101
|
Ameisen JC. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 2002; 9:367-93. [PMID: 11965491 DOI: 10.1038/sj.cdd.4400950] [Citation(s) in RCA: 409] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Revised: 08/31/2001] [Accepted: 08/31/2001] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death is a genetically regulated process of cell suicide that is central to the development, homeostasis and integrity of multicellular organisms. Conversely, the dysregulation of mechanisms controlling cell suicide plays a role in the pathogenesis of a wide range of diseases. While great progress has been achieved in the unveiling of the molecular mechanisms of programmed cell death, a new level of complexity, with important therapeutic implications, has begun to emerge, suggesting (i) that several different self-destruction pathways may exist and operate in parallel in our cells, and (ii) that molecular effectors of cell suicide may also perform other functions unrelated to cell death induction and crucial to cell survival. In this review, I will argue that this new level of complexity, implying that there may be no such thing as a 'bona fide' genetic death program in our cells, might be better understood when considered in an evolutionary context. And a new view of the regulated cell suicide pathways emerges when one attempts to ask the question of when and how they may have become selected during evolution, at the level of ancestral single-celled organisms.
Collapse
Affiliation(s)
- J C Ameisen
- EMI-U 9922 INSERM/Université Paris 7, IFR 02, Hôpital Bichat-Claude Bernard, AP-HP, 46 rue Henri Huchard, 75877 Paris cedex 18, France.
| |
Collapse
|
102
|
Huh GH, Damsz B, Matsumoto TK, Reddy MP, Rus AM, Ibeas JI, Narasimhan ML, Bressan RA, Hasegawa PM. Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:649-59. [PMID: 11874577 DOI: 10.1046/j.0960-7412.2001.01247.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Programmed cell death (PCD) is a fundamental cellular process conserved in metazoans, plants and yeast. Evidence is presented that salt induces PCD in yeast and plants because of an ionic, rather than osmotic, etiology. In yeast, NaCl inhibited growth and caused a time-dependent reduction in viability that was preceded by DNA fragmentation. NaCl also induced the cytological hallmarks of lysigenous-type PCD, including nuclear fragmentation, vacuolation and lysis. The human anti-apoptotic protein Bcl-2 increased salt tolerance of wild-type yeast strain and calcineurin-deficient yeast mutant (cnb1Delta) that is defective for ion homeostasis, but had no effect on the NaCl or sorbitol sensitivity of the osmotic hypersensitive hog1Delta mutant -- results that further link PCD in the response to the ion disequilibrium under salt stress. Bcl-2 suppression of cnb1Delta salt sensitivity was ENA1 (P-type ATPase gene)-dependent, due in part to transcriptional activation. Salt-induced PCD (TUNEL staining and DNA laddering) in primary roots of both Arabidopsis thaliana wild type (Col-1 gl1) and sos1 (salt overly sensitive) mutant seedlings correlated positively with treatment lethality. Wild-type plants survived salt stress levels that were lethal to sos1 plants because secondary roots were produced from the shoot/root transition zone. PCD-mediated elimination of the primary root in response to salt shock appears to be an adaptive mechanism that facilitates the production of roots more able to cope with a saline environment. Both salt-sensitive mutants of yeast (cnb1Delta) and Arabidopsis (sos1) exhibit substantially more profound PCD symptoms, indicating that salt-induced PCD is mediated by ion disequilibrium.
Collapse
Affiliation(s)
- Gyung-Hye Huh
- Center for Plant Environmental Stress Physiology, Purdue University, 1165 Horticulture Building, West Lafayette, IN 47907-1165, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Abstract
Reactive oxygen species (ROS) are frequently associated with cytotoxicity, often being described as damaging, harmful or toxic. It is generally assumed that, under pathological circumstances, ROS elicit wide-spread and random acts of oxidation. This passive attack of cellular components by ROS, in conditions where oxidative stress is the initiating stimulus for apoptosis, is assumed to simply trigger cell death as a result of cumulative oxidative damage. However, accumulating evidence now suggests that ROS may act as signalling molecules for the initiation and execution of the apoptotic death programme in many, if not all, current models of apoptotic cell death. Signalling by ROS would not appear to be random, as previously assumed, but targeted at specific metabolic and signal transduction cellular components. There is also evidence that the enzymatic generation of ROS may not simply be an unwanted by-product of the primary reaction catalysed, but that ROS may be used as signalling molecules to regulate cellular processes including apoptosis. This view of ROS as signalling molecules (as opposed to toxic metabolites) has been further bolstered by the findings that cellular antioxidants such as glutathione and thioredoxin not only serve to regulate ROS levels but also act as reversible redox modifiers of enzyme function. This review will attempt to delineate the involvement of ROS in apoptosis in light of these recent discoveries and provide evidence for a crucial role for ROS in the initiation and execution of the death process.
Collapse
Affiliation(s)
- R J Carmody
- Department of Molecular and Cellular Engineering, Institute for Human Gene Therapy, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
| | | |
Collapse
|
104
|
Del Carratore R, Della Croce C, Simili M, Taccini E, Scavuzzo M, Sbrana S. Cell cycle and morphological alterations as indicative of apoptosis promoted by UV irradiation in S. cerevisiae. Mutat Res 2002; 513:183-91. [PMID: 11719103 DOI: 10.1016/s1383-5718(01)00310-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An apoptotic phenotype induced by oxygen radicals or Bax expression has been observed in Saccharomyces cerevisiae yeast cells by electron and fluorescence microscopy. In this work, we analyzed DNA content and cellular morphology of S. cerevisiae after H(2)O(2) or UV treatment by TdT-mediated dUTP nick end labeling (TUNEL)-test and flow cytofluorimetry. A TUNEL-positive phenotype was observed in both cases, on the same samples a dose-dependent increase in the sub-G(1) population was pointed out by flow cytometry. Sub-G(1) cells were isolated by flow sorting and analyzed by electron microscopy. This population showed condensed chromatin in the nucleus and cell shrinking. This paper reports the first evidence of apoptosis in yeast cells induced by DNA damage after UV irradiation.
Collapse
Affiliation(s)
- Renata Del Carratore
- Istitute of Mutagenesis and Differenziation, National Council of Research, Via Svezia 10, 56124 Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
105
|
Ameisen JC. La mort cellulaire programmée : programme de mort ou programme de vie ? Med Sci (Paris) 2002. [DOI: 10.1051/medsci/2002181109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
106
|
Arnoult D, Akarid K, Grodet A, Petit PX, Estaquier J, Ameisen JC. On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization. Cell Death Differ 2002; 9:65-81. [PMID: 11803375 DOI: 10.1038/sj.cdd.4400951] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2001] [Revised: 08/31/2001] [Accepted: 08/31/2001] [Indexed: 12/30/2022] Open
Abstract
Leishmania major is a protozoan parasite from one of the most ancient phylogenic branches of unicellular eukaryotes, and containing only one giant mitochondrion. Here we report that staurosporine, that induces apoptosis in all mammalian nucleated cells, also induces in L. major a death process with several cytoplasmic and nuclear features of apoptosis, including cell shrinkage, phosphatidyl serine exposure, maintenance of plasma membrane integrity, mitochondrial transmembrane potential (DeltaPsim) loss and cytochrome c release, nuclear chromatin condensation and fragmentation, and DNA degradation. Nuclear apoptosis-like features were prevented by cysteine proteinase inhibitors, and cell free assays using dying L. major cytoplasmic extracts indicated that the cysteine proteinases involved (i) also induced nuclear apoptosis-like features in isolated mammalian nuclei, and (ii) shared at least two nuclear substrates, but no cleavage site preference, with human effector caspases. Finally, isolated L. major mitochondria released cytochrome c and cysteine proteinases with nuclear pro-apoptotic activity when incubated with human recombinant Bax, even (although much less efficiently) when Bax was deleted of its transmembrane domain required for insertion in mitochondrial outermembranes, implying that L. major mitochondrion may express proteins able to interact with Bax. The recruitment of cysteine proteinases and mitochondria to the cell death machinery may be of very ancient evolutionary origin. Alternately, host/parasite interactions may have exerted selective pressures on the cell death phenotype of kinetoplastid parasites, resulting in the more recent emergence of an apoptotic machinery through a process of convergent evolution.
Collapse
Affiliation(s)
- D Arnoult
- EMI-U 9922 INSERM-Universite Paris 7, IFR 02, AP-HP, Hopital Bichat-Claude Bernard, 46, rue Henri Huchard, 75877 Paris cedex 18, France
| | | | | | | | | | | |
Collapse
|
107
|
|
108
|
Lee N, Bertholet S, Debrabant A, Muller J, Duncan R, Nakhasi HL. Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ 2002; 9:53-64. [PMID: 11803374 DOI: 10.1038/sj.cdd.4400952] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2001] [Revised: 07/23/2001] [Accepted: 08/31/2001] [Indexed: 11/08/2022] Open
Abstract
In the present study we have demonstrated some features characterizing programmed cell death (PCD) in the unicellular protozoan parasite Leishmania donovani, the causative agent of visceral Leishmaniasis. We report that PCD is initiated in stationary phase cultures of promastigotes and both in actively growing cultures of axenic amastigotes and promastigotes upon treatment with anti Leishmanial drugs (Pentostam and amphotericin B). However, the two cell types respond to antileishmanial drugs differently. The features of PCD in L. donovani promastigotes are nuclear condensation, nicked DNA in the nucleus, DNA ladder formation, increase in plasma membrane permeability, decrease in the mitochondrial membrane potential (DeltaPsi m) and induction of a PhiPhiLux (PPL)-cleavage activity. PCD in both stationary phase culture and upon induction by amphotericin B resulted first in the decrease of mitochondrial membrane potential followed by simultaneous change in plasma membrane permeability and induction of PPL-cleavage activity. Of the total PPL-cleavage activity, several caspase inhibitors inhibited a significant amount (21-34%). Inhibitors of cathepsin or calpain did not inhibit PPL-cleavage activity. Taken together this study demonstrates that the characteristic features of PCD exist in unicellular protozoan Leishmania donovani. The implication of PCD on the Leishmania pathogenesis is discussed.
Collapse
Affiliation(s)
- N Lee
- Division of Emerging and Transfusion Transmitted Diseases, OBRR, CBER, FDA, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
109
|
Yasugi E, Uemura I, Kumagai T, Nishikawa Y, Yasugi S, Yuo A. Disruption of mitochondria is an early event during dolichyl monophosphate-induced apoptosis in U937 cells. Zoolog Sci 2002; 19:7-13. [PMID: 12025407 DOI: 10.2108/zsj.19.7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dolichyl monophosphate (Dol-P) is involved in the attachment of carbohydrate chains to proteins in the formation of N-linked glycoprotein. We found that this compound induces apoptosis in human leukemia U937 cells. During this apoptotic execution, the increase of plasma membrane fluidity (5-20 min), reduction in mitochondrial transmembrane potential (delta psi m) and translocation of apoptosis-inducing factor (1-3 hr), caspase-3-like protease activation (2-4 hr), chromatin condensation and DNA ladder formation (3-4 hr) were observed successively. In this study, we examined mitochondrial morphological changes by electron microscopy and delta psi m by JC-1 from immediately after treatment of Dol-P. After 5 min of treatment, we observed clearly that mitochondrial cristae began to be disrupted ultrastructurally and almost all the cristae were disintegrated after 1 hr of treatment. The delta psi m of Dol-P treated cells was reduced to 34% as compared with that of control cells immediately after treatment and was quartered within 1 hr. The reduction in delta psi m was not inhibited by cyclosporin A, N-acetyl-L-cysteine and vitamin E. These results indicate that mitochondrial disruption is one of the first triggering events of Dol-P-induced apoptosis.
Collapse
Affiliation(s)
- Etsuko Yasugi
- Department of Hematology, Research Institute, International Medical Center of Japan, 1-21-1, Toyama, Shinjuku-ku, Tokyo 162-8655, Japan.
| | | | | | | | | | | |
Collapse
|
110
|
Bratosin D, Estaquier J, Petit F, Arnoult D, Quatannens B, Tissier JP, Slomianny C, Sartiaux C, Alonso C, Huart JJ, Montreuil J, Ameisen JC. Programmed cell death in mature erythrocytes: a model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ 2001; 8:1143-56. [PMID: 11753563 DOI: 10.1038/sj.cdd.4400946] [Citation(s) in RCA: 291] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Revised: 08/20/2001] [Accepted: 08/20/2001] [Indexed: 11/09/2022] Open
Abstract
Human mature erythrocytes have been considered as unable to undergo programmed cell death (PCD), due to their lack of mitochondria, nucleus and other organelles, and to the finding that they survive two conditions that induce PCD in vitro in all human nucleated cells, treatment with staurosporine and serum deprivation. Here we report that mature erythrocytes can undergo a rapid self-destruction process sharing several features with apoptosis, including cell shrinkage, plasma membrane microvesiculation, phosphatidylserine externalization, and leading to erythrocyte disintegration, or, in the presence of macrophages, to macrophage ingestion of dying erythrocytes. This regulated form of PCD was induced by Ca(2+) influx, and prevented by cysteine protease inhibitors that allowed erythrocyte survival in vitro and in vivo. The cysteine proteinases involved seem not to be caspases, since (i) proforms of caspase 3, while present in erythrocytes, were not activated during erythrocyte death; (ii) cytochrome c, a critical component of the apoptosome, was lacking; and (iii) cell-free assays did not detect activated effectors of nuclear apoptosis in dying erythrocytes. Our findings provide the first identification that a death program can operate in the absence of mitochondria. They indicate that mature erythrocytes share with all other mammalian cell types the capacity to self-destruct in response to environmental signals, and imply that erythrocyte survival may be modulated by therapeutic intervention.
Collapse
Affiliation(s)
- D Bratosin
- National Institute for Biological Science Research and Development, Bucharest, Rumania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Seipp S, Schmich J, Leitz T. Apoptosis – a death-inducing mechanism tightly linked with morphogenesis in Hydractina echinata (Cnidaria, Hydrozoa). Development 2001; 128:4891-8. [PMID: 11731468 DOI: 10.1242/dev.128.23.4891] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Programmed cell death is not only known as a mechanism mediating tissue destruction, but also as an organismic tool for body shaping and regulation of morphological events during development. Here we report the tight and vital link of the most prominent form of programmed cell death, apoptosis, to one of the oldest, most basic, and most radical developmental processes, the metamorphosis of the marine hydrozoon Hydractinia echinata. Apoptosis, represented by DNA fragmentation, appears very early during metamorphosis, approximately 20 minutes post induction. It is then executed in a very distinct spatial and temporal pattern, including the removal or phagocytosis of a large number of larval cells prior to the appearance of stolons and tentacles. Our data indicate a developmental program striving to reduce all body parts that are no longer necessary, before reaching a distinct turning point, when the development of adult features is initiated. During these events, morphogenesis of basal and apical structures correlates with recycling of that particular larval region, indicated by the presence of apoptosis. Based on these data, the necessity of apoptosis for normal development of adult patterns is inferred and a fundamental association of apoptosis with developmental processes can be stated.
Collapse
Affiliation(s)
- S Seipp
- Developmental Biology of Animals, Faculty of Biology, University of Kaiserslautern, Erwin-Schroedinger-Strasse, Building 13, D-67663 Kaiserslautern, Germany.
| | | | | |
Collapse
|
112
|
Perlman H, Liu H, Georganas C, Koch AE, Shamiyeh E, Haines GK, Pope RM. Differential expression pattern of the antiapoptotic proteins, Bcl-2 and FLIP, in experimental arthritis. ARTHRITIS AND RHEUMATISM 2001; 44:2899-908. [PMID: 11762951 DOI: 10.1002/1529-0131(200112)44:12<2899::aid-art478>3.0.co;2-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To examine the relationship between apoptosis and the expression of antiapoptotic proteins in the pathogenesis of experimental inflammatory arthritis. METHODS Clinical and histologic assessment of adjuvant-induced arthritis (AIA) was performed over a 42-day period. The induction of apoptosis was measured by TUNEL analysis, and the antiapoptotic proteins, Bcl-2 and FLIP, were examined by immunohistochemistry with the use of monospecific antibodies. The percentage of Bcl-2- and FLIP-positive cells was correlated with histologic markers of AIA. RESULTS Arthritis developed by day 14 following adjuvant injection. Few TUNEL-positive cells were observed between days 0 and 21, indicating that apoptosis did not occur at these time points. An increase in the number of TUNEL-positive cells was observed at day 28, particularly outside sites of cartilage or bone erosion, which dramatically declined by day 35. Immunohistochemical analyses of Bcl-2 and FLIP revealed that the synovium was positive for Bcl-2 and FLIP on day 0. On day 14, Bcl-2 was present at the sites of early erosions and correlated with the erosion and inflammation scores. FLIP was also highly expressed at sites of erosion and was localized to the pannus starting on day 21. Although TUNEL positivity peaked at day 28, a time point in which Bcl-2 and FLIP were present, the areas that displayed intense positivity for expression of Bcl-2 and FLIP were TUNEL negative. In addition, the number of neutrophils in the synovial lining and pannus significantly decreased from day 28 to day 35, suggesting that the cells undergoing apoptosis were neutrophils. Furthermore, at day 42 when TUNEL-positive cells were absent, Bcl-2 expression was diminished, while FLIP remained highly expressed in the pannus. CONCLUSION The overall percentage of TUNEL-positive cells in the ankle was <1% except on days 28 and 35 post-adjuvant injection, suggesting that in AIA, similar to rheumatoid arthritis, a lack of apoptosis may contribute to disease progression. Furthermore, Bcl-2 and FLIP are temporally and differentially expressed during the pathogenesis of AIA. Inhibition of these molecules may augment synovial apoptosis and ameliorate the disease.
Collapse
Affiliation(s)
- H Perlman
- Northwestern University Medical School and the Veterans Administration Chicago Healthcare System, Lakeside Division, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
113
|
Arnoult D, Tatischeff I, Estaquier J, Girard M, Sureau F, Tissier JP, Grodet A, Dellinger M, Traincard F, Kahn A, Ameisen JC, Petit PX. On the evolutionary conservation of the cell death pathway: mitochondrial release of an apoptosis-inducing factor during Dictyostelium discoideum cell death. Mol Biol Cell 2001; 12:3016-30. [PMID: 11598188 PMCID: PMC60152 DOI: 10.1091/mbc.12.10.3016] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mitochondria play a pivotal role in apoptosis in multicellular organisms by releasing apoptogenic factors such as cytochrome c that activate the caspases effector pathway, and apoptosis-inducing factor (AIF) that is involved in a caspase-independent cell death pathway. Here we report that cell death in the single-celled organism Dictyostelium discoideum involves early disruption of mitochondrial transmembrane potential (DeltaPsim) that precedes the induction of several apoptosis-like features, including exposure of the phosphatidyl residues at the external surface of the plasma membrane, an intense vacuolization, a fragmentation of DNA into large fragments, an autophagy, and the release of apoptotic corpses that are engulfed by neighboring cells. We have cloned a Dictyostelium homolog of mammalian AIF that is localized into mitochondria and is translocated from the mitochondria to the cytoplasm and the nucleus after the onset of cell death. Cytoplasmic extracts from dying Dictyostelium cells trigger the breakdown of isolated mammalian and Dictyostelium nuclei in a cell-free system, and this process is inhibited by a polyclonal antibody specific for Dictyostelium discoideum apoptosis-inducing factor (DdAIF), suggesting that DdAIF is involved in DNA degradation during Dictyostelium cell death. Our findings indicate that the cell death pathway in Dictyostelium involves mitochondria and an AIF homolog, suggesting the evolutionary conservation of at least part of the cell death pathway in unicellular and multicellular organisms.
Collapse
Affiliation(s)
- D Arnoult
- EMI U-9922 (INSERM-Université Paris VII), CHU Bichat-Claude Bernard, 75018 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Zörnig M, Hueber A, Baum W, Evan G. Apoptosis regulators and their role in tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1551:F1-37. [PMID: 11591448 DOI: 10.1016/s0304-419x(01)00031-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has become clear that, together with deregulated growth, inhibition of programmed cell death (PCD) plays a pivotal role in tumorigenesis. In this review, we present an overview of the genes and mechanisms involved in PCD. We then summarize the evidence that impaired PCD is a prerequisite for tumorigenesis, as indicated by the fact that more and more neoplastic mutations appear to act by interfering with PCD. This has made the idea of restoration of corrupted 'death programs' an intriguing new area for potential cancer therapy.
Collapse
Affiliation(s)
- M Zörnig
- Georg-Speyer-Haus, Frankfurt, Germany.
| | | | | | | |
Collapse
|
115
|
Narasimhan ML, Damsz B, Coca MA, Ibeas JI, Yun DJ, Pardo JM, Hasegawa PM, Bressan RA. A plant defense response effector induces microbial apoptosis. Mol Cell 2001; 8:921-30. [PMID: 11684026 DOI: 10.1016/s1097-2765(01)00365-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Osmotin is a tobacco PR-5 protein that has antifungal activity and is implicated in host-plant defense. We show here that osmotin induces apoptosis in Saccharomyces cerevisiae. Induction of apoptosis was correlated with intracellular accumulation of reactive oxygen species and was mediated by RAS2, but not RAS1. Osmotin treatment resulted in suppression of transcription of stress-responsive genes via the RAS2/cAMP pathway. It was therefore concluded that osmotin induced proapoptotic signaling in yeast. The results indicate that the ability of antimicrobial proteins to induce microbial apoptosis could be an important factor in determining a pathogen's virulence and could therefore be targeted for the design of new antifungal drugs.
Collapse
Affiliation(s)
- M L Narasimhan
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Lüder CG, Gross U, Lopes MF. Intracellular protozoan parasites and apoptosis: diverse strategies to modulate parasite-host interactions. Trends Parasitol 2001; 17:480-6. [PMID: 11587962 DOI: 10.1016/s1471-4922(01)02016-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Programmed cell death (apoptosis) is an important regulator of the host's response during infection with a variety of intracellular protozoan parasites. Parasitic pathogens have evolved diverse strategies to induce or inhibit host-cell apoptosis, thereby modulating the host's immune response, aiding dissemination within the host or facilitating intracellular survival. Here, we review the molecular and cell-biological mechanisms of the pathogen-induced modulation of host-cell apoptosis and its effects on the parasite-host interaction and the pathogenesis of parasitic diseases. We also discuss the previously unrecognized phenomenon of apoptotic cell death in (unicellular) protozoan parasites and its potential implications.
Collapse
Affiliation(s)
- C G Lüder
- Department Bacteriology, Georg August University of Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany.
| | | | | |
Collapse
|
117
|
Ludovico P, Sousa MJ, Silva MT, Leão CL, Côrte-Real M. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2409-2415. [PMID: 11535781 DOI: 10.1099/00221287-147-9-2409] [Citation(s) in RCA: 376] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent evidence has revealed the occurrence of an apoptotic phenotype in Saccharomyces cerevisiae that is inducible with oxidative stress. Here, exposure of S. cerevisiae to 20-200 mM acetic acid for 200 min at pH 3.0 resulted in cell death. Yeast mortality induced by 120-200 mM acid was not inhibited by cycloheximide and was accompanied by ultrastructural alterations typical of necrosis. In contrast, alterations associated with cell death induced by 20-80 mM acetic acid included: (i) cycloheximide-inhibitable chromatin condensation along the nuclear envelope; (ii) exposure of phosphatidylserine on the surface of the cytoplasmic membrane, revealed by the FITC-annexin V reaction; and (iii) the occurrence of DNA strand breaks, demonstrated by the TUNEL assay. These results show that a programmed cell death process sharing common features with an apoptotic phenotype can be induced by acetic acid in S. cerevisiae. This observation raises the possibility of this mode of cell death being more generalized in yeasts than previously considered and extended to cell death induced by other stress agents.
Collapse
Affiliation(s)
- Paula Ludovico
- Imunologia Comparada, Instituto de Biologia Molecular e Celular (IBMC), 4150-171 Porto, Portugal2
- Centro de Ciências do Ambiente-Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4719-057 Braga, Portugal1
| | - Maria João Sousa
- Centro de Ciências do Ambiente-Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4719-057 Braga, Portugal1
| | - Manuel T Silva
- Imunologia Comparada, Instituto de Biologia Molecular e Celular (IBMC), 4150-171 Porto, Portugal2
| | - Cecı Lia Leão
- Centro de Ciências do Ambiente-Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4719-057 Braga, Portugal1
| | - Manuela Côrte-Real
- Centro de Ciências do Ambiente-Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4719-057 Braga, Portugal1
| |
Collapse
|
118
|
Leist M, Jäättelä M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2001; 2:589-98. [PMID: 11483992 DOI: 10.1038/35085008] [Citation(s) in RCA: 1113] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A single family of proteases, the caspases, has long been considered the pivotal executioner of all programmed cell death. However, recent findings of evolutionarily conserved, caspase-independent controlled death mechanisms have opened new perspectives on the biology of cell demise, with particular implications for neurobiology, cancer research and immunological processes.
Collapse
Affiliation(s)
- M Leist
- H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen-Valby, Denmark.
| | | |
Collapse
|
119
|
Anderson KM, Harris JE. Is induction of type 2 programmed death in cancer cells from solid tumors directly related to mitochondrial mass? Med Hypotheses 2001; 57:87-90. [PMID: 11421631 DOI: 10.1054/mehy.2001.1330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many solid cancers respond to chemo or radiotherapy with a type 2 form of programmed cell death. This requires direct participation of mitochondria with release of cytochrome c and other factors that activate the 'execution' phase of the process. It is believed that as solid cancers progress, less differentiated clones containing fewer mitochondria evolve. Consequently, the mitochondrial 'switch' that activates the type 2 process will become less effective, as the number of elements available and their mass-effect declines. The opportunity for successful therapy, considered to depend upon the ability to activate programmed cell death, therefore becomes progressively less probable.
Collapse
Affiliation(s)
- K M Anderson
- Department of Medicine, Rush Medical College, Chicago, USA
| | | |
Collapse
|
120
|
Sereno D, Holzmuller P, Mangot I, Cuny G, Ouaissi A, Lemesre JL. Antimonial-mediated DNA fragmentation in Leishmania infantum amastigotes. Antimicrob Agents Chemother 2001; 45:2064-9. [PMID: 11408224 PMCID: PMC90601 DOI: 10.1128/aac.45.7.2064-2069.2001] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The basic treatment of leishmaniasis consists in the administration of pentavalent antimonials. The mechanisms that contribute to pentavalent antimonial toxicity against the intracellular stage of the parasite (i.e., amastigote) are still unknown. In this study, the combined use of several techniques including DNA fragmentation assay and in situ and cytofluorometry terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling methods and YOPRO-1 staining allowed us to demonstrate that potassium antimonyl tartrate, an Sb(III)-containing drug, was able to induce cell death associated with DNA fragmentation in axenic amastigotes of Leishmania infantum at low concentrations (10 microg/ml). This observation was in close correlation with the toxicity of Sb(III) species against axenic amastigotes (50% inhibitory concentration of 4.75 microg/ml). Despite some similarities to apoptosis, nuclease activation was not a consequence of caspase-1, caspase-3, calpain, cysteine protease, or proteasome activation. Altogether, our results demonstrate that the antileishmanial toxicity of Sb(III) antimonials is associated with parasite oligonucleosomal DNA fragmentation, indicative of the occurrence of late events in the overall process of apoptosis. The elucidation of the biochemical pathways leading to cell death could allow the isolation of new therapeutic targets.
Collapse
Affiliation(s)
- D Sereno
- Laboratoire de Biologie Parasitaire, Centre IRD (Institut de Recherche pour le Développement), 34032 Montpellier Cedex 1, France
| | | | | | | | | | | |
Collapse
|
121
|
Bursch W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 2001; 8:569-81. [PMID: 11536007 DOI: 10.1038/sj.cdd.4400852] [Citation(s) in RCA: 457] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2000] [Revised: 01/19/2001] [Accepted: 02/01/2001] [Indexed: 12/14/2022] Open
Abstract
In the last decade a tremendous progress has been achieved in understanding the control of apoptosis by survival and death factors as well as the molecular mechanisms of preparation and execution of the cell's suicide. However, accumulating evidence suggests that programmed cell death (PCD) is not confined to apoptosis but that cells use different pathways for active self-destruction as reflected by different morphology: condensation prominent, type I or apoptosis; autophagy prominent, type II; etc. Autophagic PCD appears to be a phylogenetically old phenomenon, it may occur in physiological and disease states. Recently, distinct biochemical and molecular features have been be assigned to this type of PCD. However, autophagic and apoptotic PCD should not be considered as mutually exclusive phenomena. Rather, they appear to reflect a high degree of flexibility in a cell's response to changes of environmental conditions, both physiological or pathological. Furthermore, recent data suggest that diverse or relatively unspecific signals such as photodamage or lysosomotropic agents may be mediated by lysosomal cysteine proteases (cathepsins) to caspases and thus, apoptosis. The present paper reviews morphological, functional and biochemical/molecular data suggesting the participation of the autophagosomal-lysosomal compartment in programmed cell death.
Collapse
Affiliation(s)
- W Bursch
- Institut für Krebsforschung der Universität Wien, Borschkegasse 8a, A-1090 Wien, Austria.
| |
Collapse
|
122
|
Tatischeff I, Petit PX, Grodet A, Tissier JP, Duband-Goulet I, Ameisen JC. Inhibition of multicellular development switches cell death of Dictyostelium discoideum towards mammalian-like unicellular apoptosis. Eur J Cell Biol 2001; 80:428-41. [PMID: 11484934 DOI: 10.1078/0171-9335-00172] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The multicellular development of the single celled eukaryote Dictyostelium discoideum is induced by starvation and consists of initial aggregation of the isolated amoebae, followed by their differentiation into viable spores and dead stalk cells. These stalk cells retain their structural integrity inside a stalk tube that support the spores in the fruiting body. Terminal differentiation into stalk cells has been shown to share several features with programmed cell death (Cornillon et al. (1994), J. Cell Sci. 107, 2691-2704). Here we report that, in the absence of aggregation and differentiation, D. discoideum can undergo another form of programmed cell death that closely resembles apoptosis of most mammalian cells, involves loss of mitochondrial transmembrane potential, phosphatidylserine surface exposure, and engulfment of dying cells by neighboring D. discoideum cells. This death has been studied by various techniques (light microscopy and scanning or transmission electron microscopy, flow cytometry, DNA electrophoresis), in two different conditions inhibiting D. discoideum multicellular development. The first one, corresponding to an induced unicellular cell death, was obtained by starving the cells in a "conditioned" cell-free buffer, prepared by previous starvation of another D. discoideum cell population in potassium phosphate buffer (pH 6.8). The second one, corresponding to death of D. discoideum after axenic growth in suspension, was obtained by keeping stationary cells in their culture medium. In both cases of these unicellular-specific cell deaths, microscopy revealed morphological features known as hallmarks of apoptosis for higher eukaryotic cells and apoptosis was further corroborated by flow cytometry. The occurrence in D. discoideum of programmed cell death with two different phenotypes, depending on its multicellular or unicellular status, is further discussed.
Collapse
Affiliation(s)
- I Tatischeff
- Laboratoire de Physicochimie Biomoléculaire et Cellulaire, CNRS ESA 7033, Université Pierre et Marie Curie, Paris, France.
| | | | | | | | | | | |
Collapse
|
123
|
Torgler CN, Brown R, Meldrum E. Exploiting the utility of yeast in the context of programmed cell death. Methods Enzymol 2001; 322:297-322. [PMID: 10914027 DOI: 10.1016/s0076-6879(00)22030-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Many researchers have explored the extent to which yeast can be used to dissect the mechanisms of programmed cell death in higher cells. Yeast has been used as a system to analyze protein-protein interactions and structure-function relationships, and as a cloning tool to identify novel higher eukaryote regulators of apoptosis. In addition, classic genetic strategies in yeast have been used to analyze the mechanisms of action of core pathway members. The purpose of this chapter is to describe the strategies pursued and act as a source for the technical details necessary to exploit the yeast Saccharomyces cerevisiae and Schizosaccharomyces pombe in the context of programmed cell death.
Collapse
Affiliation(s)
- C N Torgler
- Glaxo Wellcome Medicines Research Centre, Cell Biology Unit, Stevenage, United Kingdom
| | | | | |
Collapse
|
124
|
|
125
|
Boekelheide K, Fleming SL, Johnson KJ, Patel SR, Schoenfeld HA. Role of Sertoli cells in injury-associated testicular germ cell apoptosis. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE. SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE (NEW YORK, N.Y.) 2000; 225:105-15. [PMID: 11044252 DOI: 10.1046/j.1525-1373.2000.22513.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review examines experimental models of Sertoli cell injury resulting in germ cell apoptosis. Since germ cells exist in an environment created by Sertoli cells, paracrine signaling between these intimately associated cells must regulate the process of germ cell death. Germ cell apoptosis may be signaled by a decrease in Sertoli cell pro-survival factors, an increase in Sertoli cell pro-apoptotic factors, or both. The different models of Sertoli cell injury indicate that spermatogenesis is susceptible to disruption, and that targeting critical Sertoli cell functions can lead to rapid and massive germ cell death.
Collapse
Affiliation(s)
- K Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA.
| | | | | | | | | |
Collapse
|
126
|
Abstract
Increasing evidence indicates that apoptosis of the host cell may constitute a defense mechanism to confine the infection by bacterial pathogens. Certain pathogens have developed elegant mechanisms to modulate the fate of the host cell, which include induction or blockage of apoptosis. These studies will promote our understanding of the pathogenesis of infectious diseases and aid the development of means for therapeutic intervention.
Collapse
Affiliation(s)
- L Gao
- Department of Microbiology and Immunology, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0084, USA
| | | |
Collapse
|
127
|
Komatsu K, Hopkins KM, Lieberman HB, Wang H. Schizosaccharomyces pombe Rad9 contains a BH3-like region and interacts with the anti-apoptotic protein Bcl-2. FEBS Lett 2000; 481:122-6. [PMID: 10996309 DOI: 10.1016/s0014-5793(00)01975-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we report that the Schizosaccharomyces pombe Rad9 (SpRad9) protein contains a group of amino acids with similarity to the Bcl-2 homology 3 death domain, which is required for SpRad9 interaction with human Bcl-2 and apoptosis induction in human cells. Overexpression of Bcl-2 in S. pombe inhibits cell growth independently of rad9, but enhances resistance of rad9-null cells to methyl methanesulfonate, ultraviolet and ionizing radiation. These observations suggest that SpRad9 may represent the first member of the Bcl-2 protein family identified in yeast, though the cell death pathways in S. pombe may differ from those found in mammals.
Collapse
Affiliation(s)
- K Komatsu
- Drug Discovery Program, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
128
|
Abstract
Recent years have witnessed significant advances in unraveling the elegant mechanisms by which intracellular bacterial pathogens induce and/or block apoptosis, which can influence disease progression. This intriguing aspect of the host-pathogen interaction adds another fascinating dimension to our understanding of the exploitation of host cell biology by intracellular bacterial pathogens.
Collapse
Affiliation(s)
- L Y Gao
- Program in Microbial Pathogenesis and Host Defense, University of California at San Fransisco, HSE-201, Box 0654, 513 Parnassus Avenue, San Fransisco, CA 94143-0654, USA
| | | |
Collapse
|
129
|
Affiliation(s)
- M O Hengartner
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
130
|
Harb OS, Gao LY, Abu Kwaik Y. From protozoa to mammalian cells: a new paradigm in the life cycle of intracellular bacterial pathogens. Environ Microbiol 2000; 2:251-65. [PMID: 11200426 DOI: 10.1046/j.1462-2920.2000.00112.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is becoming apparent that several intracellular bacterial pathogens of humans can also survive within protozoa. This interaction with protozoa may protect these pathogens from harsh conditions in the extracellular environment and enhance their infectivity in mammals. This relationship has been clearly established in the case of the interaction between Legionella pneumophila and its protozoan hosts. In addition, the adaptation of bacterial pathogens to the intracellular life within the primitive eukaryotic protozoa may have provided them with the means to infect the more evolved mammalian cells. This is evident from the existence of several similarities, at both the phenotypic and the molecular levels, between the infection of mammalian and protozoan cells by L. pneumophila. Thus, protozoa appear to play a central role in the transition of bacteria from the environment to mammals. In essence, protozoa may be viewed as a 'biological gym', within which intracellular bacterial pathogens train for their encounters with the more evolved mammalian cells. Thus, intracellular bacterial pathogens have benefited from the structural and biochemical conservation of cellular processes in eukaryotes. The interaction of intracellular bacterial pathogens and protozoa highlights this conservation and may constitute a simplified model for the study of these pathogens and the evolution of cellular processes in eukaryotes. Furthermore, in addition to being environmental reservoirs for known intracellular pathogens of humans and animals, protozoa may be sources of emerging pathogenic bacteria. It is thus critical to re-examine the relationship between bacteria and protozoa to further our understanding of current human bacterial pathogenesis and, possibly, to predict the appearance of emerging pathogens.
Collapse
Affiliation(s)
- O S Harb
- Department of Microbiology and Immunology, UKCMC, University of Kentucky, Lexington 40536-0084, USA
| | | | | |
Collapse
|
131
|
Sun Y, Taniguchi R, Tanoue D, Yamaji T, Takematsu H, Mori K, Fujita T, Kawasaki T, Kozutsumi Y. Sli2 (Ypk1), a homologue of mammalian protein kinase SGK, is a downstream kinase in the sphingolipid-mediated signaling pathway of yeast. Mol Cell Biol 2000; 20:4411-9. [PMID: 10825204 PMCID: PMC85808 DOI: 10.1128/mcb.20.12.4411-4419.2000] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ISP-1 is a new type of immunosuppressant, the structure of which is homologous to that of sphingosine. In a previous study, ISP-1 was found to inhibit mammalian serine palmitoyltransferase, the primary enzyme involved in sphingolipid biosynthesis, and to reduce the intracellular pool of sphingolipids. ISP-1 induces the apoptosis of cytotoxic T cells, which is triggered by decreases in the intracellular levels of sphingolipids. In this study, the inhibition of yeast (Saccharomyces cerevisiae) proliferation by ISP-1 was observed. This ISP-1-induced growth inhibition was also triggered by decreases in the intracellular levels of sphingolipids. In addition, DNA duplication without cytokinesis was detected in ISP-1-treated yeast cells on flow cytometry analysis. We have cloned multicopy suppressor genes of yeast which overcome the lethal sphingolipid depletion induced by ISP-1. One of these genes, SLI2, is synonymous with YPK1, which encodes a serine/threonine kinase. Kinase-dead mutants of YPK1 did not show any resistance to ISP-1, leading us to predict that the kinase activity of the Ypk1 protein should be essential for this resistance to ISP-1. Ypk1 protein overexpression had no effect on sphingolipid biosynthesis by the yeast. Furthermore, both the phosphorylation and intracellular localization of the Ypk1 protein were regulated by the intracellular sphingolipid levels. These data suggest that the Ypk1 protein is a downstream kinase in the sphingolipid-mediated signaling pathway of yeast. The Ypk1 protein was reported to be a functional homologue of the mammalian protein kinase SGK, which is a downstream kinase of 3-phosphoinositide-dependent kinase 1 (PDK1). PDK1 phosphotidylinositol (PI) is regulated by PI-3,4,5-triphosphate and PI-3,4-bisphosphate through the pleckstrin homology (PH) domain. Overexpression of mammalian SGK also overcomes the sphingolipid depletion in yeast. Taking both the inability to produce PI-3,4, 5-triphosphate and PI-3,4-bisphosphate and the lack of a PH domain in the yeast homologue of PDK1, the Pkh1 protein, into account, these findings further suggest that yeast may use sphingolipids instead of inositol phospholipids as lipid mediators.
Collapse
Affiliation(s)
- Y Sun
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Abstract
Apoptosis is a highly regulated form of programmed cell death crucial for life and health in metazoan animals. Apoptosis is defined by a set of cytological alterations. The recent discovery of these markers in yeast indicates the presence of the basic mechanisms of apoptosis already in unicellular eukaryotes. Oxygen radicals regulate both mammalian and yeast apoptosis. We suggest that apoptosis originated in unicellular organisms as an altruistic response to severe oxidative damage. Later, cells developed mechanisms to purposely produce reactive oxygen species as a regulator of apoptosis. Yeast may become an important model to investigate the conserved steps of apoptosis.
Collapse
Affiliation(s)
- K U Fröhlich
- Physiologisch-chemisches Institut, Universität Tübingen, Hoppe-Seyler-Strasse 4, 72076, Tübingen, Germany.
| | | |
Collapse
|
133
|
MESH Headings
- Apoptosis
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cholestasis, Intrahepatic/metabolism
- Cholestasis, Intrahepatic/pathology
- Hepatitis, Viral, Human/metabolism
- Hepatitis, Viral, Human/pathology
- Humans
- Liver Diseases/metabolism
- Liver Diseases/pathology
- Liver Diseases, Alcoholic/metabolism
- Liver Diseases, Alcoholic/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
Collapse
Affiliation(s)
- C Rust
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Medical School, Clinic, and Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
134
|
|
135
|
Lee SW, Ko YG, Bang S, Kim KS, Kim S. Death effector domain of a mammalian apoptosis mediator, FADD, induces bacterial cell death. Mol Microbiol 2000; 35:1540-9. [PMID: 10760153 DOI: 10.1046/j.1365-2958.2000.01824.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
FADD is a mammalian pro-apoptotic mediator consisting of the N-terminal death effector domain (DED) and the C-terminal death domain (DD). The N-terminal 88-residue fragment of murine FADD was defined as the stable structural unit of DED, as determined by proteolytic digestion and conformational analysis. This domain induced bacterial as well as mammalian cell death, whereas the full-length or DD of FADD did not. The Escherichia coli cells expressing FADD-DED showed elongated cell morphology and an increased level of nicked chromosomal DNA and mutation. The lethality of FADD-DED was abolished by co-expression of thioredoxin and superoxide dismutase or relieved by the addition of vitamin E as a reducing agent and under anaerobic growth conditions. The toxicity of FADD-DED was genetically suppressed by various oxidoreductases of E. coli. All these results suggest that the death effector domain of mammalian FADD induced bacterial cell death by enhancing cellular levels of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- S W Lee
- National Creative Research Initiatives Centre for ARS Network, Sung Kyun Kwan University, 300 Chunchundong, Jangangu, Suwon, Kyunggido 44-746, Korea
| | | | | | | | | |
Collapse
|
136
|
Affiliation(s)
- M Vaquero
- Servicio de Anatomía Patológica, Hospital Universitario Germans Trias i Pujol, Badalona, Barcelona
| |
Collapse
|
137
|
Gao LY, Kwaik YA. The mechanism of killing and exiting the protozoan host Acanthamoeba polyphaga by Legionella pneumophila. Environ Microbiol 2000; 2:79-90. [PMID: 11243265 DOI: 10.1046/j.1462-2920.2000.00076.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of Legionella pneumophila to cause legionnaires' disease is dependent on its capacity to replicate within cells in the alveolar spaces. The bacteria kill mammalian cells in two phases: induction of apoptosis during the early stages of infection, followed by an independent and rapid necrosis during later stages of the infection, mediated by a pore-forming activity. In the environment, L. pneumophila is a parasite of protozoa. The molecular mechanisms by which L. pneumophila kills the protozoan cells, after their exploitation for intracellular proliferation, are not known. In an effort to decipher these mechanisms, we have examined induction of both apoptosis and necrosis in the protozoan Acanthamoeba polyphaga upon infection by L. pneumophila. Our data show that, although A. polyphaga undergoes apoptosis following treatment with actinomycin D, L. pneumophila does not induce apoptosis in these cells. Instead, intracellular L. pneumophila induces necrotic death in A. polyphaga, which is mediated by the pore-forming activity. Mutants of L. pneumophila defective in expression of the pore-forming activity are indistinguishable from the parental strain in intracellular replication within A. polyphaga. The parental strain bacteria cause necrosis-mediated lysis of all the A. polyphaga cells within 48 h after infection, and all the intracellular bacteria are released into the tissue culture medium. In contrast, all cells infected by the mutants remain intact, and the intracellular bacteria are 'trapped' within A. polyphaga after the termination of intracellular replication. Failure to exit the host cell after termination of intracellular replication results in a gradual decline in the viability of the mutant strain bacteria within A. polyphaga starting 48h after infection. Our data show that the pore-forming activity of L. pneumophila is not required for intracellular bacterial replication within A. polyphaga but is required for killing and exiting the protozoan host upon termination of intracellular replication.
Collapse
Affiliation(s)
- L Y Gao
- Department of Microbiology and Immunology, University of Kentucky Chandler Medical Center, Lexington 40536-0084, USA
| | | |
Collapse
|
138
|
|
139
|
Origins of Signalling and Memory: Matters of Life Versus Death. ACTA BIOLOGICA HUNGARICA 1999. [DOI: 10.1007/bf03543064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
140
|
Abstract
CD95 (APO-1/Fas) and CD137 (ILA/4-1BB) are members of the tumour necrosis factor receptor family, and both are involved in induction of apoptosis in lymphocytes. Contrary to the case of CD95, apoptosis by CD137 is caused by cross-linking of the respective ligand rather than the receptor. Nothing is known so far about the mechanism of CD137-induced cell death. Here, we show that immobilized CD137 protein induces expression of CD95 in resting primary T and B lymphocytes. However, induction of apoptosis by CD137 is independent of CD95, because: (1) antagonistic anti-CD95 antibody fragments do not block CD137-induced apoptosis; and (2) CD137, but not anti-CD95, can induce apoptosis in resting lymphocytes.
Collapse
Affiliation(s)
- J Michel
- Department of Pathology, University of Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
141
|
Nicieza RG, Huergo J, Connolly BA, Sanchez J. Purification, characterization, and role of nucleases and serine proteases in Streptomyces differentiation. Analogies with the biochemical processes described in late steps of eukaryotic apoptosis. J Biol Chem 1999; 274:20366-75. [PMID: 10400660 DOI: 10.1074/jbc.274.29.20366] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Two exocellular nucleases with molecular masses of 18 and 34 kDa, which are nutritionally regulated and reach their maximum activity during aerial mycelium formation and sporulation, have been detected in Streptomyces antibioticus. Their function appears to be DNA degradation in the substrate mycelium, and in agreement with this proposed role the two nucleases cooperate efficiently with a periplasmic nuclease previously described in Streptomyces antibioticus to completely hydrolyze DNA. The nucleases cut DNA nonspecifically, leaving 5'-phosphate mononucleotides as the predominant products. Both proteins require Mg2+, and the additional presence of Ca2+ notably stimulates their activities. The two nucleases are inhibited by Zn2+ and aurin tricarboxylic acid. The 18-kDa nuclease from Streptomyces is reminiscent of NUC-18, a thymocyte nuclease proposed to have a key role in glucocorticoid-stimulated apoptosis. The 18-kDa nuclease was shown, by amino-terminal protein sequencing, to be a member of the cyclophilin family and also to possess peptidylprolyl cis-trans-isomerase activity. NUC-18 has also been shown to be a cyclophilin, and "native" cyclophilins are capable of DNA degradation. The S. antibioticus 18-kDa nuclease is produced by a proteolytic processing from a less active protein precursor. The protease responsible has been identified as a serine protease that is inhibited by Nalpha-p-tosyl-L-lysine chloromethyl ketone and leupeptin. Inhibition of both of the nucleases or the protease impairs aerial mycelium development in S. antibioticus. The biochemical features of cellular DNA degradation during Streptomyces development show significant analogies with the late steps of apoptosis of eukaryotic cells.
Collapse
Affiliation(s)
- R G Nicieza
- Departamento de Biologia Funcional e Instituto Universitario de Biotecnologia de Asturias, Universidad de Oviedo, Oviedo 33006, Spain
| | | | | | | |
Collapse
|
142
|
Tao W, Walke DW, Morgan JI. Oligomerized Ced-4 kills budding yeast through a caspase-independent mechanism. Biochem Biophys Res Commun 1999; 260:799-805. [PMID: 10403845 DOI: 10.1006/bbrc.1999.0982] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Caenorhabdtis elegans, Ced-3, Ced-4, and Ced-9 are components of a cell suicide program. Ced-4 facilitates the proteolytic activation of the caspase, Ced-3, while Ced-9 opposes Ced-3/Ced-4 killing. To examine the interactions among these proteins they were expressed in Saccharomyces cerevisiae. Ced-3 and Ced-4 were lethal when expressed alone, revealing an intrinsic Ced-4 killing activity. Coexpression of Ced-9 blocked Ced-3- and Ced-4-induced killing, showing Ced-9 can independently antagonize the action of both proteins. Ced-3- but not Ced-4-toxicity was attenuated by coexpression of the caspase inhibitors, CrmA and p35. Thus, besides its Ced-3- and Ced-9-dependent action in C. elegans, Ced-4 has an additional Ced-9-dependent, Ced-3-independent killing mechanism in yeast. Two-hybrid analysis confirmed that Ced-4 formed heteromers with Ced-9. In addition, Ced-4 formed homomers and mutation of its nucleoside triphosphate binding motif eliminated both homomerization and cell killing. We suggest the caspase-independent lethality of Ced-4 in yeast is mediated by a Ced-4 homomer.
Collapse
Affiliation(s)
- W Tao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, Tennessee, 38105-2794, USA
| | | | | |
Collapse
|
143
|
Anderson KM, Seed T, Ou D, Harris JE. Free radicals and reactive oxygen species in programmed cell death. Med Hypotheses 1999; 52:451-63. [PMID: 10416954 DOI: 10.1054/mehy.1997.0521] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oxidative stress, originating from reactive oxygen species and free radicals provides a constant challenge to eukaryotic cell survival. While implicated in a number of degenerative diseases, some associated with aging and with aging itself, the manner and extent to which oxidative stress contributes to the initiation or implementation of programmed-cell death is problematic. If oxidative stress is an important modulator of programmed-cell death, any ability intentionally to augment or inhibit it might ameliorate diseases in which the process is abnormally underactive or overactive.
Collapse
Affiliation(s)
- K M Anderson
- Department of Medicine, Rush Presbyterian St Luke's Medical Center, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
144
|
Welburn SC, Lillico S, Murphy NB. Programmed cell death in procyclic form Trypanosoma brucei rhodesiense --identification of differentially expressed genes during con A induced death. Mem Inst Oswaldo Cruz 1999; 94:229-34. [PMID: 10224534 DOI: 10.1590/s0074-02761999000200020] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei rhodesiense can be induced to undergo apoptosis after stimulation with Con A. As cell death in these parasites is associated with de novo gene expression we have applied a differential display technique, Randomly Amplified Differential Expressed Sequence-Polymerase Chain Reaction (RADES-PCR) to the study of gene expression during Con A induced cell death in these organisms. Twenty-two differentially displayed products have been cloned and sequenced. These represent the first endogenous genes to be identified as implicated in cellular death in trypanosomatids (the most primitive eukaryote in which apoptosis has been described). Evidence for an ancestral death machinery, 'proto-apoptosis' in single celled organisms is discussed.
Collapse
Affiliation(s)
- S C Welburn
- Centre for Tropical Veterinary Medicine, University of Edinburgh, Scotland.
| | | | | |
Collapse
|
145
|
Abstract
Angiogenesis, the process of new microvessel development, is encountered in a select number of physiological processes and is central to the pathogenesis of a wide variety of diseases. There is now convincing evidence that regulated patterns of endothelial cell survival and death, a process known as apoptosis, play a central role in the periodic remodeling of the vasculature, and in the timely evolution and regression of angiogenic responses. In this review we discuss the current evidence suggesting a role for inducers and inhibitors of angiogenesis as well as other mediators that modify endothelial cells functions in the survival and death of endothelial cells. We also discuss how dysregulation of apoptosis can lead to aberrant angiogenesis as demonstrated in the pathogenesis of retinopathy of prematurity and cancer.
Collapse
Affiliation(s)
- J E Nör
- Department of Oral Medicine/Pathology/Oncology, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109-1078, USA
| | | |
Collapse
|
146
|
Sigler K, Chaloupka J, Brozmanová J, Stadler N, Höfer M. Oxidative stress in microorganisms--I. Microbial vs. higher cells--damage and defenses in relation to cell aging and death. Folia Microbiol (Praha) 1999; 44:587-624. [PMID: 11097021 DOI: 10.1007/bf02825650] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Oxidative stress in microbial cells shares many similarities with other cell types but it has its specific features which may differ in prokaryotic and eukaryotic cells. We survey here the properties and actions of primary sources of oxidative stress, the role of transition metals in oxidative stress and cell protective machinery of microbial cells, and compare them with analogous features of other cell types. Other features to be compared are the action of Reactive Oxygen Species (ROS) on cell constituents, secondary lipid- or protein-based radicals and other stress products. Repair of oxidative injury by microorganisms and proteolytic removal of irreparable cell constituents are briefly described. Oxidative damage of aerobically growing microbial cells by endogenously formed ROS mostly does not induce changes similar to the aging of multiplying mammalian cells. Rapid growth of bacteria and yeast prevents accumulation of impaired macromolecules which are repaired, diluted or eliminated. During growth some simple fungi, such as yeast or Podospora spp., exhibit aging whose primary cause seems to be fragmentation of the nucleolus or impairment of mitochondrial DNA integrity. Yeast cell aging seems to be accelerated by endogenous oxidative stress. Unlike most growing microbial cells, stationary-phase cells gradually lose their viability because of a continuous oxidative stress, in spite of an increased synthesis of antioxidant enzymes. Unlike in most microorganisms, in plant and animal cells a severe oxidative stress induces a specific programmed death pathway--apoptosis. The scant data on the microbial death mechanisms induced by oxidative stress indicate that in bacteria cell death can result from activation of autolytic enzymes (similarly to the programmed mother-cell death at the end of bacillary sporulation). Yeast and other simple eukaryotes contain components of a proapoptotic pathway which are silent under normal conditions but can be activated by oxidative stress or by manifestation of mammalian death genes, such as bak or bax. Other aspects, such as regulation of oxidative-stress response, role of defense enzymes and their control, acquisition of stress tolerance, stress signaling and its role in stress response, as well as cross-talk between different stress factors, will be the subject of a subsequent review.
Collapse
Affiliation(s)
- K Sigler
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague
| | | | | | | | | |
Collapse
|
147
|
Meyers FJ, Gumerlock PH, Chi SG, Borchers H, Deitch AD, White RWD. Very frequent p53 mutations in metastatic prostate carcinoma and in matched primary tumors. Cancer 1998. [DOI: 10.1002/(sici)1097-0142(19981215)83:12<2534::aid-cncr19>3.0.co;2-v] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
148
|
Hägele S, Hacker J, Brand BC. Legionella pneumophila kills human phagocytes but not protozoan host cells by inducing apoptotic cell death. FEMS Microbiol Lett 1998; 169:51-8. [PMID: 9851034 DOI: 10.1111/j.1574-6968.1998.tb13298.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Legionella pneumophila is a facultative intracellular parasite able to replicate within and to kill a variety of eukaryotic cells. One possible killing mechanism is the induction of programmed cell death. Based on electron microscopy and flow cytometry studies using the phosphatidylserine binding protein annexin V, we could demonstrate that L. pneumophila is able to induce apoptosis in human monocytes which was clearly dependent on the multiplicity of infection, the time postinfection and the intracellular location of the bacteria. Furthermore, it became evident that Legionella-induced apoptosis does not require the TNF-alpha mediated signal-transduction pathway. By studying infection in Acanthamoeba castellanii, we found that L. pneumophila is not able to induce programmed cell death in their natural host cells indicating that different mechanisms are responsible for host cell killing in protozoan and human cells.
Collapse
Affiliation(s)
- S Hägele
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Germany
| | | | | |
Collapse
|
149
|
Quignon F, De Bels F, Koken M, Feunteun J, Ameisen JC, de Thé H. PML induces a novel caspase-independent death process. Nat Genet 1998; 20:259-65. [PMID: 9806544 DOI: 10.1038/3068] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PML nuclear bodies (NBs) are nuclear matrix-associated structures altered by viruses and oncogenes. We show here that PML overexpression induces rapid cell death, independent of de novo transcription and cell cycling. PML death involves cytoplasmic features of apoptosis in the absence of caspase-3 activation, and caspase inhibitors such as zVAD accelerate PML death. zVAD also accelerates interferon (IFN)-induced death, suggesting that PML contributes to IFN-induced apoptosis. The death effector BAX and the cdk inhibitor p27KIP1 are novel NB-associated proteins recruited by PML to these nuclear domains, whereas the acute promyelocytic leukaemia (APL) PML/RAR alpha oncoprotein delocalizes them. Arsenic enhances targeting of PML, BAX and p27KIP1 to NBs and synergizes with PML and IFN to induce cell death. Thus, cell death susceptibility correlates with NB recruitment of NB proteins. These findings reveal a novel cell death pathway that neither requires nor induces caspase-3 activation, and suggest that NBs participate in the control of cell survival.
Collapse
Affiliation(s)
- F Quignon
- CNRS UPR 9051, Laboratoire associé au comité de Paris de la ligue contre le cancer, Institut d'Hématologie de l'Université Paris VII, Hôpital St Louis, France
| | | | | | | | | | | |
Collapse
|
150
|
del Pozo O, Lam E. Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr Biol 1998; 8:1129-32. [PMID: 9778530 DOI: 10.1016/s0960-9822(98)70469-5] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The hypersensitive response (HR) is induced by certain plant pathogens and involves programmed cell death (PCD) to restrict the spread of pathogens from the infection site [1]. Concurrent with the induction of cell death, the host activates a defense response [2]. The cell death associated with the HR in several plant-pathogen systems has morphological similarities to animal apoptosis [3,4], which suggests that cell death mechanisms in plants and animals may share common components that lead to similar cellular events. Caspases are conserved cysteine proteases that regulate animal PCD [5]; caspase activity or an involvement of caspases in cell death has yet to be reported in plants. In this work, we investigated the participation of caspases in HR cell death. Caspase-specific peptide inhibitors, Ac-YVAD-CMK [6] and Ac-DEVD-CHO [7], could abolish bacteria-induced plant PCD but did not significantly affect the induction of other aspects of HR, such as the expression of defense genes. This result confirmed our previous model that cell death can be uncoupled from defense gene activation during HR [8]. Caspase-like proteolytic activity was detected in tobacco tissues that were developing HR following infection with tobacco mosaic virus (TMV). Our results provide evidence for the presence of caspase-like plant protease(s) that participate in HR cell death.
Collapse
Affiliation(s)
- O del Pozo
- Biotech Center, Department of Plant Science, Foran Hall 59 Dudley Road, Rutgers State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | | |
Collapse
|