101
|
George J, Renn L, Verthelyi D, Roederer M, Rabin RL, Mattapallil JJ. Early treatment with reverse transcriptase inhibitors significantly suppresses peak plasma IFNα in vivo during acute simian immunodeficiency virus infection. Cell Immunol 2016; 310:156-164. [PMID: 27622386 PMCID: PMC11348878 DOI: 10.1016/j.cellimm.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/04/2016] [Accepted: 09/04/2016] [Indexed: 02/07/2023]
Abstract
Innate interferons (IFN) are comprised of multiple Type I and III subtypes. The in vivo kinetics of subtype responses during human immunodeficiency virus (HIV) infection is not well defined. Using the acute simian immunodeficiency virus (SIV) infection model, we show that plasma IFNα levels peak at day 10 post-infection (pi) after which they rapidly declined. The mRNA expression of Type I and III IFN subtypes were significantly elevated in the lymph nodes (LN) at day 10 pi. Though the expression levels of all subtypes declined by day 14-31 pi, numerous subtypes remained elevated suggesting that ongoing viral replication in LN continues to drive induction of these subtypes. Interestingly, treatment with reverse transcriptase (RT) inhibitors at day 7 pi significantly suppressed plasma IFNα responses by day 10 pi that significantly correlated with cell-associated SIV DNA loads suggesting that RT byproducts such as viral DNA likely plays a role in driving IFN responses during acute SIV infection. Quantification of Type I and III subtype transcripts in sorted subsets of LN CD4+ and CD8+ T cells, CD14+/CD14- monocytes/macrophages, and total CD11c/CD123+ dendritic cells (DC) at day 10 pi showed that DC expressed ∼3-4 log more subtype transcripts as compared to the other subsets. Taken together, our results provide new insights into the kinetics of innate interferon responses during early stages of infection, and provide evidence that DC's are a major in vivo source of innate IFN during acute SIV infection.
Collapse
Affiliation(s)
- Jeffy George
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Lynnsey Renn
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Daniela Verthelyi
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States
| | - Ronald L Rabin
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Joseph J Mattapallil
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
102
|
Magro CM, Momtahen S, Verma S, Abraham RM, Friedman C, Nuovo GJ, Tam W. Cutaneous myeloid dendritic cell dyscrasia: A cutaneous clonal monocytosis associated with chronic myeloproliferative disorders and peripheral blood monocytosis. Ann Diagn Pathol 2016; 25:85-91. [DOI: 10.1016/j.anndiagpath.2016.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/01/2016] [Indexed: 01/18/2023]
|
103
|
Keswani T, Sarkar S, Sengupta A, Bhattacharyya A. Role of TGF-β and IL-6 in dendritic cells, Treg and Th17 mediated immune response during experimental cerebral malaria. Cytokine 2016; 88:154-166. [DOI: 10.1016/j.cyto.2016.08.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 07/31/2016] [Accepted: 08/30/2016] [Indexed: 12/14/2022]
|
104
|
Panda SK, Kolbeck R, Sanjuan MA. Plasmacytoid dendritic cells in autoimmunity. Curr Opin Immunol 2016; 44:20-25. [PMID: 27855321 DOI: 10.1016/j.coi.2016.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/28/2016] [Indexed: 11/30/2022]
Abstract
Plasmacytoid dendritic cells (pDC) is a unique cell population that produces large amounts of type I interferon upon recognition of nucleic acids placing them at the crossroad of both innate and adaptive immunity. Their ability to produce interferon makes them central to anti-viral responses. They are also responsive to circulating autoantibodies bound to nuclear antigens and in that scenario the release of interferons initiate self-directed immune responses. There are now a growing number of autoimmune disorders where unabated activation of pDC is suspected to be pathogenic. Here, we discuss the different mechanisms responsible for breaking tolerance to self-nucleic acids by pDC, including the novel role of IgE autoantibodies in systemic lupus erythematosus. We also summarized the recent progress on therapies undergoing clinical testing that target either pDC or type I interferons.
Collapse
Affiliation(s)
- Santosh K Panda
- Dept of Respiratory, Inflammation & Autoimmunity, MedImmune LLC, Gaithersburg, MD, USA
| | - Roland Kolbeck
- Dept of Respiratory, Inflammation & Autoimmunity, MedImmune LLC, Gaithersburg, MD, USA
| | - Miguel A Sanjuan
- Dept of Respiratory, Inflammation & Autoimmunity, MedImmune LLC, Gaithersburg, MD, USA.
| |
Collapse
|
105
|
Abstract
PURPOSE OF REVIEW The goal of this review is to summarize recent progress in our understanding of innate sensing of HIV. Furthermore, we present the mechanisms that HIV has evolved to attenuate innate immune responses and discuss open questions. RECENT FINDINGS Toll-like receptors (TLRs) and various cytosolic sensors induce an antiviral interferon response upon detection of genomic HIV RNA or intermediates of reverse transcription. HIV limits activation of these sensing pathways by interfering with TLR signaling and by cloaking viral nucleic acids in the cytoplasm, before proviral dsDNA translocates into the nucleus. Furthermore, the viral accessory protein Vpu mitigates antiviral gene expression by inhibiting canonical nuclear factor kappa B (NF-κB) signaling. These evasion mechanisms, however, are imperfect and HIV infection almost inevitably triggers the activation of IRF3, NF-κB and other key transcription factors of antiviral immunity. Notably, the interplay of these processes plays a critical role in the induction of chronic inflammation that drives progression to AIDS. SUMMARY HIV has evolved sophisticated but imperfect mechanisms to evade and counteract innate sensing. Whether virus-induced immune activation represents merely a suboptimal adaptation of HIV to its human host or even facilitates HIV replication, for example by increasing the number of viral target cells, remains to be clarified.
Collapse
|
106
|
Pan Z, Horton CG, Lawrence C, Farris AD. Plasmacytoid dendritic cells and type 1 interferon promote peripheral expansion of forkhead box protein 3(+) regulatory T cells specific for the ubiquitous RNA-binding nuclear antigen La/Sjögren's syndrome (SS)-B. Clin Exp Immunol 2016; 186:18-29. [PMID: 27227559 PMCID: PMC5011359 DOI: 10.1111/cei.12817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2016] [Indexed: 02/06/2023] Open
Abstract
RNA-binding nuclear antigens are a major class of self-antigen to which immune tolerance is lost in rheumatic diseases. Serological tolerance to one such antigen, La/Sjögren's syndrome (SS)-B (La), is controlled by CD4(+) T cells. This study investigated peripheral tolerance to human La (hLa) by tracking the fate of hLa-specific CD4(+) T cells expressing the transgenic (Tg) 3B5.8 T cell receptor (TCR) after adoptive transfer into lymphocyte-replete recipient mice expressing hLa as a neo-self-antigen. After initial antigen-specific cell division, hLa-specific donor CD4(+) T cells expressed forkhead box protein 3 (FoxP3). Donor cells retrieved from hLa Tg recipients displayed impaired proliferation and secreted interleukin (IL)-10 in vitro in response to antigenic stimulation. Transfer of highly purified FoxP3-negative donor cells demonstrated that accumulation of hLa-specific regulatory T cells (Treg ) was due primarily to expansion of small numbers of donor Treg . Depletion of recipient plasmacytoid dendritic cells (pDC), but not B cells, severely hampered the accumulation of FoxP3(+) donor Treg in hLa Tg recipients. Recipient pDC expressed tolerogenic markers and higher levels of co-stimulatory and co-inhibitory molecules than B cells. Adoptive transfer of hLa peptide-loaded pDC into mice lacking expression of hLa recapitulated the accumulation of hLa-specific Treg . Blockade of the type 1 interferon (IFN) receptor in hLa Tg recipients of hLa-specific T cells impaired FoxP3(+) donor T cell accumulation. Therefore, peripheral expansion of Treg specific for an RNA-binding nuclear antigen is mediated by antigen-presenting pDC in a type 1 IFN-dependent manner. These results reveal a regulatory function of pDC in controlling autoreactivity to RNA-binding nuclear antigens.
Collapse
Affiliation(s)
- Z.‐J. Pan
- Arthritis and Clinical Immunology ProgramOklahoma Medical Research Foundation
| | - C. G. Horton
- Arthritis and Clinical Immunology ProgramOklahoma Medical Research Foundation
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma City
- Department of Biological SciencesSouthwestern Oklahoma State UniversityWeatherfordOKUSA
| | - C. Lawrence
- Arthritis and Clinical Immunology ProgramOklahoma Medical Research Foundation
| | - A. D. Farris
- Arthritis and Clinical Immunology ProgramOklahoma Medical Research Foundation
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma City
| |
Collapse
|
107
|
Ramos-Leví AM, Marazuela M. Pathogenesis of thyroid autoimmune disease: the role of cellular mechanisms. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.endoen.2016.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
108
|
In Vivo Conditions Enable IFNAR-Independent Type I Interferon Production by Peritoneal CD11b+ Cells upon Thogoto Virus Infection. J Virol 2016; 90:9330-7. [PMID: 27512061 DOI: 10.1128/jvi.00744-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/28/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Type I interferons (IFNs) crucially contribute to host survival upon viral infections. Robust expression of type I IFNs (IFN-α/β) and induction of an antiviral state critically depend on amplification of the IFN signal via the type I IFN receptor (IFNAR). A small amount of type I IFN produced early upon virus infection binds the IFNAR and activates a self-enhancing positive feedback loop, resulting in induction of large, protective amounts of IFN-α. Unexpectedly, we found robust, systemic IFN-α expression upon infection of IFNAR knockout mice with the orthomyxovirus Thogoto virus (THOV). The IFNAR-independent IFN-α production required in vivo conditions and was not achieved during in vitro infection. Using replication-incompetent THOV-derived virus-like particles, we demonstrate that IFNAR-independent type I IFN induction depends on viral polymerase activity but is largely independent of viral replication. To discover the cell type responsible for this effect, we used type I IFN reporter mice and identified CD11b(+) F4/80(+) myeloid cells within the peritoneal cavity of infected animals as the main source of IFNAR-independent type I IFN, corresponding to the particular tropism of THOV for this cell type. IMPORTANCE Type I IFNs are crucial for the survival of a host upon most viral infections, and, moreover, they shape subsequent adaptive immune responses. Production of protective amounts of type I IFN critically depends on the positive feedback amplification via the IFNAR. Unexpectedly, we observed robust IFNAR-independent type I IFN expression upon THOV infection and unraveled molecular mechanisms and determined the tissue and cell type involved. Our data indicate that the host can effectively use alternative pathways to induce type I IFN responses if the classical feedback amplification is not available. Understanding how type I IFN can be produced in large amounts independently of IFNAR-dependent enhancement will identify mechanisms which might contribute to novel therapeutic strategies to fight viral pathogens.
Collapse
|
109
|
Liang Y, Kwota Z, Sun J. Intrahepatic regulation of antiviral T cell responses at initial stages of viral infection. Int Immunopharmacol 2016; 39:106-112. [PMID: 27459170 DOI: 10.1016/j.intimp.2016.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 12/17/2022]
Abstract
It is generally accepted that the appropriate boost of early immune response will control viral replications and limit the immune-mediated pathology in viral hepatitis. However, poor immunity results in viral persistence, chronic inflammation and finally liver cirrhosis and carcinoma. As a peripheral non-lymphoid organ of immune surveillance, the liver continually encounters hundreds of molecules from the blood, including nutrients, toxins and pathogens. In this way, the liver maintains immune tolerance under healthy conditions, but responds quickly to the hepatotropic pathogens during the early stages of an infection. Although our knowledge of liver cell compositions and functions has been improved significantly in recent years, the intrahepatic immune regulation of antiviral T cells at the initial stage is complex and not well elucidated. Here, we summarize the role of liver cell subpopulations in regulating antiviral T cell response at the initial stages of viral infection. A better understanding of early hepatic immune regulation will pave the way for the development of novel therapies and vaccine design for human viral hepatitis.
Collapse
Affiliation(s)
- Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA.
| | - Zakari Kwota
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| |
Collapse
|
110
|
Yan H, Zhou HF, Akk A, Hu Y, Springer LE, Ennis TL, Pham CTN. Neutrophil Proteases Promote Experimental Abdominal Aortic Aneurysm via Extracellular Trap Release and Plasmacytoid Dendritic Cell Activation. Arterioscler Thromb Vasc Biol 2016; 36:1660-1669. [PMID: 27283739 DOI: 10.1161/atvbaha.116.307786] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/27/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We previously established that neutrophil-derived dipeptidyl peptidase I (DPPI) is essential for experimental abdominal aortic aneurysm (AAA) development. Because DPPI activates several neutrophil serine proteases, it remains to be determined whether the AAA-promoting effect of DPPI is mediated by neutrophil serine proteases. APPROACH AND RESULTS Using an elastase-induced AAA model, we demonstrate that the absence of 2 neutrophil serine proteases, neutrophil elastase and proteinase-3, recapitulates the AAA-resistant phenotype of DPPI-deficient mice. DPPI and neutrophil serine proteases direct the in vitro and in vivo release of extracellular structures termed neutrophil extracellular traps (NETs). Administration of DNase1, which dismantles NETs, suppresses elastase-induced AAA in wild-type animals and in DPPI-deficient mice reconstituted with wild-type neutrophils. NETs also contain the cathelicidin-related antimicrobial peptide that complexes with self-DNA in recruiting plasmacytoid dendritic cells (pDCs), inducing type I interferons (IFNs) and promoting AAA in DPPI-deficient mice. Conversely, depletion of pDCs or blockade of type I IFNs suppresses experimental AAA. Moreover, we find an abundance of human cathelicidin peptide, a 37 amino acid sequence starting with 2 leucines and the human orthologue of cathelicidin-related antimicrobial peptide, in the vicinity of pDCs in human AAA tissues. Increased type I IFN mRNA expression is observed in human AAA tissues and circulating IFN-α is detected in ≈50% of the AAA sera examined. CONCLUSIONS These results suggest that neutrophil protease-mediated NET release contributes to elastase-induced AAA through pDC activation and type I IFN production. These findings increase our understanding of the pathways underlying AAA inflammatory responses and suggest that limiting NET, pDC, and type I IFN activities may suppress aneurysm progression.
Collapse
Affiliation(s)
- Huimin Yan
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Hui-Fang Zhou
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Antonina Akk
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ying Hu
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Luke E Springer
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Terri L Ennis
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Christine T N Pham
- John Cochran VA Medical Center, Saint Louis, Missouri USA; the Department of Medicine, Division of Rheumatology and the Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
111
|
Kini Bailur J, Gueckel B, Pawelec G. Prognostic impact of high levels of circulating plasmacytoid dendritic cells in breast cancer. J Transl Med 2016; 14:151. [PMID: 27234566 PMCID: PMC4884426 DOI: 10.1186/s12967-016-0905-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/13/2016] [Indexed: 12/24/2022] Open
Abstract
Background Identifying immune markers in blood that are informative for breast cancer patient survival would not only be useful for prognosis but might also provide mechanistic insights into processes facilitating survival. Methods We phenotyped circulating plasmacytoid dendritic cells (pDCs), myeloid-derived suppressor cells (MDSCs) and regulatory T-cells in relation to T-cell responses to Her-2 in vitro in 75 untreated breast cancer patients 28–87 years of age at diagnosis. Results Patients with later stage tumors had lower levels of circulating pDCs (p = 0.008). There was a positive association between 5-year survival and higher than median levels of circulating pDCs (p = 0.03). We confirmed that 5-year survival correlated with CD8+ but not CD4+ T-cell responsiveness to Her-2 peptides in this cohort of younger and older patients (p = 0.04). Including pDCs in the analysis of previously-established parameters revealed that patients who had a CD8+ T-cell response to Her-2 together with a low ratio of MDSCs:pDCs had 100 % 5-year survival. High levels of pDCs and the presence of a CD8+ T-cell response to Her-2 were independent positive survival indicators according to multivariate Cox analysis. Conclusions Our new results suggest that circulating pDCs could be a positive prognostic indicator in breast cancer patients of all ages, together with the previously established CD8+ T-cell reactivity to Her-2 antigens in older patients only. These two prognostic indicators were independent and emphasize the important role of immunity in ensuring breast cancer patient survival, even in those not undergoing immunotherapy. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0905-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jithendra Kini Bailur
- Department of Internal Medicine II, Centre for Medical Research, University Hospital Tübingen, Waldhoernlestr. 22, 72072, Tübingen, Germany. .,Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| | - Brigitte Gueckel
- Radiology Clinic, Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Graham Pawelec
- Department of Internal Medicine II, Centre for Medical Research, University Hospital Tübingen, Waldhoernlestr. 22, 72072, Tübingen, Germany.,School of Science and Technology, College of Arts and Science, Nottingham Trent University, Nottingham, UK.,Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Institute of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
112
|
Yabe-Wada T, Matsuba S, Takeda K, Sato T, Suyama M, Ohkawa Y, Takai T, Shi H, Philpott CC, Nakamura A. TLR signals posttranscriptionally regulate the cytokine trafficking mediator sortilin. Sci Rep 2016; 6:26566. [PMID: 27220277 PMCID: PMC4879639 DOI: 10.1038/srep26566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/04/2016] [Indexed: 01/14/2023] Open
Abstract
Regulating the transcription, translation and secretion of cytokines is crucial for controlling the appropriate balance of inflammation. Here we report that the sorting receptor sortilin plays a key role in cytokine production. We observed interactions of sortilin with multiple cytokines including IFN-α, and sortilin depletion in plasmacytoid dendritic cells (pDCs) led to a reduction of IFN-α secretion, suggesting a pivotal role of sortilin in the exocytic trafficking of IFN-α in pDCs. Moreover, sortilin mRNA was degraded posttranscriptionally upon stimulation with various TLR ligands. Poly-rC-binding protein 1 (PCBP1) recognized the C-rich element (CRE) in the 3′ UTR of sortilin mRNA, and depletion of PCBP1 enhanced the degradation of sortilin transcripts, suggesting that PCBP1 can act as a trans-acting factor to stabilize sortilin transcripts. The nucleotide-binding ability of PCBP1 was impaired by zinc ions and alterations of intracellular zinc affect sortilin expression. PCBP1 may therefore control the stability of sortilin transcripts by sensing intracellular zinc levels. Collectively, our findings provide insights into the posttranslational regulation of cytokine production through the posttranscriptional control of sortilin expression by TLR signals.
Collapse
Affiliation(s)
- Toshiki Yabe-Wada
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa, 920-0293, JAPAN.,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shintaro Matsuba
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa, 920-0293, JAPAN
| | - Kazuya Takeda
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa, 920-0293, JAPAN
| | - Tetsuya Sato
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo, Sendai 980-8575, Japan
| | - Haifeng Shi
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline C Philpott
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Akira Nakamura
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa, 920-0293, JAPAN
| |
Collapse
|
113
|
Ramos-Leví AM, Marazuela M. Pathogenesis of thyroid autoimmune disease: the role of cellular mechanisms. ACTA ACUST UNITED AC 2016; 63:421-9. [PMID: 27234136 DOI: 10.1016/j.endonu.2016.04.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/08/2016] [Accepted: 04/14/2016] [Indexed: 12/17/2022]
Abstract
Hashimoto's thyroiditis (HT) and Graves' disease (GD) are two very common organ-specific autoimmune diseases which are characterized by circulating antibodies and lymphocyte infiltration. Although humoral and cellular mechanisms have been classically considered separately in the pathogenesis of autoimmune thyroid diseases (AITD), recent research suggests a close reciprocal relationship between these two immune pathways. Several B- and T-cell activation pathways through antigen-presenting cells (APCs) and cytokine production lead to specific differentiation of T helper (Th) and T regulatory (Treg) cells. This review will focus on the cellular mechanisms involved in the pathogenesis of AITD. Specifically, it will provide reasons for discarding the traditional simplistic dichotomous view of the T helper type 1 and 2 pathways (Th1/Th2) and will focus on the role of the recently characterized T cells, Treg and Th17 lymphocytes, as well as B lymphocytes and APCs, especially dendritic cells (DCs).
Collapse
Affiliation(s)
- Ana Maria Ramos-Leví
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/ Diego de León 62, 28006 Madrid, Spain
| | - Mónica Marazuela
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, C/ Diego de León 62, 28006 Madrid, Spain.
| |
Collapse
|
114
|
Strouts FR, Popper SJ, Partidos CD, Stinchcomb DT, Osorio JE, Relman DA. Early Transcriptional Signatures of the Immune Response to a Live Attenuated Tetravalent Dengue Vaccine Candidate in Non-human Primates. PLoS Negl Trop Dis 2016; 10:e0004731. [PMID: 27214236 PMCID: PMC4877054 DOI: 10.1371/journal.pntd.0004731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/03/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The development of a vaccine against dengue faces unique challenges, including the complexity of the immune responses to the four antigenically distinct serotypes. Genome-wide transcriptional profiling provides insight into the pathways and molecular features that underlie responses to immune system stimulation, and may facilitate predictions of immune protection. METHODOLOGY/PRINCIPAL FINDINGS In this study, we measured early transcriptional responses in the peripheral blood of cynomolgus macaques following vaccination with a live, attenuated tetravalent dengue vaccine candidate, TDV, which is based on a DENV-2 backbone. Different doses and routes of vaccine administration were used, and viral load and neutralizing antibody titers were measured at different time-points following vaccination. All 30 vaccinated animals developed a neutralizing antibody response to each of the four dengue serotypes, and only 3 of these animals had detectable serum viral RNA after challenge with wild-type dengue virus (DENV), suggesting protection of vaccinated animals to DENV infection. The vaccine induced statistically significant changes in 595 gene transcripts on days 1, 3, 5 and 7 as compared with baseline and placebo-treated animals. Genes involved in the type I interferon (IFN) response, including IFI44, DDX58, MX1 and OASL, exhibited the highest fold-change in transcript abundance, and this response was strongest following double dose and subcutaneous (versus intradermal) vaccine administration. In addition, modules of genes involved in antigen presentation, dendritic cell activation, and T cell activation and signaling were enriched following vaccination. Increased abundance of gene transcripts related to T cell activation on day 5, and the type I IFN response on day 7, were significantly correlated with the development of high neutralizing antibody titers on day 30. CONCLUSIONS/SIGNIFICANCE These results suggest that early transcriptional responses may be predictive of development of adaptive immunity to TDV vaccination in cynomolgus macaques, and will inform studies of human responses to dengue vaccines.
Collapse
Affiliation(s)
- Fiona R. Strouts
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - Stephen J. Popper
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | | | - Dan T. Stinchcomb
- Takeda Vaccines, Inc., Deerfield, Illinois, United States of America
| | - Jorge E. Osorio
- Takeda Vaccines, Inc., Deerfield, Illinois, United States of America
| | - David A. Relman
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
- Department of Medicine, Stanford University, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
115
|
Wheeler LA, Trifonova RT, Vrbanac V, Barteneva NS, Liu X, Bollman B, Onofrey L, Mulik S, Ranjbar S, Luster AD, Tager AM, Lieberman J. TREX1 Knockdown Induces an Interferon Response to HIV that Delays Viral Infection in Humanized Mice. Cell Rep 2016; 15:1715-27. [PMID: 27184854 DOI: 10.1016/j.celrep.2016.04.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/21/2016] [Accepted: 04/09/2016] [Indexed: 10/21/2022] Open
Abstract
Despite their antiviral effect, the in vivo effect of interferons on HIV transmission is difficult to predict, because interferons also activate and recruit HIV-susceptible cells to sites of infection. HIV does not normally induce type I interferons in infected cells, but does if TREX1 is knocked down. Here, we investigated the effect of topical TREX1 knockdown and local interferon production on HIV transmission in human cervicovaginal explants and humanized mice. In explants in which TREX1 was knocked down, HIV induced interferons, which blocked infection. In humanized mice, even though TREX1 knockdown increased infiltrating immune cells, it delayed viral replication for 3-4 weeks. Similarly intravaginal application of type I interferons the day before HIV infection induced interferon responsive genes, reduced inflammation, and decreased viral replication. However, intravenous interferon enhanced inflammation and infection. Thus, in models of human sexual transmission, a localized interferon response inhibits HIV transmission but systemic interferons do not.
Collapse
Affiliation(s)
- Lee Adam Wheeler
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; MD-PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Radiana T Trifonova
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Vladimir Vrbanac
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Natasha S Barteneva
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Xing Liu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Brooke Bollman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren Onofrey
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sachin Mulik
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Shahin Ranjbar
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Andrew M Tager
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
116
|
Sequential Activation of Two Pathogen-Sensing Pathways Required for Type I Interferon Expression and Resistance to an Acute DNA Virus Infection. Immunity 2016; 43:1148-59. [PMID: 26682986 DOI: 10.1016/j.immuni.2015.11.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/29/2015] [Accepted: 11/19/2015] [Indexed: 01/14/2023]
Abstract
Toll-like receptor 9 (TLR9), its adaptor MyD88, the downstream transcription factor interferon regulatory factor 7 (IRF7), and type I interferons (IFN-I) are all required for resistance to infection with ectromelia virus (ECTV). However, it is not known how or in which cells these effectors function to promote survival. Here, we showed that after infection with ECTV, the TLR9-MyD88-IRF7 pathway was necessary in CD11c(+) cells for the expression of proinflammatory cytokines and the recruitment of inflammatory monocytes (iMos) to the draining lymph node (dLN). In the dLN, the major producers of IFN-I were infected iMos, which used the DNA sensor-adaptor STING to activate IRF7 and nuclear factor κB (NF-κB) signaling to induce the expression of IFN-α and IFN-β, respectively. Thus, in vivo, two pathways of DNA pathogen sensing act sequentially in two distinct cell types to orchestrate resistance to a viral disease.
Collapse
|
117
|
Bauer J, Dress RJ, Schulze A, Dresing P, Ali S, Deenen R, Alferink J, Scheu S. Cutting Edge: IFN-β Expression in the Spleen Is Restricted to a Subpopulation of Plasmacytoid Dendritic Cells Exhibiting a Specific Immune Modulatory Transcriptome Signature. THE JOURNAL OF IMMUNOLOGY 2016; 196:4447-51. [PMID: 27183572 DOI: 10.4049/jimmunol.1500383] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/29/2016] [Indexed: 12/26/2022]
Abstract
Type I IFNs are critical in initiating protective antiviral immune responses, and plasmacytoid dendritic cells (pDCs) represent a major source of these cytokines. We show that only few pDCs are capable of producing IFN-β after virus infection or CpG stimulation. Using IFNβ/YFP reporter mice, we identify these IFN-β-producing cells in the spleen as a CCR9(+)CD9(-) pDC subset that is localized exclusively within the T/B cell zones. IFN-β-producing pDCs exhibit a distinct transcriptome profile, with higher expression of genes encoding cytokines and chemokines, facilitating T cell recruitment and activation. These distinctive characteristics of IFN-β-producing pDCs are independent of the type I IFNR-mediated feedback loop. Furthermore, IFN-β-producing pDCs exhibit enhanced CCR7-dependent migratory properties in vitro. Additionally, they effectively recruit T cells in vivo in a peritoneal inflammation model. We define "professional type I IFN-producing cells" as a distinct subset of pDCs specialized in coordinating cellular immune responses.
Collapse
Affiliation(s)
- Jens Bauer
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Regine J Dress
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Anja Schulze
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Dresing
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - René Deenen
- Center for Biological and Medical Research, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Judith Alferink
- Department of Psychiatry, University of Münster, 48149 Münster, Germany; and Cluster of Excellence EXC 1003, Cells in Motion, 48149 Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
118
|
Cause and consequences of the activated type I interferon system in SLE. J Mol Med (Berl) 2016; 94:1103-1110. [PMID: 27094810 PMCID: PMC5052287 DOI: 10.1007/s00109-016-1421-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/31/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) have an increased expression of type I interferon (IFN)-regulated genes (an IFN signature), which is caused by an ongoing production of type I IFNs by plasmacytoid dendritic cells (pDCs). The reasons behind the continuous IFN production in SLE are the presence of self-derived IFN inducers and a lack of negative feed-back signals that downregulate the IFN response. In addition, several cells in the immune system promote the IFN production by pDCs and gene variants in the type I IFN signaling pathway contribute to the IFN signature. The type I IFNs act as an immune adjuvant and stimulate T cells, B cells, and monocytes, which all play an important role in the loss of tolerance and persistent autoimmune reaction in SLE. Consequently, new treatments aiming to inhibit the activated type I IFN system in SLE are now being developed and investigated in clinical trials.
Collapse
|
119
|
García-León ML, Bonifaz LC, Espinosa-Torres B, Hernández-Pérez B, Cardiel-Marmolejo L, Santos-Preciado JI, Wong-Chew RM. A correlation of measles specific antibodies and the number of plasmacytoid dendritic cells is observed after measles vaccination in 9 month old infants. Hum Vaccin Immunother 2016; 11:1762-9. [PMID: 26075901 DOI: 10.1080/21645515.2015.1032488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Measles virus (MeV) represents one of the main causes of death among young children, particularly in developing countries. Upon infection, MeV controls both interferon induction (IFN) and the interferon signaling pathway which results in a severe host immunosuppression that can persists for up to 6 mo after infection. Despite the global biology of MeV infection is well studied, the role of the plasmacytoid dendritic cells (pDCs) during the host innate immune response after measles vaccination remains largely uncharacterized. Here we investigated the role of pDCs, the major producers of interferon in response to viral infections, in the development of adaptive immune response against MeV vaccine. We report that there is a strong correlation between pDCs population and the humoral immune response to Edmonston Zagreb (EZ) measles vaccination in 9-month-old mexican infants. Five infants were further evaluated after vaccination, showing a clear increase in pDCs at baseline, one week and 3 months after immunization. Three months postvaccination they showed increase in memory T-cells and pDCs populations, high induction of adaptive immunity and also observed a correlation between pDCs number and the humoral immune response. These findings suggest that the development and magnitude of the adaptive immune response following measles immunization is directly dependent on the number of pDCs of the innate immune response.
Collapse
Key Words
- (-) ssRNA, nonsegmented negative single-stranded RNA
- DCs, dendritic cells
- EZ, Edmonston Zagreb
- GMT, Geometric mean titers
- IFN, interferon
- MMR, measles, mumps, rubella vaccine
- MeV, Measles virus
- PBMCs, peripheral blood mononuclear cells
- PRN, plaque reduction neutralization
- cellular and humoral immunity
- mDCs, myeloid dendritic cells
- measles vaccine
- pDCs, plasmacytoid dendritic cells
- plasmacytoid dendritic cells
Collapse
Affiliation(s)
- Miguel L García-León
- a Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México ; México City , México
| | | | | | | | | | | | | |
Collapse
|
120
|
Plasmacytoid dendritic cells orchestrate TLR7-mediated innate and adaptive immunity for the initiation of autoimmune inflammation. Sci Rep 2016; 6:24477. [PMID: 27075414 PMCID: PMC4830934 DOI: 10.1038/srep24477] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/30/2016] [Indexed: 01/08/2023] Open
Abstract
Endosomal toll-like receptor (TLR)-mediated detection of viral nucleic acids (NAs) and production of type I interferon (IFN-I) are key elements of antiviral defense, while inappropriate recognition of self NAs with the induction of IFN-I responses is linked to autoimmunity such as psoriasis and systemic lupus erythematosus. Plasmacytoid dendritic cells (pDCs) are cells specialized in robust IFN-I secretion by the engagement of endosomal TLRs, and predominantly express sialic acid-binding Ig-like lectin (Siglec)-H. However, how pDCs control endosomal TLR-mediated immune responses that cause autoimmunity remains unclear. Here we show a critical role of pDCs in TLR7-mediated autoimmunity using gene-modified mice with impaired expression of Siglec-H and selective ablation of pDCs. pDCs were shown to be indispensable for the induction of systemic inflammation and effector T-cell responses triggered by TLR7 ligand. pDCs aggravated psoriasiform dermatitis mediated through the hyperproliferation of keratinocytes and enhanced dermal infiltration of granulocytes and γδ T cells. Furthermore, pDCs promoted the production of anti-self NA antibodies and glomerulonephritis in lupus-like disease by activating inflammatory monocytes. On the other hand, Siglec-H regulated the TLR7-mediated activation of pDCs. Thus, our findings reveal that pDCs provide an essential link between TLR7-mediated innate and adaptive immunity for the initiation of IFN-I-associated autoimmune inflammation.
Collapse
|
121
|
Dendritic Cells in Systemic Lupus Erythematosus: From Pathogenic Players to Therapeutic Tools. Mediators Inflamm 2016; 2016:5045248. [PMID: 27122656 PMCID: PMC4829720 DOI: 10.1155/2016/5045248] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/13/2016] [Indexed: 12/20/2022] Open
Abstract
System lupus erythematosus (SLE) is a multifactorial systemic autoimmune disease with a wide variety of presenting features. SLE is believed to result from dysregulated immune responses, loss of tolerance of CD4 T cells and B cells to ubiquitous self-antigens, and the subsequent production of anti-nuclear and other autoreactive antibodies. Recent research has associated lupus development with changes in the dendritic cell (DC) compartment, including altered DC subset frequency and localization, overactivation of mDCs and pDCs, and functional defects in DCs. Here we discuss the current knowledge on the role of DC dysfunction in SLE pathogenesis, with the focus on DCs as targets for interventional therapies.
Collapse
|
122
|
Dermal dendrocytes FXIIIa+ are essential antigen-presenting cells in indeterminate leprosy. Am J Dermatopathol 2016; 37:269-73. [PMID: 25365500 DOI: 10.1097/dad.0000000000000238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Indeterminate leprosy (IL) is the early phase of Hansen disease and reword (APCs). Langerhans cells and dermal dendrocytes FXIIIa positive (DDFXIIIa) are the major APCs in the skin and can be identified by the expression of CD1a and FXIIIa, respectively, by immunohistochemical techniques. Plasmacytoid dendritic cells (PDCs) are another type of dermal dendrocytes with a questionable antigen-presenting function and can be highlighted by anti-CD123 expression. To our knowledge, there are no studies evaluating DDFXIIIa and PDC in IL. The purpose was to investigate the involvement of these cells in the pathogenesis of IL. The authors performed a retrospective study on 18 cases of IL (10 confirmed and 8 suspected) to investigate expression of FXIIIa, CD1a, and CD123. The results were compared with normal skin (for CD1a and FXIIIa only). A higher amount of FXIIIa-positive cells (P , 0.05) in confirmed and suspected IL cases was noted when comparing with normal skin. However, CD1a showed no quantitative differences in the epidermis of IL lesions when comparing with normal skin and CD123 expression was negligible. Based on these findings, the authors postulate that Langerhans cells and PDCs do not have a major role in IL and that DDFXIIIa may be the main APCs in IL. Further study is required to establish this.
Collapse
|
123
|
Neoplasms derived from plasmacytoid dendritic cells. Mod Pathol 2016; 29:98-111. [PMID: 26743477 DOI: 10.1038/modpathol.2015.145] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/10/2015] [Indexed: 01/29/2023]
Abstract
Plasmacytoid dendritic cell neoplasms manifest in two clinically and pathologically distinct forms. The first variant is represented by nodular aggregates of clonally expanded plasmacytoid dendritic cells found in lymph nodes, skin, and bone marrow ('Mature plasmacytoid dendritic cells proliferation associated with myeloid neoplasms'). This entity is rare, although likely underestimated in incidence, and affects predominantly males. Almost invariably, it is associated with a myeloid neoplasm such as chronic myelomonocytic leukemia or other myeloid proliferations with monocytic differentiation. The concurrent myeloid neoplasm dominates the clinical pictures and guides treatment. The prognosis is usually dismal, but reflects the evolution of the associated myeloid leukemia rather than progressive expansion of plasmacytoid dendritic cells. A second form of plasmacytoid dendritic cells tumor has been recently reported and described as 'blastic plasmacytoid dendritic cell neoplasm'. In this tumor, which is characterized by a distinctive cutaneous and bone marrow tropism, proliferating cells derive from immediate CD4(+)CD56(+) precursors of plasmacytoid dendritic cells. The diagnosis of this form can be easily accomplished by immunohistochemistry, using a panel of plasmacytoid dendritic cells markers. The clinical course of blastic plasmacytoid dendritic cell neoplasm is characterized by a rapid progression to systemic disease via hematogenous dissemination. The genomic landscape of this entity is currently under intense investigation. Recurrent somatic mutations have been uncovered in different genes, a finding that may open important perspectives for precision medicine also for this rare, but highly aggressive leukemia.
Collapse
|
124
|
Bajwa G, DeBerardinis RJ, Shao B, Hall B, Farrar JD, Gill MA. Cutting Edge: Critical Role of Glycolysis in Human Plasmacytoid Dendritic Cell Antiviral Responses. THE JOURNAL OF IMMUNOLOGY 2016; 196:2004-9. [PMID: 26826244 DOI: 10.4049/jimmunol.1501557] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/28/2015] [Indexed: 12/29/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are vital to antiviral defense, directing immune responses via secretion of huge concentrations of IFN-α. These cells are critical in protecting the lung against clinically relevant respiratory viruses, particularly influenza (Flu), a virus responsible for substantial worldwide morbidity and mortality. How pDC responses to such viral pathogens are regulated, however, is poorly understood in humans. Using an unbiased approach of gene chip analysis, we discovered that Flu significantly affects metabolism in primary human pDCs. We demonstrate that Flu and RV, another common respiratory virus, induce glycolysis in pDCs and that this metabolic pathway regulates pDC antiviral functions, including IFN-α production and phenotypic maturation. Intranasal vaccination of human volunteers with live influenza virus also increases glycolysis in circulating pDCs, highlighting a previously unrecognized potential role for metabolism in regulating pDC immune responses to viral infections in humans.
Collapse
Affiliation(s)
- Gagan Bajwa
- Division of Infectious Disease, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390; Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390; McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Baomei Shao
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | | | - J David Farrar
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Michelle A Gill
- Division of Infectious Disease, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390; Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| |
Collapse
|
125
|
Dillmann C, Ringel C, Ringleb J, Mora J, Olesch C, Fink AF, Roberts E, Brüne B, Weigert A. S1PR4 Signaling Attenuates ILT 7 Internalization To Limit IFN-α Production by Human Plasmacytoid Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:1579-90. [PMID: 26783340 DOI: 10.4049/jimmunol.1403168] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 12/09/2015] [Indexed: 12/14/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) produce large amounts of type I IFN in response to TLR7/9 ligands. This conveys antiviral effects, activates other immune cells (NK cells, conventional DCs, B, and T cells), and causes the induction and expansion of a strong inflammatory response. pDCs are key players in various type I IFN-driven autoimmune diseases such as systemic lupus erythematosus or psoriasis, but pDCs are also involved in (anti-)tumor immunity. The sphingolipid sphingosine-1-phosphate (S1P) signals through five G-protein-coupled receptors (S1PR1-5) to regulate, among other activities, immune cell migration and activation. The present study shows that S1P stimulation of human, primary pDCs substantially decreases IFN-α production after TLR7/9 activation with different types of CpG oligodeoxynucleotides or tick-borne encephalitis vaccine, which occurred in an S1PR4-dependent manner. Mechanistically, S1PR4 activation preserves the surface expression of the human pDC-specific inhibitory receptor Ig-like transcript 7. We provide novel information that Ig-like transcript 7 is rapidly internalized upon receptor-mediated endocytosis of TLR7/9 ligands to allow high IFN-α production. This is antagonized by S1PR4 signaling, thus decreasing TLR-induced IFN-α secretion. At a functional level, attenuated IFN-α production failed to alter Ag-driven T cell proliferation in pDC-dependent T cell activation assays, but shifted cytokine production of T cells from a Th1 (IFN-γ) to a regulatory (IL-10) profile. In conclusion, S1PR4 agonists block human pDC activation and may therefore be a promising tool to restrict pathogenic IFN-α production.
Collapse
Affiliation(s)
- Christina Dillmann
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Christian Ringel
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Julia Ringleb
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Javier Mora
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Catherine Olesch
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Annika F Fink
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Edward Roberts
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| |
Collapse
|
126
|
Pellerin A, Otero K, Czerkowicz JM, Kerns HM, Shapiro RI, Ranger AM, Otipoby KL, Taylor FR, Cameron TO, Viney JL, Rabah D. Anti-BDCA2 monoclonal antibody inhibits plasmacytoid dendritic cell activation through Fc-dependent and Fc-independent mechanisms. EMBO Mol Med 2015; 7:464-76. [PMID: 25762615 PMCID: PMC4403047 DOI: 10.15252/emmm.201404719] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Type I interferons (IFN-I) are implicated in the pathogenesis of systemic lupus erythematosus (SLE). In SLE, immune complexes bind to the CD32a (FcγRIIa) receptor on the surface of plasmacytoid dendritic cells (pDCs) and stimulate the secretion of IFN-I from pDCs. BDCA2 is a pDC-specific receptor that, when engaged, inhibits the production of IFN-I in human pDCs. BDCA2 engagement, therefore, represents an attractive therapeutic target for inhibiting pDC-derived IFN-I and may be an effective therapy for the treatment of SLE. In this study, we show that 24F4A, a humanized monoclonal antibody (mAb) against BDCA2, engages BDCA2 and leads to its internalization and the consequent inhibition of TLR-induced IFN-I by pDCs in vitro using blood from both healthy and SLE donors. These effects were confirmed in vivo using a single injection of 24F4A in cynomolgus monkeys. 24F4A also inhibited pDC activation by SLE-associated immune complexes (IC). In addition to the inhibitory effect of 24F4A through engagement of BDCA2, the Fc region of 24F4A was critical for potent inhibition of IC-induced IFN-I production through internalization of CD32a. This study highlights the novel therapeutic potential of an effector-competent anti-BDCA2 mAb that demonstrates a dual mechanism to dampen pDC responses for enhanced clinical efficacy in SLE.
Collapse
Affiliation(s)
- Alex Pellerin
- Immunology Research, Biogen Idec, Cambridge, MA, USA
| | - Karel Otero
- Immunology Research, Biogen Idec, Cambridge, MA, USA
| | | | | | | | - Ann M Ranger
- Immunology Research, Biogen Idec, Cambridge, MA, USA
| | | | | | | | | | - Dania Rabah
- Immunology Research, Biogen Idec, Cambridge, MA, USA
| |
Collapse
|
127
|
Primary Human Blood Dendritic Cells for Cancer Immunotherapy-Tailoring the Immune Response by Dendritic Cell Maturation. Biomedicines 2015; 3:282-303. [PMID: 28536413 PMCID: PMC5344227 DOI: 10.3390/biomedicines3040282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022] Open
Abstract
Dendritic cell (DC)-based cancer vaccines hold the great promise of tipping the balance from tolerance of the tumor to rejection. In the last two decades, we have gained tremendous knowledge about DC-based cancer vaccines. The maturation of DCs has proven indispensable to induce immunogenic T cell responses. We review the insights gained from the development of maturation cocktails in monocyte derived DC-based trials. More recently, we have also gained insights into the functional specialization of primary human blood DC subsets. In peripheral human blood, we can distinguish at least three primary DC subsets, namely CD1c+ and CD141+ myeloid DCs and plasmacytoid DCs. We reflect the current knowledge on maturation and T helper polarization by these blood DC subsets in the context of DC-based cancer vaccines. The maturation stimulus in combination with the DC subset will determine the type of T cell response that is induced. First trials with these natural DCs underline their excellent in vivo functioning and mark them as promising tools for future vaccination strategies.
Collapse
|
128
|
Chang S, Pai LM, Lee CK. In Vitro Generation of Murine Plasmacytoid Dendritic Cells from Common Lymphoid Progenitors using the AC-6 Feeder System. J Vis Exp 2015. [PMID: 26650046 DOI: 10.3791/53211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are powerful type I interferon (IFN-I) producing cells that are activated in response to infection or during inflammatory responses. Unfortunately, study of pDC function is hindered by their low frequency in lymphoid organs, and existing methods for in vitro DC generation predominantly favor the production of cDCs over pDCs. Here we present a unique approach to efficiently generate pDCs from common lymphoid progenitors (CLPs) in vitro. Specifically, the protocol described details how to purify CLPs from bone marrow and generate pDCs by coculturing with γ-irradiated AC-6 feeder cells in the presence of Flt3 ligand. A unique characteristic of this culture system is that the CLPs migrate underneath the AC-6 cells and become cobblestone area-forming cells, a critical step for expanding pDCs. Morphologically distinct DCs, namely pDCs and cDCs, were generated after approximately 2 weeks with a composition of 70-90% pDCs under optimal conditions. Typically, the number of pDCs generated by this method is roughly 100-fold of the number of CLPs seeded. Therefore, this is a novel system with which to robustly generate the large numbers of pDCs required to facilitate further studies into the development and function of these cells.
Collapse
Affiliation(s)
- Shiun Chang
- Graduate Institute of Immunology, National Taiwan University College of Medicine
| | - Li-Mei Pai
- Department of Biochemistry, Chang Gung University College of Medicine; Molecular Medicine Research Center, Chang Gung University College of Medicine
| | - Chien-Kuo Lee
- Graduate Institute of Immunology, National Taiwan University College of Medicine;
| |
Collapse
|
129
|
Wang Y, Ewart D, Crabtree JN, Yamamoto A, Baechler EC, Fazeli P, Peterson EJ. PTPN22 Variant R620W Is Associated With Reduced Toll-like Receptor 7-Induced Type I Interferon in Systemic Lupus Erythematosus. Arthritis Rheumatol 2015; 67:2403-14. [PMID: 26018863 DOI: 10.1002/art.39211] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/19/2015] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) is associated with an increased risk of systemic lupus erythematosus (SLE). PTPN22 encodes Lyp, and a disease-associated coding variant bears an R620W substitution (LypW). LypW carriage is associated with impaired production of type I interferon (IFN) by myeloid cells following Toll-like receptor (TLR) engagement. The aim of this study was to investigate the effects of LypW carriage on TLR signaling in patients with SLE. METHODS Plasma IFNα concentrations and whole-blood IFN gene scores were compared in SLE patients who were LypW carriers and those who were noncarriers. TLR-7 agonist R848-stimulated IFNα and tumor necrosis factor levels, IFN-dependent gene expression, and STAT-1 activation were determined in peripheral blood mononuclear cells (PBMCs) and/or plasmacytoid dendritic cells (PDCs) obtained from these patients. The effect of LypW expression on the systemic type I IFN response to R848 stimulation in vivo was assessed in transgenic mice. RESULTS Plasma IFNα levels and whole-blood IFN gene signatures were comparable in SLE patients who were LypW carriers and those who were noncarriers. However, PBMCs from LypW carriers produced less IFNα and showed reduced IFN-dependent gene up-regulation and STAT-1 activation after R848 stimulation. The frequency of PDCs producing IFNα2 and the per-cell IFNα2 levels were significantly reduced in LypW carriers. LypW-transgenic mice displayed reduced TLR-7-induced circulating type I IFN responses. CONCLUSION PDCs from SLE patients carrying the disease-associated PTPN22 variant LypW showed a reduced capacity for TLR-7 agonist-induced type I IFN production, even though LypW carriers displayed systemic type I IFN activation comparable with that observed in noncarriers. LypW carriage identifies SLE patients who may harbor defects in TLR- and PDC-dependent host defense or antiinflammatory functions.
Collapse
Affiliation(s)
- Yaya Wang
- University of Minnesota, Minneapolis
| | | | | | | | | | | | | |
Collapse
|
130
|
Legitimo A, Consolini R, Failli A, Orsini G, Spisni R. Dendritic cell defects in the colorectal cancer. Hum Vaccin Immunother 2015; 10:3224-35. [PMID: 25483675 PMCID: PMC4514061 DOI: 10.4161/hv.29857] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) results from the accumulation of both genetic and epigenetic alterations of the genome. However, also the formation of an inflammatory milieu plays a pivotal role in tumor development and progression. Dendritic cells (DCs) play a relevant role in tumor by exerting differential pro-tumorigenic and anti-tumorigenic functions, depending on the local milieu. Quantitative and functional impairments of DCs have been widely observed in several types of cancer, including CRC, representing a tumor-escape mechanism employed by cancer cells to elude host immunosurveillance. Understanding the interactions between DCs and tumors is important for comprehending the mechanisms of tumor immune surveillance and escape, and provides novel approaches to therapy of cancer. This review summarizes updated information on the role of the DCs in colon cancer development and/or progression.
Collapse
Key Words
- APC, antigen presenting cells
- CRC, Colorectal cancer
- CTLA-4, anticytotoxic T-lymphocyte antigen 4
- DCregs, regulatory DCs
- DCs, dendritic cells
- GM-CSF, granulocyte macrophage colony stimulating factor
- HMGB, high mobility group box
- HNSCC, head and neck squamous cell carcinoma
- IFN, interferon
- IL, interleukin
- MDSCs, myeloid-derived suppressor cells
- MHC, major histocompatibility complex
- NK,natural killer
- PAMP, pathogen-associated molecular pattern
- PD-1, programmed death 1
- PRRs, pattern recognition receptors
- TDLNs, draining lymph nodes
- TGF, transforming growth factor
- TIDCs, tumor-infiltrating DCs
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- Th, T helper
- VEGF, vascular endothelial growth factor
- colorectal cancer
- dendritic cells
- immune response
- immunoescape
- mDCs, myeloid dendritic cells
- pDCs, plasmacytoid dendritic cells
- tumor microenvironment
Collapse
Affiliation(s)
- Annalisa Legitimo
- a Department of Clinical and Experimental Medicine ; University of Pisa ; Pisa , Italy
| | | | | | | | | |
Collapse
|
131
|
de Ruiter PE, Boor PPC, de Jonge J, Metselaar HJ, Tilanus HW, Ijzermans JN, Kwekkeboom J, van der Laan LJW. Prednisolone does not affect direct-acting antivirals against hepatitis C, but inhibits interferon-alpha production by plasmacytoid dendritic cells. Transpl Infect Dis 2015; 17:707-15. [PMID: 26250892 DOI: 10.1111/tid.12430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic hepatitis C virus (HCV) infection compromises long-term outcomes of liver transplantation. Although glucocorticosteroid-based immunosuppression is commonly used, discussion is ongoing on the effect of prednisolone (Pred) on HCV recurrence and response to antiviral therapy post transplantation. Recently, new drugs (direct-acting antivirals) have been approved for the treatment of HCV, however, it remains unknown whether their antiviral activity is affected by Pred. The aim of this study was to investigate the effects of Pred on the antiviral activity of asunaprevir (Asu), daclatasvir (Dac), ribavirin (RBV), and interferon-alpha (IFN-α), and on plasmacytoid dendritic cells (PDCs), the main IFN-α-producing immune cells. METHODS The effects of Pred and antiviral compounds were tested in both a subgenomic and infectious HCV replication model. Furthermore, effects were tested on human PDCs stimulated with a Toll-like receptor-7 ligand. RESULT Pred did not directly affect HCV replication and did not inhibit the antiviral action of Asu, Dac, RBV, or IFN-α. Stimulated PDCs potently suppressed HCV replication. This suppression was reversed by treating PDCs with Pred. Pred significantly decreased IFN-α production by PDCs without affecting cell viability. When Asu and Dac were combined with PDCs, a significant cooperative antiviral effect was observed. CONCLUSION This study shows that Pred acts on the antiviral function of PDCs. Pred does not affect the antiviral action of Asu, Dac, RBV, or IFN-α. This implies that there is no contraindication to combine antiviral therapies with Pred in the post-transplantation management of HCV recurrence.
Collapse
Affiliation(s)
- P E de Ruiter
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - P P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - J de Jonge
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - H J Metselaar
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - H W Tilanus
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - J N Ijzermans
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - J Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - L J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
132
|
Buechler MB, Gessay GM, Srivastava S, Campbell DJ, Hamerman JA. Hematopoietic and nonhematopoietic cells promote Type I interferon- and TLR7-dependent monocytosis during low-dose LCMV infection. Eur J Immunol 2015; 45:3064-72. [PMID: 26289159 DOI: 10.1002/eji.201445331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 07/27/2015] [Accepted: 08/14/2015] [Indexed: 12/24/2022]
Abstract
Release of inflammatory monocytes from the bone marrow (BM) into the blood is an important physiological response to infection, but the mechanisms regulating this phenomenon during viral infection are not completely defined. Here, we show that low-dose infection with lymphocytic choriomeningitis virus (LCMV) caused rapid, transient inflammatory monocytosis that required type I interferon (IFN) and Toll-like receptor (TLR) 7 signaling. Type I IFN and TLR7 signals were critical for induction of IFN-stimulated gene expression and CCR2 ligand upregulation in the BM microenvironment in response to LCMV infection. Experiments utilizing BM chimeric mice demonstrated that type I IFN and TLR7 signaling on either hematopoietic or nonhematopoietic cells was sufficient to initiate monocytosis in response to LCMV infection. BM plasmacytoid dendritic cells (pDCs) generated type I IFN directly ex vivo, suggesting that pDCs are a hematopoietic contributor of type I IFN in the BM early during LCMV infection. Overall, we describe novel roles for type I IFN and TLR7 signaling in nonhematopoietic cells and BM pDCs in directing IFN-stimulated gene and CCR2 ligand expression in the BM to initiate an increase in blood inflammatory monocytes during viral infection.
Collapse
Affiliation(s)
- Matthew B Buechler
- Department of Immunology, University of Washington, Seattle, WA, USA.,Immunology Research Program, Benaroya Research Institute (BRI) at Virginia Mason, Seattle, WA, USA
| | - Griffin M Gessay
- Immunology Research Program, Benaroya Research Institute (BRI) at Virginia Mason, Seattle, WA, USA
| | - Shivani Srivastava
- Department of Immunology, University of Washington, Seattle, WA, USA.,Immunology Research Program, Benaroya Research Institute (BRI) at Virginia Mason, Seattle, WA, USA
| | - Daniel J Campbell
- Department of Immunology, University of Washington, Seattle, WA, USA.,Immunology Research Program, Benaroya Research Institute (BRI) at Virginia Mason, Seattle, WA, USA
| | - Jessica A Hamerman
- Department of Immunology, University of Washington, Seattle, WA, USA.,Immunology Research Program, Benaroya Research Institute (BRI) at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
133
|
Affiliation(s)
- Gaëlle Breton
- Laboratory of cellular physiology and immunology, the Rockefeller University, 1230 York avenue, 10065 New York, Etats-Unis
| |
Collapse
|
134
|
Deficient Natural Killer Dendritic Cell Responses Underlay the Induction of Theiler's Virus-Induced Autoimmunity. mBio 2015; 6:e01175. [PMID: 26242630 PMCID: PMC4526717 DOI: 10.1128/mbio.01175-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The initiating events in autoimmune disease remain to be completely understood, but it is thought that genetic predisposition synergizes with “environmental” factors, including viral infection, leading to disease. One elegant animal model used to study the pathogenesis of multiple sclerosis that perfectly blends genetics and environmental components in the context of virus-induced autoimmunity is Theiler’s murine encephalitis virus-induced demyelinating disease (TMEV-IDD). TMEV-infected disease-susceptible SJL/J mice develop a persistent central nervous system (CNS) infection and later develop autoimmune demyelination, while disease-resistant C57BL/6 (B6) mice rapidly clear the infection and develop no autoimmune pathology. Mice of the (B6 × SJL/J)F1 cross between these two mouse strains are classified as intermediately susceptible. We employed this model to investigate if rapid virus clearance in B6 versus SJL/J mice was perhaps related to differences in the innate immune response in the CNS of the two strains in the first few days following intracerebral virus inoculation. Here we show that SJL/J mice lack, in addition to NK cells, a novel innate immune subset known as natural killer dendritic cells (NKDCs), which express phenotypic markers (CD11cint NK1.1+) and functional activity of both NK cells and DCs. These NKDCs are activated in the periphery and migrate into the infected CNS in a very late antigen 4 (VLA-4)-dependent fashion. Most significantly, NKDCs are critical for CNS clearance of TMEV, as transfer of NKDCs purified from B6 mice into TMEV-IDD-susceptible (B6 × SJL/J)F1 mice promotes viral clearance. Together the findings of this work show for the first time a link between NKDCs, viral infection, and CNS autoimmunity. Viral infection is an important cofactor, along with genetic susceptibility, in the initiation of a variety of organ-specific autoimmune diseases. Thus, in-depth understanding of how virus infections trigger autoimmunity may lead to novel ways to prevent or treat these diseases. Theiler’s murine encephalitis virus-induced demyelinating disease (TMEV-IDD) serves as an important model for the human T cell-mediated autoimmune demyelinating disease multiple sclerosis. Induction of TMEV-IDD is genetically controlled as SJL/J mice develop persistent central nervous system (CNS) infection leading to chronic autoimmune demyelination, while C57BL/6 mice rapidly clear virus and are disease resistant. We determined that, as opposed to resistant B6 mice, disease-susceptible SJL/J mice lacked a unique innate immune population, the natural killer dendritic cell (NKDC), which was shown to play a critical role in early CNS virus clearance via its ability to both present virus antigen to T cells and to lyse target cells.
Collapse
|
135
|
Loving CL, Osorio FA, Murtaugh MP, Zuckermann FA. Innate and adaptive immunity against Porcine Reproductive and Respiratory Syndrome Virus. Vet Immunol Immunopathol 2015. [PMID: 26209116 PMCID: PMC7112826 DOI: 10.1016/j.vetimm.2015.07.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many highly effective vaccines have been produced against viruses whose virulent infection elicits strong and durable protective immunity. In these cases, characterization of immune effector mechanisms and identification of protective epitopes/immunogens has been informative for the development of successful vaccine programs. Diseases in which the immune system does not rapidly clear the acute infection and/or convalescent immunity does not provide highly effective protection against secondary challenge pose a major hurdle for clinicians and scientists. Porcine reproductive and respiratory syndrome virus (PRRSV) falls primarily into this category, though not entirely. PRRSV causes a prolonged infection, though the host eventually clears the virus. Neutralizing antibodies can provide passive protection when present prior to challenge, though infection can be controlled in the absence of detectable neutralizing antibodies. In addition, primed pigs (through natural exposure or vaccination with a modified-live vaccine) show some protection against secondary challenge. While peripheral PRRSV-specific T cell responses have been examined, their direct contribution to antibody-mediated immunity and viral clearance have not been fully elucidated. The innate immune response following PRRSV infection, particularly the antiviral type I interferon response, is meager, but when provided exogenously, IFN-α enhances PRRSV immunity and viral control. Overall, the quality of immunity induced by natural PRRSV infection is not ideal for informing vaccine development programs. The epitopes necessary for protection may be identified through natural exposure or modified-live vaccines and subsequently applied to vaccine delivery platforms to accelerate induction of protective immunity following vaccination. Collectively, further work to identify protective B and T cell epitopes and mechanisms by which PRRSV eludes innate immunity will enhance our ability to develop more effective methods to control and eliminate PRRS disease.
Collapse
Affiliation(s)
- Crystal L Loving
- USDA-ARS-National Animal Disease Center, Ames, IA, United States.
| | - Fernando A Osorio
- Nebraska Center for Virology and School of Veterinary & Biomedical Sciences, University of Nebraska-Lincoln, United States
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Federico A Zuckermann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, United States
| |
Collapse
|
136
|
Bego MG, Côté É, Aschman N, Mercier J, Weissenhorn W, Cohen ÉA. Vpu Exploits the Cross-Talk between BST2 and the ILT7 Receptor to Suppress Anti-HIV-1 Responses by Plasmacytoid Dendritic Cells. PLoS Pathog 2015; 11:e1005024. [PMID: 26172439 PMCID: PMC4501562 DOI: 10.1371/journal.ppat.1005024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/16/2015] [Indexed: 11/25/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) constitute a major source of type-I interferon (IFN-I) production during acute HIV infection. Their activation results primarily from TLR7-mediated sensing of HIV-infected cells. However, the interactions between HIV-infected T cells and pDCs that modulate this sensing process remain poorly understood. BST2/Tetherin is a restriction factor that inhibits HIV release by cross-linking virions onto infected cell surface. BST2 was also shown to engage the ILT7 pDC-specific inhibitory receptor and repress TLR7/9-mediated IFN-I production by activated pDCs. Here, we show that Vpu, the HIV-1 antagonist of BST2, suppresses TLR7-mediated IFN-I production by pDC through a mechanism that relies on the interaction of BST2 on HIV-producing cells with ILT7. Even though Vpu downregulates surface BST2 as a mean to counteract the restriction on HIV-1 release, we also find that the viral protein re-locates remaining BST2 molecules outside viral assembly sites where they are free to bind and activate ILT7 upon cell-to-cell contact. This study shows that through a targeted regulation of surface BST2, Vpu promotes HIV-1 release and limits pDC antiviral responses upon sensing of infected cells. This mechanism of innate immune evasion is likely to be important for an efficient early viral dissemination during acute infection. Plasmacytoid dendritic cells (pDCs) produce large quantities of type I interferon (IFN-I) upon stimulation by many viruses, including HIV. Their activation is very effective following cell contacts with HIV-1-infected CD4+ T cells. We investigated whether HIV-1 could regulate the antiviral responses of pDCs triggered upon sensing of infected cells. We show that HIV-1 suppresses the levels of IFN-I produced by pDCs through a process that requires expression of the Vpu accessory protein in virus-producing cells. A well-described role of Vpu is to promote efficient HIV-1 production by counteracting BST2, a host factor that entraps nascent viral particle at the cell surface. Apart from its antiviral activity, BST2 was reported to inhibit IFN-I production by pDCs through binding and activation of the ILT7 pDC-specific inhibitory receptor. Our results reveal that through a highly sophisticated targeted regulation of BST2 levels at the surface of infected cells, Vpu promotes HIV-1 release and limits IFN-I production by pDCs via the negative signaling exerted by the BST2-ILT7 pair. Overall, this study sheds light on a novel Vpu-BST2 interaction that allows HIV-1 to escape pDC antiviral responses. This modulation of pDC antiviral response by HIV Vpu may facilitate the initial viral expansion during acute infection.
Collapse
Affiliation(s)
- Mariana G. Bego
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada
| | - Édouard Côté
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada
| | - Nick Aschman
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), CNRS, UVHCI, Grenoble, France
| | - Johanne Mercier
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada
| | - Winfried Weissenhorn
- Université Grenoble Alpes, Unit of Virus Host Cell Interactions (UVHCI), CNRS, UVHCI, Grenoble, France
| | - Éric A. Cohen
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
137
|
Labrada M, Pablos I, Prete F, Hevia G, Clavell M, Benvenuti F, Fernández LE. Induction of leukocyte infiltration at metastatic site mediates the protective effect of NGcGM3-based vaccine. Hum Vaccin Immunother 2015; 10:2312-20. [PMID: 25424937 DOI: 10.4161/hv.29161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While the NGcGM3/VSSP vaccine, a preparation consisting in very small sized proteoliposomes (VSSP) obtained by the incorporation of the NGcGM3 ganglioside into the outer membrane protein (OMP) complex of Neisseria meningitides, is currently studied in late stage clinical trials in breast cancer and melanoma patients, mechanisms involved in the vaccine's antitumor effect are insufficiently understood. Here we have addressed the role of adaptive and innate immune cells in mediating the protective effect of the vaccine. To this aim we selected the 3LL-D122 Lewis lung spontaneous metastasis model. Unexpectedly, inoculation of the vaccine in tumor bearing C57BL/6 mice, either by subcutaneous (sc) or intraperitoneal (ip) routes, induced similar anti-metastatic effect. Regardless the T-independent nature of NGcGM3 ganglioside as antigen, the antimetastatic effect of NGcGM3/VSSP is dependent on CD4(+) T cells. In a further step we found that the vaccine was able to promote the increase, maturation, and cytokine secretion of conventional DCs and the maturation of Bone Marrow-derived plasmacytoid DCs. In line with this result the in vivo IFNα serum level in ip vaccinated mice increased as soon as 2h after treatment. On the other hand the infiltration of NK1.1(+)CD3(-) and NK1.1(+)CD3(+) cells in lungs of vaccinated mice was significantly increased, compared with the presence of these cells in control animal lungs. In the same way NGcGM3/VSSP mobilized acquired immunity effector cells into the lungs of vaccinated tumor bearing mice. Finally and not less noteworthy, leukocyte infiltration in lungs of tumor bearing mice correlates with vaccine induced inhibition of lung metastization.
Collapse
Affiliation(s)
- Mayrel Labrada
- a Center of Molecular Immunology (CIM); Immunobiology Division; Atabey; Havana Cuba
| | | | | | | | | | | | | |
Collapse
|
138
|
Barten MJ, Dieterlen MT. Extracorporeal photopheresis after heart transplantation. Immunotherapy 2015; 6:927-44. [PMID: 25313571 DOI: 10.2217/imt.14.69] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The addition of extracorporeal photopheresis (ECP) to a standard immunosuppressive drug therapy after heart transplantation in clinical studies has shown to be beneficial, for example, by reducing acute rejection, allograft vasculopathy or CMV infection. However, the protocols varied considerably, have a predetermined finite number of ECP treatments and adjuvant immunosuppressive regimens used in combination with ECP have differed significantly. Furthermore, there are scarce data to guide which patients should be treated with ECP and when or who would benefit further if ECP were to be continued long term to increase the safety by reducing immunosuppressive drug toxicities without losing efficacy. The knowledge of the tolerance-inducing effects of ECP-like upregulation of regulatory T cells and of dendritic cells may allow to develop a strategy to monitor immunomodulation effects of ECP to further identify ECP responders, the optimal individual ECP schedule and whether ECP therapy can replace or reduce immunosuppressive drug therapy.
Collapse
Affiliation(s)
- Markus J Barten
- University Heart Center Hamburg, Department of Cardiovascular Surgery, Hamburg, Germany
| | | |
Collapse
|
139
|
Dobbs K, Domínguez Conde C, Zhang SY, Parolini S, Audry M, Chou J, Haapaniemi E, Keles S, Bilic I, Okada S, Massaad MJ, Rounioja S, Alwahadneh AM, Serwas NK, Capuder K, Ciftci E, Felgentreff K, Ohsumi TK, Pedergnana V, Boisson B, Haskoloğlu S, Ensari A, Schuster M, Moretta A, Itan Y, Patrizi O, Rozenberg F, Lebon P, Saarela J, Knip M, Petrovski S, Goldstein DB, Parrott RE, Savas B, Schambach A, Tabellini G, Bock C, Chatila T, Comeau AM, Geha RS, Abel L, Buckley RH, Ikincioğullari A, Al-Herz W, Helminen M, Doğu F, Casanova JL, Boztuğ K, Notarangelo LD. Inherited DOCK2 Deficiency in Patients with Early-Onset Invasive Infections. N Engl J Med 2015; 372:2409-22. [PMID: 26083206 PMCID: PMC4480434 DOI: 10.1056/nejmoa1413462] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Combined immunodeficiencies are marked by inborn errors of T-cell immunity in which the T cells that are present are quantitatively or functionally deficient. Impaired humoral immunity is also common. Patients have severe infections, autoimmunity, or both. The specific molecular, cellular, and clinical features of many types of combined immunodeficiencies remain unknown. Methods We performed genetic and cellular immunologic studies involving five unrelated children with early-onset invasive bacterial and viral infections, lymphopenia, and defective T-cell, B-cell, and natural killer (NK)-cell responses. Two patients died early in childhood; after allogeneic hematopoietic stem-cell transplantation, the other three had normalization of T-cell function and clinical improvement. Results We identified biallelic mutations in the dedicator of cytokinesis 2 gene (DOCK2) in these five patients. RAC1 activation was impaired in the T cells. Chemokine-induced migration and actin polymerization were defective in the T cells, B cells, and NK cells. NK-cell degranulation was also affected. Interferon-α and interferon-λ production by peripheral-blood mononuclear cells was diminished after viral infection. Moreover, in DOCK2-deficient fibroblasts, viral replication was increased and virus-induced cell death was enhanced; these conditions were normalized by treatment with interferon alfa-2b or after expression of wild-type DOCK2. Conclusions Autosomal recessive DOCK2 deficiency is a new mendelian disorder with pleiotropic defects of hematopoietic and nonhematopoietic immunity. Children with clinical features of combined immunodeficiencies, especially with early-onset, invasive infections, may have this condition. (Supported by the National Institutes of Health and others.).
Collapse
|
140
|
Kim SJ, Diamond B. Modulation of tolerogenic dendritic cells and autoimmunity. Semin Cell Dev Biol 2015; 41:49-58. [PMID: 24747368 PMCID: PMC9973561 DOI: 10.1016/j.semcdb.2014.04.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 12/23/2022]
Abstract
A key function of dendritic cells (DCs) is to induce either immune tolerance or immune activation. Many new DC subsets are being recognized, and it is now clear that each DC subset has a specialized function. For example, different DC subsets may express different cell surface molecules and respond differently to activation by secretion of a unique cytokine profile. Apart from intrinsic differences among DC subsets, various immune modulators in the microenvironment may influence DC function; inappropriate DC function is closely related to the development of immune disorders. The most exciting recent advance in DC biology is appreciation of human DC subsets. In this review, we discuss functionally different mouse and human DC subsets both in lymphoid organs and non-lymphoid organs, the molecules that regulate DC function, and the emerging understanding of the contribution of DCs to autoimmune diseases.
Collapse
Affiliation(s)
| | - Betty Diamond
- The Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, United States.
| |
Collapse
|
141
|
Severa M, Rizzo F, Giacomini E, Annibali V, Gafa V, Romano S, Buscarinu MC, Fornasiero A, Salvetti M, Coccia EM. IFN-β Therapy Regulates TLR7-Mediated Response in Plasmacytoid Dendritic Cells of Multiple Sclerosis Patients Influencing an Anti-Inflammatory Status. J Interferon Cytokine Res 2015; 35:668-81. [PMID: 25923141 DOI: 10.1089/jir.2014.0207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) display altered immune-phenotype in multiple sclerosis (MS) patients and are found actively recruited in postmortem MS brain lesions, implying that their immune regulation may represent an important aspect of MS pathogenesis. Because of the reported Toll-like receptor 7 (TLR7) implication in autoimmunity, in this study we characterized how IFN-β therapy impacts on pDC activation to TLR7 triggering in MS patients, aspect only poorly investigated so far. In vivo IFN-β administration regulates pDC functions in TLR7-treated peripheral blood mononuclear cell (PBMC) cultures differently from what is observed in isolated cells, suggesting that IFN-β may activate inhibitory mechanisms in MS peripheral blood involved in turning off pDC response to dampen the ongoing inflammation. Indeed, IL-10, a key regulatory cytokine found increased upon TLR7 stimulation in in vivo IFN-β-exposed PBMCs, directly reduced pDC-mediated IFN-α production. IFN-β therapy also shaped T-cell responses by decreasing TLR7-induced pDC maturation and inducing T-cell inhibitory molecules. Accordingly, raised pDC-induced IL-27 and decreased IL-23 expression, together with high IL-10 level, contribute to inhibit Th17 cell differentiation. Our study uncovered a role for IFN-β in the regulation of TLR7-mediated pDC responses in MS toward an anti-inflammatory phenotype opening new opportunities to better understand mechanisms of action of this drug in controlling MS immunopathogenesis.
Collapse
Affiliation(s)
- Martina Severa
- 1 Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| | - Fabiana Rizzo
- 1 Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| | - Elena Giacomini
- 1 Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| | - Viviana Annibali
- 2 Centre for Experimental Neurological Therapies (CENTERS), S. Andrea Hospital Site, Sapienza University , Rome, Italy
| | - Valerie Gafa
- 1 Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| | - Silvia Romano
- 2 Centre for Experimental Neurological Therapies (CENTERS), S. Andrea Hospital Site, Sapienza University , Rome, Italy
| | - Maria Chiara Buscarinu
- 2 Centre for Experimental Neurological Therapies (CENTERS), S. Andrea Hospital Site, Sapienza University , Rome, Italy
| | - Arianna Fornasiero
- 2 Centre for Experimental Neurological Therapies (CENTERS), S. Andrea Hospital Site, Sapienza University , Rome, Italy
| | - Marco Salvetti
- 2 Centre for Experimental Neurological Therapies (CENTERS), S. Andrea Hospital Site, Sapienza University , Rome, Italy
| | - Eliana Marina Coccia
- 1 Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| |
Collapse
|
142
|
Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps. PLoS Pathog 2015; 11:e1004643. [PMID: 25659141 PMCID: PMC4450068 DOI: 10.1371/journal.ppat.1004643] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/23/2014] [Indexed: 01/12/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) were initially considered as critical for innate immunity to viruses. However, our group has shown that pDCs bind to and inhibit the growth of Aspergillus fumigatus hyphae and that depletion of pDCs renders mice hypersusceptible to experimental aspergillosis. In this study, we examined pDC receptors contributing to hyphal recognition and downstream events in pDCs stimulated by A. fumigatus hyphae. Our data show that Dectin-2, but not Dectin-1, participates in A. fumigatus hyphal recognition, TNF-α and IFN-α release, and antifungal activity. Moreover, Dectin-2 acts in cooperation with the FcRγ chain to trigger signaling responses. In addition, using confocal and electron microscopy we demonstrated that the interaction between pDCs and A. fumigatus induced the formation of pDC extracellular traps (pETs) containing DNA and citrullinated histone H3. These structures closely resembled those of neutrophil extracellular traps (NETs). The microarray analysis of the pDC transcriptome upon A. fumigatus infection also demonstrated up-regulated expression of genes associated with apoptosis as well as type I interferon-induced genes. Thus, human pDCs directly recognize A. fumigatus hyphae via Dectin-2; this interaction results in cytokine release and antifungal activity. Moreover, hyphal stimulation of pDCs triggers a distinct pattern of pDC gene expression and leads to pET formation.
Collapse
|
143
|
Dasgupta S, Erturk-Hasdemir D, Ochoa-Reparaz J, Reinecker HC, Kasper DL. Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe 2015; 15:413-23. [PMID: 24721570 DOI: 10.1016/j.chom.2014.03.006] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 01/13/2014] [Accepted: 02/27/2014] [Indexed: 02/07/2023]
Abstract
Polysaccharide A (PSA), the archetypical immunomodulatory molecule of the gut commensal Bacteroides fragilis, induces regulatory T cells to secrete the anti-inflammatory cytokine interleukin-10 (IL-10). The cellular mediators of PSA's immunomodulatory properties are incompletely understood. In a mouse model of colitis, we find that PSA requires both innate and adaptive immune mechanisms to generate protection. Plasmacytoid DCs (PDCs) exposed to PSA do not produce proinflammatory cytokines, but instead they specifically stimulate IL-10 secretion by CD4+ T cells and efficiently mediate PSA-afforded immunoprotection. PSA induces and preferentially ligates Toll-like receptor 2 on PDCs but not on conventional DCs. Compared with other TLR2 ligands, PSA is better at enhancing PDC expression of costimulatory molecules required for protection against colitis. PDCs can thus orchestrate the beneficial immunoregulatory interaction of commensal microbial molecules, such as PSA, through both innate and adaptive immune mechanisms.
Collapse
Affiliation(s)
- Suryasarathi Dasgupta
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Deniz Erturk-Hasdemir
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Javier Ochoa-Reparaz
- Center for Nanomedicine, Sanford-Burnham Medical Research Institute at the University of California, Santa Barbara, CA 93106-9625, USA
| | | | - Dennis L Kasper
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
144
|
Clahsen T, Pabst O, Tenbrock K, Schippers A, Wagner N. Localization of dendritic cells in the gut epithelium requires MAdCAM-1. Clin Immunol 2015; 156:74-84. [DOI: 10.1016/j.clim.2014.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/21/2014] [Accepted: 11/12/2014] [Indexed: 11/24/2022]
|
145
|
Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2014; 1:1111-1134. [PMID: 23170259 PMCID: PMC3494625 DOI: 10.4161/onci.21494] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) occupy a central position in the immune system, orchestrating a wide repertoire of responses that span from the development of self-tolerance to the elicitation of potent cellular and humoral immunity. Accordingly, DCs are involved in the etiology of conditions as diverse as infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. During the last decade, several methods have been developed to load DCs with tumor-associated antigens, ex vivo or in vivo, in the attempt to use them as therapeutic anticancer vaccines that would elicit clinically relevant immune responses. While this has not always been the case, several clinical studies have demonstrated that DC-based anticancer vaccines are capable of activating tumor-specific immune responses that increase overall survival, at least in a subset of patients. In 2010, this branch of clinical research has culminated with the approval by FDA of a DC-based therapeutic vaccine (sipuleucel-T, Provenge®) for use in patients with asymptomatic or minimally symptomatic metastatic hormone-refractory prostate cancer. Intense research efforts are currently dedicated to the identification of the immunological features of patients that best respond to DC-based anticancer vaccines. This knowledge may indeed lead to personalized combination strategies that would extend the benefit of DC-based immunotherapy to a larger patient population. In addition, widespread enthusiasm has been generated by the results of the first clinical trials based on in vivo DC targeting, an approach that holds great promises for the future of DC-based immunotherapy. In this Trial Watch, we will summarize the results of recently completed clinical trials and discuss the progress of ongoing studies that have evaluated/are evaluating DC-based interventions for cancer therapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Institut Gustave Roussy; Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Ho J, Bailey M, Zaunders J, Mrad N, Sacks R, Sewell W, Harvey RJ. Cellular comparison of sinus mucosa vs polyp tissue from a single sinus cavity in chronic rhinosinusitis. Int Forum Allergy Rhinol 2014; 5:14-27. [PMID: 25332132 DOI: 10.1002/alr.21417] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/25/2014] [Accepted: 08/20/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Nasal polyposis is a common development in chronic rhinosinusitis (CRS), and sinus mucosa and polyp tissue have been used interchangeably in studies investigating CRS. However, potential differences may exist between these 2 tissue types, which have not been entirely characterized. METHODS A cross-sectional study of CRS with nasal polyposis (CRSwNP) patients undergoing endoscopic sinus surgery was conducted. Sinus mucosal biopsies and corresponding polyp tissue were obtained from the same sinus cavity via flow cytometry, single-cell suspensions identified type 2 innate lymphoid cells (ILC2s), CD4 and CD8 T cells, activated CD4 and CD8 T cells, plasma cells, plasmacytoid dendritic cells (pDCs), regulatory T cells, T follicular helper cells, B cells, and immunoglobulin A (IgA)(+) and IgG(+) B cells. Cells were measured as a percentage of CD45(+) cells. Paired nonparametric comparisons between sinus and polyp tissue were performed. RESULTS Ten patients (50% female; age 48 ± 16 years) were recruited. Significantly elevated ILC2 levels were found in polyp tissue compared to sinus mucosa (0.12 [0.07 to 0.23] vs 0.07 [0.04 to 0.16], p = 0.02), as well as plasma cells (2.25 [0.84 to 3.68] vs 1.18 [0.74 to 2.41], p = 0.01); pDCs (0.15 [0.12 to 0.50[ vs 0.04 [0.02 to 0.17], p = 0.03); activated CD8 T cells (29.22 [17.60 to 41.43] vs 16.32 [10.07 to 36.16], p = 0.04) and IgG(+) B cells (6.96 [0.06 to 11.82] vs 1.51 [0.38 to 5.13], p = 0.04). Other cell populations showed no significant differences. CONCLUSION Polyps have a similar cellular composition to that of mucosa. Higher levels of ILC2s, plasma cells, pDCs, activated CD8 T cells, and IgG(+) B cells in polyp tissue may be reflective of cell populations driving nasal polyp development. The cellular machinery of CRS is present in polyps and representative of the disease process. This pilot study strongly suggests that a larger study would provide significant insights into the relationship of sinus mucosa to pathogenesis of nasal polyps.
Collapse
Affiliation(s)
- Jacqueline Ho
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia; Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
147
|
Affiliation(s)
- Erik A L Biessen
- From the Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands (E.A.L.B.); Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA (A.C.).
| | - Anette Christ
- From the Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands (E.A.L.B.); Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA (A.C.)
| |
Collapse
|
148
|
Pallotta MT, Orabona C, Bianchi R, Vacca C, Fallarino F, Belladonna ML, Volpi C, Mondanelli G, Gargaro M, Allegrucci M, Talesa VN, Puccetti P, Grohmann U. Forced IDO1 expression in dendritic cells restores immunoregulatory signalling in autoimmune diabetes. J Cell Mol Med 2014; 18:2082-91. [PMID: 25215657 PMCID: PMC4193887 DOI: 10.1111/jcmm.12360] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/03/2014] [Indexed: 12/20/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO1), a tryptophan catabolizing enzyme, is recognized as an authentic regulator of immunity in several physiopathologic conditions. We have recently demonstrated that IDO1 does not merely degrade tryptophan and produce immunoregulatory kynurenines, but it also acts as a signal-transducing molecule, independently of its enzymic function. IDO1 signalling activity is triggered in plasmacytoid dendritic cells (pDCs) by transforming growth factor-β (TGF-β), an event that requires the non-canonical NF-κB pathway and induces long-lasting IDO1 expression and autocrine TGF-β production in a positive feedback loop, thus sustaining a stably regulatory phenotype in pDCs. IDO1 expression and catalytic function are defective in pDCs from non-obese diabetic (NOD) mice, a prototypic model of autoimmune diabetes. In the present study, we found that TGF-β failed to activate IDO1 signalling function as well as up-regulate IDO1 expression in NOD pDCs. Moreover, TGF-β-treated pDCs failed to exert immunosuppressive properties in vivo. Nevertheless, transfection of NOD pDCs with Ido1 prior to TGF-β treatment resulted in activation of the Ido1 promoter and induction of non-canonical NF-κB and TGF-β, as well as decreased production of the pro-inflammatory cytokines, interleukin 6 (IL-6) and tumour necrosis factor-α (TNF-α). Overexpression of IDO1 in TGF-β-treated NOD pDCs also resulted in pDC ability to suppress the in vivo presentation of a pancreatic β-cell auto-antigen. Thus, our data suggest that a correction of IDO1 expression may restore its dual function and thus represent a proper therapeutic manoeuvre in this autoimmune setting.
Collapse
|
149
|
Frenz T, Graalmann L, Detje CN, Döring M, Grabski E, Scheu S, Kalinke U. Independent of Plasmacytoid Dendritic Cell (pDC) infection, pDC Triggered by Virus-Infected Cells Mount Enhanced Type I IFN Responses of Different Composition as Opposed to pDC Stimulated with Free Virus. THE JOURNAL OF IMMUNOLOGY 2014; 193:2496-503. [DOI: 10.4049/jimmunol.1400215] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
150
|
Differential responses of plasmacytoid dendritic cells to influenza virus and distinct viral pathogens. J Virol 2014; 88:10758-66. [PMID: 25008918 DOI: 10.1128/jvi.01501-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Plasmacytoid dendritic cells (pDCs) are key components of the innate immune response that are capable of synthesizing and rapidly releasing vast amounts of type I interferons (IFNs), particularly IFN-α. Here we investigated whether pDCs, often regarded as a mere source of IFN, discriminate between various functionally discrete stimuli and to what extent this reflects differences in pDC responses other than IFN-α release. To examine the ability of pDCs to differentially respond to various doses of intact and infectious HIV, hepatitis C virus, and H1N1 influenza virus, whole-genome gene expression analysis, enzyme-linked immunosorbent assays, and flow cytometry were used to investigate pDC responses at the transcriptional, protein, and cellular levels. Our data demonstrate that pDCs respond differentially to various viral stimuli with significant changes in gene expression, including those involved in pDC activation, migration, viral endocytosis, survival, or apoptosis. In some cases, the expression of these genes was induced even at levels comparable to that of IFN-α. Interestingly, we also found that depending on the viral entity and the viral titer used for stimulation, induction of IFN-α gene expression and the actual release of IFN-α are not necessarily temporally coordinated. In addition, our data suggest that high-titer influenza A (H1N1) virus infection can stimulate rapid pDC apoptosis. IMPORTANCE Plasmacytoid dendritic cells (pDCs) are key players in the viral immune response. With the host response to viral infection being dependent on specific virus characteristics, a thorough examination and comparison of pDC responses to various viruses at various titers is beneficial for the field of virology. Our study illustrates that pDC infection with influenza virus, HIV, or hepatitis C virus results in a unique and differential response to each virus. These results have implications for future virology research, vaccine development, and virology as a whole.
Collapse
|