101
|
Rojas P, Cadenas MB, Lin PC, Benavides F, Conti CJ, Rodriguez-Puebla ML. Cyclin D2 and cyclin D3 play opposite roles in mouse skin carcinogenesis. Oncogene 2006; 26:1723-30. [PMID: 16983339 DOI: 10.1038/sj.onc.1209970] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
D-type cyclins are components of the cell-cycle engine that link cell signaling pathways and passage throughout G1 phase. We previously described the effects of overexpression cyclin D1, D2 or D3 in mouse epidermis and tumor development. We now asked whether cyclin D2 and/or cyclin D3 play a relevant role in ras-dependent tumorigenesis. Here, we described the effect of cyclin D3 and cyclin D2 overexpression in mouse skin tumor development. Notably, overexpression of cyclin D3 results in reduced tumor development and malignant progression to squamous cell carcinomas (SCC). Biochemical analysis of keratinocytes shows that overexpression of cyclin D3 results in strong reduction of cyclin D2 and its associated kinase activity. Furthermore, we found that reinstatement of cyclin D2 level in the cyclin D3/cyclin D2 bigenic mice results in a complete reversion of the inhibitory action of cyclin D3. Supporting these results, ablation of cyclin D2 results in reduced tumorigenesis and malignant progression. On the other hand, overexpression of cyclin D2 results in an increased number of papillomas and malignant progression. We conclude that cyclin D3 and cyclin D2 play opposite roles in mouse skin tumor development and that the suppressive activity of cyclin D3 is associated with cyclin D2 downregulation.
Collapse
Affiliation(s)
- P Rojas
- Department of Carcinogenesis, Science Park Research Division, MD Anderson Cancer Center, Smithville, TX, USA
| | | | | | | | | | | |
Collapse
|
102
|
Saab R, Bills JL, Miceli AP, Anderson CM, Khoury JD, Fry DW, Navid F, Houghton PJ, Skapek SX. Pharmacologic inhibition of cyclin-dependent kinase 4/6 activity arrests proliferation in myoblasts and rhabdomyosarcoma-derived cells. Mol Cancer Ther 2006; 5:1299-308. [PMID: 16731763 DOI: 10.1158/1535-7163.mct-05-0383] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myoblast cell cycle exit and differentiation are mediated in part by down-regulation of cyclin D1 and associated cyclin-dependent kinase (Cdk) activity. Because rhabdomyosarcoma may represent a malignant tumor composed of myoblast-like cells failing to exit the cell cycle and differentiate, we considered whether excess Cdk activity might contribute to this biology. Cyclin D-dependent Cdk4 and Cdk6 were expressed in most of a panel of six human rhabdomyosarcoma-derived cell lines. Cdk4 was expressed in 73% of alveolar and embryonal rhabdomyosarcoma tumors evaluated using a human tissue microarray. When challenged to differentiate by mitogen deprivation in vitro, mouse C2C12 myoblasts arrested in G(1) phase of the cell cycle, whereas four in the panel of rhabdomyosarcoma cell lines failed to do so. C2C12 myoblasts maintained in mitogen-rich media and exposed to a Cdk4/Cdk6 inhibitor PD 0332991 accumulated in G(1) cell cycle phase. Similar treatment of rhabdomyosarcoma cell lines caused G(1) arrest and prevented cell accumulation in vitro, and it delayed growth of rhabdomyosarcoma xenografts in vivo. Consistent with a role for Cdk4/Cdk6 activity as a regulator of myogenic differentiation, we observed that PD 0332991 exposure promoted morphologic changes and enhanced the expression of muscle-specific proteins in cultured myoblasts and in the Rh30 cell line. Our findings support the concept that pharmacologic inhibition of Cdk4/Cdk6 may represent a useful therapeutic strategy to control cell proliferation and possibly promote myogenic differentiation in rhabdomyosarcoma.
Collapse
Affiliation(s)
- Raya Saab
- Department of Hematology/Oncology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Abstract
AIM: To investigate whether activin regulates the cell proliferation of human gastric cancer cell line SNU-16 through the mRNA changes in activin receptors, Smads and p21CIP1/WAF1.
METHODS: The human gastric cancer cell lines were cultured, RNAs were purified, and RT-PCRs were carried out with specifically designed primer for each gene. Among them, the two cell lines SNU-5 and SNU-16 were cultured with activin A for 24, 48 and 72 h. The cell proliferation was measured by MTT assay. For SNU-16, changes in ActRIA, ActRIB, ActRIIA, ActRIIB, Smad2, Smad4, Smad7, and p21CIP1/WAF1 mRNAs were detected with RT-PCR after the cells were cultured with activin A for 24, 48 and 72 h.
RESULTS: The proliferation of SNU-16 cells was down regulated by activin A whereas other cells showed no change. Basal level of inhibin/activin subunits, activin receptors, Smads, and p21CIP1/WAF1 except for activin βB mRNAs was observed to have differential expression patterns in the human gastric cancer cell lines, AGS, KATO III, SNU-1, SNU-5, SNU-16, SNU-484, SNU-601, SNU-638, SNU-668, and SNU-719. Interestingly, significantly higher expressions of ActR IIA and IIB mRNAs were observed in SNU-16 cells when compared to other cells. After activin treatment, ActR IA, IB, and IIA mRNA levels were decreased whereas ActR IIB mRNA level increased in SNU-16 cells. Smad4 mRNA increased for up to 48 h whereas Smad7 mRNA increased sharply at 24 h and returned to the initial level at 48 h in SNU-16 cells. In addition, expression of the p21CIP1/WAF1, the mitotic inhibitor, peaked at 72 h after activin treatment in SNU-16 cells.
CONCLUSION: Our results suggest that inhibition of cell growth by activin is regulated by the negative feedback effect of Smad7 on the activin signaling pathway, and is mediated through p21CIP1/WAF1 activation in SNU-16 cells.
Collapse
Affiliation(s)
- Young-Il Kim
- East-West Medical Research Institute, Kyung Hee University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
104
|
Payton A. Investigating cognitive genetics and its implications for the treatment of cognitive deficit. GENES BRAIN AND BEHAVIOR 2006; 5 Suppl 1:44-53. [PMID: 16417617 DOI: 10.1111/j.1601-183x.2006.00194.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cognitive impairment in the elderly, caused by either normal ageing process or dementia, is an increasing problem in developed countries that has enormous social and economic considerations. Research investigating the genetic basis of cognition is a new and rapidly developing field that may aid in the development of new treatments for age-related cognitive deficit. Over the past 6 years, a number of quantitative trait loci (QTLs) have been associated with cognitive functioning in humans including loci within the genes catechol-o-methyltransferase, brain-derived neurotrophic factor, muscle segment homeobox 1, serotonin transporter 2A (HTR2A), cholinergic muscarinic receptor 2, cathepsin D, metabotrophic glutamate receptor and most recently the class II human leukocyte antigens. Unfortunately, inconsistency within the literature, which is a hallmark of almost all association studies investigating complex diseases and traits, is casting doubt as to which genes are truly associated with cognition and which are a result of Type 2 error. This review will highlight implicated intelligence QTLs, examine the probable reasons for the current discrepancies between reports and discuss the potential advantages that may be procured from the study of cognitive genetics.
Collapse
Affiliation(s)
- A Payton
- Centre for Integrated Genomic Medical Research, Stopford building, University of Manchester, Oxford road, Manchester, UK.
| |
Collapse
|
105
|
Calhabeu F, Lafont J, Le Dreau G, Laurent M, Kazazian C, Schaeffer L, Martinerie C, Dubois C. NOV/CCN3 impairs muscle cell commitment and differentiation. Exp Cell Res 2006; 312:1876-89. [PMID: 16600215 DOI: 10.1016/j.yexcr.2006.02.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 11/30/2022]
Abstract
NOV (nephroblastoma overexpressed) is a member of a family of proteins which encodes secreted matrix-associated proteins. NOV is expressed during development in dermomyotome and limb buds, but its functions are still poorly defined. In order to understand the role of NOV in myogenic differentiation, C2C12 cells overexpressing NOV (C2-NOV) were generated. These cells failed to engage into myogenic differentiation, whereas they retained the ability to differentiate into osteoblasts. In differentiating conditions, C2-NOV cells remained proliferative, failed to express differentiation markers and lost their ability to form myotubes. Inhibition of differentiation by NOV was also observed with human primary muscle cells. Further examination of C2-NOV cells revealed a strong downregulation of the myogenic determination genes MyoD and Myf5 and of IGF-II expression. MyoD forced expression in C2-NOV was sufficient to restore differentiation and IGF-II induction whereas 10(-6) M insulin treatment had no effects. NOV therefore acts upstream of MyoD and does not affect IGF-II induction and signaling. HES1, a target of Notch, previously proposed to mediate NOV action, was not implicated in the inhibition of differentiation. We propose that NOV is a specific cell fate regulator in the myogenic lineage, acting negatively on key myogenic genes thus controlling the transition from progenitor cells to myoblasts.
Collapse
Affiliation(s)
- Frederico Calhabeu
- Unité INSERM 515, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75371 Paris, France; Pierre and Marie Curie University, Paris
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Coller HA, Sang L, Roberts JM. A new description of cellular quiescence. PLoS Biol 2006; 4:e83. [PMID: 16509772 PMCID: PMC1393757 DOI: 10.1371/journal.pbio.0040083] [Citation(s) in RCA: 385] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 01/19/2006] [Indexed: 01/27/2023] Open
Abstract
Cellular quiescence, defined as reversible growth/proliferation arrest, is thought to represent a homogenous state induced by diverse anti-mitogenic signals. We used transcriptional profiling to characterize human diploid fibroblasts that exited the cell cycle after exposure to three independent signals—mitogen withdrawal, contact inhibition, and loss of adhesion. We show here that each signal caused regulation of a unique set of genes known to be important for cessation of growth and division. Therefore, contrary to expectation, cells enter different quiescent states that are determined by the initiating signal. However, underlying this diversity we discovered a set of genes whose specific expression in non-dividing cells was signal-independent, and therefore representative of quiescence per se, rather than the signal that induced it. This fibroblast “quiescence program” contained genes that enforced the non-dividing state, and ensured the reversibility of the cell cycle arrest. We further demonstrate that one mechanism by which the reversibility of quiescence is insured is the suppression of terminal differentiation. Expression of the quiescence program was not simply a downstream consequence of exit from the cell cycle, because key parts, including those involved in suppressing differentiation, were not recapitulated during the cell cycle arrest caused by direct inhibition of cyclin-dependent kinases. These studies form a basis for understanding the normal biology of cellular quiescence. Transcriptional profiling of fibroblasts induced to exit the cell cycle by distinct signals reveals distinctions and commonalities in the pathways to cellular quiescence.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| | | | | |
Collapse
|
107
|
Ghanem L, Steinman RA. p21Waf1 inhibits granulocytic differentiation of 32Dcl3 cells. Leuk Res 2006; 30:1285-92. [PMID: 16499966 DOI: 10.1016/j.leukres.2005.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 12/01/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
Defining the molecular mechanisms that prevent myeloid progenitor cells from maturing is important because defects in maturation contribute to the development of myeloproliferative and myelodysplastic diseases. IL-3 is an important developmental factor for myeloid progenitor cells in vivo and is required to maintain the undifferentiated state in the 32Dcl3 cell line. The mechanisms employed by IL-3 to block differentiation, however, are not well understood. 32Dcl3 cells are myeloid progenitor cells of murine origin with high basal levels of p21waf1/cip1 (p21) expression. Our laboratory has previously reported that p21 levels decreased as CD34+-derived myeloid progenitor cells underwent terminal granulopoiesis in vitro. The effect of p21 upon the expression of genes associated with granulocytic differentiation has been unexplored, however. Since IL-3 maintains high levels of p21 in 32Dcl3 cells, we tested the hypothesis that p21 is an inhibitor of myeloid differentiation. Our findings demonstrate that siRNA knockdown of murine p21 is correlated with premature expression of the primary granule proteins myeloperoxidase and proteinase-3, proteins not abundant in cells maintained as myeloblasts by IL-3. Rescue with human p21 in these cells suppressed premature granule protein expression. p21 knockdown was also found to accelerate morphologic granulocytic differentiation in 32Dcl3 cells stimulated with G-CSF. Since high expression levels of p21 and overexpression of the IL-3 receptor have been correlated with poor outcomes in acute myeloid leukemias (AML), differentiation blockade by p21 may be one mechanism that contributes to AML pathogenesis.
Collapse
Affiliation(s)
- Louis Ghanem
- University of Pittsburgh School of Medicine, Department of Hematology/Oncology, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
108
|
Atanasoski S, Boller D, De Ventura L, Koegel H, Boentert M, Young P, Werner S, Suter U. Cell cycle inhibitors p21 and p16 are required for the regulation of Schwann cell proliferation. Glia 2006; 53:147-57. [PMID: 16206162 DOI: 10.1002/glia.20263] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Regulated cell proliferation is a crucial prerequisite for Schwann cells to achieve myelination in development and regeneration. In the present study, we have investigated the function of the cell cycle inhibitors p21 and p16 as potential regulators of Schwann cell proliferation, using p21- or p16-deficient mice. We report that both inhibitors are required for proper withdrawal of Schwann cells from the cell cycle during development and following injury. Postnatal Schwann cells express p21 exclusively in the cytoplasm, first detectable at postnatal day 7. This cytoplasmic p21 expression is necessary for proper Schwann cell proliferation control in the late development of peripheral nerves. After axonal damage, p21 is found in Schwann cell nuclei during the initiation of the proliferation period. This stage is critically regulated by p21, since loss of p21 leads to a strong increase in Schwann cell proliferation. Unexpectedly, p21 levels are upregulated in this phase suggesting that the role of p21 may be more complex than purely inhibitory for the Schwann cell cycle. However, inhibition of Schwann cell proliferation is the overriding crucial function of p21 and p16 in peripheral nerves as revealed by the consequences of loss-of-function in development and after injury. Different mechanisms appear to underlie the inhibitory function, depending on whether p21 is cytoplasmic or nuclear.
Collapse
Affiliation(s)
- Suzana Atanasoski
- Department of Biology, Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Sarruf DA, Iankova I, Abella A, Assou S, Miard S, Fajas L. Cyclin D3 promotes adipogenesis through activation of peroxisome proliferator-activated receptor gamma. Mol Cell Biol 2005; 25:9985-95. [PMID: 16260612 PMCID: PMC1280250 DOI: 10.1128/mcb.25.22.9985-9995.2005] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In addition to their role in cell cycle progression, new data reveal an emerging role of D-type cyclins in transcriptional regulation and cellular differentiation processes. Using 3T3-L1 cell lines to study adipogenesis, we observed an up-regulation of cyclin D3 expression throughout the differentiation process. Surprisingly, cyclin D3 was only minimally expressed during the initial stages of adipogenesis, when mitotic division is prevalent. This seemingly paradoxical expression led us to investigate a potential cell cycle-independent role for cyclin D3 during adipogenesis. We show here a direct interaction between cyclin D3 and the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma). Our experiments reveal cyclin D3 acts as a ligand-dependent PPARgamma coactivator, which, together with its cyclin-dependent kinase partner, phosphorylates the A-B domain of the nuclear receptor. Overexpression and knockdown studies with cyclin D3 had marked effects on PPARgamma activity and subsequently on adipogenesis. Chromatin immunoprecipitation assays confirm the participation of cyclin D3 in the regulation of PPARgamma target genes. We show that cyclin D3 mutant mice are protected from diet-induced obesity, display smaller adipocytes, have reduced adipogenic gene expression, and are insulin sensitive. Our results indicate that cyclin D3 is an important factor governing adipogenesis and obesity.
Collapse
Affiliation(s)
- David A Sarruf
- INSERM, Equipe Avenir, U540, 60, rue de Navacelles, F34090 Montpellier, France
| | | | | | | | | | | |
Collapse
|
110
|
Doucet C, Gutierrez GJ, Lindon C, Lorca T, Lledo G, Pinset C, Coux O. Multiple phosphorylation events control mitotic degradation of the muscle transcription factor Myf5. BMC BIOCHEMISTRY 2005; 6:27. [PMID: 16321160 PMCID: PMC1322219 DOI: 10.1186/1471-2091-6-27] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 12/01/2005] [Indexed: 11/30/2022]
Abstract
Background The two myogenic regulatory factors Myf5 and MyoD are basic helix-loop-helix muscle transcription factors undergoing differential cell cycle dependent proteolysis in proliferating myoblasts. This regulated degradation results in the striking expression of these two factors at distinct phases of the cell cycle, and suggests that their precise and alternated disappearance is an important feature of myoblasts, maybe connected to the maintenance of the proliferative status and/or commitment to the myogenic lineage of these cells. One way to understand the biological function(s) of the cyclic expression of these proteins is to specifically alter their degradation, and to analyze the effects of their stabilization on cells. To this aim, we undertook the biochemical analysis of the mechanisms governing Myf5 mitotic degradation, using heterologous systems. Results We show here that mitotic degradation of Myf5 is conserved in non-myogenic cells, and is thus strictly under the control of the cell cycle apparatus. Using Xenopus egg extracts as an in vitro system to dissect the main steps of Myf5 mitotic proteolysis, we show that (1) Myf5 stability is regulated by a complex interplay of phosphorylation/dephosphorylation, probably involving various kinases and phosphatases, (2) Myf5 is ubiquitylated in mitotic extracts, and this is a prerequisite to its degradation by the proteasome and (3) at least in the Xenopus system, the E3 responsible for its mitotic degradation is not the APC/C (the major E3 during mitosis). Conclusion Altogether, our data strongly suggest that the mitotic degradation of Myf5 by the ubiquitin-proteasome system is precisely controlled by multiple phosphorylation of the protein, and that the APC/C is not involved in this process.
Collapse
Affiliation(s)
- Christine Doucet
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
| | - Gustavo J Gutierrez
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
- Present address: Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Catherine Lindon
- Wellcome Trust/Cancer Research UK, Gurdon Institute, Cambridge, UK
| | - Thierry Lorca
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
| | - Gwendaline Lledo
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
| | | | - Olivier Coux
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
| |
Collapse
|
111
|
Zhu H, Nie L, Maki CG. Cdk2-dependent Inhibition of p21 Stability via a C-terminal Cyclin-binding Motif. J Biol Chem 2005; 280:29282-8. [PMID: 15964852 DOI: 10.1074/jbc.m407352200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p21 is a member of the Cip/Kip family of cyclin-dependent kinase (CDK) inhibitors that includes p21, p27, and p57. Recent studies have suggested that Cdk2 activity may promote p21 degradation through a pathway similar to that for p27, although the mechanism by which this occurs has not been clarified. In the current report, co-expression with cyclin E and Cdk2 stabilized p21 in a manner that required the CDK-binding site of p21 and a cyclin-binding site (cy1) located in the p21 N terminus. Strikingly, however, a kinase-dead Cdk2 mutant stabilized p21 to a greater extent than did wild-type Cdk2, consistent with the notion that Cdk2 activity can destabilize p21. The ability of wild-type Cdk2 to destabilize p21 required a potential Cdk2 phosphorylation site in p21 at serine 130 and an intact cyclin-binding motif (cy2) in the p21 C terminus. Finally, p21 was phosphorylated by Cdk2 at Ser-130 in vitro, and this ability of Cdk2 to phosphorylate p21 was dependent, in large part, on the presence of cy2. These results support a model in which active Cdk2 destabilizes p21 via the cy2 cyclin-binding motif and p21 phosphorylation.
Collapse
Affiliation(s)
- Hongyan Zhu
- Department of Radiation and Cellular Oncology, Center for Molecular Oncology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
112
|
Fu M, Wang C, Rao M, Wu X, Bouras T, Zhang X, Li Z, Jiao X, Yang J, Li A, Perkins ND, Thimmapaya B, Kung AL, Munoz A, Giordano A, Lisanti MP, Pestell RG. Cyclin D1 represses p300 transactivation through a cyclin-dependent kinase-independent mechanism. J Biol Chem 2005; 280:29728-42. [PMID: 15951563 DOI: 10.1074/jbc.m503188200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin D1 encodes a regulatory subunit, which with its cyclin-dependent kinase (Cdk)-binding partner forms a holoenzyme that phosphorylates and inactivates the retinoblastoma protein. In addition to its Cdk binding-dependent functions, cyclin D1 regulates cellular differentiation in part by modifying several transcription factors and nuclear receptors. The molecular mechanism through which cyclin D1 regulates the function of transcription factors involved in cellular differentiation remains to be clarified. The histone acetyltransferase protein p300 is a co-integrator required for regulation of multiple transcription factors. Here we show that cyclin D1 physically interacts with p300 and represses p300 transactivation. We demonstrated further that the interaction of the two proteins occurs at the peroxisome proliferator-activated receptor gamma-responsive element of the lipoprotein lipase promoter in the context of the local chromatin structure. We have mapped the domains in p300 and cyclin D1 involved in this interaction. The bromo domain and cysteine- and histidine-rich domains of p300 were required for repression by cyclin D1. Cyclin D1 repression of p300 was independent of the Cdk- and retinoblastoma protein-binding domains of cyclin D1. Cyclin D1 inhibits histone acetyltransferase activity of p300 in vitro. Microarray analysis identified a signature of genes repressed by cyclin D1 and induced by p300 that promotes cellular differentiation and induces cell cycle arrest. Together, our results suggest that cyclin D1 plays an important role in cellular proliferation and differentiation through regulation of p300.
Collapse
Affiliation(s)
- Maofu Fu
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
Mice likely represent the most-studied mammalian organism, except for humans. Genetic engineering in embryonic stem cells has allowed derivation of mouse strains lacking particular cell cycle proteins. Analyses of these mutant mice, and cells derived from them, facilitated the studies of the functions of cell cycle apparatus at the organismal and cellular levels. In this review, we give some background about the cell cycle progression during mouse development. We next discuss some insights about in vivo functions of the cell cycle proteins, gleaned from mouse knockout experiments. Our text is meant to provide examples of the recent experiments, rather than to supply an extensive and complete list.
Collapse
Affiliation(s)
- Maria A Ciemerych
- Department of Embryology, Institute of Zoology, Faculty of Biology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland
| | | |
Collapse
|
114
|
Bascones C, Gonzalez-Moles MA, Esparza G, Bravo M, Acevedo A, Gil-Montoya JA, Bascones A. Apoptosis and cell cycle arrest in oral lichen planus Hypothesis on their possible influence on its malignant transformation. Arch Oral Biol 2005; 50:873-81. [PMID: 16137496 DOI: 10.1016/j.archoralbio.2005.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 02/01/2005] [Indexed: 12/30/2022]
Abstract
The quantitative importance of cell cycle arrest and apoptosis mechanisms in oral lichen planus (OLP) was analysed in order to assess the cell response to T lymphocyte aggression and establish a hypothesis on the influence of these phenomena in the malignant transformation process. The TUNEL assay and immunohistochemical methods were used to detect caspase-3, bax, and p21 in 32 tissue samples of oral mucosa with OLP and in 20 samples of normal oral mucosa. Positivity for TUNEL, caspase-3 and p21 was significantly more frequent in cases than in controls (p<0.001). Both TUNEL and caspase-3 positivity was significantly greater in the basal versus suprabasal layer (p=0.004 and 0.052, respectively). The basal and suprabasal expression of p21 was significantly higher in cases with a more intense liquefaction degeneration (p<0.01). There was no significant difference in basal expression of bax between cases and controls. The quantitative importance of apoptosis was small in OLP. Epithelial cells attacked in OLP have a very low response to apoptosis and cell cycle arrest mechanisms, which may produce an epithelial substrate that favours malignant transformation.
Collapse
Affiliation(s)
- C Bascones
- Departamento de Estomatología, Facultad de Odontología, Universidad de Madrid, Complutense University, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
115
|
Emmerich J, Meyer CA, de la Cruz AFA, Edgar BA, Lehner CF. Cyclin D does not provide essential Cdk4-independent functions in Drosophila. Genetics 2005; 168:867-75. [PMID: 15514060 PMCID: PMC1448836 DOI: 10.1534/genetics.104.027417] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The three mammalian D-type cyclins are thought to promote progression through the G1 phase of the cell cycle as regulatory subunits of cyclin-dependent kinase 4 and 6. In addition, they have been proposed to control the activity of various transcription factors without a partner kinase. Here we describe phenotypic consequences of null mutations in Cyclin D, the single D-type cyclin gene in Drosophila. As previously observed with null mutations in the single Drosophila Cdk4 gene, these mutations do not primarily affect progression through the G1 phase. Moreover, the apparently indistinguishable phenotypes of double (CycD and Cdk4) and single mutants (CycD or Cdk4) argue against major independent functions of Cyclin D and Cdk4. The reduced cellular and organismal growth rates observed in both mutants indicate that Cyclin D-Cdk4 acts as a growth driver.
Collapse
Affiliation(s)
- Jan Emmerich
- Bayreuther Zentrum für Molekulare Biowissenschaften, Department of Genetics, University of Bayreuth, 95440 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
116
|
Mariappan I, Parnaik VK. Sequestration of pRb by cyclin D3 causes intranuclear reorganization of lamin A/C during muscle cell differentiation. Mol Biol Cell 2005; 16:1948-60. [PMID: 15703219 PMCID: PMC1073674 DOI: 10.1091/mbc.e04-02-0154] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The A-type lamins that localize in nuclear domains termed lamin speckles are reorganized and antigenically masked specifically during myoblast differentiation. This rearrangement was observed to be linked to the myogenic program as lamin speckles, stained with monoclonal antibody (mAb) LA-2H10, were reorganized in MyoD-transfected fibroblasts induced to transdifferentiate to muscle cells. In C2C12 myoblasts, speckles were reorganized early during differentiation in cyclin D3-expressing cells. Ectopic cyclin D3 induced lamin reorganization in C2C12 myoblasts but not in other cell types. Experiments with adenovirus E1A protein that can bind to and segregate the retinoblastoma protein (pRb) indicated that pRb was essential for the cyclin D3-mediated reorganization of lamin speckles. Cyclin D3-expressing myoblasts displayed site-specific reduction of pRb phosphorylation. Furthermore, disruption of lamin structures by overexpression of lamins inhibited expression of the muscle regulatory factor myogenin. Our results suggest that the reorganization of internal lamins in muscle cells is mediated by key regulators of the muscle differentiation program.
Collapse
|
117
|
Chen Z, Duan RS, Zhu Y, Folkesson R, Albanese C, Winblad B, Zhu J. Increased cyclin E expression may obviate the role of cyclin D1 during brain development in cyclin D1 knockout mice. J Neurochem 2005; 92:1281-4. [PMID: 15715677 DOI: 10.1111/j.1471-4159.2004.02934.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclins D and E play critical roles during the G1 phase of mammalian cell division. Cyclin D1 expression is high and expected to play an important role during mouse brain development. However, in the present study, we found no difference in CNS morphology between cyclin D1 knockout (KO) and control wild-type mice at the ages of 1, 4 and 12 months. Analysis of protein expression in embryonic brains revealed that cyclin E is obviously increased in cyclin D1 KO mice at 13.5 days post coitum. At the same age a high level of cyclin D1 expression is detected in the embryonic brain of wild-type mice. The data indicate that enhanced cyclin E protein expression in cyclin D1 KO mice may obviate the role of cyclin D1 and contribute to the normal brain development of cyclin D1 KO mice.
Collapse
Affiliation(s)
- Zhiguo Chen
- Division of Experimental Geriatrics, Department of Neurotec, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
118
|
Saeed AE, Parmentier JH, Malik KU. Activation of alpha1A-adrenergic receptor promotes differentiation of rat-1 fibroblasts to a smooth muscle-like phenotype. BMC Cell Biol 2004; 5:47. [PMID: 15603588 PMCID: PMC548263 DOI: 10.1186/1471-2121-5-47] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 12/16/2004] [Indexed: 11/16/2022] Open
Abstract
Background Fibroblasts, as connective tissue cells, are able to transform into another cell type including smooth muscle cells. α1A-adrenergic receptor (α1A-AR) stimulation in rat-1 fibroblasts is coupled to cAMP production. However, the significance of an increase in cAMP produced by α1A-AR stimulation on proliferation, hypertrophy and differentiation in these cells is not known. Results Activation of the α1A-AR in rat-1 fibroblasts by phenylephrine (PE) inhibited DNA synthesis by 67% and blocked the re-entry of 81% of the cells into S phase of the cell cycle. This cell cycle blockage was associated with hypertrophy characterized by an increase in protein synthesis (64%) and cell size. Elevation of cAMP levels decreased both DNA and protein synthesis. Inhibition of adenylyl cyclase or protein kinase A reversed the antiproliferative effect of cAMP analogs but not PE; the hypertrophic effect of PE was also not altered. The functional response of rat-1 cells to PE was accompanied by increased expression of cyclin-dependent kinase (Cdk) inhibitors p27kip1 and p21cip1/waf1, which function as negative regulators of the cell cycle. Stimulation of α1A-AR also upregulated the cell cycle regulatory proteins pRb, cyclin D1, Cdk 2, Cdk 4, and proliferating cell nuclear antigen. The antiproliferative effect of PE was blocked by p27kip1 antisense but not sense oligonucleotide. PE also promoted expression of smooth muscle cell differentiation markers (smooth muscle alpha actin, caldesmon, and myosin heavy chain) as well as the muscle development marker MyoD. Conclusions Stimulation of α1A-AR promotes cell cycle arrest, hypertrophy and differentiation of rat-1 fibroblasts into smooth muscle-like cells and expression of negative cell cycle regulators by a mechanism independent of the cAMP/PKA signaling pathway.
Collapse
Affiliation(s)
- Abdelwahab E Saeed
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| | - Jean-Hugues Parmentier
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| |
Collapse
|
119
|
Myers TK, Andreuzza SE, Franklin DS. p18INK4c and p27KIP1 are required for cell cycle arrest of differentiated myotubes. Exp Cell Res 2004; 300:365-78. [PMID: 15475001 DOI: 10.1016/j.yexcr.2004.07.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 07/13/2004] [Indexed: 10/26/2022]
Abstract
Myogenic differentiation is characterized by permanent and irreversible cell cycle withdrawal and increased resistance to apoptosis. These functions correlate with changes in expression and activity of several cyclin-dependent kinase inhibitors, including p18, p21, and p27. In this study, we examined the requirements for p18, p21, and p27 in initiating growth arrest in multinucleated myotubes under differentiation conditions and in maintaining terminal arrest upon restimulation of differentiated myotubes with mitogenic signals. Under differentiation conditions, only p27(-/-) or p18(-/-)p27(-/-) myotubes are capable of reentering the cell cycle and synthesizing DNA at a very low frequency. Escape from cell cycle arrest was significantly greater in p18(-/-)p27(-/-) myotubes than in p27(-/-) myotubes. Stimulation of differentiated cultures with a mitogen-rich growth medium enhances p18(-/-)p27(-/-) myotube proliferation to encompass approximately half of the nuclei. p18(-/-)p21(-/-) and p21(-/-)p27(-/-) myotubes remain terminally arrested. Nuclei within individual restimulated p18(-/-)p27(-/-) myotubes can be found in all phases of the cell cycle, and a myotube can be multiphasic without any obvious deleterious effects. Increasing the time of differentiation or serum stimulation of p18(-/-)p27(-/-) myotubes neither increases the proliferation index of the myotube nuclei, nor does it alter the percentage of nuclei in each of the cell cycle phases. During the first 24 h of serum stimulation, the p18(-/-)p27(-/-) myotube nuclei that escape G0 arrest will rearrest in either S or G2 phase, without either mitosis or endoreplication. Apoptosis is increased in restimulated p18(-/-)p27(-/-) myotube nuclei, but is not specific for any cell cycle phase. These results suggest a collaborative role for p18 and p27 in initiating and maintaining G0 arrest during myogenic differentiation. While p18 and p27 appear to be essential in initiating G0 arrest in a proportion of postmitotic myotube nuclei, there must be another cell cycle inhibitor protein that functions with p18 and p27 in maintaining terminal arrest. We propose that the combined rate-limiting expressions of p18, p27, and this other inhibitor determine whether the myotube nuclei will remain postmitotic, or reenter the cell cycle, and if the nuclei escape G0 arrest, in which phase of the cell cycle the nuclei will ultimately rearrest.
Collapse
Affiliation(s)
- Terri K Myers
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
120
|
Hossain MS, Kurokawa K, Sekimizu K. Induction of fusion-competent myoblast-specific gene expression during myogenic differentiation of Drosophila Schneider cells by DNA double-strand breaks or replication inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1743:176-86. [PMID: 15777853 DOI: 10.1016/j.bbamcr.2004.09.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 09/24/2004] [Accepted: 09/27/2004] [Indexed: 11/27/2022]
Abstract
Differentiation of Drosophila Schneider cells caused by DNA double-strand break (DSB)-inducing topoisomerase II (topo II) inhibitors were attenuated by ICRF-193, a non-DNA-damaging topo II inhibitor. ICRF-193 did not inhibit differentiation induced by neocarzinostatin (NCS), a drug that causes DNA DSBs independent of topo II. Schneider cells differentiated upon treatment with gamma-ray. These results suggest that DNA DSBs induce myogenic differentiation of Schneider cells. We also found DNA replication inhibitors, hydroxyurea (HU), aphidicolin, and ethylmethanesulfonate (EMS) induced myogenic differentiation of Schneider cells. HU-induced differentiation was inhibited upon pretreatment of cells with chemical inhibitors of PP 1/2A, p38 MAPK, JNK, and proteasome. RT-PCR analysis revealed that the expressions of fusion-competent myoblast-specific genes lmd, sns, and del were induced in Schneider cells upon treatment with NCS or HU, whereas expressions of three founder cell-specific genes, duf, ants, and rols, were undetectable. These results indicate that the expression of fusion competent-myoblast-specific genes is induced during myogenic differentiation of Drosophila Schneider cells by DNA DSBs or replication inhibition.
Collapse
Affiliation(s)
- Muktadir S Hossain
- Laboratory of Developmental Biochemistry, Faculty of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
121
|
Huh MS, Parker MH, Scimè A, Parks R, Rudnicki MA. Rb is required for progression through myogenic differentiation but not maintenance of terminal differentiation. ACTA ACUST UNITED AC 2004; 166:865-76. [PMID: 15364961 PMCID: PMC2172111 DOI: 10.1083/jcb.200403004] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To investigate the requirement for pRb in myogenic differentiation, a floxed Rb allele was deleted either in proliferating myoblasts or after differentiation. Myf5-Cre mice, lacking pRb in myoblasts, died immediately at birth and exhibited high numbers of apoptotic nuclei and an almost complete absence of myofibers. In contrast, MCK-Cre mice, lacking pRb in differentiated fibers, were viable and exhibited a normal muscle phenotype and ability to regenerate. Induction of differentiation of Rb-deficient primary myoblasts resulted in high rates of apoptosis and a total inability to form multinucleated myotubes. Upon induction of differentiation, Rb-deficient myoblasts up-regulated myogenin, an immediate early marker of differentiation, but failed to down-regulate Pax7 and exhibited growth in low serum conditions. Primary myoblasts in which Rb was deleted after expression of differentiated MCK-Cre formed normal multinucleated myotubes that did not enter S-phase in response to serum stimulation. Therefore, Rb plays a crucial role in the switch from proliferation to differentiation rather than maintenance of the terminally differentiated state.
Collapse
Affiliation(s)
- Michael S Huh
- Molecular Medicine Program, Ottawa Health Research Institute, Ottawa, Ontario, Canada, K1H 8L6.
| | | | | | | | | |
Collapse
|
122
|
Rodolosse A, Chalaux E, Adell T, Hagège H, Skoudy A, Real FX. PTF1alpha/p48 transcription factor couples proliferation and differentiation in the exocrine pancreas [corrected]. Gastroenterology 2004; 127:937-49. [PMID: 15362048 DOI: 10.1053/j.gastro.2004.06.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The basic helix-loop-helix transcription factor pancreas-specific transcription factor 1alpha (PTF1alpha)/p48 is critical for committing cells to a pancreatic fate and for the maintenance of the differentiated state in acinar cells. The aim was to analyze the ability of p48 to modulate cell proliferation, its relationship with cell differentiation, and the mechanisms involved therein. METHODS Pancreatic and nonpancreatic cells were transfected with p48 cDNA, and the effects on cell proliferation were examined. The effects on cell cycle regulators were analyzed by Western blotting and RT-PCR; transient transfection assays were used to analyze promoter regulation. RESULTS p48 Inhibited proliferation of acinar and nonacinar cells by inducing a delay in G1-S progression through the up-regulation of p21 CIP1/WAF1 and p27 KIP1 and the down-regulation of cyclin D2. A 2-fold increase in p21 CIP1/WAF1 mRNA and in the activity of the p21 CIP1/WAF1 promoter was observed. The growth inhibition action of p48 was not associated with exocrine differentiation or with apoptosis. The antiproliferative effects were dependent on the COOH-terminal region of p48 and did not require the bHLH domain. Loss of p48 expression occurring during acinar-to-ductal transitions, characteristic of chronic pancreatitis, was associated with an increase of cell proliferation in ductal complexes. CONCLUSIONS The results indicate that p48 couples cell proliferation and cell differentiation in the exocrine pancreas, thus contributing to tissue homeostasis. These effects may play a role in the increased risk for pancreatic cancer associated with chronic pancreatitis.
Collapse
Affiliation(s)
- Annie Rodolosse
- Unitat de Biologia Cellular i Molecular, Institut Municipal d'Investigació Mèdica, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
123
|
Liu W, Sun M, Jiang J, Shen X, Sun Q, Liu W, Shen H, Gu J. Cyclin D3 interacts with human activating transcription factor 5 and potentiates its transcription activity. Biochem Biophys Res Commun 2004; 321:954-60. [PMID: 15358120 DOI: 10.1016/j.bbrc.2004.07.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2004] [Indexed: 11/17/2022]
Abstract
The Cyclin D3 protein is a member of the D-type cyclins. Besides serving as cell cycle regulators, D-type cyclins have been reported to be able to interact with several transcription factors and modulate their transcriptional activations. Here we report that human activating transcription factor 5 (hATF5) is a new interacting partner of Cyclin D3. The interaction was confirmed by in vivo coimmunoprecipitation and in vitro binding analysis. Neither interaction between Cyclin D1 and hATF5 nor interaction between Cyclin D2 and hATF5 was observed. Confocal microscopy analysis showed that Cyclin D3 could colocalize with hATF5 in the nuclear region. Cyclin D3 could potentiate hATF5 transcriptional activity independently of its Cdk4 partner. But Cyclin D1 and Cyclin D2 had no effect on hATF5 transcriptional activity. These data provide a new clue to understand the new role of Cyclin D3 as a transcriptional regulator.
Collapse
Affiliation(s)
- Wenjin Liu
- State Key Laboratory of Genetic Engineering and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Chiles TC. Regulation and Function of Cyclin D2 in B Lymphocyte Subsets. THE JOURNAL OF IMMUNOLOGY 2004; 173:2901-7. [PMID: 15322145 DOI: 10.4049/jimmunol.173.5.2901] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abs produced by B lymphocytes play an essential role in humoral immunity against pathogens. This response is dependent upon the extent of genome replication, which in turn allows clonal expansion of Ag-specific B cell precursors. Thus, there is considerable interest in understanding how naive B cells commit to genome replication following Ag challenge. The BCR is a key regulator of B cell growth responses in the bone marrow and the periphery. The importance of identifying BCR-coupled signaling networks and their cell cycle targets is underscored by the recognition that aberrant cell cycle control can lead to lymphoproliferative disorders or lymphoid malignancies. This review focuses on recent progress toward understanding the function of cyclin D2 in cell cycle control, and in the development of murine B lymphocytes.
Collapse
Affiliation(s)
- Thomas C Chiles
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
125
|
Sieczkiewicz GJ, Herman IM. TGF-beta 1 signaling controls retinal pericyte contractile protein expression. Microvasc Res 2004; 66:190-6. [PMID: 14609524 DOI: 10.1016/s0026-2862(03)00055-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To define the role of transforming growth factor-beta 1 (TGF-beta 1) in modulating pericyte contractile phenotype, we have ablated the TGF-beta signaling pathway by infection with a retrovirus bearing a TGF-beta type II receptor with a truncated C-terminal intracellular kinase domain (DNT beta RII). While TGF-beta 1 blocks pericyte proliferation and induces the expression of vascular smooth muscle contractile proteins in wild-type pericytes, DNT beta RII-bearing pericytes are neither growth inhibited by TGF-beta 1 nor do they accumulate alpha-smooth muscle actin (alpha-SMA) mRNA or protein. TGF-beta 1 induces expression of the myogenic transcription factor myf-5 and the cyclin-dependent kinase inhibitor p27; we show that these signaling pathways are disrupted in the DNT beta RII-bearing pericytes. These observations demonstrate that the TGF-beta 1 signaling pathway controls pericyte growth state and contractile phenotype.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Blotting, Western
- Cattle
- Cell Differentiation
- Cell Division
- Cells, Cultured
- DNA Primers/pharmacology
- DNA-Binding Proteins
- Fluorescent Antibody Technique, Indirect
- Gene Expression Regulation
- Genes, Dominant
- Mice
- Microfilament Proteins/metabolism
- Microscopy, Fluorescence
- Muscle Proteins/metabolism
- Muscle, Smooth/metabolism
- Muscle, Smooth, Vascular/cytology
- Mutation
- Myogenic Regulatory Factor 5
- Pericytes/metabolism
- Phenotype
- Protein Serine-Threonine Kinases
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/metabolism
- Retina/cytology
- Retina/metabolism
- Retroviridae/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Trans-Activators
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta1
Collapse
Affiliation(s)
- Gregory J Sieczkiewicz
- Department of Physiology and Graduate Program in Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
126
|
Petermann A, Hiromura K, Pippin J, Blonski M, Couser WG, Kopp J, Mundel P, Shankland SJ. Differential expression of d-type cyclins in podocytes in vitro and in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1417-24. [PMID: 15039229 PMCID: PMC1615348 DOI: 10.1016/s0002-9440(10)63228-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The proliferative response of podocytes to injury determines the histological phenotype. Moreover, an apparent lack of podocyte proliferation may underlie the development of glomerulosclerosis. Podocyte proliferation is closely linked with its state of differentiation. However, the mechanisms regulating these processes are not fully elucidated. Because D-type cyclins have been shown to be important in the regulation of proliferation and differentiation, we examined their expression in podocytes in vitro and in vivo. The glomerular expression of cyclins D1 and D3 was examined in vitro in cultured immortalized podocytes by immunostaining and Western blot analysis, and in embryonic mice and rats, the passive Heymann nephritis model of experimental membranous nephropathy in rats, and human immunodeficiency virus (HIV)-transgenic mice. Kidneys from cyclin D1 knockout mice were also examined. Cyclin D1 was abundant in cultured proliferating podocytes, but not in quiescent differentiated podocytes. In contrast, cyclin D3 was abundant in differentiated, but not proliferating podocytes. Cyclin D1 was expressed in embryonic mouse and rat glomeruli during the S- and comma-shaped stages, and was absent in podocytes at the capillary loop stage and in mature rodent glomeruli. Cyclin D1 protein increased after injury in passive Heymann nephritis rats and in HIV-transgenic mice. Cyclin D3 was constitutively and specifically expressed in podocytes in normal rodent glomeruli, and decreases during dedifferentiation and proliferation in HIV-transgenic mice. Kidneys from cyclin D1-/- mice were normal with the podocytes expressing specific differentiation markers. Cyclin D1 is not necessary for the terminal differentiation of podocytes, and expression coincides with cell-cycle entry. In contrast, cyclin D3 expression coincides with podocyte differentiation and quiescence.
Collapse
|
127
|
Richard-Parpaillon L, Cosgrove RA, Devine C, Vernon AE, Philpott A. G1/S phase cyclin-dependent kinase overexpression perturbs early development and delays tissue-specific differentiation in Xenopus. Development 2004; 131:2577-86. [PMID: 15115752 DOI: 10.1242/dev.01121] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cell division and differentiation are largely incompatible but the molecular links between the two processes are poorly understood. Here, we overexpress G1/S phase cyclins and cyclin-dependent kinases in Xenopus embryos to determine their effect on early development and differentiation. Overexpression of cyclin E prior to the midblastula transition (MBT), with or without cdk2, results in a loss of nuclear DNA and subsequent apoptosis at early gastrula stages. By contrast, overexpressed cyclin A2 protein does not affect early development and, when stabilised by binding to cdk2, persists to tailbud stages. Overexpression of cyclin A2/cdk2 in post-MBT embryos results in increased proliferation specifically in the epidermis with concomitant disruption of skin architecture and delay in differentiation. Moreover, ectopic cyclin A2/cdk2 also inhibits differentiation of primary neurons but does not affect muscle. Thus, overexpression of a single G1/S phase cyclin/cdk pair disrupts the balance between division and differentiation in the early vertebrate embryo in a tissue-specific manner.
Collapse
Affiliation(s)
- Laurent Richard-Parpaillon
- Department of Oncology, Cambridge University, Hutchison/MRC Research Centre, Addenbrookes Hospital, Hills Road, Cambridge CB2 2XZ, UK.
| | | | | | | | | |
Collapse
|
128
|
Ishido M, Kami K, Masuhara M. In vivo expression patterns of MyoD, p21, and Rb proteins in myonuclei and satellite cells of denervated rat skeletal muscle. Am J Physiol Cell Physiol 2004; 287:C484-93. [PMID: 15084472 DOI: 10.1152/ajpcell.00080.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MyoD, a myogenic regulatory factor, is rapidly expressed in adult skeletal muscles in response to denervation. However, the function(s) of MyoD expressed in denervated muscle has not been adequately elucidated. In vitro, it directly transactivates cyclin-dependent kinase inhibitor p21 (p21) and retinoblastoma protein (Rb), a downstream target of p21. These factors then act to regulate cell cycle withdrawal and antiapoptotic cell death. Using immunohistochemical approaches, we characterized cell types expressing MyoD, p21, and Rb and the relationship among these factors in the myonucleus of denervated muscles. In addition, we quantitatively examined the time course changes and expression patterns among distinct myofiber types of MyoD, p21, and Rb during denervation. Denervation induced MyoD expression in myonuclei and satellite cell nuclei, whereas p21 and Rb were found only in myonuclei. Furthermore, coexpression of MyoD, p21, and Rb was induced in the myonucleus, and quantitative analysis of these factors determined that there was no difference among the three myofiber types. These observations suggest that MyoD may function in myonuclei in response to denervation to protect against denervation-induced apoptosis via perhaps the activation of p21 and Rb, and function of MyoD expressed in satellite cell nuclei may be negatively regulated. The present study provides a molecular basis to further understand the function of MyoD expressed in the myonuclei and satellite cell nuclei of denervated skeletal muscle.
Collapse
Affiliation(s)
- Minenori Ishido
- Graduate School of Sport and Exercise Science, Osaka University of Health and Sport Science, Asashiro-dai 1-1, Kumatori-cho, Sennan-gun, Osaka 590-0496, Japan.
| | | | | |
Collapse
|
129
|
Schubert S, Horstmann S, Bartusel T, Klempnauer KH. The cooperation of B-Myb with the coactivator p300 is orchestrated by cyclins A and D1. Oncogene 2004; 23:1392-404. [PMID: 14973551 DOI: 10.1038/sj.onc.1207255] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
B-Myb is a highly conserved member of the Myb family of transcription factors whose activity is regulated during the cell cycle. Previous work has shown that the activity of B-Myb is stimulated by cyclin A/Cdk2-dependent phosphorylation whereas interaction of B-Myb with cyclin D1 inhibits its activity. Here, we have investigated the role of p300 as a coactivator for B-Myb. We show that B-Myb-dependent transactivation is stimulated by p300 as a result of interaction between B-Myb and p300. We have mapped the sequences responsible for the interaction of B-Myb and p300 to the E1A-binding region of p300 and the transactivation domain of B-Myb, respectively. Furthermore, our data suggest that phosphorylation of B-Myb stimulates its acetylation by p300 and that the acetylation of B-Myb is necessary for the full stimulation of its transactivation potential by p300. We have also studied the effect of cyclin D1 on the cooperation of B-Myb and p300. Based on our results we propose that cyclin D1 inhibits the activity of B-Myb by interfering with the interaction of B-Myb and p300. The data reported here provide novel insight into the mechanisms by which the activity of B-Myb is regulated during the cell cycle. Taken together they suggest that the coactivator p300 plays an important role in this regulation and that the cooperation of B-Myb and p300 is orchestrated by cyclins A and D1.
Collapse
Affiliation(s)
- Stephan Schubert
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str 2, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
130
|
Price PM, Megyesi J, Safirstein RL. Cell cycle regulation: repair and regeneration in acute renal failure. Semin Nephrol 2004; 23:449-59. [PMID: 13680534 DOI: 10.1016/s0270-9295(03)00087-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Research into mechanisms of acute renal failure has begun to reveal molecular targets for possible therapeutic intervention. Much useful knowledge into the causes and prevention of this syndrome has been gained by the study of animal models. Most recently, investigation of the effects on acute renal failure of selected gene knock-outs in mice has contributed to our recognition of many previously unappreciated molecular pathways. Particularly, experiments have revealed the protective nature of 2 highly induced genes whose functions are to inhibit and control the cell cycle after acute renal failure. By use of these models we have started to understand the role of increased cell cycle activity after renal stress and the role of proteins induced by these stresses that limit this proliferation.
Collapse
Affiliation(s)
- Peter M Price
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
131
|
Ait-Si-Ali S, Guasconi V, Fritsch L, Yahi H, Sekhri R, Naguibneva I, Robin P, Cabon F, Polesskaya A, Harel-Bellan A. A Suv39h-dependent mechanism for silencing S-phase genes in differentiating but not in cycling cells. EMBO J 2004; 23:605-15. [PMID: 14765126 PMCID: PMC1271807 DOI: 10.1038/sj.emboj.7600074] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 12/17/2003] [Indexed: 12/18/2022] Open
Abstract
The Rb/E2F complex represses S-phase genes both in cycling cells and in cells that have permanently exited from the cell cycle and entered a terminal differentiation pathway. Here we show that S-phase gene repression, which involves histone-modifying enzymes, occurs through distinct mechanisms in these two situations. We used chromatin immunoprecipitation to show that methylation of histone H3 lysine 9 (H3K9) occurs at several Rb/E2F target promoters in differentiating cells but not in cycling cells. Furthermore, phenotypic knock-down experiments using siRNAs showed that the histone methyltransferase Suv39h is required for histone H3K9 methylation and subsequent repression of S-phase gene promoters in differentiating cells, but not in cycling cells. These results indicate that the E2F target gene permanent silencing mechanism that is triggered upon terminal differentiation is distinct from the transient repression mechanism in cycling cells. Finally, Suv39h-depleted myoblasts were unable to express early or late muscle differentiation markers. Thus, appropriately timed H3K9 methylation by Suv39h seems to be part of the control switch for exiting the cell cycle and entering differentiation.
Collapse
Affiliation(s)
- Slimane Ait-Si-Ali
- UPR 9079 CNRS-Labellisée Ligue Nationale Contre le Cancer, Institut André Lwoff, Villejuif, France
| | - Valentina Guasconi
- UPR 9079 CNRS-Labellisée Ligue Nationale Contre le Cancer, Institut André Lwoff, Villejuif, France
| | - Lauriane Fritsch
- UPR 9079 CNRS-Labellisée Ligue Nationale Contre le Cancer, Institut André Lwoff, Villejuif, France
| | - Hakima Yahi
- UPR 9079 CNRS-Labellisée Ligue Nationale Contre le Cancer, Institut André Lwoff, Villejuif, France
| | - Redha Sekhri
- UPR 9079 CNRS-Labellisée Ligue Nationale Contre le Cancer, Institut André Lwoff, Villejuif, France
| | - Irina Naguibneva
- UPR 9079 CNRS-Labellisée Ligue Nationale Contre le Cancer, Institut André Lwoff, Villejuif, France
| | - Philippe Robin
- UPR 9079 CNRS-Labellisée Ligue Nationale Contre le Cancer, Institut André Lwoff, Villejuif, France
| | - Florence Cabon
- UPR 9079 CNRS-Labellisée Ligue Nationale Contre le Cancer, Institut André Lwoff, Villejuif, France
| | - Anna Polesskaya
- UPR 9079 CNRS-Labellisée Ligue Nationale Contre le Cancer, Institut André Lwoff, Villejuif, France
| | - Annick Harel-Bellan
- UPR 9079 CNRS-Labellisée Ligue Nationale Contre le Cancer, Institut André Lwoff, Villejuif, France
- UPR 9079 CNRS-Labellisée Ligue Nationale Contre le Cancer, Institut André Lwoff, 7 rue Guy Moquet, 94800 Villejuif, France. Tel.: +33 149 583385; Fax: +33 149 583307; E-mail:
| |
Collapse
|
132
|
Charles MP, Ravanat JL, Adamski D, D'Orazi G, Cadet J, Favier A, Berger F, Wion D. N6-Methyldeoxyadenosine, a nucleoside commonly found in prokaryotes, induces C2C12 myogenic differentiation. Biochem Biophys Res Commun 2004; 314:476-82. [PMID: 14733930 DOI: 10.1016/j.bbrc.2003.12.132] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
N(6)-methyl-2(')-deoxyadenosine (MedAdo) is a nucleoside naturally found in prokaryotic DNA. Interestingly, the N(6)-methylation of adenine in DNA seems to have been counter-selected during the course of evolution since MedAdo has not been detected in mammalian DNA until now. We show here that treatment with MedAdo induces myogenesis in C2C12 myoblasts. The presence of MedAdo in C2C12 DNA was investigated using a method based on HPLC coupled to electrospray ionization tandem mass spectrometry which is several thousand fold more sensitive than assays used previously. By this procedure, MedAdo is detected in the DNA from MedAdo-treated cells but remains undetectable in the DNA from control cells. Furthermore, MedAdo regulates the expression of p21, myogenin, mTOR, and MHC. Interestingly, in the pluripotent C2C12 cell line, MedAdo drives the differentiation towards myogenesis only. Thus, the biological effect of MedAdo is suppressed in the presence of BMP-2 which transdifferentiates C2C12 from myogenic into osteogenic lineage cells. Taken together these results point to MedAdo as a novel inducer of myogenesis and further extends the differentiation potentialities of this methylated nucleoside. Furthermore, these data raise the intriguing possibility that the biological effects of MedAdo on cell differentiation may have led to its counter-selection in eukaryotes.
Collapse
|
133
|
Falcone G, Ciuffini L, Gauzzi MC, Provenzano C, Strano S, Gallo R, Castellani L, Alemà S. v-Src inhibits myogenic differentiation by interfering with the regulatory network of muscle-specific transcriptional activators at multiple levels. Oncogene 2004; 22:8302-15. [PMID: 14614454 DOI: 10.1038/sj.onc.1206915] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The conversion of skeletal myoblasts to terminally differentiated myocytes is negatively controlled by several growth factors and oncoproteins. In this study, we have investigated the molecular mechanisms by which v-Src, a prototypic tyrosine kinase, perturbs myogenesis in primary avian myoblasts and in established murine C2C12 satellite cells. We determined the expression levels of the cell cycle regulators pRb, cyclin D1 and D3 and cyclin-dependent kinase inhibitors p21 and p27 in v-Src-transformed myoblasts and found that, in contrast to myogenin, they are normally modulated by differentiative cues, implying that v-Src affects myogenesis independent of cell proliferation. We then examined the levels of expression, DNA-binding ability and transcription-activation potentials of myogenic regulatory factors in transformed myoblasts and in myotubes after reactivation of a temperature-sensitive allele of v-Src. Our results reveal two distinct potential modes of repression targeted to myogenic factors. On the one hand, we show that v-Src reversibly inhibits the expression of MyoD and myogenin in C2C12 cells and of myogenin in quail myoblasts. Remarkably, these loci become resistant to activation of the kinase in the postmitotic compartment. On the other hand, we demonstrate that v-Src efficiently inhibits muscle gene expression by repressing the transcriptional activity of myogenic factors without affecting MyoD DNA-binding activity. Indeed, forced expression of MyoD and myogenin allows terminal differentiation of transformed myoblasts. Finally, we found that ectopic expression of the coactivator p300 restores transcription from extrachromosomal muscle-specific promoters.
Collapse
Affiliation(s)
- Germana Falcone
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche, Monterotondo 00016, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Wang C, Li Z, Fu M, Bouras T, Pestell RG. Signal transduction mediated by cyclin D1: from mitogens to cell proliferation: a molecular target with therapeutic potential. Cancer Treat Res 2004; 119:217-37. [PMID: 15164880 DOI: 10.1007/1-4020-7847-1_11] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Chenguang Wang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | | | | | | | | |
Collapse
|
135
|
Philipp-Staheli J, Kim KH, Liggitt D, Gurley KE, Longton G, Kemp CJ. Distinct roles for p53, p27Kip1, and p21Cip1 during tumor development. Oncogene 2003; 23:905-13. [PMID: 14647411 DOI: 10.1038/sj.onc.1207220] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mutations in p53 and reduced expression of the Cdk inhibitor p27Kip1 are frequently observed in a wide variety of human cancers, but it is not known whether alterations in these tumor suppressors interact to influence tumor progression. To address this, we measured tumor latency and spectrum in p53 and p27 single and compound mutant mice. p53-/- (null) mice developed T-cell lymphomas and soft-tissue sarcomas, while p27-/- mice developed adenomas of the pituitary and lung, but with much longer latency. The latency for tumor development in p53-/- p27-/- and p53-/- p27+/- compound mutant mice was significantly reduced, by 15-30%, compared to single mutant p53-/- mice. The tumor spectrum in the compound mutants was similar to that of p53-/- mice, and additional tumors of diverse histotypes. In tumors from p53-/- mice, p27 protein levels were reduced to a greater extent than were mRNA levels, indicating that p27 is downregulated in tumors at the transcriptional as well as post-transcriptional levels. In contrast, mice deficient in another Cdk inhibitor p21Cip1, which is also a transcriptional target and effector of p53, showed only a marginal increase in tumor predisposition in response to ENU treatment. Thus, downregulation of p27 is a common feature in p53-/- tumors. Germline deletion of one or both alleles of p27 accelerates tumor development and associated mortality in p53-/- mice, indicating potent synergy between loss of p27 and p53. Although p21 is functionally similar to both p53 and p27, it plays a lesser role in tumor suppression. These results further highlight the highly cooperative nature of p27 and its central role in tumor suppression.
Collapse
|
136
|
Cao Y, Zhao Z, Gruszczynska-Biegala J, Zolkiewska A. Role of metalloprotease disintegrin ADAM12 in determination of quiescent reserve cells during myogenic differentiation in vitro. Mol Cell Biol 2003; 23:6725-38. [PMID: 12972593 PMCID: PMC193919 DOI: 10.1128/mcb.23.19.6725-6738.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Skeletal myoblasts grown in vitro and induced to differentiate either form differentiated multinucleated myotubes or give rise to quiescent, undifferentiated "reserve cells" that share several characteristics with muscle satellite cells. The mechanism of determination of reserve cells is poorly understood. We find that the expression level of the metalloprotease disintegrin ADAM12 is much higher in proliferating C2C12 myoblasts and in reserve cells than in myotubes. Inhibition of ADAM12 expression in differentiating C2C12 cultures by small interfering RNA is accompanied by lower expression levels of both quiescence markers (retinoblastoma-related protein p130 and cell cycle inhibitor p27) and differentiation markers (myogenin and integrin alpha7A isoform). Overexpression of ADAM12 in C2C12 cells under conditions that promote cell cycle progression leads to upregulation of p130 and p27, cell cycle arrest, and downregulation of MyoD. Thus, enhanced expression of ADAM12 induces a quiescence-like phenotype and does not stimulate differentiation. We also show that the region extending from the disintegrin to the transmembrane domain of ADAM12 and containing cell adhesion activity as well as the cytoplasmic domain of ADAM12 are required for ADAM12-mediated cell cycle arrest, while the metalloprotease domain is not essential. Our results suggest that ADAM12-mediated adhesion and/or signaling may play a role in determination of the pool of reserve cells during myoblast differentiation.
Collapse
Affiliation(s)
- Yi Cao
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | |
Collapse
|
137
|
Sirri V, Leibovitch MP, Leibovitch SA. Muscle regulatory factor MRF4 activates differentiation in rhabdomyosarcoma RD cells through a positive-acting C-terminal protein domain. Oncogene 2003; 22:5658-66. [PMID: 12944914 DOI: 10.1038/sj.onc.1206690] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rhabdomyosarcoma (RMS) has deregulated proliferation and is blocked in the differentiation program despite Myf-5, MyoD and myogenin expression. Here we show that ectopic expression of MRF4, which is not subject to an autoregulatory pathway but regulated by the other MRFs protein family, induces growth arrest and terminal differentiation in RD cells. Deletion mapping identified a positive-acting C-terminal domain in MRF4 as the mediator of transcriptional activity, revealing a conserved motif with helix III in MyoD previously found to initiate expression of endogenous skeletal muscle genes. By using chimeric MyoD/MRF4 proteins, we observe that the C-terminal motif of MRF4 rescues MyoD activity in RD cells. Moreover, comparative induction of muscle-specific genes following activation of MyoD, through the expression of a constitutively activated MKK6 either in the absence or presence of MRF4, shows that MyoD and MRF4 can differently regulate muscle genes expression. Together, these results demonstrate that the MRF4 C-terminus functions as specification as well as activation domain in tumor cells. They provide a basis to identify gene products necessary for b-HLH-mediated differentiation versus tumor progression.
Collapse
Affiliation(s)
- Valentina Sirri
- Laboratoire de Génétique oncologique, CNRS UMR 8125, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94800 Villejuif, France
| | | | | |
Collapse
|
138
|
Abstract
The general mechanisms that control the cell cycle in mammalian cells have been studied in depth and several proteins that are involved in the tight regulation of cell cycle progression have been identified. However, the analysis of which molecules participate in cell cycle exit of specific cell lineages is not exhaustive yet. Moreover, the strict relation between cell cycle exit and induction of differentiation has not been fully understood and seems to depend on the cell type. Several in vivo and in vitro studies have been performed in the last few years to address these issues in cells of the nervous system. In this review, we focus our attention on cyclin-cyclin-dependent kinase complexes, cyclin kinase inhibitors, genes of the retinoblastoma family, p53 and N-Myc, and we aim to summarize the latest evidence indicating their involvement in the control of the cell cycle and induction of differentiation in different cell types of the peripheral and central nervous systems. Studies on nervous system tumors and a possible contributory role in tumorigenesis of polyomavirus T antigen are reported to point out the critical contribution of some cell cycle regulators to normal neural and glial development.
Collapse
Affiliation(s)
- Umberto Galderisi
- Department of Experimental Medicine, School of Medicine, Second University of Naples, Naples, Italy
| | | | | |
Collapse
|
139
|
Delgado I, Huang X, Jones S, Zhang L, Hatcher R, Gao B, Zhang P. Dynamic gene expression during the onset of myoblast differentiation in vitro. Genomics 2003; 82:109-21. [PMID: 12837262 DOI: 10.1016/s0888-7543(03)00104-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Skeletal myogenesis is a well-studied differentiation process. However, despite the identification and functional characterization of the myogenic basic HLH transcription factors, molecular details are still lacking. With the advent of microarray technology, it has become possible to look at changes in gene expression profiles in a biological process on an unprecedented scale. In this study, we applied this technology to profile gene expression during the in vitro differentiation of an established myoblast cell line, C2C12. We report over 1500 genes whose expression is altered when these cells differentiate, including 624, or about 40% of the total number of genes, with unknown functions. This analysis reveals the existence of 12 groups of coordinately regulated genes that are expressed in temporal waves of gene expression prior to the transcriptional induction of myogenin. Among these are multiple families of transcription factors that are important for the process of myogenesis. In addition, the induction of the Notch signaling pathway suggests that previously unappreciated intercellular signaling occurs during myogenic differentiation. These results provide a molecular description of the skeletal myogenesis up to the activation of myogenin.
Collapse
Affiliation(s)
- Ivan Delgado
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
140
|
Ostrovsky O, Bengal E. The mitogen-activated protein kinase cascade promotes myoblast cell survival by stabilizing the cyclin-dependent kinase inhibitor, p21WAF1 protein. J Biol Chem 2003; 278:21221-31. [PMID: 12637563 DOI: 10.1074/jbc.m211357200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During myogenesis, proliferating myoblasts withdraw from the cell cycle and are either eliminated by programmed cell death or differentiate into mature myotubes. Previous studies indicate that mitogen-activated protein kinase (MAPK) activity is significantly induced with the onset of terminal differentiation of C2 myoblasts. We have investigated the part played by the MAPK pathway in the differentiation of C2 myoblasts. Specific activation of MAPK by expression of an active Raf1-estrogen receptor chimera protein reduced significantly the number of myoblasts undergoing programmed cell death in the differentiation medium. Activation of Raf1 prevented the proteolytic activation of the proapoptotic caspase 9-protein during differentiation. The antiapoptotic function of Raf1 correlated with accumulation of the p21WAF1 protein resulting from its increased stability. Antisense expression of p21 was used to determine whether the p21WAF1 protein mediated the antiapoptotic activity of Raf1. Reduction of p21WAF1 protein in muscle cells abolished the antiapoptotic activity of the MAPK pathway. We conclude that MAPK contributes to muscle differentiation by preventing apoptotic cell death of differentiating myoblasts and that this activity is mediated by stabilization of the p21WAF1 protein.
Collapse
Affiliation(s)
- Olga Ostrovsky
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, P. O. Box 9649, Haifa 31096, Israel
| | | |
Collapse
|
141
|
Hossain MS, Akimitsu N, Kurokawa K, Sekimizu K. Myogenic differentiation of Drosophila Schneider cells by DNA double-strand break-inducing drugs. Differentiation 2003; 71:271-80. [PMID: 12823228 DOI: 10.1046/j.1432-0436.2003.7104504.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila melanogaster has been widely used as a model organism to study various aspects of development. Apart from the whole Drosophila embryo, there are a number of cultured cell lines derived from Drosophila embryo that have also been used for elucidating various aspects of development. Drosophila Schneider line 2 cells were derived from the late stages of the embryo (Schneider, 1972). We found that the Schneider cells undergo myogenic differentiation upon treatment with neocarzinostatin (NCS), DNA double-strand break (DSB)-inducing drug, as indicated by elongated morphology, myosin heavy chain protein expression, multinucleation and exit from the cell cycle. No induction of differentiation was observed when cell proliferation was inhibited with drugs that do not cause DNA DSBs. Pre-treatment of Schneider cells with inhibitors of PKC, PP 1/2A, p38 MAPK, JNK and proteasomes resulted in the inhibition of morphological differentiation induced by NCS. These results indicate that DNA DSBs can turn on the myogenic program in Drosophila Schneider cells and the process is dependent on PK C-, PP 1/2A-, p38 MAPK-, and JNK- mediated signaling and proteasomal activity. The molting hormone, 20-hydroxyecdysone (20-HE), also showed an anti-myogenic effect on the process. This is the first report of insect cells undergoing differentiation by DNA DSB-inducing drugs as far as we know, and it provides a very useful and convenient in vitro system to study various aspects of Drosophila myogenesis.
Collapse
Affiliation(s)
- Muktadir S Hossain
- Laboratory of Developmental Biochemistry, Faculty of Pharmaceutical Sciences, University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
142
|
Leibovitch MP, Kannengiesser C, Leibovitch SA. Signal-induced ubiquitination of p57(Kip2) is independent of the C-terminal consensus Cdk phosphorylation site. FEBS Lett 2003; 543:125-8. [PMID: 12753918 DOI: 10.1016/s0014-5793(03)00425-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cyclin-dependent kinase inhibitor p57(Kip2) is required for normal mouse embryonic development. p57(Kip2) consists of four structurally distinct domains in which the conserved C-terminal nuclear targeting domain contains a putative Cdk phosphorylation site (Thr(342)) that shares a great similitude in the adjacent sequences with p27(Kip1) but not with p21(Cip1). Phosphorylation on Thr(187) has been shown to promote degradation of p27(Kip1). Although there is sequence homology between the C-terminal part of p27(Kip1) and p57(Kip2), we show that the ubiquitination and degradation of p57(Kip2) are independent of Thr(342). In contrast a destabilizing element located in the N-terminal is implicated in p57(Kip2) destabilization.
Collapse
|
143
|
Lundquist A, Barré B, Bienvenu F, Hermann J, Avril S, Coqueret O. Kaposi sarcoma-associated viral cyclin K overrides cell growth inhibition mediated by oncostatin M through STAT3 inhibition. Blood 2003; 101:4070-7. [PMID: 12531804 DOI: 10.1182/blood-2002-07-1994] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
DNA viruses have evolved a number of mechanisms to inhibit the major cellular tumor-suppressor pathways. Viral oncogenes can override growth suppressive signals and extend the virus proliferative capacity. The Kaposi sarcoma-associated human herpesvirus 8 (KSHV) encodes a protein, cyclin K, that is similar to cellular cyclin D1 but behaves atypically. Cyclin K resists the actions of the p16 INK4a and p27Kip1 inhibitors and extends the range of cdk6 substrates, thereby inducing cell-cycle progression toward S phase. In this study, we show that cyclin K overrides growth suppressive signals through signal transducer and activator of transcription 3 (STAT3) inactivation. Cyclin K was found to associate with the activation domain of STAT3 to inhibit its DNA-binding and transcriptional activities. Overexpression of cyclin K and inhibition of STAT3 prevents the growth suppressive effect imposed by the interleukin 6-type cytokine, oncostatin M. Altogether, these results suggest that KSHV is able to override growth suppressive effects through multiple mechanisms, and they further indicate that cyclin K plays an important role in the oncogenic activity of these viruses.
Collapse
Affiliation(s)
- Amy Lundquist
- Institut National de la Santé et de la Recherche Médicale U564, Angers, France
| | | | | | | | | | | |
Collapse
|
144
|
Thannickal VJ, Lee DY, White ES, Cui Z, Larios JM, Chacon R, Horowitz JC, Day RM, Thomas PE. Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem 2003; 278:12384-9. [PMID: 12531888 DOI: 10.1074/jbc.m208544200] [Citation(s) in RCA: 497] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Myofibroblast differentiation and activation by transforming growth factor-beta1 (TGF-beta1) is a critical event in the pathogenesis of human fibrotic diseases, but regulatory mechanisms for this effect are unclear. In this report, we demonstrate that stable expression of the myofibroblast phenotype requires both TGF-beta1 and adhesion-dependent signals. TGF-beta1-induced myofibroblast differentiation of lung fibroblasts is blocked in non-adherent cells despite the preservation of TGF-beta receptor(s)-mediated signaling of Smad2 phosphorylation. TGF-beta1 induces tyrosine phosphorylation of focal adhesion kinase (FAK) including that of its autophosphorylation site, Tyr-397, an effect that is dependent on cell adhesion and is delayed relative to early Smad signaling. Pharmacologic inhibition of FAK or expression of kinase-deficient FAK, mutated by substituting Tyr-397 with Phe, inhibit TGF-beta1-induced alpha-smooth muscle actin expression, stress fiber formation, and cellular hypertrophy. Basal expression of alpha-smooth muscle actin is elevated in cells grown on fibronectin-coated dishes but is decreased on laminin and poly-d-lysine, a non-integrin binding polypeptide. TGF-beta1 up-regulates expression of integrins and fibronectin, an effect that is associated with autophosphorylation/activation of FAK. Thus, a safer and more effective therapeutic strategy for fibrotic diseases characterized by persistent myofibroblast activation may be to target this integrin/FAK pathway while not interfering with tumor-suppressive functions of TGF-beta1/Smad signaling.
Collapse
Affiliation(s)
- Victor J Thannickal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Yan Z, Choi S, Liu X, Zhang M, Schageman JJ, Lee SY, Hart R, Lin L, Thurmond FA, Williams RS. Highly coordinated gene regulation in mouse skeletal muscle regeneration. J Biol Chem 2003; 278:8826-36. [PMID: 12477723 DOI: 10.1074/jbc.m209879200] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mammalian skeletal muscles are capable of regeneration after injury. Quiescent satellite cells are activated to reenter the cell cycle and to differentiate for repair, recapitulating features of myogenesis during embryonic development. To understand better the molecular mechanism involved in this process in vivo, we employed high density cDNA microarrays for gene expression profiling in mouse tibialis anterior muscles after a cardiotoxin injection. Among 16,267 gene elements surveyed, 3,532 elements showed at least a 2.5-fold change at one or more time points during a 14-day time course. Hierarchical cluster analysis and semiquantitative reverse transcription-PCR showed induction of genes important for cell cycle control and DNA replication during the early phase of muscle regeneration. Subsequently, genes for myogenic regulatory factors, a group of imprinted genes and genes with functions to inhibit cell cycle progression and promote myogenic differentiation, were induced when myogenic stem cells started to differentiate. Induction of a majority of these genes, including E2f1 and E2f2, was abolished in muscles lacking satellite cell activity after gamma radiation. Regeneration was severely compromised in E2f1 null mice but not affected in E2f2 null mice. This study identifies novel genes potentially important for muscle regeneration and reveals highly coordinated myogenic cell proliferation and differentiation programs in adult skeletal muscle regeneration in vivo.
Collapse
Affiliation(s)
- Zhen Yan
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Masaki T, Shiratori Y, Rengifo W, Igarashi K, Yamagata M, Kurokohchi K, Uchida N, Miyauchi Y, Yoshiji H, Watanabe S, Omata M, Kuriyama S. Cyclins and cyclin-dependent kinases: comparative study of hepatocellular carcinoma versus cirrhosis. Hepatology 2003; 37:534-43. [PMID: 12601350 DOI: 10.1053/jhep.2003.50112] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increasing evidence has indicated that perturbation of cyclins is one of the major factors leading to cancer. The aim of this study was not only to investigate various cell cycle-related kinase activities in hepatocellular carcinoma (HCC), but also to analyze the difference of cell cycle-related kinase activity levels between hepatitis C virus (HCV)-induced HCC and HCV-induced cirrhosis. The protein levels of cyclins D1, E, A, and H, and of cyclin dependent kinase 1 (Cdk1), Cdk2, Cdk4, Cdk6, and Cdk7 in HCC and in surrounding nontumorous cirrhosis were determined by Western blot. The enzymatic activities of cyclins D1, E, A, Cdk1, Cdk4, Cdk6, Cdk7, and Wee1 were measured using in vitro kinase assays. Protein levels and kinase activities of cyclin D1, Cdk4, cyclin E, cyclin A, and Wee1 were significantly elevated in HCC compared with surrounding cirrhotic tissues. The enhanced cyclin D1-related kinase activity in HCC was accompanied by the up-regulation of Cdk4 activity, but not Cdk6 activity. The kinase activities of Cdk6, Cdk7, and Cdk1 did not differ between HCC and surrounding cirrhotic tissues. In addition, the protein levels and kinase activities of cyclin D1, Cdk4, and cyclin E were higher in poorly differentiated HCC and advanced HCC. In conclusion, the increases of cyclin D1, Cdk4, cyclin E, cyclin A, and Wee1 play an important role in the development of HCC from cirrhosis. Cyclin D1, Cdk4, and cyclin E activation may be closely related to the histopathologic grade and progression of HCC.
Collapse
Affiliation(s)
- Tsutomu Masaki
- Third Department of Internal Medicine, Kagawa Medical University, Kagawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Funato N, Ohyama K, Kuroda T, Nakamura M. Basic helix-loop-helix transcription factor epicardin/capsulin/Pod-1 suppresses differentiation by negative regulation of transcription. J Biol Chem 2003; 278:7486-93. [PMID: 12493738 DOI: 10.1074/jbc.m212248200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epicardin/capsulin/Pod-1, expressed in skeletal myoblasts within brachial arches and in the condensing mesenchyme, is a member of the basic helix-loop-helix (bHLH) transcription factor family that is involved in various cell differentiation processes. In this study, we examined the functional properties of epicardin/capsulin/Pod-1 in differentiation. The yeast and mammalian two-hybrid systems showed physical associations between epicardin/capsulin/Pod-1 and E2A, both of which were present in the nuclei. The bHLH domains mediated this association. Ectopic expression of epicardin/capsulin/Pod-1 inhibited E2A-dependent activation of the exogenous and endogenous expression of the cyclin-dependent kinase inhibitor, p21(WAF1/Cip1) gene, and the muscle creatine kinase gene that encodes the predominant creatine kinase isoform expressed in mammalian skeletal muscle. Transfection with epicardin/capsulin/Pod-1 small interfering RNA abolished the epicardin/capsulin/Pod-1-mediated suppression of E12-dependent activation of the p21 promoter. Chromatin immunoprecipitation assay showed that epicardin/capsulin/Pod-1 was physically associated with the muscle creatine kinase promoter in vivo. Moreover, terminal differentiation of C2C12 myoblasts was inhibited by exogenous introduction of epicardin/capsulin/Pod-1. These inhibitory functions of epicardin/capsulin/Pod-1 closely resemble those of the bHLH inhibitor Twist protein. These results indicate that epicardin/capsulin/Pod-1 functions as a negative regulator of differentiation of myoblasts through transcription in at least two distinct steps, cell growth arrest and lineage-specific differentiation.
Collapse
Affiliation(s)
- Noriko Funato
- Human Gene Sciences Center and Maxillofacial Orthognathics Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | |
Collapse
|
148
|
Vernon AE, Philpott A. A single cdk inhibitor, p27Xic1, functions beyond cell cycle regulation to promote muscle differentiation in Xenopus. Development 2003; 130:71-83. [PMID: 12441292 DOI: 10.1242/dev.00180] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular basis of the antagonism between cellular proliferation and differentiation is poorly understood. We have investigated the role of the cyclin-dependent kinase inhibitor p27(Xic1) in the co-ordination of cell cycle exit and differentiation during early myogenesis in vivo using Xenopus embryos. In this report, we demonstrate that p27(Xic1) is highly expressed in the developing myotome, that ablation of p27(Xic1) protein prevents muscle differentiation and that p27(Xic1) synergizes with the transcription factor MyoD to promote muscle differentiation. Furthermore, the ability of p27(Xic1) to promote myogenesis resides in an N-terminal domain and is separable from its cell cycle regulation function. This data demonstrates that a single cyclin-dependent kinase inhibitor, p27(Xic1), controls in vivo muscle differentiation in Xenopus and that regulation of this process by p27(Xic1) requires activities beyond cell cycle inhibition.
Collapse
Affiliation(s)
- Ann E Vernon
- Department of Oncology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK
| | | |
Collapse
|
149
|
Eliazer S, Spencer J, Ye D, Olson E, Ilaria RL. Alteration of mesodermal cell differentiation by EWS/FLI-1, the oncogene implicated in Ewing's sarcoma. Mol Cell Biol 2003; 23:482-92. [PMID: 12509448 PMCID: PMC151529 DOI: 10.1128/mcb.23.2.482-492.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chimeric fusion gene EWS/FLI-1 is detected in most cases of Ewing's sarcoma (ES), the second most common malignant bone tumor of childhood. Although 80% of ES tumors develop in skeletal sites, the remainder can arise in almost any soft tissue location. The lineage of the cell developing the EWS/FLI-1 gene fusion has not been fully characterized but is generally considered to be of either mesenchymal or neural crest origin. To study this oncogene in a conceptually relevant target cell, EWS/FLI-1 was introduced into the murine cell line C2C12, a myoblast cell line capable of differentiation into muscle, bone, or fat. In this cellular context, EWS/FLI-1 profoundly inhibited the myogenic differentiation program. The block in C2C12 myogenic differentiation required the nuclear localization and DNA-binding functions of EWS/FLI-1 and was mediated by transcriptional and posttranscriptional suppression of the myogenic transcription factors MyoD and myogenin. Interestingly, C2C12-EWS/FLI-1 cells constitutively expressed alkaline phosphatase, a bone lineage marker, and were alkaline phosphatase positive by histochemistry but showed no other evidence of bone lineage commitment. Consistent with recent findings in human ES tumor cell lines, C2C12-EWS/FLI-1 cells constitutively expressed cyclin D1 and demonstrated decreased expression of the cell cycle regulator p21(cip1), even under differentiation conditions and at confluent density. This C2C12-EWS/FLI-1 cell model may assist in the identification of novel differentially expressed genes relevant to ES and provide further insight into the cell(s) of origin developing ES-associated genetic fusions.
Collapse
Affiliation(s)
- Susan Eliazer
- Division of Hematology-Oncology, Department of Medicine, Simmons Cancer Center and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8593, USA
| | | | | | | | | |
Collapse
|
150
|
Ciemerych MA, Kenney AM, Sicinska E, Kalaszczynska I, Bronson RT, Rowitch DH, Gardner H, Sicinski P. Development of mice expressing a single D-type cyclin. Genes Dev 2002; 16:3277-89. [PMID: 12502747 PMCID: PMC187507 DOI: 10.1101/gad.1023602] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
D-cyclins (cyclins D1, D2, and D3) are components of the core cell cycle machinery. To directly test the ability of each D-cyclin to drive development of various lineages, we generated mice expressing only cyclin D1, or only cyclin D2, or only cyclin D3. We found that these "single-cyclin" embryos develop normally until late gestation. Our analyses revealed that in single-cyclin embryos, the tissue-specific expression pattern of D-cyclins was lost. Instead, mutant embryos ubiquitously expressed the remaining D-cyclin. These findings suggest that the functions of the three D-cyclins are largely exchangeable at this stage. Later in life, single-cyclin mice displayed focused abnormalities, resulting in premature mortality. "Cyclin D1-only" mice developed severe megaloblastic anemia, "cyclin D2-only" mice presented neurological abnormalities, and "cyclin D3-only" mice lacked normal cerebella. Analyses of the affected tissues revealed that these compartments failed to sufficiently up-regulate the remaining, intact D-cyclin. In particular, we found that in cerebellar granule neuron precursors, the N-myc transcription factor communicates with the cell cycle machinery via cyclins D1 and D2, but not D3, explaining the inability of D3-only mice to up-regulate cyclin D3 in this compartment. Hence, the requirement for a particular cyclin in a given tissue is likely caused by specific transcription factors, rather than by unique properties of cyclins.
Collapse
Affiliation(s)
- Maria A Ciemerych
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|