101
|
Oka S, Ogawa A, Osada T, Tanaka M, Nakajima K, Kamagata K, Aoki S, Oshima Y, Tanaka S, Kirino E, Nakamura TJ, Konishi S. Diurnal Variation of Brain Activity in the Human Suprachiasmatic Nucleus. J Neurosci 2024; 44:e1730232024. [PMID: 38238074 PMCID: PMC10883613 DOI: 10.1523/jneurosci.1730-23.2024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024] Open
Abstract
The suprachiasmatic nucleus (SCN) is the central clock for circadian rhythms. Animal studies have revealed daily rhythms in the neuronal activity in the SCN. However, the circadian activity of the human SCN has remained elusive. In this study, to reveal the diurnal variation of the SCN activity in humans, we localized the SCN by employing an areal boundary mapping technique to resting-state functional images and investigated the SCN activity using perfusion imaging. In the first experiment (n = 27, including both sexes), we scanned each participant four times a day, every 6 h. Higher activity was observed at noon, while lower activity was recorded in the early morning. In the second experiment (n = 20, including both sexes), the SCN activity was measured every 30 min for 6 h from midnight to dawn. The results showed that the SCN activity gradually decreased and was not associated with the electroencephalography. Furthermore, the SCN activity was compatible with the rodent SCN activity after switching off the lights. These results suggest that the diurnal variation of the human SCN follows the zeitgeber cycles of nocturnal and diurnal mammals and is modulated by physical lights rather than the local time.
Collapse
Affiliation(s)
- Satoshi Oka
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Masaki Tanaka
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Koji Nakajima
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Tokyo 113-0033, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Yasushi Oshima
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Tokyo 113-0033, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Tokyo 113-0033, Japan
| | - Eiji Kirino
- Department of Psychiatry, Juntendo Shizuoka Hospital, Shizuoka 410-2211, Japan
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Science, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
102
|
Dong Y, Wang M, Li W, Zhao K, Cui X, Yang Y, Geng X, Pu Y, Hu Z, Fang C, Lv G, Liu S, Chen X. Effect of dexmedetomidine infusion on postoperative sleep disturbances in women with breast cancer: A monocentric randomized-controlled double-blind trial. Anaesth Crit Care Pain Med 2024; 43:101358. [PMID: 38365169 DOI: 10.1016/j.accpm.2024.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Most women with breast cancer are prone to postoperative sleep disturbances (POSD). Little is known about the differences between sevoflurane and propofol combined with dexmedetomidine on POSD in the same context. We investigated the effect of intra-operative sevoflurane or propofol combined with intravenous dexmedetomidine on the incidence of POSD and postoperative sleep structures. METHODS A monocentric, randomized-controlled, double-blind trial. Female patients undergoing radical surgery for breast cancer were randomly assigned to receive sevoflurane and placebo, sevoflurane and dexmedetomidine, propofol and placebo, or propofol and dexmedetomidine. Dexmedetomidine was administered at 1.0 μg kg-1 infusion 15 min before induction, then infused at 0.4 μg kg-1 h-1 until the surgical drain started to be placed. The primary outcome was the incidence of POSD within the postoperative first three days (defined as an Athens Insomnia Scale score ≥ 6 points on at least one day of postoperative first three days). The secondary outcome was the duration of sleep structures, collected from the Fitbit Charge 2® smart bracelet (Fitbit, Inc., San Francisco, CA, USA). RESULTS There were 188 women analyzed with the modified intention-to-treat method. The incidences of POSD in the dexmedetomidine and placebo groups were similar (p = 0.649). In the sevoflurane sedation strategy, dexmedetomidine decreased nocturnal wakefulness on postoperative first day (p = 0.001). In the propofol sedation strategy, dexmedetomidine increased nocturnal deep sleep on postoperative first (p < 0.001) and third (p < 0.001) days. CONCLUSION Intra-operative infusion of dexmedetomidine had no significant effect on POSD but decreased nocturnal wakefulness in the sevoflurane group and increased nocturnal deep sleep in the propofol group. TRIAL REGISTRATION Registered at www.chictr.org.cn (ChiCTR2300070136).
Collapse
Affiliation(s)
- Yushan Dong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Maosan Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wenzhan Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Kai Zhao
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Xiaojie Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yanming Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xingyu Geng
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yutian Pu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ziwei Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Can Fang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Gaochao Lv
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Su Liu
- Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiuxia Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China; Department of Anesthesiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
103
|
Zhang Z, Lu Y, Zhang H, Dong S, Wu Y, Wang S, Huang A, Jiang Q, Yin S. Enriched environment ameliorates fear memory impairments induced by sleep deprivation via inhibiting PIEZO1/calpain/autophagy signaling pathway in the basal forebrain. CNS Neurosci Ther 2024; 30:e14365. [PMID: 37485782 PMCID: PMC10848088 DOI: 10.1111/cns.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
AIMS To verify the hypothesis that an enriched environment (EE) alleviates sleep deprivation-induced fear memory impairment by modulating the basal forebrain (BF) PIEZO1/calpain/autophagy pathway. METHODS Eight-week-old male mice were housed in a closed, isolated environment (CE) or an EE, before 6-h total sleep deprivation. Changes in fear memory after sleep deprivation were observed using an inhibitory avoidance test. Alterations in BF PIEZO1/calpain/autophagy signaling were detected. The PIEZO1 agonist Yoda1 or inhibitor GsMTx4, the calpain inhibitor PD151746, and the autophagy inducer rapamycin or inhibitor 3-MA were injected into the bilateral BF to investigate the pathways involved in the memory-maintaining role of EE in sleep-deprived mice. RESULTS Mice housed in EE performed better than CE mice in short- and long-term fear memory tests after sleep deprivation. Sleep deprivation resulted in increased PIEZO1 expression, full-length tropomyosin receptor kinase B (TrkB-FL) degradation, and autophagy, as reflected by increased LC3 II/I ratio, enhanced p62 degradation, increased TFEB expression and nuclear translocation, and decreased TFEB phosphorylation. These molecular changes were partially reversed by EE treatment. Microinjection of Yoda1 or rapamycin into the bilateral basal forebrain induced excessive autophagy and eliminated the cognition-protective effects of EE. Bilateral basal forebrain microinjection of GsMTx4, PD151746, or 3-MA mimicked the cognitive protective and autophagy inhibitory effects of EE in sleep-deprived mice. CONCLUSIONS EE combats sleep deprivation-induced fear memory impairments by inhibiting the BF PIEZO1/calpain/autophagy pathway.
Collapse
Affiliation(s)
- Zi‐qing Zhang
- The Postgraduate Training Base of Jinzhou Medical University (The PLA Rocket Force Characteristic Medical Center)BeijingChina
- Department of NeurologyThe PLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Yan Lu
- Department of NeurologyThe PLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Hao Zhang
- Department of AnesthesiologyThe PLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Su‐he Dong
- Department of Nuclear Radiation Injury and MonitoringThe PLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Ya‐tong Wu
- The Postgraduate Training Base of Jinzhou Medical University (The PLA Rocket Force Characteristic Medical Center)BeijingChina
- Department of NeurologyThe PLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Si‐nian Wang
- Department of Nuclear Radiation Injury and MonitoringThe PLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Ai‐hua Huang
- Department of NeurologyThe PLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Qi‐sheng Jiang
- Department of Nuclear Radiation Injury and MonitoringThe PLA Rocket Force Characteristic Medical CenterBeijingChina
| | - Shi‐min Yin
- The Postgraduate Training Base of Jinzhou Medical University (The PLA Rocket Force Characteristic Medical Center)BeijingChina
- Department of NeurologyThe PLA Rocket Force Characteristic Medical CenterBeijingChina
| |
Collapse
|
104
|
Hu Y, Li X, Zhang J, Liu D, Lu R, Li JD. A genome-wide CRISPR screen identifies USP1 as a novel regulator of the mammalian circadian clock. FEBS J 2024; 291:445-457. [PMID: 37909373 DOI: 10.1111/febs.16990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/07/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
The circadian clock is generated by a molecular timekeeping mechanism coordinating daily oscillations of physiology and behaviors in mammals. In the mammalian circadian clockwork, basic helix-loop-helix ARNT-like protein 1 (BMAL1) is a core circadian component whose defects lead to circadian disruption and elicit behavioral arrhythmicity. To identify previously unknown regulators for circadian clocks, we searched for genes influencing BMAL1 protein level by using a CRISPR/Cas9-based genome-wide knockout library. As a result, we found that the deubiquitinase ubiquitin carboxyl-terminal hydrolase 1 (USP1) positively affects BMAL1 protein abundance. Overexpression of wild-type USP1, but not a deubiquitinase-inactive mutant USP1, upregulated BMAL1 protein level, whereas genetic ablation of USP1 downregulated BMAL1 protein level in U2OS cells. Furthermore, treatment with USP1 inhibitors led to significant downregulation of BMAL1 protein in U2OS cells as well as mouse tissues. Subsequently, genetic ablation or pharmacological inhibition of USP1 resulted in reduced mRNA levels of a panel of clock genes and disrupted circadian rhythms in U2OS cells. Mechanistically, USP1 was able to de-ubiquitinate BMAL1 and inhibit the proteasomal degradation of BMAL1. Interestingly, the expression of Usp1 was much higher than the other two deubiquitinases of BMAL1 (Usp2 and Usp9X) in the mouse heart, implying a tissue-specific function of USP1 in the regulation of BMAL1 stability. Our work thus identifies deubiquitinase USP1 as a previously unknown regulator of the mammalian circadian clock and highlights the potential of genome-wide CRISPR screens in the identification of regulators for the circadian clock.
Collapse
Affiliation(s)
- Ying Hu
- Furong Laboratory, Department of Anaesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
| | - Xin Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
| | - Jing Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Dengfeng Liu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Renbin Lu
- Furong Laboratory, Department of Anaesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Department of Basic Medical Sciences, Changsha Medical University, Changsha, China
- National Clinical Research Center for Geratric Disorder, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Da Li
- Furong Laboratory, Department of Anaesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, China
- National Clinical Research Center for Geratric Disorder, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
105
|
Ferini-Strambi L, Liguori C, Lucey BP, Mander BA, Spira AP, Videnovic A, Baumann C, Franco O, Fernandes M, Gnarra O, Krack P, Manconi M, Noain D, Saxena S, Kallweit U, Randerath W, Trenkwalder C, Rosenzweig I, Iranzo A, Bradicich M, Bassetti C. Role of sleep in neurodegeneration: the consensus report of the 5th Think Tank World Sleep Forum. Neurol Sci 2024; 45:749-767. [PMID: 38087143 DOI: 10.1007/s10072-023-07232-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/26/2023] [Indexed: 01/18/2024]
Abstract
Sleep abnormalities may represent an independent risk factor for neurodegeneration. An international expert group convened in 2021 to discuss the state-of-the-science in this domain. The present article summarizes the presentations and discussions concerning the importance of a strategy for studying sleep- and circadian-related interventions for early detection and prevention of neurodegenerative diseases. An international expert group considered the current state of knowledge based on the most relevant publications in the previous 5 years; discussed the current challenges in the field of relationships among sleep, sleep disorders, and neurodegeneration; and identified future priorities. Sleep efficiency and slow wave activity during non-rapid eye movement (NREM) sleep are decreased in cognitively normal middle-aged and older adults with Alzheimer's disease (AD) pathology. Sleep deprivation increases amyloid-β (Aβ) concentrations in the interstitial fluid of experimental animal models and in cerebrospinal fluid in humans, while increased sleep decreases Aβ. Obstructive sleep apnea (OSA) is a risk factor for dementia. Studies indicate that positive airway pressure (PAP) treatment should be started in patients with mild cognitive impairment or AD and comorbid OSA. Identification of other measures of nocturnal hypoxia and sleep fragmentation could better clarify the role of OSA as a risk factor for neurodegeneration. Concerning REM sleep behavior disorder (RBD), it will be crucial to identify the subset of RBD patients who will convert to a specific neurodegenerative disorder. Circadian sleep-wake rhythm disorders (CSWRD) are strong predictors of caregiver stress and institutionalization, but the absence of recommendations or consensus statements must be considered. Future priorities include to develop and validate existing and novel comprehensive assessments of CSWRD in patients with/at risk for dementia. Strategies for studying sleep-circadian-related interventions for early detection/prevention of neurodegenerative diseases are required. CSWRD evaluation may help to identify additional biomarkers for phenotyping and personalizing treatment of neurodegeneration.
Collapse
Affiliation(s)
- Luigi Ferini-Strambi
- Sleep Disorders Center, Division of Neuroscience, Università Vita-Salute San Raffaele, Milan, Italy.
| | - Claudio Liguori
- Sleep Medicine Center, University of Rome Tor Vergata, Rome, Italy
| | - Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Bryce A Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Adam P Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Aleksandar Videnovic
- Department of Neurology, Division of Sleep Medicine, Massachussets General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Baumann
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Oscar Franco
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | - Oriella Gnarra
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Paul Krack
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Mauro Manconi
- Sleep Medicine Unit, Faculty of Biomedical Sciences, Neurocenter of the Southern Switzerland, Regional Hospital of Lugano, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Daniela Noain
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, University of Bern, Bern, Switzerland
| | - Ulf Kallweit
- Clinical Sleep and Neuroimmunology, University Witten/Herdecke, Witten, Germany
| | | | - C Trenkwalder
- Department of Neurosurgery, Paracelsus-Elena Klinik, University Medical Center, KasselGoettingen, Germany
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, King's College London, London, UK
| | - Alex Iranzo
- Sleep Center, Neurology Service, Hospital Clinic de Barcelona, Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain
| | - Matteo Bradicich
- Department of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
106
|
Wu Q, Ren Q, Wang X, Bai H, Tian D, Gao G, Wang F, Yu P, Chang Y. Cellular iron depletion enhances behavioral rhythm by limiting brain Per1 expression in mice. CNS Neurosci Ther 2024; 30:e14592. [PMID: 38385622 PMCID: PMC10883092 DOI: 10.1111/cns.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 02/23/2024] Open
Abstract
AIMS Disturbances in the circadian rhythm are positively correlated with the processes of aging and related neurodegenerative diseases, which are also associated with brain iron accumulation. However, the role of brain iron in regulating the biological rhythm is poorly understood. In this study, we investigated the impact of brain iron levels on the spontaneous locomotor activity of mice with altered brain iron levels and further explored the potential mechanisms governing these effects in vitro. RESULTS Our results revealed that conditional knockout of ferroportin 1 (Fpn1) in cerebral microvascular endothelial cells led to brain iron deficiency, subsequently resulting in enhanced locomotor activity and increased expression of clock genes, including the circadian locomotor output cycles kaput protein (Clock) and brain and muscle ARNT-like 1 (Bmal1). Concomitantly, the levels of period circadian regulator 1 (PER1), which functions as a transcriptional repressor in regulating biological rhythm, were decreased. Conversely, the elevated brain iron levels in APP/PS1 mice inhibited autonomous rhythmic activity. Additionally, our findings demonstrate a significant decrease in serum melatonin levels in Fpn1cdh5 -CKO mice compared with the Fpn1flox/flox group. In contrast, APP/PS1 mice with brain iron deposition exhibited higher serum melatonin levels than the WT group. Furthermore, in the human glioma cell line, U251, we observed reduced PER1 expression upon iron limitation by deferoxamine (DFO; iron chelator) or endogenous overexpression of FPN1. When U251 cells were made iron-replete by supplementation with ferric ammonium citrate (FAC) or increased iron import through transferrin receptor 1 (TfR1) overexpression, PER1 protein levels were increased. Additionally, we obtained similar results to U251 cells in mouse cerebellar astrocytes (MA-c), where we collected cells at different time points to investigate the rhythmic expression of core clock genes and the impact of DFO or FAC treatment on PER1 protein levels. CONCLUSION These findings collectively suggest that altered iron levels influence the circadian rhythm by regulating PER1 expression and thereby modulating the molecular circadian clock. In conclusion, our study identifies the regulation of brain iron levels as a potential new target for treating age-related disruptions in the circadian rhythm.
Collapse
Affiliation(s)
- Qiong Wu
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
- Hebei Key Laboratory of Chinese Medicine Research on Cardio‐Cerebrovascular Disease, College of Basic MedicineHebei University of Chinese MedicineShijiazhuangHebei ProvinceChina
| | - Qiuyang Ren
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Xin Wang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Huiyuan Bai
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Dandan Tian
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Fudi Wang
- School of Public HealthZhejiang University School of MedicineHangzhouZhejiangChina
| | - Peng Yu
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Yan‐Zhong Chang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| |
Collapse
|
107
|
Tao MH, Drake CL, Lin CH. Association of sleep duration, chronotype, social jetlag, and sleep disturbance with phenotypic age acceleration: A cross-sectional analysis. Sleep Health 2024; 10:122-128. [PMID: 38238123 DOI: 10.1016/j.sleh.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 03/01/2024]
Abstract
OBJECTIVE Sleep is a critical health-related behavior; research evidence has shown that sleep duration, poor sleep quality and insomnia are associated with aging and relevant age-related diseases. However, the associations between sleep duration, chronotype, sleep disturbance, and biological age have not been comprehensively assessed. This study aimed to examine sleep characteristics with biological age. METHODS The study included 6534 participants aged 20 years and older from the National Health and Nutrition Examination Survey between 2017 and March 2020. Sleep questionnaires were used to collect information on sleep duration and wake behavior on workdays and workfree days and sleep disturbance. Phenotypic age acceleration (PhenoAgeAccel) was estimated as a biological age measure using 9 blood chemistry biomarkers. RESULTS Long sleep (>9 hours) and extremely short sleep (≤4 hours) on workdays were positively associated with PhenoAgeAccel, compared with optimal sleep duration (7-8 hours). Similar positive associations with PhenoAgeAccel were observed for sleep duration on workfree days and across the whole week. Both slightly evening and evening chronotypes were associated with faster PhenoAgeAccel compared to morning chronotype. Social jetlag and sleep disturbance were not associated with PhenoAgeAccel, while long corrected social jetlag was associated with faster PhenoAgeAccel. The associations of sleep duration, chronotype, and corrected social jetlag with PhenoAgeAccel appeared stronger among females than among males. CONCLUSIONS Findings suggest a U-shape relationship between sleep duration and biological aging; slightly evening and evening chronotypes may be risk factors for aging. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Meng-Hua Tao
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA.
| | - Christopher L Drake
- Department of Medicine, Division of Sleep Medicine, Henry Ford Health System, Novi, Michigan, USA
| | - Chun-Hui Lin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
108
|
Holmes KE, Fox N, King J, Presby DM, Kim J. Connection Between Sleep and Psychological Well-Being in U.S. Army Soldiers. Mil Med 2024; 189:e40-e48. [PMID: 37265329 PMCID: PMC10824482 DOI: 10.1093/milmed/usad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/20/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023] Open
Abstract
INTRODUCTION The goal of this exploratory study was to examine the relationships between sleep consistency and workplace resilience among soldiers stationed in a challenging Arctic environment. MATERIALS AND METHODS A total of 862 soldiers (67 females) on an Army base in Anchorage, AK, were provided WHOOP 3.0, a validated sleep biometric capture device and were surveyed at onboarding and at the conclusion of the study. Soldiers joined the study from early January to early March 2021 and completed the study in July 2021 (650 soldiers completed the onboarding survey and 210 completed the exit survey, with 151 soldiers completing both). Three comparative analyses were conducted. First, soldiers' sleep and cardiac metrics were compared against the general WHOOP population and a WHOOP sample living in AK. Second, seasonal trends (summer versus winter) in soldiers' sleep metrics (time in bed, hours of sleep, wake duration during sleep, time of sleep onset/offset, and disturbances) were analyzed, and these seasonal trends were compared with the general WHOOP population and the WHOOP sample living in AK. Third, soldiers' exertion, sleep duration, and sleep consistency were correlated with their self-reported psychological functioning. All analyses were conducted with parametric and non-parametric statistics. This study was approved by The University of Queensland Human Research Ethics Committee (Brisbane, Australia) Institutional Review Board. RESULTS Because of the exploratory nature of the study, the critical significance value was set at P < .001. Results revealed that: (1) Arctic soldiers had poorer sleep consistency and sleep duration than the general WHOOP sample and the Alaskan WHOOP sample, (2) Arctic soldiers showed a decrease in sleep consistency and sleep duration in the summer compared to that in the winter, (3) Arctic soldiers were less able to control their bedroom environment in the summer than in the winter, and (4) sleep consistency but not sleep duration correlated positively with self-report measures of workplace resilience and healthy social networks and negatively with homesickness. CONCLUSIONS The study highlights the relationship between seasonality, sleep consistency, and psychological well-being. The results indicate the potential importance of sleep consistency in psychological functioning, suggesting that future work should manipulate factors known to increase sleep consistency to assess whether improved sleep consistency can enhance the well-being of soldiers. Such efforts would be of particular value in an Arctic environment, where seasonality effects are large and sleep consistency is difficult to maintain.
Collapse
Affiliation(s)
- Kristen E Holmes
- School of Psychology, University of Queensland, St Lucia, QLD 4072, Australia
- Performance Science, Whoop Inc., Boston, MA 02215, USA
| | - Nadia Fox
- School of Psychology, University of Queensland, St Lucia, QLD 4072, Australia
| | - Jemma King
- School of Psychology, University of Queensland, St Lucia, QLD 4072, Australia
- BioPsych Analytics, Tennyson, QLD 4105, Australia
| | | | - Jeongeun Kim
- Performance Science, Whoop Inc., Boston, MA 02215, USA
| |
Collapse
|
109
|
Kanan MK, Sheehan PW, Haines JN, Gomez PG, Dhuler A, Nadarajah CJ, Wargel ZM, Freeberg BM, Nelvagal HR, Izumo M, Takahashi JS, Cooper JD, Davis AA, Musiek ES. Neuronal deletion of the circadian clock gene Bmal1 induces cell-autonomous dopaminergic neurodegeneration. JCI Insight 2024; 9:e162771. [PMID: 38032732 PMCID: PMC10906231 DOI: 10.1172/jci.insight.162771] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Circadian rhythm dysfunction is a hallmark of Parkinson disease (PD), and diminished expression of the core clock gene Bmal1 has been described in patients with PD. BMAL1 is required for core circadian clock function but also serves nonrhythmic functions. Germline Bmal1 deletion can cause brain oxidative stress and synapse loss in mice, and it can exacerbate dopaminergic neurodegeneration in response to the toxin MPTP. Here we examined the effect of cell type-specific Bmal1 deletion on dopaminergic neuron viability in vivo. We observed that global, postnatal deletion of Bmal1 caused spontaneous loss of tyrosine hydroxylase+ (TH+) dopaminergic neurons in the substantia nigra pars compacta (SNpc). This was not replicated by light-induced disruption of behavioral circadian rhythms and was not induced by astrocyte- or microglia-specific Bmal1 deletion. However, either pan-neuronal or TH neuron-specific Bmal1 deletion caused cell-autonomous loss of TH+ neurons in the SNpc. Bmal1 deletion did not change the percentage of TH neuron loss after α-synuclein fibril injection, though Bmal1-KO mice had fewer TH neurons at baseline. Transcriptomics analysis revealed dysregulation of pathways involved in oxidative phosphorylation and Parkinson disease. These findings demonstrate a cell-autonomous role for BMAL1 in regulating dopaminergic neuronal survival and may have important implications for neuroprotection in PD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hemanth R. Nelvagal
- Departments of Pediatrics, Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Joseph S. Takahashi
- Department of Neuroscience and
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jonathan D. Cooper
- Departments of Pediatrics, Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Erik S. Musiek
- Department of Neurology and
- Center On Biological Rhythms and Sleep (COBRAS), Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
110
|
Flores CC, Pasetto NA, Wang H, Dimitrov A, Davis JF, Jiang Z, Davis CJ, Gerstner JR. Identification of sleep and circadian alternative polyadenylation sites associated with APA-linked human brain disorders. RESEARCH SQUARE 2024:rs.3.rs-3867797. [PMID: 38313253 PMCID: PMC10836116 DOI: 10.21203/rs.3.rs-3867797/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Sleep and circadian rhythm disruptions are comorbid features of many pathologies and can negatively influence numerous health conditions, including degenerative diseases, metabolic illnesses, cancer, and various neurological disorders. Genetic association studies linking sleep and circadian disturbances with disease susceptibility have mainly focused on changes in gene expression due to mutations, such as single-nucleotide polymorphisms. Thus, associations between sleep and/or circadian rhythm and alternative polyadenylation (APA), particularly in the context of other health challenges, are largely undescribed. APA is a process that generates various transcript isoforms from the same gene, resulting in effects on mRNA translation, stability, localization, and subsequent function. Here, we have identified unique APAs in rat brain that exhibit time-of-day-dependent oscillations in expression as well as APAs that are altered by sleep deprivation and the subsequent recovery period. Genes affected by APA usage include Mapt/Tau, Ntrk2, Homer1A, Sin3band Sorl. Sorl1 has two APAs which cycle with a 24 h period, one additional APA cycles with a 12 h period and one more that is reduced during recovery sleep. Finally, we compared sleep- or circadian-associated APAs with recently described APA-linked brain disorder susceptibility genes and found 46 genes in common.
Collapse
|
111
|
Dollish HK, Tsyglakova M, McClung CA. Circadian rhythms and mood disorders: Time to see the light. Neuron 2024; 112:25-40. [PMID: 37858331 PMCID: PMC10842077 DOI: 10.1016/j.neuron.2023.09.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
The importance of time is ever prevalent in our world, and disruptions to the normal light/dark and sleep/wake cycle have now become the norm rather than the exception for a large part of it. All mood disorders, including seasonal affective disorder (SAD), major depressive disorder (MDD), and bipolar disorder (BD), are strongly associated with abnormal sleep and circadian rhythms in a variety of physiological processes. Environmental disruptions to normal sleep/wake patterns, light/dark changes, and seasonal changes can precipitate episodes. Moreover, treatments that target the circadian system have proven to be therapeutic in certain cases. This review will summarize much of our current knowledge of how these disorders associate with specific circadian phenotypes, as well as the neuronal mechanisms that link the circadian clock with mood regulation. We also discuss what has been learned from therapies that target circadian rhythms and how we may use current knowledge to develop more individually designed treatments.
Collapse
Affiliation(s)
- Hannah K Dollish
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA
| | - Mariya Tsyglakova
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA.
| |
Collapse
|
112
|
Matynia A, Recio BS, Myers Z, Parikh S, Goit RK, Brecha NC, Pérez de Sevilla Müller L. Preservation of Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) in Late Adult Mice: Implications as a Potential Biomarker for Early Onset Ocular Degenerative Diseases. Invest Ophthalmol Vis Sci 2024; 65:28. [PMID: 38224335 PMCID: PMC10793389 DOI: 10.1167/iovs.65.1.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024] Open
Abstract
Purpose Intrinsically photosensitive retinal ganglion cells (ipRGCs) play a crucial role in non-image-forming visual functions. Given their significant loss observed in various ocular degenerative diseases at early stages, this study aimed to assess changes in both the morphology and associated behavioral functions of ipRGCs in mice between 6 (mature) and 12 (late adult) months old. The findings contribute to understanding the preservation of ipRGCs in late adults and their potential as a biomarker for early ocular degenerative diseases. Methods Female and male C57BL/6J mice were used to assess the behavioral consequences of aging to mature and old adults, including pupillary light reflex, light aversion, visual acuity, and contrast sensitivity. Immunohistochemistry on retinal wholemounts from these mice was then conducted to evaluate ipRGC dendritic morphology in the ganglion cell layer (GCL) and inner nuclear layer (INL). Results Morphological analysis showed that ipRGC dendritic field complexity was remarkably stable through 12 months old of age. Similarly, the pupillary light reflex, visual acuity, and contrast sensitivity were stable in mature and old adults. Although alterations were observed in ipRGC-independent light aversion distinct from the pupillary light reflex, aged wild-type mice continuously showed enhanced light aversion with dilation. No effect of sex was observed in any tests. Conclusions The preservation of both ipRGC morphology and function highlights the potential of ipRGC-mediated function as a valuable biomarker for ocular diseases characterized by early ipRGC loss. The consistent stability of ipRGCs in mature and old adult mice suggests that detected changes in ipRGC-mediated functions could serve as early indicators or diagnostic tools for early-onset conditions such as Alzheimer's disease, Parkinson's disease, and diabetes, where ipRGC loss has been documented.
Collapse
Affiliation(s)
- Anna Matynia
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, United States
| | - Brandy S. Recio
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Zachary Myers
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Sachin Parikh
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, United States
| | - Rajesh Kumar Goit
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, United States
| | - Nicholas C. Brecha
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California, United States
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| | - Luis Pérez de Sevilla Müller
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States
| |
Collapse
|
113
|
Xie L, Raj Y, Varathan P, He B, Yu M, Nho K, Salama P, Saykin AJ, Yan J. Deep Trans-Omic Network Fusion for Molecular Mechanism of Alzheimer's Disease. J Alzheimers Dis 2024; 99:715-727. [PMID: 38728189 DOI: 10.3233/jad-240098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Background There are various molecular hypotheses regarding Alzheimer's disease (AD) like amyloid deposition, tau propagation, neuroinflammation, and synaptic dysfunction. However, detailed molecular mechanism underlying AD remains elusive. In addition, genetic contribution of these molecular hypothesis is not yet established despite the high heritability of AD. Objective The study aims to enable the discovery of functionally connected multi-omic features through novel integration of multi-omic data and prior functional interactions. Methods We propose a new deep learning model MoFNet with improved interpretability to investigate the AD molecular mechanism and its upstream genetic contributors. MoFNet integrates multi-omic data with prior functional interactions between SNPs, genes, and proteins, and for the first time models the dynamic information flow from DNA to RNA and proteins. Results When evaluated using the ROS/MAP cohort, MoFNet outperformed other competing methods in prediction performance. It identified SNPs, genes, and proteins with significantly more prior functional interactions, resulting in three multi-omic subnetworks. SNP-gene pairs identified by MoFNet were mostly eQTLs specific to frontal cortex tissue where gene/protein data was collected. These molecular subnetworks are enriched in innate immune system, clearance of misfolded proteins, and neurotransmitter release respectively. We validated most findings in an independent dataset. One multi-omic subnetwork consists exclusively of core members of SNARE complex, a key mediator of synaptic vesicle fusion and neurotransmitter transportation. Conclusions Our results suggest that MoFNet is effective in improving classification accuracy and in identifying multi-omic markers for AD with improved interpretability. Multi-omic subnetworks identified by MoFNet provided insights of AD molecular mechanism with improved details.
Collapse
Affiliation(s)
- Linhui Xie
- Department of Electrical and Computer Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Yash Raj
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Pradeep Varathan
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Bing He
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Meichen Yu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Paul Salama
- Department of Electrical and Computer Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| | - Jingwen Yan
- Department of BioHealth Informatics, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA
| |
Collapse
|
114
|
Chen YC, Wang WS, Lewis SJG, Wu SL. Fighting Against the Clock: Circadian Disruption and Parkinson's Disease. J Mov Disord 2024; 17:1-14. [PMID: 37989149 PMCID: PMC10846969 DOI: 10.14802/jmd.23216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023] Open
Abstract
Circadian disruption is being increasingly recognized as a critical factor in the development and progression of Parkinson's disease (PD). This review aims to provide an in-depth overview of the relationship between circadian disruption and PD by exploring the molecular, cellular, and behavioral aspects of this interaction. This review will include a comprehensive understanding of how the clock gene system and transcription-translation feedback loops function and how they are diminished in PD. The article also discusses the role of clock genes in the regulation of circadian rhythms, as well as the impact of clock gene dysregulation on mitochondrial function, oxidative stress, and neuroinflammation, including the microbiota-gut-brain axis, which have all been proposed as being crucial mechanisms in the pathophysiology of PD. Finally, this review highlights potential therapeutic strategies targeting the clock gene system and circadian rhythm for the treatment of PD.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Sheng Wang
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Simon J G Lewis
- Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Shey-Lin Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Electrical Engineering, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
115
|
Takase H, Hamanaka G, Hoshino T, Ohtomo R, Guo S, Mandeville ET, Lo EH, Arai K. Transcriptomic Profiling Reveals Neuroinflammation in the Corpus Callosum of a Transgenic Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2024; 97:1421-1433. [PMID: 38277298 DOI: 10.3233/jad-231049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a widespread neurodegenerative disorder characterized by progressive cognitive decline, affecting a significant portion of the aging population. While the cerebral cortex and hippocampus have been the primary focus of AD research, accumulating evidence suggests that white matter lesions in the brain, particularly in the corpus callosum, play an important role in the pathogenesis of the disease. OBJECTIVE This study aims to investigate the gene expression changes in the corpus callosum of 5xFAD transgenic mice, a widely used AD mouse model. METHODS We conducted behavioral tests for spatial learning and memory in 5xFAD transgenic mice and performed RNA sequencing analyses on the corpus callosum to examine transcriptomic changes. RESULTS Our results show cognitive decline and demyelination in the corpus callosum of 5xFAD transgenic mice. Transcriptomic analysis reveals a predominance of upregulated genes in AD mice, particularly those associated with immune cells, including microglia. Conversely, downregulation of genes related to chaperone function and clock genes such as Per1, Per2, and Cry1 is also observed. CONCLUSIONS This study suggests that activation of neuroinflammation, disruption of chaperone function, and circadian dysfunction are involved in the pathogenesis of white matter lesions in AD. The findings provide insights into potential therapeutic targets and highlight the importance of addressing white matter pathology and circadian dysfunction in AD treatment strategies.
Collapse
Affiliation(s)
- Hajime Takase
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- YCU Center for Novel and Exploratory Clinical Trials (Y-NEXT), Yokohama City University Hospital, Yokohama, Japan
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Gen Hamanaka
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Tomonori Hoshino
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ryo Ohtomo
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Shuzhen Guo
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Emiri T Mandeville
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eng H Lo
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
116
|
Eyob E, Shaw JS, Bakker A, Munro C, Spira A, Wu M, Rabinowitz JA, Peters M, Wanigatunga S, Zipunnikov V, Thompson R, Burhanullah MH, Leoutsakos JM, Rosenberg P, Greenberg B. A Randomized-Controlled Trial Targeting Cognition in Early Alzheimer's Disease by Improving Sleep with Trazodone (REST). J Alzheimers Dis 2024; 101:S205-S215. [PMID: 39422935 DOI: 10.3233/jad-230635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of mortality and morbidity among aging populations worldwide. Despite arduous research efforts, treatment options for this devastating neurodegenerative disease are limited. Sleep disturbances, through their link to changes in neural excitability and impaired clearance of interstitial abnormal protein aggregates, are a key risk factor for the development of AD. Research also suggests that the neuroprotective effects of sleep are particularly active during slow wave sleep. Given the strong link between sleep disturbance and AD, targeting sleep in the prodromal stages of AD, such as in mild cognitive impairment (MCI), represents a promising avenue for slowing the onset of AD-related cognitive decline. In efforts to improve sleep in older individuals, several pharmacologic approaches have been employed, but many pose safety risks, concern for worsening cognitive function, and fail to effectively target slow wave sleep. Trazodone, a safe and widely used drug in the older adult population, has shown promise in inducing slow wave sleep in older adults, but requires more rigorous research to understand its effects on sleep and cognition in the prodromal stages of AD. In this review, we present the rationale and study design for our randomized, double-bind, placebo-controlled, crossover trial (NCT05282550) investigating the effects of trazodone on sleep and cognition in 100 older adults with amnestic MCI and sleep complaints.
Collapse
Affiliation(s)
- Estelle Eyob
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacob S Shaw
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia Munro
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adam Spira
- The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mark Wu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jill A Rabinowitz
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Peters
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Wanigatunga
- The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Vadim Zipunnikov
- The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Richard Thompson
- The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - M Haroon Burhanullah
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeannie-Marie Leoutsakos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barry Greenberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
117
|
Okuda M, Noda A, Iwamoto K, Hishikawa N, Miyata S, Yasuma F, Taoka T, Ozaki N, Suhr JA, Miyazaki S. Assessment of cognitive function and sleep-wake rhythms in community-dwelling older adults. Sleep Biol Rhythms 2024; 22:137-145. [PMID: 38476850 PMCID: PMC10899937 DOI: 10.1007/s41105-023-00491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/06/2023] [Indexed: 03/14/2024]
Abstract
Disruption of the circadian rhythm and sleep-wake cycles is a consequence of aging and is associated with the cognitive decline and many neurodegenerative conditions. We investigated the bedtime, wake-up time, sleep timing (midpoint between bedtime and wake-up time), and sleep timing standard deviation (SD) using the actigraphy among 80 consecutive volunteers aged ≥ 60 years. Global cognitive function and executive function of detailed cognitive domains were evaluated using the mini-mental state examination (MMSE) and Wisconsin card sorting test (WCST) and subjective daytime sleepiness was assessed using the Epworth Sleepiness Scale (ESS). The category achievement (CA), total errors (TE), perseverative errors of Nelson (PEN), non-perseverative errors (NPE), and difficulties in maintaining set (DMS) on the WCST were significantly correlated with sleep timing SD (CA: r = - 0.276, p = 0.013, TE: r = 0.311, p = 0.005, PEN: r = 0.241, p = 0.032, NPE: r = 0.250, p = 0.025, DMS: r = 0.235, p = 0.036), but not with the MMSE score. Multiple regression analyses with the stepwise forward selection method including age, ESS score, bedtime, sleep timing, and sleep timing SD, revealed that the ESS score, and sleep timing SD were significant factors related to CA on the WCST (ESS score: β = - 0.322, p = 0.004; sleep timing SD: β = - 0.250, p = 0.022). Assessment of sleep-wake rhythms, daytime sleepiness, and cognitive function using the MMSE and WCST is valuable for the prediction of cognitive decline in the geriatric population.
Collapse
Affiliation(s)
- Masato Okuda
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, 1200, Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Akiko Noda
- Department of Biomedical Sciences, Chubu University Graduate School of Life and Health Sciences, 1200, Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Kunihiro Iwamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiko Miyata
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumihiko Yasuma
- Department of Biomedical Sciences, Chubu University Collage of Life and Health Sciences, Kasugai, Japan
| | - Toshiaki Taoka
- Department of Innovative Biomedical Visualization, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Julie A. Suhr
- Department of Psychology, Ohio University, Athens, OH USA
| | - Soichiro Miyazaki
- Research Institute of Life and Health Sciences, Chubu University, Kasugai, Japan
| |
Collapse
|
118
|
Zhang MZ, Sun Y, Chen YM, Guo F, Gao PY, Tan L, Tan MS. Associations of Multimorbidity with Cerebrospinal Fluid Biomarkers for Neurodegenerative Disorders in Early Parkinson's Disease: A Crosssectional and Longitudinal Study. Curr Alzheimer Res 2024; 21:201-213. [PMID: 39041277 DOI: 10.2174/0115672050314397240708060314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 07/24/2024]
Abstract
OBJECT The study aims to determine whether multimorbidity status is associated with cerebrospinal fluid (CSF) biomarkers for neurodegenerative disorders. METHODS A total of 827 patients were enrolled from the Parkinson's Progression Markers Initiative (PPMI) database, including 638 patients with early-stage Parkinson's disease (PD) and 189 healthy controls (HCs). Multimorbidity status was evaluated based on the count of long-term conditions (LTCs) and the multimorbidity pattern. Using linear regression models, cross-sectional and longitudinal analyses were conducted to assess the associations of multimorbidity status with CSF biomarkers for neurodegenerative disorders, including α-synuclein (αSyn), amyloid-β42 (Aβ42), total tau (t-tau), phosphorylated tau (p-tau), glial fibrillary acidic protein (GFAP), and neurofilament light chain protein (NfL). RESULTS At baseline, the CSF t-tau (p = 0.010), p-tau (p = 0.034), and NfL (p = 0.049) levels showed significant differences across the three categories of LTC counts. In the longitudinal analysis, the presence of LTCs was associated with lower Aβ42 (β < -0.001, p = 0.020), and higher t-tau (β = 0.007, p = 0.026), GFAP (β = 0.013, p = 0.022) and NfL (β = 0.020, p = 0.012); Participants with tumor/musculoskeletal/mental disorders showed higher CSF levels of t-tau (β = 0.016, p = 0.011) and p-tau (β = 0.032, p = 0.044) than those without multimorbidity. CONCLUSION Multimorbidity, especially severe multimorbidity and the pattern of mental/musculoskeletal/ tumor disorders, was associated with CSF biomarkers for neurodegenerative disorders in early-stage PD patients, suggesting that multimorbidity might play a crucial role in aggravating neuronal damage in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ming-Zhan Zhang
- School of Clinical Medicine, Shandong Second Medical University (formerly Weifang Medical University), Weifang 261000, Shandong, China
| | - Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Ming Chen
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Fan Guo
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Pei-Yang Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Meng-Shan Tan
- School of Clinical Medicine, Shandong Second Medical University (formerly Weifang Medical University), Weifang 261000, Shandong, China
- Department of Neurology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
119
|
Xu Y, Zhang G, Yang L, Qin H, Zhou Z, Li Q, Liu H, Wang R, Cai Z, Jing L, Li Y, Yao Y, Gong Z, Yuan P, Fu T, Zhao X, Peng T, Jia Y. Quantifying Personalized Shift-Work Molecular Portraits Underlying Alzheimer's Disease through Computational Biology. J Prev Alzheimers Dis 2024; 11:1721-1733. [PMID: 39559883 PMCID: PMC11573866 DOI: 10.14283/jpad.2024.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND Shift work, the proven circadian rhythm-disrupting behavior, has been linked to the increased risk of Alzheimer's disease (AD). However, the putative causal effect and potential mechanisms of shift work for AD were still unclear. METHODS Mendelian randomization (MR) analysis was performed to discover the putative causal effect of shift work for AD. Expression quantitative trait loci (eQTLs) and transcriptome data were integrated to identify genes causally associated with AD from circadian-related genes. An in vitro experiment was also conducted to validate the expression of target genes. Based on the identified genes, a novel integrative program and 4,077 samples from 16 microarray datasets were leveraged to assess the extent of circadian rhythm disruption (CRD), defined as the clock deviation level (CDL). FINDINGS/RESULTS Shift work causally increased the risk of AD [odds ratio (OR) = 2.49, 95% CI = 1.79 - 3.19, p = 0.01]. Seven circadian-related genes were causally associated with AD, including CCS, CDS2, MYRIP, NRP1, PLEKHA5, POLR1D, and PPP4C. These genes were significantly correlated with the circadian rhythm pathway. CDL was higher in CRD mice group, shift work group, sleep restriction group, and AD patients compared to control mice group (p = 0.043), non-shift group (p = 0.004), sleep extension group (p = 0.025), and health controls (multiple cohorts, p < 0.05). Additionally, CDL was also significantly correlated with AD's clinical biomarkers. INTERPRETATIONS/CONCLUSION By combining GWAS and transcriptome data, this study demonstrated the causal role of CRD behavior in AD, identified the potential target genes in shift work-induced AD, and generated CDL to characterize CRD status, which provided evidence and prospects for disease prevention and future therapeutic interventions.
Collapse
Affiliation(s)
- Y Xu
- Yanjie Jia, Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China. ; Tao Peng, Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Britz J, Ojo E, Haque N, Dhukhwa A, Hascup ER, Hascup KN, Tischkau SA. Sex-Dependent Effects of Chronic Circadian Disruption in AβPP/PS1 Mice. J Alzheimers Dis 2024; 97:855-870. [PMID: 38143343 PMCID: PMC10860643 DOI: 10.3233/jad-230089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Chronic disruption of the circadian timing system, often reflected as a loss of restful sleep, also includes myriad other pathophysiological effects. OBJECTIVE The current study examined how chronic circadian disruption (CD) could contribute to pathology and rate of progression in the AβPP/PS1 mouse model of Alzheimer's disease (AD). METHODS A chronic CD was imposed until animals reached 6 or 12 months of age in AβPP/PS1 and C57BL/6J control mice. Home cage activity was monitored for a period of 3-4 weeks prior to the endpoint along with a single timepoint measure of glucose sensitivity. To assess long term effects of CD on the AD phenotype, animals were re-entrained to a no disruption (ND) schedule just prior to the endpoint, after which a Morris water maze (MWM) was used to assess spatial learning and memory. RESULTS Dampening of nighttime activity levels occurred in disrupted animals, and female animals demonstrated a greater adaptability to CD. Diminished arginine vasopressin (AVP) and vasoactive intestinal peptide (VIP) levels in the suprachiasmatic nucleus (SCN) of 12-month male AβPP/PS1 exposed to the CD paradigm were observed, potentially accounting for the diminished re-entrainment response. Similarly, CD worsened performance in the MWM in 12-month male AβPP/PS1 animals, whereas no effect was seen in females. CONCLUSIONS Collectively, these findings show that exposure to chronic CD impairs circadian behavioral patterns and cognitive phenotypes of AβPP/PS1 mouse model in a sex-dependent manner.
Collapse
Affiliation(s)
- Jesse Britz
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Emmanuel Ojo
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Nazmul Haque
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Erin R. Hascup
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin N. Hascup
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Shelley A. Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
121
|
Mishra AK, Srivastava A, Raj V, Saini V, Khan G, Singh H, Mishra A, Paliwal S. Recent Updates on Alzheimer's Disease: Pathogenesis, Pathophysiology, Molecular Approaches and Natural Bioactive Compounds Used in Contemporary Time to Alleviate Disease. Curr Alzheimer Res 2024; 21:538-556. [PMID: 39716788 DOI: 10.2174/0115672050361294241211071813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024]
Abstract
Alzheimer's disease (AD), characterised by gradual memory loss and neurodegeneration, is an important risk to global health. Despite the recent advances in the field of neuroscience, the complex biological mechanisms underlying the aetiology and pathology of AD have not been elucidated yet. The development of amyloid-beta plaques, hyperphosphorylation of tau protein, oxidative stress, and neuroinflammation have been identified as important components. The genesis of AD has been illuminated by advances in molecular techniques, which have shown the contributions of environmental, genetic, and epigenetic variables. Ongoing research is focused on the potential of bioactive compounds as therapeutic agents. Quercetin, epigallocatechin gallate, huperzine A, ginsenosides, omega-3 fatty acids, vitamin E, zinc, bacosides from brahmi, and withanolide A from ashwagandha are among the compounds that have demonstrated encouraging effects in modifying disease pathways. These bioactive substances demonstrate their potential for symptomatic relief by providing neuroprotective, antioxidant, anti-inflammatory, and cognitive-enhancing properties. The present review presents the recent findings on AD pathogenesis, molecular mechanisms, and the impact of natural compounds, offering a comprehensive perspective on current and emerging strategies for managing this debilitating condition.
Collapse
Affiliation(s)
| | | | - Varsha Raj
- Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, 250005, India
| | - Vipin Saini
- MM College of Pharmacy, M.M. University, Ambala 133207, India
| | - Gyas Khan
- Department of Pharmacology, College of Pharmacy, Jazan University, Jazan, Saudia Arabia
| | - Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad 244102, India
| | - Amrita Mishra
- Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, India
| |
Collapse
|
122
|
Zhou HB, Lu SZ, Yu ZS, Zhang JL, Mei ZN. Mechanisms for the biological activity of Gastrodia elata Blume and its constituents: A comprehensive review on sedative-hypnotic, and antidepressant properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155251. [PMID: 38056151 DOI: 10.1016/j.phymed.2023.155251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Insomnia and depressive disorder are two common symptoms with a reciprocal causal relationship in clinical practice, which are usually manifested in comorbid form. Several medications have been widely used in the treatment of insomnia and depression, but most of these drugs show non-negligible side effects. Currently, many treatments are indicated for insomnia and depressive symptom, including Chinese herbal medicine such as Gastrodia elata Blume (G. elata), which has excellent sedative-hypnotic and antidepressant effects in clinical and animal studies. PURPOSE To summarize the mechanisms of insomnia and depression and the structure-activity mechanism for G. elata to alleviate these symptoms, particularly by hypothalamic-pituitary-adrenal (HPA) axis and intestinal flora, aiming to discover new approaches for the treatment of insomnia and depression. METHODS The following electronic databases were searched from the beginning to November 2023: PubMed, Web of Science, Google Scholar, Wanfang Database, and CNKI. The following keywords of G. elata were used truncated with other relevant topic terms, such as depression, insomnia, antidepressant, sedative-hypnotic, neuroprotection, application, safety, and toxicity. RESULTS Natural compounds derived from G. elata could alleviate insomnia and depressive disorder, which is involved in monoamine neurotransmitters, inflammatory response, oxidative stress, and gut microbes, etc. Several clinical trials showed that G. elata-derived natural compounds that treat depression and insomnia have significant and safe therapeutic effects, but further well-designed clinical and toxicological studies are needed. CONCLUSION G. elata exerts a critical role in treating depression and insomnia due to its multi-targeting properties and fewer side effects. However, more clinical and toxicological studies should be performed to further explore the sedative-hypnotic and antidepressant mechanisms of G. elata and provide more evidence and recommendations for its clinical application. Our review provides an overview of G. elata treating insomnia with depression for future research direction.
Collapse
Affiliation(s)
- Hai-Bo Zhou
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Sheng-Ze Lu
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Zhong-Shun Yu
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China
| | - Jiu-Liang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei Province 430070, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, 430070, China.
| | - Zhi-Nan Mei
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
123
|
Zhao X, Huang S, Zhang P, Qiao X, Liu Y, Dong M, Yi Q, Wang L, Song L. A circadian clock protein cryptochrome inhibits the expression of inflammatory cytokines in Chinese mitten crab (Eriocheir sinensis). Int J Biol Macromol 2023; 253:126591. [PMID: 37659496 DOI: 10.1016/j.ijbiomac.2023.126591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Cryptochrome (Cry), as important flavoprotein, plays a key role in regulating the innate immune response, such as the release of inflammatory cytokines. In the present study, a cryptochrome homologue (EsCry) was identified from Chinese mitten crab Eriocheir sinensis, which contained a typical DNA photolyase domain, a FAD binding domain. The transcripts of EsCry were highly expressed at 11:00, and lowest at 3:00 within one day, while those of Interleukin enhancer binding factor (EsILF), Lipopolysaccharide-induced TNF-alpha factor (EsLITAF), Tumor necrosis factor (EsTNF) and Interleukin-16 (EsIL-16) showed a rhythm expression pattern contrary to EsCry. After EsCry was knocked down by dsEsCry injection, mRNA transcripts of Timeless (EsTim), Cycle (EsCyc), Circadian locomotor output cycles kaput (EsClock), Period (EsPer), and EsLITAF, EsTNF, EsILF, EsIL-16, as well as phosphorylation level of Dorsal significantly up-regulated. The transcripts of EsLITAF, EsTNF, EsILF, and EsIL-16 in EsCry-RNAi crabs significantly down-regulated after injection of NF-κB inhibitor. The interactions of EsCyc and EsCry, EsCyc and Dorsal were observed in vitro. These results indicated that EsCry negatively regulated the expression of the cytokine TNF and IL-16 via inhibiting their transcription factor LITAF and ILF through NF-κB signaling pathway, which provide evidences to better understand the circadian regulation mechanism of cytokine production in crabs.
Collapse
Affiliation(s)
- Xinyu Zhao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Shu Huang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Peng Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Yu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
124
|
Freund W, Weber F. The Function of Sleep and the Treatment of Primary Insomnia. DEUTSCHES ARZTEBLATT INTERNATIONAL 2023; 120:863-870. [PMID: 37942822 PMCID: PMC10840130 DOI: 10.3238/arztebl.m2023.0228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Approximately 21 900 women and 35 300 men developed lung cancer in Germany in 2018, and 16 999 women and 27 882 men died of it. The outcome mainly depends on the tumor stage. In early stages (stage I or II), treatment can be curative; unfortunately, because early-stage lung cancers are generally asymptom - atic, 74% of women and 77% of men already have advanced-stage disease (stage III or IV) at the time of diagnosis. Screening with low-dose computed tomography is an option enabling early diagnosis and curative treatment. METHODS This review is based on pertinent articles retrieved by a selective search of the literature on screening for lung cancer. RESULTS In the studies of lung cancer screening that have been published to date, sensitivity ranged from 68.5% to 93.8%, and specificity from 73.4% to 99.2%. A meta-analysis by the German Federal Office for Radiation Protection revealed a 15% reduction in lung cancer mortality when low-dose computed tomography was used in persons who were judged to be at high risk for lung cancer (risk ratio [RR] 0.85, 95% confidence interval [0.77; 0.95]). 1.9% of subjects died in the screening arm of the meta-analysis, and 2.2% in the control group. The observation periods ranged from 6.6 to 10 years; false-positive rates ranged from 84.9% to 96.4%. Malignant findings were confirmed in 45% to 70% of the biopsies or resective procedures that were performed. CONCLUSION Systematic lung cancer screening with low-dose CT lowers mortality from lung cancer in (current or former) heavy smokers. This benefit must be weighed against the high rate of false-positive findings and overdiagnoses.
Collapse
Affiliation(s)
- Wolfgang Freund
- Neurocenter Biberach
- Diagnostic and Interventional Radiology, Ulm University Hospital, Ulm
| | | |
Collapse
|
125
|
Lee CH, Murrell CE, Chu A, Pan X. Circadian Regulation of Apolipoproteins in the Brain: Implications in Lipid Metabolism and Disease. Int J Mol Sci 2023; 24:17415. [PMID: 38139244 PMCID: PMC10743770 DOI: 10.3390/ijms242417415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
The circadian rhythm is a 24 h internal clock within the body that regulates various factors, including sleep, body temperature, and hormone secretion. Circadian rhythm disruption is an important risk factor for many diseases including neurodegenerative illnesses. The central and peripheral oscillators' circadian clock network controls the circadian rhythm in mammals. The clock genes govern the central clock in the suprachiasmatic nucleus (SCN) of the brain. One function of the circadian clock is regulating lipid metabolism. However, investigations of the circadian regulation of lipid metabolism-associated apolipoprotein genes in the brain are lacking. This review summarizes the rhythmic expression of clock genes and lipid metabolism-associated apolipoprotein genes within the SCN in Mus musculus. Nine of the twenty apolipoprotein genes identified from searching the published database (SCNseq and CircaDB) are highly expressed in the SCN. Most apolipoprotein genes (ApoE, ApoC1, apoA1, ApoH, ApoM, and Cln) show rhythmic expression in the brain in mice and thus might be regulated by the master clock. Therefore, this review summarizes studies on lipid-associated apolipoprotein genes in the SCN and other brain locations, to understand how apolipoproteins associated with perturbed cerebral lipid metabolism cause multiple brain diseases and disorders. This review describes recent advancements in research, explores current questions, and identifies directions for future research.
Collapse
Affiliation(s)
- Chaeeun Hannah Lee
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Charlotte Ellzabeth Murrell
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Alexander Chu
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
126
|
Sang D, Lin K, Yang Y, Ran G, Li B, Chen C, Li Q, Ma Y, Lu L, Cui XY, Liu Z, Lv SQ, Luo M, Liu Q, Li Y, Zhang EE. Prolonged sleep deprivation induces a cytokine-storm-like syndrome in mammals. Cell 2023; 186:5500-5516.e21. [PMID: 38016470 DOI: 10.1016/j.cell.2023.10.025] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/17/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
Most animals require sleep, and sleep loss induces serious pathophysiological consequences, including death. Previous experimental approaches for investigating sleep impacts in mice have been unable to persistently deprive animals of both rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Here, we report a "curling prevention by water" paradigm wherein mice remain awake 96% of the time. After 4 days of exposure, mice exhibit severe inflammation, and approximately 80% die. Sleep deprivation increases levels of prostaglandin D2 (PGD2) in the brain, and we found that elevated PGD2 efflux across the blood-brain-barrier-mediated by ATP-binding cassette subfamily C4 transporter-induces both accumulation of circulating neutrophils and a cytokine-storm-like syndrome. Experimental disruption of the PGD2/DP1 axis dramatically reduced sleep-deprivation-induced inflammation. Thus, our study reveals that sleep-related changes in PGD2 in the central nervous system drive profound pathological consequences in the peripheral immune system.
Collapse
Affiliation(s)
- Di Sang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Keteng Lin
- National Institute of Biological Sciences, Beijing, China; College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yini Yang
- Peking University School of Life Sciences, Beijing, China
| | - Guangdi Ran
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Bohan Li
- Peking-Tsinghua Center for Life Sciences, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chen Chen
- National Institute of Biological Sciences, Beijing, China
| | - Qi Li
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Lihui Lu
- National Institute of Biological Sciences, Beijing, China
| | - Xi-Yang Cui
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhibo Liu
- Peking-Tsinghua Center for Life Sciences, Beijing, China; Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Chongqing, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Qinghua Liu
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Yulong Li
- Peking University School of Life Sciences, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China; State Key Laboratory of Membrane Biology, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Eric Erquan Zhang
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
127
|
Zhao Q, Maci M, Miller MR, Zhou H, Zhang F, Algamal M, Lee YF, Hou SS, Perle SJ, Le H, Russ AN, Lo EH, Gerashchenko D, Gomperts SN, Bacskai BJ, Kastanenka KV. Sleep restoration by optogenetic targeting of GABAergic neurons reprograms microglia and ameliorates pathological phenotypes in an Alzheimer's disease model. Mol Neurodegener 2023; 18:93. [PMID: 38041158 PMCID: PMC10693059 DOI: 10.1186/s13024-023-00682-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) patients exhibit memory disruptions and profound sleep disturbances, including disruption of deep non-rapid eye movement (NREM) sleep. Slow-wave activity (SWA) is a major restorative feature of NREM sleep and is important for memory consolidation. METHODS We generated a mouse model where GABAergic interneurons could be targeted in the presence of APPswe/PS1dE9 (APP) amyloidosis, APP-GAD-Cre mice. An electroencephalography (EEG) / electromyography (EMG) telemetry system was used to monitor sleep disruptions in these animals. Optogenetic stimulation of GABAergic interneurons in the anterior cortex targeted with channelrhodopsin-2 (ChR2) allowed us to examine the role GABAergic interneurons play in sleep deficits. We also examined the effect of optogenetic stimulation on amyloid plaques, neuronal calcium as well as sleep-dependent memory consolidation. In addition, microglial morphological features and functions were assessed using confocal microscopy and flow cytometry. Finally, we performed sleep deprivation during optogenetic stimulation to investigate whether sleep restoration was necessary to slow AD progression. RESULTS APP-GAD-Cre mice exhibited impairments in sleep architecture including decreased time spent in NREM sleep, decreased delta power, and increased sleep fragmentation compared to nontransgenic (NTG) NTG-GAD-Cre mice. Optogenetic stimulation of cortical GABAergic interneurons increased SWA and rescued sleep impairments in APP-GAD-Cre animals. Furthermore, it slowed AD progression by reducing amyloid deposition, normalizing neuronal calcium homeostasis, and improving memory function. These changes were accompanied by increased numbers and a morphological transformation of microglia, elevated phagocytic marker expression, and enhanced amyloid β (Aβ) phagocytic activity of microglia. Sleep was necessary for amelioration of pathophysiological phenotypes in APP-GAD-Cre mice. CONCLUSIONS In summary, our study shows that optogenetic targeting of GABAergic interneurons rescues sleep, which then ameliorates neuropathological as well as behavioral deficits by increasing clearance of Aβ by microglia in an AD mouse model.
Collapse
Affiliation(s)
- Qiuchen Zhao
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Megi Maci
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Morgan R Miller
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Heng Zhou
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Fang Zhang
- Departments of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Moustafa Algamal
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Steven S Hou
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stephen J Perle
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Hoang Le
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Alyssa N Russ
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Eng H Lo
- Departments of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Dmitry Gerashchenko
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA, 02132, USA
| | - Stephen N Gomperts
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ksenia V Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
128
|
Pastor-Idoate S, Mateos-Olivares M, Sobas EM, Marcos M, Toribio A, Pastor JC, Usategui Martín R. Short-Wavelength Light-Blocking Filters and Oral Melatonin Administration in Patients With Retinitis Pigmentosa: Protocol for a Randomized Controlled Trial. JMIR Res Protoc 2023; 12:e49196. [PMID: 37971796 PMCID: PMC10690531 DOI: 10.2196/49196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The medical community is beginning to recognize that retinitis pigmentosa (RP), due to its disabling progression, eventually leads to a reduction in the patient´s quality of life, a direct economic impact, and an increase in the burden on the health care system. There is no curative treatment for the origin of the disease, and most of the current interventions fail in reducing the associated negative psychological states, such as anxiety and depression, which lead to increased variability of vision and pose a continuous threat to the patient's independence. OBJECTIVE The aim of this study is to assess the effect of oral melatonin (OM) administration alone and combined with short-wavelength light (SWL)-blocking filters on patients with RP and test their effectiveness in improving the level of stress and sleep problems in many of these patients. METHODS We have developed a low-cost therapy protocol for patients with RP with sleep disorders and negative psychological stress. Patients will be randomized to receive a combined intervention with SWL-blocking filters and OM, SWL-blocking filters alone, or OM alone. There will also be a nonintervention arm as a control group. This study will be conducted across 2 retinal units in patients with RP with sleep disorders and high perceived stress and anxiety score reports. Patients will be assessed in the preintervention period, weekly during the 4 weeks of intervention, and then at 6 months postintervention. The primary outcomes are the differences in changes from baseline to postintervention in hormone release (α-amylase, cortisol, and melatonin) and sleep quality, as measured with the visual analog scale. Secondary outcome measures include clinical macular changes, as measured with optical coherence tomography and optical coherence tomography angiography; retinal function, as measured using the visual field and best-corrected visual acuity; sleep data collected from personal wearables; and several patient-reported variables, such as self-recorded sleep diaries, quality of life, perceived stress, and functional status. RESULTS This project is still a study protocol and has not yet started. Bibliographic research for information for its justification began in 2020, and this working group is currently seeking start-up funding. As soon as we have the necessary means, we will proceed with the registration and organization prior to the preliminary phase. CONCLUSIONS In this feasibility randomized clinical controlled trial, we will compare the effects of SWL blocking alone, administration of OM alone, and a combined intervention with both in patients with RP. We present this study so that it may be replicated and incorporated into future studies at other institutions, as well as applied to additional inherited retinal dystrophies. The goal of presenting this protocol is to aid recent efforts in reducing the impact of sleeping disorders and other psychological disorders on the quality of life in patients with RP and recovering their self-autonomy. In addition, the results of this study will represent a significant step toward developing a novel low-cost therapy for patients with RP and validating a novel therapeutic target. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/49196.
Collapse
Affiliation(s)
- Salvador Pastor-Idoate
- Institute of Applied Ophthalmobiology, University of Valladolid, Valladolid, Spain
- Department of Ophthalmology, Clinical University Hospital of Valladolid, Valladolid, Spain
- Networks of Cooperative Research oriented to Health Results, National Institute of Health Carlos III, Madrid, Spain
- European Reference Network dedicated to Rare Eye Diseases, Valladolid, Spain
| | - Milagros Mateos-Olivares
- Department of Ophthalmology, Clinical University Hospital of Valladolid, Valladolid, Spain
- Department of Ophthalmology, Clinical University Hospital of Caceres, Caceres, Spain
| | - Eva María Sobas
- Institute of Applied Ophthalmobiology, University of Valladolid, Valladolid, Spain
- Nursing School, University of Valladolid, Valladolid, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
| | - Alfredo Toribio
- Federation of Associations of Hereditary Retinal Dystrophies in Spain, Valladolid, Spain
| | - José Carlos Pastor
- Institute of Applied Ophthalmobiology, University of Valladolid, Valladolid, Spain
- Networks of Cooperative Research oriented to Health Results, National Institute of Health Carlos III, Madrid, Spain
- European Reference Network dedicated to Rare Eye Diseases, Valladolid, Spain
| | - Ricardo Usategui Martín
- Institute of Applied Ophthalmobiology, University of Valladolid, Valladolid, Spain
- Department of Cellular Biology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| |
Collapse
|
129
|
Simmonds E, Levine KS, Han J, Iwaki H, Koretsky MJ, Kuznetsov N, Faghri F, Solsberg CW, Schuh A, Jones L, Bandres-Ciga S, Blauwendraat C, Singleton A, Escott-Price V, Leonard HL, Nalls MA. Sleep disturbances as risk factors for neurodegeneration later in life. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.08.23298037. [PMID: 37986827 PMCID: PMC10659485 DOI: 10.1101/2023.11.08.23298037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The relationship between sleep disorders and neurodegeneration is complex and multi-faceted. Using over one million electronic health records (EHRs) from Wales, UK, and Finland, we mined biobank data to identify the relationships between sleep disorders and the subsequent manifestation of neurodegenerative diseases (NDDs) later in life. We then examined how these sleep disorders' severity impacts neurodegeneration risk. Additionally, we investigated how sleep attributed risk may compensate for the lack of genetic risk factors (i.e. a lower polygenic risk score) in NDD manifestation. We found that sleep disorders such as sleep apnea were associated with the risk of Alzheimer's disease (AD), amyotrophic lateral sclerosis, dementia, Parkinson's disease (PD), and vascular dementia in three national scale biobanks, with hazard ratios (HRs) ranging from 1.31 for PD to 5.11 for dementia. These sleep disorders imparted significant risk up to 15 years before the onset of an NDD. Cumulative number of sleep disorders in the EHRs were associated with a higher risk of neurodegeneration for dementia and vascular dementia. Sleep related risk factors were independent of genetic risk for Alzheimer's and Parkinson's, potentially compensating for low genetic risk in overall disease etiology. There is a significant multiplicative interaction regarding the combined risk of sleep disorders and Parkinson's disease. Poor sleep hygiene and sleep apnea are relatively modifiable risk factors with several treatment options, including CPAP and surgery, that could potentially reduce the risk of neurodegeneration. This is particularly interesting in how sleep related risk factors are significantly and independently enriched in manifesting NDD patients with low levels of genetic risk factors for these diseases.
Collapse
Affiliation(s)
- Emily Simmonds
- UK Dementia Research Institute (UKDRI) at Cardiff University, Cardiff, UK
| | - Kristin S Levine
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Jun Han
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Hirotaka Iwaki
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Mathew J Koretsky
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Nicole Kuznetsov
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Faraz Faghri
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Caroline Warly Solsberg
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
- Pharmaceutical Sciences and Pharmacogenomics, UCSF, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Artur Schuh
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lietsel Jones
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Cornelis Blauwendraat
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Andrew Singleton
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
| | - Valentina Escott-Price
- UK Dementia Research Institute (UKDRI) at Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Hampton L Leonard
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Mike A Nalls
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD, USA 20892
- DataTecnica LLC, Washington, DC, USA 20037
| |
Collapse
|
130
|
Runk A, Lehrer HM, Butters MA, Buysse DJ, Evans MA, Krafty RT, Hall MH. Retired night shift workers exhibit poorer neurocognitive function compared to retired day workers. Sleep 2023; 46:zsad098. [PMID: 37084790 PMCID: PMC10636252 DOI: 10.1093/sleep/zsad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/03/2023] [Indexed: 04/23/2023] Open
Abstract
STUDY OBJECTIVES Shift work is associated with compromised cognitive function, and with chronic exposure, may place shift workers at elevated risk for dementia. However, evidence of cognitive impairment among former night shift workers is mixed, possibly due to inconsistencies regarding retirement status, work history classification, and cognitive assessments. To address these limitations, this study compared neurocognitive function between retired night shift workers and retired day workers using a well-characterized sample and a rigorous neurocognitive test battery. METHODS Participants (N = 61; mean age: 67.9 ± 4.7 years; 61% females; 13% non-white) were 31 retired day workers and 30 retired night shift workers equated on age, sex, race/ethnicity, premorbid IQ, years retired, and diary-assessed habitual sleep characteristics. Participants completed a neurocognitive battery assessing six cognitive domains (language, visuospatial ability, attention, immediate and delayed memory, executive function) and self-reported cognitive function. Linear regression models compared groups on individual cognitive domains, adjusting for age, sex, race/ethnicity, education level, and habitual sleep quality. RESULTS Retired night shift workers scored lower than retired day workers on attention (B = -0.38, 95% CI [-0.75, -0.02], p = .040) and executive function (B = -0.55, 95% CI [-0.92, -0.17], p = .005). In post hoc analyses, attention and executive function were unrelated to diary-assessed habitual sleep characteristics (disruption, timing, and irregularity) in retired night shift workers. CONCLUSIONS The observed cognitive weaknesses in retired night shift workers may suggest increased risk for future dementia. Retired night shift workers should be followed to determine whether observed weaknesses progress.
Collapse
Affiliation(s)
- Ashlyn Runk
- Department of Psychology, Louisiana State University,
Baton Rouge, LA, USA
| | - H Matthew Lehrer
- Department of Psychiatry, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
| | - Meryl A Butters
- Department of Psychiatry, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
| | - Daniel J Buysse
- Department of Psychiatry, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
| | - Marissa A Evans
- Department of Psychology, University of Pittsburgh,
Pittsburgh, PA, USA
| | - Robert T Krafty
- Department of Biostatistics and Bioinformatics, Emory
University, Atlanta, GA, USA
| | - Martica H Hall
- Department of Psychiatry, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
| |
Collapse
|
131
|
Vanrobaeys Y, Peterson ZJ, Walsh EN, Chatterjee S, Lin LC, Lyons LC, Nickl-Jockschat T, Abel T. Spatial transcriptomics reveals unique gene expression changes in different brain regions after sleep deprivation. Nat Commun 2023; 14:7095. [PMID: 37925446 PMCID: PMC10625558 DOI: 10.1038/s41467-023-42751-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
Sleep deprivation has far-reaching consequences on the brain and behavior, impacting memory, attention, and metabolism. Previous research has focused on gene expression changes in individual brain regions, such as the hippocampus or cortex. Therefore, it is unclear how uniformly or heterogeneously sleep loss affects the brain. Here, we use spatial transcriptomics to define the impact of a brief period of sleep deprivation across the brain in male mice. We find that sleep deprivation induced pronounced differences in gene expression across the brain, with the greatest changes in the hippocampus, neocortex, hypothalamus, and thalamus. Both the differentially expressed genes and the direction of regulation differed markedly across regions. Importantly, we developed bioinformatic tools to register tissue sections and gene expression data into a common anatomical space, allowing a brain-wide comparison of gene expression patterns between samples. Our results suggest that distinct molecular mechanisms acting in discrete brain regions underlie the biological effects of sleep deprivation.
Collapse
Affiliation(s)
- Yann Vanrobaeys
- Interdisciplinary Graduate Program in Genetics, University of Iowa, 357 Medical Research Center Iowa City, Iowa, IA, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 51 Newton Road, 2-417B Bowen Science Building, Iowa City, IA, USA
| | - Zeru J Peterson
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Emily N Walsh
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 51 Newton Road, 2-417B Bowen Science Building, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, USA
| | - Snehajyoti Chatterjee
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 51 Newton Road, 2-417B Bowen Science Building, Iowa City, IA, USA
| | - Li-Chun Lin
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA, USA
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 51 Newton Road, 2-417B Bowen Science Building, Iowa City, IA, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Lisa C Lyons
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Thomas Nickl-Jockschat
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA, USA.
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 51 Newton Road, 2-417B Bowen Science Building, Iowa City, IA, USA.
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA.
| | - Ted Abel
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA, USA.
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 51 Newton Road, 2-417B Bowen Science Building, Iowa City, IA, USA.
| |
Collapse
|
132
|
Shoob S, Buchbinder N, Shinikamin O, Gold O, Baeloha H, Langberg T, Zarhin D, Shapira I, Braun G, Habib N, Slutsky I. Deep brain stimulation of thalamic nucleus reuniens promotes neuronal and cognitive resilience in an Alzheimer's disease mouse model. Nat Commun 2023; 14:7002. [PMID: 37919286 PMCID: PMC10622498 DOI: 10.1038/s41467-023-42721-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
The mechanisms that confer cognitive resilience to Alzheimer's Disease (AD) are not fully understood. Here, we describe a neural circuit mechanism underlying this resilience in a familial AD mouse model. In the prodromal disease stage, interictal epileptiform spikes (IESs) emerge during anesthesia in the CA1 and mPFC regions, leading to working memory disruptions. These IESs are driven by inputs from the thalamic nucleus reuniens (nRE). Indeed, tonic deep brain stimulation of the nRE (tDBS-nRE) effectively suppresses IESs and restores firing rate homeostasis under anesthesia, preventing further impairments in nRE-CA1 synaptic facilitation and working memory. Notably, applying tDBS-nRE during the prodromal phase in young APP/PS1 mice mitigates age-dependent memory decline. The IES rate during anesthesia in young APP/PS1 mice correlates with later working memory impairments. These findings highlight the nRE as a central hub of functional resilience and underscore the clinical promise of DBS in conferring resilience to AD pathology by restoring circuit-level homeostasis.
Collapse
Affiliation(s)
- Shiri Shoob
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Nadav Buchbinder
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ortal Shinikamin
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Or Gold
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Halit Baeloha
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Tomer Langberg
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Daniel Zarhin
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ilana Shapira
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Gabriella Braun
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Naomi Habib
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
133
|
Khezri MR, Esmaeili A, Ghasemnejad-Berenji M. Role of Bmal1 and Gut Microbiota in Alzheimer's Disease and Parkinson's Disease Pathophysiology: The Probable Effect of Melatonin on Their Association. ACS Chem Neurosci 2023; 14:3883-3893. [PMID: 37823531 DOI: 10.1021/acschemneuro.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
In recent years, the role of new factors in the pathophysiology of neurodegenerative diseases has been investigated. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases worldwide. Although pathological changes such as the accumulation of aggregated proteins in the brain and inflammatory responses are known as the main factors involved in the development of these diseases, new studies show the role of gut microbiota and circadian rhythm in the occurrence of these changes. However, the association between circadian rhythm and gut microbiota in AD and PD has not yet been investigated. Recent results propose that alterations in circadian rhythm regulators, mainly Bmal1, may regulate the abundance of gut microbiota. This correlation has been linked to the regulation of the expression of immune-related genes and Bmal-1 mediated oscillation of IgA and hydrogen peroxide production. These data seem to provide new insight into the molecular mechanism of melatonin inhibiting the progression of AD and PD. Therefore, this manuscript aims to review the role of the gut microbiota and circadian rhythm in health and AD and PD and also presents a hypothesis on the effect of melatonin on their communication.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Faculty of Pharmacy. Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Ayda Esmaeili
- Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia 5715799313, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia 5715799313, Iran
| |
Collapse
|
134
|
Kim SJ, Lee JH, Jang JW, Lee SH, Suh IB, Jhoo JH. Effect of Personalized Blue-Enriched White Light Intervention on Rest-Activity and Light Exposure Rhythms in Mild and Moderate Alzheimer's Disease. Psychiatry Investig 2023; 20:1007-1017. [PMID: 37997328 PMCID: PMC10678145 DOI: 10.30773/pi.2023.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVE We aimed to examine the effectiveness of personalized light intervention using a blue-enriched light-emitting-diodes device on rest-activity rhythm (RAR) and light exposure rhythm (LER) in patients with mild and moderate Alzheimer's disease (AD). METHODS AD patients with poor sleep quality and/or insomnia symptoms were assigned into either an experimental group (EG) or control group (CG) in a single-blind design. Personalized light intervention was given at 9-10 h after individual dim light melatonin onset, lasting for 1 h every day for two weeks in the EG (77.36±5.79 years, n=14) and CG (78.10±7.98 years, n=10). Each patient of CG wore blue-attenuating sunglasses during the intervention. Actigraphy recording at home for 5 days was done at baseline (T0), immediate postintervention (T1), and at four weeks after intervention (T2). The variables of RAR and LER were derived using nonparametric analysis. RESULTS We found a significant time effect on the intradaily variability (IV) of RAR at T2 with respect to T0 (p=0.039), indicating reduced IV of RAR at four weeks after personalized light intervention regardless of blue-enriched light intervention. There was a time effect on the IV of LER at T1 with respect to T0 (p=0.052), indicating a reduced tendency in the IV of LER immediately after intervention. CONCLUSION Our personalized light intervention, regardless of blue-enriched light source, could be useful in alleviating fragmentation of RAR and LER in AD patients.
Collapse
Affiliation(s)
- Seong Jae Kim
- Department of Psychiatry, Chosun University Hospital, Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Jung Hie Lee
- Department of Psychiatry, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
- Department of Psychiatry, Gwanggyo Good Sleep Clinic, Suwon, Republic of Korea
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Sun Hee Lee
- Department of Psychiatry, Silverheals Hospital, Namyangju, Republic of Korea
| | - In Bum Suh
- Department of Laboratory Medicine, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Jin Hyeong Jhoo
- Department of Psychiatry, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
135
|
Bering T, Gadgaard C, Vorum H, Honoré B, Rath MF. Diurnal proteome profile of the mouse cerebral cortex: Conditional deletion of the Bmal1 circadian clock gene elevates astrocyte protein levels and cell abundance in the neocortex and hippocampus. Glia 2023; 71:2623-2641. [PMID: 37470358 DOI: 10.1002/glia.24443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
Circadian oscillators, defined by cellular 24 h clock gene rhythms, are found throughout the brain. Cerebral cortex-specific conditional knockout of the clock gene Bmal1 (Bmal1 CKO) leads to depressive-like behavior, but the molecular link from clock gene to altered behavior is unknown. Further, diurnal proteomic data on the cerebral cortex are currently unavailable. With the aim of determining the diurnal proteome profile and downstream targets of the cortical circadian clock, we here performed a proteomic analysis of the mouse cerebral cortex. Proteomics identified approximately 2700 proteins in both the neocortex and the hippocampus. In the neocortex, 15 proteins were differentially expressed (>2-fold) between day and night, mainly mitochondrial and neuronal plasticity proteins. Only three hippocampal proteins were differentially expressed, suggesting that daily protein oscillations are more prominent in the neocortex. The number of differentially expressed proteins was reduced in the Bmal1 CKO, suggesting that daily rhythms in the cerebral cortex are primarily driven by local clocks. The proteome of the Bmal1 CKO cerebral cortex was dominated by upregulated proteins expressed in astrocytes, including GFAP (4-fold) and FABP7 (>20-fold), in both the neocortex and hippocampus. These findings were confirmed at the transcript level. Cellular analyses of astrocyte components revealed an increased number of GFAP-positive cells in the Bmal1 CKO cerebral cortex. Further, BMAL1 was found to be expressed in both GFAP- and FABP7-positive astrocytes of control animals. Our data show that Bmal1 is required for proper cellular composition of the cerebral cortex, suggesting that increased cortical astrocyte activity may induce behavioral changes.
Collapse
Affiliation(s)
- Tenna Bering
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Gadgaard
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Bent Honoré
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Martin Fredensborg Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
136
|
Leng S, Jin Y, Vitiello MV, Zhang Y, Ren R, Lu L, Shi J, Tang X. The association between polluted fuel use and self-reported insomnia symptoms among middle-aged and elderly Indian adults: a cross-sectional study based on LASI, wave 1. BMC Public Health 2023; 23:1953. [PMID: 37814252 PMCID: PMC10561501 DOI: 10.1186/s12889-023-16836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Insomnia predisposes the aging population to reduced quality of life and poor mental and physical health. Evidence of the association between polluted fuel use and insomnia symptoms is limited and is non-existent for the Indian population. Our study aimed to explore the link between polluted fuel use and insomnia symptoms in middle-aged and older (≥ 45 years) Indian populations. METHODS We utilized data from nationally representative Longitudinal Aging Study in India (LASI) Wave 1. Participants with complete information on fuel use, insomnia symptoms, and covariates were included. Insomnia symptoms were indicated by the presence of at least one of three symptoms: difficulty in initiating sleep (DIS), difficulty in maintaining sleep (DMS), or early morning awakening (EMA), ≥ 5 times/week. Survey-weighted multivariable logistic regression analyses were conducted to evaluate the association between polluted fuel use and insomnia symptoms. We also assessed the interaction of association in subgroups of age, gender, BMI, drinking, and smoking status. RESULTS Sixty thousand five hundred fifteen participants met the eligibility criteria. Twenty-eight thousand two hundred thirty-six (weighted percentage 48.04%) used polluted fuel and 5461 (weighted percentage 9.90%) reported insomnia symptoms. After full adjustment, polluted fuel use was associated with insomnia symptoms (OR 1.16; 95%CI 1.08-1.24) and was linked with DIS, DMS, and EMA (OR 1.14; 95%CI 1.05-1.24, OR 1.12; 95%CI 1.03-1.22, and OR 1.15; 95%CI 1.06-1.25, respectively). No significant interactions for polluted fuel use and insomnia symptoms were observed for analyses stratified by age, sex, BMI, drinking, or smoking. CONCLUSIONS Polluted fuel use was positively related to insomnia symptoms among middle-aged and older Indians. Suggestions are offered within this article for further studies to confirm our results, to explore underlying mechanisms, and to inform intervention strategies.
Collapse
Affiliation(s)
- Siqi Leng
- Sleep Medicine Center, Department of Urology, Mental Health Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China
| | - Yuming Jin
- Sleep Medicine Center, Department of Urology, Mental Health Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China
| | - Michael V Vitiello
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Ye Zhang
- Sleep Medicine Center, Department of Urology, Mental Health Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China
| | - Rong Ren
- Sleep Medicine Center, Department of Urology, Mental Health Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, 100191, China
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Urology, Mental Health Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Dian Xin Nan Jie 28#, Chengdu, 610041, China.
| |
Collapse
|
137
|
Melone MA, Becker TC, Wendt LH, Ten Eyck P, Patel SB, Poston J, Pohlman AS, Pohlman M, Miller A, Nedeltcheva A, Hall JB, Van Cauter E, Zabner J, Gehlbach BK. Disruption of the circadian rhythm of melatonin: A biomarker of critical illness severity. Sleep Med 2023; 110:60-67. [PMID: 37541132 PMCID: PMC11386949 DOI: 10.1016/j.sleep.2023.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/05/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Circadian dysrhythmias occur commonly in critically ill patients reflecting variable effects of underlying illness, ICU environment, and treatments. We retrospectively analyzed the relationship between clinical outcomes and 24-h urinary 6-sulfatoxymelatonin (aMT6s) excretion profiles in 37 critically ill patients with shock and/or respiratory failure. Nonlinear regression was used to fit a 24-h cosine curve to each patient's aMT6s profile, with rhythmicity determined by the zero-amplitude test. From these curves we determined acrophase, amplitude, phase, and night/day ratio. After assessing unadjusted relationships, we identified the optimal multivariate models for hospital survival and for discharge to home (vs. death or transfer to another facility). Normalized aMT6s rhythm amplitude was greater (p = 0.005) in patients discharged home than in those who were not, while both groups exhibited a phase delay. Patients with rhythmic aMT6s excretion were more likely to survive (OR 5.25) and be discharged home (OR 8.89; p < 0.05 for both) than patients with arrhythmic profiles, associations that persisted in multivariate modelling. In critically ill patients with shock and/or respiratory failure, arrhythmic and/or low amplitude 24-h aMT6s rhythms were associated with worse clinical outcomes, suggesting a role for the melatonin-based rhythm as a novel biomarker of critical illness severity.
Collapse
Affiliation(s)
- Marie-Anne Melone
- Department of Pulmonary, Thoracic Oncology and Respiratory Intensive Care, Rouen University Hospital, Univ Rouen, F-76000, Rouen, France; CETAPS EA3832, Research Center for Sports and Athletic Activities Transformations, University of Rouen Normandy, F-76821, Mont-Saint-Aignan, France.
| | - Taylor C Becker
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Linder H Wendt
- Institute of Clinical and Translational Science, University of Iowa, Iowa City, IA, USA
| | - Patrick Ten Eyck
- Institute of Clinical and Translational Science, University of Iowa, Iowa City, IA, USA
| | - Shruti B Patel
- Department of Internal Medicine, Loyola University of Chicago, Chicago, IL, USA
| | - Jason Poston
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anne S Pohlman
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Annette Miller
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Jesse B Hall
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Eve Van Cauter
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Joseph Zabner
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Brian K Gehlbach
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; Department of Neurology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
138
|
Paz V, Dashti HS, Garfield V. Is there an association between daytime napping, cognitive function, and brain volume? A Mendelian randomization study in the UK Biobank. Sleep Health 2023; 9:786-793. [PMID: 37344293 DOI: 10.1016/j.sleh.2023.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 04/14/2023] [Accepted: 05/03/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVES Daytime napping has been associated with cognitive function and brain health in observational studies. However, it remains elusive whether these associations are causal. Using Mendelian randomization, we studied the relationship between habitual daytime napping and cognition and brain structure. METHODS Data were from UK Biobank (maximum n = 378,932 and mean age = 57 years). Our exposure (daytime napping) was instrumented using 92 previously identified genome-wide, independent genetic variants (single-nucleotide polymorphisms, SNPs). Our outcomes were total brain volume, hippocampal volume, reaction time, and visual memory. Inverse-variance weighted was implemented, with sensitivity analyses (Mendelian randomization-Egger and Weighted Median Estimator) for horizontal pleiotropy. We tested different daytime napping instruments to ensure the robustness of our results. RESULTS Using Mendelian randomization, we found an association between habitual daytime napping and larger total brain volume (unstandardized ß = 15.80 cm3 and 95% CI = 0.25; 31.34) but not hippocampal volume (ß = -0.03 cm3 and 95% CI = -0.13;0.06), reaction time (expß = 1.01 and 95% CI = 1.00;1.03), or visual memory (expß = 0.99 and 95% CI = 0.94;1.05). Additional analyses with 47 SNPs (adjusted for excessive daytime sleepiness), 86 SNPs (excluding sleep apnea), and 17 SNPs (no sample overlap with UK Biobank) were largely consistent with our main findings. No evidence of horizontal pleiotropy was found. CONCLUSIONS Our findings suggest a modest causal association between habitual daytime napping and larger total brain volume. Future studies could focus on the associations between napping and other cognitive or brain outcomes and replication of these findings using other datasets and methods.
Collapse
Affiliation(s)
- Valentina Paz
- Instituto de Psicología Clínica, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay; MRC Unit for Lifelong Health & Ageing, Institute of Cardiovascular Science, University College London, London, UK.
| | - Hassan S Dashti
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute, Merkin Building, Cambridge, MA, USA; Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Victoria Garfield
- MRC Unit for Lifelong Health & Ageing, Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
139
|
Clark DJ, Bond C, Andrews A, Muller DJ, Sarkisian A, Opoka RO, Idro R, Bangirana P, Witten A, Sausen NJ, Birbeck GL, John CC, Postels DG. Admission Clinical and EEG Features Associated With Mortality and Long-term Neurologic and Cognitive Outcomes in Pediatric Cerebral Malaria. Neurology 2023; 101:e1307-e1318. [PMID: 37541845 PMCID: PMC10558167 DOI: 10.1212/wnl.0000000000207657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/02/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES For children with cerebral malaria, mortality is high, and in survivors, long-term neurologic and cognitive dysfunctions are common. While specific clinical factors are associated with death or long-term neurocognitive morbidity in cerebral malaria, the association of EEG features with these outcomes, particularly neurocognitive outcomes, is less well characterized. METHODS In this prospective cohort study of 149 children age 6 months to 12 years who survived cerebral malaria in Kampala, Uganda, we evaluated whether depth of coma, number of clinical seizures, or EEG features during hospitalization were associated with mortality during hospitalization, short-term and long-term neurologic deficits, or long-term cognitive outcomes (overall cognition, attention, memory) over the 2-year follow-up. RESULTS Higher Blantyre or Glasgow Coma Scores (BCS and GCS, respectively), higher background voltage, and presence of normal reactivity on EEG were each associated with lower mortality. Among clinical and EEG features, the presence of >4 seizures on admission had the best combination of negative and positive predictive values for neurologic deficits in follow-up. In multivariable modeling of cognitive outcomes, the number of seizures and specific EEG features showed independent association with better outcomes. In children younger than 5 years throughout the study, seizure number and presence of vertex sharp waves were independently associated with better posthospitalization cognitive performance, faster dominant frequency with better attention, and higher average background voltage and faster dominant background frequency with better associative memory. In children younger than 5 years at CM episode but 5 years or older at cognitive testing, seizure number, background dominant frequency, and the presence of vertex sharp waves were each associated with changes in cognition, seizure number and variability with attention, and seizure number with working memory. DISCUSSION In children with cerebral malaria, seizure number is strongly associated with the risk of long-term neurologic deficits, while seizure number and specific EEG features (average background voltage, dominant rhythm frequency, presence of vertex sharp waves, presence of variability) are independently associated with cognitive outcomes. Future studies should evaluate the predictive value of these findings.
Collapse
Affiliation(s)
- Daniel J Clark
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi.
| | - Caitlin Bond
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Alexander Andrews
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Daniel J Muller
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Angela Sarkisian
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Robert O Opoka
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Richard Idro
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Paul Bangirana
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Andy Witten
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Nicholas J Sausen
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Gretchen L Birbeck
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Chandy C John
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Douglas G Postels
- From the Division of Neurology (D.J.C.), Nationwide Children's Hospital, Columbus, OH; Ryan White Center for Pediatric Infectious Diseases & Global Health (C.B., C.C.J.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (A.A.), MedStar Georgetown University Hospital; The George Washington University School of Medicine and Health Sciences (D.J.M., A.S., D.G.P.), Washington, DC; Department of Paediatrics and Child Health (R.O.O., R.I.), Makerere University College of Health Sciences; Department of Psychiatry (P.B.), Makerere University College of Health Sciences, Kampala, Uganda; Department of Neurosurgery (A.W.), Indiana University School of Medicine, Indianapolis; Department of Pediatrics (N.J.S.), Division of Emergency Medicine, University of Minnesota, Minneapolis; Department of Neurology (G.L.B.), University of Rochester, NY; University of Zambia (G.L.B.), School of Medicine, Lusaka; University Teaching Hospitals Children's Hospital (G.L.B.), Lusaka, Zambia; Children's National Medical Center (D.G.P.), Washington, DC; and Blantyre Malaria Project (D.G.P.), Kamuzu University of Health Sciences, Blantyre, Malawi
| |
Collapse
|
140
|
Eschbach E, Wang J. Sleep and critical illness: a review. Front Med (Lausanne) 2023; 10:1199685. [PMID: 37828946 PMCID: PMC10566646 DOI: 10.3389/fmed.2023.1199685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
Critical illness and stays in the Intensive Care Unit (ICU) have significant impact on sleep. Poor sleep is common in this setting, can persist beyond acute critical illness, and is associated with increased morbidity and mortality. In the past 5 years, intensive care clinical practice guidelines have directed more focus on sleep and circadian disruption, spurring new initiatives to study and improve sleep complications in the critically ill. The global SARS-COV-2 (COVID-19) pandemic and dramatic spikes in patients requiring ICU level care also brought augmented levels of sleep disruption, the understanding of which continues to evolve. This review aims to summarize existing literature on sleep and critical illness and briefly discuss future directions in the field.
Collapse
Affiliation(s)
- Erin Eschbach
- Division of Pulmonary, Critical Care, and Sleep, Mount Sinai Hospital, New York, NY, United States
| | | |
Collapse
|
141
|
Mitchell JW, Gillette MU. Development of circadian neurovascular function and its implications. Front Neurosci 2023; 17:1196606. [PMID: 37732312 PMCID: PMC10507717 DOI: 10.3389/fnins.2023.1196606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
The neurovascular system forms the interface between the tissue of the central nervous system (CNS) and circulating blood. It plays a critical role in regulating movement of ions, small molecules, and cellular regulators into and out of brain tissue and in sustaining brain health. The neurovascular unit (NVU), the cells that form the structural and functional link between cells of the brain and the vasculature, maintains the blood-brain interface (BBI), controls cerebral blood flow, and surveils for injury. The neurovascular system is dynamic; it undergoes tight regulation of biochemical and cellular interactions to balance and support brain function. Development of an intrinsic circadian clock enables the NVU to anticipate rhythmic changes in brain activity and body physiology that occur over the day-night cycle. The development of circadian neurovascular function involves multiple cell types. We address the functional aspects of the circadian clock in the components of the NVU and their effects in regulating neurovascular physiology, including BBI permeability, cerebral blood flow, and inflammation. Disrupting the circadian clock impairs a number of physiological processes associated with the NVU, many of which are correlated with an increased risk of dysfunction and disease. Consequently, understanding the cell biology and physiology of the NVU is critical to diminishing consequences of impaired neurovascular function, including cerebral bleeding and neurodegeneration.
Collapse
Affiliation(s)
- Jennifer W. Mitchell
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Martha U. Gillette
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
142
|
Dudek M, Morris H, Rogers N, Pathiranage DR, Raj SS, Chan D, Kadler KE, Hoyland J, Meng QJ. The clock transcription factor BMAL1 is a key regulator of extracellular matrix homeostasis and cell fate in the intervertebral disc. Matrix Biol 2023; 122:1-9. [PMID: 37495193 DOI: 10.1016/j.matbio.2023.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
The circadian clock in mammals temporally coordinates physiological and behavioural processes to anticipate daily rhythmic changes in their environment. Chronic disruption to circadian rhythms (e.g., through ageing or shift work) is thought to contribute to a multitude of diseases, including degeneration of the musculoskeletal system. The intervertebral disc (IVD) in the spine contains circadian clocks which control ∼6% of the transcriptome in a rhythmic manner, including key genes involved in extracellular matrix (ECM) homeostasis. However, it remains largely unknown to what extent the local IVD molecular clock is required to drive rhythmic gene transcription and IVD physiology. In this work, we identified profound age-related changes of ECM microarchitecture and an endochondral ossification-like phenotype in the annulus fibrosus (AF) region of the IVD in the Col2a1-Bmal1 knockout mice. Circadian time series RNA-Seq of the whole IVD in Bmal1 knockout revealed loss of circadian patterns in gene expression, with an unexpected emergence of 12 h ultradian rhythms, including FOXO transcription factors. Further RNA sequencing of the AF tissue identified region-specific changes in gene expression, evidencing a loss of AF phenotype markers and a dysregulation of ECM and FOXO pathways in Bmal1 knockout mice. Consistent with an up-regulation of FOXO1 mRNA and protein levels in Bmal1 knockout IVDs, inhibition of FOXO1 in AF cells suppressed their osteogenic differentiation. Collectively, these data highlight the importance of the local molecular clock mechanism in the maintenance of the cell fate and ECM homeostasis of the IVD. Further studies may identify potential new molecular targets for alleviating IVD degeneration.
Collapse
Affiliation(s)
- Michal Dudek
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Honor Morris
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Natalie Rogers
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Dharshika Rj Pathiranage
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Sujitha Saba Raj
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Karl E Kadler
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Central Manchester Foundation Trust, Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Centre, Oxford Road, Manchester, UK.
| | - Qing-Jun Meng
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell Matrix Research, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
143
|
Yao AY, Halloran PJ, Ge Y, Singh N, Zhou J, Galske J, He W, Yan R, Hu X. Bace1 Deletion in the Adult Reverses Epileptiform Activity and Sleep-wake Disturbances in AD Mice. J Neurosci 2023; 43:6197-6211. [PMID: 37536983 PMCID: PMC10476643 DOI: 10.1523/jneurosci.2124-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Alzheimer's disease (AD) increases the risk for seizures and sleep disorders. We show here that germline deletion of β-site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1) in neurons, but not in astrocytes, increased epileptiform activity. However, Bace1 deletion at adult ages did not alter the normal EEG waveform, indicating less concern for BACE1 inhibition in patients. Moreover, we showed that deletion of Bace1 in the adult was able to reverse epileptiform activity in 5xFAD mice. Intriguingly, treating 5xFAD and APPNL-G-F/NL-G-F (APP KI) mice of either sex with one BACE1 inhibitor Lanabecestat (AZD3293) dramatically increased epileptiform spiking, likely resulting from an off-target effect. We also monitored sleep-wake pathologies in these mice and showed increased wakefulness, decreased non-rapid eye movement sleep, and rapid eye movement sleep in both 5xFAD and APP KI mice; BACE1 inhibition in the adult 5xFAD mice reversed plaque load and sleep disturbances, but this was not seen in APP KI mice. Further studies with and without BACE1 inhibitor treatment showed different levels of plaque-associated microgliosis and activated microglial proteins in 5xFAD mice compared with APP KI mice. Together, BACE1 inhibition should be developed to avoid off-target effect for achieving benefits in reducing epileptic activity and sleep disturbance in Alzheimer's patients.SIGNIFICANCE STATEMENT BACE1 is widely recognized as a therapeutic target for treating Alzheimer's disease patients. However, BACE1 inhibitors failed in clinical trials because of inability to show cognitive improvement in patients. Here we show that BACE1 inhibition actually reduces sleep disturbances and epileptic seizures; both are seen in AD patients. We further showed that one of clinically tested BACE1 inhibitors does have off-target effects, and development of safer BACE1 inhibitors will be beneficial to AD patients. Results from this study will provide useful guidance for additional drug development.
Collapse
Affiliation(s)
- Annie Y Yao
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Patrick J Halloran
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Yingying Ge
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Neeraj Singh
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - John Zhou
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - James Galske
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Wanxia He
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Xiangyou Hu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030
| |
Collapse
|
144
|
Halawani D, Wang Y, Ramakrishnan A, Estill M, He X, Shen L, Friedel RH, Zou H. Circadian clock regulator Bmal1 gates axon regeneration via Tet3 epigenetics in mouse sensory neurons. Nat Commun 2023; 14:5165. [PMID: 37620297 PMCID: PMC10449865 DOI: 10.1038/s41467-023-40816-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Axon regeneration of dorsal root ganglia (DRG) neurons after peripheral axotomy involves reconfiguration of gene regulatory circuits to establish regenerative gene programs. However, the underlying mechanisms remain unclear. Here, through an unbiased survey, we show that the binding motif of Bmal1, a central transcription factor of the circadian clock, is enriched in differentially hydroxymethylated regions (DhMRs) of mouse DRG after peripheral lesion. By applying conditional deletion of Bmal1 in neurons, in vitro and in vivo neurite outgrowth assays, as well as transcriptomic profiling, we demonstrate that Bmal1 inhibits axon regeneration, in part through a functional link with the epigenetic factor Tet3. Mechanistically, we reveal that Bmal1 acts as a gatekeeper of neuroepigenetic responses to axonal injury by limiting Tet3 expression and restricting 5hmC modifications. Bmal1-regulated genes not only concern axon growth, but also stress responses and energy homeostasis. Furthermore, we uncover an epigenetic rhythm of diurnal oscillation of Tet3 and 5hmC levels in DRG neurons, corresponding to time-of-day effect on axon growth potential. Collectively, our studies demonstrate that targeting Bmal1 enhances axon regeneration.
Collapse
Affiliation(s)
- Dalia Halawani
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiqun Wang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Department of Orthopedics, Xi'an International Medical Center Hospital, Xi'an, China
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
145
|
Astone M, Oberkersch RE, Tosi G, Biscontin A, Santoro MM. The circadian protein BMAL1 supports endothelial cell cycle during angiogenesis. Cardiovasc Res 2023; 119:1952-1968. [PMID: 37052172 DOI: 10.1093/cvr/cvad057] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/23/2023] [Accepted: 03/11/2023] [Indexed: 04/14/2023] Open
Abstract
AIMS The circadian clock is an internal biological timer that co-ordinates physiology and gene expression with the 24-h solar day. Circadian clock perturbations have been associated to vascular dysfunctions in mammals, and a function of the circadian clock in angiogenesis has been suggested. However, the functional role of the circadian clock in endothelial cells (ECs) and in the regulation of angiogenesis is widely unexplored. METHODS AND RESULTS Here, we used both in vivo and in vitro approaches to demonstrate that ECs possess an endogenous molecular clock and show robust circadian oscillations of core clock genes. By impairing the EC-specific function of the circadian clock transcriptional activator basic helix-loop-helix ARNT like 1 (BMAL1) in vivo, we detect angiogenesis defects in mouse neonatal vascular tissues, as well as in adult tumour angiogenic settings. We then investigate the function of circadian clock machinery in cultured EC and show evidence that BMAL and circadian locomotor output cycles protein kaput knock-down impair EC cell cycle progression. By using an RNA- and chromatin immunoprecipitation sequencing genome-wide approaches, we identified that BMAL1 binds the promoters of CCNA1 and CDK1 genes and controls their expression in ECs. CONCLUSION(S) Our findings show that EC display a robust circadian clock and that BMAL1 regulates EC physiology in both developmental and pathological contexts. Genetic alteration of BMAL1 can affect angiogenesis in vivo and in vitro settings.
Collapse
Affiliation(s)
- Matteo Astone
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Roxana E Oberkersch
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Giovanni Tosi
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Alberto Biscontin
- Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | - Massimo M Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| |
Collapse
|
146
|
Warfield AE, Gupta P, Ruhmann MM, Jeffs QL, Guidone GC, Rhymes HW, Thompson MI, Todd WD. A brainstem to circadian system circuit links Tau pathology to sundowning-related disturbances in an Alzheimer's disease mouse model. Nat Commun 2023; 14:5027. [PMID: 37596279 PMCID: PMC10439113 DOI: 10.1038/s41467-023-40546-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/26/2023] [Indexed: 08/20/2023] Open
Abstract
Alzheimer's disease (AD) patients exhibit progressive disruption of entrained circadian rhythms and an aberrant circadian input pathway may underlie such dysfunction. Here we examine AD-related pathology and circadian dysfunction in the APPSwe-Tau (TAPP) model of AD. We show these mice exhibit phase delayed body temperature and locomotor activity with increases around the active-to-rest phase transition. Similar AD-related disruptions are associated with sundowning, characterized by late afternoon and early evening agitation and aggression, and we show TAPP mice exhibit increased aggression around this transition. We show such circadian dysfunction and aggression coincide with hyperphosphorylated Tau (pTau) development in lateral parabrachial (LPB) neurons, with these disturbances appearing earlier in females. Finally, we show LPB neurons, including those expressing dynorphin (LPBdyn), project to circadian structures and are affected by pTau, and LPBdyn ablations partially recapitulate the hyperthermia of TAPP mice. Altogether we link pTau in a brainstem circadian input pathway to AD-related disturbances relevant to sundowning.
Collapse
Affiliation(s)
- Andrew E Warfield
- Department of Zoology and Physiology, Program in Neuroscience, University of Wyoming, Laramie, WY, USA
| | - Pooja Gupta
- Department of Zoology and Physiology, Program in Neuroscience, University of Wyoming, Laramie, WY, USA
| | - Madison M Ruhmann
- Department of Zoology and Physiology, Program in Neuroscience, University of Wyoming, Laramie, WY, USA
| | - Quiana L Jeffs
- Department of Zoology and Physiology, Program in Neuroscience, University of Wyoming, Laramie, WY, USA
| | - Genevieve C Guidone
- Department of Zoology and Physiology, Program in Neuroscience, University of Wyoming, Laramie, WY, USA
| | - Hannah W Rhymes
- Department of Zoology and Physiology, Program in Neuroscience, University of Wyoming, Laramie, WY, USA
| | - McKenzi I Thompson
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - William D Todd
- Department of Zoology and Physiology, Program in Neuroscience, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
147
|
Boyarko B, Podvin S, Greenberg B, Momper JD, Huang Y, Gerwick WH, Bang AG, Quinti L, Griciuc A, Kim DY, Tanzi RE, Feldman HH, Hook V. Evaluation of bumetanide as a potential therapeutic agent for Alzheimer's disease. Front Pharmacol 2023; 14:1190402. [PMID: 37601062 PMCID: PMC10436590 DOI: 10.3389/fphar.2023.1190402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/28/2023] [Indexed: 08/22/2023] Open
Abstract
Therapeutics discovery and development for Alzheimer's disease (AD) has been an area of intense research to alleviate memory loss and the underlying pathogenic processes. Recent drug discovery approaches have utilized in silico computational strategies for drug candidate selection which has opened the door to repurposing drugs for AD. Computational analysis of gene expression signatures of patients stratified by the APOE4 risk allele of AD led to the discovery of the FDA-approved drug bumetanide as a top candidate agent that reverses APOE4 transcriptomic brain signatures and improves memory deficits in APOE4 animal models of AD. Bumetanide is a loop diuretic which inhibits the kidney Na+-K+-2Cl- cotransporter isoform, NKCC2, for the treatment of hypertension and edema in cardiovascular, liver, and renal disease. Electronic health record data revealed that patients exposed to bumetanide have lower incidences of AD by 35%-70%. In the brain, bumetanide has been proposed to antagonize the NKCC1 isoform which mediates cellular uptake of chloride ions. Blocking neuronal NKCC1 leads to a decrease in intracellular chloride and thus promotes GABAergic receptor mediated hyperpolarization, which may ameliorate disease conditions associated with GABAergic-mediated depolarization. NKCC1 is expressed in neurons and in all brain cells including glia (oligodendrocytes, microglia, and astrocytes) and the vasculature. In consideration of bumetanide as a repurposed drug for AD, this review evaluates its pharmaceutical properties with respect to its estimated brain levels across doses that can improve neurologic disease deficits of animal models to distinguish between NKCC1 and non-NKCC1 mechanisms. The available data indicate that bumetanide efficacy may occur at brain drug levels that are below those required for inhibition of the NKCC1 transporter which implicates non-NKCC1 brain mechansims for improvement of brain dysfunctions and memory deficits. Alternatively, peripheral bumetanide mechanisms may involve cells outside the central nervous system (e.g., in epithelia and the immune system). Clinical bumetanide doses for improved neurological deficits are reviewed. Regardless of mechanism, the efficacy of bumetanide to improve memory deficits in the APOE4 model of AD and its potential to reduce the incidence of AD provide support for clinical investigation of bumetanide as a repurposed AD therapeutic agent.
Collapse
Affiliation(s)
- Ben Boyarko
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Barry Greenberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jeremiah D. Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, United States
- Departments of Neurology and Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - William H. Gerwick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Anne G. Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys, San Diego, CA, United States
| | - Luisa Quinti
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Ana Griciuc
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Howard H. Feldman
- Department of Neurosciences and Department of Pharmacology, University of California, San Diego, San Diego, United States
- Alzheimer’s Disease Cooperative Study, University of California, San Diego, La Jolla, CA, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
- Department of Neurosciences and Department of Pharmacology, University of California, San Diego, San Diego, United States
| |
Collapse
|
148
|
Marilac Soalheiro L, de Jesus Brandão B, Paiva RVN, Dias Carvalho L, Menezes Paranhos RD, Ribeiro Barbosa PC, Guerrero-Vargas NN, Tamura EK. Familiarity of Brazilian psychologists with basic concepts in sleep science and chronobiology. Chronobiol Int 2023; 40:1072-1083. [PMID: 37661786 DOI: 10.1080/07420528.2023.2250870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Desynchronization of circadian rhythms and sleep-wake patterns impacts biochemical, physiological, and behavioral functions, including mental processes. The complex relationship between circadian rhythms and mental health makes it challenging to determine causality between circadian desynchronization and mental disorders. Regarding the fact that psychologists act as the front line for initial mental health care, we aimed to assess the knowledge and use of sleep science and basic chronobiology by professional psychologists in Brazil. Data were collected via an online questionnaire completed by 1384 professional psychologists between October 2018 and May 2019. Our findings revealed that ±80% of psychologists reported that at least half of their patients presented some sleep-related complaints; however, only ±27% routinely inquired about sleep quality even in the absence of patient complaints. Additionally, only ±66% initiated treatments to understand these complaints, potentially influenced by the lack of prior academic exposure to biological rhythms as reported by ±76% of Brazilian psychologists interviewed. Importantly, ±15% did not believe in an association between mental health and biological rhythms, and even a significant ±67% were unfamiliar with the term chronobiology and ±63% were not able to describe any other biological rhythm except for the sleep-wake cycle. These results demonstrate that fundamental concepts in chronobiology and sleep science are unknown to a substantial proportion of Brazilian psychologists. In conclusion, we propose that this subject could be more effectively integrated into psychologists' academic training, potentially promoting benefits through the incorporation of a chronobiological approach in mental health practice.
Collapse
Affiliation(s)
| | | | | | - Lázaro Dias Carvalho
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Paulo César Ribeiro Barbosa
- Department of Human Sciences and Philosophy, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Natali N Guerrero-Vargas
- Department of Anatomy, Faculty of Medicine, Universidad Nacional Autonóma de México, México City, México
| | - Eduardo Koji Tamura
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| |
Collapse
|
149
|
Ketelauri P, Scharov K, von Gall C, Johann S. Acute Circadian Disruption Due to Constant Light Promotes Caspase 1 Activation in the Mouse Hippocampus. Cells 2023; 12:1836. [PMID: 37508501 PMCID: PMC10378425 DOI: 10.3390/cells12141836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
In mammals, the circadian system controls various physiological processes to maintain metabolism, behavior, and immune function during a daily 24 h cycle. Although driven by a cell-autonomous core clock in the hypothalamus, rhythmic activities are entrained to external cues, such as environmental lighting conditions. Exposure to artificial light at night (ALAN) can cause circadian disruption and thus is linked to an increased occurrence of civilization diseases in modern society. Moreover, alterations of circadian rhythms and dysregulation of immune responses, including inflammasome activation, are common attributes of neurodegenerative diseases, including Alzheimer', Parkinson's, and Huntington's disease. Although there is evidence that the inflammasome in the hippocampus is activated by stress, the direct effect of circadian disruption on inflammasome activation remains poorly understood. In the present study, we aimed to analyze whether exposure to constant light (LL) affects inflammasome activation in the mouse hippocampus. In addition to decreased circadian power and reduced locomotor activity, we found cleaved caspase 1 significantly elevated in the hippocampus of mice exposed to LL. However, we did not find hallmarks of inflammasome priming or cleavage of pro-interleukins. These findings suggest that acute circadian disruption leads to an assembled "ready to start" inflammasome, which may turn the brain more vulnerable to additional aversive stimuli.
Collapse
Affiliation(s)
- Pikria Ketelauri
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University (HHU), 40225 Düsseldorf, Germany
| | - Katerina Scharov
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University (HHU), 40225 Düsseldorf, Germany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University (HHU), 40225 Düsseldorf, Germany
| | - Sonja Johann
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University (HHU), 40225 Düsseldorf, Germany
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20251 Hamburg, Germany
| |
Collapse
|
150
|
Gnoni V, Zoccolella S, Giugno A, Urso D, Tamburrino L, Filardi M, Logroscino G. Hypothalamus and amyotrophic lateral sclerosis: potential implications in sleep disorders. Front Aging Neurosci 2023; 15:1193483. [PMID: 37465321 PMCID: PMC10350538 DOI: 10.3389/fnagi.2023.1193483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that affects both motor and non-motor functions, including sleep regulation. Emerging evidence suggests that the hypothalamus, a brain region that plays a critical role in sleep-wake regulation, may be involved in the pathogenesis of ALS-related sleep disturbances. In this review, we have summarized results of studies on sleep disorders in ALS published between 2000 and 2023. Thereafter, we examined possible mechanisms by which hypothalamic dysfunctions may contribute to ALS-related sleep disturbances. Achieving a deeper understanding of the relationship between hypothalamic dysfunction and sleep disturbances in ALS can help improve the overall management of ALS and reduce the burden on patients and their families.
Collapse
Affiliation(s)
- Valentina Gnoni
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, United Kingdom
| | - Stefano Zoccolella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Neurology Unit, San Paolo Hospital, Azienda Sanitaria Locale (ASL) Bari, Bari, Italy
| | - Alessia Giugno
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
| | - Daniele Urso
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London, United Kingdom
| | - Ludovica Tamburrino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico,”Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|