101
|
Duque H, Baxt B. Foot-and-mouth disease virus receptors: comparison of bovine alpha(V) integrin utilization by type A and O viruses. J Virol 2003; 77:2500-11. [PMID: 12551988 PMCID: PMC141088 DOI: 10.1128/jvi.77.4.2500-2511.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2002] [Accepted: 11/14/2002] [Indexed: 11/20/2022] Open
Abstract
Three members of the alpha(V) integrin family of cellular receptors, alpha(V)beta(1), alpha(V)beta(3), and alpha(V)beta(6), have been identified as receptors for foot-and-mouth disease virus (FMDV) in vitro. The virus interacts with these receptors via a highly conserved arginine-glycine-aspartic acid (RGD) amino acid sequence motif located within the betaG-betaH (G-H) loop of VP1. Other alpha(V) integrins, as well as several other integrins, recognize and bind to RGD motifs on their natural ligands and also may be candidate receptors for FMDV. To analyze the roles of the alpha(V) integrins from a susceptible species as viral receptors, we molecularly cloned the bovine beta(1), beta(5), and beta(6) integrin subunits. Using these subunits, along with previously cloned bovine alpha(V) and beta(3) subunits, in a transient expression assay system, we compared the efficiencies of infection mediated by alpha(V)beta(1), alpha(V)beta(3), alpha(V)beta(5), and alpha(V)beta(6) among three strains of FMDV serotype A and two strains of serotype O. While all the viruses could infect cells expressing these integrins, they exhibited different efficiencies of integrin utilization. All the type A viruses used alpha(V)beta(3) and alpha(V)beta(6) with relatively high efficiency, while only one virus utilized alpha(V)beta(1) with moderate efficiency. In contrast, both type O viruses utilized alpha(V)beta(6) and alpha(V)beta(1) with higher efficiency than alpha(V)beta(3). Only low levels of viral replication were detected in alpha(V)beta(5)-expressing cells infected with either serotype. Experiments in which the ligand-binding domains among the beta subunits were exchanged indicated that this region of the integrin subunit appears to contribute to the differences in integrin utilizations among strains. In contrast, the G-H loops of the different viruses do not appear to be involved in this phenomenon. Thus, the ability of the virus to utilize multiple integrins in vitro may be a reflection of the use of multiple receptors during the course of infection within the susceptible host.
Collapse
Affiliation(s)
- Hernando Duque
- Foot-and-Mouth Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY 11944-0848, USA
| | | |
Collapse
|
102
|
Affiliation(s)
- Terry Jackson
- Department of Molecular Biology, Institute for Animal Health, Pirbright, Surrey GU24 ONF, UK
| | | | | | | |
Collapse
|
103
|
Abstract
Current understanding of the molecular basis of pathogenesis of foot-and-mouth disease (FMD) has been achieved through over 100 years of study into the biology of the etiologic agent, FMDV. Over the last 40 years, classical biochemical and physical analyses of FMDV grown in cell culture have helped to reveal the structure and function of the viral proteins, while knowledge gained by the study of the virus' genetic diversity has helped define structures that are essential for replication and production of disease. More recently, the availability of genetic engineering methodology has permitted the direct testing of hypotheses formulated concerning the role of individual RNA structures, coding regions and polypeptides in viral replication and disease. All of these approaches have been aided by the simultaneous study of other picornavirus pathogens of animals and man, most notably poliovirus. Although many questions of how FMDV causes its devastating disease remain, the following review provides a summary of the current state of knowledge into the molecular basis of the virus' interaction with its host that produces one of the most contagious and frightening diseases of animals or man.
Collapse
Affiliation(s)
- Peter W Mason
- USDA, ARS Plum Island Animal Disease Center, ARS. PO Box 848, Greenport, NY 11944, USA.
| | | | | |
Collapse
|
104
|
Tami C, Taboga O, Berinstein A, Núñez JI, Palma EL, Domingo E, Sobrino F, Carrillo E. Evidence of the coevolution of antigenicity and host cell tropism of foot-and-mouth disease virus in vivo. J Virol 2003; 77:1219-26. [PMID: 12502839 PMCID: PMC140778 DOI: 10.1128/jvi.77.2.1219-1226.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work we analyze the antigenic properties and the stability in cell culture of virus mutants recovered upon challenge of peptide-vaccinated cattle with foot-and-mouth disease virus (FMDV) C3 Arg85. Previously, we showed that a significant proportion of 29 lesions analyzed (41%) contained viruses with single amino acid replacements (R141G, L144P, or L147P) within a major antigenic site located at the G-H loop of VP1, known to participate also in interactions with integrin receptors. Here we document that no replacements at this site were found in viruses from 12 lesions developed in six control animals upon challenge with FMDV C3 Arg85. Sera from unprotected, vaccinated animals exhibited poor neutralization titers against mutants recovered from them. Sequence analyses of the viruses recovered upon 10 serial passages in BHK-21 and FBK-2 cells in the presence of preimmune (nonneutralizing) sera revealed that mutants reverted to the parental sequence, suggesting an effect of the amino acid replacements in the interaction of the viruses with cells. Parallel passages in the presence of subneutralizing concentrations of immune homologous sera resulted in the maintenance of mutations R141G and L147P, while mutation L144P reverted to the C3 Arg85 sequence. Reactivity with a panel of FMDV type C-specific monoclonal antibodies indicated that mutant viruses showed altered antigenicity. These results suggest that the selective pressure exerted by host humoral immune response can play a role in both the selection and stability of antigenic FMDV variants and that such variants can manifest alterations in cell tropism.
Collapse
Affiliation(s)
- Cecilia Tami
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, INTA, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Domingo E, Escarmís C, Baranowski E, Ruiz-Jarabo CM, Carrillo E, Núñez JI, Sobrino F. Evolution of foot-and-mouth disease virus. Virus Res 2003; 91:47-63. [PMID: 12527437 DOI: 10.1016/s0168-1702(02)00259-9] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Foot-and-mouth disease virus evolution is strongly influenced by high mutation rates and a quasispecies dynamics. Mutant swarms are subjected to positive selection, negative selection and random drift of genomes. Adaptation is the result of selective amplification of subpopulations of genomes. The extent of adaptation to a given environment is quantified by a relative fitness value. Fitness values depend on the virus and its physical and biological environment. Generally, infections involving large population passages result in fitness gain and population bottlenecks lead to fitness loss. Very different types of mutations tend to accumulate in the foot-and-mouth disease virus (FMDV) genome depending on the virus population size during replication. Quasispecies dynamics predict higher probability of success of antiviral strategies based on multivalent vaccines and combination therapy, and this has been supported by clinical and veterinary practice. Quasispecies suggest also new antiviral strategies based on virus entry into error catastrophe, and such procedures are under investigation. Studies with FMDV have contributed to the understanding of quasispecies dynamics and some of its biological implications.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
106
|
Sáiz M, Núñez JI, Jimenez-Clavero MA, Baranowski E, Sobrino F. Foot-and-mouth disease virus: biology and prospects for disease control. Microbes Infect 2002; 4:1183-92. [PMID: 12361919 DOI: 10.1016/s1286-4579(02)01644-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is the causative agent of a disease that constitutes one of the main animal health concerns, as evidenced by the devastating outbreaks that occurred in different areas of the world over the last few years. In this review, we summarise important features of FMDV, aspects of its interactions with cells and hosts as well as current and new strategies for FMD control by vaccination.
Collapse
Affiliation(s)
- Margarita Sáiz
- Centro de Investigación en Sanidad Animal (INIA), 28130 Valdeolmos, Madrid, Spain
| | | | | | | | | |
Collapse
|
107
|
Abstract
The mechanisms by which Theiler's murine encephalomyelitis virus (TMEV) binds and enters host cells and the molecules involved are not completely understood. In this study, we demonstrate that the high-neurovirulence TMEV GDVII virus uses the glycosaminoglycan heparan sulfate (HS) as an attachment factor that is required for efficient infection. Studies based on soluble HS-mediated inhibition of attachment and infection, removal of HS with specific enzymes, and blocking with anti-HS antibodies establish that HS mediates GDVII virus entry into mammalian cells. Data from defined proteoglycan-deficient Chinese hamster ovary mutant cells further support the role of HS in GDVII infection and indicate that the extent of sulfation is critical for infection. Neuraminidase treatment of proteoglycan-deficient cells restores permissiveness to GDVII virus, indicating that sialic acid hinders direct access of virus to the protein entry receptor. A model of the potential steps in GDVII virus entry into mammalian cells involving HS is proposed.
Collapse
Affiliation(s)
- Honey V Reddi
- Department of Neurology, Evanston Hospital, Illinois 60201, USA
| | | |
Collapse
|
108
|
Sevilla N, Domingo E, de la Torre JC. Contribution of LCMV towards deciphering biology of quasispecies in vivo. Curr Top Microbiol Immunol 2002; 263:197-220. [PMID: 11987815 DOI: 10.1007/978-3-642-56055-2_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- N Sevilla
- Department of Neuropharmacology, Scripps Research Institute, 10550 North Torrey Pines Road, IMM-6, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
109
|
Domingo E, Ruiz-Jarabo CM, Sierra S, Arias A, Pariente N, Baranowski E, Escarmis C. Emergence and selection of RNA virus variants: memory and extinction. Virus Res 2002; 82:39-44. [PMID: 11885948 DOI: 10.1016/s0168-1702(01)00385-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two features of viral quasispecies are reviewed: the presence of memory genomes as minority components of their mutant spectra, and viral extinction due to enhanced mutagenesis. Memory has been documented with several genetic markers of the important animal picornavirus foot-and-mouth disease virus (FMDV). The presence of memory genomes in viral quasispecies may accelerate their adaptive response whenever a selective constraint has already been experienced by a viral population during previous stages of its evolution. Enhanced mutagenesis has been shown to lead to losses of infectivity of a number of RNA viruses: poliovirus, vesicular stomatitis virus, human immunodeficiency virus type 1 and FMDV. These observations, based on the theoretical prediction of the existence of a copying error-threshold for maintenance of genetic information, may contribute to the development of a new antiviral strategy.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular, Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Spain.
| | | | | | | | | | | | | |
Collapse
|
110
|
Ruíz-Jarabo CM, Arias A, Molina-París C, Briones C, Baranowski E, Escarmís C, Domingo E. Duration and fitness dependence of quasispecies memory. J Mol Biol 2002; 315:285-96. [PMID: 11786012 DOI: 10.1006/jmbi.2001.5232] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The duration and fitness dependence of memory in viral quasispecies evolving in cell culture have been investigated using two genetic markers of foot-and-mouth disease virus (FMDV). In lineages of antigenic variant FMDV RED, which reverted to FMDV RGD, memory FMDV RED genomes were detected after 50 infectious cycles, and memory level was fitness dependent. In growth-competition experiments between a reference FMDV RGD and two different FMDV RED populations, a 7.6-fold higher fitness of the initial FMDV RED population resulted in 30 to 100-fold higher memory level. In lineages of low-fitness clones containing an elongated internal polyadenylate tract, revertants lacking excess adenylate residues became dominant by passage 20. However, genomes including a larger number of adenylate residues were detected as memory genomes after at least 150 infectious cycles. Thus, quasispecies memory can be durable and is fitness dependent, as predicted from the growth competition of two mutant forms of a genome. An understanding of factors influencing quasispecies memory levels and duration may have implications for the extended diagnosis of viruses based on the quantification of minority genomes.
Collapse
Affiliation(s)
- Carmen M Ruíz-Jarabo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco 28049, Spain
| | | | | | | | | | | | | |
Collapse
|
111
|
Reischl A, Reithmayer M, Winsauer G, Moser R, Gösler I, Blaas D. Viral evolution toward change in receptor usage: adaptation of a major group human rhinovirus to grow in ICAM-1-negative cells. J Virol 2001; 75:9312-9. [PMID: 11533194 PMCID: PMC114499 DOI: 10.1128/jvi.75.19.9312-9319.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major receptor group common cold virus HRV89 was adapted to grow in HEp-2 cells, which are permissive for minor group human rhinoviruses (HRVs) but which only marginally support growth of major-group viruses. After 32 blind passages in these cells, each alternating with boosts of the recovered virus in HeLa cells, HRV89 acquired the capacity to effectively replicate in HEp-2 cells, attaining virus titers comparable to those in HeLa cells although no cytopathic effect was observed. Several clones were isolated and shown to replicate in HeLa cells whose ICAM-1 was blocked with monoclonal antibody R6.5 and in COS-7 cells, which are devoid of ICAM-1. Blocking experiments with recombinant very-low-density lipoprotein receptor fragments and enzyme-linked immunosorbent assays indicated that the mutants bound a receptor different from that used by minor-group viruses. Determination of the genomic RNA sequence encoding the capsid protein region revealed no changes in amino acid residues at positions equivalent to those involved in the interaction of HRV14 or HRV16 with ICAM-1. One mutation was within the footprint of a very-low-density lipoprotein receptor fragment bound to minor-group virus HRV2. Since ICAM-1 not only functions as a vehicle for cell entry but has also a "catalytic" function in uncoating, the use of other receptors must have important consequences for the entry pathway and demonstrates the plasticity of these viruses.
Collapse
Affiliation(s)
- A Reischl
- Institute of Medical Biochemistry, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
112
|
Boonyakiat Y, Hughes PJ, Ghazi F, Stanway G. Arginine-glycine-aspartic acid motif is critical for human parechovirus 1 entry. J Virol 2001; 75:10000-4. [PMID: 11559835 PMCID: PMC114574 DOI: 10.1128/jvi.75.20.10000-10004.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2001] [Accepted: 07/11/2001] [Indexed: 11/20/2022] Open
Abstract
The human parechovirus 1 RGD motif in VP1 was studied by mutagenesis. An RGD-to-RGE change gave only revertant viruses with a restored RGD, while deletion of GD was lethal and nonrevertable. Mutations at the +1 and +2 positions had some effect on growth properties and a +1 M-to-P change was lethal. These studies indicate that the RGD motif plays a critical role in infectivity, presumably by interacting with integrins, and that downstream amino acids can have an influence on function.
Collapse
Affiliation(s)
- Y Boonyakiat
- Department of Biological Sciences, John Tabor Laboratories, University of Essex, Colchester CO4 3SQ, United Kingdom
| | | | | | | |
Collapse
|
113
|
Warner S, Hartley CA, Stevenson RA, Ficorilli N, Varrasso A, Studdert MJ, Crabb BS. Evidence that Equine rhinitis A virus VP1 is a target of neutralizing antibodies and participates directly in receptor binding. J Virol 2001; 75:9274-81. [PMID: 11533189 PMCID: PMC114494 DOI: 10.1128/jvi.75.19.9274-9281.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Equine rhinitis A virus (ERAV) is a respiratory pathogen of horses and is classified as an Aphthovirus, the only non-Foot-and-mouth disease virus (FMDV) member of this genus. In FMDV, virion protein 1 (VP1) is a major target of protective antibodies and is responsible for viral attachment to permissive cells via an RGD motif located in a distal surface loop. Although both viruses share considerable sequence identity, ERAV VP1 does not contain an RGD motif. To investigate antibody and receptor-binding properties of ERAV VP1, we have expressed full-length ERAV VP1 in Escherichia coli as a glutathione S-transferase (GST) fusion protein (GST-VP1). GST-VP1 reacted specifically with antibodies present in serum from a rabbit immunized with purified ERAV virions and also in convalescent-phase sera from horses experimentally infected with ERAV. An antiserum raised in rabbits to GST-VP1 reacted strongly with viral VP1 and effectively neutralized ERAV infection in vitro. Using a flow cytometry-based binding assay, we found that GST-VP1, but not other GST fusion proteins, bound to cell surface receptors. This binding was reduced in a dose-dependent manner by the addition of purified ERAV virions, demonstrating the specificity of this interaction. A separate cell-binding assay also implicated GST-VP1 in receptor binding. Importantly, anti-GST-VP1 antibodies inhibited the binding of ERAV virions to Vero cells, suggesting that these antibodies exert their neutralizing effect by blocking viral attachment. Thus ERAV VP1, like its counterpart in FMDV, appears to be both a target of protective antibodies and involved directly in receptor binding. This study reveals the potential of recombinant VP1 molecules to serve as vaccines and diagnostic reagents for the control of ERAV infections.
Collapse
Affiliation(s)
- S Warner
- Department of Microbiology and Immunology and the Co-Operative Research Centre for Vaccine Technology, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
114
|
Pariente N, Sierra S, Lowenstein PR, Domingo E. Efficient virus extinction by combinations of a mutagen and antiviral inhibitors. J Virol 2001; 75:9723-30. [PMID: 11559805 PMCID: PMC114544 DOI: 10.1128/jvi.75.20.9723-9730.2001] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of combinations of the mutagenic base analog 5-fluorouracil (FU) and the antiviral inhibitors guanidine hydrochloride (G) and heparin (H) on the infectivity of foot-and-mouth disease virus (FMDV) in cell culture has been investigated. Related FMDV clones differing up to 10(6)-fold in relative fitness in BHK-21 cells have been compared. Systematic extinction of intermediate fitness virus was attained with a combination of FU and G but not with the mutagen or the inhibitor alone. Systematic extinction of high-fitness FMDV required the combination of FU, G, and H. FMDV showing high relative fitness in BHK-21 cells but decreased replicative ability in CHO cells behaved as a low-fitness virus with regard to extinction mutagenesis in CHO cells. This confirms that relative fitness, rather than a specific genomic sequence, determines the FMDV response to enhanced mutagenesis. Mutant spectrum analysis of several genomic regions from a preextinction population showed a statistically significant increase in the number of mutations compared with virus passaged in parallel in the absence of FU and inhibitors. Also, in a preextinction population the types of mutations that can be attributed to the mutagenic action of FU were significantly more frequent than other mutation types. The results suggest that combinations of mutagenic agents and antiviral inhibitors can effectively drive high-fitness virus into extinction.
Collapse
Affiliation(s)
- N Pariente
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
115
|
Baranowski E, Ruiz-Jarabo CM, Lim F, Domingo E. Foot-and-mouth disease virus lacking the VP1 G-H loop: the mutant spectrum uncovers interactions among antigenic sites for fitness gain. Virology 2001; 288:192-202. [PMID: 11601891 DOI: 10.1006/viro.2001.1096] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Arg-Gly-Asp (RGD) triplet found in the G-H loop of capsid protein VP1 of foot-and-mouth disease virus (FMDV) is critically involved in the interaction of FMDV with integrin receptors and with neutralizing antibodies. Multiplication of FMDV C-S8c1 in baby hamster kidney 21 (BHK-21) cells selected variant viruses exploiting alternative mechanisms of cell recognition that rendered the RGD integrin-binding triplet dispensable for infectivity. By constructing chimeric viruses, we show that dispensability of the RGD in these variant FMDVs can be extended to surrounding amino acid residues. Replacement of eight amino acid residues within the G-H loop of VP1 by an unrelated FLAG marker yielded infectious virus. Evolution of FLAG-containing viruses in BHK-21 cells generated complex quasispecies in which individual mutants included amino acid replacements at other antigenic sites of FMDV. Inclusion of such replacements in the parental FLAG clone resulted in an increase of relative fitness of the viruses. These results suggest structural or functional connections between antigenic sites of FMDV and underscore the value of mutant spectrum analysis for the identification of fitness-promoting genetic modifications in viral populations. The possibility of producing viable viruses lacking antigenic site A may find application in the design of new anti-FMD vaccines.
Collapse
Affiliation(s)
- E Baranowski
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
116
|
Bonneau KR, Mullens BA, MacLachlan NJ. Occurrence of genetic drift and founder effect during quasispecies evolution of the VP2 and NS3/NS3A genes of bluetongue virus upon passage between sheep, cattle, and Culicoides sonorensis. J Virol 2001; 75:8298-305. [PMID: 11483775 PMCID: PMC115074 DOI: 10.1128/jvi.75.17.8298-8305.2001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2001] [Accepted: 05/29/2001] [Indexed: 11/20/2022] Open
Abstract
Bluetongue virus (BTV) is the cause of an insect-transmitted virus infection of ruminants that occurs throughout much of the world. Individual gene segments differ between field strains of BTV; thus, we hypothesized that key viral genes undergo genetic drift during alternating passage of BTV in its ruminant and insect hosts. To test this hypothesis, variation in the consensus sequence and quasispecies heterogeneity of the VP2 and NS3/NS3A genes of a plaque-purified strain of BTV serotype 10 was determined during alternating infection of vector Culicoides sonorensis and a sheep and calf. Consensus sequences were determined after reverse transcriptase-nested PCR amplification of viral RNA directly from ruminant blood and homogenized insects, and quasispecies heterogeneity was determined by the sequencing of clones derived from directly amplified viral RNA. Comparison of these sequences to those of the original BTV inoculum used to initiate the cycle of BTV infection demonstrated, for the first time, that individual BTV gene segments evolve independently of one another by genetic drift in a host-specific fashion, generating quasispecies populations in both ruminant and insect hosts. Furthermore, a unique viral variant was randomly ingested by C. sonorensis insects that fed on a sheep with low-titer viremia, thereby fixing a novel genotype by founder effect. Thus, we conclude that genetic drift and founder effect contribute to diversification of individual gene segments of field strains of BTV.
Collapse
Affiliation(s)
- K R Bonneau
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
117
|
Leippert M, Pfaff E. Foot-and-mouth disease virus can utilize the C-terminal extension of coxsackievirus A9 VP1 for cell infection. J Gen Virol 2001; 82:1703-1711. [PMID: 11413382 DOI: 10.1099/0022-1317-82-7-1703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is known to employ the conserved Arg-Gly-Asp (RGD) tripeptide located on the variable betaG-betaH loop of the VP1 capsid protein for binding to cells. Coxsackievirus A9 (CAV9) also carries an RGD sequence, but on a short C-terminal extension of its VP1 and in a different amino acid context. This apparent relationship raised the question of whether insertion of the heterologous CAV9 sequence into FMDV would influence infection by the genetically modified FMDV. Four VP1 mutants were generated by PCR mutagenesis of a full-length FMDV cDNA plasmid. After transfection of BHK-21 cells, viral protein synthesis and virus particle formation could be detected. Two of the four mutants, mV9b and mV9d, could be propagated in BHK-21 cells, but not in CV-1 cells. Both of these mutants contained 17 amino acids of the C terminus of CAV9 VP1. Infection of BHK cells could be specifically inhibited by rabbit immune serum raised against a synthetic peptide representing the amino acid sequence of the C-terminal extension of CAV9 VP1. This demonstrated the direct involvement of the inserted sequence in cell infection. In fact, genetically modified FMDV O(1)K was capable of employing the VP1 C-terminal RGD region of CAV9 for infection of BHK cells. In addition, these results show that, even in cell culture-adapted viruses, the RGD-containing betaG-betaH loop plays an important role in virus infectivity.
Collapse
Affiliation(s)
- Martina Leippert
- Federal Research Centre for Animal Virus Diseases, Paul-Ehrlich-Strasse 28, D-72076 Tübingen, Germany1
| | - Eberhard Pfaff
- Federal Research Centre for Animal Virus Diseases, Paul-Ehrlich-Strasse 28, D-72076 Tübingen, Germany1
| |
Collapse
|
118
|
Abstract
Evolution of receptor specificity by viruses has several implications for viral pathogenesis, host range, virus-mediated gene targeting, and viral adaptation after organ transplantation and xenotransplantation, as well as for the emergence of viral diseases. Recent evidence suggests that minimal changes in viral genomes may trigger a shift in receptor usage for virus entry, even into the same cell type. A capacity to exploit alternative entry pathways may reflect the ancient evolutionary origins of viruses and a possible role as agents of horizontal gene transfers among cells.
Collapse
Affiliation(s)
- E Baranowski
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
119
|
Núñez JI, Baranowski E, Molina N, Ruiz-Jarabo CM, Sánchez C, Domingo E, Sobrino F. A single amino acid substitution in nonstructural protein 3A can mediate adaptation of foot-and-mouth disease virus to the guinea pig. J Virol 2001; 75:3977-83. [PMID: 11264387 PMCID: PMC114889 DOI: 10.1128/jvi.75.8.3977-3983.2001] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic changes selected during the adaptation of a clonal population of foot-and-mouth disease virus (FMDV) to the guinea pig have been analyzed. FMDV clone C-S8c1 was adapted to the guinea pig by serial passage in the animals until secondary lesions were observed. Analysis of the virus directly recovered from the lesions developed by the animals revealed the selection of variants with two amino acid substitutions in nonstructural proteins, I(248)-->T in 2C and Q(44)-->R in 3A. On further passages, an additional mutation, L(147)-->P, was selected in an important antigenic site located in the G-H loop of capsid protein VP1. The amino acid substitution Q(44)-->R in 3A, either alone or in combination with the replacement I(248)-->T in 2C, was sufficient to give FMDV the ability to produce lesions. This was shown by using infectious transcripts which generated chimeric viruses with the relevant amino acid substitutions. Clinical symptoms produced by the artificial chimeras were similar to those produced by the naturally adapted virus. These results obtained with FMDV imply that one or very few replacements in nonstructural viral proteins, which should be within reach of the mutant spectra of replicating viral quasispecies, may result in adaptation of a virus to a new animal host.
Collapse
Affiliation(s)
- J I Núñez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
120
|
Smit TK, Wang B, Ng T, Osborne R, Brew B, Saksena NK. Varied tropism of HIV-1 isolates derived from different regions of adult brain cortex discriminate between patients with and without AIDS dementia complex (ADC): evidence for neurotropic HIV variants. Virology 2001; 279:509-26. [PMID: 11162807 DOI: 10.1006/viro.2000.0681] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A number of infected individuals develop neuropathological disorders, such as AIDS dementia complex (ADC), as a consequence of HIV/AIDS. The biological features governing HIV entry and tropism in different brain cell types remain unclear, as do the genetics of the virus regulating these events and the neuropathogenic processes within the brain tissues. HIV-1 was isolated from the right and left parietal, occipital, and frontal lobes of the brain cortex of three HIV-1-infected patients: two with ADC and one without. The viral strains were studied from the innate tissues and various primary cell cultures. The kinetics and tropism of viral strains from different brain regions showed clear differences on various primary cell types (monocytes, monocyte-derived macrophages, and T cells), which could discriminate between biological behavior of HIV-1 strains from patients with and without ADC. The variable effect of different donor cells on tropism was also clearly evident. The majority (with a few exceptions) of isolates from different brain regions of all three patients used CCR5 as coreceptor for entry. The consistent CCR5 use, macrophage tropism, and non-syncytium-inducing phenotype were the main characteristics of the brain-derived HIV-1 strains from all three patients. Importantly, viral strains derived directly from innate brain tissue of the patient without ADC showed some differences from the cultured variants of the same patient, whereas those from brain tissue of the patients with ADC were more similar to the culture-adapted strains. This suggests that the emergence of primary cell type-adapted isolates during ADC may play a crucial role in the development and progression of the neuropathology associated with ADC. The different genotypes residing in different areas of brain combined with their differential tropism and coreceptor use suggest that neurotropic variants exist that may be governing the neurological manifestation of HIV disease in infected patients.
Collapse
Affiliation(s)
- T K Smit
- Retroviral Genetics Laboratory, Room 3025, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Darcy Road, Westmead, New South Wales, 2145, Australia
| | | | | | | | | | | |
Collapse
|
121
|
Fares MA, Moya A, Escarmís C, Baranowski E, Domingo E, Barrio E. Evidence for positive selection in the capsid protein-coding region of the foot-and-mouth disease virus (FMDV) subjected to experimental passage regimens. Mol Biol Evol 2001; 18:10-21. [PMID: 11141188 DOI: 10.1093/oxfordjournals.molbev.a003715] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We present sequence data from two genomic regions of foot-and-mouth disease virus (FMDV) subjected to several experimental passage regimens. Maximum-likelihood estimates of the nonsynonymous-to-synonymous rate ratio parameter (d(N)/d(S)) suggested the action of positive selection on some antigenic sites of the FMDV capsid during some experimental passages. These antigenic sites showed an accumulation of convergent amino acid replacements during massive serial cytolytic passages and also in persistent infections of FMDV in cell culture. This accumulation was most significant at the antigenic site A (the G-H loop of capsid VP1), which includes an Arg-Gly-Asp (RGD) cellular recognition motif. Our analyses also identified a subregion of VP3, part of the fivefold axis of FMDV particles, that also appeared to be subjected to positive selection of amino acid replacements. From these results, we can conclude that under the restrictive conditions imposed either by the presence of the monoclonal antibodies, by the persistent infections, or by the competition processes established between different variants of the viral population, amino acid replacement in some capsid-coding regions can be positively selected toward an increase of those mutants with a higher capability to infect the cell.
Collapse
Affiliation(s)
- M A Fares
- Institut Cavanilles de Biodiversitat i Biología Evolutiva, Universitat de València, Spain
| | | | | | | | | | | |
Collapse
|
122
|
Escribano-Romero E, Jiménez-Clavero MA, Ley V. Swine vesicular disease virus. Pathology of the disease and molecular characteristics of the virion. Anim Health Res Rev 2000; 1:119-26. [PMID: 11708597 DOI: 10.1017/s1466252300000104] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Swine vesicular disease is a highly contagious disease of pigs that is caused by an enterovirus of the family Picornaviridae. The virus is a relatively recent derivative of the human coxsackievirus B5, with which it has high molecular and antigenic homology. The disease is not severe, and affected animals usually show moderate general weakening and slight weight loss that is recovered in few days, as well as vesicular lesions in the mucosa of the mouth and nose and in the interdigital spaces of the feet. However, the similarity of these lesions to those caused by foot-and-mouth disease virus has led to the inclusion of this virus in list A of the Office International des Epizooties. The disease has been eradicated in the European Union except in Italy, where it is considered endemic in the south. Nevertheless, as occasional outbreaks still appear and must be eliminated rapidly, European countries are on the alert and farms are monitored routinely for the presence of the virus. This circumstance has led to a considerable effort to study the pathology of the disease and the molecular biology and antigenicity of the virus, andto the development of optimized methods for the diagnosis of the infection.
Collapse
Affiliation(s)
- E Escribano-Romero
- Instituto Nacional de Investigaciones Agrarias y Alimentarias, Madrid, Spain
| | | | | |
Collapse
|
123
|
Neff S, Mason PW, Baxt B. High-efficiency utilization of the bovine integrin alpha(v)beta(3) as a receptor for foot-and-mouth disease virus is dependent on the bovine beta(3) subunit. J Virol 2000; 74:7298-306. [PMID: 10906183 PMCID: PMC112250 DOI: 10.1128/jvi.74.16.7298-7306.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have previously reported that Foot-and-mouth disease virus (FMDV), which is virulent for cattle and swine, can utilize the integrin alpha(v)beta(3) as a receptor on cultured cells. Since those studies were performed with the human integrin, we have molecularly cloned the bovine homolog of the integrin alpha(v)beta(3) and have compared the two receptors for utilization by FMDV. Both the alpha(v) and beta(3) subunits of the bovine integrin have high degrees of amino acid sequence similarity to their corresponding human subunits in the ectodomains (96%) and essentially identical transmembrane and cytoplasmic domains. Within the putative ligand-binding domains, the bovine and human alpha(v) subunits have a 98.8% amino acid sequence similarity while there is only a 93% similarity between the beta(3) subunits of these two species. COS cell cultures, which are not susceptible to FMDV infection, become susceptible if cotransfected with alpha(v) and beta(3) subunit cDNAs from a bovine or human source. Cultures cotransfected with the bovine alpha(v)beta(3) subunit cDNAs and infected with FMDV synthesize greater amounts of viral proteins than do infected cultures cotransfected with the human integrin subunits. Cells cotransfected with a bovine alpha(v) subunit and a human beta(3) subunit synthesize viral proteins at levels equivalent to those in cells expressing both human subunits. However, cells cotransfected with the human alpha(v) and the bovine beta(3) subunits synthesize amounts of viral proteins equivalent to those in cells expressing both bovine subunits, indicating that the bovine beta(3) subunit is responsible for the increased effectiveness of this receptor. By engineering chimeric bovine-human beta(3) subunits, we have shown that this increase in receptor efficiency is due to sequences encoding the C-terminal one-third of the subunit ectodomain, which contains a highly structured cysteine-rich repeat region. We postulate that amino acid sequence differences within this region may be responsible for structural differences between the human and bovine beta(3) subunit, leading to more efficient utilization of the bovine receptor by this bovine pathogen.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Aphthovirus/genetics
- Aphthovirus/metabolism
- Aphthovirus/physiology
- COS Cells
- Cattle
- Cloning, Molecular
- DNA, Complementary
- Humans
- Integrin beta3
- Molecular Sequence Data
- Platelet Membrane Glycoproteins/chemistry
- Platelet Membrane Glycoproteins/genetics
- Platelet Membrane Glycoproteins/metabolism
- Protein Structure, Tertiary
- Receptors, Virus/metabolism
- Receptors, Vitronectin/genetics
- Receptors, Vitronectin/metabolism
- Recombinant Fusion Proteins/metabolism
- Sequence Analysis, DNA
- Transfection
- Virus Replication
Collapse
Affiliation(s)
- S Neff
- Foot-and-Mouth Disease Research Unit, USDA Agricultural Research Service, Plum Island Animal Disease Center, Greenport, New York 11944, USA
| | | | | |
Collapse
|
124
|
López S, Espinosa R, Isa P, Merchant MT, Zárate S, Méndez E, Arias CF. Characterization of a monoclonal antibody directed to the surface of MA104 cells that blocks the infectivity of rotaviruses. Virology 2000; 273:160-8. [PMID: 10891418 DOI: 10.1006/viro.2000.0398] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rhesus rotavirus (RRV) binds to sialic acid residues on the surface of target cells, and treatment of these cells with neuraminidase greatly reduces virus binding with the consequent reduction of infectivity. Variants that can efficiently infect neuraminidase-treated cells have been isolated, indicating that attachment to sialic acid is not an essential step for animal rotaviruses to infect cells. To identify and characterize the neuraminidase-resistant receptor for rotaviruses, we have isolated a hybridoma that secrets a monoclonal antibody (MAb) (2D9) that specifically blocks the infectivity of wild-type (wt) RRV and of its sialic acid-independent variant nar3, in untreated as well as in neuraminidase-treated cells. The infectivity of a human rotavirus was also inhibited, although to a lesser extent. MAb 2D9 blocks the binding of the variant to MA104 cells, while not affecting the binding of wt RRV; in addition, this MAb blocked the attachment of a recombinant glutathione S-transferase (GST)-VP5 fusion protein, but did not affect the binding of GST-VP8. Altogether these results suggest that MAb 2D9 is directed to the neuraminidase-resistant receptor. This receptor seems to mediate the direct attachment of the variant to the cell, through VP5, while the receptor is used by wt RRV for a secondary interaction, after its initial binding to sialic acid, through VP8. MAb 2D9 interacts specifically with the cell surface by indirect immunofluorescence, immunoelectron microscopy, and FACS. By a solid-phase immunoisolation technique, MAb 2D9 was found to react with three proteins of ca. 47, 55, and 220 kDa, which might form a complex.
Collapse
Affiliation(s)
- S López
- Departamento de Génetica y Fisiología Molecular, Instituto de Biotecnología.
| | | | | | | | | | | | | |
Collapse
|