent protective immunity by administration of anti-malarial drugs during sporozoite exposure. Here, we review the concept of drug-mediated pathogen arrest as a natural immunization strategy. This previously unrecognized immunological benefit might also open new opportunities for population-wide presumptive drug administration as an adjunct malaria control tool.
Collapse
Affiliation(s)
- Steffen Borrmann
- Clinical Parasitology Unit, Heidelberg University School of Medicine, 69120 Heidelberg, Germany.
| | | |
Collapse
|
118
|
Roestenberg M, Teirlinck AC, McCall MBB, Teelen K, Makamdop KN, Wiersma J, Arens T, Beckers P, van Gemert G, van de Vegte-Bolmer M, van der Ven AJAM, Luty AJF, Hermsen CC, Sauerwein RW. Long-term protection against malaria after experimental sporozoite inoculation: an open-label follow-up study. Lancet 2011; 377:1770-6. [PMID: 21514658 DOI: 10.1016/s0140-6736(11)60360-7] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We have shown that immunity to infection with Plasmodium falciparum can be induced experimentally in malaria-naive volunteers through immunisation by bites of infected mosquitoes while simultaneously preventing disease with chloroquine prophylaxis. This immunity was associated with parasite-specific production of interferon γ and interleukin 2 by pluripotent effector memory cells in vitro. We aim to explore the persistence of protection and immune responses in the same volunteers. METHODS In an open-label study at the Radboud University Nijmegen Medical Centre (Nijmegen, Netherlands), from November to December, 2009, we rechallenged previously immune volunteers (28 months after immunisation) with the bites of five mosquitoes infected with P falciparum. Newly recruited malaria-naive volunteers served as infection controls. Our primary outcome was the detection of blood-stage parasitaemia by microscopy. We assessed the kinetics of parasitaemia with real-time quantitative PCR (rtPCR) and recorded clinical signs and symptoms. In-vitro production of interferon γ and interleukin 2 by effector memory T cells was studied after stimulation with sporozoites and red blood cells infected with P falciparum. Differences in cellular immune responses between the study groups were assessed with the Mann-Whitney test. This study is registered with ClinicalTrials.gov, number NCT00757887. FINDINGS Four of six immune volunteers were microscopically negative after rechallenge. rtPCR-based detection of blood-stage parasites in these individuals was negative throughout follow-up. Patent parasitaemia was delayed in the remaining two immunised volunteers. In-vitro assays showed the long-term persistence of parasite-specific pluripotent effector memory T-cell responses in protected volunteers. The four protected volunteers reported several mild to moderate adverse events, of which the most commonly reported symptom was headache (one to three episodes per volunteer). The two patients with delayed patency had adverse events similar to those in the control group. INTERPRETATION Artificially induced immunity lasts longer than generally recorded after natural exposure; providing a new avenue of research into the mechanisms of malaria immunity. FUNDING Dioraphte Foundation.
Collapse
Affiliation(s)
- Meta Roestenberg
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Acute Disruption of Bone Marrow B Lymphopoiesis and Apoptosis of Transitional and Marginal Zone B Cells in the Spleen following a Blood-Stage Plasmodium chabaudi Infection in Mice. J Parasitol Res 2011; 2011:534697. [PMID: 21687602 PMCID: PMC3112522 DOI: 10.1155/2011/534697] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 02/25/2011] [Indexed: 12/27/2022] Open
Abstract
B cells and antibodies are essential for the protective immune response against a blood-stage Plasmodium infection. Although extensive research has focused on memory as well as plasma B-cell responses during infection, little is known about how malaria affects B-cell development and splenic maturation into marginal zone B (MZB) and follicular B (FoB) cells. In this study, we show that acute Plasmodium chabaudi AS infection in C57Bl/6 mice causes severe disruption of B lymphopoiesis in the bone marrow, affecting in particular pro-, pre-, and immature B cells as well as the expression of the bone marrow B-cell retention chemokine CXCL12. In addition, elevated apoptosis of transitional T2 and marginal zone (MZ) B cells was observed during and subsequent to the control of the first wave of parasitemia. In contrast, Folllicular (Fo) B cells levels were retained in the spleen throughout the infection, suggesting that these are essential for parasite clearance and proper infection control.
Collapse
|
120
|
Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev 2011; 24:377-410. [PMID: 21482730 PMCID: PMC3122489 DOI: 10.1128/cmr.00051-10] [Citation(s) in RCA: 530] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Malaria remains a major cause of morbidity and mortality in the tropics, with Plasmodium falciparum responsible for the majority of the disease burden and P. vivax being the geographically most widely distributed cause of malaria. Gametocytes are the sexual-stage parasites that infect Anopheles mosquitoes and mediate the onward transmission of the disease. Gametocytes are poorly studied despite this crucial role, but with a recent resurgence of interest in malaria elimination, the study of gametocytes is in vogue. This review highlights the current state of knowledge with regard to the development and longevity of P. falciparum and P. vivax gametocytes in the human host and the factors influencing their distribution within endemic populations. The evidence for immune responses, antimalarial drugs, and drug resistance influencing infectiousness to mosquitoes is reviewed. We discuss how the application of molecular techniques has led to the identification of submicroscopic gametocyte carriage and to a reassessment of the human infectious reservoir. These components are drawn together to show how control measures that aim to reduce malaria transmission, such as mass drug administration and a transmission-blocking vaccine, might better be deployed.
Collapse
Affiliation(s)
- Teun Bousema
- Department of Immunology & Infection, London School of Hygiene and Tropical Medicine, London W1CE 7HT, United Kingdom
| | - Chris Drakeley
- Department of Immunology & Infection, London School of Hygiene and Tropical Medicine, London W1CE 7HT, United Kingdom
| |
Collapse
|
121
|
Kusi KA, Faber BW, van der Eijk M, Thomas AW, Kocken CHM, Remarque EJ. Immunization with different PfAMA1 alleles in sequence induces clonal imprint humoral responses that are similar to responses induced by the same alleles as a vaccine cocktail in rabbits. Malar J 2011; 10:40. [PMID: 21320299 PMCID: PMC3050776 DOI: 10.1186/1475-2875-10-40] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/14/2011] [Indexed: 11/23/2022] Open
Abstract
Background Antibodies to key Plasmodium falciparum surface antigens have been shown to be important effectors that mediate clinical immunity to malaria. The cross-strain fraction of anti-malarial antibodies may however be required to achieve strain-transcending immunity. Such antibody responses against Plasmodium falciparum apical membrane antigen 1 (PfAMA1), a vaccine target molecule that is expressed in both liver and blood stages of the parasite, can be elicited through immunization with a mixture of allelic variants of the parasite molecule. Cross-strain antibodies are most likely elicited against epitopes that are shared by the allelic antigens in the vaccine cocktail. Methods A standard competition ELISA was used to address whether the antibody response can be further focused on shared epitopes by exclusively boosting these common determinants through immunization of rabbits with different PfAMA1 alleles in sequence. The in vitro parasite growth inhibition assay was used to further evaluate the functional effects of the broadened antibody response that is characteristic of multi-allele vaccine strategies. Results A mixed antigen immunization protocol elicited humoral responses that were functionally similar to those elicited by a sequential immunization protocol (p > 0.05). Sequential exposure to the different PfAMA1 allelic variants induced immunological recall of responses to previous alleles and yielded functional cross-strain antibodies that would be capable of optimal growth inhibition of variant parasites at high enough concentrations. Conclusions These findings may have implications for the current understanding of the natural acquisition of clinical immunity to malaria as well as for rational vaccine design.
Collapse
Affiliation(s)
- Kwadwo A Kusi
- Department of Parasitology, Biomedical Primate Research Centre, Postbox 3306, 2280 GH Rijswijk, The Netherlands
| | | | | | | | | | | |
Collapse
|
122
|
Wipasa J, Okell L, Sakkhachornphop S, Suphavilai C, Chawansuntati K, Liewsaree W, Hafalla JCR, Riley EM. Short-lived IFN-γ effector responses, but long-lived IL-10 memory responses, to malaria in an area of low malaria endemicity. PLoS Pathog 2011; 7:e1001281. [PMID: 21347351 PMCID: PMC3037361 DOI: 10.1371/journal.ppat.1001281] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 01/10/2011] [Indexed: 12/24/2022] Open
Abstract
Immunity to malaria is widely believed to wane in the absence of reinfection, but direct evidence for the presence or absence of durable immunological memory to malaria is limited. Here, we analysed malaria-specific CD4+ T cell responses of individuals living in an area of low malaria transmission in northern Thailand, who had had a documented clinical attack of P. falciparum and/or P. vivax in the past 6 years. CD4+ T cell effector memory (CD45RO+) IFN-γ (24 hours ex vivo restimulation) and cultured IL-10 (6 day secretion into culture supernatant) responses to malaria schizont antigens were detected only in malaria-exposed subjects and were more prominent in subjects with long-lived antibodies or memory B cells specific to malaria antigens. The number of IFN-γ-producing effector memory T cells declined significantly over the 12 months of the study, and with time since last documented malaria infection, with an estimated half life of the response of 3.3 (95% CI 1.9-10.3) years. In sharp contrast, IL-10 responses were sustained for many years after last known malaria infection with no significant decline over at least 6 years. The observations have clear implications for understanding the immunoepidemiology of naturally acquired malaria infections and for malaria vaccine development.
Collapse
Affiliation(s)
- Jiraprapa Wipasa
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Lucy Okell
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Chaisuree Suphavilai
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | - Witaya Liewsaree
- Vector Borne Disease Section, Office of Disease Prevention and Control, Chiang Mai, Thailand
| | - Julius C. R. Hafalla
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eleanor M. Riley
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
123
|
Kusi KA, Faber BW, Riasat V, Thomas AW, Kocken CHM, Remarque EJ. Generation of humoral immune responses to multi-allele PfAMA1 vaccines; effect of adjuvant and number of component alleles on the breadth of response. PLoS One 2010; 5:e15391. [PMID: 21082025 PMCID: PMC2972715 DOI: 10.1371/journal.pone.0015391] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 08/31/2010] [Indexed: 12/20/2022] Open
Abstract
There is increasing interest in multi-allele vaccines to overcome strain-specificity against polymorphic vaccine targets such as Apical Membrane Antigen 1 (AMA1). These have been shown to induce broad inhibitory antibodies in vitro and formed the basis for the design of three Diversity-Covering (DiCo) proteins with similar immunological effects. The antibodies produced are to epitopes that are shared between vaccine alleles and theoretically, increasing the number of component AMA1 alleles is expected to broaden the antibody response. A plateau effect could however impose a limit on the number of alleles needed to achieve the broadest specificity. Moreover, production cost and the vaccine formulation process would limit the number of component alleles. In this paper, we compare rabbit antibody responses elicited with multi-allele vaccines incorporating seven (three DiCos and four natural AMA1 alleles) and three (DiCo mix) antigens for gains in broadened specificity. We also investigate the effect of three adjuvant platforms on antigen specificity and antibody functionality. Our data confirms a broadened response after immunisation with DiCo mix in all three adjuvants. Higher antibody titres were elicited with either CoVaccine HT™ or Montanide ISA 51, resulting in similar in vitro inhibition (65–82%) of five out of six culture-adapted P. falciparum strains. The antigen binding specificities of elicited antibodies were also similar and independent of the adjuvant used or the number of vaccine component alleles. Thus neither the four extra antigens nor adjuvant had any observable benefits with respect to specificity broadening, although adjuvant choice influenced the absolute antibody levels and thus the extent of parasite inhibition. Our data confirms the feasibility and potential of multi-allele PfAMA1 formulations, and highlights the need for adjuvants with improved antibody potentiation properties for AMA1-based vaccines.
Collapse
Affiliation(s)
- Kwadwo A. Kusi
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Bart W. Faber
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Vanessa Riasat
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Alan W. Thomas
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Clemens H. M. Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Edmond J. Remarque
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
- * E-mail:
| |
Collapse
|
124
|
Coban C, Horii T, Akira S, Ishii KJ. TLR9 and endogenous adjuvants of the whole blood-stage malaria vaccine. Expert Rev Vaccines 2010; 9:775-84. [PMID: 20624050 DOI: 10.1586/erv.10.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vaccination has been a successful tool in the protection against many infectious diseases, and recent advances in biotechnology have created new techniques and strategies to produce safe and efficacious vaccines for human use. However, developing a protective vaccine against malaria has been a challenge. In this article, we focus on an old approach with some new modifications, the so-called whole-parasite vaccination strategy against blood-stage Plasmodium falciparum, the deadliest human malarial agent. In addition, we discuss recent developments in our understanding of how the endogenous adjuvant activity in the parasites, which functions via Toll-like receptor 9, acts as a double-edged sword between protective vaccination and pathological responses against malaria infection.
Collapse
Affiliation(s)
- Cevayir Coban
- Immunology Frontier Research Center, World Premier Institute for Immunology, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
125
|
Progress in modelling malaria transmission. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 673:1-12. [PMID: 20632526 DOI: 10.1007/978-1-4419-6064-1_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Transmission of human malaria is a complicated dynamic process that involves populations of humans, parasites, and vectors. The first mathematical models of malaria are now more than a century old, and they are still a useful conceptual synthetic description of transmission, but they fail in some important ways. To address some of those failures, malaria transmission models have now been extended to consider malaria immunity, superinfection, and heterogeneous biting, among other factors. These extensions of the basic theory often arise from field studies in a single place, but tests of the theory come comparing standard measures of malaria taken from many places across the transmission spectrum. Several good models now exist that describe these basic patterns across the spectrum from low to high endemicity. The future of malaria modeling will involve applying these models to make decisions about real systems and finding new ways to test the underlying causes of the patterns.
Collapse
|
126
|
Gammadelta T cells but not NK cells are essential for cell-mediated immunity against Plasmodium chabaudi malaria. Infect Immun 2010; 78:4331-40. [PMID: 20660608 DOI: 10.1128/iai.00539-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Blood-stage Plasmodium chabaudi infections are suppressed by antibody-mediated immunity and/or cell-mediated immunity (CMI). To determine the contributions of NK cells and γδ T cells to protective immunity, C57BL/6 (wild-type [WT]) mice and B-cell-deficient (J(H(-/-))) mice were infected with P. chabaudi and depleted of NK cells or γδ T cells with monoclonal antibody. The time courses of parasitemia in NK-cell-depleted WT mice and J(H(-/-)) mice were similar to those of control mice, indicating that deficiencies in NK cells, NKT cells, or CD8(+) T cells had little effect on parasitemia. In contrast, high levels of noncuring parasitemia occurred in J(H(-/-)) mice depleted of γδ T cells. Depletion of γδ T cells during chronic parasitemia in B-cell-deficient J(H(-/-)) mice resulted in an immediate and marked exacerbation of parasitemia, suggesting that γδ T cells have a direct killing effect in vivo on blood-stage parasites. Cytokine analyses revealed that levels of interleukin-10, gamma interferon (IFN-γ), and macrophage chemoattractant protein 1 (MCP-1) in the sera of γδ T-cell-depleted mice were significantly (P < 0.05) decreased compared to hamster immunoglobulin-injected controls, but these cytokine levels were similar in NK-cell-depleted mice and their controls. The time courses of parasitemia in CCR2(-/-) and J(H(-/-)) × CCR2(-/-) mice and in their controls were nearly identical, indicating that MCP-1 is not required for the control of parasitemia. Collectively, these data indicate that the suppression of acute P. chabaudi infection by CMI is γδ T cell dependent, is independent of NK cells, and may be attributed to the deficient IFN-γ response seen early in γδ T-cell-depleted mice.
Collapse
|
127
|
Kocherscheidt L, Agossou A, Gantin RG, Hamm DM, Banla M, Soboslay PT. Cytokine and chemokine responses in adults, newborns and children exposed to Entamoeba histolytica/dispar, Onchocerca volvulus and Plasmodium falciparum. Pediatr Allergy Immunol 2010; 21:e756-63. [PMID: 20408971 DOI: 10.1111/j.1399-3038.2010.01048.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cytokine and chemokine response profiles were studied in newborns, 10-yr-old children and post partum mothers. All study groups were repeatedly exposed to Entamoeba histolytica, Onchocerca volvulus and Plasmodium falciparum infections as indicated by their Immunoglobulin (IgG) responses to parasite-specific antigens. As key indicators for regulatory and pro-inflammatory cytokine and chemokine responses, Interferon (IFN)gamma and regulatory IL-10 were investigated, along with the chemokines MIP-1 alpha/CCL3, MIP-1 beta/CCL4, MDC/CCL22 and TARC/CCL17. Entamoeba histolytica antigens (EhAg) strongly activated pro-inflammatory MIP-1 alpha/CCL3 and MIP-1 beta/CCL4 responses of similar magnitude in mothers, children and neonates alike. Plasmodium falciparum antigens (PfAg) enhanced MIP-1 alpha/CCL3, MIP-1 beta/CCL4 and MDC/CCL22 production in neonates, but did not trigger these chemokines in mothers or 10-yr-old children. Onchocerca volvulus antigens (OvAg) activated IFN-gamma and TARC/CCL17 production in mothers but not in neonates and children. Crude IL-10 production [i.e., without subtracting spontaneous cellular release (baseline)] was highest in mothers and somewhat lower in neonates, while the lowest IL-10 amounts of all were released by peripheral blood mononuclear cells from 10-yr-old children. In summary, strong inflammatory chemokine responses to plasmodia and ameba antigens in newborns and 10-yr-old children suggest that adequately balanced immune regulatory mechanisms may not have developed yet in these age groups and that repeated exposure to parasite infections and immune maturation during childhood is required to generate similar cytokine and chemokine profiles as in adults.
Collapse
Affiliation(s)
- Lars Kocherscheidt
- Institute for Tropical Medicine, University Clinics of Tübingen, Wilhelmstr., Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
128
|
Abstract
HIV and malaria kill millions of people every year. They share a common geographic distribution, and both cause far more disease and death in sub-Saharan Africa than they do in the rest of the world. Many epidemiologic studies have suggested that HIV and malaria coexist independently, but some recent reports describe synergistic interactions between them. People living with HIV infection who do not have pre-existing immunity to malaria experience a marked increase in malaria severity. But for those who have acquired immunity through natural exposure to malaria, HIV-related immunosuppression is associated with only a modest increase in clinical malaria, which may be explained in part by more frequent nonmalaria febrile episodes. The effect of malaria infection on HIV disease progression due to increased viral replication may be important but has not yet been fully explored.
Collapse
Affiliation(s)
- Miriam K Laufer
- Center for Vaccine Development, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1 Room 480, Baltimore, MD 21201, USA
| | | |
Collapse
|
129
|
Todryk SM, Walther M, Bejon P, Hutchings C, Thompson FM, Urban BC, Porter DW, Hill AVS. Multiple functions of human T cells generated by experimental malaria challenge. Eur J Immunol 2010; 39:3042-51. [PMID: 19658096 DOI: 10.1002/eji.200939434] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protective immunity generated following malaria infection may be comprised of Ab or T cells against malaria Ag of different stages; however, the short-lived immunity that is observed suggests deficiency in immune memory or regulatory activity. In this study, cellular immune responses were investigated in individuals receiving Plasmodium falciparum sporozoite challenge by the natural (mosquito bite) route as part of a malaria vaccine efficacy trial. Parasitemia, monitored by blood film microscopy and PCR, was subsequently cleared with drugs. All individuals demonstrated stable IFN-gamma, IL-2 and IL-4 ex vivo ELISPOT effector responses against P. falciparum-infected RBC (iRBC) Ag, 28 and 90 days after challenge. However, infected RBC-specific central memory responses, as measured by IFN-gamma cultured ELISPOT, were low and unstable over time, despite CD4(+) T cells being highly proliferative by CFSE dilution, and showed an inverse relationship to parasite density. In support of the observation of poor memory, co-culture experiments showed reduced responses to common recall Ag, indicating malaria-specific regulatory activity. This activity could not be accounted for by the expression of IL-10, TGF-beta, FOXP3 or CTLA-4, but proliferating T cells expressed high levels of CD95, indicating a pro-apoptotic phenotype. Lastly, there was an inverse relationship between FOXP3 expression, when measured 10 days after challenge, and ex vivo IFN-gamma measured more than 100 days later. This study shows that malaria infection elicits specific Th1 and Th2 effector cells, but concomitant weak central memory and regulatory activity, which may help to explain the short-lived immunity observed.
Collapse
Affiliation(s)
- Stephen M Todryk
- Centre for Clinical Vaccinology and Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Wipasa J, Suphavilai C, Okell LC, Cook J, Corran PH, Thaikla K, Liewsaree W, Riley EM, Hafalla JCR. Long-lived antibody and B Cell memory responses to the human malaria parasites, Plasmodium falciparum and Plasmodium vivax. PLoS Pathog 2010; 6:e1000770. [PMID: 20174609 PMCID: PMC2824751 DOI: 10.1371/journal.ppat.1000770] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 01/14/2010] [Indexed: 01/10/2023] Open
Abstract
Antibodies constitute a critical component of the naturally acquired immunity that develops following frequent exposure to malaria. However, specific antibody titres have been reported to decline rapidly in the absence of reinfection, supporting the widely perceived notion that malaria infections fail to induce durable immunological memory responses. Currently, direct evidence for the presence or absence of immune memory to malaria is limited. In this study, we analysed the longevity of both antibody and B cell memory responses to malaria antigens among individuals who were living in an area of extremely low malaria transmission in northern Thailand, and who were known either to be malaria naïve or to have had a documented clinical attack of P. falciparum and/or P. vivax in the past 6 years. We found that exposure to malaria results in the generation of relatively avid antigen-specific antibodies and the establishment of populations of antigen-specific memory B cells in a significant proportion of malaria-exposed individuals. Both antibody and memory B cell responses to malaria antigens were stably maintained over time in the absence of reinfection. In a number of cases where antigen-specific antibodies were not detected in plasma, stable frequencies of antigen-specific memory B cells were nonetheless observed, suggesting that circulating memory B cells may be maintained independently of long-lived plasma cells. We conclude that infrequent malaria infections are capable of inducing long-lived antibody and memory B cell responses.
Collapse
Affiliation(s)
- Jiraprapa Wipasa
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chaisuree Suphavilai
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Lucy C. Okell
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jackie Cook
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Patrick H. Corran
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kanitta Thaikla
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Witaya Liewsaree
- Vector Borne Disease Section, Office of Disease Prevention and Control, Chiang Mai, Thailand
| | - Eleanor M. Riley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail: (EMR); (JCRH)
| | - Julius Clemence R. Hafalla
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail: (EMR); (JCRH)
| |
Collapse
|
131
|
Monge-Maillo B, Jiménez BC, Pérez-Molina JA, Norman F, Navarro M, Pérez-Ayala A, Herrero JM, Zamarrón P, López-Vélez R. Imported infectious diseases in mobile populations, Spain. Emerg Infect Dis 2010; 15:1745-52. [PMID: 19891861 PMCID: PMC2857245 DOI: 10.3201/eid1511.090718] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Health screening of immigrant populations is needed to ensure early diagnosis and treatment. Migration has contributed to the emergence of certain infectious diseases. To determine which infectious diseases were most common among 2 mobile immigrant groups (sub-Saharan Africans and Latin Americans) in Spain, we analyzed health and demographic characteristics of 2,198 immigrants referred to the Tropical Medicine Unit of Ramón y Cajal Hospital over a 20-year period. The most frequent diagnoses were for latent tuberculosis (716 patients [32.6%]), filariasis (421 [19.2%]), hepatropic virus chronic infection (262 [19.2%]), intestinal parasites (242 [11.0%]), and malaria (212 [9.6%]). Health screening of immigrant populations is needed to ensure early diagnosis and treatment of potentially transmissible infections.
Collapse
|
132
|
Colpitts S, Scott P. Memory T-cell subsets in parasitic infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 684:145-54. [PMID: 20795546 DOI: 10.1007/978-1-4419-6451-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Parasitic infections remain a major health problem throughout the world and unlike many viral or bacterial diseases, there are no vaccines to help control parasitic diseases. While several important advances have been made that will contribute to the development of parasite vaccines, such as cloning of dominant parasite antigens and a better understanding of the effector T-cell subsets needed for immunity, fundamental questions remain about how to induce long-term immunologic memory in vaccines. Here we examine a few of the experimental models that have been used to elucidate the nature of the memory T cells that are generated during parasitic infections. Although significant hurdles remain in the development of parasite vaccines, studies with both protozoa and gastrointestinal nematodes suggest that long-term immunity induced by vaccination is a realistic goal for control of parasitic infections.
Collapse
Affiliation(s)
- Sara Colpitts
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Room 310 Hill Pavilion, 380 South University Avenue, Philadelphia, Pennslyvania 19104-4539, USA
| | | |
Collapse
|
133
|
Ndungu FM, Cadman ET, Coulcher J, Nduati E, Couper E, MacDonald DW, Ng D, Langhorne J. Functional memory B cells and long-lived plasma cells are generated after a single Plasmodium chabaudi infection in mice. PLoS Pathog 2009; 5:e1000690. [PMID: 20011127 PMCID: PMC2784955 DOI: 10.1371/journal.ppat.1000690] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 11/11/2009] [Indexed: 11/18/2022] Open
Abstract
Antibodies have long been shown to play a critical role in naturally acquired immunity to malaria, but it has been suggested that Plasmodium-specific antibodies in humans may not be long lived. The cellular mechanisms underlying B cell and antibody responses are difficult to study in human infections; therefore, we have investigated the kinetics, duration and characteristics of the Plasmodium-specific memory B cell response in an infection of P. chabaudi in mice. Memory B cells and plasma cells specific for the C-terminal region of Merozoite Surface Protein 1 were detectable for more than eight months following primary infection. Furthermore, a classical memory response comprised predominantly of the T-cell dependent isotypes IgG2c, IgG2b and IgG1 was elicited upon rechallenge with the homologous parasite, confirming the generation of functional memory B cells. Using cyclophosphamide treatment to discriminate between long-lived and short-lived plasma cells, we demonstrated long-lived cells secreting Plasmodium-specific IgG in both bone marrow and in spleens of infected mice. The presence of these long-lived cells was independent of the presence of chronic infection, as removal of parasites with anti-malarial drugs had no impact on their numbers. Thus, in this model of malaria, both functional Plasmodium-specific memory B cells and long-lived plasma cells can be generated, suggesting that defects in generating these cell populations may not be the reason for generating short-lived antibody responses. Malaria causes considerable human suffering resulting from associated high mortality, morbidity and reduced economic productivity in endemic areas. Current control methods are thwarted by a multiplicity of problems including rapidly developing resistance for anti-malarial drugs and insecticide-treated nets, and huge costs and hence poor coverage with bed nets in poor countries. Understanding the basis of the inefficiency of immunity to malaria in childhood will greatly aid the search for effective vaccines, which together with drugs and vector control, will be essential in the drive to eliminate malaria. Because of the strong evidence associating anti-malarial antibodies with anti-parasitic and anti-disease effects, vaccines inducing protective long-lasting antibody responses are attractive. However, it has been suggested that antibody responses to some Plasmodium antigens may be not long-lived. It would be important to determine whether long-lived plasma cells and memory B cells are generated after a malaria infection; however, these studies are difficult to perform in humans. Therefore we investigated the kinetics, duration and characteristics of the two cell types responsible for long-term antibody production in a mouse model of malaria. We show here that malaria-specific memory B cells and plasma cells are still detectable more than eight months after infection, and that both long-lived malaria-specific antibody-secreting cells and functional malaria-specific memory B cells can be made after a single infection.
Collapse
Affiliation(s)
- Francis Maina Ndungu
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Emma Tamsin Cadman
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Joshua Coulcher
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Eunice Nduati
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Elisabeth Couper
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | | | - Dorothy Ng
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Jean Langhorne
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
- * E-mail:
| |
Collapse
|
134
|
Eastman RT, Fidock DA. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol 2009; 7:864-74. [PMID: 19881520 DOI: 10.1038/nrmicro2239] [Citation(s) in RCA: 369] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plasmodium falciparum resistance to chloroquine and sulphadoxine-pyrimethamine has led to the recent adoption of artemisinin-based combination therapies (ACTs) as the first line of treatment against malaria. ACTs comprise semisynthetic artemisinin derivatives paired with distinct chemical classes of longer acting drugs. These artemisinins are exceptionally potent against the pathogenic asexual blood stages of Plasmodium parasites and also act on the transmissible sexual stages. These combinations increase the rates of clinical and parasitological cures and decrease the selection pressure for the emergence of antimalarial resistance. This Review article discusses our current knowledge about the mode of action of ACTs, their pharmacological properties and the proposed mechanisms of drug resistance.
Collapse
Affiliation(s)
- Richard T Eastman
- Department of Microbiology & Immunology, Columbia University College of Physicians and Surgeons, Hammer Health Sciences Center, Room 1502, 701 West 168th Street, New York 10032, New York, USA.
| | | |
Collapse
|
135
|
Abstract
The complexity and number of antigens (Ags) seen during an immune response has hampered the development of malaria vaccines. Antibodies (Abs) play an important role in immunity to malaria and their passive administration is effective at controlling the disease. Abs represent approximately 25% of all proteins undergoing clinical trials, and these 'smart biologicals' have undergone a major revival with the realization that Abs lie at the interface between innate and adaptive immunity. At least 18 Abs have FDA approval for clinical use and approximately 150 are in clinical trials, the majority for the treatment of cancer, allograft rejection or autoimmune disease. Despite these triumphs none are in development for malaria, principally because they are perceived as being too expensive for a disease mainly afflicting poor and marginalized populations. Although unlikely, at least in the foreseeable future, that Ab-based prophylaxis will be made available to the millions of people at risk from malaria, they may be incorporated into current vaccine approaches, since Abs act as correlates of protection in studies aimed at defining the best Ags to include in vaccines. Abs may also form the basis for novel vaccination strategies by targeting Ags to appropriate antigen presenting cells. Therefore, to develop the most efficacious vaccines it will be necessary to fully understand which Abs and Fc-receptors (FcRs) are best engaged for a positive outcome.
Collapse
Affiliation(s)
- R J Pleass
- Institute of Genetics, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
136
|
Drakeley C, Cook J. Chapter 5. Potential contribution of sero-epidemiological analysis for monitoring malaria control and elimination: historical and current perspectives. ADVANCES IN PARASITOLOGY 2009; 69:299-352. [PMID: 19622411 DOI: 10.1016/s0065-308x(09)69005-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Anti-malarial antibody responses represent an individual's history of exposure to the disease and, as age sero-conversion rates, reflect cumulative malaria exposure in a population. As such these antibody responses are an alternate measure of malaria transmission intensity and have potential in evaluating changes in exposure. This approach was used in the 1970s to evaluate malaria control and eradication attempts in a variety of different ecological settings. These historical studies provided a wealth of information on how serological data might be used to interpret control measures. However they were limited by a lack of standardized antigens and reproducible high-throughput assays. Current techniques using recombinant antigens with a range of immunogenicities, high-throughput enzyme-linked immunosorbent assays (ELISA) and statistical analysis allow a more robust examination of how serological parameters can be used to evaluate factors affecting malaria transmission. Here we present a review of the historical data and use it to assess the serological contribution to monitoring malaria elimination.
Collapse
Affiliation(s)
- Chris Drakeley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
137
|
Bueno LL, Morais CG, da Silva Soares I, Bouillet LEM, Bruna-Romero O, Fontes CJ, Fujiwara RT, Braga ÉM. Plasmodium vivax recombinant vaccine candidate AMA-1 plays an important role in adaptive immune response eliciting differentiation of dendritic cells. Vaccine 2009; 27:5581-8. [DOI: 10.1016/j.vaccine.2009.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/06/2009] [Accepted: 07/14/2009] [Indexed: 11/16/2022]
|
138
|
Mascarello M, Gobbi F, Angheben A, Concia E, Marocco S, Anselmi M, Monteiro G, Rossanese A, Bisoffi Z. Imported malaria in immigrants to Italy: a changing pattern observed in north eastern Italy. J Travel Med 2009; 16:317-21. [PMID: 19796101 DOI: 10.1111/j.1708-8305.2009.00321.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Seventy percent of imported malaria cases in Italy occur in immigrants, generally with milder clinical presentation due to premunition acquired through repeated infections. Nevertheless, premunition could be progressively lost after a long period of nonexposure. We investigated the changing pattern of malaria in immigrants in two definite 5-year periods one decade apart. METHODS We retrospectively examined the main laboratory findings of all malaria cases observed in immigrants from 1990 to 1994 and from 2000 to 2004. We stratified patients by reason for traveling: subjects in Italy who traveled to visit friends and relatives (VFR) or new immigrants (NI). RESULTS Forty-eight cases of malaria in immigrants occurred from 1990 to 1994, while 161 were observed from 2000 to 2004. Patients admitted in the latter period had a significantly higher parasitemia (median 6,298 vs 3,360 trophozoites/microL, p= 0.028) and lower platelet count (median 96.5 vs 132 x 10(9)/L, p= 0.012) and hemoglobin (median 12.6 vs 13.4 g/dL, p= 0.049). While NI did not show any significant difference in the two study periods, in the VFR subgroup a higher parasitemia (median 8,845 vs 2,690 trophozoites/microL, p= 0.003) and lower platelet count (median 96 vs 131 x 10(9)/L, p= 0.034) were observed during the second period, during which three cases of severe malaria occurred in VFR. A longer stay in Italy was reported in VFR admitted during the second study period (median 8.3 vs 5.7 years). CONCLUSIONS We found a changing pattern of malaria presentation in immigrants over a decade. The most likely explanation is the longer average stay outside endemic countries and subsequent loss of premunition observed in the second cohort. Immigrants living in Italy for some time and traveling to VFR should no more be considered a low-risk group for severe malaria. Pretravel advice should be particularly targeted to this group.
Collapse
Affiliation(s)
- Marta Mascarello
- Department of Infectious Diseases, University of Verona, Verona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Dent AE, Chelimo K, Sumba PO, Spring MD, Crabb BS, Moormann AM, Tisch DJ, Kazura JW. Temporal stability of naturally acquired immunity to Merozoite Surface Protein-1 in Kenyan adults. Malar J 2009; 8:162. [PMID: 19607717 PMCID: PMC2719655 DOI: 10.1186/1475-2875-8-162] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 07/16/2009] [Indexed: 11/10/2022] Open
Abstract
Background Naturally acquired immunity to blood-stage Plasmodium falciparum infection develops with age and after repeated infections. In order to identify immune surrogates that can inform vaccine trials conducted in malaria endemic populations and to better understand the basis of naturally acquired immunity it is important to appreciate the temporal stability of cellular and humoral immune responses to malaria antigens. Methods Blood samples from 16 adults living in a malaria holoendemic region of western Kenya were obtained at six time points over the course of 9 months. T cell immunity to the 42 kDa C-terminal fragment of Merozoite Surface Protein-1 (MSP-142) was determined by IFN-γ ELISPOT. Antibodies to the 42 kDa and 19 kDa C-terminal fragments of MSP-1 were determined by serology and by functional assays that measure MSP-119 invasion inhibition antibodies (IIA) to the E-TSR (3D7) allele and growth inhibitory activity (GIA). The haplotype of MSP-119 alleles circulating in the population was determined by PCR. The kappa test of agreement was used to determine stability of immunity over the specified time intervals of 3 weeks, 6 weeks, 6 months, and 9 months. Results MSP-1 IgG antibodies determined by serology were most consistent over time, followed by MSP-1 specific T cell IFN-γ responses and GIA. MSP-119 IIA showed the least stability over time. However, the level of MSP-119 specific IIA correlated with relatively higher rainfall and higher prevalence of P. falciparum infection with the MSP-119 E-TSR haplotype. Conclusion Variation in the stability of cellular and humoral immune responses to P. falciparum blood stage antigens needs to be considered when interpreting the significance of these measurements as immune endpoints in residents of malaria endemic regions.
Collapse
Affiliation(s)
- Arlene E Dent
- Case Western Reserve University, Cleveland, OH, USA.
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Tall A, Sokhna C, Perraut R, Fontenille D, Marrama L, Ly AB, Sarr FD, Toure A, Trape JF, Spiegel A, Rogier C, Druilhe P. Assessment of the relative success of sporozoite inoculations in individuals exposed to moderate seasonal transmission. Malar J 2009; 8:161. [PMID: 19604389 PMCID: PMC2717115 DOI: 10.1186/1475-2875-8-161] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 07/15/2009] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The time necessary for malaria parasite to re-appear in the blood following treatment (re-infection time) is an indirect method for evaluating the immune defences operating against pre-erythrocytic and early erythrocytic malaria stages. Few longitudinal data are available in populations in whom malaria transmission level had also been measured. METHODS One hundred and ten individuals from the village of Ndiop (Senegal), aged between one and 72 years, were cured of malaria by quinine (25 mg/day oral Quinimax in three equal daily doses, for seven days). Thereafter, thick blood films were examined to detect the reappearance of Plasmodium falciparum every week, for 11 weeks after treatment. Malaria transmission was simultaneously measured weekly by night collection of biting mosquitoes. RESULTS Malaria transmission was on average 15.3 infective bites per person during the 77 days follow up. The median reappearance time for the whole study population was 46.8 days, whereas individuals would have received an average one infective bite every 5 days. At the end of the follow-up, after 77 days, 103 of the 110 individuals (93.6%; CI 95% [89.0-98.2]) had been re-infected with P. falciparum. The median reappearance time ('re-positivation') was longer in subjects with patent parasitaemia at enrolment than in parasitologically-negative individuals (58 days vs. 45.9; p = 0.03) and in adults > 30 years than in younger subjects (58.6 days vs. 42.7; p = 0.0002). In a multivariate Cox PH model controlling for the sickle cell trait, G6PD deficiency and the type of habitat, the presence of parasitaemia at enrolment and age >/= 30 years were independently predictive of a reduced risk of re-infection (PH = 0.5 [95% CI: 0.3-0.9] and 0.4; [95% CI: 0.2-0.6] respectively). CONCLUSION Results indicate the existence of a substantial resistance to sporozoites inoculations, but which was ultimately overcome in almost every individual after 2 1/2 months of natural challenges. Such a study design and the results obtained suggest that, despite a small sample size, this approach can contribute to assess the impact of intervention methods, such as the efficacy vector-control measures or of malaria pre-erythrocytic stages vaccines.
Collapse
Affiliation(s)
- Adama Tall
- Unité d'Epidémiologie, Institut Pasteur de Dakar, B.P. 220 Dakar, Sénégal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Childs DZ, Boots M. The interaction of seasonal forcing and immunity and the resonance dynamics of malaria. J R Soc Interface 2009; 7:309-19. [PMID: 19570798 PMCID: PMC2842612 DOI: 10.1098/rsif.2009.0178] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Theory has emphasized the importance of both intrinsic factors such as host immunity and extrinsic drivers such as climate in determining disease dynamics. In particular, seasonality may lead to multi-annual cycles in prevalence, but the likelihood of this depends on the role of acquired immunity. Some diseases including malaria have immunity that falls between the classic susceptible–infectious–removed and susceptible–infectious–susceptible models. Here, we investigate the general conditions promoting the subharmonic resonance behaviour that may lead to multi-annual cycles in a general malaria dynamical model. Utilizing two complementary approaches to bifurcation analyses, we show that resonance is promoted by processes shortening the length of the infectious period and that subharmonic cycles are favoured in situations with strong seasonality in transmission but at intermediate levels of endemicity. We discuss the implications of our results for understanding prevalence patterns in long-term malaria datasets from Kenya that show multi-annual cycles and one from Thailand that does not and discuss the possible implications of treatment.
Collapse
Affiliation(s)
- Dylan Z Childs
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK.
| | | |
Collapse
|
142
|
|
143
|
Loss of population levels of immunity to malaria as a result of exposure-reducing interventions: consequences for interpretation of disease trends. PLoS One 2009; 4:e4383. [PMID: 19198649 PMCID: PMC2634959 DOI: 10.1371/journal.pone.0004383] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 12/19/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The persistence of malaria as an endemic infection and one of the major causes of childhood death in most parts of Africa has lead to a radical new call for a global effort towards eradication. With the deployment of a highly effective vaccine still some years away, there has been an increased focus on interventions which reduce exposure to infection in the individual and -by reducing onward transmission-at the population level. The development of appropriate monitoring of these interventions requires an understanding of the timescales of their effect. METHODS & FINDINGS Using a mathematical model for malaria transmission which incorporates the acquisition and loss of both clinical and parasite immunity, we explore the impact of the trade-off between reduction in exposure and decreased development of immunity on the dynamics of disease following a transmission-reducing intervention such as insecticide-treated nets. Our model predicts that initially rapid reductions in clinical disease incidence will be observed as transmission is reduced in a highly immune population. However, these benefits in the first 5-10 years after the intervention may be offset by a greater burden of disease decades later as immunity at the population level is gradually lost. The negative impact of having fewer immune individuals in the population can be counterbalanced either by the implementation of highly-effective transmission-reducing interventions (such as the combined use of insecticide-treated nets and insecticide residual sprays) for an indefinite period or the concurrent use of a pre-erythrocytic stage vaccine or prophylactic therapy in children to protect those at risk from disease as immunity is lost in the population. CONCLUSIONS Effective interventions will result in rapid decreases in clinical disease across all transmission settings while population-level immunity is maintained but may subsequently result in increases in clinical disease many years later as population-level immunity is lost. A dynamic, evolving intervention programme will therefore be necessary to secure substantial, stable reductions in malaria transmission.
Collapse
|
144
|
Stephens R, Ndungu FM, Langhorne J. Germinal centre and marginal zone B cells expand quickly in a second Plasmodium chabaudi malaria infection producing mature plasma cells. Parasite Immunol 2009; 31:20-31. [PMID: 19121080 PMCID: PMC2680269 DOI: 10.1111/j.1365-3024.2008.01066.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibodies and B cells are critical in the protective immune response to the blood stage of the malaria parasite, Plasmodium chabaudi. However, little is known about the development of memory B cells and their differentiation into plasma cells during infection or after re-infection. Here we have shown that B cells with phenotypic characteristics of memory cells (CD19+IgD− CD38+, IgG1+) are generated in a primaryPlasmodium chabaudi chabaudi infection of mice. In addition, we observed that germinal centre cells (CD19+, GL7+, MHCIIhi) and Marginal Zone B cells (CD19+CD23−IgD−) show faster expansion on re-infection than in the primary, though other subsets do not. Interestingly, though both IgM− and IgM+ memory cells are produced, IgM+ memory cells do not expand on second infection. The second infection quickly produced mature bone marrow plasma cells (intracellular Ighi, CD138hi, CD9+, B220−), compared to primary infection; which generates a very large population of immature splenic plasma cells (B220+). This analysis suggests that a memory B cell population is generated after a single infection of malaria, which on re-infection responds quickly producing germinal centres and generating long-lived plasma cells making the second encounter with parasite more efficient.
Collapse
Affiliation(s)
- R Stephens
- National Institute for Medical Research, Division of Parasitology, London, UK
| | | | | |
Collapse
|
145
|
Freitas do Rosário AP, Muxel SM, Rodríguez-Málaga SM, Sardinha LR, Zago CA, Castillo-Méndez SI, Alvarez JM, D'Império Lima MR. Gradual decline in malaria-specific memory T cell responses leads to failure to maintain long-term protective immunity to Plasmodium chabaudi AS despite persistence of B cell memory and circulating antibody. THE JOURNAL OF IMMUNOLOGY 2009; 181:8344-55. [PMID: 19050251 DOI: 10.4049/jimmunol.181.12.8344] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanisms responsible for the generation and maintenance of immunological memory to Plasmodium are poorly understood and the reasons why protective immunity in humans is so difficult to achieve and rapidly lost remain a matter for debate. A possible explanation for the difficulty in building up an efficient immune response against this parasite is the massive T cell apoptosis resulting from exposure to high-dose parasite Ag. To determine the immunological mechanisms required for long-term protection against P. chabaudi malaria and the consequences of high and low acute phase parasite loads for acquisition of protective immunity, we performed a detailed analysis of T and B cell compartments over a period of 200 days following untreated and drug-treated infections in female C57BL/6 mice. By comparing several immunological parameters with the capacity to control a secondary parasite challenge, we concluded that loss of full protective immunity is not determined by acute phase parasite load nor by serum levels of specific IgG2a and IgG1 Abs, but appears to be a consequence of the progressive decline in memory T cell response to parasites, which occurs similarly in untreated and drug-treated mice with time after infection. Furthermore, by analyzing adoptive transfer experiments, we confirmed the major role of CD4(+) T cells for guaranteeing long-term full protection against P. chabaudi malaria.
Collapse
|
146
|
Targett GA, Greenwood BM. Malaria vaccines and their potential role in the elimination of malaria. Malar J 2008; 7 Suppl 1:S10. [PMID: 19091034 PMCID: PMC2604874 DOI: 10.1186/1475-2875-7-s1-s10] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Research on malaria vaccines is currently directed primarily towards the development of vaccines that prevent clinical malaria. Malaria elimination, now being considered seriously in some epidemiological situations, requires a different vaccine strategy, since success will depend on killing all parasites in the community in order to stop transmission completely. The feature of the life-cycles of human malarias that presents the greatest challenge to an elimination programme is the persistence of parasites as asymptomatic infections. These are an important source from which transmission to mosquitoes can occur. Consequently, an elimination strategy requires a community-based approach covering all individuals and not just those who are susceptible to clinical malaria. The progress that has been made in development of candidate malaria vaccines is reviewed. It is unlikely that many of these will have the efficacy required for complete elimination of parasites, though they may have an important role to play as part of future integrated control programmes. Vaccines for elimination must have a high level of efficacy in order to stop transmission to mosquitoes. This might be achieved with some pre-erythrocytic stage candidate vaccines or by targeting the sexual stages directly with transmission-blocking vaccines. An expanded malaria vaccine programme with such objectives is now a priority.
Collapse
Affiliation(s)
- Geoffrey A Targett
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | | |
Collapse
|
147
|
Malaria vaccines: into a mirror, darkly? Trends Parasitol 2008; 24:532-6. [DOI: 10.1016/j.pt.2008.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 09/08/2008] [Accepted: 09/10/2008] [Indexed: 12/25/2022]
|
148
|
Okell LC, Drakeley CJ, Bousema T, Whitty CJM, Ghani AC. Modelling the impact of artemisinin combination therapy and long-acting treatments on malaria transmission intensity. PLoS Med 2008; 5:e226; discussion e226. [PMID: 19067479 PMCID: PMC2586356 DOI: 10.1371/journal.pmed.0050226] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 10/02/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Artemisinin derivatives used in recently introduced combination therapies (ACTs) for Plasmodium falciparum malaria significantly lower patient infectiousness and have the potential to reduce population-level transmission of the parasite. With the increased interest in malaria elimination, understanding the impact on transmission of ACT and other antimalarial drugs with different pharmacodynamics becomes a key issue. This study estimates the reduction in transmission that may be achieved by introducing different types of treatment for symptomatic P. falciparum malaria in endemic areas. METHODS AND FINDINGS We developed a mathematical model to predict the potential impact on transmission outcomes of introducing ACT as first-line treatment for uncomplicated malaria in six areas of varying transmission intensity in Tanzania. We also estimated the impact that could be achieved by antimalarials with different efficacy, prophylactic time, and gametocytocidal effects. Rates of treatment, asymptomatic infection, and symptomatic infection in the six study areas were estimated using the model together with data from a cross-sectional survey of 5,667 individuals conducted prior to policy change from sulfadoxine-pyrimethamine to ACT. The effects of ACT and other drug types on gametocytaemia and infectiousness to mosquitoes were independently estimated from clinical trial data. Predicted percentage reductions in prevalence of infection and incidence of clinical episodes achieved by ACT were highest in the areas with low initial transmission. A 53% reduction in prevalence of infection was seen if 100% of current treatment was switched to ACT in the area where baseline slide-prevalence of parasitaemia was lowest (3.7%), compared to an 11% reduction in the highest-transmission setting (baseline slide prevalence = 57.1%). Estimated percentage reductions in incidence of clinical episodes were similar. The absolute size of the public health impact, however, was greater in the highest-transmission area, with 54 clinical episodes per 100 persons per year averted compared to five per 100 persons per year in the lowest-transmission area. High coverage was important. Reducing presumptive treatment through improved diagnosis substantially reduced the number of treatment courses required per clinical episode averted in the lower-transmission settings although there was some loss of overall impact on transmission. An efficacious antimalarial regimen with no specific gametocytocidal properties but a long prophylactic time was estimated to be more effective at reducing transmission than a short-acting ACT in the highest-transmission setting. CONCLUSIONS Our results suggest that ACTs have the potential for transmission reductions approaching those achieved by insecticide-treated nets in lower-transmission settings. ACT partner drugs and nonartemisinin regimens with longer prophylactic times could result in a larger impact in higher-transmission settings, although their long term benefit must be evaluated in relation to the risk of development of parasite resistance.
Collapse
Affiliation(s)
- Lucy C Okell
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | | | | | | | | |
Collapse
|
149
|
Le Port A, Cot M, Etard JF, Gaye O, Migot-Nabias F, Garcia A. Relation between Plasmodium falciparum asymptomatic infection and malaria attacks in a cohort of Senegalese children. Malar J 2008; 7:193. [PMID: 18823542 PMCID: PMC2567330 DOI: 10.1186/1475-2875-7-193] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 09/29/2008] [Indexed: 11/25/2022] Open
Abstract
Background It is important to establish whether or not the presence of malaria parasites in peripheral blood of asymptomatic individuals is a predictor of future clinical mild malaria attacks (MMA). The aim of this study was to determine how an asymptomatic positive thick blood smear could be related to the occurrence of a MMA during the nine following days. Methods The study was conducted in a cohort of 569 Senegalese children, who were investigated for Plasmodium falciparum asymptomatic carriage at two different times of the transmission season, the beginning (September) and the end (November). The occurrence of MMA was investigated in asymptomatic carriers and non-carriers, every three days for nine consecutive days. Survival analysis was performed and risk estimates were calculated by Cox proportional hazards model. Results At the beginning of the transmission season, 27.8% (147/529) of the children were asymptomatic carriers (ACs) and 5.4% (8/147) of MMA occurred among these, versus 1% (4/382) among non-carriers (RR = 5.32; IC = [1.56–18.15], p = 0.008). At the end of the transmission season, the frequency of asymptomatic carriers was similar to that observed at the beginning of the season (31.9%, p = 0.15), but no MMA was detected during this period. Conclusion A significant association between P. falciparum asymptomatic carriage and the occurrence of MMA at the beginning of the transmission season was demonstrated, with a five-fold increase in the risk of developing a MMA in ACs. In the context of a possible distribution of IPTc in the future, drug strategies may have dramatic consequences due to the existence of ACs (both long term and short term), as they seem to play an important role in the individual protection to malaria, in the most exposed age groups.
Collapse
Affiliation(s)
- Agnès Le Port
- Institut de Recherche pour le Développement (IRD), Unité de Recherche 010: Santé de la mère et de l'enfant en milieu tropical, Laboratoire de Parasitologie, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France.
| | | | | | | | | | | |
Collapse
|
150
|
Torres KJ, Clark EH, Hernandez JN, Soto-Cornejo KE, Gamboa D, Branch OH. Antibody response dynamics to the Plasmodium falciparum conserved vaccine candidate antigen, merozoite surface protein-1 C-terminal 19kD (MSP1-19kD), in Peruvians exposed to hypoendemic malaria transmission. Malar J 2008; 7:173. [PMID: 18782451 PMCID: PMC2557017 DOI: 10.1186/1475-2875-7-173] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 09/09/2008] [Indexed: 11/17/2022] Open
Abstract
Background In high-transmission areas, developing immunity to symptomatic Plasmodium falciparum infections requires 2–10 years of uninterrupted exposure. Delayed malaria-immunity has been attributed to difficult-to-develop and then short-lived antibody responses. Methods In a study area with <0.5 P. falciparum infections/person/year, antibody responses to the MSP1-19kD antigen were evaluated and associations with P. falciparum infections in children and adults. In months surrounding and during the malaria seasons of 2003–2004, 1,772 participants received ≥6 active visits in one study-year. Community-wide surveys were conducted at the beginning and end of each malaria season, and weekly active visits were completed for randomly-selected individuals each month. There were 79 P. falciparum infections with serum samples collected during and approximately one month before and after infection. Anti-MSP1-19kD IgG levels were measured by ELISA. Results The infection prevalence during February-July was similar in children (0.02–0.12 infections/person/month) and adults (0.03–0.14 infections/person/month) and was negligible in the four-month dry season. In children and adults, the seroprevalence was maintained in the beginning (children = 28.9%, adults = 61.8%) versus ending malaria-season community survey (children = 26.7%, adults = 64.6%). Despite the four-month non-transmission season, the IgG levels in Plasmodium-negative adults were similar to P. falciparum-positive adults. Although children frequently responded upon infection, the transition from a negative/low level before infection to a high level during/after infection was slower in children. Adults and children IgG-positive before infection had reduced symptoms and parasite density. Conclusion Individuals in low transmission areas can rapidly develop and maintain αMSP1-19kD IgG responses for >4 months, unlike responses reported in high transmission study areas. A greater immune capacity might contribute to the frequent asymptomatic P. falciparum infections in this Peruvian population.
Collapse
Affiliation(s)
- Katherine J Torres
- Department of Medicine, Division of Infectious Disease, University of Alabama, Alabama, Birmingham, USA.
| | | | | | | | | | | |
Collapse
|