101
|
Abstract
Heatstroke, which is associated with circulatory failure and multiple organ dysfunction, is a heat stress-induced life-threatening condition characterized by a raised core body temperature and central nervous system dysfunction. As global warming continues to worsen, heatstroke is expected to become the leading cause of death globally. Despite the severity of this condition, the detailed mechanisms that underlie the pathogenesis of heatstroke still remain largely unknown. Z-DNA-binding protein 1 (ZBP1), also referred to as DNA-dependent activator of IFN-regulatory factors (DAI) and DLM-1, was initially identified as a tumor-associated and interferon (IFN)-inducible protein, but has recently been reported to be a Z-nucleic acid sensor that regulates cell death and inflammation; however, its biological function is not yet fully understood. In the present study, a brief review of the main regulators is presented, in which the Z-nucleic acid sensor ZBP1 was identified to be a significant factor in regulating the pathological characteristics of heatstroke through ZBP1-dependent signaling. Thus, the lethal mechanism of heatstroke is revealed, in addition to a second function of ZBP1 other than as a nucleic acid sensor.
Collapse
Affiliation(s)
- Fanglin Li
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Critical Care Medicine and Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Deng
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiuli He
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanjun Zhong
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
102
|
Transcriptome Analysis of Heat Shock Factor C2a Over-Expressing Wheat Roots Reveals Ferroptosis-like Cell Death in Heat Stress Recovery. Int J Mol Sci 2023; 24:ijms24043099. [PMID: 36834507 PMCID: PMC9967677 DOI: 10.3390/ijms24043099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Wheat (Triticum aestivum L.) growing areas in many regions of the world are subject to heat waves which are predicted to increase in frequency because of climate change. The engineering of crop plants can be a useful strategy to mitigate heat stress-caused yield losses. Previously, we have shown that heat shock factor subclass C (TaHsfC2a-B)-overexpression significantly increased the survival of heat-stressed wheat seedlings. Although previous studies have shown that the overexpression of Hsf genes enhanced the survival of plants under heat stress, the molecular mechanisms are largely unknown. To understand the underlying molecular mechanisms involved in this response, a comparative analysis of the root transcriptomes of untransformed control and TaHsfC2a-overexpressing wheat lines by RNA-sequencing have been performed. The results of RNA-sequencing indicated that the roots of TaHsfC2a-overexpressing wheat seedlings showed lower transcripts of hydrogen peroxide-producing peroxidases, which corresponds to the reduced accumulation of hydrogen peroxide along the roots. In addition, suites of genes from iron transport and nicotianamine-related gene ontology categories showed lower transcript abundance in the roots of TaHsfC2a-overexpressing wheat roots than in the untransformed control line following heat stress, which are in accordance with the reduction in iron accumulation in the roots of transgenic plants under heat stress. Overall, these results suggested the existence of ferroptosis-like cell death under heat stress in wheat roots, and that TaHsfC2a is a key player in this mechanism. To date, this is the first evidence to show that a Hsf gene plays a key role in ferroptosis under heat stress in plants. In future, the role of Hsf genes could be further studied on ferroptosis in plants to identify root-based marker genes to screen for heat-tolerant genotypes.
Collapse
|
103
|
Madsen T, Ujvari B, Bauwens D, Gruber B, Georges A, Klaassen M. Polyandry and non-random fertilisation maintain long-term genetic diversity in an isolated island population of adders (Vipera berus). Heredity (Edinb) 2023; 130:64-72. [PMID: 36474024 PMCID: PMC9905584 DOI: 10.1038/s41437-022-00578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 12/12/2022] Open
Abstract
Conservation genetic theory suggests that small and isolated populations should be subject to reduced genetic diversity i.e., heterozygosity and allelic diversity. Our 34 years study of an isolated island population of adders (Vipera berus) in southern Sweden challenges this notion. Despite a lack of gene flow and a yearly mean estimated reproductive adult population size of only 65 adult adders (range 12-171), the population maintains high levels of heterozygosity and allelic diversity similar to that observed in two mainland populations. Even a 14-year major "bottleneck" i.e., a reduction in adult adder numbers, encompassing at least four adder generations, did not result in any reduction in the island adders' heterozygosity and allelic diversity. Female adders are polyandrous, and fertilisation is non-random, which our empirical data and modelling suggest are underpinning the maintenance of the population's high level of heterozygosity. Our empirical results and subsequent modelling suggest that the positive genetic effects of polyandry in combination with non-random fertilisation, often overlooked in conservation genetic analyses, deserve greater consideration when predicting long-term survival of small and isolated populations.
Collapse
Affiliation(s)
- Thomas Madsen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, 3217, Australia.
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, 3217, Australia
| | - Dirk Bauwens
- Department of Biology, Laboratory of Functional Morphology, University of Antwerp, Wilrijk, Belgium
| | - Bernd Gruber
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, 3217, Australia
| |
Collapse
|
104
|
Loewen CJG, Jackson DA, Gilbert B. Biodiversity patterns diverge along geographic temperature gradients. GLOBAL CHANGE BIOLOGY 2023; 29:603-617. [PMID: 36169599 PMCID: PMC10100522 DOI: 10.1111/gcb.16457] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Models applying space-for-time substitution, including those projecting ecological responses to climate change, generally assume an elevational and latitudinal equivalence that is rarely tested. However, a mismatch may lead to different capacities for providing climatic refuge to dispersing species. We compiled community data on zooplankton, ectothermic animals that form the consumer basis of most aquatic food webs, from over 1200 mountain lakes and ponds across western North America to assess biodiversity along geographic temperature gradients spanning nearly 3750 m elevation and 30° latitude. Species richness, phylogenetic relationships, and functional diversity all showed contrasting responses across gradients, with richness metrics plateauing at low elevations but exhibiting intermediate latitudinal maxima. The nonmonotonic/hump-shaped diversity trends with latitude emerged from geographic interactions, including weaker latitudinal relationships at higher elevations (i.e. in alpine lakes) linked to different underlying drivers. Here, divergent patterns of phylogenetic and functional trait dispersion indicate shifting roles of environmental filters and limiting similarity in the assembly of communities with increasing elevation and latitude. We further tested whether gradients showed common responses to warmer temperatures and found that mean annual (but not seasonal) temperatures predicted elevational richness patterns but failed to capture consistent trends with latitude, meaning that predictions of how climate change will influence diversity also differ between gradients. Contrasting responses to elevation- and latitude-driven warming suggest different limits on climatic refugia and likely greater barriers to northward range expansion.
Collapse
Affiliation(s)
- Charlie J. G. Loewen
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Donald A. Jackson
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Benjamin Gilbert
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
105
|
Lima A, Didugu BGL, Chunduri AR, Rajan R, Jha A, Mamillapalli A. Thermal tolerance role of novel polyamine, caldopentamine, identified in fifth instar Bombyx mori. Amino Acids 2023; 55:287-298. [PMID: 36562834 DOI: 10.1007/s00726-022-03226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Silkworms have limited ability to regulate their body temperature; therefore, environmental changes, such as global warming, can adversely affect their viability. Polyamines have shown protection to various organisms against heat stress. This study evaluated the qualitative and quantitative changes in heat-stressed Bombyx mori larvae polyamines. Fifth instar Bombyx mori larvae were divided into two groups; control group, reared at room temperature, i.e., 28 ± 2 °C, and the heat shock group, exposed to 40 °C. Dansylation of the whole worm polyamines and subsequent thin-layer chromatography revealed the presence of components with the same Rf value as dansyl-putrescine, spermidine, and spermine. The dansyl-putrescine, spermidine, and spermine polyamines were identified by mass spectrometric analyses. After heat shock, the thin-layer chromatography of the whole-larvae tissue extracts showed qualitative and quantitative changes in dansylated polyamines. A new polyamine, caldopentamine, was identified, which showed elevated levels in heat-stressed larvae. This polyamine could play a role in helping the larvae tolerate various stress, including thermal stress. No significant changes in silk fiber's economic and mechanical properties were observed in our study. This study indicated that PA, caldopentamine, supplementation could improve heat-stress tolerance in Bombyx mori.
Collapse
Affiliation(s)
- Anugata Lima
- Department of Biotechnology, School of Science, GITAM (Deemed to Be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Brinda Goda Lakshmi Didugu
- Department of Biotechnology, School of Science, GITAM (Deemed to Be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Alekhya Rani Chunduri
- Department of Biotechnology, School of Science, GITAM (Deemed to Be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Resma Rajan
- Department of Biotechnology, School of Science, GITAM (Deemed to Be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Anjali Jha
- Department of Chemistry, School of Science, GITAM (Deemed to Be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Anitha Mamillapalli
- Department of Biotechnology, School of Science, GITAM (Deemed to Be University), Visakhapatnam, Andhra Pradesh, 530045, India.
| |
Collapse
|
106
|
Feng M, Cheng H, Zhang P, Wang K, Wang T, Zhang H, Wang H, Zhou L, Xu J, Zhang M. Stoichiometric stability of aquatic organisms increases with trophic level under warming and eutrophication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160106. [PMID: 36370785 DOI: 10.1016/j.scitotenv.2022.160106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The balance of stoichiometric traits of organisms is crucial for nutrient cycling and energy flow in ecosystems. However, the impacts of different drivers on stoichiometric (carbon, C; nitrogen, N; and phosphorus, P) variations of organisms have not been well addressed. In order to understand how stoichiometric traits vary across trophic levels under different environmental stressors, we performed a mesocosm experiment to explore the impacts of warming (including +3 °C consistent warming above ambient and heat waves ranging from 0 to 6 °C), eutrophication, herbicide and their interactions on stoichiometric traits of organisms at different trophic levels, which was quantified by stable nitrogen isotopes. Results showed that herbicide treatment had no significant impacts on all stochiometric traits, while warming and eutrophication significantly affected the stoichiometric traits of organisms at lower trophic levels. Eutrophication increased nutrient contents and decreased C: nutrient ratios in primary producers, while the response of N:P ratios depended on the taxonomic group. The contribution of temperature treatments to stoichiometric variation was less than that of eutrophication. Heat waves counteracted the impacts of eutrophication, which was different from the effects of continuous warming, indicating that eutrophication impacts on organism stoichiometric traits depended on climate scenarios. Compared to environmental drivers, taxonomic group was the dominant driver that determined the variations of stoichiometric traits. Furthermore, the stoichiometric stability of organisms was strongly positively correlated with their trophic levels. Our results demonstrate that warming and eutrophication might substantially alter the stoichiometric traits of lower trophic levels, thus impairing the nutrient transfer to higher trophic level, which might further change the structure of food webs and functions of the ecosystems.
Collapse
Affiliation(s)
- Mingjun Feng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Haowu Cheng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Kang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Libin Zhou
- Institute of Ecology, College of Urban and Environmental Science, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Jun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Min Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China.
| |
Collapse
|
107
|
Ventura F, Stanworth A, Crofts S, Kuepfer A, Catry P. Local-scale impacts of extreme events drive demographic asynchrony in neighbouring top predator populations. Biol Lett 2023; 19:20220408. [PMID: 36722144 PMCID: PMC9890319 DOI: 10.1098/rsbl.2022.0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023] Open
Abstract
Extreme weather events are among the most critical aspects of climate change, but our understanding of their impacts on biological populations remains limited. Here, we exploit the rare opportunity provided by the availability of concurrent longitudinal demographic data on two neighbouring marine top predator populations (the black-browed albatross, Thalassarche melanophris, breeding in two nearby colonies) hit by an exceptionally violent storm during one study year. The aim of this study is to quantify the demographic impacts of extreme events on albatrosses and test the hypothesis that extreme events would synchronously decrease survival rates of neighbouring populations. Using demographic modelling we found that, contrary to our expectation, the storm affected the survival of albatrosses from only one of the two colonies, more than doubling the annual mortality rate compared to the study average. Furthermore, the effects of storms on adult survival would lead to substantial population declines (up to 2% per year) under simulated scenarios of increased storm frequencies. We, therefore, conclude that extreme events can result in very different local-scale impacts on sympatric populations. Crucially, by driving demographic asynchrony, extreme events can hamper our understanding of the demographic responses of wild populations to mean, long-term shifts in climate.
Collapse
Affiliation(s)
- Francesco Ventura
- CESAM, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | | | - Sarah Crofts
- Falklands Conservation, Stanley, FIQQ 1ZZ Falkland Islands, UK
| | - Amanda Kuepfer
- SAERI—South Atlantic Environmental Research Institute, Stanley, FIQQ 1ZZ Falkland Islands, UK
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Paulo Catry
- MARE – Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, ISPA – Instituto Universitário, Rua Jardim do Tabaco 34, Lisboa 1149-041, Portugal
| |
Collapse
|
108
|
Teng Z, Chen Y, Meng S, Duan M, Zhang J, Ye N. Environmental Stimuli: A Major Challenge during Grain Filling in Cereals. Int J Mol Sci 2023; 24:2255. [PMID: 36768575 PMCID: PMC9917212 DOI: 10.3390/ijms24032255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Light, temperature, water, and fertilizer are arguably the most important environmental factors regulating crop growth and productivity. Environmental stimuli, including low light, extreme temperatures, and water stresses caused by climate change, affect crop growth and production and pose a growing threat to sustainable agriculture. Furthermore, soil salinity is another major environmental constraint affecting crop growth and threatening global food security. The grain filling stage is the final stage of growth and is also the most important stage in cereals, directly determining the grain weight and final yield. However, the grain filling process is extremely vulnerable to different environmental stimuli, especially for inferior spikelets. Given the importance of grain filling in cereals and the deterioration of environmental problems, understanding environmental stimuli and their effects on grain filling constitutes a major focus of crop research. In recent years, significant advances made in this field have led to a good description of the intricate mechanisms by which different environmental stimuli regulate grain filling, as well as approaches to adapt cereals to changing climate conditions and to give them better grain filling. In this review, the current environmental stimuli, their dose-response effect on grain filling, and the physiological and molecular mechanisms involved are discussed. Furthermore, what we can do to help cereal crops adapt to environmental stimuli is elaborated. Overall, we call for future research to delve deeper into the gene function-related research and the commercialization of gene-edited crops. Meanwhile, smart agriculture is the development trend of the future agriculture under environmental stimuli.
Collapse
Affiliation(s)
- Zhenning Teng
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Yinke Chen
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Shuan Meng
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Meijuan Duan
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Rice Stress Biology, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Nenghui Ye
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Rice Stress Biology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
109
|
Yan M, Mao F, Du H, Li X, Chen Q, Ni C, Huang Z, Xu Y, Gong Y, Guo K, Sun J, Xu C. Spatiotemporal dynamic of subtropical forest carbon storage and its resistance and resilience to drought in China. FRONTIERS IN PLANT SCIENCE 2023; 14:1067552. [PMID: 36733716 PMCID: PMC9886887 DOI: 10.3389/fpls.2023.1067552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Subtropical forests are rich in vegetation and have high photosynthetic capacity. China is an important area for the distribution of subtropical forests, evergreen broadleaf forests (EBFs) and evergreen needleleaf forests (ENFs) are two typical vegetation types in subtropical China. Forest carbon storage is an important indicator for measuring the basic characteristics of forest ecosystems and is of great significance for maintaining the global carbon balance. Drought can affect forest activity and may even lead to forest death and the stability characteristics of different forest ecosystems varied after drought events. Therefore, this study used meteorological data to simulate the standardized precipitation evapotranspiration index (SPEI) and the Biome-BGC model to simulate two types of forest carbon storage to quantify the resistance and resilience of EBF and ENF to drought in the subtropical region of China. The results show that: 1) from 1952 to 2019, the interannual drought in subtropical China showed an increasing trend, with five extreme droughts recorded, of which 2011 was the most severe one; 2) the simulated average carbon storage of the EBF and ENF during 1985-2019 were 130.58 t·hm-2 and 78.49 t·hm-2, respectively. The regions with higher carbon storage of EBF were mainly concentrated in central and southeastern subtropics, where those of ENF mainly distributed in the western subtropic; 3) The median of resistance of EBF was three times higher than that of ENF, indicating the EBF have stronger resistance to extreme drought than ENF. Moreover, the resilience of two typical forest to 2011 extreme drought and the continuous drought events during 2009 - 2011 were similar. The results provided a scientific basis for the response of subtropical forests to drought, and indicating that improve stand quality or expand the plantation of EBF may enhance the resistance to drought in subtropical China, which provided certain reference for forest protection and management under the increasing frequency of drought events in the future.
Collapse
Affiliation(s)
- Mengjie Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural & Forestry (A & F) University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, China
| | - Fangjie Mao
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural & Forestry (A & F) University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, China
| | - Huaqiang Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural & Forestry (A & F) University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, China
| | - Xuejian Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural & Forestry (A & F) University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, China
| | - Qi Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural & Forestry (A & F) University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, China
| | - Chi Ni
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural & Forestry (A & F) University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, China
| | - Zihao Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural & Forestry (A & F) University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, China
| | - Yanxin Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural & Forestry (A & F) University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, China
| | - Yulin Gong
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural & Forestry (A & F) University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, China
| | - Keruo Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural & Forestry (A & F) University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, China
| | - Jiaqian Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural & Forestry (A & F) University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, China
| | - Cenheng Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural & Forestry (A & F) University, Hangzhou, China
- Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A & F University, Hangzhou, China
- School of Environmental and Resources Science, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
110
|
Ferreira FC, Vaz Padilha MCS, Rocha TMDMS, Lima LS, Carandina A, Bellocchi C, Tobaldini E, Montano N, Soares PPDS, Rodrigues GD. Cardiovascular autonomic modulation during passive heating protocols: a systematic review. Physiol Meas 2023; 44:01TR01. [PMID: 36343372 DOI: 10.1088/1361-6579/aca0d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
Objective.To conduct a systematic review of the possible effects of passive heating protocols on cardiovascular autonomic control in healthy individuals.Approach.The studies were obtained from MEDLINE (PubMed), LILACS (BVS), EUROPE PMC (PMC), and SCOPUS databases, simultaneously. Studies were considered eligible if they employed passive heating protocols and investigated cardiovascular autonomic control by spontaneous methods, such as heart rate variability (HRV), systolic blood pressure variability (SBPV), and baroreflex sensitivity (BRS), in healthy adults. The revised Cochrane risk-of-bias tool (RoB-2) was used to assess the risk of bias in each study.Main results.Twenty-seven studies were included in the qualitative synthesis. Whole-body heating protocols caused a reduction in cardiac vagal modulation in 14 studies, and two studies reported both increased sympathetic modulation and vagal withdrawal. Contrariwise, local-heating protocols and sauna bathing seem to increase cardiac vagal modulation. A reduction of BRS was reported in most of the studies that used whole-body heating protocols. However, heating effects on BRS remain controversial due to methodological differences among baroreflex analysis and heating protocols.Significance.Whole-body heat stress may increase sympathetic and reduce vagal modulation to the heart in healthy adults. On the other hand, local-heating therapy and sauna bathing seem to increase cardiac vagal modulation, opposing sympathetic modulation. Nonetheless, further studies should investigate acute and chronic effects of thermal therapy on cardiovascular autonomic control.
Collapse
Affiliation(s)
- Felipe Castro Ferreira
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | | | - Teresa Mell da Mota Silva Rocha
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Ligia Soares Lima
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Angelica Carandina
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Bellocchi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pedro Paulo da Silva Soares
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Gabriel Dias Rodrigues
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
111
|
Zhang J, Zuo X, Lv P. Effects of Grazing, Extreme Drought, Extreme Rainfall and Nitrogen Addition on Vegetation Characteristics and Productivity of Semiarid Grassland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:960. [PMID: 36673715 PMCID: PMC9859310 DOI: 10.3390/ijerph20020960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Grassland use patterns, water and nutrients are the main determinants of ecosystem structure and function in semiarid grasslands. However, few studies have reported how the interactive effects of rainfall changes and nitrogen deposition influence the recovery of semiarid grasslands degraded by grazing. In this study, a simulated grazing, increasing and decreasing rainfall, nitrogen deposition test platform was constructed, and the regulation mechanism of vegetation characteristics and productivity were studied. We found that grazing decreased plant community height (CWMheight) and litter and increased plant density. Increasing rainfall by 60% from May to August (+60%) increased CWMheight; decreasing rainfall by 60% from May to August (-60%) and by 100% from May to June (-60 d) decreased CWMheight and coverage; -60 d, +60% and increasing rainfall by 100% from May to June (+60 d) increased plant density; -60% increased the Simpson dominance index (D index) but decreased the Shannon-Wiener diversity index (H index); -60 d decreased the aboveground biomass (ABG), and -60% increased the underground biomass (BGB) in the 10-60 cm layer. Nitrogen addition decreased species richness and the D index and increased the H index and AGB. Rainfall and soil nitrogen directly affect AGB; grazing and rainfall can also indirectly affect AGB by inducing changes in CWMheight; grazing indirectly affects BGB by affecting plant density and soil nitrogen. The results of this study showed that in the semiarid grassland of Inner Mongolia, grazing in the nongrowing season and grazing prohibition in the growing season can promote grassland recovery, continuous drought in the early growing season will have dramatic impacts on productivity, nitrogen addition has a certain impact on the species composition of vegetation, and the impact on productivity will not appear in the short term.
Collapse
Affiliation(s)
| | - Xiaoan Zuo
- Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | | |
Collapse
|
112
|
Abstract
AbstractClimate change is altering species' habitats, phenology, and behavior. Although sexual behaviors impact population persistence and fitness, climate change's effects on sexual signals are understudied. Climate change can directly alter temperature-dependent sexual signals, cause changes in body size or condition that affect signal production, or alter the selective landscape of sexual signals. We tested whether temperature-dependent mating calls of Mexican spadefoot toads (Spea multiplicata) had changed in concert with climate in the southwestern United States across 22 years. We document increasing air temperatures, decreasing rainfall, and changing seasonal patterns of temperature and rainfall in the spadefoots' habitat. Despite increasing air temperatures, spadefoots' ephemeral breeding ponds have been getting colder at most elevations, and male calls have been slowing as a result. However, temperature-standardized call characters have become faster, and male condition has increased, possibly due to changes in the selective environment. Thus, climate change might generate rapid, complex changes in sexual signals with important evolutionary consequences.
Collapse
|
113
|
Lima AS, de Figueredo AC, Floreste FR, Garcia Neto PG, Gomes FR, Titon SCM. Temperature Extreme Events Decrease Endocrine and Immune Reactive Scope in Bullfrogs (Lithobates catesbeianus). Integr Comp Biol 2022; 62:1671-1682. [PMID: 35771987 DOI: 10.1093/icb/icac105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/05/2023] Open
Abstract
Currently, effects of increased atmospheric temperature, in the context of ongoing climate change, have been investigated in multiple organisms and levels of biological organization. While there has been a focus on the impacts of increased mean temperature, an emergent and equally important point is the consequences of recurrent exposure to extreme temperature events, simulating heat waves. This study investigated the effects of serial exposure to high temperatures on immune and endocrine variables before and after exposure to an acute secondary stressor in bullfrogs (Lithobates catesbeianus). Adult males were divided into three groups and subjected to three thermal regimes: control (c; constant 22°C); experimental 1 (E1; kept at 22°C and exposed to 4 days of 30°C every 16 days); and experimental 2 (E2; kept at 22°C and exposed to 4 days of 30°C every 6 days). Blood samples were collected on the last day of key extreme heat events. Two weeks after the last extreme heat event, animals were subjected to restraint stress (1 h) and sampled again. Blood samples were used to determine neutrophil: lymphocyte ratio, plasma bacterial killing ability, as well as, corticosterone and plasma testosterone levels. Overall, we found exposure to extreme heat events did not affect immune and endocrine variables over time. Meanwhile, the previous exposure to extreme heat events modulated the responsiveness to restraint. The amplitude of increased corticosterone plasma levels and neutrophil: lymphocyte ratio in response to restraint decreased with the number of previous exposures to extreme heat events. These results suggest that exposure to extreme climatic events has hidden effects on bullfrog's stress response, expressed as diminished reactive scope to a novel stressor. This represents a highly deleterious facet of climate change since diminished responsiveness prevents proper coping with wildlife challenges.
Collapse
Affiliation(s)
- Alan Siqueira Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Aymam Cobo de Figueredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Felipe Rangel Floreste
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Patrício Getúlio Garcia Neto
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Stefanny Christie Monteiro Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
114
|
Zunino P. Native microbiomes in danger: Could One Health help to cope with this threat to global health? INTERNATIONAL JOURNAL OF ONE HEALTH 2022. [DOI: 10.14202/ijoh.2022.178-184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Planetary health faces an emergency associated with global change. Climate change, the increase in world population and urban concentration, the hyperintensification of productive systems, and the associated changes in land use, among other factors, are generating a risky substrate for global health deterioration. The emergence of the coronavirus disease 2019 pandemic is an example of the problems that this situation can provoke. Several researchers and health professionals have addressed the role of microorganisms, particularly bacteria, in promoting global health, mainly in the past decades. However, global changes have contributed to the extinction of a wide array of bacterial species and the disruption of microbial communities that support the homeostasis of humans, animals, and the environment. The need to protect the diversity and richness of native microbiomes in biotic and abiotic environments is crucial but has been frequently underestimated. The "One Health" approach, based on integrating traditionally unconnected fields such as human, animal, and environmental health, could provide a helpful framework to face this challenge. Anyway, drastic political decisions will be needed to tackle this global health crisis, in which the preservation of native microbial resources plays a critical role, even in preventing the risk of a new pandemic. This review aims to explain the importance of native microbiomes in biotic and abiotic ecosystems and the need to consider bacterial extinction as a crucial problem that could be addressed under a One Health approach.
Collapse
Affiliation(s)
- Pablo Zunino
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
| |
Collapse
|
115
|
Ancco‐Valdivia FG, Calixto ES, López‐Tejeda E. Space‐for‐time substitution reveals a hump‐shaped distribution of dung beetles. Biotropica 2022. [DOI: 10.1111/btp.13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Fernando Geronimo Ancco‐Valdivia
- Programa de Pós‐Graduação em Entomologia, Faculdade de Filosofia, Ciências e Letras Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Eduardo Soares Calixto
- Programa de Pós‐Graduação em Entomologia, Faculdade de Filosofia, Ciências e Letras Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Evaristo López‐Tejeda
- Museo de História Natural (MUSA) Universidad Nacional de San Agustín de Arequipa, Área de Entomología Arequipa Peru
| |
Collapse
|
116
|
Tang Y, Duan H, Yu S. Mitigating climate change to alleviate economic inequality under the Paris Agreement. iScience 2022; 26:105734. [PMID: 36582830 PMCID: PMC9792906 DOI: 10.1016/j.isci.2022.105734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/10/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Understanding the implications of global climate governance is critical for achieving sustainable economic development, given that the economic impacts of climate change and policies are disproportionately distributed across regions. We estimate the updated damage functions and construct an uncertainty analysis framework to assess whether stringent climate policies entail economic benefits in terms of growth and inequality. The findings show that although climate policies slow the pace of economic growth, the benefits of avoided damage may overweight policy costs in the long run. Moreover, pursuing the 1.5°C goal slows economic catch-up of poor countries in the short to medium term relative to 2°C, but improves global inequality in the long run. This situation may, however, change when moving to a fast-growing and fossil-fueled world, in which inequalities gradually decline but start to rise after 2065. This study highlights the importance of synergizing the stringent 1.5°C goal with economic inequality alleviation.
Collapse
Affiliation(s)
- Yun Tang
- School of Economics, Ocean University of China, Qingdao 266100, PR China
| | - Hongbo Duan
- School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, PR China,Corresponding author
| | - Shiyun Yu
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, PR China
| |
Collapse
|
117
|
Veselá B, Holub P, Urban O, Surá K, Hodaňová P, Oravec M, Divinová R, Jansen MAK, Klem K. UV radiation and drought interact differently in grass and forb species of a mountain grassland. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111488. [PMID: 36206962 DOI: 10.1016/j.plantsci.2022.111488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Among abiotic stressors, drought and enhanced ultraviolet radiation (UV) received a lot of attention, because of their potential to impair plant growth. Since drought and UV induce partially similar protective mechanisms, we tested the hypothesis that UV ameliorates the effect of reduced water availability (WA) in selected grass (Holcus mollis and Agrostis capillaris) and forb species (Hypericum maculatum and Rumex acetosa). During 2011-2014, an outdoor manipulation experiment was conducted on a mountain grassland ecosystem (Beskydy Mts; Czech Republic). Lamellar shelters were used to pass (WAamb) or exclude (WA-) incident precipitation in order to simulate reduced water availability (WA). In addition, the lamellas were made from acrylics either transmitting (UVamb) or blocking (UV-) incident UV. Generally, both UV exposure and reduced WA enhanced epidermal UV-screening, while exposure to both factors resulted in less than additive interactions. Although UV radiation increased epidermal UV-screening rather in the grass (up to 29 % in A. capillaris) than forb (up to 12 % in H. maculatum) species and rather in well-watered than reduced WA plants, such acclimation response did not result in significant alleviation of reduced WA effects on gas exchange and morphological parameters. The study contributes to a better understanding of plant responses to complex environmental conditions and will help for successful modelling forecasts of future climate change impacts.
Collapse
Affiliation(s)
- Barbora Veselá
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, Brno CZ-603 00, Czech Republic
| | - Petr Holub
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, Brno CZ-603 00, Czech Republic.
| | - Otmar Urban
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, Brno CZ-603 00, Czech Republic
| | - Kateřina Surá
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, Brno CZ-603 00, Czech Republic; Mendel University in Brno, Zemědělská 1, Brno CZ-613 00, Czech Republic
| | - Petra Hodaňová
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, Brno CZ-603 00, Czech Republic
| | - Michal Oravec
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, Brno CZ-603 00, Czech Republic
| | - Renata Divinová
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, Brno CZ-603 00, Czech Republic
| | - Marcel A K Jansen
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, Brno CZ-603 00, Czech Republic; School of Biological, Earth and Environmental Sciences, Environmental Research Institute, UCC, Cork, Ireland
| | - Karel Klem
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 4a, Brno CZ-603 00, Czech Republic; Mendel University in Brno, Zemědělská 1, Brno CZ-613 00, Czech Republic
| |
Collapse
|
118
|
Spermidine alleviates heat shock and promotes the growth of Bombyx mori. J Therm Biol 2022; 110:103353. [DOI: 10.1016/j.jtherbio.2022.103353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022]
|
119
|
Sun J, Liu W, Pan Q, Zhang B, Lv Y, Huang J, Han X. Positive legacies of severe droughts in the Inner Mongolia grassland. SCIENCE ADVANCES 2022; 8:eadd6249. [PMID: 36417538 PMCID: PMC9683728 DOI: 10.1126/sciadv.add6249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/27/2022] [Indexed: 05/19/2023]
Abstract
Global change-induced extreme droughts are increasing in grasslands worldwide, and drought legacies may greatly affect the responses of grassland ecosystems to these changes. However, it remains poorly understood whether and how severe droughts have a positive legacy effect on grassland productivity. By combining a 4-year precipitation manipulation experiment with a 40-year observational study in a semiarid grassland, we showed that extreme droughts could create strong positive legacies on community productivity and that such legacies could last for multiple years. The mechanism behind this was the coupled effect of the drought-induced increase in annuals and the favorable precipitation pattern that facilitated the flourishing of annuals in subsequent years. This study provides experimental and observational evidence for positive drought legacies and reveals their underlying mechanisms. Our findings suggest that positive drought legacies should be incorporated into Earth system models to better predict the impact of extreme droughts on grassland ecosystems.
Collapse
Affiliation(s)
- Jiamei Sun
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Qingmin Pan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- Corresponding author. (Q.P.); (X.H.)
| | - Bin Zhang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yaxiang Lv
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Jianhui Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- Corresponding author. (Q.P.); (X.H.)
| |
Collapse
|
120
|
Yao X, Li C, Ahmad AA, Tariq A, Degen AA, Bai Y. An increase in livestock density increases forage nutritional value but decreases net primary production and annual forage nutritional yield in the alpine grassland of the Qinghai-Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:1020033. [PMID: 36507381 PMCID: PMC9730035 DOI: 10.3389/fpls.2022.1020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Pasture biomass and quality are dependent on herbivore grazing and precipitation, but the responses of vegetation to the interactive effects of climate and grazing regimes remain unclear. We conducted an eight-year sheep grazing experiment with 4 stocking rates (0, 3.5, 5.5, and 7.5 sheep/ha) in an alpine meadow of the northeastern Tibetan Plateau. The above-ground net primary productivity (ANPP) and forage nutritional value (FNV) of four dominant species (Poa annua, Kobresia humilis, Astragalus adsurgens and Potentilla fruticosa) were measured during a wet year (360 mm rainfall) and a drought year (216 mm rainfall). The FNV was used as indicator of forage quality and was calculated from the crude protein (CP) content, in vitro true dry matter digestibility (IVTD), metabolic energy (ME) yield, and neutral detergent fiber (NDF) content of the plant. The stocking rate explained a minimum of 76% of the variations of ANPP, and the precipitation sub-additive effect for ANPP ranged from 5% to 12%. The interaction of sheep stocking rate and precipitation affected ANPP of the 4 species, except for P. fruticosa. The FNV of the pasture increased with increasing grazing pressure, but ANPP and forage nutritional yield (FNY) decreased. In calculating FNY, the increase in FNV did not compensate for the decrease in ANPP. In non-grazed plots, the CP yield declined sharply (18%-55%) in response to drought, but there was no effect on ME yield. The interaction between stocking rate and precipitation affected forage quality of the 4 plant species differently. The grassland ANPP and FNY could be maintained at a grazing intensity of 3.5 sheep/ha in wet and dry years. Our results highlight that stocking density affects pasture ANPP and FNV, and is contingent on rainfall.
Collapse
Affiliation(s)
- Xixi Yao
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Changhui Li
- State Key Laboratory of Plateau Ecology and Agriculture, College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Anum Ali Ahmad
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Akash Tariq
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - A. Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yanfu Bai
- College of Grassland Science and Technology, Sichuan Agriculture University, Chengdu, China
| |
Collapse
|
121
|
Johnson SN, Chen ZH, Rowe RC, Tissue DT. Field application of silicon alleviates drought stress and improves water use efficiency in wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1030620. [PMID: 36438110 PMCID: PMC9682199 DOI: 10.3389/fpls.2022.1030620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Detrimental impacts of drought on crop yield have tripled in the last 50 years with climate models predicting that the frequency of such droughts will intensify in the future. Silicon (Si) accumulation, especially in Poaceae crops such as wheat (Triticum aestivum L.), may alleviate the adverse impacts of drought. We have very limited information, however, about whether Si supplementation could alleviate the impacts of drought under field conditions and no studies have specifically manipulated rainfall. Using field-based rain exclusion shelters, we determined whether Si supplementation (equivalent to 39, 78 and 117 kg ha-1) affected T. aestivum growth, elemental chemistry [Si, carbon (C) and nitrogen (N)], physiology (rates of photosynthesis, transpiration, stomatal conductance, and water use efficiency) and yield (grain production) under ambient and drought (50% of ambient) rainfall scenarios. Averaged across Si treatments, drought reduced shoot mass by 21% and grain production by 18%. Si supplementation increased shoot mass by up to 43% and 73% in ambient and drought water treatments, respectively, and restored grain production in droughted plants to levels comparable with plants supplied with ambient rainfall. Si supplementation increased leaf-level water use efficiency by 32-74%, depending on Si supplementation rates. Water supply and Si supplementation did not alter concentrations of C and N, but Si supplementation increased shoot C content by 39% and 83% under ambient and drought conditions, respectively. This equates to an increase from 6.4 to 8.9 tonnes C ha-1 and from 4.03 to 7.35 tonnes C ha-1 under ambient and drought conditions, respectively. We conclude that Si supplementation ameliorated the negative impacts of drought on T. aestivum growth and grain yield, potentially through its beneficial impacts on water use efficiency. Moreover, the beneficial impacts of Si on plant growth and C storage may render Si supplementation a useful tool for both drought mitigation and C sequestration.
Collapse
Affiliation(s)
- Scott N. Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Zhong-Hua Chen
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Rhiannon C. Rowe
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
122
|
Lian Y, Wang A, Peng S, Jia J, Zong L, Yang X, Li J, Zheng R, Yang S, Liao J, Zhou S. Optimization of Sensors Data Transmission Paths for Pest Monitoring Based on Intelligent Algorithms. BIOSENSORS 2022; 12:bios12110948. [PMID: 36354457 PMCID: PMC9687968 DOI: 10.3390/bios12110948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 05/31/2023]
Abstract
The harm of agricultural pests presents a remarkable effect on the quality and safety of edible farm products and the monitoring and identification of agricultural pests based on the Internet of Things (IoT) produce a large amount of data to be transmitted. To achieve efficient and real-time transmission of the sensors' data for pest monitoring, this paper selects 235 geographic coordinates of agricultural pest monitoring points and uses genetic algorithm (GA), particle swarm optimization (PSO), and simulated annealing (SA) to optimize the data transmission paths of sensors. The three intelligent algorithms are simulated by MATLAB software. The results show that the optimized path based on PSO can make the shortest time used for transmitting data, and its corresponding minimum time is 4.868012 s. This study can provide a reference for improving the transmission efficiency of agricultural pest monitoring data, provide a guarantee for developing real-time and effective pest control strategies, and further reduce the threat of pest damage to the safety of farm products.
Collapse
Affiliation(s)
- Yuyang Lian
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou 570228, China
| | - Aqiang Wang
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Sihua Peng
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou 570228, China
| | - Jingjing Jia
- Hainan Key Laboratory for Control of Plant Diseases and Insect Pests, Haikou 571199, China
| | - Liang Zong
- College of Information Engineering, Shaoyang University, Shaoyang 422000, China
| | - Xiaofeng Yang
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Jinlei Li
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Rongjiao Zheng
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Shuyan Yang
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Jianjun Liao
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Shihao Zhou
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| |
Collapse
|
123
|
Lee SJ, Kim TW, Park TH, Lee IH, Jang EC, Kwon SC, Lee HJ, Choi JH, Lee JB. Thermotherapy as an alternative to exercise for metabolic health in obese postmenopausal women: focus on circulating irisin level. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:501-509. [PMID: 36302624 PMCID: PMC9614401 DOI: 10.4196/kjpp.2022.26.6.501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 01/24/2023]
Abstract
Irisin is a myokine caused by exercise that improves insulin resistance and weight loss. However, under unfavorable conditions such as air pollution, and during the pandemic, outdoor activities are uncomfortable. Therefore, in this study, the effect of heat therapy (half bath 42 ± 0.5°C for 30 min) on irisin circulation levels as an exercise alternative for middle-aged obese women after menopause was investigated. Subjects were 33 women aged 49.54 ± 6.04 years, with parameters of height, 160.12 ± 4.33 cm, weight, 69.71 ± 7.52 kg, body surface area 1.73 ± 0.13 m2, body mass index, 27.19 ± 3.40 kg/m2. The results suggest that circulating irisin levels showed a significant increase after one-time thermotherapy (TH-1). However, the increase in circulating irisin levels after 15 treatments (TH-15, 5 days/week, 3 weeks) was significantly varied. The level of adiponectin, which increases fatty oxidation to reduce fatty deposition, increased significantly at TH-1, but further increased at TH-15, which was significantly different from the level of TH-1. In addition, the basic serum free fatty acid (FFA) level was significantly increased at TH-15 compared to TH-1. Significant differences were also found in the lipid profile (body mass index, waist circumference, and % body fat). Thermotherapy can significantly increase the tympanic temperature and induce changes in circulating irisin and adiponectin levels. Thus, it resulted in positive changes in FFA and lipid profiles. Therefore, repeated thermotherapy is effective in increasing circulating irisin levels in postmenopausal obese women.
Collapse
Affiliation(s)
- Seung-Jea Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea,Department of Medical Sciences, Soonchunhyang University, Asan 31238, Korea
| | - Tae-Wook Kim
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Tae-Hwan Park
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - In-Ho Lee
- Department of Occupational and Environmental Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea
| | - Eun-Chul Jang
- Department of Occupational and Environmental Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea
| | - Soon-Chan Kwon
- Department of Occupational and Environmental Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea
| | - Hye-Jin Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea,Department of Medical Sciences, Soonchunhyang University, Asan 31238, Korea
| | - Jeong-Hwan Choi
- Department of Medical Sciences, Soonchunhyang University, Asan 31238, Korea
| | - Jeong-Beom Lee
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea,Department of Medical Sciences, Soonchunhyang University, Asan 31238, Korea,Correspondence Jeong-Beom Lee, E-mail:
| |
Collapse
|
124
|
Yang Q, Veen GF(C, Wagenaar R, Manrubia M, ten Hooven FC, van der Putten WH. Temporal dynamics of range expander and congeneric native plant responses during and after extreme drought events. ECOL MONOGR 2022; 92:e1529. [PMID: 36590329 PMCID: PMC9787952 DOI: 10.1002/ecm.1529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 01/04/2023]
Abstract
Climate change is causing range shifts of many species to higher latitudes and altitudes and increasing their exposure to extreme weather events. It has been shown that range-shifting plant species may perform differently in new soil than related natives; however, little is known about how extreme weather events affect range-expanding plants compared to related natives. In this study we used outdoor mesocosms to study how range-expanding plant species responded to extreme drought in live soil from a habitat in a new range with and without live soil from a habitat in the original range (Hungary). During summer drought, the shoot biomass of the range-expanding plant community declined. In spite of this, in the mixed community, range expanders produced more shoot biomass than congeneric natives. In mesocosms with a history of range expanders in the previous year, native plants produced less biomass. Plant legacy or soil origin effects did not change the response of natives or range expanders to summer drought. During rewetting, range expanders had less biomass than congeneric natives but higher drought resilience (survival) in soils from the new range where in the previous year native plant species had grown. The biomass patterns of the mixed plant communities were dominated by Centaurea spp.; however, not all plant species within the groups of natives and of range expanders showed the general pattern. Drought reduced the litter decomposition, microbial biomass, and abundances of bacterivorous, fungivorous, and carnivorous nematodes. Their abundances recovered during rewetting. There was less microbial and fungal biomass, and there were fewer fungivorous nematodes in soils from the original range where range expanders had grown in the previous year. We concluded that in mixed plant communities of range expanders and congeneric natives, range expanders performed better, under both ambient and drought conditions, than congeneric natives. However, when considering the responses of individual species, we observed variations among pairs of congenerics, so that under the present mixed-community conditions there was no uniformity in responses to drought of range expanders versus congeneric natives. Range-expanding plant species reduced soil fungal biomass and the numbers of soil fungivorous nematodes, suggesting that the effects of range-expanding plant species can trickle up in the soil food web.
Collapse
Affiliation(s)
- Qiang Yang
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- State Key Laboratory of Grassland Agro‐ecosystems, School of Life SciencesLanzhou UniversityLanzhouChina
| | - G. F. (Ciska) Veen
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Roel Wagenaar
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Marta Manrubia
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Freddy C. ten Hooven
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Wim H. van der Putten
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Laboratory of Nematology, Department of Plant SciencesWageningen University (WUR)WageningenThe Netherlands
| |
Collapse
|
125
|
Ferreira FC, Padilha MCSV, Tobadini E, Bellocchi C, Carandina A, Montano N, Soares PPS, Rodrigues GD. Women have a greater cardiac vagal withdrawal to heat stress compared to men. Temperature (Austin) 2022; 10:444-453. [PMID: 38130655 PMCID: PMC10732604 DOI: 10.1080/23328940.2022.2135354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022] Open
Abstract
The heated environment shifts the sympatho-vagal balance toward sympathetic predominance and vagal withdrawal. Women's heart is more reliant on vagal autonomic control, while men's heart is more dependent on sympathetic control. However, sex differences in cardiovascular autonomic responses to heat stress remain unknown. We aimed to investigate the cardiovascular autonomic regulation under heat stress between sexes. Thirty-two young participants (27 ± 4 years old; 16 women) were enrolled in a single visit, resting for 30min at baseline (thermal reference condition TC; ∼24°C) and 30min under a heated environment (HOT; ∼38°C). Blood pressure (BP), skin temperature, electrocardiogram, and respiratory oscillations were continuously recorded. The heart rate variability (HRV) was assessed by spectral analysis (low-frequency [LFnu; sympathetic and vagal] and high-frequency [HFnu; vagal]), and symbolic analysis (0 V% [sympathetic] and 2UV%, and 2LV% [vagal]). The spontaneous baroreflex sensitivity (BRS) was calculated by the gain between BP and R-R within the LF band (αLF). The estimated maximal aerobic capacity and body surface area were employed as covariates in sex comparisons. The effects of HOT were the following: 1) Women have a greater cardiac vagal withdrawal to heat stress compared to men; 2) Sex differences on cardiac autonomic response to heat stress exist after controlling for the effect of estimated physical fitness and body surface area. Therefore, heat stress provokes a higher vagal withdrawal to the heart in women compared to men. It could be attributed to sex per se since significant differences between men and women were not modified after covariate analysis.
Collapse
Affiliation(s)
- Felipe C. Ferreira
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Michelle Cristina S. V. Padilha
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Eleonora Tobadini
- Department of Clinical Sciences and Community Health, University of Milan, 20122Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122Milan, Italy
| | - Chiara Bellocchi
- Department of Clinical Sciences and Community Health, University of Milan, 20122Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122Milan, Italy
| | - Angelica Carandina
- Department of Clinical Sciences and Community Health, University of Milan, 20122Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122Milan, Italy
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, 20122Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122Milan, Italy
| | - Pedro Paulo S. Soares
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Gabriel D. Rodrigues
- Laboratory of Experimental and Applied Exercise Physiology, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
- Department of Clinical Sciences and Community Health, University of Milan, 20122Milan, Italy
| |
Collapse
|
126
|
Franzén M, Francioli Y, Askling J, Kindvall O, Johansson V, Forsman A. Yearly weather variation and surface temperature drives the spatiotemporal dynamics of a threatened butterfly and its host plant. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.917991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It remains unclear to what extent yearly weather variation and spatial variation in microclimate influences the outcome of interacting plant-animal species and whether responses differ between life stages. We collected data over several years on 46 ha on File Hajdar, Gotland, Sweden, and executed a complete mapping of larva nests (n = 776) and imago (n = 5,952) of the marsh fritillary butterfly Euphydryas aurinia and its host plant Succisa pratensis. The phenology of the butterflies and the major nectar plants visited varied among years. The duration of the adult flight period decreased with increasing ambient air temperatures. The density of butterflies, host plants, and host plant leaf size increased between years with increasing precipitation in the preceding year, and decreased with increasing average ambient air temperature in the preceding year. In 2021–2022 we deployed a unmanned aerial vehicle (UAV) with a high-resolution thermal sensor to measure spatial variation in surface temperatures in the study area. We found that survival from the egg to the larva stage increased with increasing surface temperature and host plant density. Host plants and larva nests generally occupied warmer microhabitats compared to imago butterflies. The results further suggested that the relationships linking surface temperature to the densities of imago, larva, host plants, and leaf size differed qualitatively between years. In 2017, larva nests and host plant density increased with increasing surface temperatures, and butterflies showed a non-linear response with a density peak at intermediate temperatures. As a result of the extreme drought in 2018 there was a reduction in maximum leaf size, and in the densities of plants, larvae, and butterflies. Moreover, the slopes of the relationships linking the density of larvae, butterflies, and plants to temperature shifted from linear positive to negative or curvilinear. Our findings demonstrate how yearly weather variation and heterogeneous surface temperatures can drive the spatiotemporal distribution and dynamics of butterflies and their host plants. The context specificity of the responses indicated by our results makes it challenging to project how climate change will affect the dynamics of ecological communities.
Collapse
|
127
|
Zhang XL, Alvarez F, Whiting MJ, Qin XD, Chen ZN, Wu ZJ. Climate Change and Dispersal Ability Jointly Affects the Future Distribution of Crocodile Lizards. Animals (Basel) 2022; 12:ani12202731. [PMID: 36290117 PMCID: PMC9597787 DOI: 10.3390/ani12202731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Crocodile lizards (Shinisaurus crocodilurus) are an endangered, 'living fossil' reptile from a monophyletic family and therefore, a high priority for conservation. We constructed climatic models to evaluate the potential impact of climate change on the distribution of crocodile lizards for the period 2000 to 2100 and determined the key environmental factors that affect the dispersal of this endangered species. For the construction of climatic models, we used 985 presence-only data points and 6 predictor variables which showed excellent performance (AUC = 0.974). The three top-ranked factors predicting crocodile lizard distribution were precipitation of the wettest month (bio13, 37.1%), precipitation of the coldest quarter (bio19, 17.9%), and temperature seasonality (bio4, 14.3%). Crocodile lizards were, just as they are now, widely distributed in the north of Guangdong Province in China and Quảng Ninh Province in Vietnam at the last glacial maximum (LGM). Since the LGM, there has been an increase in suitable habitats, particularly in east-central Guangxi Province, China. Under future global warming scenarios, the potential habitat for crocodile lizards is expected to decrease significantly in the next 100 years. Under the most optimistic scenario, only 7.35% to 6.54% of suitable habitat will remain, and under the worst climatic scenario, only 8.34% to 0.86% of suitable habitat will remain. Models for no dispersal and limited dispersal showed that all crocodile lizards would lose habitat as temperatures increase. Our work contributes to an increased understanding of the current and future spatial distribution of the species, supporting practical management and conservation plans.
Collapse
Affiliation(s)
- Xiao-Li Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin 541004, China
| | - Facundo Alvarez
- Programa de Pós-Graduação em Ecologia e Conservação, Campus Nova Xavantina, Universidade do Estado de Mato Grosso, Nova Xavantina 78200-000, Brazil
| | - Martin J. Whiting
- School of Natural Sciences, Macquarie University, Sydney 2109, Australia
| | - Xu-Dong Qin
- Guangxi Daguishan Crocodile Lizard National Nature Reserve, Hezhou 542800, China
| | - Ze-Ning Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin 541004, China
- Correspondence: (Z.-N.C.); (Z.-J.W.)
| | - Zheng-Jun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin 541004, China
- Correspondence: (Z.-N.C.); (Z.-J.W.)
| |
Collapse
|
128
|
Pan Z, He X, Shao Y, Chen W, Fang B. ROS/JNK-mediated lysosomal injury in rat intestinal epithelial-6 cells during heat stress. J Therm Biol 2022; 109:103326. [DOI: 10.1016/j.jtherbio.2022.103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/28/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
|
129
|
Nunes Carvalho TM, Lima Neto IE, Souza Filho FDA. Uncovering the influence of hydrological and climate variables in chlorophyll-A concentration in tropical reservoirs with machine learning. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74967-74982. [PMID: 35648343 DOI: 10.1007/s11356-022-21168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Climate variability and change, associated with increasing water demands, can have significant implications for water availability. In the Brazilian semi-arid, eutrophication in reservoirs raises the risk of water scarcity. The reservoirs have also a high seasonal and annual variability of water level and volume, which can have important effects on chlorophyll-a concentration (Chla). Assessing the influence of climate and hydrological variability on phytoplankton growth can be important to find strategies to achieve water security in tropical regions with similar problems. This study explores the potential of machine learning models to predict Chla in reservoirs and to understand their relationship with hydrological and climate variables. The model is based mainly on satellite data, which makes the methodology useful for data-scarce regions. Tree-based ensemble methods had the best performances among six machine learning methods and one parametric model. This performance can be considered satisfactory as classical empirical relationships between Chla and phosphorus may not hold for tropical reservoirs. Water volume and the mix-layer depth are inversely related to Chla, while mean surface temperature, water level, and surface solar radiation have direct relationships with Chla. These findings provide insights on how seasonal climate prediction and reservoir operation might influence water quality in regions supplied by superficial reservoirs.
Collapse
Affiliation(s)
- Taís Maria Nunes Carvalho
- Department of Hydraulic and Environmental Engineering, Universidade Federal Do Ceará, Campus do Pici, Bloco 713, Fortaleza, CEP, 60455-760, Brazil
| | - Iran Eduardo Lima Neto
- Department of Hydraulic and Environmental Engineering, Universidade Federal Do Ceará, Campus do Pici, Bloco 713, Fortaleza, CEP, 60455-760, Brazil.
| | - Francisco de Assis Souza Filho
- Department of Hydraulic and Environmental Engineering, Universidade Federal Do Ceará, Campus do Pici, Bloco 713, Fortaleza, CEP, 60455-760, Brazil
| |
Collapse
|
130
|
Zhao Y, Wang R, Zhang E, Guan B, Xu M. Aquatic ecosystem responds differently to press and pulse nutrient disturbances as revealed by a microcosm experiment. Ecol Evol 2022; 12:e9438. [PMID: 36284519 PMCID: PMC9587460 DOI: 10.1002/ece3.9438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022] Open
Abstract
Due to climate change and increasing anthropogenic activities, lakes are disturbed frequently, usually by press (e.g., diffused pollution, rising temperatures) or pulse (e.g., storms, rainfall, pollution events) disturbances. Both press and pulse disturbances can affect abiotic and biotic environments, changing the structure of ecosystems and affecting ecosystem services. To confront with the effects of climate change and increasing anthropogenic activities, understanding the different effects of press and pulse disturbances on lake ecosystems is essential. This study assessed the effect of press and pulse disturbances of phosphorus on a microcosmic aquatic ecosystem by measuring the total phosphorus (TP), algae density, and physiological indicators of submerged macrophytes. We found that the microcosmic aquatic ecosystem responded differently to press and pulse disturbances. Our results suggested that it had a lower resistance to pulse phosphorus disturbances than to press phosphorus disturbances. There were significantly higher nutrient concentrations and algal densities in the pulse treatment than in the press treatment. Positive feedback was found between the biomass of submerged macrophytes and the water quality. There was a higher submerged macrophytes biomass at low TP concentration and algal density. In the context of climate change, press and pulse disturbances could have severe impacts on lake ecosystems. Our findings will provide some insight for further research and lake management.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Lake Science and EnvironmentNanjing Institute of Geography and Limnology, Chinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Rong Wang
- State Key Laboratory of Lake Science and EnvironmentNanjing Institute of Geography and Limnology, Chinese Academy of SciencesNanjingChina
| | - Enlou Zhang
- State Key Laboratory of Lake Science and EnvironmentNanjing Institute of Geography and Limnology, Chinese Academy of SciencesNanjingChina
| | - Baohua Guan
- State Key Laboratory of Lake Science and EnvironmentNanjing Institute of Geography and Limnology, Chinese Academy of SciencesNanjingChina
| | - Min Xu
- State Key Laboratory of Lake Science and EnvironmentNanjing Institute of Geography and Limnology, Chinese Academy of SciencesNanjingChina
| |
Collapse
|
131
|
Omeyer LCM, Duncan EM, Aiemsomboon K, Beaumont N, Bureekul S, Cao B, Carrasco LR, Chavanich S, Clark JR, Cordova MR, Couceiro F, Cragg SM, Dickson N, Failler P, Ferraro G, Fletcher S, Fong J, Ford AT, Gutierrez T, Shahul Hamid F, Hiddink JG, Hoa PT, Holland SI, Jones L, Jones NH, Koldewey H, Lauro FM, Lee C, Lewis M, Marks D, Matallana-Surget S, Mayorga-Adame CG, McGeehan J, Messer LF, Michie L, Miller MA, Mohamad ZF, Nor NHM, Müller M, Neill SP, Nelms SE, Onda DFL, Ong JJL, Pariatamby A, Phang SC, Quilliam R, Robins PE, Salta M, Sartimbul A, Shakuto S, Skov MW, Taboada EB, Todd PA, Toh TC, Valiyaveettil S, Viyakarn V, Wonnapinij P, Wood LE, Yong CLX, Godley BJ. Priorities to inform research on marine plastic pollution in Southeast Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156704. [PMID: 35718174 DOI: 10.1016/j.scitotenv.2022.156704] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Southeast Asia is considered to have some of the highest levels of marine plastic pollution in the world. It is therefore vitally important to increase our understanding of the impacts and risks of plastic pollution to marine ecosystems and the essential services they provide to support the development of mitigation measures in the region. An interdisciplinary, international network of experts (Australia, Indonesia, Ireland, Malaysia, the Philippines, Singapore, Thailand, the United Kingdom, and Vietnam) set a research agenda for marine plastic pollution in the region, synthesizing current knowledge and highlighting areas for further research in Southeast Asia. Using an inductive method, 21 research questions emerged under five non-predefined key themes, grouping them according to which: (1) characterise marine plastic pollution in Southeast Asia; (2) explore its movement and fate across the region; (3) describe the biological and chemical modifications marine plastic pollution undergoes; (4) detail its environmental, social, and economic impacts; and, finally, (5) target regional policies and possible solutions. Questions relating to these research priority areas highlight the importance of better understanding the fate of marine plastic pollution, its degradation, and the impacts and risks it can generate across communities and different ecosystem services. Knowledge of these aspects will help support actions which currently suffer from transboundary problems, lack of responsibility, and inaction to tackle the issue from its point source in the region. Being profoundly affected by marine plastic pollution, Southeast Asian countries provide an opportunity to test the effectiveness of innovative and socially inclusive changes in marine plastic governance, as well as both high and low-tech solutions, which can offer insights and actionable models to the rest of the world.
Collapse
Affiliation(s)
- Lucy C M Omeyer
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom.
| | - Emily M Duncan
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom; Institute of Marine Sciences - Okeanos, University of the Azores, Rua Professor Doutor Frederico Machado 4, 9901-862 Horta, Portugal.
| | - Kornrawee Aiemsomboon
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nicola Beaumont
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, United Kingdom
| | - Sujaree Bureekul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Luis R Carrasco
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Suchana Chavanich
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Aquatic Resources Research Institute Chulalongkorn University, Bangkok 10330, Thailand
| | - James R Clark
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, United Kingdom
| | - Muhammad R Cordova
- Research Centre for Oceanography, Indonesian Institute of Sciences (LIPI), Jalan Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia; Research Centre for Oceanography, National Research and Innovation Agency (BRIN), Jalan Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia
| | - Fay Couceiro
- School of Civil Engineering and Surveying, Faculty of Technology, University of Portsmouth, Portsmouth, Hampshire PO1 3AH, United Kingdom
| | - Simon M Cragg
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, Hampshire PO4 9LY, United Kingdom; Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Neil Dickson
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Pierre Failler
- Centre for Blue Governance, Department of Economics and Finance, University of Portsmouth, Portsmouth, Hampshire PO1 3DE, United Kingdom
| | - Gianluca Ferraro
- Centre for Blue Governance, Department of Economics and Finance, University of Portsmouth, Portsmouth, Hampshire PO1 3DE, United Kingdom
| | - Stephen Fletcher
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, Hampshire PO1 3DE, United Kingdom; UN Environment World Conservation Monitoring Centre, Cambridge, United Kingdom
| | - Jenny Fong
- Tropical Marine Science Institute, National University of Singapore, Singapore
| | - Alex T Ford
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, Hampshire PO4 9LY, United Kingdom
| | - Tony Gutierrez
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Fauziah Shahul Hamid
- Centre for Research in Waste Management, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jan G Hiddink
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Pham T Hoa
- School of Biotechnology, International University, Vietnam National University, Ho Chi Hinh City, Viet Nam
| | - Sophie I Holland
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Lowenna Jones
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom; Department of Politics and International Relations, Faculty of Social Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Nia H Jones
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Heather Koldewey
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom; Zoological Society of London, London, United Kingdom
| | - Federico M Lauro
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Charlotte Lee
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Matt Lewis
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Danny Marks
- School of Law and Government, Dublin City University, Dublin 9 Dublin, Ireland
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | | | - John McGeehan
- Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Lauren F Messer
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Laura Michie
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, Hampshire PO4 9LY, United Kingdom
| | - Michelle A Miller
- Asia Research Institute, National University of Singapore, Singapore
| | - Zeeda F Mohamad
- Department of Science and Technology Studies, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Hazimah Mohamed Nor
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Moritz Müller
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching 93350, Malaysia
| | - Simon P Neill
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Sarah E Nelms
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom
| | - Deo Florence L Onda
- The Marine Science Institute, Velasquez St., University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Joyce J L Ong
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Agamuthu Pariatamby
- Jeffrey Sachs Centre on Sustainable Development, Sunway University, Selangor Darul Ehsan 47500, Malaysia
| | - Sui C Phang
- Centre for Blue Governance, Department of Economics and Finance, University of Portsmouth, Portsmouth, Hampshire PO1 3DE, United Kingdom; The Nature Conservancy, London Office, 5 Chancery Lane Suite 403, London WC2A 1LG, United Kingdom
| | - Richard Quilliam
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Peter E Robins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Maria Salta
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Aida Sartimbul
- Faculty of Fisheries and Marine Sciences, Universitas Brawijaya, Malang 65145, East Java, Indonesia; Marine Resources Exploration and Management (MEXMA) Research Group, Universitas Brawijaya, Malang 65145, East Java, Indonesia
| | - Shiori Shakuto
- Department of Anthropology, School of Social and Political Sciences, The University of Sydney, Social Sciences Building, NSW 2006, Australia
| | - Martin W Skov
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Evelyn B Taboada
- BioProcess Engineering and Research Centre, Department of Chemical Engineering, School of Engineering, University of San Carlos, Cebu City 6000, Philippines
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Tai Chong Toh
- Tropical Marine Science Institute, National University of Singapore, Singapore; College of Alice & Peter Tan, National University of Singapore, 8 College Avenue East, 138615, Singapore
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Voranop Viyakarn
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Aquatic Resources Research Institute Chulalongkorn University, Bangkok 10330, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Louisa E Wood
- Centre for Blue Governance, Department of Economics and Finance, University of Portsmouth, Portsmouth, Hampshire PO1 3DE, United Kingdom
| | - Clara L X Yong
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Brendan J Godley
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom
| |
Collapse
|
132
|
Ørsted M, Jørgensen LB, Overgaard J. Finding the right thermal limit: a framework to reconcile ecological, physiological and methodological aspects of CTmax in ectotherms. J Exp Biol 2022; 225:277015. [DOI: 10.1242/jeb.244514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
Upper thermal limits (CTmax) are frequently used to parameterize the fundamental niche of ectothermic animals and to infer biogeographical distribution limits under current and future climate scenarios. However, there is considerable debate associated with the methodological, ecological and physiological definitions of CTmax. The recent (re)introduction of the thermal death time (TDT) model has reconciled some of these issues and now offers a solid mathematical foundation to model CTmax by considering both intensity and duration of thermal stress. Nevertheless, the physiological origin and boundaries of this temperature–duration model remain unexplored. Supported by empirical data, we here outline a reconciling framework that integrates the TDT model, which operates at stressful temperatures, with the classic thermal performance curve (TPC) that typically describes biological functions at permissive temperatures. Further, we discuss how the TDT model is founded on a balance between disruptive and regenerative biological processes that ultimately defines a critical boundary temperature (Tc) separating the TDT and TPC models. Collectively, this framework allows inclusion of both repair and accumulation of heat stress, and therefore also offers a consistent conceptual approach to understand the impact of high temperature under fluctuating thermal conditions. Further, this reconciling framework allows improved experimental designs to understand the physiological underpinnings and ecological consequences of ectotherm heat tolerance.
Collapse
Affiliation(s)
- Michael Ørsted
- Aarhus University Section for Zoophysiology, Department of Biology , , 8000 Aarhus C , Denmark
| | | | - Johannes Overgaard
- Aarhus University Section for Zoophysiology, Department of Biology , , 8000 Aarhus C , Denmark
| |
Collapse
|
133
|
Wang J, Qu M, Wang Y, He N, Li J. Plant traits and community composition drive the assembly processes of abundant and rare fungi across deserts. Front Microbiol 2022; 13:996305. [PMID: 36246243 PMCID: PMC9554466 DOI: 10.3389/fmicb.2022.996305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
The difference in community assembly mechanisms between rare and abundant fungi in deserts remains unknown. Hence, we compared the distribution patterns of abundant and rare fungi, and assessed the factors driving their assembly mechanisms across major vegetation types (shrubby desert, semi-shrubby and dwarf semi-shrubby desert, dwarf semi-arboreous desert, and shrubby steppe desert) of Chinese deserts. We assessed abundant and rare fungal subcommunities base on the sequencing data of fungal ITS data. Abundant fungal assembly was more affected by neutral processes than the rare. Null model and VPA analysis indicated that heterogeneous selection dominated rare sub-communities, whereas abundant fungal assembly was mainly determined by heterogeneous selection, dispersal limitation and other, unknown processes together. As a result, abundant sub-communities exhibited a higher species turnover rate than the rare. Hierarchical partitioning analysis indicated that soil conditions and plant attributes drove the assembly processes of abundant and rare fungi, respectively. Meanwhile, the relative strength of different assembly processes differed significantly among four vegetation types. In addition, we found that plant functional traits and composition played more critical roles in shaping the assembly processes of rare fungi than those of abundant fungi. Taken together, our findings collectively suggest that rare and abundant fungi exhibit differential ecological patterns that are driven by distinct assembly processes in deserts. We emphasize that the assembly processes of abundant and rare fungi are dependent on different abiotic and biotic factors in desert ecosystems.
Collapse
Affiliation(s)
- Jianming Wang
- School of Ecology Nature Conservation, Beijing Forestry University, Beijing, China
| | - Mengjun Qu
- School of Ecology Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yin Wang
- School of Ecology Nature Conservation, Beijing Forestry University, Beijing, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jingwen Li
- School of Ecology Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
134
|
Atiqul Haq SM. Extreme Weather Events and Spiraling Debt: A Double Whammy for Bangladeshis Affected by Climate Change. Front Psychol 2022; 13:879219. [PMID: 36204766 PMCID: PMC9530975 DOI: 10.3389/fpsyg.2022.879219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
This study explores how people living in different areas of Bangladesh prone to extreme weather events (EWEs) in the form of floods, cyclones, or droughts perceive climate change, the impacts they suffer in the face of EWEs, and how they cope with their consequences. Qualitative data was collected through in-depth interviews with 73 respondents from three different areas of Bangladesh and subsequently analyzed. The results show that there are similarities and differences between respondents from regions with different vulnerabilities in terms of their views and perceptions about what climate change is its causes, the consequences of EWEs, and the strategies they adopt to cope with their effects. Respondents understood climate change based on their own local experiences of climate change and EWEs. A main finding is that people in all three areas are driven to borrow money in the face of these events as a survival strategy and to be able to continue to support their families. As the climate is set to change rapidly and EWEs to occur more frequently and regularly, it will become routine for those most vulnerable to them to have to cope and live with their impacts. Increased reliance on borrowing risks leading to a debt spiral for already vulnerable people. They are thus subject to a “double whammy”: on the one hand the direct effects of climate change and EWEs on their lives and livelihoods and on the other getting caught in a debt spiral sparked by times of crisis.
Collapse
|
135
|
Plaistow SJ, Brunner FS, O’Connor M. Quantifying population and clone-specific non-linear reaction norms to food gradients in Daphnia magna. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.982697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phenotypic plasticity is normally quantified as a reaction norm which details how trait expression changes across an environmental gradient. Sometime reaction norms are linear, but often reaction norms are assumed to be linear because plasticity is typically quantified as the difference in trait expression measured in two environments. This simplification limits how plastic responses vary between genotypes and may also bias the predictions of models investigating how plasticity influences a population’s ability to adapt to a changing environment. Consequently, there is a pressing need to characterize the real shape of reaction norms and their genetic variability across ecologically relevant environmental gradients. To address this knowledge gap we measured the multi-trait plastic response of 7 Daphnia magna clones from the same population across a broad resource gradient. We used a Random Regression Mixed Model approach to characterize and quantify average and clone-specific responses to resource variation. Our results demonstrate that non-linear models outperformed a linear model for all 4 of the life-history traits we measured. The plastic reaction norms of all 4 traits were similar in shape and were often best described by a non-linear asymptotic model. Clonal variation in non-linear plastic responses was detectable for 3 out of the 4 traits that we measured although the nature and magnitude of variation across the resource gradient was trait-specific. We interpret our findings with respect to the impact that plasticity has on the evolutionary potential of a population in different resource environments.
Collapse
|
136
|
Bai D, Wan X, Zhang L, Campos-Arceiz A, Wei F, Zhang Z. The recent Asian elephant range expansion in Yunnan, China, is associated with climate change and enforced protection efforts in human-dominated landscapes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.889077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently, the northward movement of Asian elephants (Elephas maximus) in Yunnan, China, has attracted international attention. Climate change or human disturbances have been proposed to be the key drivers, but these hypotheses have not been rigorously tested. In this study, we quantified the relationship between climate change and human impacts on the recent range expansion of Asian elephants in southwest China. We found that the first observation probability of this species in a new place during 1959–2021 had a significant and positive association with change in air temperature and human density, resulting in a movement toward a high-latitude region with a warmer climate and higher human density; however, its association with precipitation was scale-dependent in time: positive or negative during the past 10 or 5 years, respectively. Under the enforced protection policy, human-dominated areas became preferred habitats for elephants. Our results indicate that climate change and enforced protection efforts in human-dominated landscapes in the last few decades are significant drivers of the recent range expansion of Asian elephants in Yunnan, China. It is necessary to expand the current protected areas or habitat corridors toward the north or set up new reserves in the north and set up barriers between human settlements and elephant habitats to facilitate elephant movements and minimize human-elephant conflicts under accelerated global change.
Collapse
|
137
|
Wang MC, Furukawa F, Wang CW, Peng HW, Lin CC, Lin TH, Tseng YC. Multigenerational inspections of environmental thermal perturbations promote metabolic trade-offs in developmental stages of tropical fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119605. [PMID: 35691444 DOI: 10.1016/j.envpol.2022.119605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/16/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Global warming both reduces global temperature variance and increases the frequency of extreme weather events. In response to these ambient perturbations, animals may be subject to trans- or intra-generational phenotype modifications that help to maintain homeostasis and fitness. Here, we show how temperature-associated transgenerational plasticity in tilapia affects metabolic trade-offs during developmental stages under a global warming scenario. Tropical tilapia reared at a stable temperature of 27 °C for a decade were divided into two temperature-experience groups for four generations of breeding. Each generation of one group was exposed to a single 15 °C cold-shock experience during its lifetime (cold-experienced CE group), and the other group was kept stably at 27 °C throughout their lifetimes (cold-naïve CN group). The offspring at early life stages from the CE and CN tilapia were then assessed by metabolomics-based profiling, and the results implied that parental cold-experience might affect energy provision during reproduction. Furthermore, at early life stages, progeny may be endowed with metabolic traits that help the animals cope with ambient temperature perturbations. This study also applied the feature rescaling and Uniform Manifold Approximation and Projection (UMAP) to visualize metabolic dynamics, and the result could effectively decompose the complex omic-based datasets to represent the energy trade-off variability. For example, the carbohydrate to free amino acid conversion and enhanced compensatory features appeared to be hypothermic-responsive traits. These multigenerational metabolic effects suggest that the tropical ectothermic tilapia may exhibit transgenerational phenotype plasticity, which could optimize energy allocation under ambient temperature challenges. Knowledge about such metabolism-related transgenerational plasticity effects in ectothermic aquatic species may allow us to better predict how adaptive mechanisms will affect fish populations in a climate with narrow temperature variation and frequent extreme weather events.
Collapse
Affiliation(s)
- Min-Chen Wang
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, I-Lan County, Taiwan; Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei City, Taiwan; Department of Life Science, National Taiwan Normal University, Taipei City, Taiwan
| | - Fumiya Furukawa
- School of Marine Biosciences, Kitasato University, Tokyo, Japan
| | - Ching-Wei Wang
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Hui-Wen Peng
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, I-Lan County, Taiwan
| | - Ching-Chun Lin
- Biomedical Translation Research Center, Academia Sinica, Taipei City, Taiwan
| | - Tzu-Hao Lin
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, I-Lan County, Taiwan.
| |
Collapse
|
138
|
Lu LC, Chiu SY, Chiu YH, Chang TH. Sustainability efficiency of climate change and global disasters based on greenhouse gas emissions from the parallel production sectors - A modified dynamic parallel three-stage network DEA model. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115401. [PMID: 35660833 DOI: 10.1016/j.jenvman.2022.115401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/18/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
This study employed dynamic three-stage network data envelopment analysis (DEA), considering parallel production in the agricultural and industrial sectors, to assess the impact of greenhouse gas emissions on the climate change and natural disaster stages. The results revealed the following: (1) The dynamic overall efficiencies of more countries are decreasing than are increasing. The seven countries with the poorest overall efficiency ranking (Myanmar, Vietnam, Thailand, Bangladesh, the Philippines, Pakistan, and India) are mostly located in Southeast Asia. (2) The number of countries that maintained low efficiency over the long term is greater than those that retained high efficiency over the long term. Myanmar, Mexico, India, the Philippines, Thailand, and Vietnam maintained efficiency scores below 0.5, whereas South Korea, Japan, China, and New Zealand maintained efficiency scores above 0.8. (3) More than one-third of countries exhibited declines in efficiency over time, and half were European countries. Less than one-third of countries maintained their efficiency, and less than one-third of countries gradually improved. (4) Approximately half of the countries' efficiency scores were lower than the global average. The efficiency scores of the industrial sector exhibited a greater room for improvement on the input factors than did those of the agricultural sector. (5) Total factor energy efficiency analysis revealed that methane emissions and CO2 emissions have a similar level but large room for improvement across countries. Improving input factors in the production stage can ultimately mitigate inefficiencies in the climate change and natural disaster stages. There are still other important factors related to climate change, such as sea surface temperature, forest areas, or air pollution indicators, that could be considered in future research. The occurrence of global disasters could also be discussed in groups according to the region where the countries are located in the future.
Collapse
Affiliation(s)
- Liang-Chun Lu
- Department of Multimedia and Game Science, Lunghwa University of Science and Technology, 300, Sec. 1, Wanshou Rd., Guishan District, Taoyuan City, 333, Taiwan, ROC.
| | - Shih-Yung Chiu
- Department of Economics, Soochow University, 56, Kueiyang St., Sec. 1, Taipei, 100, Taiwan, ROC.
| | - Yung-Ho Chiu
- Department of Economics, Soochow University, 56, Kueiyang St., Sec. 1, Taipei, 100, Taiwan, ROC.
| | - Tzu-Han Chang
- Department of Economics, Soochow University, 56, Kueiyang St., Sec. 1, Taipei, 100, Taiwan, ROC.
| |
Collapse
|
139
|
Holub P, Klem K, Veselá B, Surá K, Urban O. Interactive effects of UV radiation and water deficit on production characteristics in upland grassland and their estimation by proximity sensing. Ecol Evol 2022; 12:e9330. [PMID: 36188527 PMCID: PMC9502068 DOI: 10.1002/ece3.9330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/29/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
An increase in extreme weather and changes in other conditions associated with ongoing climate change are exposing ecosystems to a very wide range of environmental drivers that interact in ways which are not sufficiently understood. Such uncertainties in how ecosystems respond to multifactorial change make it difficult to predict the impacts of environmental change on ecosystems and their functions. Since water deficit (WD) and ultraviolet radiation (UV) trigger similar protective mechanisms in plants, we tested the hypothesis that UV modulates grassland acclimation to WD, mainly through changes in the root/shoot (R/S) ratio, and thus enhances the ability of grassland to acquire water from the soil and hence maintain its productivity. We also tested the potential of spectral reflectance and thermal imaging for monitoring the impacts of WD and UV on grassland production parameters. The experimental plots were manipulated by lamellar shelters allowing precipitation to pass through or to be excluded. The lamellas were either transmitting or blocking the UV. The results show that WD resulted in a significant decrease in aboveground biomass (AB). In contrast, belowground biomass (BB), R/S ratio, and total biomass (TB) increased significantly in response to WD, especially in UV exclusion treatment. UV exposure had a significant effect on AB and BB, but only in the last year of the experiment. The differences in the effect of WD between years show that the effect of precipitation removal is largely influenced by the potential evapotranspiration (PET) in a given year and hence mainly by air temperatures, while the resulting effect on production parameters is best correlated with the water balance given by the difference between precipitation and PET. Canopy temperature and selected spectral reflectance indices showed a significant response to WD and also significant relationships with morphological (AB, R/S) and biochemical (C/N ratio) parameters. In particular, the vegetation indices NDVI and RDVI provided the best correlations of biomass changes caused by WD and thus the highest potential to remotely sense drought effects on terrestrial vegetation.
Collapse
Affiliation(s)
- Petr Holub
- Global Change Research Institute of the Czech Academy of SciencesBrnoCzech Republic
| | - Karel Klem
- Global Change Research Institute of the Czech Academy of SciencesBrnoCzech Republic
- Mendel University in BrnoBrnoCzech Republic
| | - Barbora Veselá
- Global Change Research Institute of the Czech Academy of SciencesBrnoCzech Republic
| | - Kateřina Surá
- Global Change Research Institute of the Czech Academy of SciencesBrnoCzech Republic
- Mendel University in BrnoBrnoCzech Republic
| | - Otmar Urban
- Global Change Research Institute of the Czech Academy of SciencesBrnoCzech Republic
| |
Collapse
|
140
|
Zeppetello LRV, Raftery AE, Battisti DS. Probabilistic projections of increased heat stress driven by climate change. COMMUNICATIONS EARTH & ENVIRONMENT 2022; 3:183. [PMID: 39421457 PMCID: PMC11485542 DOI: 10.1038/s43247-022-00524-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/04/2022] [Indexed: 10/19/2024]
Abstract
The Heat Index is a metric that quantifies heat exposure in human beings. Here, using probabilistic emission projections, we show that changes in the Heat Index driven by anthropogenic CO2 emissions will increase global exposure to dangerous environments in the coming decades. Even if the Paris Agreement goal of limiting global warming to 2 °C is met, the exposure to dangerous Heat Index levels will likely increase by 50-100% across much of the tropics and increase by a factor of 3-10 in many regions throughout the midlatitudes. Without emissions reductions more aggressive than those considered possible by our statistical projection, it is likely that by 2100, many people living in tropical regions will be exposed to dangerously high Heat Index values during most days of each typical year, and that the kinds of deadly heat waves that have been rarities in the midlatitudes will become annual occurrences.
Collapse
Affiliation(s)
- Lucas R. Vargas Zeppetello
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - Adrian E. Raftery
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - David S. Battisti
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
141
|
Frisk CA, Xistris-Songpanya G, Osborne M, Biswas Y, Melzer R, Yearsley JM. Phenotypic variation from waterlogging in multiple perennial ryegrass varieties under climate change conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:954478. [PMID: 35991411 PMCID: PMC9387306 DOI: 10.3389/fpls.2022.954478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Identifying how various components of climate change will influence ecosystems and vegetation subsistence will be fundamental to mitigate negative effects. Climate change-induced waterlogging is understudied in comparison to temperature and CO2. Grasslands are especially vulnerable through the connection with global food security, with perennial ryegrass dominating many flood-prone pasturelands in North-western Europe. We investigated the effect of long-term waterlogging on phenotypic responses of perennial ryegrass using four common varieties (one diploid and three tetraploid) grown in atmospherically controlled growth chambers during two months of peak growth. The climate treatments compare ambient climatological conditions in North-western Europe to the RCP8.5 climate change scenario in 2050 (+2°C and 550 ppm CO2). At the end of each month multiple phenotypic plant measurements were made, the plants were harvested and then allowed to grow back. Using image analysis and principal component analysis (PCA) methodologies, we assessed how multiple predictors (phenotypic, environmental, genotypic, and temporal) influenced overall plant performance, productivity and phenotypic responses. Long-term waterlogging was found to reduce leaf-color intensity, with younger plants having purple hues indicative of anthocyanins. Plant performance and yield was lower in waterlogged plants, with tetraploid varieties coping better than the diploid one. The climate change treatment was found to reduce color intensities further. Flooding was found to reduce plant productivity via reductions in color pigments and root proliferation. These effects will have negative consequences for global food security brought on by increased frequency of extreme weather events and flooding. Our imaging analysis approach to estimate effects of waterlogging can be incorporated into plant health diagnostics tools via remote sensing and drone-technology.
Collapse
Affiliation(s)
- Carl A. Frisk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
| | | | - Matthieu Osborne
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Yastika Biswas
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Rainer Melzer
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
| | - Jon M. Yearsley
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Earth Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
142
|
Das N, Sagar A, Bhattacharjee R, Agnihotri AK, Ohri A, Gaur S. Time series forecasting of temperature and turbidity due to global warming in river Ganga at and around Varanasi, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:617. [PMID: 35900701 DOI: 10.1007/s10661-022-10274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The fluctuation in the river ecosystem network due to climate change-induced global warming affects aquatic organisms, water quality, and other ecological processes. Assessment of climate change-induced global warming impacts on regional hydrological processes is vital for effective water resource management and planning. The global warming effect on river water quality has been analyzed in this work. The river Ganga stretch near the Varanasi region has been chosen as the study area for this analysis. The air temperature has been predicted using the seasonal autoregressive integrated moving average (SARIMA) and the Prophet model. The Prophet model has shown better accuracy with a root mean square percent error (RMSPE) value of 3.2% compared to the SARIMA model, which has an RMPSE value of 7.54%. The river temperature, turbidity, and nighttime radiance values have been predicted for the years 2022 and 2025 using the long short-term memory (LSTM) algorithm. The anthropogenic effect on the river has been evaluated by using the nighttime radiance imageries. The predicted average river temperature shows an increment of 0.58 °C and 0.63 °C for the city and non-city river stretches, respectively, in 2025 compared to 2022. Similarly, the river turbidity shows an increment of 1.21 nephelometric turbidity units (NTU) and 1.17 NTU for the city and non-city stretch, respectively, in 2025 compared to 2022. For future predicted years, the nighttime radiance values for the region situated near the city river stretch show a significant rise compared to the region that lies nearby the non-city river stretch.
Collapse
Affiliation(s)
- Nilendu Das
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Avikal Sagar
- Department of Civil Engineering, National Institute of Technology Surathkal, Mangalore, 575025, India
| | - Rajarshi Bhattacharjee
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| | - Ashwani Kumar Agnihotri
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Anurag Ohri
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Shishir Gaur
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| |
Collapse
|
143
|
Wang X, Li Y, Yan M, Gong X. Changes in temperature and precipitation extremes in the arid regions of China during 1960–2016. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.902813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Extreme climate events have a greater impact on natural and human systems than average climate. The spatial and temporal variation of 16 temperature and nine precipitation extremal indices was investigated using the daily maximum and minimum surface air temperature and precipitation records from 113 meteorological stations in China’s arid regions from 1960 to 2016. The warmth indices [warm spell duration (WSDI); numbers of warm nights, warm days, tropical nights (TR), and summer days (SU)] increased significantly. On the contrary, the cold indices [numbers of frost days (FD), ice days (ID), cool days, and cool nights; cold spell duration (CSDI)] decreased significantly. The number of FD decreased fastest (−3.61 days/decade), whereas the growing season length (GSL) increased fastest (3.17 days/decade). The trend was strongest for diurnal temperature range (DTR) (trend rate = −7.29, P < 0.001) and minimum night temperature (trend rate = 7.70, P < 0.001). The cold extreme temperature events increased with increasing latitude, but the warm extreme temperature events decreased. Compared with temperature indices, the precipitation indices exhibited much weaker changes and less spatial continuity. Overall, changes in precipitation extremes present wet trends, although most of the changes are insignificant. The regionally averaged total annual precipitation for wet days increased by 4.78 mm per decade, and extreme precipitation events have become more intense and frequent during the study period. The spatial variability of extreme precipitation in the region was primarily influenced by longitude. Furthermore, the climate experienced a warm-wet abrupt climate change during 1990s.
Collapse
|
144
|
Tian W, Cao X, Peng K. Technology for Position Correction of Satellite Precipitation and Contributions to Error Reduction-A Case of the '720' Rainstorm in Henan, China. SENSORS 2022; 22:s22155583. [PMID: 35898087 PMCID: PMC9329980 DOI: 10.3390/s22155583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022]
Abstract
In July 2021, an extreme precipitation event occurred in Henan, China, causing tremendous damage and deaths; so, it is very important to study the observation technology of extreme precipitation. Surface rain gauge precipitation observations have high accuracy but low resolution and coverage. Satellite remote sensing has high spatial resolution and wide coverage, but has large precipitation accuracy and distribution errors. Therefore, how to merge the above two kinds of precipitation observations effectively to obtain heavy precipitation products with more accurate geographic distributions has become an important but difficult scientific problem. In this paper, a new information fusion method for improving the position accuracy of satellite precipitation estimations is used based on the idea of registration and warping in image processing. The key point is constructing a loss function that includes a term for measuring two information field differences and a term for a warping field constraint. By minimizing the loss function, the purpose of position error correction of quantitative precipitation estimation from FY-4A and Integrated Multisatellite Retrievals of GPM are achieved, respectively, using observations from surface rain gauge stations. The errors of different satellite precipitation products relative to ground stations are compared and analyzed before and after position correction, using the ‘720’ extreme precipitation in Henan, China, as an example. The experimental results show that the final run has the best performance and FY-4A has the worse performance. After position corrections, the precipitation products of the three satellites are improved, among which FY-4A has the largest improvement, IMERG final run has the smallest improvement, and IMERG late run has the best performance and the smallest error. Their mean absolute errors are reduced by 23%, 14%, and 16%, respectively, and their correlation coefficients with rain gauge stations are improved by 63%, 9%, and 16%, respectively. The error decomposition model is used to examine the contributions of each error component to the total error. The results show that the new method improves the precipitation products of GPM primarily in terms of hit bias. However, it does not significantly reduce the hit bias of precipitation products of FY-4A while it reduces the total error by reducing the number of false alarms.
Collapse
Affiliation(s)
- Wenlong Tian
- College of Computer, National University of Defense Technology, Changsha 410000, China; (W.T.); (K.P.)
| | - Xiaoqun Cao
- College of Computer, National University of Defense Technology, Changsha 410000, China; (W.T.); (K.P.)
- College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410000, China
- Correspondence: ; Tel.: +86-135-1749-8960
| | - Kecheng Peng
- College of Computer, National University of Defense Technology, Changsha 410000, China; (W.T.); (K.P.)
| |
Collapse
|
145
|
Pervasive alterations to snow-dominated ecosystem functions under climate change. Proc Natl Acad Sci U S A 2022; 119:e2202393119. [PMID: 35858427 PMCID: PMC9335325 DOI: 10.1073/pnas.2202393119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Climate change projections consistently demonstrate that warming temperatures and dwindling seasonal snowpack will elicit cascading effects on ecosystem function and water resource availability. Despite this consensus, little is known about potential changes in the variability of ecohydrological conditions, which is also required to inform climate change adaptation and mitigation strategies. Considering potential changes in ecohydrological variability is critical to evaluating the emergence of trends, assessing the likelihood of extreme events such as floods and droughts, and identifying when tipping points may be reached that fundamentally alter ecohydrological function. Using a single-model Large Ensemble with sophisticated terrestrial ecosystem representation, we characterize projected changes in the mean state and variability of ecohydrological processes in historically snow-dominated regions of the Northern Hemisphere. Widespread snowpack reductions, earlier snowmelt timing, longer growing seasons, drier soils, and increased fire risk are projected for this century under a high-emissions scenario. In addition to these changes in the mean state, increased variability in winter snowmelt will increase growing-season water deficits and increase the stochasticity of runoff. Thus, with warming, declining snowpack loses its dependable buffering capacity so that runoff quantity and timing more closely reflect the episodic characteristics of precipitation. This results in a declining predictability of annual runoff from maximum snow water equivalent, which has critical implications for ecosystem stress and water resource management. Our results suggest that there is a strong likelihood of pervasive alterations to ecohydrological function that may be expected with climate change.
Collapse
|
146
|
Han JHJ, Stefanak MP, Rodgers KS. Low-level nutrient enrichment during thermal stress delays bleaching and ameliorates calcification in three Hawaiian reef coral species. PeerJ 2022; 10:e13707. [PMID: 35855432 PMCID: PMC9288827 DOI: 10.7717/peerj.13707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/19/2022] [Indexed: 01/17/2023] Open
Abstract
Terrestrial-based nutrient pollution has emerged as one of the most detrimental factors to coral health in many reef habitats. Recent studies have shown that excessive dissolved inorganic nutrients can reduce coral thermal tolerance thresholds and even exacerbate bleaching during thermal stress, yet the effects of minor nutrient enrichment under heat stress have not been extensively studied. In this study, Lobactis scutaria, Montipora capitata, and Pocillopora acuta colonies under heated conditions (~30.5 °C) were exposed to low and balanced nitrogen and phosphorous concentrations over a 31-day heating period. Coral colonies were collected from Kāne'ohe Bay, O'ahu, which has a unique history of nutrient pollution, and held in mesocosms that allowed for environmental manipulation yet are also influenced by local field conditions. Principal findings included delays in the bleaching of nutrient-enriched heated colonies as compared to heated-only colonies, in addition to relatively greater calcification rates and lower proportions of early-stage paling. Species-specific outcomes were prevalent, with L. scutaria demonstrating no difference in calcification with enrichment under heat stress. By the end of the heating stage, however, many heated colonies were at least partially impacted by bleaching or mortality. Despite this, our findings suggest that low levels of balanced nutrient enrichment may serve as a mitigative force during thermal events. Further field-based studies will be required to assess these results in different reef habitats.
Collapse
Affiliation(s)
- Ji Hoon J. Han
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawaii, United States
| | - Matthew P. Stefanak
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawaii, United States
| | - Ku‘ulei S. Rodgers
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawaii, United States
| |
Collapse
|
147
|
Thakur MP, Risch AC, van der Putten WH. Biotic responses to climate extremes in terrestrial ecosystems. iScience 2022; 25:104559. [PMID: 35784794 PMCID: PMC9240802 DOI: 10.1016/j.isci.2022.104559] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Anthropogenic climate change is increasing the incidence of climate extremes. Consequences of climate extremes on biodiversity can be highly detrimental, yet few studies also suggest beneficial effects of climate extremes on certain organisms. To obtain a general understanding of ecological responses to climate extremes, we present a review of how 16 major taxonomic/functional groups (including microorganisms, plants, invertebrates, and vertebrates) respond during extreme drought, precipitation, and temperature. Most taxonomic/functional groups respond negatively to extreme events, whereas groups such as mosses, legumes, trees, and vertebrate predators respond most negatively to climate extremes. We further highlight that ecological recovery after climate extremes is challenging to predict purely based on ecological responses during or immediately after climate extremes. By accounting for the characteristics of the recovering species, resource availability, and species interactions with neighboring competitors or facilitators, mutualists, and enemies, we outline a conceptual framework to better predict ecological recovery in terrestrial ecosystems.
Collapse
Affiliation(s)
- Madhav P. Thakur
- Institute of Ecology and Evolution and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, the Netherlands
- Corresponding author
| | - Anita C. Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Switzerland
| | - Wim H. van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, the Netherlands
- Laboratory of Nematology, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
148
|
Driving Factors of Heavy Rainfall Causing Flash Floods in the Middle Reaches of the Yellow River: A Case Study in the Wuding River Basin, China. SUSTAINABILITY 2022. [DOI: 10.3390/su14138004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the context of climate change, extreme rainfall events have greatly increased the frequency and risk of flash floods in the Yellow River Basin. In this study, the heavy rainfall and flash flood processes were studied as a system. Taking the driving factors of the heavy rainfall causing the flash floods as the main focus, the key factors of the heavy rainfall causing typical flash flood processes were identified, and the driving mechanism by which the heavy rainfall caused flash floods was revealed. Through comparative analysis of the rainfall related to 13 floods with peak discharges of greater than 2000 m3/s since measurements began at Baijiachuan hydrological station, it was found that different rainfall factors played a major driving role in the different flood factors. The factor that had the largest impact on the peak discharge was the average rainfall intensity; the factor that had the largest impact on the flood volume was the rainfall duration; and the factor that had the largest impact on the sediment volume was the maximum 1 h rainfall. The ecological construction of soil and water conservation projects on the Loess Plateau has had obvious peak-cutting and sediment-reducing effects on the flood processes driven by medium- and low-intensity rainfall events, but for high-intensity flash floods, the flood-reducing and sediment-reducing effects of these projects have been smaller. Therefore, despite the background of continuous ecological improvement on the Loess Plateau, the possibility of floods with large sediment loads occurring in the middle reaches of the Yellow River still exists.
Collapse
|
149
|
Ruperto EF, Taraborelli PA, Menéndez J, Sassi PL. Behavioral plasticity in two endemic rodents from the Andes Mountains: strategies for thermal and energetic balance. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
150
|
The Extreme Heat Wave of Summer 2021 in Athens (Greece): Cumulative Heat and Exposure to Heat Stress. SUSTAINABILITY 2022. [DOI: 10.3390/su14137766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Mediterranean has been identified as a ‘climate change hot spot’, already experiencing faster warming rates than the global average, along with an increased occurrence of heat waves (HWs), prolonged droughts, and forest fires. During summer 2021, the Mediterranean faced prolonged and severe HWs, triggering hundreds of wildfires across the region. Greece, in particular, was hit by one of the most intense HWs in its modern history, with national all-time record temperatures being observed from 28 July to 6 August 2021. The HW was associated with extreme wildfires in many parts of the country, with catastrophic environmental and societal consequences. The study accentuated the rarity and special characteristics of this HW (HW2021) through the analysis of the historical climate record of the National Observatory of Athens (NOA) on a centennial time scale and comparison with previous HWs. The findings showed that HW2021 was ranked first in terms of persistence (with a total duration of 10 days) and highest observed nighttime temperatures, as well as ‘cumulative heat’, accounting for both the duration and intensity of the event. Exceptionally hot conditions during nighttime were intensified by the urban heat island effect in the city of Athens. Human exposure to heat-related stress during the event was further assessed by the use of bioclimatic indices such as the Universal Thermal Climate Index (UTCI). The study points to the interconnected climate risks in the area and especially to the increased exposure of urban populations to conditions of heat stress, due to the additive urban effect.
Collapse
|