101
|
Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc Natl Acad Sci U S A 2014; 111:10660-5. [PMID: 25002471 DOI: 10.1073/pnas.1312789111] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Clinical-grade T cells are genetically modified ex vivo to express chimeric antigen receptors (CARs) to redirect their specificity to target tumor-associated antigens in vivo. We now have developed this molecular strategy to render cytotoxic T cells specific for fungi. We adapted the pattern-recognition receptor Dectin-1 to activate T cells via chimeric CD28 and CD3-ζ (designated "D-CAR") upon binding with carbohydrate in the cell wall of Aspergillus germlings. T cells genetically modified with the Sleeping Beauty system to express D-CAR stably were propagated selectively on artificial activating and propagating cells using an approach similar to that approved by the Food and Drug Administration for manufacturing CD19-specific CAR(+) T cells for clinical trials. The D-CAR(+) T cells exhibited specificity for β-glucan which led to damage and inhibition of hyphal growth of Aspergillus in vitro and in vivo. Treatment of D-CAR(+) T cells with steroids did not compromise antifungal activity significantly. These data support the targeting of carbohydrate antigens by CAR(+) T cells and provide a clinically appealing strategy to enhance immunity for opportunistic fungal infections using T-cell gene therapy.
Collapse
|
102
|
Frese-Schaper M, Keil A, Yagita H, Steiner SK, Falk W, Schmid RA, Frese S. Influence of natural killer cells and perforin‑mediated cytolysis on the development of chemically induced lung cancer in A/J mice. Cancer Immunol Immunother 2014; 63:571-80. [PMID: 24658838 PMCID: PMC11029497 DOI: 10.1007/s00262-014-1535-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
One alternative approach for the treatment of lung cancer might be the activation of the immune system using vaccination strategies. However, most of clinical vaccination trials for lung cancer did not reach their primary end points, suggesting that lung cancer is of low immunogenicity. To provide additional experimental information about this important issue, we investigated which type of immune cells contributes to the protection from lung cancer development. Therefore, A/J mice induced for lung adenomas/ adenocarcinomas by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) were depleted of CD4+ or CD8+ T cells, CD11b+ macrophages, Gr-1+ neutrophils and asialo GM1+ natural killer (NK) cells. Subsequent analysis of tumour growth showed an increase in tumour number only in mice depleted of NK cells. Further asking by which mechanism NK cells suppressed tumour development, we neutralized several death ligands of the tumour necrosis factor (TNF) family known to be involved in NK cell-mediated cytotoxicity. However neither depletion of TNF-α, TNF-related apoptosis-inducing ligand, TNF-like weak inducer of apoptosis or FasL alone nor in combination induced an augmentation of tumour burden. To show whether an alternative cell death pathway is involved, we next generated A/J mice deficient for perforin. After challenging with NNK, mice deficient for perforin showed an increase in tumour number and volume compared to wild-type A/J mice. In summary, our data suggest that NK cells and perforin-mediated cytolysis are critically involved in the protection from lung cancer giving promise for further immunotherapeutic strategies for this disease.
Collapse
Affiliation(s)
- Manuela Frese-Schaper
- Department of Clinical Research, University of Bern, Murtenstrasse 50, P.O. Box 44, 3010 Bern, Switzerland
- Division of General Thoracic Surgery, University Hospital Bern, 3010 Bern, Switzerland
| | - Andreas Keil
- Department of Clinical Research, University of Bern, Murtenstrasse 50, P.O. Box 44, 3010 Bern, Switzerland
- Division of General Thoracic Surgery, University Hospital Bern, 3010 Bern, Switzerland
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, 113-8421 Japan
| | - Selina Katja Steiner
- Department of Clinical Research, University of Bern, Murtenstrasse 50, P.O. Box 44, 3010 Bern, Switzerland
- Division of General Thoracic Surgery, University Hospital Bern, 3010 Bern, Switzerland
| | - Werner Falk
- Department of Internal Medicine I, University of Regensburg, 93042 Regensburg, Germany
| | | | - Steffen Frese
- Department of Clinical Research, University of Bern, Murtenstrasse 50, P.O. Box 44, 3010 Bern, Switzerland
- Division of General Thoracic Surgery, University Hospital Bern, 3010 Bern, Switzerland
| |
Collapse
|
103
|
Osińska I, Popko K, Demkow U. Perforin: an important player in immune response. Cent Eur J Immunol 2014; 39:109-15. [PMID: 26155110 PMCID: PMC4439970 DOI: 10.5114/ceji.2014.42135] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 12/04/2013] [Indexed: 12/15/2022] Open
Abstract
Perforin is a glycoprotein responsible for pore formation in cell membranes of target cells. Perforin is able to polymerize and form a channel in target cell membrane. Many research groups focus on the role of perforin in various diseases, immune response to bacterial and viral infections, immune surveillance and immunopathology. In addition, perforin is involved in the pathogenesis of autoimmune diseases and allogeneic transplant rejection. Natural killer (NK) cells and CD8-positive T-cells are the main source of perforin. However, CD4-positive T-cells are also able to express a low amount of perforin, when classic cytotoxicity is ineffective or disturbed. Polymerized perforin molecules form channels enabling free, non-selective, passive transport of ions, water, small-molecule substances and enzymes. In consequence, the channels disrupt protective barrier of cell membrane and destroy integrity of the target cell. This review will focus on mechanisms of action and structure of perforin. Also, in this review we discuss the problem of abnormal perforin production in diseases such as: hemophagocytic lymphohistiocytosis (HLH), leukemias and lymphomas, infectious diseases and autoimmune diseases. Better understanding of the role of these molecules in health and disease will open a new field of research with possible therapeutic implications.
Collapse
Affiliation(s)
- Iwona Osińska
- PhD Study, Department of Pathology, Medical University of Warsaw, Poland
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Poland
| | - Katarzyna Popko
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Poland
| |
Collapse
|
104
|
Petranovic D, Pilcic G, Valkovic T, Sotosek Tokmadzic V, Laskarin G. Perforin- and granulysin-mediated cytotoxicity and interleukin 15 play roles in neurocognitive impairment in patients with acute lymphoblastic leukaemia. Med Hypotheses 2014; 83:122-6. [PMID: 24735844 DOI: 10.1016/j.mehy.2014.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
Acute lymphoblastic leukaemia (ALL) is an aggressive disease. The course of disease is regulated by pro-inflammatory agents, and malignant cell infiltration of tissues plays a deleterious role in disease progression, greatly impacting quality of life, especially in the cognitive domains. Our hypothesis is that significant serum concentrations of interleukin 15 (IL-15) are responsible for higher expression of adhesion molecules on endothelial cells of blood-brain barrier (BBB) which allow leukaemia cells and/or normal lymphocytes the infiltration into the brain. In brain tissue these cells could be stimulated to release perforin and granulysin causing induction of apoptosis in brain cells that are involved in complex neural signalling mediated by neurotransmitters, and consequent fine cognitive impairment. Such changes could be detected early, even before notable clinical psycho-neurological or radiological changes in patients with ALL. To evaluate this hypothesis we propose measuring cognitive function using Complex Reactiometer Drenovac (CRD) scores in patients with ALL. The expression of different adhesion molecules on BBB as well as presence and distribution of different lymphocytes in brain tissue will be analyzed. We will then correlate CRD scores with levels of IL-15 and the percentages of T cells, natural killer T cells, and natural killer cells expressing perforin and/or granulysin proteins. CRD is a scientifically recognised and highly sensitive psychometric laboratory test based on the complex chronometric mathematical measuring of speed of reaction to various stimuli. It provides an objective assessment of cognitive functions from the most complex mental activities to the simplest reaction reflexes. Early recognition of cognitive dysfunction might be important when selecting the most appropriate chemotherapy and/or radiotherapy regimens, and could allow for the implementation of preventive measures against further deterioration in cognitive function and quality of life in patients with ALL.
Collapse
Affiliation(s)
- Duska Petranovic
- Department of Internal Medicine, Hematology, Clinical Hospital Center Rijeka, Faculty of Medicine, University of Rijeka, 51000 Rijeka, B. Branchetta 20, Croatia
| | - Gorazd Pilcic
- Department of Internal Medicine, Hematology, Clinical Hospital Center Rijeka, Faculty of Medicine, University of Rijeka, 51000 Rijeka, B. Branchetta 20, Croatia
| | - Toni Valkovic
- Department of Internal Medicine, Hematology, Clinical Hospital Center Rijeka, Faculty of Medicine, University of Rijeka, 51000 Rijeka, B. Branchetta 20, Croatia
| | - Vlatka Sotosek Tokmadzic
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, B. Branchetta 20, Croatia; Department of Anesthesiology, Reanimatology and Intensive Care, Faculty of Medicine, University of Rijeka, 51000 Rijeka, B. Branchetta 20, Croatia
| | - Gordana Laskarin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, B. Branchetta 20, Croatia; Division of Cardiology, Hospital for Medical Rehabilitation of the Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", 51410 Opatija, M. Tita 188, Croatia.
| |
Collapse
|
105
|
Galea CA, Nguyen HM, George Chandy K, Smith BJ, Norton RS. Domain structure and function of matrix metalloprotease 23 (MMP23): role in potassium channel trafficking. Cell Mol Life Sci 2014; 71:1191-210. [PMID: 23912897 PMCID: PMC11113776 DOI: 10.1007/s00018-013-1431-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/17/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
MMP23 is a member of the matrix metalloprotease family of zinc- and calcium-dependent endopeptidases, which are involved in a wide variety of cellular functions. Its catalytic domain displays a high degree of structural homology with those of other metalloproteases, but its atypical domain architecture suggests that it may possess unique functional properties. The N-terminal MMP23 pro-domain contains a type-II transmembrane domain that anchors the protein to the plasma membrane and lacks the cysteine-switch motif that is required to maintain other MMPs in a latent state during passage to the cell surface. Instead of the C-terminal hemopexin domain common to other MMPs, MMP23 contains a small toxin-like domain (TxD) and an immunoglobulin-like cell adhesion molecule (IgCAM) domain. The MMP23 pro-domain can trap Kv1.3 but not closely-related Kv1.2 channels in the endoplasmic reticulum, preventing their passage to the cell surface, while the TxD can bind to the channel pore and block the passage of potassium ions. The MMP23 C-terminal IgCAM domain displays some similarity to Ig-like C2-type domains found in IgCAMs of the immunoglobulin superfamily, which are known to mediate protein-protein and protein-lipid interactions. MMP23 and Kv1.3 are co-expressed in a variety of tissues and together are implicated in diseases including cancer and inflammatory disorders. Further studies are required to elucidate the mechanism of action of this unique member of the MMP family.
Collapse
Affiliation(s)
- Charles A Galea
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia,
| | | | | | | | | |
Collapse
|
106
|
Kaiserman D, Stewart SE, Plasman K, Gevaert K, Van Damme P, Bird PI. Identification of Serpinb6b as a species-specific mouse granzyme A inhibitor suggests functional divergence between human and mouse granzyme A. J Biol Chem 2014; 289:9408-17. [PMID: 24505135 PMCID: PMC3979379 DOI: 10.1074/jbc.m113.525808] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/03/2014] [Indexed: 11/06/2022] Open
Abstract
The granzyme family serine proteases are key effector molecules expressed by cytotoxic lymphocytes. The physiological role of granzyme (Gzm) A is controversial, with significant debate over its ability to induce death in target cells. Here, we investigate the natural inhibitors of GzmA. We employed substrate phage display and positional proteomics to compare substrate specificities of mouse (m) and human (h) GzmA at the peptide and proteome-wide levels and we used the resulting substrate specificity profiles to search for potential inhibitors from the intracellular serpin family. We identified Serpinb6b as a potent inhibitor of mGzmA. Serpinb6b interacts with mGzmA, but not hGzmA, with an association constant of 1.9 ± 0.8 × 10(5) M(-1) s(-1) and a stoichiometry of inhibition of 1.8. Mouse GzmA is over five times more cytotoxic than hGzmA when delivered into P815 target cells with streptolysin O, whereas transfection of target cells with a Serpinb6b cDNA increases the EC50 value of mGzmA 13-fold, without affecting hGzmA cytotoxicity. Unexpectedly, we also found that Serpinb6b employs an exosite to specifically inhibit dimeric but not monomeric mGzmA. The identification of an intracellular inhibitor specific for mGzmA only indicates that a lineage-specific increase in GzmA cytotoxic potential has driven cognate inhibitor evolution.
Collapse
Affiliation(s)
- Dion Kaiserman
- From the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Sarah E. Stewart
- From the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Kim Plasman
- the Department of Medical Protein Research, VIB, and
- the Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Kris Gevaert
- the Department of Medical Protein Research, VIB, and
- the Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Petra Van Damme
- the Department of Medical Protein Research, VIB, and
- the Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Phillip I. Bird
- From the Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
107
|
Lee J, Lee SJ, Lim KT. ZPDC glycoprotein (24 kDa) induces apoptosis and enhances activity of NK cells in N-nitrosodiethylamine-injected Balb/c. Cell Immunol 2014; 289:1-6. [PMID: 24681514 DOI: 10.1016/j.cellimm.2014.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/31/2014] [Accepted: 03/04/2014] [Indexed: 12/24/2022]
Abstract
Natural killer (NK) cells have anti-tumor activity in hepatocellular carcinoma (HCC) using secreting granules and cytotoxic ability. Recently, we isolated glycoprotein from Zanthoxylum piperitum DC (ZPDC) has anti-oxidant effect and anti-cancer effect. The objective of this study was to determine whether ZPDC glycoprotein enhances activity of NK cells and induces apoptosis of liver cancer cells in diethylnitrosamine (DEN)-treated Balb/c mice. This study evaluated the secreting of perforin and granzyme B and cytotoxicity of NK cells, interleukin (IL)-2 and IL-12, apoptosis-related factors (bid, cytochrome c, and caspase-3) in liver tissue using Immunoblot and ELISA. The results demonstrated that ZPDC glycoprotein (20mg/kg, BW) induces secretion of perforin and granzyme B and NK cells activity. Also, it induces expression of apoptosis-related factors (bid, cytochrome c, and caspase-3) in liver tissues. Collectively, ZPDC glycoprotein may have potential applications to prevent hepatocarcinogenesis without immunosuppression.
Collapse
Affiliation(s)
- Jin Lee
- Molecular Biochemistry Laboratory, Biotechnology Research Institute & Center for the Control of Animal Hazards Using Biotechnology (BK21), Chonnam National University, 300 Yongbong-Dong, Gwang-ju 500-757, South Korea
| | - Sei-Jung Lee
- Molecular Biochemistry Laboratory, Biotechnology Research Institute & Center for the Control of Animal Hazards Using Biotechnology (BK21), Chonnam National University, 300 Yongbong-Dong, Gwang-ju 500-757, South Korea
| | - Kye-Taek Lim
- Molecular Biochemistry Laboratory, Biotechnology Research Institute & Center for the Control of Animal Hazards Using Biotechnology (BK21), Chonnam National University, 300 Yongbong-Dong, Gwang-ju 500-757, South Korea.
| |
Collapse
|
108
|
Farina AR, Mackay AR. Gelatinase B/MMP-9 in Tumour Pathogenesis and Progression. Cancers (Basel) 2014; 6:240-96. [PMID: 24473089 PMCID: PMC3980597 DOI: 10.3390/cancers6010240] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/14/2022] Open
Abstract
Since its original identification as a leukocyte gelatinase/type V collagenase and tumour type IV collagenase, gelatinase B/matrix metalloproteinase (MMP)-9 is now recognised as playing a central role in many aspects of tumour progression. In this review, we relate current concepts concerning the many ways in which gelatinase B/MMP-9 influences tumour biology. Following a brief outline of the gelatinase B/MMP-9 gene and protein, we analyse the role(s) of gelatinase B/MMP-9 in different phases of the tumorigenic process, and compare the importance of gelatinase B/MMP-9 source in the carcinogenic process. What becomes apparent is the importance of inflammatory cell-derived gelatinase B/MMP-9 in tumour promotion, early progression and triggering of the "angiogenic switch", the integral relationship between inflammatory, stromal and tumour components with respect to gelatinase B/MMP-9 production and activation, and the fundamental role for gelatinase B/MMP-9 in the formation and maintenance of tumour stem cell and metastatic niches. It is also apparent that gelatinase B/MMP-9 plays important tumour suppressing functions, producing endogenous angiogenesis inhibitors, promoting inflammatory anti-tumour activity, and inducing apoptosis. The fundamental roles of gelatinase B/MMP-9 in cancer biology underpins the need for specific therapeutic inhibitors of gelatinase B/MMP-9 function, the use of which must take into account and substitute for tumour-suppressing gelatinase B/MMP-9 activity and also limit inhibition of physiological gelatinase B/MMP-9 function.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila 67100, Italy.
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila 67100, Italy.
| |
Collapse
|
109
|
Ham H, Billadeau DD. Human immunodeficiency syndromes affecting human natural killer cell cytolytic activity. Front Immunol 2014; 5:2. [PMID: 24478771 PMCID: PMC3896857 DOI: 10.3389/fimmu.2014.00002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/03/2014] [Indexed: 12/30/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synapse. Concurrently, lytic granules undergo minus-end directed movement and accumulate at the microtubule-organizing center through the interaction with microtubule motor proteins, followed by polarization of the lethal cargo toward the target cell. Ultimately, myosin-dependent movement of the lytic granules toward the NK cell plasma membrane through F-actin channels, along with soluble N-ethylmaleimide-sensitive factor attachment protein receptor-dependent fusion, promotes the release of the lytic granule contents into the cleft between the NK cell and target cell resulting in target cell killing. Herein, we will discuss several disease-causing mutations in primary immunodeficiency syndromes and how they impact NK cell-mediated killing by disrupting distinct steps of this tightly regulated process.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Department of Immunology, College of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Daniel D Billadeau
- Department of Immunology, College of Medicine, Mayo Clinic , Rochester, MN , USA ; Division of Oncology Research and Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
110
|
Granzyme M: behind enemy lines. Cell Death Differ 2014; 21:359-68. [PMID: 24413154 DOI: 10.1038/cdd.2013.189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/12/2013] [Accepted: 11/27/2013] [Indexed: 11/08/2022] Open
Abstract
The granule-exocytosis pathway is the major mechanism via which cytotoxic lymphocytes eliminate virus-infected and tumor cells. In this pathway, cytotoxic lymphocytes release granules containing the pore-forming protein perforin and a family of serine proteases known as granzymes into the immunological synapse. Pore-formation by perforin facilitates entry of granzymes into the target cell, where they can activate various (death) pathways. Humans express five different granzymes, of which granzymes A and B have been most extensively characterized. However, much less is known about granzyme M (GrM). Recently, structural analysis and advanced proteomics approaches have determined the primary and extended specificity of GrM. GrM functions have expanded over the past few years: not only can GrM efficiently induce cell death in tumor cells, it can also inhibit cytomegalovirus replication in a noncytotoxic manner. Finally, a role for GrM in lipopolysaccharide-induced inflammatory responses has been proposed. In this review, we recapitulate the current status of GrM expression, substrate specificity, functions, and inhibitors.
Collapse
|
111
|
Thiery J, Lieberman J. Perforin: a key pore-forming protein for immune control of viruses and cancer. Subcell Biochem 2014; 80:197-220. [PMID: 24798013 DOI: 10.1007/978-94-017-8881-6_10] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Perforin (PFN) is the key pore-forming molecule in the cytotoxic granules of immune killer cells. Expressed only in killer cells, PFN is the rate-limiting molecule for cytotoxic function, delivering the death-inducing granule serine proteases (granzymes) into target cells marked for immune elimination. In this chapter we describe our current understanding of how PFN accomplishes this task. We discuss where PFN is expressed and how its expression is regulated, the biogenesis and storage of PFN in killer cells and how they are protected from potential damage, how it is released, how it delivers Granzymes into target cells and the consequences of PFN deficiency.
Collapse
Affiliation(s)
- Jerome Thiery
- INSERM U753, University Paris Sud and Gustave Roussy Cancer Campus, Villejuif, France,
| | | |
Collapse
|
112
|
Xue M, Jackson CJ. Activated protein C and its potential applications in prevention of islet β-cell damage and diabetes. VITAMINS AND HORMONES 2014; 95:323-63. [PMID: 24559924 DOI: 10.1016/b978-0-12-800174-5.00013-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activated protein C (APC) is derived from its precursor, protein C (PC). Originally thought to be synthesized exclusively by the liver, recent reports have shown that PC is also produced by many other cells including pancreatic islet β cells. APC functions as a physiological anticoagulant with anti-inflammatory, anti-apoptotic, and barrier-stabilizing properties. APC exerts its protective effects via an intriguing mechanism requiring combinations of endothelial PC receptor, protease-activated receptors, epidermal growth factor receptor, Tie2 or CD11b, depending on cell types. Diabetes is a chronic condition resulted from the body's inability to produce and/or properly use insulin. The prevalence of diabetes has risen dramatically and has become one of the major causes of premature mortality and morbidity worldwide. Diabetes prevention is an ideal approach to reduce this burden. Type 1 and type 2 diabetes are the major forms of diabetes mellitus, and both are characterized by an autoimmune response, intraislet inflammation, β-cell apoptosis, and progressive β-cell loss. Protecting β-cell from damage is critical in both prevention and treatment of diabetes. Recent in vitro and animal studies show that APC's strong anti-inflammatory and anti-apoptotic properties are beneficial in preventing β-cell destruction and diabetes in the NOD mouse model of type 1 diabetes. Future preventive and therapeutic uses of APC in diabetes look very promising.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratories, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| | - Christopher J Jackson
- Sutton Arthritis Research Laboratories, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
113
|
Abstract
Natural killer (NK) cells and cytotoxic T lymphocytes (CTL) use a highly toxic pore-forming protein perforin (PFN) to destroy cells infected with intracellular pathogens and cells with pre-cancerous transformations. However, mutations of PFN and defects in its expression can cause an abnormal function of the immune system and difficulties in elimination of altered cells. As discussed in this chapter, deficiency of PFN due to the mutations of its gene, PFN1, can be associated with malignancies and severe immune disorders such as familial hemophagocytic lymphohistiocytosis (FHL) and macrophage activation syndrome. On the other hand, overactivity of PFN can turn the immune system against autologous cells resulting in other diseases such as systemic lupus erythematosus, polymyositis, rheumatoid arthritis and cutaneous inflammation. PFN also has a crucial role in the cellular rejection of solid organ allografts and destruction of pancreatic β-cells resulting in type 1 diabetes. These facts highlight the importance of understanding the biochemical characteristics of PFN.
Collapse
Affiliation(s)
- Omar Naneh
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | | | | |
Collapse
|
114
|
Voskoboinik I, Trapani JA. Perforinopathy: a spectrum of human immune disease caused by defective perforin delivery or function. Front Immunol 2013; 4:441. [PMID: 24376445 PMCID: PMC3860100 DOI: 10.3389/fimmu.2013.00441] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/25/2013] [Indexed: 11/13/2022] Open
Abstract
Congenital perforin deficiency is considered a rare cause of human immunopathology and immune dysregulation, and classically presents as a fatal illness early in infancy. However, we propose that a group of related disorders in which killer lymphocytes deliver only partially active perforin or a reduced quantum of wild-type perforin to the immune synapse should be considered part of an extended syndrome with overlapping but more variable clinical features. Apart from the many rare mutations scattered over the coding sequences, up to 10% of Caucasians carry the severely hypomorphic PRF1 allele C272 > T (leading to A91V mutation) and the overall prevalence of the homozygous state for A91V is around 1 in 600 individuals. We therefore postulate that the partial loss of perforin function and its clinical consequences may be more common then currently suspected. An acute clinical presentation is infrequent in A91V heterozygous individuals, but we postulate that the partial loss of perforin function may potentially be manifested in childhood or early adulthood as “idiopathic” inflammatory disease, or through increased cancer susceptibility – either hematological malignancy or multiple, independent primary cancers. We suggest the new term “perforinopathy” to signify the common functional endpoints of all the known consequences of perforin deficiency and failure to deliver fully functional perforin.
Collapse
Affiliation(s)
- Ilia Voskoboinik
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre , East Melbourne, VIC , Australia ; Sir Peter MacCallum Department of Oncology, The University of Melbourne , Melbourne, VIC , Australia
| | - Joseph A Trapani
- Sir Peter MacCallum Department of Oncology, The University of Melbourne , Melbourne, VIC , Australia ; Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre , East Melbourne, VIC , Australia
| |
Collapse
|
115
|
Spicer JA, Lena G, Lyons DM, Huttunen KM, Miller CK, O'Connor PD, Bull M, Helsby N, Jamieson SMF, Denny WA, Ciccone A, Browne KA, Lopez JA, Rudd-Schmidt J, Voskoboinik I, Trapani JA. Exploration of a series of 5-arylidene-2-thioxoimidazolidin-4-ones as inhibitors of the cytolytic protein perforin. J Med Chem 2013; 56:9542-55. [PMID: 24195776 PMCID: PMC3865801 DOI: 10.1021/jm401604x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
A series of novel 5-arylidene-2-thioxoimidazolidin-4-ones
were
investigated as inhibitors of the lymphocyte-expressed pore-forming
protein perforin. Structure–activity relationships were explored
through variation of an isoindolinone or 3,4-dihydroisoquinolinone
subunit on a fixed 2-thioxoimidazolidin-4-one/thiophene core. The
ability of the resulting compounds to inhibit the lytic activity of
both isolated perforin protein and perforin delivered in situ by natural
killer cells was determined. A number of compounds showed excellent
activity at concentrations that were nontoxic to the killer cells,
and several were a significant improvement on previous classes of
inhibitors, being substantially more potent and soluble. Representative
examples showed rapid and reversible binding to immobilized mouse
perforin at low concentrations (≤2.5 μM) by surface plasmon
resonance and prevented formation of perforin pores in target cells
despite effective target cell engagement, as determined by calcium
influx studies. Mouse PK studies of two analogues showed T1/2 values of 1.1–1.2 h (dose of 5 mg/kg iv) and
MTDs of 60–80 mg/kg (ip).
Collapse
Affiliation(s)
- Julie A Spicer
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Ma J, Trop S, Baer S, Rakhmanaliev E, Arany Z, Dumoulin P, Zhang H, Romano J, Coppens I, Levitsky V, Levitskaya J. Dynamics of the major histocompatibility complex class I processing and presentation pathway in the course of malaria parasite development in human hepatocytes: implications for vaccine development. PLoS One 2013; 8:e75321. [PMID: 24086507 PMCID: PMC3783408 DOI: 10.1371/journal.pone.0075321] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/12/2013] [Indexed: 12/15/2022] Open
Abstract
Control of parasite replication exerted by MHC class I restricted CD8+ T-cells in the liver is critical for vaccination-induced protection against malaria. While many intracellular pathogens subvert the MHC class I presentation machinery, its functionality in the course of malaria replication in hepatocytes has not been characterized. Using experimental systems based on specific identification, isolation and analysis of human hepatocytes infected with P. berghei ANKA GFP or P. falciparum 3D7 GFP sporozoites we demonstrated that molecular components of the MHC class I pathway exhibit largely unaltered expression in malaria-infected hepatocytes until very late stages of parasite development. Furthermore, infected cells showed no obvious defects in their capacity to upregulate expression of different molecular components of the MHC class I machinery in response to pro-inflammatory lymphokines or trigger direct activation of allo-specific or peptide-specific human CD8+ T-cells. We further demonstrate that ectopic expression of circumsporozoite protein does not alter expression of critical genes of the MHC class I pathway and its response to pro-inflammatory cytokines. In addition, we identified supra-cellular structures, which arose at late stages of parasite replication, possessed the characteristic morphology of merosomes and exhibited nearly complete loss of surface MHC class I expression. These data have multiple implications for our understanding of natural T-cell immunity against malaria and may promote development of novel, efficient anti-malaria vaccines overcoming immune escape of the parasite in the liver.
Collapse
Affiliation(s)
- Jinxia Ma
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Stefanie Trop
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Samantha Baer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Elian Rakhmanaliev
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Zita Arany
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Peter Dumoulin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hao Zhang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Julia Romano
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Isabelle Coppens
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Victor Levitsky
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jelena Levitskaya
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
117
|
Weidinger C, Shaw PJ, Feske S. STIM1 and STIM2-mediated Ca(2+) influx regulates antitumour immunity by CD8(+) T cells. EMBO Mol Med 2013; 5:1311-21. [PMID: 23922331 PMCID: PMC3799488 DOI: 10.1002/emmm.201302989] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/11/2013] [Accepted: 06/28/2013] [Indexed: 02/03/2023] Open
Abstract
Store-operated calcium entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels regulates the function of many immune cells. Patients with loss-of-function mutations in the CRAC channel genes ORAI1 or STIM1 are immunodeficient and are prone to develop virus-associated tumours. This and the reported role of Ca2+ signals in cytotoxic lymphocyte function suggest that SOCE may be critical for tumour immune surveillance. Using conditional knock out mice lacking STIM1 and its homologue STIM2, we find that SOCE in CD8+ T cells is required to prevent the engraftment of melanoma and colon carcinoma cells and to control tumour growth. SOCE is essential for the cytotoxic function of CTLs both in vivo and in vitro by regulating the degranulation of CTLs, their expression of Fas ligand and production of TNF-α and IFN-γ. Our results emphasize an important role of SOCE in antitumour immunity, which is significant given recent reports arguing in favour of CRAC channel inhibition for cancer therapy.
Collapse
Affiliation(s)
- Carl Weidinger
- Department of Pathology and Cancer Institute, New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
118
|
Gonçalves AS, Costa NL, Arantes DAC, de Cássia Gonçalves Alencar R, Silva TA, Batista AC. Immune response in cervical lymph nodes from patients with primary oral squamous cell carcinoma. J Oral Pathol Med 2013; 42:535-40. [PMID: 23278174 DOI: 10.1111/jop.12039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND Deficient immune response in the cervical lymph nodes of patients with head and neck squamous cell carcinoma may contribute to dissemination of metastatic neoplastic cells. This study evaluates the immune response in cervical lymph nodes from patients with primary oral cavity squamous cell carcinoma (OCSCC). METHODS The density of immature (CD1a(+)) and mature (CD83(+)) dendritic cells (DCs), cytotoxic T lymphocytes CD8(+) /perforin(+) (CTLs), and Foxp3(+) regulatory T (Tregs) cells in the lymph nodes of patients with OCSCC without cervical lymph node metastases (LN1) (negative) (n = 10) were identified through immunohistochemistry. From patients with cervical lymph node metastases, samples were obtained of lymph nodes both with (LM2) (positive) (n = 10) and without (LN2) (negative) (n = 10) metastases. RESULTS The results demonstrated that the number of CD1a(+) and Foxp3(+) cells was significantly higher in the LM2 group than in either the LN1 or the LN2 group. In addition, the number of CD8(+) /perforin(+) and CD83(+) cells was significantly lower in the LM2 group than in the other groups. CONCLUSION The results of this study demonstrate a higher density of immature DCs and Tregs cells and a lower density of mature DCs and activated CTLs in metastatic than in non-metastatic lymph nodes. These findings might indicate an immunosuppressive microenvironment, which could be involved in the spread of neoplastic cells to cervical lymph nodes.
Collapse
Affiliation(s)
- Andréia Souza Gonçalves
- Department of Stomatology (Oral Pathology), Dental School, Federal University of Goiás, Goiânia, Brazil
| | | | | | | | | | | |
Collapse
|
119
|
HUASONG ZENG, PING WEI, XIANGYUAN CHEN, YANDAN WEI. Clinical Features and Perforin A91V Gene Analysis in 31 Patients with Macrophage Activation Syndrome and Systemic Juvenile Idiopathic Arthritis in China. J Rheumatol 2013; 40:1238-9. [DOI: 10.3899/jrheum.121040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
120
|
Aricò M, Boggio E, Cetica V, Melensi M, Orilieri E, Clemente N, Cappellano G, Buttini S, Soluri MF, Comi C, Dufour C, Pende D, Dianzani I, Ellis SR, Pagliano S, Marcenaro S, Ramenghi U, Chiocchetti A, Dianzani U. Variations of the UNC13D gene in patients with autoimmune lymphoproliferative syndrome. PLoS One 2013; 8:e68045. [PMID: 23840885 PMCID: PMC3698121 DOI: 10.1371/journal.pone.0068045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 05/24/2013] [Indexed: 01/08/2023] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is caused by genetic defects decreasing Fas function and is characterized by lymphadenopathy/splenomegaly and expansion of CD4/CD8 double-negative T cells. This latter expansion is absent in the ALPS variant named Dianzani Autoimmune/lymphoproliferative Disease (DALD). In addition to the causative mutations, the genetic background influences ALPS and DALD development. We previously suggested a disease-modifying role for the perforin gene involved in familial hemophagocytic lymphohistiocytosis (FHL). The UNC13D gene codes for Munc13-4, which is involved in perforin secretion and FHL development, and thus, another candidate for a disease-modifying role in ALPS and DALD. In this work, we sequenced UNC13D in 21 ALPS and 20 DALD patients and compared these results with sequences obtained from 61 healthy subjects and 38 multiple sclerosis (MS) patients. We detected four rare missense variations in three heterozygous ALPS patients carrying p.Cys112Ser, p.Val781Ile, and a haplotype comprising both p.Ile848Leu and p.Ala995Pro. Transfection of the mutant cDNAs into HMC-1 cells showed that they decreased granule exocytosis, compared to the wild-type construct. An additional rare missense variation, p.Pro271Ser, was detected in a healthy subject, but this variation did not decrease Munc13-4 function. These data suggest that rare loss-of-function variations of UND13D are risk factors for ALPS development.
Collapse
Affiliation(s)
- Maurizio Aricò
- Department of Pediatric Hematology Oncology, Meyer Children Hospital, Firenze, Italy
| | - Elena Boggio
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Eastern Piedmont, Novara, Italy
- Department of Health Sciences, “A. Avogadro” University of Eastern Piedmont, Novara, Italy
| | - Valentina Cetica
- Department of Pediatric Hematology Oncology, Meyer Children Hospital, Firenze, Italy
| | - Matteo Melensi
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Eastern Piedmont, Novara, Italy
- Department of Health Sciences, “A. Avogadro” University of Eastern Piedmont, Novara, Italy
| | - Elisabetta Orilieri
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Eastern Piedmont, Novara, Italy
- Department of Health Sciences, “A. Avogadro” University of Eastern Piedmont, Novara, Italy
| | - Nausicaa Clemente
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Eastern Piedmont, Novara, Italy
- Department of Health Sciences, “A. Avogadro” University of Eastern Piedmont, Novara, Italy
| | - Giuseppe Cappellano
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Eastern Piedmont, Novara, Italy
- Department of Health Sciences, “A. Avogadro” University of Eastern Piedmont, Novara, Italy
| | - Sara Buttini
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Eastern Piedmont, Novara, Italy
- Department of Translational Medicine, "A. Avogadro" University of Eastern Piedmont, Novara, Italy
| | - Maria Felicia Soluri
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Eastern Piedmont, Novara, Italy
- Department of Health Sciences, “A. Avogadro” University of Eastern Piedmont, Novara, Italy
| | - Cristoforo Comi
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Eastern Piedmont, Novara, Italy
- Department of Translational Medicine, "A. Avogadro" University of Eastern Piedmont, Novara, Italy
| | | | | | - Irma Dianzani
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Eastern Piedmont, Novara, Italy
- Department of Health Sciences, “A. Avogadro” University of Eastern Piedmont, Novara, Italy
| | - Steven R. Ellis
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Sara Pagliano
- Department of Pediatrics, University of Torino, Torino, Italy
| | | | - Ugo Ramenghi
- Department of Pediatrics, University of Torino, Torino, Italy
| | - Annalisa Chiocchetti
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Eastern Piedmont, Novara, Italy
- Department of Health Sciences, “A. Avogadro” University of Eastern Piedmont, Novara, Italy
- * E-mail:
| | - Umberto Dianzani
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Eastern Piedmont, Novara, Italy
- Department of Health Sciences, “A. Avogadro” University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
121
|
Zhang M, Long H, Sun L. A NK-lysin from Cynoglossus semilaevis enhances antimicrobial defense against bacterial and viral pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:258-265. [PMID: 23524198 DOI: 10.1016/j.dci.2013.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/06/2013] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
NK-lysin is an effector protein of cytotoxic T lymphocytes and natural killer cells. Mammalian NK-lysin is known to possess antibacterial property and antitumor activity. Homologues of NK-lysin have been identified in several teleost species, but the natural function of fish NK-lysin remains essentially unknown. In this study, we identified a NK-lysin, CsNKL1, from half-smooth tongue sole (Cynoglossus semilaevis) and analyzed its expression, genetic organization, and biological effect on pathogen infection. CsNKL1 is composed of 135 residues and shares 33.1-56.5% overall sequence identities with other teleost NK-lysin. CsNKL1 possesses a Saposin B domain and six conserved cysteine residues that in mammals are known to form three intrachain disulfide bonds essential to antimicrobial activity. The genomic sequence of the ORF region of CsNKL1 is 1240bp in length and, like human NK-lysin, contains five exons and four introns. Expression of CsNKL1 occurred in multiple tissues and was upregulated by bacterial and viral infection in a time dependent manner. When CsNKL1 was overexpressed in tongue sole, significant upregulation of interleukin-1 and chemokines was observed in spleen and head kidney. Following bacterial and viral infection, the pathogen loads in the tissues of CsNKL1-overexpressing fish were significantly lower than those in control fish. These results indicate that CsNKL1 possesses the novel capacities of immunomodulation and enhancing antimicrobial defense against pathogens of both bacterial and viral nature.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | |
Collapse
|
122
|
Zhou HF, Yan H, Cannon JL, Springer LE, Green JM, Pham CTN. CD43-mediated IFN-γ production by CD8+ T cells promotes abdominal aortic aneurysm in mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:5078-85. [PMID: 23585675 DOI: 10.4049/jimmunol.1203228] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD43 is a glycosylated surface protein abundantly expressed on lymphocytes. Its role in immune responses has been difficult to clearly establish, with evidence supporting both costimulatory and inhibitory functions. In addition, its contribution to disease pathogenesis remains elusive. Using a well-characterized murine model of elastase-induced abdominal aortic aneurysm (AAA) that recapitulates many key features of the human disease, we established that the presence of CD43 on T cells is required for AAA formation. Moreover, we found that IFN-γ-producing CD8(+) T cells, but not CD4(+) T cells, promote the development of aneurysm by enhancing cellular apoptosis and matrix metalloprotease activity. Reconstitution with IFN-γ-producing CD8(+) T cells or recombinant IFN-γ promotes the aneurysm phenotype in CD43(-/-) mice, whereas IFN-γ antagonism abrogates disease in wild-type animals. Furthermore, we showed that the presence of CD43 with an intact cytoplasmic domain capable of binding to ezrin-radixin-moesin cytoskeletal proteins is essential for optimal in vivo IFN-γ production by T cells and aneurysm formation. We have thus identified a robust physiologic role for CD43 in a relevant animal model and established an important in vivo function for CD43-dependent regulation of IFN-γ production. These results further suggest that IFN-γ antagonism or selective blockade of CD43(+)CD8(+) T cell activities merits further investigation for immunotherapy in AAA.
Collapse
Affiliation(s)
- Hui-fang Zhou
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
123
|
Comparison of primary human cytotoxic T-cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production. Blood 2013; 121:1345-56. [DOI: 10.1182/blood-2012-07-442558] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Key Points
Compared with cytotoxic T cells, NK cells share mechanisms for lytic granule release but more stringently control cytokine production. Analysis of CD57bright cytotoxic T-cell function may prove useful in the diagnosis of primary immunodeficiencies.
Collapse
|
124
|
Hemophagocytic lymphohistiocytosis in syntaxin-11–deficient mice: T-cell exhaustion limits fatal disease. Blood 2013. [DOI: 10.1182/blood-2012-07-441139] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Syntaxin-11 (Stx11), an atypical member of the SNARE protein family, is part of the cytolytic machinery of T and NK cells and involved in the fusion of lytic granules with the plasmamembrane. Functional loss of syntaxin-11 in humans causes defective degranulation and impaired cytolytic activity of T and NK cells. Furthermore, patients with STX11 deficiency develop familial hemophagocytic lymphohistiocytosis type 4 (FHL4), a life-threatening disease of severe hyperinflammation. We established Stx11-deficient mice as an animal model for FHL4. Stx11-deficient mice exhibited severely reduced degranulation and cytolytic activity of CTL and NK cells and developed all clinical symptoms of hemophagocytic lymphohistiocytosis (HLH) after infection with lymphocytic choriomeningitis virus (LCMV). The HLH phenotype was further characterized by hyperactive CD8 T cells and continuous IFN-γ production. However, in contrast to perforin-deficient mice, which represent a model for FHL2, progression of HLH was not fatal. Survival of Stx11-deficient mice was determined by exhaustion of antigen-specific T cells, characterized by expression of inhibitory receptors, sequential loss of effector functions, and finally T-cell deletion. Blockade of inhibitory receptors on T cells in Stx11-deficient mice converted nonfatal disease course into fatal HLH, identifying T-cell exhaustion as an important factor for determination of disease severity in HLH.
Collapse
|
125
|
Functional impact of A91V mutation of the PRF1 perforin gene. Hum Immunol 2013; 74:14-7. [DOI: 10.1016/j.humimm.2012.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/12/2012] [Accepted: 10/03/2012] [Indexed: 11/19/2022]
|
126
|
|
127
|
Krzewski K, Coligan JE. Human NK cell lytic granules and regulation of their exocytosis. Front Immunol 2012; 3:335. [PMID: 23162553 PMCID: PMC3494098 DOI: 10.3389/fimmu.2012.00335] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/22/2012] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells form a subset of lymphocytes that play a key role in immuno-surveillance and host defense against cancer and viral infections. They recognize stressed cells through a variety of germline-encoded activating cell surface receptors and utilize their cytotoxic ability to eliminate abnormal cells. Killing of target cells is a complex, multi-stage process that concludes in the directed secretion of lytic granules, containing perforin and granzymes, at the immunological synapse. Upon delivery to a target cell, perforin mediates generation of pores in membranes of target cells, allowing granzymes to access target cell cytoplasm and induce apoptosis. Therefore, lytic granules of NK cells are indispensable for normal NK cell cytolytic function. Indeed, defects in lytic granule secretion lead or are related to serious and often fatal diseases, such as familial hemophagocytic lymphohistiocytosis (FHL) type 2–5 or Griscelli syndrome type 2. A number of reports highlight the role of several proteins involved in lytic granule release and NK cell-mediated killing of tumor cells. This review focuses on lytic granules of human NK cells and the advancements in understanding the mechanisms controlling their exocytosis.
Collapse
Affiliation(s)
- Konrad Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health Rockville, MD, USA
| | | |
Collapse
|
128
|
Susceptibility of CD24+ ovarian cancer cells to anti-cancer drugs and natural killer cells. Biochem Biophys Res Commun 2012; 427:373-8. [DOI: 10.1016/j.bbrc.2012.09.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 09/11/2012] [Indexed: 12/22/2022]
|
129
|
Louvain de Souza T, de Souza Campos Fernandes RC, Medina-Acosta E. HIV-1 control in battlegrounds: important host genetic variations for HIV-1 mother-to-child transmission and progression to clinical pediatric AIDS. Future Virol 2012. [DOI: 10.2217/fvl.12.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV-1 mother-to-child transmission (MTCT) is the passing of maternal HIV-1 to the offspring during pregnancy, labor and delivery, and/or breastfeeding. HIV-1 MTCT and the evolution to pediatric AIDS are multifactorial, dynamic and variable phenotypic conditions. Both genetic and nongenetic variables can influence susceptibility to HIV-1 MTCT or the rate of progression to clinical pediatric AIDS. In this review, we summarize the current state of knowledge about the roles of genetic variations seen in host immune response genes, and those that have been independently associated, mostly through population genetics of candidate genes, with interindividual susceptibility to HIV-1 MTCT, and progression to pediatric AIDS. We examine common and rare host genetic variations at coding and noncoding polymorphisms, whether functional or not, in agonists and antagonists of the immune response, which have been implicated in HIV-1 control in battlegrounds of cell entry, replication and evolution to AIDS. Further, we point to over 380 single-nucleotide polymorphisms, mostly within the HLA super region, recently identified in unbiased genome-wide association studies of HIV replication and evolution in adults, still unexplored in the context of HIV-1 MTCT, and which are likely to also influence susceptibility to pediatric HIV-1/AIDS.
Collapse
Affiliation(s)
- Thais Louvain de Souza
- Molecular Identification & Diagnosis Unit, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Regina Célia de Souza Campos Fernandes
- Municipal Program for the Surveillance of Sexually Transmitted Diseases & Acquired Immunodeficiency Syndrome of Campos dos Goytacazes, Brazil
- Faculty of Medicine of Campos, Campos dos Goytacazes, Brazil
| | | |
Collapse
|
130
|
Longhi LNA, da Silva RM, Fornazim MC, Spago MC, de Oliveira RTD, Nowill AE, Blotta MHSL, Mamoni RL. Phenotypic and Functional Characterization of NK Cells in Human Immune Response against the Dimorphic FungusParacoccidioides brasiliensis. THE JOURNAL OF IMMUNOLOGY 2012; 189:935-45. [DOI: 10.4049/jimmunol.1102563] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
131
|
Sada-Ovalle I, Talayero A, Chavéz-Galán L, Barrera L, Castorena-Maldonado A, Soda-Merhy A, Torre-Bouscoulet L. Functionality of CD4+ and CD8+ T cells from tonsillar tissue. Clin Exp Immunol 2012; 168:200-6. [PMID: 22471281 DOI: 10.1111/j.1365-2249.2012.04573.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
For many years, tonsillectomy has been used routinely in children to treat chronic or recurrent acute tonsillitis. Palatine tonsils are secondary lymphoid organs and the major barrier protecting the digestive and respiratory tracts from potential invasive microorganisms. They have been used as sources of lymphoid tissue; however, despite the hundreds of papers published on tonsillectomy, no studies addressing the functionality of the CD4(+) and CD8(+) T cells from chronically infected tonsils have yet been published. The aim of this study was to analyse the functionality of the CD4(+) and CD8(+) T cells with respect to tonsillar tissue. We used an affordable approach to measure the frequency of antigen-specific CD4(+) T cells, the direct ex-vivo cytotoxicity of CD8(+) T cells, memory T cell phenotype, cytokine profile and DC phenotype. Our results demonstrate that CD4(+) and CD8(+) T cells from tonsillar tissue are totally functional, as shown by their ability to produce cytokines, to degranulate and to differentiate into effector-memory T cells.
Collapse
Affiliation(s)
- I Sada-Ovalle
- Laboratory of Integrative Immunology, Research Unit, National Institute of Respiratory Diseases, México City, México.
| | | | | | | | | | | | | |
Collapse
|
132
|
Janigro D. Are you in or out? Leukocyte, ion, and neurotransmitter permeability across the epileptic blood-brain barrier. Epilepsia 2012; 53 Suppl 1:26-34. [PMID: 22612806 PMCID: PMC4093790 DOI: 10.1111/j.1528-1167.2012.03472.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The credo that epileptic seizures can be initiated only by "epileptic" neurons has been recently challenged. The recognition of key astrocytic-neuronal communication, and the close interaction and crosstalk between astrocytes and brain endothelial cells, has shifted attention to the blood-brain barrier (BBB) and the "neurovascular unit." Therefore, the pursuit of mechanisms of seizure generation and epileptogenesis now includes investigations of cerebral blood flow and permeability of cerebral microvessels. For example, leukocyte adhesion molecules at the BBB have been proposed to play a role as an initiating factor for pilocarpine-induced status epilepticus, and a viral infection model with a strong BBB etiology has been used to study epileptogenesis. Finally, the fact that in nonepileptic subjects seizures can be triggered by BBB disruption, together with the antiseizure effects obtained by administration of potent antiinflammatory "BBB repair" drugs, has increased the interest in neuroinflammation; both circulating leukocytes and resident microglia have been studied in this context. The dual scope of this review is the following: (1) outline the proposed role of BBB damage and immune cell activation in seizure disorders; and (2) explain how increased cerebrovascular permeability causes neuronal misfiring. The temporal sequence linking seizures to peripheral inflammation and BBB dysfunction remains to be clarified. For example, it is still debated whether seizures cause systemic inflammation or vice versa. The topographic localization of fundamental triggers of epileptic seizures also remains controversial: Are immunologic mechanisms required for seizure generation brain-specific or is systemic activation of immunity sufficient to alter neuronal excitability? Finally, the causative role of "BBB leakage" remains a largely unresolved issue.
Collapse
Affiliation(s)
- Damir Janigro
- Departments of Neurological Surgery, Molecular Medicine and Cell Biology, ClevelandClinic Foundation, Euclid Avenue, Cleveland, OH 44195, U.S.A.
| |
Collapse
|
133
|
Simões RD, Howard KE, Dean GA. In vivo assessment of natural killer cell responses during chronic feline immunodeficiency virus infection. PLoS One 2012; 7:e37606. [PMID: 22701523 PMCID: PMC3365115 DOI: 10.1371/journal.pone.0037606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/26/2012] [Indexed: 01/03/2023] Open
Abstract
Accumulating evidence suggests that natural killer (NK) cells may have an important role in HIV-1 disease pathogenesis; however, in vivo studies are lacking. Feline immunodeficiency virus (FIV) infection of cats provides a valuable model to study NK cell function in vivo. The immune response against Listeria monocytogenes (Lm) is well characterized, allowing its use as an innate immune probe. We have previously shown that locally delivered IL-15 can improve Lm clearance in FIV-infected animals, and this correlated with an increase in NK cell number. In the present study, chronically FIV-infected and SPF-control cats were challenged with Lm by unilateral subcutaneous injection next to the footpad and then treated with 5-bromo-2′-deoxyuridine (BrdU). The Lm draining and contralateral control lymph nodes were evaluated for NK, NKT, CD4+ and CD8+ T cell number, proliferation, apoptosis, and NK cell function. Listeria monocytogenes burden was also assessed in both control and Lm draining lymph nodes. NK, NKT, CD4+ T and CD8+ T cells in the Lm-challenged lymph node of FIV-infected cats did not increase in number. In addition, after Lm challenge, NK cells from FIV-infected cats did not increase their proliferation rate, apoptosis was elevated, and perforin expression was not upregulated when compared to SPF-control cats. The failure of the NK cell response against Lm challenge in the draining lymph node of FIV-infected cats correlates with the delayed control and clearance of this opportunistic bacterial pathogen.
Collapse
Affiliation(s)
- Rita D. Simões
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Kristina E. Howard
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Gregg A. Dean
- Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
134
|
Lopez JA, Brennan AJ, Whisstock JC, Voskoboinik I, Trapani JA. Protecting a serial killer: pathways for perforin trafficking and self-defence ensure sequential target cell death. Trends Immunol 2012; 33:406-12. [PMID: 22608996 DOI: 10.1016/j.it.2012.04.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/14/2012] [Accepted: 04/02/2012] [Indexed: 11/28/2022]
Abstract
Considerable progress has been made in understanding how cytotoxic lymphocytes use the highly toxic pore-forming protein perforin to eliminate dangerous cells, while remaining refractory to lysis. At least two mechanisms jointly preserve the killer cell: the C-terminal residues of perforin dictate its rapid export from the endoplasmic reticulum (ER), whose milieu otherwise favours pore formation; perforin is then stored in secretory granules whose acidity prevent its oligomerisation. Following exocytosis, perforin delivers the proapoptotic protease, granzyme B, into the target cell by disrupting its plasma membrane. Although the precise mechanism of perforin/granzyme synergy remains controversial, the recently defined crystal structure of the perforin monomer and cryo-electron microscopy (EM) of the entire pore suggest that passive transmembrane granzyme diffusion is the dominant proapoptotic mechanism.
Collapse
Affiliation(s)
- Jamie A Lopez
- Peter MacCallum Cancer Centre, East Melbourne, 3002, Victoria, Australia
| | | | | | | | | |
Collapse
|
135
|
Prinz PU, Mendler AN, Masouris I, Durner L, Oberneder R, Noessner E. High DGK-α and Disabled MAPK Pathways Cause Dysfunction of Human Tumor-Infiltrating CD8+ T Cells That Is Reversible by Pharmacologic Intervention. THE JOURNAL OF IMMUNOLOGY 2012; 188:5990-6000. [DOI: 10.4049/jimmunol.1103028] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
136
|
Spicer JA, Huttunen KM, Miller CK, Denny WA, Ciccone A, Browne KA, Trapani JA. Inhibition of the pore-forming protein perforin by a series of aryl-substituted isobenzofuran-1(3H)-ones. Bioorg Med Chem 2011; 20:1319-36. [PMID: 22244072 DOI: 10.1016/j.bmc.2011.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 12/05/2011] [Accepted: 12/07/2011] [Indexed: 12/28/2022]
Abstract
An aryl-substituted isobenzofuran-1(3H)-one lead compound was identified from a high throughput screen designed to find inhibitors of the lymphocyte pore-forming protein perforin. A series of analogs were then designed and prepared, exploring structure-activity relationships through variation of 2-thioxoimidazolidin-4-one and furan subunits on an isobenzofuranone core. The ability of the resulting compounds to inhibit the lytic activity of both isolated perforin protein and perforin delivered in situ by intact KHYG-1 natural killer effector cells was determined. Several compounds showed excellent activity at concentrations that were non-toxic to the killer cells. This series represents a significant improvement on previous classes of compounds, being substantially more potent and largely retaining activity in the presence of serum.
Collapse
Affiliation(s)
- Julie A Spicer
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
137
|
Two systemic lupus erythematosus (SLE) global disease activity indexes—the SLE Disease Activity Index and the Systemic Lupus Activity Measure—demonstrate different correlations with activation of peripheral blood CD4+ T cells. Hum Immunol 2011; 72:1160-7. [DOI: 10.1016/j.humimm.2011.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/25/2011] [Accepted: 08/25/2011] [Indexed: 12/21/2022]
|
138
|
Marsh RA, Filipovich AH. Familial hemophagocytic lymphohistiocytosis and X-linked lymphoproliferative disease. Ann N Y Acad Sci 2011; 1238:106-21. [DOI: 10.1111/j.1749-6632.2011.06265.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
139
|
Wood SM, Ljunggren HG, Bryceson YT. Insights into NK cell biology from human genetics and disease associations. Cell Mol Life Sci 2011; 68:3479-93. [PMID: 21874350 PMCID: PMC11115003 DOI: 10.1007/s00018-011-0799-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 12/29/2022]
Abstract
Rare human primary immunodeficiency disorders with extreme susceptibility to infections in infancy have provided important insights into immune function. Increasingly, however, primary immunodeficiencies are also recognized as a cause of other more common, often discrete, infectious susceptibilities. In a wider context, loss-of-function mutations in immune genes may also cause disorders of immune regulation and predispose to cancer. Here, we review the associations between human diseases and mutations in genetic elements affecting natural killer (NK) cell development and function. Although many such genetic aberrations significantly reduce NK cell numbers or severely impair NK cell responses, inferences regarding the role of NK cells in disease are confounded by the fact that most mutations also affect the development or function of other cell types. Still, data suggest an important role for NK cells in diseases ranging from classical immunodeficiency syndromes with susceptibility to viruses and other intracellular pathogens to cancer, autoimmunity, and hypersensitivity reactions.
Collapse
Affiliation(s)
- Stephanie M Wood
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden.
| | | | | |
Collapse
|
140
|
Critical role for perforin and Fas-dependent killing of dendritic cells in the control of inflammation. Blood 2011; 119:127-36. [PMID: 22042696 DOI: 10.1182/blood-2011-06-363994] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After stimulation of antigen-specific T cells, dendritic cell (DCs) are susceptible to killing by these activated T cells that involve perforin and Fas-dependent mechanisms. Fas-dependent DC apoptosis has been shown to limit DC accumulation and prevent the development of autoimmunity. However, a role for perforin in the maintenance of DC homeostasis for immune regulation remains to be determined. Here we show that perforin deficiency in mice, together with the deletion of Fas in DCs (perforin(-/-)DC-Fas(-/-)), led to DC accumulation, uncontrolled T-cell activation, and IFN-γ production by CD8+ T cells, resulting in the development of lethal hemophagocytic lymphohistiocytosis. Consistently, adoptive transfer of Fas(-/-) DCs induced over-activation and IFN-γ production in perforin(-/-) CD8+ T cells. Neutralization of IFN-γ prevented the spreading of inflammatory responses to different cell types and protected the survival of perforin(-/-)DC-Fas(-/-) mice. Our data suggest that perforin and Fas synergize in the maintenance of DC homeostasis to limit T cell activation, and prevent the initiation of an inflammatory cascade.
Collapse
|
141
|
The role of Th17 cells and regulatory T cells in Coxsackievirus B3-induced myocarditis. Virology 2011; 421:78-84. [PMID: 21993400 DOI: 10.1016/j.virol.2011.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/05/2011] [Accepted: 09/08/2011] [Indexed: 01/01/2023]
Abstract
IL-17-producing (Th17) and regulatory T (Treg) cells have been well established in the pathogenesis of many inflammatory diseases. To assess whether Th17 and Treg were altered in acute virus-induced myocarditis (AVMC) mice, we assessed Th17/Treg functions on different levels in AVMC. It was shown that the expression of splenic Th17 cells and Th17-related cytokines (IL-17A, IL-21) markedly increased. Interestingly, the expression of splenic Treg cells and Treg-related cytokines (TGF-β, IL-10) also significantly increased. Using neutralization of IL-17 in the AVMC, we found that Treg cells roughly decreased compared with isotype control mice. However, T cells and perforin dramatically increased, followed by a marked reduction in CVB3 replication. The results suggested that Th17 cells possibly contributed to viral replication through the action of Treg cells in mediating T cells and perforin response in AVMC.
Collapse
|
142
|
Wang BQ, Zhang CM, Gao W, Wang XF, Zhang HL, Yang PC. Cancer-derived matrix metalloproteinase-9 contributes to tumor tolerance. J Cancer Res Clin Oncol 2011; 137:1525-33. [PMID: 21833719 DOI: 10.1007/s00432-011-1010-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/18/2011] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Tumor-specific T regulatory cells (Treg) play a critical role in tumor cell survival. The development of tumor-specific Treg is not fully understood. This study aims to elucidate the role of matrix metalloproteinase (MMP)9 in tumor tolerance development. METHODS We recruited 38 patients with laryngeal cancer (LC) in this study. MMP9 levels in the LC were measured by western blotting. Immune cells were isolated from LC tissue for indicated experiments. The cells' activities were characterized by flow cytometry. RESULTS High levels of MMP9 were detected in LC that plays a critical role in the development of tolerogenic dendritic cells and LC-specific Tregs. The isolated LC Tregs have the ability to suppress tumor-specific CD8 T cells in a tumor antigen-specific manner. CONCLUSIONS This study reveals a novel mechanism in tumor tolerance in which MMP9 plays a critical role in tumor survival. The data imply that MMP9 may be a potential target in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Bin-Quan Wang
- Department of Otolaryngology, Head and Neck Surgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | | | | | | | | | | |
Collapse
|
143
|
Laskarin G, Persic V, Ruzic A, Miletic B, Rakic M, Samsa DT, Raljevic D, Pejcinovic VP, Miskulin R, Rukavina D. Perforin-mediated cytotoxicity in non-ST elevation myocardial infarction. Scand J Immunol 2011; 74:195-204. [PMID: 21388427 DOI: 10.1111/j.1365-3083.2011.02554.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aim of this investigation was to examine the role of perforin (P)-mediated cytotoxicity in the dynamics of tissue damage in patients with non-ST-segment elevation myocardial infarction (NSTEMI) treated with anti-ischaemic drugs. We enrolled 48 patients with NSTEMI in this study [age, 71.5 years; 61.5/76 (median, 25th/75th percentiles)]. The percentage of total peripheral blood P(+) lymphocytes was elevated owing to the increased frequency of P(+) cells within natural killer (NK) subsets, T and NKT cells in patients on day 1 after NSTEMI when compared with healthy controls. Positive correlations were found between cardiac troponin I plasma concentrations and the frequency of P(+) cells, P(+) T cells, P(+) NK cells and their CD56(+dim) and CD56(+bright) subsets during the first week after the NSTEMI. The expression of P in NK cells was accompanied by P-mediated cytotoxicity against K-562 targets at all days examined, except day 21, when an anti-perforin monoclonal antibody did not completely abolish the killing. The percentage of P(+) T cells, P(+) NKT cells and P(+) NK subsets was the highest on the day 1 after NSTEMI and decreased in the post-infarction period. CD56(+) lymphocytes were found in damaged myocardium, suggesting their tissue recruitment. In conclusion, patients with NSTEMI have a strong and prolonged P-mediated systemic inflammatory reaction, which may sustain autoaggressive reactions towards myocardial tissue during the development of myocardial infarction.
Collapse
Affiliation(s)
- G Laskarin
- Division of Cardiology, Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism Thalassotherapia-Opatija, Opatija, Croatia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Marchi N, Johnson AJ, Puvenna V, Johnson HL, Tierney W, Ghosh C, Cucullo L, Fabene PF, Janigro D. Modulation of peripheral cytotoxic cells and ictogenesis in a model of seizures. Epilepsia 2011; 52:1627-34. [PMID: 21627645 PMCID: PMC3728674 DOI: 10.1111/j.1528-1167.2011.03080.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE A link between seizure susceptibility, blood-brain barrier (BBB) failure, and the activation of peripheral white blood cells has been recently proposed. However, the molecular players involved in this cascade of events are unknown. We tested the hypothesis that immunosupression by splenectomy or lack of perforin, a downstream factor of natural killer (NK) and cytotoxic T cells, could reduce seizure onset. METHODS Pilocarpine was used to induce seizures in adult rats wild-type and perforin-deficient mice. Splenectomy was performed prior to pilocarpine injection. Seizure onset was evaluated by electroencephalography (EEG) and joint time-frequency analysis. Spleens from control and pilocarpine-treated groups were analyzed for anatomical changes and CD3+ cell content. BBB damage was assessed by measuring albumin parenchymal extravasation. Fluorescence-activated cell sorting (FACS) analysis was performed on spleen and brain tissue of wild-type and perforin-deficient mice treated, or not, with pilocarpine. KEY FINDINGS Splenectomy significantly reduced seizure-associated mortality. Histologic analysis of the spleens exposed to pilocarpine revealed altered white and red pulp anatomy and an increase in CD3+ T cells. Onset of status epilepticus (SE) and mortality were significantly decreased in perforin-deficient mice. Pilocarpine significantly increased spleen NK 1.1 and CD8+ cell percentage; in contrast, the brain inflammatory cell profile remained unchanged at the time of pilocarpine SE. BBB damage was reduced in the perforin-deficient pilocarpine-treated mice. SIGNIFICANCE Immunosuppressant maneuvers such as splenectomy or lack of perforin decrease the onset or the severity of pilocarpine SE. Our results suggest that cytotoxic lymphocytes, and specifically the cytolytic factor perforin, may be key molecular players involved in the axis between peripheral intravascular inflammation and seizures.
Collapse
Affiliation(s)
- Nicola Marchi
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Cerebrovascular Research, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Aaron J. Johnson
- Department Neurology University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Vikram Puvenna
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Cerebrovascular Research, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Holly L. Johnson
- Department Neurology University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - William Tierney
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Chaitali Ghosh
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Cerebrovascular Research, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Luca Cucullo
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Cerebrovascular Research, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| | - Paolo F. Fabene
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, Verona, Italy
| | - Damir Janigro
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Cerebrovascular Research, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Department of Neurological Surgery, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
- Department of Molecular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A
| |
Collapse
|
145
|
Martina JA, Wu XS, Catalfamo M, Sakamoto T, Yi C, Hammer JA. Imaging of lytic granule exocytosis in CD8+ cytotoxic T lymphocytes reveals a modified form of full fusion. Cell Immunol 2011; 271:267-79. [PMID: 21843881 PMCID: PMC3407469 DOI: 10.1016/j.cellimm.2011.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/17/2011] [Accepted: 07/05/2011] [Indexed: 11/27/2022]
Abstract
Here we imaged the exocytosis of lytic granules from human CD8(+) cytotoxic T lymphocytes using rapid total internal reflection microscopy, Lamp-1 tagged with mGFP to follow the fate of the lytic granule membrane, and granzyme A, granzyme B or serglycin tagged with mRFP to follow the fate of lytic granule cargo. Lytic granules were released by full fusion with the plasma membrane, such that the entire granule content for all three cargos visualized was released on a subsecond time scale. The behavior of GFP-Lamp-1 was, however, more complex. While it entered the plasma membrane in all cases, the extent to which it then diffused away from the site of exocytosis varied from nearly complete to highly restricted. Finally, the diffusion properties upon release of the three cargos examined put an upper limit on the size of the macromolecular complex of granzyme and serglycin that is presented to the target cell.
Collapse
Affiliation(s)
- Jose A. Martina
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Heath, Bethesda, Maryland
| | - Xufeng S. Wu
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Heath, Bethesda, Maryland
| | - Marta Catalfamo
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Disease, National Institutes of Heath, Bethesda, Maryland
| | - Takeshi Sakamoto
- Department of Physics, Wayne State University, Detroit, Michigan
| | - Chang Yi
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Heath, Bethesda, Maryland
| | - John A. Hammer
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Heath, Bethesda, Maryland
| |
Collapse
|
146
|
|
147
|
Costa NL, Gonçalves AS, Souza-Lima NC, Jaime-Paiva LG, Junqueira-Kipnis AP, Silva TA, Mendonça EF, Batista AC. Distinct expression of perforin and granzyme B in lip and oral cavity squamous cell carcinoma. J Oral Pathol Med 2011; 40:380-4. [DOI: 10.1111/j.1600-0714.2011.01014.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
148
|
Golubovic S, Golubovic V, Sotosek-Tokmadzic V, Sustic A, Petkovic M, Bacic D, Mrakovcic-Sutic I. The proposed mechanism of action during different pain management techniques on expression of cytolytic molecule perforin in patients after colorectal cancer surgery. Med Hypotheses 2011; 76:450-2. [PMID: 21195559 DOI: 10.1016/j.mehy.2010.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 11/13/2010] [Indexed: 10/18/2022]
Abstract
The postoperative period is accompanied with neuroendocrine, metabolic and immune alteration which is caused by tissue damage, anesthesia, postoperative pain and psychological stress. Postoperative pain contributes to dysfunction of immune response as a result of interaction between central nervous and immune system. The postoperatively activated hypotalamo-pituitary-adrenocortical axis, sympathic and parasympathic nerve systems are important modulators of immune response. According to bidirectional communication of immune and nervous system, appropriate postoperative pain management could affect immune response in postoperative period. Although the postoperative suppression of immune response has been reported, a very little are known about the influences of different pain management techniques on cytotoxic function of immune cells in patients with colorectal cancer in early postoperative period. Perforin is a cytotoxic molecule expressed by activated lymphocytes which has a crucial role in elimination of tumor cells and virus-infected cells, mostly during the effector's phase of immune response. Immune compromise during the postoperative period could affect the healing processes, incidence of postoperative infections and rate and size of tumor metastases disseminated during operation. The pharmacological management of postoperative pain in patients with malignancies uses very different analgesic techniques whose possible influence on cytotoxic functions of immune cells are still understood poor. For decades the most common way of treating postoperative pain after colorectal cancer surgery was intravenous analgesia with opiods. In the last decade many investigations pointed out that opiods can also contribute to postoperative suppression of immune response. Epidural analgesia is a regional anesthesia technique that acts directly on the origin of pain impulses and pain relief can be achieved with small doses of opiods combined with local anesthetics. Local anesthetics potentate analgesic properties of opiods but per se are also acting as antiinflammatory drugs. Afferent neural blockade by epidural analgesia attenuates neuroendocrine stress response. We propose that epidural analgesia could be more convenient that intravenous analgesia in maintenance of immunological homeostasis that is altered by surgical stress, tumor growth and pain.
Collapse
Affiliation(s)
- S Golubovic
- Department of Anesthesiology, Reanimatology and Intensive Care, Medical Faculty, University of Rijeka, Brace Branchetta 20, Rijeka, Croatia
| | | | | | | | | | | | | |
Collapse
|
149
|
The phylogenetic origins of natural killer receptors and recognition: relationships, possibilities, and realities. Immunogenetics 2010; 63:123-41. [PMID: 21191578 DOI: 10.1007/s00251-010-0506-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 12/16/2010] [Indexed: 12/20/2022]
Abstract
Natural killer (NK) cells affect a form of innate immunity that recognizes and eliminates cells that are infected with certain viruses or have undergone malignant transformation. In mammals, this recognition can be mediated through immunoglobulin- (Ig) and/or lectin-type NK receptors (NKRs). NKR genes in mammals range from minimally polymorphic single-copy genes to complex multigene families that exhibit high levels of haplotypic complexity and exhibit significant interspecific variation. Certain single-copy NKR genes that are present in one mammal are present as expanded multigene families in other mammals. These observations highlight NKRs as one of the most rapidly evolving eukaryotic gene families and likely reflect the influence of pathogens, especially viruses, on their evolution. Although well characterized in human and mice, cytotoxic cells that are functionally similar to NK cells have been identified in species ranging from birds to reptiles, amphibians and fish. Although numerous receptors have been identified in non-mammalian vertebrates that share structural relationships with mammalian NKRs, functionally defining these lower vertebrate molecules as NKRs is confounded by methodological and interpretive complexities. Nevertheless, several lines of evidence suggest that NK-type function or its equivalent has sustained a long evolutionary history throughout vertebrate species.
Collapse
|
150
|
Kondos SC, Hatfaludi T, Voskoboinik I, Trapani JA, Law RHP, Whisstock JC, Dunstone MA. The structure and function of mammalian membrane-attack complex/perforin-like proteins. ACTA ACUST UNITED AC 2010; 76:341-51. [PMID: 20860583 DOI: 10.1111/j.1399-0039.2010.01566.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The membrane-attack complex (MAC) of complement pathway and perforin (PF) are important tools deployed by the immune system to target pathogens. Both perforin and the C9 component of the MAC contain a common 'MACPF' domain and form pores in the cell membrane as part of their function. The MAC targets gram-negative bacteria and certain pathogenic parasites, while perforin, released by natural killer cells or cytotoxic T lymphocytes (CTLs), targets virus-infected and transformed host cells (1). Remarkably, recent structural studies show that the MACPF domain is homologous to the pore-forming portion of bacterial cholesterol-dependent cytolysins; these data have provided important insight into the mechanism of pore-forming MACPF proteins. In addition to their role in immunity, MACPF family members have been identified as animal venoms, factors required for pathogen migration across host cell membranes and factors that govern developmental processes such as embryonic patterning and neuronal guidance (2). While most MACPF proteins characterized to date either form pores or span lipid membranes, some do not (e.g. the C6 component of the MAC). A current challenge is thus to understand the role, pore forming or otherwise, of MACPF proteins in developmental biology. This review discusses structural and functional diversity of the mammalian MACPF proteins.
Collapse
Affiliation(s)
- S C Kondos
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|