101
|
Mahalakshmi RN, Ng MY, Guo K, Qi Z, Hunziker W, Béguin P. Nuclear localization of endogenous RGK proteins and modulation of cell shape remodeling by regulated nuclear transport. Traffic 2007; 8:1164-78. [PMID: 17605760 DOI: 10.1111/j.1600-0854.2007.00599.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The members of the RGK small GTP-binding protein family, Kir/Gem, Rad, Rem and Rem2, are multifunctional proteins that regulate voltage-gated calcium channel activity and cell shape remodeling. Calmodulin (CaM) or CaM 14-3-3 are regulators of RGK functions and their association defines the subcellular localization of RGK proteins. Abolition of CaM association results in the accumulation of RGK proteins in the nucleus, whereas 14-3-3 binding maintains them in the cytoplasm. Kir/Gem possesses nuclear localization signals (NLS) that mediate nuclear accumulation through an importin alpha5-dependent pathway (see Mahalakshmi RN, Nagashima K, Ng MY, Inagaki N, Hunziker W, Béguin P. Nuclear transport of Kir/Gem requires specific signals and importin alpha5 and is regulated by Calmodulin and predicted service phosphorylations. Traffic 2007; doi: 10.1111/j.1600-0854.2007.00598.x). Because the extent of nuclear localization depends on the RGK protein and the cell type, the mechanism and regulation of nuclear transport may differ. Here, we extend our analysis to the other RGK members and show that Rem also binds importin alpha5, whereas Rad associates with importins alpha3, alpha5 and beta through three conserved NLS. Predicted phosphorylation of a serine residue within the bipartite NLS affects, as observed for Kir/Gem, nuclear accumulation of Rem, but not that of Rad or Rem2. We also identify an additional regulatory phosphorylation for all RGK proteins that prevents binding of 14-3-3 and thereby interferes with their cytosolic relocalization by 14-3-3. Functionally, nuclear localization of RGK proteins contributes to the suppression of RGK-mediated cell shape remodeling. Importantly, we show that endogenous RGK proteins are localized predominantly in the nucleus of individual cells of the brain cortex 'in situ' as well as in primary hippocampal cells, indicating that transport between the nucleus and their site of action in the cytoplasm (i.e., cytoskeleton, endoplasmic reticulum or plasma membrane) is of physiological relevance for the regulation of RGK protein function.
Collapse
Affiliation(s)
- Ramasubbu N Mahalakshmi
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | | | | | | | | | | |
Collapse
|
102
|
Abstract
Diabetes mellitus is widely recognized as one of the leading causes of death and disability. While insulin insensitivity is an early phenomenon partly related to obesity, pancreatic beta-cell function declines gradually over time even before the onset of clinical hyperglycemia. Several mechanisms have been proposed to be responsible for insulin resistance, including increased non-esterified fatty acids, inflammatory cytokines, adipokines, and mitochondrial dysfunction, as well as glucotoxicity, lipotoxicity, and amyloid formation for beta-cell dysfunction. Moreover, the disease has a strong genetic component, although only a handful of genes have been identified so far. Diabetic management includes diet, exercise and combinations of antihyperglycemic drug treatment with lipid-lowering, antihypertensive, and antiplatelet therapy. Since many persons with type 2 diabetes are insulin resistant and overweight, nutrition therapy often begins with lifestyle strategies to reduce energy intake and increase energy expenditure through physical activity. These strategies should be implemented as soon as diabetes or impaired glucose homoeostasis (pre-diabetes) is diagnosed.
Collapse
Affiliation(s)
- George V Z Dedoussis
- Department of Nutrition and Dietetics, Harokopio University of Athens, 70 El. Venizelou Str., 17671 Kallithea-Athens, Greece
| | | | | |
Collapse
|
103
|
Mahalakshmi RN, Nagashima K, Ng MY, Inagaki N, Hunziker W, Béguin P. Nuclear Transport of Kir/Gem Requires Specific Signals and Importin α5 and Is Regulated by Calmodulin and Predicted Serine Phosphorylations. Traffic 2007; 8:1150-63. [PMID: 17605761 DOI: 10.1111/j.1600-0854.2007.00598.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kir/Gem, together with Rad, Rem and Rem2, is a member of the RGK small GTP-binding protein family. These multifunctional proteins regulate voltage-gated calcium channel (VGCC) activity and cell-shape remodeling. Calmodulin and 14-3-3 binding modulate the functions of RGK proteins. Intriguingly, abolishing the binding of calmodulin or calmodulin and 14-3-3 results in nuclear accumulation of RGK proteins. Under certain conditions, the Ca(v)beta3-subunit of VGCCs can be translocated into the nucleus along with the RGK proteins, resulting in channel inactivation. The mechanism by which nuclear localization of RGK proteins is accomplished and regulated, however, is unknown. Here, we identify specific nuclear localization signals (NLS) in Kir/Gem that are both required and sufficient for nuclear transport. Importin alpha5 binds to Kir/Gem, and its depletion using RNA interference impairs nuclear translocation of this RGK protein. Calmodulin and predicted phosphorylations on serine residues within or in the vicinity of a C-terminal bipartite NLS regulate nuclear translocation by interfering with the association between importinalpha5 and Kir/Gem. These predicted phosphorylations, however, do not affect Kir/Gem-mediated calcium channel downregulation but rather, as shown in the accompanying paper (Mahalakshmi RN, Ng MY, Guo K, Qi Z, Hunziker W, Béguin P. Nuclear localization of endogenous RGK proteins and modulation of cell shape remodeling by regulated nuclear transport. Traffic 2007; doi:10.1111/j.1600-0854.2007.00599.x), interfere with cell-shape remodeling.
Collapse
Affiliation(s)
- Ramasubbu N Mahalakshmi
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | | | | | | | | | | |
Collapse
|
104
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an increasingly recognized medical condition that may progress to hepatic cirrhosis with liver failure. The pathologic picture resembles that of alcohol-induced liver injury, but it occurs in patients who do not abuse alcohol. NAFLD is more common among patients with evidence of insulin resistance. NAFLD refers to a wide spectrum of liver damage, ranging from simple steatosis to steatohepatitis, fibrosis, and cirrhosis. The clinical implications of NAFLD are derived mostly from its common occurrence in the general population, specifically in obese individuals, and its potential to progress to cirrhosis and liver failure. It is difficult to propose a treatment strategy for NAFLD because its pathogenesis is poorly understood; however, the most commonly associated clinical features of obesity, diabetes mellitus, lipid disorders, and hypertension deserve therapeutic interventions independent of NAFLD. It is also not known if and how treatment of these other conditions affects the natural history of NAFLD, particularly in the long term.
Collapse
Affiliation(s)
- Sherif Saadeh
- Division of Hepatology, 4 Roberts, Baylor University Medical Center, Dallas, TX 75246, USA.
| |
Collapse
|
105
|
Tarantino G, Saldalamacchia G, Conca P, Arena A. Non-alcoholic fatty liver disease: further expression of the metabolic syndrome. J Gastroenterol Hepatol 2007; 22:293-303. [PMID: 17295757 DOI: 10.1111/j.1440-1746.2007.04824.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease has been associated with metabolic disorders, including central obesity, dyslipidemia, hypertension and hyperglycemia. Metabolic syndrome, obesity, and insulin resistance are major risk factors in the pathogenesis of non-alcoholic fatty liver disease. Non-alcoholic fatty liver disease refers to a wide spectrum of liver damage, ranging from simple steatosis to non-alcoholic steatohepatitis, advanced fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Giovanni Tarantino
- Department of Clinical and Experimental Medicine, Federico II University Medical School, Naples, Italy.
| | | | | | | |
Collapse
|
106
|
Béguin P, Ng YJA, Krause C, Mahalakshmi RN, Ng MY, Hunziker W. RGK small GTP-binding proteins interact with the nucleotide kinase domain of Ca2+-channel beta-subunits via an uncommon effector binding domain. J Biol Chem 2007; 282:11509-20. [PMID: 17303572 DOI: 10.1074/jbc.m606423200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGK proteins (Kir/Gem, Rad, Rem, and Rem2) form a small subfamily of the Ras superfamily. Despite a conserved GTP binding core domain, several differences suggest that structure, mechanism of action, and functional regulation differ from Ras. RGK proteins down-regulate voltage-gated calcium channel activity by binding in a GTP-dependent fashion to the Cavbeta subunits. Mutational analysis combined with homology modeling reveal a novel effector binding mechanism distinct from that of other Ras GTPases. In this model the Switch 1 region acts as an allosteric activator that facilitates electrostatic interactions between Arg-196 in Kir/Gem and Asp-194, -270, and -272 in the nucleotide-kinase (NK) domain of Cavbeta3 and wedging Val-223 and His-225 of Kir/Gem into a hydrophobic pocket in the NK domain. Kir/Gem interacts with a surface on the NK domain that is distinct from the groove where the voltage-gated calcium channel Cavalpha1 subunit binds. A complex composed of the RGK protein and the Cavbeta3 and Cav1.2 subunits could be revealed in vivo using coimmunoprecipitation experiments. Intriguingly, docking of the RGK protein to the NK domain of the Cavbeta subunit is reminiscent of the binding of GMP to guanylate kinase.
Collapse
Affiliation(s)
- Pascal Béguin
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
107
|
Wu X, Wang J, Cui X, Maianu L, Rhees B, Rosinski J, So WV, Willi SM, Osier MV, Hill HS, Page GP, Allison DB, Martin M, Garvey WT. The effect of insulin on expression of genes and biochemical pathways in human skeletal muscle. Endocrine 2007; 31:5-17. [PMID: 17709892 DOI: 10.1007/s12020-007-0007-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/24/2022]
Abstract
To study the insulin effects on gene expression in skeletal muscle, muscle biopsies were obtained from 20 insulin sensitive individuals before and after euglycemic hyperinsulinemic clamps. Using microarray analysis, we identified 779 insulin-responsive genes. Particularly noteworthy were effects on 70 transcription factors, and an extensive influence on genes involved in both protein synthesis and degradation. The genetic program in skeletal muscle also included effects on signal transduction, vesicular traffic and cytoskeletal function, and fuel metabolic pathways. Unexpected observations were the pervasive effects of insulin on genes involved in interacting pathways for polyamine and S-adenoslymethionine metabolism and genes involved in muscle development. We further confirmed that four insulin-responsive genes, RRAD, IGFBP5, INSIG1, and NGFI-B (NR4A1), were significantly up-regulated by insulin in cultured L6 skeletal muscle cells. Interestingly, insulin caused an accumulation of NGFI-B (NR4A1) protein in the nucleus where it functions as a transcription factor, without translocation to the cytoplasm to promote apoptosis. The role of NGFI-B (NR4A1) as a new potential mediator of insulin action highlights the need for greater understanding of nuclear transcription factors in insulin action.
Collapse
Affiliation(s)
- Xuxia Wu
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1675 University Boulevard, Birmingham, AL 35294-3360, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Hatzoglou A, Ader I, Splingard A, Flanders J, Saade E, Leroy I, Traver S, Aresta S, de Gunzburg J. Gem associates with Ezrin and acts via the Rho-GAP protein Gmip to down-regulate the Rho pathway. Mol Biol Cell 2007; 18:1242-52. [PMID: 17267693 PMCID: PMC1839077 DOI: 10.1091/mbc.e06-06-0510] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Gem is a protein of the Ras superfamily that plays a role in regulating voltage-gated Ca2+ channels and cytoskeletal reorganization. We now report that GTP-bound Gem interacts with the membrane-cytoskeleton linker protein Ezrin in its active state, and that Gem binds to active Ezrin in cells. The coexpression of Gem and Ezrin induces cell elongation accompanied by the disappearance of actin stress fibers and collapse of most focal adhesions. The same morphological effect is elicited when cells expressing Gem alone are stimulated with serum and requires the expression of ERM proteins. We show that endogenous Gem down-regulates the level of active RhoA and actin stress fibers. The effects of Gem downstream of Rho, i.e., ERM phosphorylation as well as disappearance of actin stress fibers and most focal adhesions, require the Rho-GAP partner of Gem, Gmip, a protein that is enriched in membranes under conditions in which Gem induced cell elongation. Our results suggest that Gem binds active Ezrin at the plasma membrane-cytoskeleton interface and acts via the Rho-GAP protein Gmip to down-regulate the processes dependent on the Rho pathway.
Collapse
Affiliation(s)
| | - Isabelle Ader
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Anne Splingard
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - James Flanders
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Evelyne Saade
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Ingrid Leroy
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Sabine Traver
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Sandra Aresta
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Jean de Gunzburg
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| |
Collapse
|
109
|
Suzuki M, Shigematsu H, Shames DS, Sunaga N, Takahashi T, Shivapurkar N, Iizasa T, Minna JD, Fujisawa T, Gazdar AF. Methylation and gene silencing of the Ras-related GTPase gene in lung and breast cancers. Ann Surg Oncol 2006; 14:1397-404. [PMID: 17195088 DOI: 10.1245/s10434-006-9089-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 02/15/2006] [Accepted: 03/01/2006] [Indexed: 12/31/2022]
Abstract
BACKGROUND RRAD, a small Ras-related GTPase, is highly expressed in human skeletal muscle, lung, and heart. Although loss of expression of RRAD in breast cancer cells has been reported and it may act as an oncogene, the mechanism of silencing is unknown. METHODS We examined (1) mRNA expression of RRAD in lung and breast cancer cell lines using RT-PCR and (2) methylation status of lung and breast cancers. RESULTS Loss of RRAD expression was found in 14 of 20 (70%) NSCLC cell lines, 11 of 11 (100%) SCLC cell lines, and 8 of 10 (80%) breast cancer cell lines; expression was not affected in normal bronchial and mammary epithelial cells. Treatment of 23 expression-negative cell lines with a demethylating agent restored expression in all cases. We developed a methylation-specific assay from the analysis of bisulfite sequencing of the 5' region of RRAD in expression-negative and positive cell lines, which resulted in good concordance between methylation and expression. Primary lung and breast cancers showed hypermethylation in 89 of 214 (42%) and 39 of 63 (62%) cases, respectively. RRAD hypermethylation correlated with smoking history and poorer prognosis in lung adenocarcinomas. CONCLUSIONS We conclude that epigenetic silencing of RRAD is a frequent event in lung and breast cancers, and analysis of it may provide novel opportunities for prognosis and therapy of these cancers.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Antimetabolites, Antineoplastic/pharmacology
- Azacitidine/pharmacology
- Biomarkers, Tumor/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Small Cell/genetics
- Carcinoma, Small Cell/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- CpG Islands
- DNA Methylation
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Epigenesis, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Male
- Middle Aged
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Seu L, Pitt GS. Dose-dependent and isoform-specific modulation of Ca2+ channels by RGK GTPases. J Gen Physiol 2006; 128:605-13. [PMID: 17074979 PMCID: PMC2151584 DOI: 10.1085/jgp.200609631] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 10/09/2006] [Indexed: 11/20/2022] Open
Abstract
Although inhibition of voltage-gated calcium channels by RGK GTPases (RGKs) represents an important mode of regulation to control Ca(2+) influx in excitable cells, their exact mechanism of inhibition remains controversial. This has prevented an understanding of how RGK regulation can be significant in a physiological context. Here we show that RGKs-Gem, Rem, and Rem2-decreased Ca(V)1.2 Ca(2+) current amplitude in a dose-dependent manner. Moreover, Rem2, but not Rem or Gem, produced dose-dependent alterations on gating kinetics, uncovering a new mode by which certain RGKs can precisely modulate Ca(2+) currents and affect Ca(2+) influx during action potentials. To explore how RGKs influence gating kinetics, we separated the roles mediated by the Ca(2+) channel accessory beta subunit's interaction with its high affinity binding site in the pore-forming alpha(1C) subunit (AID) from its other putative contact sites by utilizing an alpha(1C)*beta3 concatemer in which the AID was mutated to prevent beta subunit interaction. This mutant concatemer generated currents with all the hallmarks of beta subunit modulation, demonstrating that AID-beta-independent interactions are sufficient for beta subunit modulation. Using this construct we found that although inhibition of current amplitude was still partially sensitive to RGKs, Rem2 no longer altered gating kinetics, implicating different determinants for this specific mode of Rem2-mediated regulation. Together, these results offer new insights into the molecular mechanism of RGK-mediated Ca(2+) channel current modulation.
Collapse
Affiliation(s)
- Lillian Seu
- Department of Pharmacology, Division of Cardiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
111
|
Opatowsky Y, Sasson Y, Shaked I, Ward Y, Chomsky-Hecht O, Litvak Y, Selinger Z, Kelly K, Hirsch JA. Structure-function studies of the G-domain from human gem, a novel small G-protein. FEBS Lett 2006; 580:5959-64. [PMID: 17052716 PMCID: PMC1934412 DOI: 10.1016/j.febslet.2006.09.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/14/2006] [Accepted: 09/28/2006] [Indexed: 10/24/2022]
Abstract
Gem, a member of the Rad,Gem/Kir subfamily of small G-proteins, has unique sequence features. We report here the crystallographic structure determination of the Gem G-domain in complex with nucleotide to 2.4 A resolution. Although the basic Ras protein fold is maintained, the Gem switch regions emphatically differ from the Ras paradigm. Our ensuing biochemical characterization indicates that Gem G-domain markedly prefers GDP over GTP. Two known functions of Gem are distinctly affected by spatially separated clusters of mutations.
Collapse
Affiliation(s)
- Yarden Opatowsky
- Department of Biochemistry, Faculty of Life Sciences, Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Yehezkel Sasson
- Department of Biochemistry, Faculty of Life Sciences, Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Isabella Shaked
- Department of Biochemistry, Faculty of Life Sciences, Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Yvona Ward
- Cell and Cancer Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Orna Chomsky-Hecht
- Department of Biochemistry, Faculty of Life Sciences, Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Yael Litvak
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Zvi Selinger
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Kathleen Kelly
- Cell and Cancer Biology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Joel A. Hirsch
- Department of Biochemistry, Faculty of Life Sciences, Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
112
|
Abstract
Rad (Ras associated with diabetes) is an RGK-family small GTPase that is over-expressed in the skeletal muscle of humans with type II diabetes. Unlike other small GTPases, RGK family members including Rad lack several conserved residues in the GTPase domain. Here, we report the crystal structure of the GTPase domain of human Rad in the GDP-bound form at 1.8 A resolution. The structure revealed unexpected disordered structures of both switches I and II. We showed that the conformational flexibility of both switches is caused by non-conservative substitutions in the G2 and G3 motifs forming the switch cores together with other substitutions in the structural elements interacting with the switches. Glycine-rich sequences of the switches would also contribute to the flexibility. Switch I lacks the conserved phenylalanine that makes non-polar interactions with the guanine base in H-Ras. Instead, water-mediated hydrogen bonding interactions were observed in Rad. The GDP molecule is located at the same position as in H-Ras and adopts a similar conformation as that bound in H-Ras. This similarity seems to be endowed by the conserved hydrogen bonding interactions with the guanine base-recognition loops and the magnesium ion that has a typical octahedral coordination shell identical to that in H-Ras.
Collapse
Affiliation(s)
- Arry Yanuar
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | |
Collapse
|
113
|
Finlin BS, Correll RN, Pang C, Crump SM, Satin J, Andres DA. Analysis of the complex between Ca2+ channel beta-subunit and the Rem GTPase. J Biol Chem 2006; 281:23557-66. [PMID: 16790445 DOI: 10.1074/jbc.m604867200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated calcium channels are multiprotein complexes that regulate calcium influx and are important contributors to cardiac excitability and contractility. The auxiliary beta-subunit (CaV beta) binds a conserved domain (the alpha-interaction domain (AID)) of the pore-forming CaV alpha1 subunit to modulate channel gating properties and promote cell surface trafficking. Recently, members of the RGK family of small GTPases (Rem, Rem2, Rad, Gem/Kir) have been identified as novel contributors to the regulation of L-type calcium channel activity. Here, we describe the Rem-association domain within CaV beta2a. The Rem interaction module is located in a approximately 130-residue region within the highly conserved guanylate kinase domain that also directs AID binding. Importantly, CaV beta mutants were identified that lost the ability to bind AID but retained their association with Rem, indicating that the AID and Rem association sites of CaV beta2a are structurally distinct. In vitro binding studies indicate that the affinity of Rem for CaV beta2a interaction is lower than that of AID for CaV beta2a. Furthermore, in vitro binding studies indicate that Rem association does not inhibit the interaction of CaV beta2a with AID. Instead, CaV beta can simultaneously associate with both Rem and CaV alpha1-AID. Previous studies had suggested that RGK proteins may regulate Ca2+ channel activity by blocking the association of CaV beta subunits with CaV alpha1 to inhibit plasma membrane trafficking. However, surface biotinylation studies in HIT-T15 cells indicate that Rem can acutely modulate channel function without decreasing the density of L-type channels at the plasma membrane. Together these data suggest that Rem-dependent Ca2+ channel modulation involves formation of a Rem x CaV beta x AID regulatory complex without the need to disrupt CaV alpha1 x CaV beta association or alter CaV alpha1 expression at the plasma membrane.
Collapse
Affiliation(s)
- Brian S Finlin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509, USA
| | | | | | | | | | | |
Collapse
|
114
|
Sova P, Feng Q, Geiss G, Wood T, Strauss R, Rudolf V, Lieber A, Kiviat N. Discovery of novel methylation biomarkers in cervical carcinoma by global demethylation and microarray analysis. Cancer Epidemiol Biomarkers Prev 2006; 15:114-23. [PMID: 16434596 DOI: 10.1158/1055-9965.epi-05-0323] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A genome-wide screening study for identification of hypermethylated genes in invasive cervical cancer (ICC) was carried out to augment our previously discovered panel of three genes found to be useful for detection of ICC and its precursor neoplasia. Putatively hypermethylated and silenced genes were reactivated in four ICC cell lines by treatment with 5-aza-2'-deoxycytidine and trichostatin A and identified on expression microarrays. Thirty-nine of the 235 genes up-regulated in multiple ICC cell lines were further examined to determine the methylation status of associated CpG islands. The diagnostic use of 23 genes that were aberrantly methylated in multiple ICC cell lines were then analyzed in DNA from exfoliated cells obtained from patients with or without ICC. We show, for the first time, that aberrant methylation of six genes (SPARC, TFPI2, RRAD, SFRP1, MT1G, and NMES1) is present in a high proportion of ICC clinical samples but not in normal samples. Of these genes, SPARC and TFPI2 showed the highest frequency of aberrant methylation in ICC specimens (86.4% for either) and together were hypermethylated in all but one ICC cases examined. We conclude that expression profiling of epigenetically reactivated genes followed by methylation analysis in clinical samples is a powerful tool for comprehensive identification of methylation markers. Several novel genes identified in our study may be clinically useful for detection or stratification of ICC and/or of its precursor lesions and provide a basis for better understanding of mechanisms involved in development of ICC.
Collapse
Affiliation(s)
- Pavel Sova
- Department of Pathology, University of Washington, Seattle, WA 98109-4325, USA.
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Chen H, Puhl HL, Niu SL, Mitchell DC, Ikeda SR. Expression of Rem2, an RGK family small GTPase, reduces N-type calcium current without affecting channel surface density. J Neurosci 2006; 25:9762-72. [PMID: 16237180 PMCID: PMC6725718 DOI: 10.1523/jneurosci.3111-05.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rad, Gem/Kir, Rem, and Rem2 are members of the Ras-related RGK (Rad, Gem, and Kir) family of small GTP-binding proteins. Heterologous expression of RGK proteins interferes with de novo calcium channel assembly/trafficking and dramatically decreases the amplitude of currents arising from preexisting high-voltage-activated calcium channels. These effects probably result from the direct interaction of RGK proteins with calcium channel beta subunits. Among the RGK family, Rem2 is the only member abundantly expressed in neuronal tissues. Here, we examined the ability of Rem2 to modulate endogenous voltage-activated calcium channels in rat sympathetic and dorsal root ganglion neurons. Heterologous expression of Rem2 nearly abolished calcium currents arising from preexisting high-voltage-activated calcium channels without affecting low-voltage-activated calcium channels. Rem2 inhibition of N-type calcium channels required both the Ras homology (core) domain and the polybasic C terminus. Mutation of a putative GTP/Mg2+ binding motif in Rem2 did not affect suppression of calcium currents. Loading neurons with GDP-beta-S via the patch pipette did not reverse Rem2-mediated calcium channel inhibition. Finally, [(125)I]Tyr22-omega-conotoxin GVIA cell surface binding in tsA201 cells stably expressing N-type calcium channels was not altered by Rem2 expression at a time when calcium current was totally abolished. Together, our results support a model in which Rem2 localizes to the plasma membrane via a C-terminal polybasic motif and interacts with calcium channel beta subunits in the preassembled N-type channel, thereby forming a nonconducting species.
Collapse
Affiliation(s)
- Huanmian Chen
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
116
|
Ilany J, Bilan PJ, Kapur S, Caldwell JS, Patti ME, Marette A, Kahn CR. Overexpression of Rad in muscle worsens diet-induced insulin resistance and glucose intolerance and lowers plasma triglyceride level. Proc Natl Acad Sci U S A 2006; 103:4481-6. [PMID: 16537411 PMCID: PMC1450197 DOI: 10.1073/pnas.0511246103] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rad is a low molecular weight GTPase that is overexpressed in skeletal muscle of some patients with type 2 diabetes mellitus and/or obesity. Overexpression of Rad in adipocytes and muscle cells in culture results in diminished insulin-stimulated glucose uptake. To further elucidate the potential role of Rad in vivo, we have generated transgenic (tg) mice that overexpress Rad in muscle using the muscle creatine kinase (MCK) promoter-enhancer. Rad tg mice have a 6- to 12-fold increase in Rad expression in muscle as compared to wild-type littermates. Rad tg mice grow normally and have normal glucose tolerance and insulin sensitivity, but have reduced plasma triglyceride levels. On a high-fat diet, Rad tg mice develop more severe glucose intolerance than the wild-type mice; this is due to increased insulin resistance in muscle, as exemplified by a rightward shift in the dose-response curve for insulin stimulated 2-deoxyglucose uptake. There is also a unexpected further reduction of the plasma triglyceride levels that is associated with increased levels of lipoprotein lipase in the Rad tg mice. These results demonstrate a potential synergistic interaction between increased expression of Rad and high-fat diet in creation of insulin resistance and altered lipid metabolism present in type 2 diabetes.
Collapse
Affiliation(s)
- Jacob Ilany
- *Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215; and
| | - Philip J. Bilan
- *Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215; and
| | - Sonia Kapur
- Laval University, Quebec, QC, Canada G1K 7P4
| | - James S. Caldwell
- *Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215; and
| | - Mary-Elizabeth Patti
- *Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215; and
| | | | - C. Ronald Kahn
- *Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
117
|
Suzuki M, Shigematsu H, Shivapurkar N, Reddy J, Miyajima K, Takahashi T, Gazdar AF, Frenkel EP. Methylation of apoptosis related genes in the pathogenesis and prognosis of prostate cancer. Cancer Lett 2006; 242:222-30. [PMID: 16458425 DOI: 10.1016/j.canlet.2005.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 10/27/2005] [Accepted: 11/04/2005] [Indexed: 12/13/2022]
Abstract
We investigated aberrant methylation in 101 prostate cancers(PCa) and 32 histologically normal prostate tissues. We focused on genes largely in the apoptotic pathway. Methylation frequencies of the genes were Reprimo, 54%; TMS1, 47%; DcR1, 45%; RRAD, 37%; DcR2, 37%; CRBP1, 34%; HPP1, 32%; RIZ1, 31%; DRM/Gremlin, 21%; SOCS1, 20%; DR4, 5%; DR5, 1%. Methylation of Reprimo and TMS1 correlate with preoperative serum prostate-specific antigen. Methylation of TMS1, DcR1, DcR2, and CRBP1 correlate with Gleason score. Methylation of TMS1 and unmethylation of both DcR1 and DcR2 correlate with poorer disease free survival by univariate and multivariate analyses. Our data suggest that methylation of multiple genes may be involved in pathogenesis and correlate with prognosis of PCa.
Collapse
Affiliation(s)
- Makoto Suzuki
- Hamon Center for Therapeutic Oncology Research University of Texas Southwestern Medical Center, Dallas TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Béguin P, Mahalakshmi RN, Nagashima K, Cher DHK, Ikeda H, Yamada Y, Seino Y, Hunziker W. Nuclear Sequestration of β-Subunits by Rad and Rem is Controlled by 14-3-3 and Calmodulin and Reveals a Novel Mechanism for Ca2+ Channel Regulation. J Mol Biol 2006; 355:34-46. [PMID: 16298391 DOI: 10.1016/j.jmb.2005.10.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 09/27/2005] [Accepted: 10/04/2005] [Indexed: 10/25/2022]
Abstract
Voltage-gated Ca2+ channels (VDCCs) are heteromultimeric proteins that mediate Ca2+ influx into cells upon membrane depolarization. These channels are involved in various cellular events, including gene expression, regulation of hormone secretion and synaptic transmission. Kir/Gem, Rad, Rem, and Rem2 belong to the RGK family of Ras-related small G proteins. RGK proteins interact with the beta-subunits and downregulate VDCC activity. Kir/Gem was proposed to prevent surface expression of functional Ca2+ channels, while for Rem2 the mechanism remains controversial. Here, we have analyzed the mechanism by which Rad and Rem regulate VDCC activity. We show that, similar to Kir/Gem and Rem2, 14-3-3 and CaM binding regulate the subcellular distribution of Rad and Rem, which both inhibit Ca2+ channel activity by preventing its expression on the cell surface. This function is regulated by calmodulin and 14-3-3 binding only for Rad and not for Rem. Interestingly, nuclear targeting of Rad and Rem can relocalize and sequester the beta-subunit to the nucleus, thus providing a novel mechanism for Ca2+ channel downregulation.
Collapse
Affiliation(s)
- Pascal Béguin
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, Singapore 138673.
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
Gem is a member of the RGK family of GTP-binding proteins within the Ras superfamily possessing a ras-like core and terminal extensions. We have used a variety of cell-based assays to investigate the physiological role of Gem and combined these assays with site-directed mutagenesis of Gem protein to identify the sites responsible for regulation of Gem activity. One function of Gem that has been explained is the inhibition of Rho kinase (ROK)-mediated cytoskeletal rearrangement. Transient expression of Gem in endothelial cells and stable transfection of fibroblasts resulted in decreased stress fiber formation and focal adhesion assembly. A neurite extension model using N1E-115 murine neuroblastoma showed that Gem inhibits actinomyosin-related contractility by specifically opposing ROKbeta activity. Phospho-specific antibodies were used in Western blot analysis to show that Gem prevents phosphorylation of the regulatory subunit of myosin light chain and myosin phosphatase by ROKbeta. On the contrary, LIMK, another substrate of ROKbeta, was unaffected by Gem expression as demonstrated by an in vitro kinase assay, suggesting that Gem exerts its effect by changing the substrate specificity of ROKbeta rather than by blocking its catalytic activity. Point mutations of Gem at serines 261 and 289 in the carboxyl-terminus inhibited Gem function, indicating that posttranslational phosphorylation of these serines regulates Gem's effect on cytoskeletal reorganization. Another biological role of Gem is inhibition of voltage-gated calcium channel activity. By use of a PC12 cell model combined with site-directed mutagenesis, we demonstrated that Gem inhibits growth hormone secretion stimulated by calcium influx through L-type calcium channels and that this function is dependent on GTP and calmodulin binding to Gem. The theory and method for the assays discussed previously are reviewed here.
Collapse
Affiliation(s)
- Yvona Ward
- Cell and Cancer Biology Branch Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
120
|
Andres DA, Crump SM, Correll RN, Satin J, Finlin BS. Analyses of Rem/RGK signaling and biological activity. Methods Enzymol 2006; 407:484-98. [PMID: 16757347 DOI: 10.1016/s0076-6879(05)07039-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Rem (Rad and Gem related) is a member of the RGK family of Ras-related GTPases that also includes Rad, Rem2, and Gem/Kir. All RGK proteins share structural features that are distinct from other Ras-related proteins, including several nonconservative amino acid substitutions within regions known to participate in nucleotide binding and hydrolysis and a C-terminal extension that contains regulatory sites that seem to control both subcellular location and function. Rem is known to modulate two distinct signal transduction pathways, regulating both cytoskeletal reorganization and voltage-gated Ca2+ channel activity. In this chapter, we summarize the experimental approaches used to characterize the interaction of Rem with 14-3-3 proteins and Ca2+ channel beta-subunits and describe electrophysiological analyses for characterizing Rem-mediated regulation of L-type Ca2+ channel activity.
Collapse
Affiliation(s)
- Douglas A Andres
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | | | | | | | | |
Collapse
|
121
|
Timmons JA, Larsson O, Jansson E, Fischer H, Gustafsson T, Greenhaff PL, Ridden J, Rachman J, Peyrard-Janvid M, Wahlestedt C, Sundberg CJ. Human muscle gene expression responses to endurance training provide a novel perspective on Duchenne muscular dystrophy. FASEB J 2005; 19:750-60. [PMID: 15857889 DOI: 10.1096/fj.04-1980com] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Global gene expression profiling is used to generate novel insight into a variety of disease states. Such studies yield a bewildering number of data points, making it a challenge to validate which genes specifically contribute to a disease phenotype. Aerobic exercise training represents a plausible model for identification of molecular mechanisms that cause metabolic-related changes in human skeletal muscle. We carried out the first transcriptome-wide characterization of human skeletal muscle responses to 6 wk of supervised aerobic exercise training in 8 sedentary volunteers. Biopsy samples before and after training allowed us to identify approximately 470 differentially regulated genes using the Affymetrix U95 platform (80 individual hybridization steps). Gene ontology analysis indicated that extracellular matrix and calcium binding gene families were most up-regulated after training. An electronic reanalysis of a Duchenne muscular dystrophy (DMD) transcript expression dataset allowed us to identify approximately 90 genes modulated in a nearly identical fashion to that observed in the endurance exercise dataset. Trophoblast noncoding RNA, an interfering RNA species, was the singular exception-being up-regulated by exercise and down-regulated in DMD. The common overlap between gene expression datasets may be explained by enhanced alpha7beta1 integrin signaling, and specific genes in this signaling pathway were up-regulated in both datasets. In contrast to these common features, OXPHOS gene expression is subdued in DMD yet elevated by exercise, indicating that more than one major mechanism must exist in human skeletal muscle to sense activity and therefore regulate gene expression. Exercise training modulated diabetes-related genes, suggesting our dataset may contain additional and novel gene expression changes relevant for the anti-diabetic properties of exercise. In conclusion, gene expression profiling after endurance exercise training identified a range of processes responsible for the physiological remodeling of human skeletal muscle tissue, many of which were similarly regulated in DMD. Furthermore, our analysis demonstrates that numerous genes previously suggested as being important for the DMD disease phenotype may principally reflect compensatory integrin signaling.
Collapse
Affiliation(s)
- James A Timmons
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Colombo M, Gregersen S, Kruhoeffer M, Agger A, Xiao J, Jeppesen PB, Orntoft T, Ploug T, Galbo H, Hermansen K. Prevention of hyperglycemia in Zucker diabetic fatty rats by exercise training: effects on gene expression in insulin-sensitive tissues determined by high-density oligonucleotide microarray analysis. Metabolism 2005; 54:1571-81. [PMID: 16311088 DOI: 10.1016/j.metabol.2005.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 06/13/2005] [Indexed: 11/17/2022]
Abstract
Exercise training (ET) causes metabolic improvement in the prediabetic and diabetic states. However, only little information exists on the changes to ET at the transcriptional level in insulin-sensitive tissues. We have investigated the gene expression changes in skeletal muscle, liver, fat, and pancreatic islets after ET in male Zucker diabetic fatty (ZDF) rats. Eighteen ZDF rats (7 weeks old) were divided in a control and ET group. Exercise was performed using a motorized treadmill (20 m/min 1 hour daily for 6 days a week). Blood glucose, weight, and food intake were measured weekly. After 5 weeks, blood samples, soleus muscle, liver, visceral fat (epididymal fat pads), and islet tissue were collected. Gene expression was quantified with Affymetrix RG-U34A array (16 chips). Exercise training ameliorates the development of hyperglycemia and reduces plasma free fatty acid and the level of glucagon-insulin ratio (P < .05). In skeletal muscle, the expression of 302 genes increased, whereas that of 119 genes decreased. These changes involved genes related to skeletal muscle plasticity, Ca(2+) signals, energy metabolism (eg, glucose transporter 1, phosphorylase kinase), and other signaling pathways as well as genes with unknown functions (expressed sequence tags). In the liver, expression of 148 genes increased, whereas that of 199 genes decreased. These were primarily genes involved in lipogenesis and detoxification. Genes coding for transcription factors were changed in parallel in skeletal muscle and liver tissue. Training did not markedly influence the gene expression in islets. In conclusion, ET changes the expression of multiple genes in the soleus muscle and liver tissue and counteracts the development of diabetes, indicating that ET-induced changes in gene transcription may play an important role en the prevention of diabetes.
Collapse
Affiliation(s)
- Michele Colombo
- Department of Endocrinology and Metabolism C, Aarhus Sygehus THG, Aarhus University Hospital, Tage Hansens Gade 2, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Béguin P, Mahalakshmi R, Nagashima K, Cher D, Kuwamura N, Yamada Y, Seino Y, Hunziker W. Roles of 14-3-3 and calmodulin binding in subcellular localization and function of the small G-protein Rem2. Biochem J 2005; 390:67-75. [PMID: 15862114 PMCID: PMC1184563 DOI: 10.1042/bj20050414] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
kir/Gem, Rad, Rem and Rem2 comprise the RGK (Rad/Gem/kir) family of Ras-related small G-proteins. Two important functions of RGK proteins are the regulation of the VDCC (voltage-dependent Ca2+ channel) activity and cell-shape remodelling. RGK proteins interact with 14-3-3 and CaM (calmodulin), but their role on RGK protein function is poorly understood. In contrast with the other RGK family members, Rem2 has been reported to bind neither 14-3-3 nor induce membrane extensions. Furthermore, although Rem2 inhibits VDCC activity, it does not prevent cell-surface transport of Ca2+ channels as has been shown for kir/Gem. In the present study, we re-examined the functions of Rem2 and its interaction with 14-3-3 and CaM. We show that Rem2 in fact does interact with 14-3-3 and CaM and induces dendrite-like extensions in COS cells. 14-3-3, together with CaM, regulates the subcellular distribution of Rem2 between the cytoplasm and the nucleus. Rem2 also interacts with the beta-subunits of VDCCs in a GTP-dependent fashion and inhibits Ca2+ channel activity by blocking the alpha-subunit expression at the cell surface. Thus Rem2 shares many previously unrecognized features with the other RGK family members.
Collapse
Affiliation(s)
- Pascal Béguin
- *Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
- Correspondence may be addressed to either of the authors (email or )
| | - Ramasubbu Narayanan Mahalakshmi
- *Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Kazuaki Nagashima
- †Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Damian Hwee Kiat Cher
- *Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Naomitsu Kuwamura
- †Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuichiro Yamada
- †Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yutaka Seino
- †Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Walter Hunziker
- *Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
- Correspondence may be addressed to either of the authors (email or )
| |
Collapse
|
124
|
Yanuar A, Sakurai S, Kitano K, Hakoshima T. Expression, purification, crystallization and preliminary crystallographic analysis of human Rad GTPase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:978-80. [PMID: 16511212 PMCID: PMC1978125 DOI: 10.1107/s1744309105031982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 10/07/2005] [Indexed: 11/10/2022]
Abstract
Human Rad is a new member of the Ras GTPase superfamily and is overexpressed in human skeletal muscle of individuals with type II diabetes. The GTPase core domain was overexpressed in Escherichia coli and purified for crystallization. Crystals were obtained at 293 K by vapour diffusion using a crystallization robot. The crystals were found to belong to space group P2(1), with unit-cell parameters a = 52.2, b = 58.6, c = 53.4 A, beta = 97.9 degrees , and contained two Rad molecules in the crystallographic asymmetric unit. A diffraction data set was collected to a resolution of 1.8 A using synchrotron radiation at SPring-8.
Collapse
Affiliation(s)
- Arry Yanuar
- Structural Biology Laboratory, Nara Institute of Science and Technology, Japan
| | - Shigeru Sakurai
- Structural Biology Laboratory, Nara Institute of Science and Technology, Japan
| | - Ken Kitano
- Structural Biology Laboratory, Nara Institute of Science and Technology, Japan
| | - Toshio Hakoshima
- Structural Biology Laboratory, Nara Institute of Science and Technology, Japan
- CREST, Japan Science and Technology Agency, Keihanna Science City, Nara 630-0192, Japan
- Correspondence e-mail:
| |
Collapse
|
125
|
Hawke TJ, Kanatous SB, Martin CM, Goetsch SC, Garry DJ. Rad is temporally regulated within myogenic progenitor cells during skeletal muscle regeneration. Am J Physiol Cell Physiol 2005; 290:C379-87. [PMID: 16221735 DOI: 10.1152/ajpcell.00270.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The successful use of myogenic progenitor cells for therapeutic applications requires an understanding of the intrinsic and extrinsic cues involved in their regulation. Herein we demonstrate the expression pattern and transcriptional regulation of Rad, a prototypical member of a family of novel Ras-related GTPases, during mammalian development and skeletal muscle regeneration. Rad was identified using microarray analysis, which revealed robust upregulation of its expression during skeletal muscle regeneration. Our current findings demonstrate negligible Rad expression with resting adult skeletal muscle; however, after muscle injury, Rad is expressed within the myogenic progenitor cell population. Rad expression is significantly increased and localized to the myogenic progenitor cell population during the early phases of regeneration and within the newly regenerated myofibers during the later phases of regeneration. Immunohistochemical analysis demonstrated that Rad and MyoD are coexpressed within the myogenic progenitor cell population of regenerating skeletal muscle. This expression profile of Rad during skeletal muscle regeneration is consistent with the proposed roles for Rad in the inhibition of L-type Ca(2+) channel activity and the inhibition of Rho/RhoA kinase activity. We also have demonstrated that known myogenic transcription factors (MEF2, MyoD, and Myf-5) can increase the transcriptional activity of the Rad promoter and that this ability is significantly enhanced by the presence of the Ca(2+)-dependent phosphatase calcineurin. Furthermore, this enhanced transcriptional activity appears to be dependent on the presence of a conserved NFAT binding motif within the Rad promoter. Taken together, these data define Rad as a novel factor within the myogenic progenitor cells of skeletal muscle and identify key regulators of its transcriptional activity.
Collapse
Affiliation(s)
- Thomas J Hawke
- School of Kinesiology and Health Science, York Univ., 4700 Keele St., Toronto, ON, Canada M3J 1P3.
| | | | | | | | | |
Collapse
|
126
|
Béguin P, Mahalakshmi RN, Nagashima K, Cher DHK, Takahashi A, Yamada Y, Seino Y, Hunziker W. 14-3-3 and calmodulin control subcellular distribution of Kir/Gem and its regulation of cell shape and calcium channel activity. J Cell Sci 2005; 118:1923-34. [PMID: 15860732 DOI: 10.1242/jcs.02321] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Individual members of the RGK family of Ras-related GTPases, which comprise Rad, Gem/Kir, Rem and Rem2, have been implicated in important functions such as the regulation of voltage-gated calcium channel activity and remodeling of cell shape. The GTPase Kir/Gem inhibits the activity of calcium channels by interacting with the beta-subunit and also regulates cytoskeleton dynamics by inhibiting the Rho-Rho kinase pathway. In addition, Kir/Gem interacts with 14-3-3 and calmodulin, but the significance of this interaction on Kir/Gem function is poorly understood. Here, we present a comprehensive analysis of the binding of 14-3-3 and calmodulin to Kir/Gem. We show that 14-3-3, in conjunction with calmodulin, regulates the subcellular distribution of Kir/Gem between the cytoplasm and the nucleus. In addition, 14-3-3 and calmodulin binding modulate Kir/Gem-mediated cell shape remodeling and downregulation of calcium channel activity. Competition experiments show that binding of 14-3-3, calmodulin and calcium channel beta-subunits to Kir/Gem is mutually exclusive, providing a rationale for the observed regulatory effects of 14-3-3 and calmodulin on Kir/Gem localization and function.
Collapse
Affiliation(s)
- Pascal Béguin
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Republic of Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Wyatt SM, Kraus FT, Roh CR, Elchalal U, Nelson DM, Sadovsky Y. The correlation between sampling site and gene expression in the term human placenta. Placenta 2005; 26:372-9. [PMID: 15850641 DOI: 10.1016/j.placenta.2004.07.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 07/01/2004] [Accepted: 07/16/2004] [Indexed: 10/26/2022]
Abstract
Using oligonucleotide microarrays we recently identified a set of transcripts that were up-regulated in hypoxic human trophoblasts. To test the hypothesis that expression of hypoxia-related placental transcripts depends on sampling site we analyzed nine different sites from term human placentas (n=6), obtained after uncomplicated pregnancies. These sites spanned the placental center to the lateral border and the basal to the chorionic plate. Relative gene expression at each site, determined using quantitative PCR, was correlated with villous histology. The expression of vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF), the cytoskeleton proteins lamininA3 and alpha-tubulin, and the signal transduction protein Rad was enhanced in the subchorionic lateral border compared to medial basal site (1.6-2.9 fold, p<0.05). In contrast, the expression of NDRG1, adipophilin and human placental lactogen was unchanged. Enhanced villous maturation, syncytial knots and fibrin deposits were more frequent in the subchorionic placental lateral border, and correlated with up-regulation of hypoxia-related transcripts (p<0.05). The association between sample site and expression level was not observed in placentas with marginal cord insertion. The expression of hypoxia-related genes in the term human placenta is dependent on sampling site within the placental disk, likely reflecting local differences in villous perfusion.
Collapse
Affiliation(s)
- S M Wyatt
- Department of OBGYN, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
128
|
Marín C, Pérez-Jiménez F, Gómez P, Delgado J, Paniagua JA, Lozano A, Cortés B, Jiménez-Gómez Y, Gómez MJ, López-Miranda J. The Ala54Thr polymorphism of the fatty acid–binding protein 2 gene is associated with a change in insulin sensitivity after a change in the type of dietary fat. Am J Clin Nutr 2005. [DOI: 10.1093/ajcn/82.1.196] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Carmen Marín
- From the Lipids and Atherosclerosis Research Unit, Department of Medicine, Hospital Universitario Reina Sofía, School of Medicine, University of Cordoba, Córdoba, Spain
| | - Francisco Pérez-Jiménez
- From the Lipids and Atherosclerosis Research Unit, Department of Medicine, Hospital Universitario Reina Sofía, School of Medicine, University of Cordoba, Córdoba, Spain
| | - Purificación Gómez
- From the Lipids and Atherosclerosis Research Unit, Department of Medicine, Hospital Universitario Reina Sofía, School of Medicine, University of Cordoba, Córdoba, Spain
| | - Javier Delgado
- From the Lipids and Atherosclerosis Research Unit, Department of Medicine, Hospital Universitario Reina Sofía, School of Medicine, University of Cordoba, Córdoba, Spain
| | - Juan Antonio Paniagua
- From the Lipids and Atherosclerosis Research Unit, Department of Medicine, Hospital Universitario Reina Sofía, School of Medicine, University of Cordoba, Córdoba, Spain
| | - Aquiles Lozano
- From the Lipids and Atherosclerosis Research Unit, Department of Medicine, Hospital Universitario Reina Sofía, School of Medicine, University of Cordoba, Córdoba, Spain
| | - Begoña Cortés
- From the Lipids and Atherosclerosis Research Unit, Department of Medicine, Hospital Universitario Reina Sofía, School of Medicine, University of Cordoba, Córdoba, Spain
| | - Yolanda Jiménez-Gómez
- From the Lipids and Atherosclerosis Research Unit, Department of Medicine, Hospital Universitario Reina Sofía, School of Medicine, University of Cordoba, Córdoba, Spain
| | - María José Gómez
- From the Lipids and Atherosclerosis Research Unit, Department of Medicine, Hospital Universitario Reina Sofía, School of Medicine, University of Cordoba, Córdoba, Spain
| | - José López-Miranda
- From the Lipids and Atherosclerosis Research Unit, Department of Medicine, Hospital Universitario Reina Sofía, School of Medicine, University of Cordoba, Córdoba, Spain
| |
Collapse
|
129
|
Mendes FD, Lindor KD. Recent advances in the treatment of non-alcoholic fatty liver disease. Expert Opin Investig Drugs 2005; 14:29-35. [PMID: 15709919 DOI: 10.1517/13543784.14.1.29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-alcoholic steatohepatitis is a liver disease strongly associated with features of the metabolic syndrome. It is part of the disease spectrum of non-alcoholic fatty liver disease, which is now thought to be the most common cause of chronic liver disease in the US and other Western countries. Initially this condition was considered innocuous but it is now recognised as having the potential to progress to cirrhosis and its complications. The role of insulin resistance and oxidative stress in its pathogenesis is increasingly accepted. Current investigations are directed towards a better understanding of the natural history, pathogenesis and development of treatment strategies. Several therapeutic modalities, including antioxidants, insulin-sensitising agents and lipid-lowering agents, have been evaluated for the treatment of these patients, mostly in small clinical trials. Despite promising results, no therapy has demonstrated a proven benefit.
Collapse
Affiliation(s)
- Flavia D Mendes
- Mayo Clinic College of Medicine, Gastroenterology and Hepatology, 200 First Street, SW Rochester, MN, USA.
| | | |
Collapse
|
130
|
Sasaki T, Shibasaki T, Béguin P, Nagashima K, Miyazaki M, Seino S. Direct Inhibition of the Interaction between α-Interaction Domain and β-Interaction Domain of Voltage-dependent Ca2+ Channels by Gem. J Biol Chem 2005; 280:9308-12. [PMID: 15615719 DOI: 10.1074/jbc.m413773200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ras-related small G-protein Gem regulates voltage-dependent Ca2+ channels (VDCCs) through interaction with the beta-subunit of the VDCC. This action of Gem is mediated by regulated alpha1-subunit expression at the plasma membrane. In the present study, we examined the mechanism of the inhibition of VDCC activity by Gem. The beta-interaction domain (BID) of the beta-subunit, which specifically interacts with the alpha-interaction domain (AID) of the alpha1-subunit, is shown to be essential for the interaction between Gem and beta-subunits. In addition, the AID peptide inhibited interaction between Gem and beta-subunits in a dose-dependent manner. GemS88N mutant, which has low binding affinity for guanine nucleotide, did not interact with beta-subunits, allowing alpha1-subunit expression at the plasma membrane. This inhibitory effect of wild-type Gem on VDCC activity was reduced in cells expressing GemS88N. The overexpression of wild-type Gem in pancreatic beta-cell line MIN6 cells suppressed Ca2+-triggered secretion, whereas overexpression of GemS88N induced Ca2+-triggered secretion to control level. These results suggest that GTPase activity of Gem is required for the binding of Gem to BID that regulates VDCC activity through interaction with AID.
Collapse
Affiliation(s)
- Takehide Sasaki
- Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | |
Collapse
|
131
|
Finlin BS, Mosley AL, Crump SM, Correll RN, Ozcan S, Satin J, Andres DA. Regulation of L-type Ca2+ channel activity and insulin secretion by the Rem2 GTPase. J Biol Chem 2005; 280:41864-71. [PMID: 15728182 DOI: 10.1074/jbc.m414261200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-dependent calcium (Ca2+) channels are involved in many specialized cellular functions and are controlled by a diversity of intracellular signals. Recently, members of the RGK family of small GTPases (Rem, Rem2, Rad, Gem/Kir) have been identified as novel contributors to the regulation of L-type calcium channel activity. In this study, microarray analysis of the mouse insulinoma MIN6 cell line revealed that the transcription of Rem2 gene is strongly induced by exposure to high glucose, which was confirmed by real-time reverse transcriptase-PCR and RNase protection analysis. Because elevation of intracellular Ca2+ in pancreatic beta-cells is essential for insulin secretion, we tested the hypothesis that Rem2 attenuates Ca2+ currents to regulate insulin secretion. Co-expression of Rem2 with CaV 1.2 or CaV1.3 L-type Ca + channels in a heterologous expression system completely inhibits de novo Ca2+ current expression. In addition, ectopic overexpression of Rem2 both inhibited L-type Ca2+ channel activity and prevented glucose-stimulated insulin secretion in pancreatic beta-cell lines. Co-immunoprecipitation studies demonstrate that Rem2 associates with a variety of CaVbeta subunits. Importantly, surface biotinylation studies demonstrate that the membrane distribution of Ca2+ channels was not reduced at a time when channel activity was potently inhibited by Rem2 expression, indicating that Rem2 modulates channel function without interfering with membrane trafficking. Taken together, these data suggest that inhibition of L-type Ca2+ channels by Rem2 signaling may represent a new and potentially important mechanism for regulating Ca2+-triggered exocytosis in hormone-secreting cells, including insulin secretion in pancreatic beta-cells.
Collapse
Affiliation(s)
- Brian S Finlin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Fu M, Zhang J, Tseng YH, Cui T, Zhu X, Xiao Y, Mou Y, De Leon H, Chang MMJ, Hamamori Y, Kahn CR, Chen YE. Rad GTPase attenuates vascular lesion formation by inhibition of vascular smooth muscle cell migration. Circulation 2005; 111:1071-7. [PMID: 15710763 DOI: 10.1161/01.cir.0000156439.55349.ad] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Rad (Ras associated with diabetes) GTPase is a prototypic member of a new subfamily of Ras-related GTPases with unique structural features, although its physiological role remains largely unknown. In the present study, we characterized the Rad function in vascular smooth muscle cells (VSMCs) and the influence of adenovirus-mediated Rad (Ad-Rad) gene delivery on vascular remodeling after experimental angioplasty. METHODS AND RESULTS We documented for the first time that neointimal formation using balloon-injured rat carotid arteries was associated with a significant increase in Rad expression as determined by immunohistochemistry and quantitative real-time reverse-transcriptase polymerase chain reaction. The levels of Rad expression in VSMCs were highly induced by platelet-derived growth factor and tumor necrosis factor-alpha. Morphometric analyses 14 days after injury revealed significantly diminished neointimal formation in the Ad-Rad-treated carotid arteries compared with Ad-GFP or PBS controls, whereas the mutated form of Rad GTPase, which can bind GDP but not GTP, increased neointimal formation. Overexpression of Rad significantly inhibited the attachment and migration of VSMCs. In addition, Rad expression dramatically reduced the formation of focal contacts and stress fibers in VSMCs by blocking the Rho/ROK signaling pathway. CONCLUSIONS Our data clearly identified Rad GTPase as a novel and critical mediator that inhibits vascular lesion formation. Manipulation of the Rad signaling pathway may provide new therapeutic approaches that will limit vascular pathological remodeling.
Collapse
Affiliation(s)
- Mingui Fu
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Ga 30310, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Suzuki M, Toyooka S, Shivapurkar N, Shigematsu H, Miyajima K, Takahashi T, Stastny V, Zern AL, Fujisawa T, Pass HI, Carbone M, Gazdar AF. Aberrant methylation profile of human malignant mesotheliomas and its relationship to SV40 infection. Oncogene 2004; 24:1302-8. [PMID: 15592515 DOI: 10.1038/sj.onc.1208263] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malignant mesothelioma (MM) is associated with asbestos exposure and the presence of SV40 viral sequences. Recently, we reported that SV40 infection of human mesothelial cells (HM) causes aberrant methylation of the tumor suppressor gene (TSG) RASSF1A. We investigated methylation of 12 genes by methylation-specific PCR in 63 MMs, six MM cell lines, and two foci of SV40-infected HM. Methylation percentages of the tested genes ranged from 3 to 65%. The frequencies of HPP1, RASSF1A, Cyclin D2, and RRAD methylation, and the value of the methylation index, were significantly higher in SV40 sequence-positive MMs than in SV40-negative MMs. Methylation of TMS1 and HIC-1 was associated with shortened survival. SV40-infected HM showed progressive aberrant methylation of seven genes (RASSF1A, HPP1, DcR1, TMS1, CRBP1, HIC-1, and RRAD) during serial passage. Our results demonstrate a relationship between SV40 and methylation of multiple genes in MM, indicating that the virus plays a role in the pathogenesis of MM.
Collapse
Affiliation(s)
- Makoto Suzuki
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Abstract
Nonalcoholic fatty liver disease (NAFLD), already the most common form of liver disease in the United States, can be expected to increase in prevalence and severity in parallel with national epidemics of obesity and type 2 diabetes. NAFLD is frequently associated with insulin resistance. While insulin resistance, and thereby hyperinsulinemia, are, in large part, metabolic consequences of obesity, the basis of diversity in severity and progression of inflammation and fibrosis is not known. Increased susceptibility to oxidative stress is likely to play a role. Several patient characteristics have been associated with more severe histological findings in patients with NAFLD, including type 2 diabetes, hypertension, age over 40 years, and higher transaminases. Liver biopsy is, however, required to accurately grade and stage NAFLD histologically. Although the natural history of NAFLD is relatively poorly defined, NAFLD is increasingly recognized as an important cause of decompensated liver disease. Weight reduction and improved insulin sensitivity are associated with improved biochemical and histological parameters of NAFLD. There are, however, no proven safe and efficacious pharmacological treatments for NAFLD.
Collapse
Affiliation(s)
- Michael Charlton
- Department of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.
| |
Collapse
|
135
|
Nelson-Degrave VL, Wickenheisser JK, Hendricks KL, Asano T, Fujishiro M, Legro RS, Kimball SR, Strauss JF, McAllister JM. Alterations in mitogen-activated protein kinase kinase and extracellular regulated kinase signaling in theca cells contribute to excessive androgen production in polycystic ovary syndrome. Mol Endocrinol 2004; 19:379-90. [PMID: 15514033 DOI: 10.1210/me.2004-0178] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have investigated the involvement of the MAPK signaling pathway in increased androgen biosynthesis and CYP17 gene expression in women with polycystic ovary syndrome (PCOS). A comparison of MAPK kinase (MEK1/2) and ERK1/2 phosphorylation in propagated normal and PCOS theca cells, revealed that MEK1/2 phosphorylation was decreased more than 70%, and ERK1/2 phosphorylation was reduced 50% in PCOS cells as compared with normal cells. Infection with dominant-negative MEK1 increased CYP17 mRNA and dehydroepiandrosterone (DHEA) abundance, whereas constitutively active MEK1 reduced DHEA production and CYP17 mRNA abundance. Similarly, the MEK inhibitor, PD98059, increased CYP17 mRNA accumulation and CYP17 promoter activity to levels observed in PCOS cells. Remarkably, in theca cells maintained in the complete absence of insulin, ERK1/2 phosphorylation was decreased in PCOS theca cells as compared with normal theca cells, and CYP17 mRNA and DHEA synthesis were increased in PCOS theca cells. These studies demonstrate that in PCOS cells reduced levels of activated MEK1/2 and ERK1/2 are correlated with increased androgen production, irrespective of the insulin concentration. These findings implicate alterations in the MAPK pathway in the pathogenesis of excessive ovarian androgen production in PCOS.
Collapse
Affiliation(s)
- Velen L Nelson-Degrave
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine 500 University Drive H166, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Piek E, Van Dinther M, Parks WT, Sallee JM, Böttinger EP, Roberts AB, Ten Dijke P. RLP, a novel Ras-like protein, is an immediate-early transforming growth factor-beta (TGF-beta) target gene that negatively regulates transcriptional activity induced by TGF-beta. Biochem J 2004; 383:187-99. [PMID: 15239668 PMCID: PMC1134058 DOI: 10.1042/bj20040774] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 07/05/2004] [Accepted: 07/08/2004] [Indexed: 01/24/2023]
Abstract
We have described previously the use of microarray technology to identify novel target genes of TGF-beta (transforming growth factor-beta) signalling in mouse embryo fibroblasts deficient in Smad2 or Smad3 [Yang, Piek, Zavadil, Liang, Xie, Heyer, Pavlidis, Kucherlapati, Roberts and Böttinger (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 10269-10274]. Among the TGF-beta target genes identified, a novel gene with sequence homology to members of the Ras superfamily was identified, which we have designated as RLP (Ras-like protein). RLP is a Smad3-dependent immediate-early TGF-beta target gene, its expression being induced within 45 min. Bone morphogenetic proteins also induce expression of RLP, whereas epidermal growth factor and phorbol ester PMA suppress TGF-beta-induced expression of RLP. Northern-blot analysis revealed that RLP was strongly expressed in heart, brain and kidney, and below the detection level in spleen and skeletal muscles. At the protein level, RLP is approx. 30% homologous with members of the Ras superfamily, particularly in domains characteristic for small GTPases. However, compared with prototypic Ras, RLP contains a modified P-loop, lacks the consensus G2 loop and the C-terminal prenylation site and harbours amino acid substitutions at positions that render prototypic Ras oncogenic. However, RLP does not have transforming activity, does not affect phosphorylation of mitogen-activated protein kinase and is unable to bind GTP or GDP. RLP was found to associate with certain subtypes of the TGF-beta receptor family, raising the possibility that RLP plays a role in TGF-beta signal transduction. Although RLP did not interact with Smads and did not affect TGF-beta receptor-induced Smad2 phosphorylation, it inhibited TGF-beta-induced transcriptional reporter activation, suggesting that it is a novel negative regulator of TGF-beta signalling.
Collapse
Key Words
- gtpase
- ras
- sorting nexin
- transcriptional regulation
- transforming growth factor-β
- bmp, bone morphogenetic protein
- chx, cycloheximide
- dmem, dulbecco's modified eagle's medium
- egf, epidermal growth factor
- egfr, egf receptor
- erk, extracellular-signal-regulated kinase
- fast-1, forkhead activin signal transducer-1
- fbs, fetal bovine serum
- gap, gtpase-activating protein
- gst, glutathione s-transferase
- ha, haemagglutinin
- jnk, c-jun n-terminal kinase
- mapk, mitogen-activated protein kinase
- mef, mouse embryo fibroblast
- moi, multiplicity of infection
- pdgfrβ, platelet-derived growth factor receptor β
- rlp, ras-like protein
- snx, sorting nexin
- tgf-β, transforming growth factor-β
- tβr, tgf-β receptor
- utr, untranslated region
- wt, wild-type
Collapse
Affiliation(s)
- Ester Piek
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
137
|
Abstract
The tumor oncoproteins HRAS, KRAS, and NRAS are the founding members of a larger family of at least 35 related human proteins. Using a somewhat broader definition of sequence similarity reveals a more extended superfamily of more than 170 RAS-related proteins. The RAS superfamily of GTP (guanosine triphosphate) hydrolysis-coupled signal transduction relay proteins can be subclassified into RAS, RHO, RAB, and ARF families, as well as the closely related Galpha family. The members of each family can, in turn, be arranged into evolutionarily conserved branches. These groupings reflect structural, biochemical, and functional conservation. Recent findings have provided insights into the signaling characteristics of representative members of most RAS superfamily branches. The analysis presented here may serve as a guide for predicting the function of numerous uncharacterized superfamily members. Also described are guanosine triphosphatases (GTPases) distinct from members of the RAS superfamily. These related proteins employ GTP binding and GTPase domains in diverse structural contexts, expanding the scope of their function in humans.
Collapse
|
138
|
Medina J, Fernández-Salazar LI, García-Buey L, Moreno-Otero R. Approach to the pathogenesis and treatment of nonalcoholic steatohepatitis. Diabetes Care 2004; 27:2057-66. [PMID: 15277442 DOI: 10.2337/diacare.27.8.2057] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) represents an advanced stage of fatty liver disease developed in the absence of alcohol abuse. Its increasing prevalence in western countries, the diagnostic difficulties by noninvasive tests, and the possibility of progression to advanced fibrosis and even cirrhosis make NASH a challenge for hepatologists. NASH is frequently associated with type 2 diabetes and the metabolic syndrome, and several genetic and acquired factors are involved in its pathogenesis. Insulin resistance plays a central role in the development of a steatotic liver, which becomes vulnerable to additional injuries. Several cyclic mechanisms leading to self-enhancement of insulin resistance and hepatic accumulation of fat have been recently identified. Excess intracellular fatty acids, oxidant stress, tumor necrosis factor-alpha, and mitochondrial dysfunction are causes of hepatocellular injury, thereby leading to disease progression and to the establishment of NASH. Intestinal bacterial overgrowth also plays a role, by increasing production of endogenous ethanol and proinflammatory cytokines. Therapeutic strategies aimed at modulating insulin resistance, normalizing lipoprotein metabolism, and downregulating inflammatory mediators with probiotics have promising potential.
Collapse
Affiliation(s)
- Jesús Medina
- Liver Unit, University Hospital La Princesa, Autonomous University, Madrid, Spain
| | | | | | | |
Collapse
|
139
|
Lombardi D, Mileo AM. Protein interactions provide new insight into Nm23/nucleoside diphosphate kinase functions. J Bioenerg Biomembr 2004. [PMID: 12848343 DOI: 10.1023/a: 1023445907439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nm23-NDPKs besides contributing to the maintenance of the cellular nucleoside triphosphate pool, exert regulatory properties in a variety of cellular events including proliferation, invasiveness, development, differentiation, and gene regulation. This review focuses on recently discovered protein-protein interactions involving the Nm23 proteins. The findings herein summarized provide new and intriguing suggestions for a more extensive understanding of the biological functions of the Nm23 proteins.
Collapse
Affiliation(s)
- D Lombardi
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy.
| | | |
Collapse
|
140
|
Ward Y, Spinelli B, Quon MJ, Chen H, Ikeda SR, Kelly K. Phosphorylation of critical serine residues in Gem separates cytoskeletal reorganization from down-regulation of calcium channel activity. Mol Cell Biol 2004; 24:651-61. [PMID: 14701738 PMCID: PMC343818 DOI: 10.1128/mcb.24.2.651-661.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gem is a small GTP-binding protein that has a ras-like core and extended chains at each terminus. The primary structure of Gem and other RGK family members (Rad, Rem, and Rem2) predicts a GTPase deficiency, leading to the question of how Gem functional activity is regulated. Two functions for Gem have been demonstrated, including inhibition of voltage-gated calcium channel activity and inhibition of Rho kinase-mediated cytoskeletal reorganization, such as stress fiber formation and neurite retraction. These functions for Gem have been ascribed to its interaction with the calcium channel beta subunit and Rho kinase beta, respectively. We show here that these functions are separable and regulated by distinct structural modifications to Gem. Phosphorylation of serines 261 and 289, located in the C-terminal extension, is required for Gem-mediated cytoskeletal reorganization, while GTP and possibly calmodulin binding are required for calcium channel inhibition. In addition to regulating cytoskeletal reorganization, phosphorylation of serine 289 in conjunction with serine 23 results in bidentate 14-3-3 binding, leading to increased Gem protein half-life. Evidence presented shows that phosphorylation of serine 261 is mediated via a cdc42/protein kinase Czeta-dependent pathway. These data demonstrate that phosphorylation of serines 261 and 289, outside the GTP-binding region of Gem, controls its inhibition of Rho kinase beta and associated changes in the cytoskeleton.
Collapse
Affiliation(s)
- Y Ward
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute/NIH, Building 10, Room 3B43, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
141
|
Fu M, Zhu X, Zhang J, Liang J, Lin Y, Zhao L, Ehrengruber MU, Chen YE. Egr-1 target genes in human endothelial cells identified by microarray analysis. Gene 2004; 315:33-41. [PMID: 14557062 DOI: 10.1016/s0378-1119(03)00730-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Early growth response factor 1 (Egr-1) is a key transcriptional factor to mediate gene expression after vascular injury. To better understand the role of Egr-1 in vasculature, we globally profiled Egr-1 target genes in human endothelial cells using adenoviral gene transfer and Affymetrix oligonucleotide-based microarray technology. More than 300 genes regulated by >/=3-fold with Egr-1 overexpression were identified and, partially, confirmed by Northern and Western blotting, including genes for transcriptional regulators, signaling proteins, cell cycle regulatory proteins, growth factors, and cytokines. Among them, thymus-expressed chemokine (TECK) and IP-30 were dramatically induced by Egr-1, but TNFalpha-related apoptosis inducing ligand (TRAIL) was significantly repressed by Egr-1, suggesting that Egr-1 is a key mediator of inflammation and apoptosis in vascular cells. These data provide novel Egr-1 target genes and contribute to the understanding of the role of Egr-1 in vasculature.
Collapse
Affiliation(s)
- Mingui Fu
- Department of Biochemistry, Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Drive SW, MEB 1345, Research Wing, Room 215, Atlanta, GA 30310, USA
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Finlin BS, Crump SM, Satin J, Andres DA. Regulation of voltage-gated calcium channel activity by the Rem and Rad GTPases. Proc Natl Acad Sci U S A 2003; 100:14469-74. [PMID: 14623965 PMCID: PMC283615 DOI: 10.1073/pnas.2437756100] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rem, Rem2, Rad, and Gem/Kir (RGK) represent a distinct GTPase family with largely unknown physiological functions. We report here that both Rem and Rad bind directly to Ca2+ channel beta-subunits (CaV beta) in vivo. No calcium currents are recorded from human embryonic kidney 293 cells coexpressing the L type Ca2+ channel subunits CaV1.2, CaV beta 2a, and Rem or Rad, but CaV1.2 and CaV beta 2a transfected cells elicit Ca2+ channel currents in the absence of these small G proteins. Importantly, CaV3 (T type) Ca2+ channels, which do not require accessory subunits for ionic current expression, are not inhibited by expression of Rem. Rem is expressed in primary skeletal myoblasts and, when overexpressed in C2C12 myoblasts, wild-type Rem inhibits L type Ca2+ channel activity. Deletion analysis demonstrates a critical role for the Rem C terminus in both regulation of functional Ca2+ channel expression and beta-subunit association. These results suggest that all members of the RGK GTPase family, via direct interaction with auxiliary beta-subunits, serve as regulators of L type Ca2+ channel activity. Thus, the RGK GTPase family may provide a mechanism for achieving cross talk between Ras-related GTPases and electrical signaling pathways.
Collapse
Affiliation(s)
- Brian S Finlin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536-0298, USA
| | | | | | | |
Collapse
|
143
|
Zambon AC, McDearmon EL, Salomonis N, Vranizan KM, Johansen KL, Adey D, Takahashi JS, Schambelan M, Conklin BR. Time- and exercise-dependent gene regulation in human skeletal muscle. Genome Biol 2003; 4:R61. [PMID: 14519196 PMCID: PMC328450 DOI: 10.1186/gb-2003-4-10-r61] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Revised: 08/12/2003] [Accepted: 08/18/2003] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Skeletal muscle remodeling is a critical component of an organism's response to environmental changes. Exercise causes structural changes in muscle and can induce phase shifts in circadian rhythms, fluctuations in physiology and behavior with a period of around 24 hours that are maintained by a core clock mechanism. Both exercise-induced remodeling and circadian rhythms rely on the transcriptional regulation of key genes. RESULTS We used DNA microarrays to determine the effects of resistance exercise (RE) on gene regulation in biopsy samples of human quadriceps muscle obtained 6 and 18 hours after an acute bout of isotonic exercise with one leg. We also profiled diurnal gene regulation at the same time points (2000 and 0800 hours) in the non-exercised leg. Comparison of our results with published circadian gene profiles in mice identified 44 putative genes that were regulated in a circadian fashion. We then used quantitative PCR to validate the circadian expression of selected gene orthologs in mouse skeletal muscle. CONCLUSIONS The coordinated regulation of the circadian clock genes Cry1, Per2, and Bmal1 6 hours after RE and diurnal genes 18 hours after RE in the exercised leg suggest that RE may directly modulate circadian rhythms in human skeletal muscle.
Collapse
Affiliation(s)
- Alexander C Zambon
- Gladstone Institute of Cardiovascular Disease, Department of Medicine, University of California, San Francisco, CA 94141, USA
| | - Erin L McDearmon
- Howard Hughes Medical Institute, Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | - Nathan Salomonis
- Gladstone Institute of Cardiovascular Disease, Department of Medicine, University of California, San Francisco, CA 94141, USA
| | - Karen M Vranizan
- Gladstone Institute of Cardiovascular Disease, Department of Medicine, University of California, San Francisco, CA 94141, USA
- Functional Genomics Lab, University of California, Berkeley, CA 94720, USA
| | - Kirsten L Johansen
- Department of Medicine, University of California, San Francisco, CA 94141, USA
| | - Deborah Adey
- Department of Medicine, University of California, San Francisco, CA 94141, USA
| | - Joseph S Takahashi
- Howard Hughes Medical Institute, Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | - Morris Schambelan
- Department of Medicine, University of California, San Francisco, CA 94141, USA
| | - Bruce R Conklin
- Gladstone Institute of Cardiovascular Disease, Department of Medicine, University of California, San Francisco, CA 94141, USA
- Department of Medicine, University of California, San Francisco, CA 94141, USA
| |
Collapse
|
144
|
Billiard J, Moran RA, Whitley MZ, Chatterjee-Kishore M, Gillis K, Brown EL, Komm BS, Bodine PVN. Transcriptional profiling of human osteoblast differentiation. J Cell Biochem 2003; 89:389-400. [PMID: 12704802 DOI: 10.1002/jcb.10514] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Osteoblast differentiation is a key aspect of bone formation and remodeling. To further our understanding of the differentiation process, we have developed a collection of conditionally immortalized adult human osteoblast cell lines representing discrete stages of differentiation. To evaluate changes in gene expression associated with differentiation, polyA((+)) RNA from pre-osteoblasts, early and late osteoblasts, and pre-osteocytes was subjected to gene chip analysis using the Affymetrix Hu6800 chip in conjunction with an Affymetrix custom chip enriched in bone and cartilage cDNAs. Overall, the expression of 47 genes was found to change threefold or more on both chips between the pre-osteoblastic and pre-osteocytic stages of differentiation. Many of the observed differences, including down-regulation of collagen type I and collagen-processing enzymes, reflect expected patterns and support the relevance of our results. Other changes have not been reported and offer new insight into the osteoblast differentiation process. Thus, we observed regulation of factors controlling cell cycle and proliferation, reflecting decreased proliferation, and increased apoptosis in pre-osteocytic cells. Elements maintaining the cytoskeleton, extracellular matrix, and cell-cell adhesion also changed with differentiation reflecting profound alterations in cell architecture associated with the differentiation process. We also saw dramatic down-regulation of several components of complement and other immune response factors that may be involved in recruitment and differentiation of osteoclasts. The decrease in this group of genes may provide a mechanism for controlling bone remodeling of newly formed bone. Our screen also identified several signaling proteins that may control osteoblast differentiation. These include an orphan nuclear receptor DAX1 and a small ras-related GTPase associated with diabetes, both of which increased with increasing differentiation, as well as a high mobility group-box transcription factor, SOX4, that was down-regulated during differentiation. In summary, our study provides a comprehensive transcriptional profile of human osteoblast differentiation and identifies several genes of potential importance in controlling differentiation of osteoblasts.
Collapse
Affiliation(s)
- J Billiard
- Women's Health Research Institute, Wyeth Research, Collegeville, Pennsylvania 19426, USA.
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Ratnakant S, Ochs ME, Solomon SS. Sounding board: diabetes mellitus in the elderly: a truly heterogeneous entity? Diabetes Obes Metab 2003; 5:81-92. [PMID: 12630932 DOI: 10.1046/j.1463-1326.2003.00242.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Sanjay Ratnakant
- Medical Services, Department of Veterans Affairs Medical Center, Memphis, TN, USA
| | | | | |
Collapse
|
146
|
Lombardi D, Mileo AM. Protein interactions provide new insight into Nm23/nucleoside diphosphate kinase functions. J Bioenerg Biomembr 2003; 35:67-71. [PMID: 12848343 DOI: 10.1023/a:1023445907439] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nm23-NDPKs besides contributing to the maintenance of the cellular nucleoside triphosphate pool, exert regulatory properties in a variety of cellular events including proliferation, invasiveness, development, differentiation, and gene regulation. This review focuses on recently discovered protein-protein interactions involving the Nm23 proteins. The findings herein summarized provide new and intriguing suggestions for a more extensive understanding of the biological functions of the Nm23 proteins.
Collapse
Affiliation(s)
- D Lombardi
- Department of Experimental Medicine, University of L'Aquila, L'Aquila, Italy.
| | | |
Collapse
|
147
|
Hsueh WC, St Jean PL, Mitchell BD, Pollin TI, Knowler WC, Ehm MG, Bell CJ, Sakul H, Wagner MJ, Burns DK, Shuldiner AR. Genome-wide and fine-mapping linkage studies of type 2 diabetes and glucose traits in the Old Order Amish: evidence for a new diabetes locus on chromosome 14q11 and confirmation of a locus on chromosome 1q21-q24. Diabetes 2003; 52:550-7. [PMID: 12540634 DOI: 10.2337/diabetes.52.2.550] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We conducted a genome scan using a 10-cM map to search for genes linked to type 2 diabetes in 691 individuals from a founder population, the Old Order Amish. We then saturated two regions on chromosomes 1 and 14 showing promising linkage signals with additional markers to produce a approximately 2-cM map for fine mapping. Analyses of both discrete traits (type 2 diabetes and the composite trait of type 2 diabetes and/or impaired glucose homeostasis [IGH]), and quantitative traits (glucose levels during a 75-g oral glucose challenge, designated glucose 0-180 and HbA(1c)) were performed. We obtained significant evidence for linkage to type 2 diabetes in a novel region on chromosome 14q11 (logarithm of odds [LOD] for diabetes = 3.48, P = 0.00005). Furthermore, we observed evidence for the existence of a diabetes-related locus on chromosome 1q21-q24 (LOD for type 2 diabetes/IGH = 2.35, P = 0.0008), a region shown to be linked to diabetes in several other studies. Suggestive evidence for linkage to glucose traits was observed on three other regions: 14q11-q13 (telomeric to that above with LOD = 1.82-1.85 for glucose 150 and 180), 1p31 (LOD = 1.28-2.30 for type 2 diabetes and glucose 120-180), and 18p (LOD = 3.07, P = 0.000085 for HbA(1c) and LOD = 1.50 for glucose 0). In conclusion, our findings provide evidence that type 2 diabetes susceptibility genes reside on chromosomes 1, 14, and 18.
Collapse
Affiliation(s)
- Wen-Chi Hsueh
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Kimura N, Shimada N, Ishijima Y, Fukuda M, Takagi Y, Ishikawa N. Nucleoside diphosphate kinases in mammalian signal transduction systems: recent development and perspective. J Bioenerg Biomembr 2003; 35:41-7. [PMID: 12848340 DOI: 10.1023/a:1023489722460] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The role of nucleoside diphosphate (NDP) kinase with special reference to mammalian signal transduction systems was described. The interaction between NDP kinases and G proteins was reevaluated in view of their protein structural information and its significance was extended further on the basis of recent findings obtained with small molecular weight G proteins such as Rad, menin, and Rac. Meanwhile, observations suggesting involvement of NDP kinases in the regulation of cell growth and differentiation led to the realization that NDP kinases may play a crucial role in receptor tyrosine kinase signal transduction systems. In fact, a number of experimental results, particularly obtained with PC12 cells, implicate that NDP kinases appear to regulate differentiation marker proteins and cell-cycle-associated proteins cooperatively. Consequently, we propose a hypothesis that NDP kinases might act like a molecular switch to determine the cell fate toward proliferation or differentiation in response to environmental signals.
Collapse
Affiliation(s)
- Narimichi Kimura
- Cellular Signaling Research Group, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan.
| | | | | | | | | | | |
Collapse
|
149
|
Abstract
The rapid increase of diabetes prevalence in the US population and across all westernized world has been associated with environmental changes that promote obesity. Although dietary factors, such as total caloric intake, relative excess of dietary saturated fats content and lack of fibers, together with reduced level of physical activity clearly determine the main features of the "obesogenic" environment typical of "western" societies, the impact of lifestyle factors on obesity and diabetes appears to differ in various ethnic groups. Although ethnic-related differences in lifestyle factors may account for some of the predisposition to obesity and diabetes of various ethnic groups, genetic factors may play a more determinant role. These observations pose important public health questions in regard to strategies for treatment and prevention of diabetes both within the multiethnic US population and in the population of origin of various ethnicities. The elucidation of the pathophysiologic mechanisms responsible for the heterogeneous relationship between obesity and type 2 diabetes in various ethnicities may give important contributions to better understand the complex mechanisms involved in the development of this disease. This review examines epidemiological and pathophysiological aspects of the interaction between environment and ethnic predisposition to type 2 diabetes.
Collapse
Affiliation(s)
- Nicola Abate
- Center for Human Nutrition, UT Southwestern Medical Center at Dallas, USA.
| | | |
Collapse
|
150
|
Lin S, Sahai A, Chugh SS, Pan X, Wallner EI, Danesh FR, Lomasney JW, Kanwar YS. High glucose stimulates synthesis of fibronectin via a novel protein kinase C, Rap1b, and B-Raf signaling pathway. J Biol Chem 2002; 277:41725-35. [PMID: 12196513 DOI: 10.1074/jbc.m203957200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The molecular mechanism(s) by which high glucose induces fibronectin expression via G-protein activation in the kidney are largely unknown. This investigation describes the effect of high glucose (HG) on a small GTP-binding protein, Rap1b, expression and activation, and the relevance of protein kinase C (PKC) and Raf pathways in fibronectin synthesis in cultured renal glomerular mesangial cells (MCs). In vivo experiments revealed a dose-dependent increase in Rap1b expression in glomeruli of diabetic rat kidneys. Similarly, in vitro exposure of MCs to HG led to an up-regulation of Rap1b with concomitant increase in fibronectin (FN) mRNA and protein expression. The up-regulation of Rap1b mRNA was mitigated by the PKC inhibitors, calphostin C, and bisindolymaleimide, while also reducing HG- induced FN expression in non-transfected MCs. Overexpression of Rap1b by transfection with pcDNA 3.1/Rap1b in MCs resulted in the stimulation of FN synthesis; however, the PKC inhibitors had no significant effect in reducing FN expression in Rap1b-transfected MCs. Transfection of Rap1b mutants S17N (Ser --> Asn) or T61R (Thr --> Arg) in MCs inhibited the HG-induced increased FN synthesis. B-Raf and Raf-1 expression was investigated to assess whether Rap1b effects are mediated via the Raf pathway. B-Raf, and not Raf-1, expression was increased in MCs transfected with Rap1b. HG also caused activation of Rap1b, which was largely unaffected by anti-platelet-derived growth factor (PDGF) antibodies. HG-induced activation of Rap1b was specific, since Rap2b activation and expression of Rap2a and Rap2b were unaffected by HG. These findings indicate that hyperglycemia and HG cause an activation and up-regulation of Rap1b in renal glomeruli and in cultured MCs, which then stimulates FN synthesis. This effect appears to be PKC-dependent and PDGF-independent, but involves B-Raf, suggesting a novel PKC-Rap1b-B-Raf pathway responsible for HG-induced increased mesangial matrix synthesis, a hallmark of diabetic nephropathy.
Collapse
Affiliation(s)
- Sun Lin
- Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|