101
|
Rawlings SA, Layman L, Smith D, Scott B, Ignacio C, Porrachia M, Concha-Garcia S, Hendrickx S, Kaytes A, Taylor J, Gianella S. Performing rapid autopsy for the interrogation of HIV reservoirs. AIDS 2020; 34:1089-1092. [PMID: 32287073 PMCID: PMC7780881 DOI: 10.1097/qad.0000000000002546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
: Rapid autopsy at the end of life in people with HIV (PWH) permits the preservation of valuable tissue specimens for subsequent study of HIV reservoirs. At our institution, we have developed a cohort of PWH who consent to a rapid autopsy to gather a wide range of fluids and tissues with the goal of advancing HIV cure research. The protocol for successfully performing these autopsies has required careful thought and development over months and years. We have now successfully performed six rapid autopsies and detail here our steps to build the study cohort, train and staff a team of more than a dozen personnel, and process and preserve hundreds of samples from each autopsy.
Collapse
Affiliation(s)
- Stephen A. Rawlings
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, Stein Clinical Research Building
| | - Laura Layman
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, Stein Clinical Research Building
| | - Davey Smith
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, Stein Clinical Research Building
- Veterans Affairs Viral Research Laboratory
| | - Brianna Scott
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, Stein Clinical Research Building
| | - Caroline Ignacio
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, Stein Clinical Research Building
| | | | - Susanna Concha-Garcia
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, Stein Clinical Research Building
| | - Steven Hendrickx
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, Stein Clinical Research Building
| | - Andy Kaytes
- Antiviral Research Center Community Advisory Board, University of California, San Diego, San Diego
| | - Jeff Taylor
- Antiviral Research Center Community Advisory Board, University of California, San Diego, San Diego
- HIV and Aging Research Project – Palm Springs (HARP-PS), Palm Springs, California, USA
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, Stein Clinical Research Building
- Veterans Affairs Viral Research Laboratory
| |
Collapse
|
102
|
Palma P, McManus M, Cotugno N, Rocca S, Rossi P, Luzuriaga K. The HIV-1 antibody response: a footprint of the viral reservoir in children vertically infected with HIV. Lancet HIV 2020; 7:e359-e365. [PMID: 32386722 PMCID: PMC7593885 DOI: 10.1016/s2352-3018(20)30100-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Several assays have been developed to measure and characterise the replication-competent HIV-1 reservoir, which constitutes the barrier to cure. To date, the application of these assays to studies in children and in limited-resource settings has been minimal, primarily because of their expense, the large required blood volumes, and labour-intensive technologies. For children vertically infected with HIV-1 who initiated suppressive antiretroviral therapy (ART) regimens in infancy, HIV-1-specific antibody concentrations are associated with viral persistence and could be used to estimate the size of the residual latent reservoir on ART. This strategy could be particularly useful for screening children on suppressive ART for enrolment into therapeutic vaccine trials and other protocols aimed at achieving HIV-1 remission.
Collapse
Affiliation(s)
- Paolo Palma
- Academic Department of Pediatrics, Research Unit of Perinatal Infections, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Margaret McManus
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nicola Cotugno
- Academic Department of Pediatrics, Research Unit of Perinatal Infections, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Salvatore Rocca
- Academic Department of Pediatrics, Research Unit of Perinatal Infections, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Paolo Rossi
- Academic Department of Pediatrics, Research Unit of Perinatal Infections, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Katherine Luzuriaga
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA; Center for Clinical and Translational Science, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
103
|
Bowen A, Sweeney EE, Fernandes R. Nanoparticle-Based Immunoengineered Approaches for Combating HIV. Front Immunol 2020; 11:789. [PMID: 32425949 PMCID: PMC7212361 DOI: 10.3389/fimmu.2020.00789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) serves as an effective strategy to combat HIV infections by suppressing viral replication in patients with HIV/AIDS. However, HAART does not provide HIV/AIDS patients with a sterilizing or functional cure, and introduces several deleterious comorbidities. Moreover, the virus is able to persist within latent reservoirs, both undetected by the immune system and unaffected by HAART, increasing the risk of a viral rebound. The field of immunoengineering, which utilizes varied bioengineering approaches to interact with the immune system and potentiate its therapeutic effects against HIV, is being increasingly investigated in HIV cure research. In particular, nanoparticle-based immunoengineered approaches are especially attractive because they offer advantages including the improved delivery and functionality of classical HIV drugs such as antiretrovirals and experimental drugs such as latency-reversing agents (LRAs), among others. Here, we present and discuss the current state of the field in nanoparticle-based immunoengineering approaches for an HIV cure. Specifically, we discuss nanoparticle-based methods for improving HAART as well as latency reversal, developing vaccines, targeting viral fusion, enhancing gene editing approaches, improving adoptively transferred immune-cell mediated reservoir clearance, and other therapeutic and prevention approaches. Although nanoparticle-based immunoengineered approaches are currently at the stage of preclinical testing, the promising findings obtained in these studies demonstrate the potential of this emerging field for developing an HIV cure.
Collapse
Affiliation(s)
- Allan Bowen
- The George Washington Cancer Center, The George Washington University, Washington, DC, United States
| | - Elizabeth E. Sweeney
- The George Washington Cancer Center, The George Washington University, Washington, DC, United States
| | - Rohan Fernandes
- The George Washington Cancer Center, The George Washington University, Washington, DC, United States
- Department of Medicine, The George Washington University, Washington, DC, United States
| |
Collapse
|
104
|
Thiostrepton Reactivates Latent HIV-1 through the p-TEFb and NF-κB Pathways Mediated by Heat Shock Response. Antimicrob Agents Chemother 2020; 64:AAC.02328-19. [PMID: 32094131 DOI: 10.1128/aac.02328-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/17/2020] [Indexed: 01/18/2023] Open
Abstract
Antiretroviral therapy (ART) suppresses HIV-1 replication but fails to cure the infection. The presence of an extremely stable viral latent reservoir, primarily in resting memory CD4+ T cells, remains a major obstacle to viral eradication. The "shock and kill" strategy targets these latently infected cells and boosts immune recognition and clearance, and thus, it is a promising approach for an HIV-1 functional cure. Although some latency-reversing agents (LRAs) have been reported, no apparent clinical progress has been made, so it is still vital to seek novel and effective LRAs. Here, we report that thiostrepton (TSR), a proteasome inhibitor, reactivates latent HIV-1 effectively in cellular models and in primary CD4+ T cells from ART-suppressed individuals ex vivo TSR does not induce global T cell activation, severe cytotoxicity, or CD8+ T cell dysfunction, making it a prospective LRA candidate. We also observed a significant synergistic effect of reactivation when TSR was combined with JQ1, prostratin, or bryostatin-1. Interestingly, six TSR analogues also show reactivation abilities that are similar to or more effective than that of TSR. We further verified that TSR upregulated expression of heat shock proteins (HSPs) in CD4+ T cells, which subsequently activated positive transcriptional elongation factor b (p-TEFb) and NF-κB signals, leading to viral reactivation. In summary, we identify TSR as a novel LRA which could have important significance for applications to an HIV-1 functional cure in the future.
Collapse
|
105
|
Yang S, Tian W, Pan Z, Lin T, Wang G, Zhou Q, Xue Y, Chen H. Polyphenols from Polygonum cuspidatum Reactivate Latent HIV. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03018-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
106
|
Dubé K, Eskaf S, Evans D, Sauceda J, Saberi P, Brown B, Averitt D, Martel K, Meija M, Campbell D, Barr L, Kanazawa J, Perry K, Patel H, Luter S, Poteat T, Auerbach JD, Wohl DA. The Dose Response: Perceptions of People Living with HIV in the United States on Alternatives to Oral Daily Antiretroviral Therapy. AIDS Res Hum Retroviruses 2020; 36:324-348. [PMID: 31608651 PMCID: PMC7185332 DOI: 10.1089/aid.2019.0175] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There are two concurrent and novel major research pathways toward strategies for HIV control: (1) long-acting antiretroviral therapy (ART) formulations and (2) research aimed at conferring sustained ART-free HIV remission, considered a step toward an HIV cure. The importance of perspectives from people living with HIV on the development of new modalities is high, but data are lacking. We administered an online survey in which respondents selected their likelihood of participation or nonparticipation in HIV cure/remission research based on potential risks and perceived benefits of these new modalities. We also tested the correlation between perceptions of potential risks and benefits with preferences of virologic control strategies and/or responses to scenario choices, while controlling for respondent characteristics. Of the 282 eligible respondents, 42% would be willing to switch from oral daily ART to long-acting ART injectables or implantables taken at 6-month intervals, and 24% to a hypothetical ART-free remission strategy. We found statistically significant gender differences in perceptions of risk and preferences of HIV control strategies, and possible psychosocial factors that could mediate willingness to switch to novel HIV treatment or remission options. Our study yielded data on possible desirable product characteristics for future HIV treatment and remission options. Findings also revealed differences in motivations and preferences across gender and other sociodemographic characteristics that may be actionable as part of research recruitment efforts. The diversity of participant perspectives reveals the need to provide a variety of therapeutic options to people living with HIV and to acknowledge their diverse experiential expertise when developing novel HIV therapies.
Collapse
Affiliation(s)
- Karine Dubé
- Public Health Leadership Program (PHLP), UNC Gillings School of Global Public Health, Chapel Hill, North Carolina
- Women's Research Initiative on HIV/AIDS (WRI), Chapel Hill, North Carolina
| | - Shadi Eskaf
- Environmental Finance Center, UNC School of Government, Chapel Hill, North Carolina
| | - David Evans
- Delaney AIDS Research Enterprise (DARE) Community Advisory Board, Los Angeles, California
| | - John Sauceda
- Division of Prevention Sciences, Center for AIDS Prevention Studies (CAPS), University of California, San Francisco, San Francisco, California
| | - Parya Saberi
- Division of Prevention Sciences, Center for AIDS Prevention Studies (CAPS), University of California, San Francisco, San Francisco, California
| | - Brandon Brown
- Department of Social Medicine, Population and Public Health, Center for Healthy Communities, University of California, Riverside School of Medicine, Riverside, California
| | - Dawn Averitt
- Women's Research Initiative on HIV/AIDS (WRI), Chapel Hill, North Carolina
- The Well Project, Norwich, Vermont
| | - Krista Martel
- Women's Research Initiative on HIV/AIDS (WRI), Chapel Hill, North Carolina
- The Well Project, Norwich, Vermont
| | - Maria Meija
- The Well Project Community Advisory Board, Tamarac, Florida
| | - Danielle Campbell
- Delaney AIDS Research Enterprise (DARE) Community Advisory Board, Los Angeles, California
| | - Liz Barr
- AIDS Clinical Trials Group (ACTG) Community Scientific Subcommittee Representative, Baltimore, Maryland
| | - John Kanazawa
- Public Health Leadership Program (PHLP), UNC Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Kelly Perry
- Public Health Leadership Program (PHLP), UNC Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Hursch Patel
- Public Health Leadership Program (PHLP), UNC Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Stuart Luter
- Public Health Leadership Program (PHLP), UNC Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Tonia Poteat
- Women's Research Initiative on HIV/AIDS (WRI), Chapel Hill, North Carolina
- UNC Department of Social Medicine, School of Medicine, Chapel Hill, North Carolina
| | - Judith D. Auerbach
- Women's Research Initiative on HIV/AIDS (WRI), Chapel Hill, North Carolina
- The Well Project, Norwich, Vermont
- School of Medicine, University of California, San Francisco, San Francisco, California
| | - David A. Wohl
- Institute of Global Health and Infectious Diseases (IGHID), University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
107
|
Dong B, Borjabad A, Kelschenbach J, Chao W, Volsky DJ, Potash MJ. Prevention and treatment of HIV infection and cognitive disease in mice by innate immune responses. Brain Behav Immun Health 2020; 3:100054. [PMID: 32699842 PMCID: PMC7375446 DOI: 10.1016/j.bbih.2020.100054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
HIV associated neurocognitive impairment afflicts roughly half of infected individuals on antiretroviral therapy. This disease currently has no treatment. We have previously shown that type I interferon is induced by and partially controls infection and neuropathogenesis in mice infected by chimeric HIV, EcoHIV. Here we investigate the intentional ligation of the pattern recognition receptor Toll-like receptor 3 (TLR3) by polyinosinic-polycytidylic acid (poly I:C) for its ability to prevent or control infection and associated cognitive disease in EcoHIV infected mice. We tested topical, injection, and intranasal application of poly I:C in mice during primary infection through injection or sexual transmission or in established infection. We measured different forms of HIV DNA and RNA in tissues by real-time PCR and the development of HIV-associated cognitive disease by the radial arm water maze behavioral test. Our results indicate that poly I:C blocks primary EcoHIV infection of mice prior to reverse transcription and reduces established EcoHIV infection. Prevention or control of viral replication by poly I:C prevents or reverses HIV associated cognitive disease in mice. These findings indicate that poly I:C or other innate immune agonists may be useful in control of HIV cognitive disease.
Collapse
Affiliation(s)
- Baojun Dong
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alejandra Borjabad
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer Kelschenbach
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Chao
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David J. Volsky
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Jane Potash
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
108
|
Fu YH, Guo JM, Xie YT, Yu XM, Su QT, Qiang L, Kong LY, Liu YP. Prenylated Chromones from the Fruits of Artocarpus heterophyllus and Their Potential Anti-HIV-1 Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2024-2030. [PMID: 32037814 DOI: 10.1021/acs.jafc.9b06417] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Artocarpus heterophyllus (jack tree) is an evergreen fruit tree belonging to the genus Artocarpus (Moraceae), which is widely distributed in subtropical and tropical regions of Asia. Its fruits (jackfruit), well-known as the world's largest tree-borne fruit, are being consumed in our daily diets as a very popular tropical fruit throughout the world and have been confirmed to hold various health benefits. In this study, five new prenylated chromones, artocarheterones A-E (1-5), as well as seven known prenylated chromones (6-12) were purified and isolated from the ripe fruits of A. heterophyllus (jackfruit). Their chemical structures were determined through comprehensive spectroscopic methods. This is the first report on prenylated chromones isolated from A. heterophyllus. The anti-HIV-1 effects of all isolated chromones were assessed in vitro. As a result, prenylated chromones (1-12) showed remarkable anti-HIV-1 effects with EC50 values ranging from 0.09 to 9.72 μM. These research results indicate that the isolation and characterization of these prenylated chromones with remarkable anti-HIV-1 activities from the ripe fruits of A. heterophyllus could be significant to the discovery and development of new anti-HIV-1 drugs.
Collapse
Affiliation(s)
- Yan-Hui Fu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education , Hainan Normal University , Haikou 571158 , P. R. China
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province , Hainan Normal University , Haikou 571158 , P. R. China
| | - Jia-Ming Guo
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education , Hainan Normal University , Haikou 571158 , P. R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province , Hainan Normal University , Haikou 571158 , P. R. China
| | - Yu-Tong Xie
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education , Hainan Normal University , Haikou 571158 , P. R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province , Hainan Normal University , Haikou 571158 , P. R. China
| | - Xiao-Mei Yu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education , Hainan Normal University , Haikou 571158 , P. R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province , Hainan Normal University , Haikou 571158 , P. R. China
| | - Qin-Ting Su
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education , Hainan Normal University , Haikou 571158 , P. R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province , Hainan Normal University , Haikou 571158 , P. R. China
| | - Lei Qiang
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
| | - Yan-Ping Liu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education , Hainan Normal University , Haikou 571158 , P. R. China
- State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province , Hainan Normal University , Haikou 571158 , P. R. China
| |
Collapse
|
109
|
Casado C, Galvez C, Pernas M, Tarancon-Diez L, Rodriguez C, Sanchez-Merino V, Vera M, Olivares I, De Pablo-Bernal R, Merino-Mansilla A, Del Romero J, Lorenzo-Redondo R, Ruiz-Mateos E, Salgado M, Martinez-Picado J, Lopez-Galindez C. Permanent control of HIV-1 pathogenesis in exceptional elite controllers: a model of spontaneous cure. Sci Rep 2020; 10:1902. [PMID: 32024974 PMCID: PMC7002478 DOI: 10.1038/s41598-020-58696-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/27/2019] [Indexed: 11/09/2022] Open
Abstract
Elite controllers (EC) represent a small subset of HIV-1-infected people that spontaneously control viral replication. However, natural virological suppression and absence of immune dysfunction are not always long-term sustained. We define exceptional EC (EEC) as HIV-1 subjects who maintain the EC characteristics without disease progression for more than 25 years. We analyzed three EEC, diagnosed between 1988 and 1992, who never showed signs of clinical disease progression in absence of any antiretroviral treatment. A comprehensive clinical, virological, and immunological study was performed. The individuals simultaneously exhibited ≥3 described host protective alleles, low levels of total HIV-1 DNA (<20 copies/106 CD4+ T-cells) without evidence of replication-competent viruses (<0.025 IUPM), consistent with high levels of defective genomes, strong cellular HIV-1-specific immune response, and a high poly-functionality index (>0.50). Inflammation levels of EEC were similar to HIV-1 negative donors. Remarkably, they showed an exceptional lack of viral evolution and 8-fold lower genetic diversity (<0.01 s/n) in env gene than other EC. We postulate that these EEC represent cases of spontaneous functional HIV-1 cure. A non-functional and non-genetically evolving viral reservoir along with an HIV-1-specific immune response seems to be key for the spontaneous functional cure.
Collapse
Affiliation(s)
- Concepcion Casado
- Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Cristina Galvez
- AIDS Research Institute IrsiCaixa, Badalona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Maria Pernas
- Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Laura Tarancon-Diez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Carmen Rodriguez
- Centro Sanitario Sandoval, Hospital Clínico San Carlos. IdISSC, Madrid, Spain
| | - Víctor Sanchez-Merino
- AIDS Immunopathology Unit. Laboratorio de Referencia e Investigación en Retrovirus. Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mar Vera
- Centro Sanitario Sandoval, Hospital Clínico San Carlos. IdISSC, Madrid, Spain
| | - Isabel Olivares
- Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Rebeca De Pablo-Bernal
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Alberto Merino-Mansilla
- AIDS Immunopathology Unit. Laboratorio de Referencia e Investigación en Retrovirus. Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Jorge Del Romero
- Centro Sanitario Sandoval, Hospital Clínico San Carlos. IdISSC, Madrid, Spain
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60011, USA
| | - Ezequiel Ruiz-Mateos
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | | | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Badalona, Spain.
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Cecilio Lopez-Galindez
- Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
110
|
Zhao N, Su X, Wang Y, Chen J, Zhuang W. Traditional Chinese Herbal Medicine for Whitening. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20905148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Melanin is the chief pigment responsible for the pigmentation of human skin. Increasing evidence indicates that traditional Chinese drugs with skin-whitening effects are attracting the attention of consumers and researchers because they are perceived to be milder, safer, and healthier than synthetic alternatives. This commentary summarizes the current research on Chinese herbal medicines that inhibit melanin and their biological activities. The findings presented in this study suggest that these traditional Chinese herbal medicines might be potential candidates for novel skin-whitening agents.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Xiaoming Su
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Yueyang Wang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| |
Collapse
|
111
|
Koala retrovirus viral load and disease burden in distinct northern and southern koala populations. Sci Rep 2020; 10:263. [PMID: 31937823 PMCID: PMC6959342 DOI: 10.1038/s41598-019-56546-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/13/2019] [Indexed: 11/09/2022] Open
Abstract
Koala retrovirus (KoRV) displays features of both an endogenous and exogenous virus and is linked to neoplasia and immunosuppression in koalas. This study explores the apparent differences in the nature and impact of KoRV infection between geographically and genetically separated "northern" and "southern" koala populations, by investigating the disease status, completeness of the KoRV genome and the proviral (DNA) and viral (RNA) loads of 71 northern and 97 southern koalas. All northern animals were positive for all KoRV genes (gag, pro-pol and env) in both DNA and RNA forms, whereas many southern animals were missing one or more KoRV genes. There was a significant relationship between the completeness of the KoRV genome and clinical status in this population. The proviral and viral loads of the northern population were significantly higher than those of the southern population (P < 0.0001), and many provirus-positive southern animals failed to express any detectable KoRV RNA. Across both populations there was a positive association between proviral load and neoplasia (P = 0.009). Potential reasons for the differences in the nature of KoRV infection between the two populations are discussed.
Collapse
|
112
|
Okonko IO, Makinde TS, Okonko BJ, Ogbu O. Immunological and epidemiological evaluation of EBV infections among HIV-1 infected individuals in Abakaliki, Nigeria supports the potential use of neutrophils as a marker of EBV in HIV disease progression and as useful markers of immune activation. J Immunoassay Immunochem 2019; 41:158-170. [PMID: 31885335 DOI: 10.1080/15321819.2019.1705483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human herpesvirus 4 which is commonly known as Epstein-Barr virus (EBV) is one of the opportunistic pathogens that affect human immunodeficiency virus (HIV) infected individuals and it is the leading cause of death and cancer in humans. The study was designed to evaluate the prevalence of EBV among HIV-1 infected individuals in Abakaliki metropolis, Ebonyi State, Nigeria. A total of 91 HIV-1 infected individuals were collected from Mile 4 Hospital, Abakaliki, Ebonyi State, Nigeria. ELISA was used to determine the Epstein-Barr Nuclear Antigen (EBNA) IgG and IgM antibodies. Full blood count (FBC), white cell count (WBC) and differential counts were also determined using standard hematological methods. Of the 91 serum samples obtained from HIV-1 infected individuals, 87(95.6%) and 20(22.0%) samples were found to be positive for EBVNA IgG and IgM antibody respectively. All the age groups had significant IgG prevalence, but age groups ≤ 20 years, and ≥ 41 had the highest prevalence while age group 21-30 years was found to have a less rate of prevalence. Also, the highest seropositivity for IgM antibodies was observed in the age group 31-40 years (32.4%) while the age groups ≤20 years (0.0%) is the lowest. However, these differences were not statistically associated with PVL and EBVNA IgG (p = .4311) and IgM antibodies (p = .4861).Higher seropositivity of EBVNA IgG occurred among those with PVL 41-10,000 copies/mL (100.0%) and PVL 10,001 copies/mL and above (100.0%) compared to those with PVL less than or equal to 40 copies/mL (95.0%). While regarding EBVNA IgM antibodies, higher seropositivity of EBVNA IgM occurred among those with PVL less than or equal to 40 copies/mL (25.0%) compared to those with PVL 41-10,000 copies/mL (20.0%) and PVL 10,001 copies/mL and above (8.3%). There was a significant difference in Neutrophils p < .026 between the mean of females and males (40.9 ± 11.7 and 36 ± 31.1) infected with EBV IgM in HIV individuals. There was also a significant positive correlation between CD4 counts and the WBC, Lymphocytes, Eosinophils and the neutrophil among the HIV-1 individuals used for this study. The correlations observed between both CD4+ count and neutrophil support the potential use of neutrophils as a marker of EBV in HIV disease progression and as useful markers of immune activation.
Collapse
Affiliation(s)
- Iheanyi Omezuruike Okonko
- Virus Research Unit, Department of Microbiology, University of Port Harcourt, Port Harcourt, Nigeria
| | | | | | - Ogbonnaya Ogbu
- Department of Applied Microbiology, Ebonyi State University, Abakaliki, Nigeria
| |
Collapse
|
113
|
Abstract
Proviral latency is a major barrier to a cure for HIV. In this issue of Cell Host & Microbe, Hataye et al. (2019) show that reactivation of HIV latency is a non-deterministic, highly stochastic (i.e., noisy) process and propose that stochastic transitions to exponential viral expansion require a critical threshold of virus.
Collapse
Affiliation(s)
- Maike M K Hansen
- Gladstone|UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Benjamin Martin
- Gladstone|UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Leor S Weinberger
- Gladstone|UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Departments of Biochemistry and Biophysics, and Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
114
|
Bohn-Wippert K, Tevonian EN, Lu Y, Huang MY, Megaridis MR, Dar RD. Cell Size-Based Decision-Making of a Viral Gene Circuit. Cell Rep 2019; 25:3844-3857.e5. [PMID: 30590053 PMCID: PMC7050911 DOI: 10.1016/j.celrep.2018.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/23/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
Abstract
Latently infected T cells able to reinitiate viral propagation throughout the body remain a major barrier to curing HIV. Distinguishing between latently infected cells and uninfected cells will advance efforts for viral eradication. HIV decision-making between latency and active replication is stochastic, and drug cocktails that increase bursts of viral gene expression enhance reactivation from latency. Here, we show that a larger host-cell size provides a natural cellular mechanism for enhancing burst size of viral expression and is necessary to destabilize the latent state and bias viral decision-making. Latently infected Jurkat and primary CD4+ T cells reactivate exclusively in larger activated cells, while smaller cells remain silent. In addition, reactivation is cell-cycle dependent and can be modulated with cell-cycle-arresting compounds. Cell size and cell-cycle dependent decision-making of viral circuits may guide stochastic design strategies and applications in synthetic biology and may provide important determinants to advance diagnostics and therapies. Bohn-Wippert et al. investigate reactivation of T cells latently infected with HIV. They discover that only larger cells exit latency, while smaller cells remain silent. Viral expression bursts are cell size and cell-cycle dependent, presenting dynamic cell states, capable of active control, as sources of viral fate determination.
Collapse
Affiliation(s)
- Kathrin Bohn-Wippert
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA
| | - Erin N Tevonian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA
| | - Yiyang Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA
| | - Meng-Yao Huang
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA
| | - Melina R Megaridis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA
| | - Roy D Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 North Wright St, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA.
| |
Collapse
|
115
|
Bender AM, Simonetti FR, Kumar MR, Fray EJ, Bruner KM, Timmons AE, Tai KY, Jenike KM, Antar AAR, Liu PT, Ho YC, Raugi DN, Seydi M, Gottlieb GS, Okoye AA, Del Prete GQ, Picker LJ, Mankowski JL, Lifson JD, Siliciano JD, Laird GM, Barouch DH, Clements JE, Siliciano RF. The Landscape of Persistent Viral Genomes in ART-Treated SIV, SHIV, and HIV-2 Infections. Cell Host Microbe 2019; 26:73-85.e4. [PMID: 31295427 DOI: 10.1016/j.chom.2019.06.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/21/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022]
Abstract
Evaluation of HIV cure strategies is complicated by defective proviruses that persist in ART-treated patients but are irrelevant to cure. Non-human primates (NHP) are essential for testing cure strategies. However, the persisting proviral landscape in ART-treated NHPs is uncharacterized. Here, we describe viral genomes persisting in ART-treated, simian immunodeficiency virus (SIV)-infected NHPs, simian-human immunodeficiency virus (SHIV)-infected NHPs, and humans infected with HIV-2, an SIV-related virus. The landscapes of persisting SIV, SHIV, and HIV-2 genomes are also dominated by defective sequences. However, there was a significantly higher fraction of intact SIV proviral genomes compared to ART-treated HIV-1 or HIV-2 infected humans. Compared to humans with HIV-1, SIV-infected NHPs had more hypermutated genomes, a relative paucity of clonal SIV sequences, and a lower frequency of deleted genomes. Finally, we report an assay for measuring intact SIV genomes which may have value in cure research.
Collapse
Affiliation(s)
- Alexandra M Bender
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mithra R Kumar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katherine M Bruner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew E Timmons
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katherine Y Tai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katharine M Jenike
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Annukka A R Antar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Po-Ting Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ya-Chi Ho
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dana N Raugi
- Department of Medicine & Center of Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Moussa Seydi
- Service de Maladies Infectieuses et Tropicales, CHNU-Fann, Dakar, Senegal
| | - Geoffrey S Gottlieb
- Department of Medicine & Center of Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Afam A Okoye
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Greg M Laird
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Accelevir Diagnostics, Baltimore, MD, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
116
|
Development of C-TILDA: A modified TILDA method for reservoir quantification in long term treated patients infected with subtype C HIV-1. J Virol Methods 2019; 276:113778. [PMID: 31756409 DOI: 10.1016/j.jviromet.2019.113778] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022]
Abstract
A better characterization of the HIV reservoir is pivotal for the development of effective eradication strategies. Accurate quantification of the latent reservoir remains challenging. Starting from a regular blood draw, the Tat/Rev induced limiting dilution assay (TILDA) combines serial dilution of CD4+ T cells with a PCR-based detection of HIV-1 spliced mRNA produced upon cell stimulation. Here we adapted the original protocol for HIV-1 subtype B to detect tat/rev mRNAs transcribed from reactivated latently infected cells in long term suppressed patients infected with HIV-1 subtype C. Given the heterogeneity of global HIV epidemiology, it is pivotal to develop assays with optimal performances also in patients infected with non-B subtypes. We observed that, in these patients infected with subtype C virus, the HIV reservoir quantified by TILDA correlates with both the time of virological suppression and CD4/CD8 ratio.
Collapse
|
117
|
Brendel C, Rio P, Verhoeyen E. Humanized mice are precious tools for evaluation of hematopoietic gene therapies and preclinical modeling to move towards a clinical trial. Biochem Pharmacol 2019; 174:113711. [PMID: 31726047 DOI: 10.1016/j.bcp.2019.113711] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Abstract
Over the last decade, incrementally improved xenograft mouse models, which support the engraftment and development of a human hemato-lymphoid system, have been developed and represent an important fundamental and preclinical research tool. Immunodeficient mice can be transplanted with human hematopoietic stem cells (HSCs) and this process is accompanied by HSC homing to the murine bone marrow. This is followed by stem cell expansion, multilineage hematopoiesis, long-term engraftment, and functional human antibody and cellular immune responses. The most significant contributions made by these humanized mice are the identification of normal and leukemic hematopoietic stem cells, the characterization of the human hematopoietic hierarchy, screening of anti-cancer therapies and their use as preclinical models for gene therapy applications. This review article focuses on several gene therapy applications that have benefited from evaluation in humanized mice such as chimeric antigen receptor (CAR) T cell therapies for cancer, anti-viral therapies and gene therapies for multiple monogenetic diseases. Humanized mouse models have been and still are of great value for the gene therapy field since they provide a more reliable understanding of sometimes complicated therapeutic approaches such as recently developed therapeutic gene editing strategies, which seek to correct a gene at its endogenous genomic locus. Additionally, humanized mouse models, which are of great importance with regard to testing new vector technologies in vivo for assessing safety and efficacy prior toclinical trials, help to expedite the critical translation from basic findings to clinical applications. In this review, innovative gene therapies and preclinical studies to evaluate T- and B-cell and HSC-based therapies in humanized mice are discussed and illustrated by multiple examples.
Collapse
Affiliation(s)
- Christian Brendel
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Paula Rio
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Els Verhoeyen
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon1, CNRS, UMR 5308, 69007 Lyon, France; Université Côte d'Azur, INSERM, C3M, 06204 Nice, France.
| |
Collapse
|
118
|
Trypsteen W, White CH, Mukim A, Spina CA, De Spiegelaere W, Lefever S, Planelles V, Bosque A, Woelk CH, Vandekerckhove L, Beliakova-Bethell N. Long non-coding RNAs and latent HIV - A search for novel targets for latency reversal. PLoS One 2019; 14:e0224879. [PMID: 31710657 PMCID: PMC6844474 DOI: 10.1371/journal.pone.0224879] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
The latent cellular reservoir of HIV is recognized as the major barrier to cure from HIV infection. Long non-coding RNAs (lncRNAs) are more tissue and cell type-specific than protein coding genes, and may represent targets of choice for HIV latency reversal. Using two in vitro primary T-cell models, we identified lncRNAs dysregulated in latency. PVT1 and RP11-347C18.3 were up-regulated in common between the two models, and RP11-539L10.2 was down-regulated. The major component of the latent HIV reservoir, memory CD4+ T-cells, had higher expression of these lncRNAs, compared to naïve T-cells. Guilt-by-association analysis demonstrated that lncRNAs dysregulated in latency were associated with several cellular pathways implicated in HIV latency establishment and maintenance: proteasome, spliceosome, p53 signaling, and mammalian target of rapamycin (MTOR). PVT1, RP11-347C18.3, and RP11-539L10.2 were down-regulated by latency reversing agents, suberoylanilide hydroxamic acid and Romidepsin, suggesting that modulation of lncRNAs is a possible secondary mechanism of action of these compounds. These results will facilitate prioritization of lncRNAs for evaluation as targets for HIV latency reversal. Importantly, our study provides insights into regulatory function of lncRNA during latent HIV infection.
Collapse
Affiliation(s)
- Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Cory H. White
- Faculty of Medicine, University of Southampton, Southampton, Hants, United Kingdom
| | - Amey Mukim
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA, United States of America
| | - Celsa A. Spina
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA, United States of America
- Department of Pathology, University of California San Diego, La Jolla, CA, United States of America
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Sciences, Ghent University, Ghent, Belgium
| | - Steve Lefever
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States of America
| | - Christopher H. Woelk
- Faculty of Medicine, University of Southampton, Southampton, Hants, United Kingdom
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Nadejda Beliakova-Bethell
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA, United States of America
- Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
119
|
Maeda K, Das D, Kobayakawa T, Tamamura H, Takeuchi H. Discovery and Development of Anti-HIV Therapeutic Agents: Progress Towards Improved HIV Medication. Curr Top Med Chem 2019; 19:1621-1649. [PMID: 31424371 PMCID: PMC7132033 DOI: 10.2174/1568026619666190712204603] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 01/09/2023]
Abstract
The history of the human immunodeficiency virus (HIV)/AIDS therapy, which spans over 30 years, is one of the most dramatic stories of science and medicine leading to the treatment of a disease. Since the advent of the first AIDS drug, AZT or zidovudine, a number of agents acting on different drug targets, such as HIV enzymes (e.g. reverse transcriptase, protease, and integrase) and host cell factors critical for HIV infection (e.g. CD4 and CCR5), have been added to our armamentarium to combat HIV/AIDS. In this review article, we first discuss the history of the development of anti-HIV drugs, during which several problems such as drug-induced side effects and the emergence of drug-resistant viruses became apparent and had to be overcome. Nowadays, the success of Combination Antiretroviral Therapy (cART), combined with recently-developed powerful but nonetheless less toxic drugs has transformed HIV/AIDS from an inevitably fatal disease into a manageable chronic infection. However, even with such potent cART, it is impossible to eradicate HIV because none of the currently available HIV drugs are effective in eliminating occult “dormant” HIV cell reservoirs. A number of novel unique treatment approaches that should drastically improve the quality of life (QOL) of patients or might actually be able to eliminate HIV altogether have also been discussed later in the review.
Collapse
Affiliation(s)
- Kenji Maeda
- National Center for Global Health and Medicine (NCGM) Research Institute, Tokyo 162-8655, Japan
| | - Debananda Das
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health (NCI/NIH), Bethesda, MD, United States
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo 101-0062, Japan
| | - Hirokazu Tamamura
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Hiroaki Takeuchi
- Department of Molecular Virology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| |
Collapse
|
120
|
Herzig E, Kim KC, Packard TA, Vardi N, Schwarzer R, Gramatica A, Deeks SG, Williams SR, Landgraf K, Killeen N, Martin DW, Weinberger LS, Greene WC. Attacking Latent HIV with convertibleCAR-T Cells, a Highly Adaptable Killing Platform. Cell 2019; 179:880-894.e10. [PMID: 31668804 DOI: 10.1016/j.cell.2019.10.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/19/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
Current approaches to reducing the latent HIV reservoir entail first reactivating virus-containing cells to become visible to the immune system. A critical second step is killing these cells to reduce reservoir size. Endogenous cytotoxic T-lymphocytes (CTLs) may not be adequate because of cellular exhaustion and the evolution of CTL-resistant viruses. We have designed a universal CAR-T cell platform based on CTLs engineered to bind a variety of broadly neutralizing anti-HIV antibodies. We show that this platform, convertibleCAR-T cells, effectively kills HIV-infected, but not uninfected, CD4 T cells from blood, tonsil, or spleen and only when armed with anti-HIV antibodies. convertibleCAR-T cells also kill within 48 h more than half of the inducible reservoir found in blood of HIV-infected individuals on antiretroviral therapy. The modularity of convertibleCAR-T cell system, which allows multiplexing with several anti-HIV antibodies yielding greater breadth and control, makes it a promising tool for attacking the latent HIV reservoir.
Collapse
Affiliation(s)
- Eytan Herzig
- Gladstone Center for HIV Cure Research, Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Departments of Medicine and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kaman Chan Kim
- Xyphos Biosciences, Inc., South San Francisco, CA 94080, USA
| | - Thomas A Packard
- Gladstone Center for HIV Cure Research, Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Departments of Medicine and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Noam Vardi
- Gladstone Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Departments of Biochemistry and Biophysics and Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Roland Schwarzer
- Gladstone Center for HIV Cure Research, Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Departments of Medicine and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrea Gramatica
- Gladstone Center for HIV Cure Research, Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Departments of Medicine and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | | | - Kyle Landgraf
- Xyphos Biosciences, Inc., South San Francisco, CA 94080, USA
| | - Nigel Killeen
- Xyphos Biosciences, Inc., South San Francisco, CA 94080, USA
| | - David W Martin
- Xyphos Biosciences, Inc., South San Francisco, CA 94080, USA
| | - Leor S Weinberger
- Gladstone Center for HIV Cure Research, Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Gladstone Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Departments of Biochemistry and Biophysics and Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Warner C Greene
- Gladstone Center for HIV Cure Research, Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Departments of Medicine and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
121
|
Brief Report: Pulmonary Tuberculosis Is Associated With Persistent Systemic Inflammation and Decreased HIV-1 Reservoir Markers in Coinfected Ugandans. J Acquir Immune Defic Syndr 2019; 79:407-411. [PMID: 30063648 DOI: 10.1097/qai.0000000000001823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mycobacterium tuberculosis (TB) infection induces systemic inflammation that could impact HIV-1 persistence. SETTING HIV-1-seropositive individuals either with or without pulmonary TB disease were recruited in Kampala, Uganda. METHODS Plasma cytokines, HIV-1 DNA, and cell-associated (ca)-RNA were compared among those coinfected with TB (cases) to those without TB (controls). TB-coinfected cases and controls were compared at presentation (n = 15 and n = 16, respectively) and at around 6 months after HIV-1 treatment initiation among those who had achieved virologic suppression (n = 6 and n = 8, respectively). At follow-up, the TB-coinfected cases had also finished TB treatment. RESULTS Before treatment, the TB-coinfected cases as compared to the controls had higher levels of soluble(s)-CD163 (P = 0.0002) and interleukin-6 (P = 0.006) but lower levels of macrophage chemoattractant protein-1 (P = 0.04). After treatment, the TB-coinfected cases as compared to controls still had higher plasma s-CD163 levels (P = 0007). Controls as compared to the coinfected cases had higher ca-RNA per DNA template both at baseline (P = 0.03) and at follow-up (P = 0.07). Levels of ca-RNA per DNA copy at follow-up showed a negative correlation with baseline plasma s-CD163 (P = 0.008) and interleukin-6 (P = 0.05) levels. CONCLUSIONS TB disease is associated with inflammation and decreased HIV-1 RNA expression relative to the number of infected cells, both before and after viral suppression. Infections present before antiretroviral initiation impact HIV-1 latency.
Collapse
|
122
|
Dubé K, Auerbach JD, Stirratt MJ, Gaist P. Applying the Behavioural and Social Sciences Research (BSSR) Functional Framework to HIV Cure Research. J Int AIDS Soc 2019; 22:e25404. [PMID: 31665568 PMCID: PMC6820877 DOI: 10.1002/jia2.25404] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/30/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The search for an HIV cure involves important behavioural and social processes that complement the domains of biomedicine. However, the field has yet to tap into the full potential of behavioural and social sciences research (BSSR). In this article, we apply Gaist and Stirratt's BSSR Functional Framework to the field of HIV cure research. DISCUSSION The BSSR Functional Framework describes four key research domains: (1) basic BSSR (understanding basic behavioural and social factors), (2) elemental BSSR (advancing behavioural and social interventions), (3) supportive BSSR (strengthening biomedically focused clinical trials), and (4) integrative BSSR (building multi-disciplinary combination approaches for real-world implementation). In revisiting and applying the BSSR Functional Framework, we clarify the importance of BSSR in HIV cure research by drawing attention to such things as: how language and communication affect the meaning of "cure" to people living with HIV (PLHIV) and broader communities; how cure affects the identity and social position of PLHIV; counselling and support interventions to address the psychosocial needs and concerns of study participants related to analytical treatment interruptions (ATIs); risk reduction in the course of ATI study participation; motivation, acceptability, and decision-making processes of potential study participants related to different cure strategies; HIV care providers' perceptions and attitudes about their patients' participation in cure research; potential social harms or adverse social events associated with cure research participation; and the scalability of a proven cure strategy in the context of further advances in HIV prevention and treatment. We also discuss the BSSR Functional Framework in the context of ATIs, which involve processes at the confluence of the BSSR domains. CONCLUSIONS To move HIV cure regimens through the translational research pathway, attention will need to be paid to both biomedical and socio-behavioural elements. BSSR can contribute an improved understanding of the human and social dimensions related to HIV cure research and the eventual application of HIV cure regimens. The BSSR Functional Framework provides a way to identify advances, gaps and opportunities to craft an integrated, multi-disciplinary approach at all stages of cure research to ensure the real-world applicability of any strategy that shows promise.
Collapse
Affiliation(s)
- Karine Dubé
- UNC Gillings School of Global Public HealthUniversity of North CarolinaChapel HillNCUSA
| | - Judith D Auerbach
- School of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Michael J Stirratt
- Division of AIDS Research (DAR)National Institute of Mental HealthNational Institutes of HealthBethesdaMDUSA
| | - Paul Gaist
- Office of AIDS ResearchDivision of Program Coordination, Planning, and Strategic InitiativesOffice of the DirectorNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
123
|
Low-Level Viremia Is Associated With Clinical Progression in HIV-Infected Patients Receiving Antiretroviral Treatment. J Acquir Immune Defic Syndr 2019. [PMID: 29543636 DOI: 10.1097/qai.0000000000001678] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The objective of this study was to investigate the long-term impact of low-level viremia (LLV) on all-cause mortality, AIDS and non-AIDS events (NAEs), and virological failure in patients receiving antiretroviral therapy (ART). METHODS We analyzed ART-naive adults from the cohort of the Spanish AIDS Research Network (CoRIS) who initiated ART from 2004 to 2015 and achieved plasma viral load (VL) below 50 copies per milliliter. LLV50-199 was defined as 2 consecutive VL between 50 and 199 copies per milliliter, and LLV200-499 as 2 consecutive VL between 50 and 499 copies per milliliter with at least one between 200 and 499 copies per milliliter. Multivariable Cox models were used to estimate the association of LLV with AIDS events/death, non-AIDS events, and virological failure. RESULTS Of 5986 patients included, 237 (4.0%) experienced LLV50-199 and 168 (2.8%) developed LLV200-499. One hundred seventy-one patients died or developed an AIDS event, 245 had any serious NAE and 280 had virological failure. LLV200-499 was strongly associated with a higher risk of both AIDS events/death [adjusted hazard ratio (aHR), 2.89; 95% confidence interval (CI), 1.41 to 5.92] and virological failure (aHR, 3.25; 95% CI: 1.77 to 5.99), whereas no differences were observed between LLV50-199 and no LLV neither for AIDS events/death (aHR, 1.84; 95% CI: 0.89 to 3.82) nor virological failure (aHR, 1.42; 95% CI: 0.78 to 2.58). LLV was not associated with the occurrence of any serious NAE. CONCLUSIONS In this cohort, LLV200-499 was strongly associated with AIDS events/death and virological failure, but not with any serious NAE. Therefore, vigorous treatment should be implemented in patients with more than 200 copies per milliliter.
Collapse
|
124
|
Insights into the HIV Latency and the Role of Cytokines. Pathogens 2019; 8:pathogens8030137. [PMID: 31487807 PMCID: PMC6789648 DOI: 10.3390/pathogens8030137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/24/2019] [Accepted: 09/01/2019] [Indexed: 12/23/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) has the ability to infect latently at the level of individual CD4+ cells. Latent HIV-1 proviruses are transcriptionally silent and immunologically inert, but are still capable of reactivating productive lytic infection following cellular activation. These latent viruses are the main obstacle in the eradication of HIV-1, because current HIV-1 treatment regimens are ineffective against them. Normal immunological response against an antigen activates CD4+ naïve T cells. The activated CD4+ naïve T cells undergo cell cycle, resulting in further transformation and profound proliferation to form effector CD4+ T-cells. Notably, in HIV-1 infected individuals, some of the effector CD4+ T cells get infected with HIV-1. Upon fulfillment of their effector functions, almost all activated CD4+ T cells are committed to apoptosis or programmed cell death, but a miniscule fraction revert to quiescence and become resting memory CD4+ T cells to mediate a rapid immunological response against the same antigen in the future. However, due to the quiescent nature of the resting memory T cells, the integrated HIV-1 becomes transcriptionally silent and acquires a latent phenotype. Following re-exposure to the same antigen, memory cells and integrated HIV-1 are stimulated. The reactivated latent HIV provirus subsequently proceeds through its life cycle and eventually leads to the production of new viral progeny. Recently, many strategies against HIV-1 latency have been developed and some of them have even matured to the clinical level, but none can yet effectively eliminate the latent HIV reservoir, which remains a barrier to HIV-1 cure. Therefore, alternative strategies to eradicate latent HIV need to be considered. This review provides vital knowledge on HIV latency and on strategies to supplement highly active anti-retroviral therapy (HAART) with cytokine-mediated therapeutics for dislodging the latent HIV reservoirs in order to open up new avenues for curing HIV.
Collapse
|
125
|
Serra-Peinado C, Grau-Expósito J, Luque-Ballesteros L, Astorga-Gamaza A, Navarro J, Gallego-Rodriguez J, Martin M, Curran A, Burgos J, Ribera E, Raventós B, Willekens R, Torrella A, Planas B, Badía R, Garcia F, Castellví J, Genescà M, Falcó V, Buzon MJ. Expression of CD20 after viral reactivation renders HIV-reservoir cells susceptible to Rituximab. Nat Commun 2019; 10:3705. [PMID: 31420544 PMCID: PMC6697690 DOI: 10.1038/s41467-019-11556-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 07/19/2019] [Indexed: 01/06/2023] Open
Abstract
The identification of exclusive markers to target HIV-reservoir cells will represent a significant advance in the search for therapies to cure HIV. Here, we identify the B lymphocyte antigen CD20 as a marker for HIV-infected cells in vitro and in vivo. The CD20 molecule is dimly expressed in a subpopulation of CD4-positive (CD4+) T lymphocytes from blood, with high levels of cell activation and heterogeneous memory phenotypes. In lymph node samples from infected patients, CD20 is present in productively HIV-infected cells, and ex vivo viral infection selectively upregulates the expression of CD20 during early infection. In samples from patients on antiretroviral therapy (ART) this subpopulation is significantly enriched in HIV transcripts, and the anti-CD20 monoclonal antibody Rituximab induces cell killing, which reduces the pool of HIV-expressing cells when combined with latency reversal agents. We provide a tool for targeting this active HIV-reservoir after viral reactivation in patients while on ART. Here, the authors identify B lymphocyte antigen CD20 as a marker for HIV-infected T cells and provide evidence for the potential use of anti-CD20 antibodies in combination with latency reversing agents for depletion of viral reactivated CD4 T cells in patients on antiretroviral therapy.
Collapse
Affiliation(s)
- Carla Serra-Peinado
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Grau-Expósito
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Luque-Ballesteros
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Astorga-Gamaza
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Navarro
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jenny Gallego-Rodriguez
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mario Martin
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Adrià Curran
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquin Burgos
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esteban Ribera
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Berta Raventós
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rein Willekens
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ariadna Torrella
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bibiana Planas
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Badía
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Felipe Garcia
- Infectious Disease Department, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Josep Castellví
- Department of Pathology, Hospital Vall d'Hebrón, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria J Buzon
- Infectious Disease Department, Hospital Universitari Vall d'Hebrón, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
126
|
Grau-Expósito J, Luque-Ballesteros L, Navarro J, Curran A, Burgos J, Ribera E, Torrella A, Planas B, Badía R, Martin-Castillo M, Fernández-Sojo J, Genescà M, Falcó V, Buzon MJ. Latency reversal agents affect differently the latent reservoir present in distinct CD4+ T subpopulations. PLoS Pathog 2019; 15:e1007991. [PMID: 31425551 PMCID: PMC6715238 DOI: 10.1371/journal.ppat.1007991] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/29/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Latency reversal agents (LRAs) have proven to induce HIV-1 transcription in vivo but are ineffective at decreasing the size of the latent reservoir in antiretroviral treated patients. The capacity of the LRAs to perturb the viral reservoir present in distinct subpopulations of cells is currently unknown. Here, using a new RNA FISH/flow ex vivo viral reactivation assay, we performed a comprehensive assessment of the viral reactivation capacity of different families of LRAs, and their combinations, in different CD4+ T cell subsets. We observed that a median of 16.28% of the whole HIV-reservoir induced HIV-1 transcripts after viral reactivation, but only 10.10% of these HIV-1 RNA+ cells produced the viral protein p24. Moreover, none of the LRAs were powerful enough to reactivate HIV-1 transcription in all CD4+ T cell subpopulations. For instance, the combination of Romidepsin and Ingenol was identified as the best combination of drugs at increasing the proportion of HIV-1 RNA+ cells, in most, but not all, CD4+ T cell subsets. Importantly, memory stem cells were identified as highly resistant to HIV-1 reactivation, and only the combination of Panobinostat and Bryostatin-1 significantly increased the number of cells transcribing HIV within this subset. Overall, our results validate the use of the RNA FISH/flow technique to assess the potency of LRAs among different CD4+ T cell subsets, manifest the intrinsic differences between cells that encompass the latent HIV reservoir, and highlight the difficulty to significantly impact the latent infection with the currently available drugs. Thus, our results have important implications for the rational design of therapies aimed at reversing HIV latency from diverse cellular reservoirs.
Collapse
Affiliation(s)
- Judith Grau-Expósito
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Luque-Ballesteros
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Navarro
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Adrian Curran
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquin Burgos
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esteban Ribera
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ariadna Torrella
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bibiana Planas
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Badía
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mario Martin-Castillo
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jesús Fernández-Sojo
- Banc de Sang i Teixits, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria J. Buzon
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
127
|
Bachmann N, von Siebenthal C, Vongrad V, Turk T, Neumann K, Beerenwinkel N, Bogojeska J, Fellay J, Roth V, Kok YL, Thorball CW, Borghesi A, Parbhoo S, Wieser M, Böni J, Perreau M, Klimkait T, Yerly S, Battegay M, Rauch A, Hoffmann M, Bernasconi E, Cavassini M, Kouyos RD, Günthard HF, Metzner KJ. Determinants of HIV-1 reservoir size and long-term dynamics during suppressive ART. Nat Commun 2019; 10:3193. [PMID: 31324762 PMCID: PMC6642170 DOI: 10.1038/s41467-019-10884-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022] Open
Abstract
The HIV-1 reservoir is the major hurdle to a cure. We here evaluate viral and host characteristics associated with reservoir size and long-term dynamics in 1,057 individuals on suppressive antiretroviral therapy for a median of 5.4 years. At the population level, the reservoir decreases with diminishing differences over time, but increases in 26.6% of individuals. Viral blips and low-level viremia are significantly associated with slower reservoir decay. Initiation of ART within the first year of infection, pretreatment viral load, and ethnicity affect reservoir size, but less so long-term dynamics. Viral blips and low-level viremia are thus relevant for reservoir and cure studies. Here, Bachmann et al. provide data on long-term dynamics of the HIV-1 reservoir in 1,057 individuals on suppressive antiretroviral therapy and show that in 26.6% of individuals the reservoir increases. Viral blips and low-level viremia are significantly associated with a slower reservoir decay.
Collapse
Affiliation(s)
- Nadine Bachmann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland
| | - Chantal von Siebenthal
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland
| | - Valentina Vongrad
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland
| | - Teja Turk
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland
| | - Kathrin Neumann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, 4057 Basel, Switzerland
| | | | - Jaques Fellay
- School of Life Sciences, EPFL, 1015, Lausanne, Switzerland.,Precision Medicine Unit, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Volker Roth
- Department of Mathematics and Computer Science, University of Basel, 4001, Basel, Switzerland
| | - Yik Lim Kok
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland
| | | | - Alessandro Borghesi
- School of Life Sciences, EPFL, 1015, Lausanne, Switzerland.,Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
| | - Sonali Parbhoo
- Department of Mathematics and Computer Science, University of Basel, 4001, Basel, Switzerland
| | - Mario Wieser
- Department of Mathematics and Computer Science, University of Basel, 4001, Basel, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland
| | - Matthieu Perreau
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1015, Lausanne, Switzerland
| | - Thomas Klimkait
- Division Infection Diagnostics, Department Biomedicine-Petersplatz, University of Basel, 4001, Basel, Switzerland
| | - Sabine Yerly
- Division of Infectious Diseases and Laboratory of Virology, University Hospital Geneva, University of Geneva, 1211, Geneva, Switzerland
| | - Manuel Battegay
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, 4031, Basel, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, University Hospital Bern, 3010, Bern, Switzerland
| | - Matthias Hoffmann
- Division of Infectious Diseases, Cantonal Hospital of St. Gallen, 9007, St. Gallen, Switzerland
| | - Enos Bernasconi
- Infectious Diseases Service, Regional Hospital, 6900, Lugano, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1015, Lausanne, Switzerland
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091, Zurich, Switzerland. .,Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland.
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, 8057, Zurich, Switzerland
| | | |
Collapse
|
128
|
Krasnopolsky S, Marom L, Victor RA, Kuzmina A, Schwartz JC, Fujinaga K, Taube R. Fused in sarcoma silences HIV gene transcription and maintains viral latency through suppressing AFF4 gene activation. Retrovirology 2019; 16:16. [PMID: 31238957 PMCID: PMC6593535 DOI: 10.1186/s12977-019-0478-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background The human immunodeficiency virus (HIV) cell reservoir is currently a main obstacle towards complete eradication of the virus. This infected pool is refractory to anti-viral therapy and harbors integrated proviruses that are transcriptionally repressed but replication competent. As transcription silencing is key for establishing the HIV reservoir, significant efforts have been made to understand the mechanism that regulate HIV gene transcription, and the role of the elongation machinery in promoting this step. However, while the role of the super elongation complex (SEC) in enhancing transcription activation of HIV is well established, the function of SEC in modulating viral latency is less defined and its cell partners are yet to be identified. Results In this study we identify fused in sarcoma (FUS) as a partner of AFF4 in cells. FUS inhibits the activation of HIV transcription by AFF4 and ELL2, and silences overall HIV gene transcription. Concordantly, depletion of FUS elevates the occupancy of AFF4 and Cdk9 on the viral promoter and activates HIV gene transcription. Live cell imaging demonstrates that FUS co-localizes with AFF4 within nuclear punctuated condensates, which are disrupted upon treating cells with aliphatic alcohol. In HIV infected cells, knockout of FUS delays the gradual entry of HIV into latency, and similarly promotes viral activation in a T cell latency model that is treated with JQ1. Finally, effects of FUS on HIV gene transcription are also exhibited genome wide, where FUS mainly occupies gene promoters at transcription starting sites, while its knockdown leads to an increase in AFF4 and Cdk9 occupancy on gene promoters of FUS affected genes. Conclusions Towards eliminating the HIV infected reservoir, understanding the mechanisms by which the virus persists in the face of therapy is important. Our observations show that FUS regulates both HIV and global gene transcription and modulates viral latency, thus can potentially serve as a target for future therapy that sets to reactivate HIV from its latent state. Electronic supplementary material The online version of this article (10.1186/s12977-019-0478-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simona Krasnopolsky
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Lital Marom
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Rachel A Victor
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Alona Kuzmina
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Jacob C Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Koh Fujinaga
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
| |
Collapse
|
129
|
Borrajo A, Ranazzi A, Pollicita M, Bellocchi MC, Salpini R, Mauro MV, Ceccherini-Silberstein F, Perno CF, Svicher V, Aquaro S. Different Patterns of HIV-1 Replication in MACROPHAGES is Led by Co-Receptor Usage. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E297. [PMID: 31234437 PMCID: PMC6630780 DOI: 10.3390/medicina55060297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022]
Abstract
Background and objectives: To enter the target cell, HIV-1 binds not only CD4 but also a co-receptor β-chemokine receptor 5 (CCR5) or α chemokine receptor 4 (CXCR4). Limited information is available on the impact of co-receptor usage on HIV-1 replication in monocyte-derived macrophages (MDM) and on the homeostasis of this important cellular reservoir. Materials and Methods: Replication (measured by p24 production) of the CCR5-tropic 81A strain increased up to 10 days post-infection and then reached a plateau. Conversely, the replication of the CXCR4-tropic NL4.3 strain (after an initial increase up to day 7) underwent a drastic decrease becoming almost undetectable after 10 days post-infection. The ability of CCR5-tropic and CXCR4-tropic strains to induce cell death in MDM was then evaluated. While for CCR5-tropic 81A the rate of apoptosis in MDM was comparable to uninfected MDM, the infection of CXCR4-tropic NL4.3 in MDM was associated with a rate of 14.3% of apoptotic cells at day 6 reaching a peak of 43.5% at day 10 post-infection. Results: This suggests that the decrease in CXCR4-tropic strain replication in MDM can be due to their ability to induce cell death in MDM. The increase in apoptosis was paralleled with a 2-fold increase in the phosphorylated form of p38 compared to WT. Furthermore, microarray analysis showed modulation of proapoptotic and cancer-related genes induced by CXCR4-tropic strains starting from 24 h after infection, whereas CCR5 viruses modulated the expression of genes not correlated with apoptotic-pathways. Conclusions: In conclusion, CXCR4-tropic strains can induce a remarkable depletion of MDM. Conversely, MDM can represent an important cellular reservoir for CCR5-tropic strains supporting the role of CCR5-usage in HIV-1 pathogenesis and as a pharmacological target to contribute to an HIV-1 cure.
Collapse
Affiliation(s)
- Ana Borrajo
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
- Group of Virology and Pathogenesis, Galicia Sur Health Research Institute (IIS Galicia Sur)-Complexo Hospitalario Universitario de Vigo, SERGAS-UVigo, 36312 Vigo, Spain.
| | - Alessandro Ranazzi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Michela Pollicita
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Maria Concetta Bellocchi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Romina Salpini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Maria Vittoria Mauro
- Department of Microbiology and Virology, Complex Operative Unit (UOC), Hospital of Cosenza, 87100 Cosenza, Italy.
| | | | - Carlo Federico Perno
- Department of Microbiology and Clinic Microbiology, University of Milan, 20162 Milan, Italy.
| | - Valentina Svicher
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy.
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
130
|
Elsheikh MM, Tang Y, Li D, Jiang G. Deep latency: A new insight into a functional HIV cure. EBioMedicine 2019; 45:624-629. [PMID: 31227439 PMCID: PMC6642357 DOI: 10.1016/j.ebiom.2019.06.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/26/2022] Open
Abstract
Latent HIV reservoir is the main obstacle that prevents a cure for HIV-1 (HIV). While antiretroviral therapy is effective in controlling viral replication, it cannot eliminate latent HIV reservoirs in patients. Several strategies have been proposed to combat HIV latency, including bone marrow transplantation to replace blood cells with CCR5-mutated stem cells, gene editing to disrupt the HIV genome, and “Shock and Kill” to reactivate latent HIV followed by an immune clearance. However, high risks and limitations to scale-up in clinics, off-target effects in human genomes or failure to reduce reservoir sizes in patients hampered our current efforts to achieve an HIV cure. This necessitates alternative strategies to control the latent HIV reservoirs. This review will discuss an emerging strategy aimed to deeply silence HIV reservoirs, the development of this concept, its potential and caveats for HIV remission/cure, and prospective directions for silencing the latent HIV, thereby preventing viruses from rebound.
Collapse
Affiliation(s)
- Maher M Elsheikh
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Yuyang Tang
- UNC HIV Cure Center, Institute of Global Health & Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dajiang Li
- UNC HIV Cure Center, Institute of Global Health & Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Guochun Jiang
- UNC HIV Cure Center, Institute of Global Health & Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
131
|
de Jong W, Aerts J, Allard S, Brander C, Buyze J, Florence E, van Gorp E, Vanham G, Leal L, Mothe B, Thielemans K, Plana M, Garcia F, Gruters R. iHIVARNA phase IIa, a randomized, placebo-controlled, double-blinded trial to evaluate the safety and immunogenicity of iHIVARNA-01 in chronically HIV-infected patients under stable combined antiretroviral therapy. Trials 2019; 20:361. [PMID: 31208472 PMCID: PMC6580477 DOI: 10.1186/s13063-019-3409-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 05/06/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND HIV therapeutic vaccination aims to improve the immune responses against HIV in order to control viral replication without the need for combined antiretroviral therapy (cART). iHIVARNA-01 is a novel vaccine combining mRNA delivery and T-cell immunogen (HTI) based on conserved targets of effective antiviral T-cell responses. In addition, it holds adequate stimuli required for activating antigen presenting cells (APC)s and co-activating specific T-cells (TriMix), including human CD40L, constitutively active TLR4 (caTLR4) and CD70. We propose that in-vivo targeting of dendritic cells (DCs) by direct administration of a HIV mRNA encoding these immune modulating proteins might be an attractive alternative to target DCs in vitro. METHODS/DESIGN This is a phase-IIa, randomized, double-blinded, placebo-controlled, multicenter study in chronically HIV-1 infected patients under stable cART. One of the three study arms is randomly allocated to subjects. Three vaccinations with either HIVACAT T-cell immunogen (HTI)-TriMix (iHIVARNA-01), TriMix or water for injection (WFI) (weeks 0, 2 and 4) are administered by intranodal injection in the inguinal region. Two weeks after the last immunization (week 6) cART is stopped for 12 weeks. The two primary endpoints are: (1) safety and tolerability of intranodal iHIVARNA-01 vaccination compared with TriMix or WFI and (2) induced immunogenicity, i.e., increase in the frequency of HIV-specific T-cell responses between baseline, week 6 and 12 weeks after treatment interruption in iHIVARNA-01-treated patients as compared to the control groups, immunized with TriMix-mRNA or WFI measured by an IFNγ ELISPOT assay. Secondary endpoints include the evaluation of time to viral rebound, plasma viral load (pVL) at w18, the proportion of patients with control of viral load, induction of T-cell responses to new HIV epitopes, polyfunctionality of HIV-specific T-cells, CD8+ T-cell in-vitro HIV suppressive capacity, the effect on viral reservoir (measured by proviral DNA and cell-associated RNA), assessment of viral immune escape by mutation and mRNA expression profiles of host immune genes. DISCUSSION This trial aims to direct target DC in situ with mRNA encoding HTI and TriMix for co-stimulation. Intranodal injection circumvents laborious DC isolation and handling in the laboratory. The trial extends on the safety results of a phase-I dose-escalating trial. This candidate vaccine could complement or even replace cART for chronic HIV infection and could be applicable to improve the care and cost of HIV infection. TRIAL REGISTRATION EudraCT 2016-002724-83 (22 September 2016); ClinicalTrials.gov, ID: NCT02888756 . Registered on 23 August 2016.
Collapse
Affiliation(s)
- Wesley de Jong
- Department of Viroscience, Erasmus MC, Room Ee-1726, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - Joeri Aerts
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sabine Allard
- Department of Internal Medicine and Infectious Diseases, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Christian Brander
- Infectious Diseases Unit, IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,AELIX Therapeutics, Parc Científic de Barcelona, Barcelona, Spain.,University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Jozefien Buyze
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine and, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Eric Florence
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine and, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Eric van Gorp
- Department of Viroscience, Erasmus MC, Room Ee-1726, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands
| | - Guido Vanham
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine and, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Lorna Leal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel, 170, 08036, Barcelona, Spain.,Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain
| | - Beatriz Mothe
- Infectious Diseases Unit, IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain.,University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Montse Plana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel, 170, 08036, Barcelona, Spain
| | - Félipe Garcia
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel, 170, 08036, Barcelona, Spain. .,Infectious Diseases Unit, Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain.
| | - Rob Gruters
- Department of Viroscience, Erasmus MC, Room Ee-1726, P.O. Box 2040, 3000, CA, Rotterdam, The Netherlands.
| | | |
Collapse
|
132
|
Xiao Q, Chen S, Wang Q, Liu Z, Liu S, Deng H, Hou W, Wu D, Xiong Y, Li J, Guo D. CCR5 editing by Staphylococcus aureus Cas9 in human primary CD4 + T cells and hematopoietic stem/progenitor cells promotes HIV-1 resistance and CD4 + T cell enrichment in humanized mice. Retrovirology 2019; 16:15. [PMID: 31186067 PMCID: PMC6560749 DOI: 10.1186/s12977-019-0477-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/07/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The chemokine receptor CCR5, which belongs to the superfamily of G protein-coupled receptors, is the major co-receptor for HIV-1 entry. Individuals with a homozygous CCR5Δ32 mutation have a long lasting and increased resistance to HIV-1 infection. Therefore, CCR5 represents an optimal target for HIV-1/AIDS gene therapy. The CRISPR/Cas9 system has been developed as one of the most efficacious gene editing tools in mammalian cells and the small-sized version from Staphylococcus aureus (SaCas9) has an advantage of easier delivery compared to the most commonly used version from Streptococcus pyogenes Cas9 (SpCas9). RESULTS Here, we demonstrated that CCR5 could be specifically and efficiently edited by CRISPR/SaCas9 together with two sgRNAs, which were identified through a screening of 13 sgRNAs. Disruption of CCR5 expression by lentiviral vector-mediated CRISPR/SaCas9 led to increased resistance against HIV-1 infection in human primary CD4+ T cells. Moreover, humanized mice engrafted with CCR5-disrupted CD4+ T cells showed selective survival and enrichment when challenged with CCR5 (R5)-tropic HIV-1 in comparison to mock-treated CD4+ T cells. We also observed CCR5 could be targeted by CRISPR/SaCas9 in human CD34+ hematopoietic stem/progenitor cells without obvious differentiation deficiencies. CONCLUSIONS This work provides an alternative approach to disrupt human CCR5 by CRISPR/SaCas9 for a potential gene therapy strategy against HIV-1/AIDS.
Collapse
Affiliation(s)
- Qiaoqiao Xiao
- Laboratory of Medical Virology, School of Medicine, Sun Yat-sen University, Zhongshan Erlu 74, Yuexiu District, Guangzhou, 510080 People’s Republic of China
- Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 People’s Republic of China
| | - Shuliang Chen
- Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 People’s Republic of China
| | - Qiankun Wang
- Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 People’s Republic of China
| | - Zhepeng Liu
- Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 People’s Republic of China
| | - Shuai Liu
- Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 People’s Republic of China
| | - Huan Deng
- Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 People’s Republic of China
| | - Wei Hou
- Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 People’s Republic of China
| | - Dongcheng Wu
- Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 People’s Republic of China
| | - Yong Xiong
- Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan, 430071 People’s Republic of China
| | - Jiafu Li
- Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan, 430071 People’s Republic of China
| | - Deyin Guo
- Laboratory of Medical Virology, School of Medicine, Sun Yat-sen University, Zhongshan Erlu 74, Yuexiu District, Guangzhou, 510080 People’s Republic of China
| |
Collapse
|
133
|
Balasubramaniam M, Pandhare J, Dash C. Immune Control of HIV. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2019; 1:4-37. [PMID: 31468033 PMCID: PMC6714987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human immunodeficiency virus (HIV) infection of the immune cells expressing the cluster of differentiation 4 cell surface glycoprotein (CD4+ cells) causes progressive decline of the immune system and leads to the acquired immunodeficiency syndrome (AIDS). The ongoing global HIV/AIDS pandemic has already claimed over 35 million lives. Even after 37 years into the epidemic, neither a cure is available for the 37 million people living with HIV (PLHIV) nor is a vaccine discovered to avert the millions of new HIV infections that continue to occur each year. If left untreated, HIV infection typically progresses to AIDS and, ultimately, causes death in a majority of PLHIV. The recommended combination antiretroviral therapy (cART) suppresses virus replication and viremia, prevents or delays progression to AIDS, reduces transmission rates, and lowers HIV-associated mortality and morbidity. However, because cART does not eliminate HIV, and an enduring pool of infected resting memory CD4+ T cells (latent HIV reservoir) is established early on, any interruption to cART leads to a relapse of viremia and disease progression. Hence, strict adherence to a life-long cART regimen is mandatory for managing HIV infection in PLHIV. The HIV-1-specific cytotoxic T cells expressing the CD8 glycoprotein (CD8+ CTL) limit the virus replication in vivo by recognizing the viral antigens presented by human leukocyte antigen (HLA) class I molecules on the infected cell surface and killing those cells. Nevertheless, CTLs fail to durably control HIV-1 replication and disease progression in the absence of cART. Intriguingly, <1% of cART-naive HIV-infected individuals called elite controllers/HIV controllers (HCs) exhibit the core features that define a HIV-1 "functional cure" outcome in the absence of cART: durable viral suppression to below the limit of detection, long-term non-progression to AIDS, and absence of viral transmission. Robust HIV-1-specific CTL responses and prevalence of protective HLA alleles associated with enduring HIV-1 control have been linked to the HC phenotype. An understanding of the molecular mechanisms underlying the CTL-mediated suppression of HIV-1 replication and disease progression in HCs carrying specific protective HLA alleles may yield promising insights towards advancing the research on HIV cure and prophylactic HIV vaccine.
Collapse
Affiliation(s)
- Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN – 37208. USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN – 37208. USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN – 37208. USA
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN – 37208. USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN – 37208. USA
| |
Collapse
|
134
|
Eradication of Human Immunodeficiency Virus Type-1 (HIV-1)-Infected Cells. Pharmaceutics 2019; 11:pharmaceutics11060255. [PMID: 31159417 PMCID: PMC6631149 DOI: 10.3390/pharmaceutics11060255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/01/2019] [Accepted: 05/24/2019] [Indexed: 01/04/2023] Open
Abstract
Predictions made soon after the introduction of human immunodeficiency virus type-1 (HIV-1) protease inhibitors about potentially eradicating the cellular reservoirs of HIV-1 in infected individuals were too optimistic. The ability of the HIV-1 genome to remain in the chromosomes of resting CD4+ T cells and macrophages without being expressed (HIV-1 latency) has prompted studies to activate the cells in the hopes that the immune system can recognize and clear these cells. The absence of natural clearance of latently infected cells has led to the recognition that additional interventions are necessary. Here, we review the potential of utilizing suicide gene therapy to kill infected cells, excising the chromosome-integrated HIV-1 DNA, and targeting cytotoxic liposomes to latency-reversed HIV-1-infected cells.
Collapse
|
135
|
Specific Activation In Vivo of HIV-1 by a Bromodomain Inhibitor from Monocytic Cells in Humanized Mice under Antiretroviral Therapy. J Virol 2019; 93:JVI.00233-19. [PMID: 30971469 DOI: 10.1128/jvi.00233-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/26/2019] [Indexed: 11/20/2022] Open
Abstract
Combination antiretroviral therapy (cART) effectively suppresses HIV-1 replication and enables HIV‑infected individuals to live long, productive lives. However, the persistence of HIV-1 reservoirs of both T and myeloid cells with latent or low-replicating HIV-1 in patients under cART makes HIV-1 infection an incurable disease. Recent studies have focused on the development of strategies to activate and purge these reservoirs. Bromodomain and extraterminal domain proteins (BETs) are epigenetic readers involved in modulating gene expression. Several bromodomain inhibitors (BETi) are reported to activate viral transcription in vitro in HIV-1 latency cell lines in a P-TEFb (CDK9/cyclin T1)-dependent manner. Little is known about BETi efficacy in activating HIV-1 reservoir cells under cART in vivo Here we report that a BETi (I-BET151) efficiently activated HIV-1 reservoirs under effective cART in humanized mice in vivo Interestingly, I-BET151 during suppressive cART in vivo activated HIV-1 gene expression only in monocytic cells and not in CD4+ T cells. We further demonstrate that BETi preferentially enhanced HIV-1 gene expression in monocytic cells rather than in T cells and that whereas CDK9 was involved in activating HIV-1 by I-BET151 in both monocytic and T cells, CDK2 enhanced HIV-1 transcription in monocytic cells but inhibited it in T cells. Our findings reveal a role for CDK2 in differential modulation of HIV-1 gene expression in myeloid cells and in T cells and provide a novel strategy to reactivate monocytic reservoirs with BETi during cART.IMPORTANCE Bromodomain inhibitors have been reported to activate HIV-1 transcription in vitro, but their effect on activation of HIV-1 reservoirs during cART in vivo is unclear. We found that BETi (I-BET151) treatment reactivated HIV-1 gene expression in humanized mice during suppressive cART. Interestingly, I-BET151 preferentially reactivated HIV-1 gene expression in monocytic cells, but not in CD4 T cells, in cART-treated mice. Furthermore, I-BET151 significantly increased HIV-1 transcription in monocytic cells, but not in HIV-1-infected CD4 T cells, via CDK2-dependent mechanisms. Our findings suggest that BETi can preferentially activate monocytic HIV-1 reservoir cells and that a combination of reservoir activation agents targeting different cell types and pathways is needed to achieve reactivation of different HIV-1 reservoir cells during cART.
Collapse
|
136
|
Cherne MD, Hall J, Kellner A, Chong CF, Cole AL, Cole AM. Avirulins, a Novel Class of HIV-1 Reverse Transcriptase Inhibitors Effective in the Female Reproductive Tract Mucosa. Viruses 2019; 11:v11050408. [PMID: 31052477 PMCID: PMC6563246 DOI: 10.3390/v11050408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/25/2022] Open
Abstract
While extensive research efforts have decreased human immunodeficiency virus (HIV) transmissions and mortalities, new challenges have arisen in the fight to eradicate HIV. Drug resistance to antiretroviral therapy threatens infected individuals, while the prevalence of heterosexual transmission creates an urgent need for therapies effective in the female reproductive tract (FRT) mucosa. We screened a library of 2095 small molecule compounds comprising a unique chemical space, purchased from Asinex Corporation, for antiviral activity against human immunodeficiency virus type 1 (HIV-1) strain BaL and identified several molecular representatives of a unique class of HIV-1 inhibitors, which we termed “Avirulins.” We determined that Avirulins were active against clinical isolates of HIV-1 from genetically variant subtypes, several of which have reduced sensitivity to other antivirals. Avirulins displayed specific dose-dependent inhibition of the HIV-1 drug target, reverse transcriptase (RT). Avirulins were effective against several nucleoside RT-inhibitor resistant strains of HIV-1, as well as one nonnucleoside RT-inhibitor resistant strain containing a 106A mutation, suggesting a noncompetitive mechanism of action. Drugs, which are damaging to the FRT, can increase the risk of HIV-1 transmission. We therefore explored the cytotoxicity of Avirulins against epithelial cells derived from the FRT and found no significant toxicity, even at the highest concentrations tested. Importantly, Avirulin antiviral activity was not diminished in human cervico–vaginal fluid, suggesting retained potency in the milieu of the FRT. Based on these promising results, Avirulins should be valuable chemical scaffolds for development into next-generation treatments and preventatives that target HIV-1.
Collapse
Affiliation(s)
- Michelle D Cherne
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | - Jesse Hall
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | - Alisha Kellner
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | - Christine F Chong
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | - Amy L Cole
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | - Alexander M Cole
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
137
|
Humanized Mouse Model of HIV-1 Latency with Enrichment of Latent Virus in PD-1 + and TIGIT + CD4 T Cells. J Virol 2019; 93:JVI.02086-18. [PMID: 30842333 DOI: 10.1128/jvi.02086-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/01/2019] [Indexed: 12/18/2022] Open
Abstract
Combination anti-retroviral drug therapy (ART) potently suppresses HIV-1 replication but does not result in virus eradication or a cure. A major contributing factor is the long-term persistence of a reservoir of latently infected cells. To study this reservoir, we established a humanized mouse model of HIV-1 infection and ART suppression based on an oral ART regimen. Similar to humans, HIV-1 levels in the blood of ART-treated animals were frequently suppressed below the limits of detection. However, the limited timeframe of the mouse model and the small volume of available samples makes it a challenging model with which to achieve full viral suppression and to investigate the latent reservoir. We therefore used an ex vivo latency reactivation assay that allows a semiquantitative measure of the latent reservoir that establishes in individual animals, regardless of whether they are treated with ART. Using this assay, we found that latently infected human CD4 T cells can be readily detected in mouse lymphoid tissues and that latent HIV-1 was enriched in populations expressing markers of T cell exhaustion, PD-1 and TIGIT. In addition, we were able to use the ex vivo latency reactivation assay to demonstrate that HIV-specific TALENs can reduce the fraction of reactivatable virus in the latently infected cell population that establishes in vivo, supporting the use of targeted nuclease-based approaches for an HIV-1 cure.IMPORTANCE HIV-1 can establish latent infections that are not cleared by current antiretroviral drugs or the body's immune responses and therefore represent a major barrier to curing HIV-infected individuals. However, the lack of expression of viral antigens on latently infected cells makes them difficult to identify or study. Here, we describe a humanized mouse model that can be used to detect latent but reactivatable HIV-1 in both untreated mice and those on ART and therefore provides a simple system with which to study the latent HIV-1 reservoir and the impact of interventions aimed at reducing it.
Collapse
|
138
|
Kristoff J, Palma ML, Garcia-Bates TM, Shen C, Sluis-Cremer N, Gupta P, Rinaldo CR, Mailliard RB. Type 1-programmed dendritic cells drive antigen-specific latency reversal and immune elimination of persistent HIV-1. EBioMedicine 2019; 43:295-306. [PMID: 30952614 PMCID: PMC6557749 DOI: 10.1016/j.ebiom.2019.03.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
Background Despite the success of antiretroviral therapy (ART), latent HIV-1 continues to persist in a long-lived population of resting memory CD4+ T cells within those who are infected. Finding a safe and effective means to induce latency reversal (LR) during ART to specifically expose this latent HIV-1 cellular reservoir for immune elimination has been a major barrier to a functional cure. Methods In this study, we test the use of antigen-presenting type 1-polarized, monocyte-derived dendritic cells (MDC1) generated from chronic HIV-1-infected individuals on ART as a means to induce HIV-1 latency reversal in autologous CD4+ T cells harboring replication-competent provirus. We use the same MDC1 for ex-vivo generation of autologous HIV-1 antigen-specific CD8+ cytotoxic T cells (CTL) and test their effector responses against the MDC1-exposed HIV-1- infected CD4+ T cell targets. Findings MDC1 presentation of either HIV-1 or cytomegalovirus (CMV) antigens to CD4+ T cells facilitated HIV-1 LR. This antigen-driven MDC1-mediated LR was sharply diminished with blockade of the CD40L/CD40 ‘helper’ signaling pathway. Importantly, these antigen-presenting MDC1 also activated the expansion of CTL capable of killing the exposed HIV-1-infected targets. Interpretation Inclusion of virus-associated MHC class II ‘helper’ antigens in MDC1-based HIV-1 immunotherapies could serve both as a targeted means to safely unmask antigen-specific CD4+ T cells harboring HIV-1, and to support CTL responses that can effectively target the MDC1-exposed HIV-1 cellular reservoir as a functional cure strategy. Fund This study was supported by the NIH-NAID grants R21-AI131763, U01-AI35041, UM1-AI126603, and T32-AI065380.
Collapse
Affiliation(s)
- Jan Kristoff
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Mariana L Palma
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Tatiana M Garcia-Bates
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Chengli Shen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Nicolas Sluis-Cremer
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Phalguni Gupta
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Charles R Rinaldo
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Robbie B Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America.
| |
Collapse
|
139
|
Establishment of a Novel Humanized Mouse Model To Investigate In Vivo Activation and Depletion of Patient-Derived HIV Latent Reservoirs. J Virol 2019; 93:JVI.02051-18. [PMID: 30626677 DOI: 10.1128/jvi.02051-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Curing HIV infection has been thwarted by the persistent reservoir of latently infected CD4+ T cells, which reinitiate systemic infection after antiretroviral therapy (ART) interruption. To evaluate reservoir depletion strategies, we developed a novel preclinical in vivo model consisting of immunodeficient mice intrasplenically injected with peripheral blood mononuclear cells (PBMC) from long-term ART-suppressed HIV-infected donors. In the absence of ART, these mice developed rebound viremia which, 2 weeks after PBMC injection, was 1,000-fold higher (mean = 9,229,281 HIV copies/ml) in mice injected intrasplenically than in mice injected intraperitoneally (mean = 6,838 HIV copies/ml) or intravenously (mean = 591 HIV copies/ml). One week after intrasplenic PBMC injection, in situ hybridization of the spleen demonstrated extensive disseminated HIV infection, likely initiated from in vivo-reactivated primary latently infected cells. The time to viremia was delayed significantly by treatment with a broadly neutralizing antibody, 10-1074, compared to treatment with 10-1074-FcRnull, suggesting that 10-1074 mobilized Fc-mediated effector mechanisms to deplete the replication-competent reservoir. This was supported by phylogenetic analysis of Env sequences from viral-outgrowth cultures and untreated, 10-1074-treated, or 10-1074-FcRnull-treated mice. The predominant sequence cluster detected in viral-outgrowth cultures and untreated mouse plasma was significantly reduced in the plasma of 10-1074-treated mice, whereas two new clusters emerged that were not detected in viral-outgrowth cultures or plasma from untreated mice. These new clusters lacked mutations associated with 10-1074 resistance. Taken together, these data indicated that 10-1074 treatment depletes the reservoir of latently infected cells harboring replication competent HIV. Furthermore, this mouse model represents a new in vivo approach for the preclinical evaluation of new HIV cure strategies.IMPORTANCE Sustained remission of HIV infection is prevented by a persistent reservoir of latently infected cells capable of reinitiating systemic infection and viremia. To evaluate strategies to reactivate and deplete this reservoir, we developed and characterized a new humanized mouse model consisting of highly immunodeficient mice intrasplenically injected with peripheral blood mononuclear cells from long-term ART-suppressed HIV-infected donors. Reactivation and dissemination of HIV infection was visualized in the mouse spleens in parallel with the onset of viremia. The applicability of this model for evaluating reservoir depletion treatments was demonstrated by establishing, through delayed time to viremia and phylogenetic analysis of plasma virus, that treatment of these humanized mice with a broadly neutralizing antibody, 10-1074, depleted the patient-derived population of latently infected cells. This mouse model represents a new in vivo approach for the preclinical evaluation of new HIV cure strategies.
Collapse
|
140
|
HIV Subtype and Nef-Mediated Immune Evasion Function Correlate with Viral Reservoir Size in Early-Treated Individuals. J Virol 2019; 93:JVI.01832-18. [PMID: 30602611 DOI: 10.1128/jvi.01832-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/30/2018] [Indexed: 11/20/2022] Open
Abstract
The HIV accessory protein Nef modulates key immune evasion and pathogenic functions, and its encoding gene region exhibits high sequence diversity. Given the recent identification of early HIV-specific adaptive immune responses as novel correlates of HIV reservoir size, we hypothesized that viral factors that facilitate the evasion of such responses-namely, Nef genetic and functional diversity-might also influence reservoir establishment and/or persistence. We isolated baseline plasma HIV RNA-derived nef clones from 30 acute/early-infected individuals who participated in a clinical trial of early combination antiretroviral therapy (cART) (<6 months following infection) and assessed each Nef clone's ability to downregulate CD4 and human leukocyte antigen (HLA) class I in vitro We then explored the relationships between baseline clinical, immunological, and virological characteristics and the HIV reservoir size measured 48 weeks following initiation of suppressive cART (where the reservoir size was quantified in terms of the proviral DNA loads as well as the levels of replication-competent HIV in CD4+ T cells). Maximal within-host Nef-mediated downregulation of HLA, but not CD4, correlated positively with post-cART proviral DNA levels (Spearman's R = 0.61, P = 0.0004) and replication-competent reservoir sizes (Spearman's R = 0.36, P = 0.056) in univariable analyses. Furthermore, the Nef-mediated HLA downregulation function was retained in final multivariable models adjusting for established clinical and immunological correlates of reservoir size. Finally, HIV subtype B-infected persons (n = 25) harbored significantly larger viral reservoirs than non-subtype B-infected persons (2 infected with subtype CRF01_AE and 3 infected with subtype G). Our results highlight a potentially important role of viral factors-in particular, HIV subtype and accessory protein function-in modulating viral reservoir establishment and persistence.IMPORTANCE While combination antiretroviral therapies (cART) have transformed HIV infection into a chronic manageable condition, they do not act upon the latent HIV reservoir and are therefore not curative. As HIV cure or remission should be more readily achievable in individuals with smaller HIV reservoirs, achieving a deeper understanding of the clinical, immunological, and virological determinants of reservoir size is critical to eradication efforts. We performed a post hoc analysis of 30 participants of a clinical trial of early cART who had previously been assessed in detail for their clinical, immunological, and reservoir size characteristics. We observed that the HIV subtype and autologous Nef-mediated HLA downregulation function correlated with the viral reservoir size measured approximately 1 year post-cART initiation. Our findings highlight virological characteristics-both genetic and functional-as possible novel determinants of HIV reservoir establishment and persistence.
Collapse
|
141
|
In-vitro viral suppressive capacity correlates with immune checkpoint marker expression on peripheral CD8+ T cells in treated HIV-positive patients. AIDS 2019; 33:387-398. [PMID: 30702513 DOI: 10.1097/qad.0000000000002068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To determine whether viral suppressive capacity (VSC) of CD8+ T cells can be boosted by stimulation with HIV-1 peptides and whether the ability to control HIV-1 replication correlates with immunological (cytokine production and CD8+ T-cell phenotype) and viral reservoir measures (total HIV-1 DNA and cell-associated RNA) in well treated HIV-infected chronic progressors. DESIGN We compared VSC of peripheral CD8+ T cells to cytokine production profile in response to peptide stimulation, detailed phenotype (17-color flow-cytometry), reservoir size (total HIV-1 DNA), basal viral transcription (unspliced cell-associated RNA) and inducible viral transcription (tat/rev induced limiting dilution assay) in 36 HIV+ patients on cART and six healthy donors. RESULTS We found that the VSC of CD8+ T cells can be increased by prior stimulation with a pool of consensus HIV-1 gag peptides in a significant proportion of progressor patients. We also found that VSC after peptide stimulation was correlated with higher expression of immune checkpoint markers on subsets of terminally differentiated effector memory (TEMRA) CD8 T cells as well as with production of IFN-γ, TNF-α and IL-10. We did not find a correlation between VSC and viral reservoir measures. CONCLUSION These results add to a small body of evidence that the capacity of CD8+ T cells to suppress viral replication is increased after stimulation with HIV-1 peptides. Interestingly, this VSC was correlated with expression of immune checkpoint markers, which are generally considered to be markers of exhaustion. Our findings may guide further investigations into immune phenotypes correlated with viral suppression.
Collapse
|
142
|
Grosgebauer K, Salinas J, Sharkey M, Roach M, Pallikkuth S, Dilworth SE, Pahwa S, Koru-Sengul T, Stevenson M, Carrico AW. Psychosocial Correlates of Monocyte Activation and HIV Persistence in Methamphetamine Users. J Neuroimmune Pharmacol 2019; 14:16-22. [PMID: 30046962 PMCID: PMC6347547 DOI: 10.1007/s11481-018-9797-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022]
Abstract
This cross-sectional study investigated the associations of psychosocial factors relevant to recovery from substance use disorders with monocyte activation and HIV persistence in a sample of 84 HIV-positive, methamphetamine-using sexual minority men with undetectable HIV viral load (<40 copies/mL). We examined if psychosocial factors were associated with decreased soluble CD14 (sCD14) and lower proviral HIV DNA. Multiple linear regression models adjusted for age, anti-retroviral therapy regimen, and CD4+ T-cell count. Time on ART was also included in models examining proviral HIV DNA. Greater self-efficacy for managing methamphetamine triggers and higher social support for abstinence were independently associated with lower sCD14. Greater social support for abstinence was also independently associated with lower proviral HIV DNA. Psychosocial factors relevant to recovery from substance use disorders are associated with lower monocyte activation and decreased proviral HIV DNA. Findings underscore the need for longitudinal research to identify plausible mechanisms linking psychosocial factors and substance use with biological processes relevant to HIV pathogenesis.
Collapse
Affiliation(s)
| | | | - Mark Sharkey
- School of Medicine, University of Miami, Miami, FL, USA
| | | | | | | | - Savita Pahwa
- School of Medicine, University of Miami, Miami, FL, USA
| | | | | | - Adam W Carrico
- School of Medicine, University of Miami, Miami, FL, USA.
- Department of Public Health Sciences, University of Miami, 1120 NW 14th St., Office 1005, Miami, FL, 33136, USA.
| |
Collapse
|
143
|
Su H, Cheng Y, Sravanam S, Mathews S, Gorantla S, Poluektova LY, Dash PK, Gendelman HE. Immune Activations and Viral Tissue Compartmentalization During Progressive HIV-1 Infection of Humanized Mice. Front Immunol 2019; 10:340. [PMID: 30873181 PMCID: PMC6403174 DOI: 10.3389/fimmu.2019.00340] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus type one (HIV-1) tissue compartments are established soon after viral infection. However, the timing in which virus gains a permanent foothold in tissue and the cellular factors that control early viral-immune events are incompletely understood. These are critical events in studies of HIV-1 pathogenesis and in the development of viral reservoirs after antiretroviral therapy. Moreover, factors affecting the permanence of viral-tissue interactions underlie barriers designed to eliminate HIV-1 infection. To this end we investigated the temporal and spatial viral and host factors during HIV-1 seeding of tissue compartments. Two humanized NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ mouse models were employed. In the first, immune deficient mice were reconstituted with human CD34+ cord blood hematopoietic stem cells (HSC) (hu-HSC) and in the second mice were transplanted with adult mature human peripheral lymphocytes (hu-PBL). Both, in measure, reflect relationships between immune activation and viral infection as seen in an infected human host. Following humanization both mice models were infected with HIV-1ADA at 104 50% tissue culture infective doses. Viral nucleic acids and protein and immune cell profiles were assayed in brain, lung, spleen, liver, kidney, lymph nodes, bone marrow, and gut from 3 to 42 days. Peripheral CD4+ T cell loss began at 3 days together with detection of HIV-1 RNA in both mouse models after initiation of HIV-1 infection. HIV-1 was observed in all tested tissues at days 3 and 14 in hu- PBL and HSC mice, respectively. Immune impairment was most prominent in hu-PBL mice. T cell maturation and inflammation factors were linked directly to viral tissue seeding in both mouse models. We conclude that early viral tissue compartmentalization provides a roadmap for investigations into HIV-1 elimination.
Collapse
Affiliation(s)
- Hang Su
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yan Cheng
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sruthi Sravanam
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Saumi Mathews
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Prasanta K. Dash
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
144
|
Shimizu H, Takeishi S, Nakatsumi H, Nakayama KI. Prevention of cancer dormancy by Fbxw7 ablation eradicates disseminated tumor cells. JCI Insight 2019; 4:125138. [PMID: 30830867 DOI: 10.1172/jci.insight.125138] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
Dormant cancer cells known as disseminated tumor cells (DTCs) are often present in bone marrow of breast cancer patients. These DTCs are thought to be responsible for the incurable recurrence of breast cancer. The mechanism underlying the long-term maintenance of DTCs remains unclear, however. Here, we show that Fbxw7 is essential for the maintenance of breast cancer dormancy. Genetic ablation of Fbxw7 in breast cancer cells disrupted the quiescence of DTCs, rendering them proliferative, in mouse xenograft and allograft models. Fbxw7-deficient DTCs were significantly depleted by treatment with paclitaxel, suggesting that cell proliferation induced by Fbxw7 ablation sensitized DTCs to chemotherapy. The combination of Fbxw7 ablation and chemotherapy reduced the number of DTCs even when applied after tumor cell dissemination. Mice injected with Fbxw7-deficient cancer cells survived longer after tumor resection and subsequent chemotherapy than did those injected with wild-type cells. Furthermore, database analysis revealed that breast cancer patients whose tumors expressed FBXW7 at a high level had a poorer prognosis than did those with a low FBXW7 expression level. Our results suggest that a wake-up strategy for DTCs based on Fbxw7 inhibition might be of value in combination with conventional chemotherapy for the treatment of breast cancer.
Collapse
|
145
|
Leite TF, Delatorre E, Côrtes FH, Ferreira ACG, Cardoso SW, Grinsztejn B, de Andrade MM, Veloso VG, Morgado MG, Guimarães ML. Reduction of HIV-1 Reservoir Size and Diversity After 1 Year of cART Among Brazilian Individuals Starting Treatment During Early Stages of Acute Infection. Front Microbiol 2019; 10:145. [PMID: 30804915 PMCID: PMC6378917 DOI: 10.3389/fmicb.2019.00145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/21/2019] [Indexed: 01/13/2023] Open
Abstract
The aim of early combined antiretroviral therapy (cART) of HIV is to limit the seeding of the viral reservoir during the initial phase of infection and, consequently, decrease intrahost viral diversity. Here, we assessed the effect of early cART on size and complexity of the proviral reservoir. Peripheral blood mononuclear cell (PBMC) and plasma samples were obtained from ten HIV-infected Brazilian individuals diagnosed at the acute phase of infection, before (PREART) and 12 months (M12ART) after suppressive cART. HIV proviral reservoir size was determined by quantitative real-time PCR; intrahost viral diversity of the env C2-V3 region was assessed by single genome amplification or next-generation sequencing in PBMC and plasma, respectively. Mean nucleotide diversity (π) and normalized Shannon entropy (HSN) were used to infer the complexity of the viral population. Compared to PREART, M12ART saw an immunological recovery with a gain of ∼200 CD4+ T cells (P = 0.008) and a normalization of the CD4/CD8 ratio [1.0 (IQR: 0.88–1.18), P = 0.016], as well as a significant decrease in HIV-1 RNA (∼4 log, P = 0.004) and DNA (∼1 log, P = 0.002) levels. The median time to achieve viral suppression was 3 months (IQR: 2.8–5.8 months). The high intermixing between sequences from both visits suggests that the HIV-1 DNA reservoir remained remarkably stable under cART. After 1 year of cART, there was a minor reduction in proviral π (PreART = 0.20 vs. M12ART = 0.10; P = 0.156) but a significant decrease in HSN (PreART = 0.41 vs. M12ART = 0.25; P = 0.019). We found no correlation between π or HSN at PreART and the rate of HIV DNA decay, T CD4+ counts, or CD4/CD8 ratio at M12ART. Based on a small cohort of Brazilian infected individuals under early cART and analyses of the env region, 1 year of follow-up suggested a reservoir size reduction, allowed a significant decrease of HIV-1 complexity, and achieved immunological restoration regardless of the initial HIV-1 plasma viral load, CD4+ T cell counts, or HIV-1 subtype. However, further studies in the Brazilian setting aiming a longer follow-up and larger cohort are required in this field.
Collapse
Affiliation(s)
- Thaysse Ferreira Leite
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Edson Delatorre
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernanda Heloise Côrtes
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Cristina Garcia Ferreira
- Laboratório de Pesquisa Clínica em DST e AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Sandra Wagner Cardoso
- Laboratório de Pesquisa Clínica em DST e AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Laboratório de Pesquisa Clínica em DST e AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Michelle Morata de Andrade
- Laboratório de Pesquisa Clínica em DST e AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Valdilea Gonçalves Veloso
- Laboratório de Pesquisa Clínica em DST e AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Mariza Gonçalves Morgado
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Monick Lindenmeyer Guimarães
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
146
|
Inhibitors of Signaling Pathways That Block Reversal of HIV-1 Latency. Antimicrob Agents Chemother 2019; 63:AAC.01744-18. [PMID: 30455231 DOI: 10.1128/aac.01744-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 01/01/2023] Open
Abstract
Signaling pathways play a key role in HIV-1 latency. In this study, we used the 24ST1NLESG cell line of HIV-1 latency to screen a library of structurally diverse, medicinally active, cell permeable kinase inhibitors, which target a wide range of signaling pathways, to identify inhibitors of HIV-1 latency reversal. The screen was carried out in the absence or presence of three mechanistically distinct latency-reversing agents (LRAs), namely, prostratin, panobinostat, and JQ-1. We identified inhibitors that only blocked the activity of a specific LRA, as well as inhibitors that blocked the activity of all LRAs. For example, we identified 12 inhibitors targeted toward protein kinase C or downstream kinases that blocked the activity of prostratin. We also identified 12 kinase inhibitors that blocked the reversal of HIV-1 latency irrespective of the LRA used in the screen. Of these, danusertib, an Aurora kinase inhibitor, and PF-3758309, a PAK4 inhibitor, were the most potent. The 50% inhibitory concentrations in the 24ST1NLESG cells ranged from 40 to 147 nM for danusertib (selectivity indices, >150) and from 0.1 to 1 nM for PF-3758309 (selectivity indices, >3,300). Both danusertib and PF-3758309 inhibited latency reversal in CD4+ T cells isolated from HIV-1-infected donors. Collectively, our study describes a chemical approach that can be applied to elucidate the role of signaling pathways involved in LRA activity or the maintenance of HIV-1 latency and also identifies inhibitors of latent HIV-1 reactivation that could be used with antiretroviral therapy to reduce residual viremia.
Collapse
|
147
|
Xia X, Li H, Satheesan S, Zhou J, Rossi JJ. Humanized NOD/SCID/IL2rγnull (hu-NSG) Mouse Model for HIV Replication and Latency Studies. J Vis Exp 2019. [PMID: 30663638 DOI: 10.3791/58255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Ethical regulations and technical challenges for research in human pathology, immunology, and therapeutic development have placed small animal models in high demand. With a close genetic and behavioral resemblance to humans, small animals such as the mouse are good candidates for human disease models, through which human-like symptoms and responses can be recapitulated. Further, the mouse genetic background can be altered to accommodate diverse demands. The NOD/SCID/IL2rγnull (NSG) mouse is one of the most widely used immunocompromised mouse strains; it allows engraftment with human hematopoietic stem cells and/or human tissues and the subsequent development of a functional human immune system. This is a critical milestone in understanding the prognosis and pathophysiology of human-specific diseases such as HIV/AIDS and aiding the search for a cure. Herein, we report a detailed protocol for generating a humanized NSG mouse model (hu-NSG) by hematopoietic stem cell transplantation into a radiation-conditioned neonatal NSG mouse. The hu-NSG mouse model shows multi-lineage development of transplanted human stem cells and susceptibility to HIV-1 viral infection. It also recapitulates key biological characteristics in response to combinatorial antiretroviral therapy (cART).
Collapse
Affiliation(s)
- Xin Xia
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope;
| | - Haitang Li
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope
| | - Sangeetha Satheesan
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope; Irell and Manela Graduate School of Biological Sciences, Beckman Research Institute of City of Hope
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope
| |
Collapse
|
148
|
Wang C, Hua C, Xia S, Li W, Lu L, Jiang S. Combining a Fusion Inhibitory Peptide Targeting the MERS-CoV S2 Protein HR1 Domain and a Neutralizing Antibody Specific for the S1 Protein Receptor-Binding Domain (RBD) Showed Potent Synergism against Pseudotyped MERS-CoV with or without Mutations in RBD. Viruses 2019; 11:v11010031. [PMID: 30621343 PMCID: PMC6356712 DOI: 10.3390/v11010031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 01/19/2023] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) has continuously posed a threat to public health worldwide, yet no therapeutics or vaccines are currently available to prevent or treat MERS-CoV infection. We previously identified a fusion inhibitory peptide (HR2P-M2) targeting the MERS-CoV S2 protein HR1 domain and a highly potent neutralizing monoclonal antibody (m336) specific to the S1 spike protein receptor-binding domain (RBD). However, m336 was found to have reduced efficacy against MERS-CoV strains with mutations in RBD, and HR2P-M2 showed low potency, thus limiting the clinical application of each when administered separately. However, we herein report that the combination of m336 and HR2P-M2 exhibited potent synergism in inhibiting MERS-CoV S protein-mediated cell–cell fusion and infection by MERS-CoV pseudoviruses with or without mutations in the RBD, resulting in the enhancement of antiviral activity in contrast to either one administered alone. Thus, this combinatorial strategy could be used in clinics for the urgent treatment of MERS-CoV-infected patients.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China.
| | - Chen Hua
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China.
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China.
| | - Weihua Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China.
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China.
| |
Collapse
|
149
|
|
150
|
Quantitation of Integrated HIV Provirus by Pulsed-Field Gel Electrophoresis and Droplet Digital PCR. J Clin Microbiol 2018; 56:JCM.01158-18. [PMID: 30232127 DOI: 10.1128/jcm.01158-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022] Open
Abstract
We utilized pulsed-field gel electrophoresis (PFGE) to purify high-molecular-weight DNA from HIV-infected cells. This purification, in combination with our previously described droplet digital PCR (ddPCR) assay, was used to develop a method to quantify proviral integrated HIV DNA free of lower-molecular-weight species of HIV DNA. Episomal 2-long-terminal-repeat (2-LTR) circles were completely cleared from HIV DNA samples. Technical replicates of the complete assay, starting with the same specimens, resulted in no statistical differences in quantification of integrated HIV gag sequences in cellular DNA from cells from HIV-infected subjects after prolonged treatment with antiretroviral therapy (ART). The PFGE ddPCR assay was compared to the Alu-gag quantitative PCR (qPCR) assay, the most widely used assay to measure proviral integrated HIV DNA. Spearman's rho nonparametric correlation determined PFGE ddPCR results to be positively correlated with Alu-gag qPCR results (r = 0.7052; P = 0.0273). In summary, PFGE ddPCR is a sensitive, reproducible, and robust method to measure proviral integrated HIV DNA and is theoretically more accurate than previously described assays, because it is a direct measure of integrated HIV DNA.
Collapse
|