101
|
Oh EJ, Hwang IS, Kwon CT, Oh CS. A Putative Apoplastic Effector of Clavibacter capsici, ChpG Cc as Hypersensitive Response and Virulence (Hrv) Protein in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:370-379. [PMID: 38148291 DOI: 10.1094/mpmi-09-23-0145-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Clavibacter bacteria use secreted apoplastic effectors, such as putative serine proteases, for virulence in host plants and for hypersensitive response (HR) induction in nonhost plants. Previously, we have shown that Clavibacter capsici ChpGCc is important for the necrosis development in pepper (Capsicum annuum) leaves. Here, we determine the function of ChpGCc, along with three paralogous proteins, for HR induction in the apoplastic space of a nonhost plant, Nicotiana tabacum. The full-length and signal peptide-deleted (ΔSP) mature forms of all proteins fused with the tobacco PR1b signal sequence were generated. The full-length and ΔSP forms of ChpGCc and only the ΔSP forms of ChpECc and Pat-1Cc, but none of the ChpCCc, triggered HR. Based on the predicted protein structures, ChpGCc carries amino acids for a catalytic triad and a disulfide bridge in positions like Pat-1Cm. Substituting these amino acids of ChpGCc with alanine abolished or reduced HR-inducing activity. To determine whether these residues are important for necrosis development in pepper, alanine-substituted chpGCc genes were transformed into the C. capsici PF008ΔpCM1 strain, which lacks the intact chpGCc gene. The strain with any variants failed to restore the necrosis-causing ability. These results suggest that ChpGCc has a dual function as a virulence factor in host plants and an HR elicitor in nonhost plants. Based on our findings and previous results, we propose Clavibacter apoplastic effectors, such as ChpGCc, Pat-1Cm, Chp-7Cs, and ChpGCm, as hypersensitive response and virulence (Hrv) proteins that display phenotypic similarities to the hypersensitive response and pathogenicity (Hrp) proteins found in gram-negative bacteria. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Eom-Ji Oh
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| | - In Sun Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Choon-Tak Kwon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| | - Chang-Sik Oh
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
102
|
Sharifi M, Alizadeh AA, Mivehroud MH, Dastmalchi S. Construction of a bacteriophage-derived vector with potential applications in targeted drug delivery and cell imaging. Biotechnol Lett 2024; 46:147-159. [PMID: 38184487 DOI: 10.1007/s10529-023-03455-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 01/08/2024]
Abstract
There is a strong relationship between the dysregulation of epidermal growth factor receptor (EGFR) and the development of epithelial-derived cancers. Therefore, EGFR has usually been considered the desired target for gene therapy. Here, we propose an approach for targeting EGFR-expressing cells by phage particles capable of displaying EGF and GFP as tumor-targeting and reporting elements, respectively. For this purpose, the superfolder GFP-EGF (sfGFP-EGF) coding sequence was inserted at the N-terminus of the pIII gene in the pIT2 phagemid. The capability of the constructed phage to recognize EGFR-overexpressing cells was monitored by fluorescence microscopy, fluorescence-activated cell sorting (FACS), and cell-based ELISA experiments. FACS analysis showed a significant shift in the mean fluorescence intensity (MFI) of the cells treated with phage displaying sfGFP-EGF compared to phage displaying only sfGFP. The binding of phage displaying sfGFP-EGF to A-431 cells, monitored by fluorescence microscopy, indicated the formation of the sfGFP-EGF-EGFR complex on the surface of the treated cells. Cell-based ELISA experiments showed that phages displaying either EGF or sfGFP-EGF can specifically bind EGFR-expressing cells. The vector constructed in the current study has the potential to be engineered for gene delivery purposes as well as cell-based imaging for tumor detection.
Collapse
Affiliation(s)
- Mehdi Sharifi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Maryam Hamzeh Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Faculty of Pharmacy, Near East University, Po. Box: 99138, Nicosia, North Cyprus, Mersin 10, Turkey.
| |
Collapse
|
103
|
Yokoyama F, Kling A, Dittrich PS. Capturing of extracellular vesicles derived from single cells of Escherichia coli. LAB ON A CHIP 2024; 24:2049-2057. [PMID: 38426311 PMCID: PMC10964742 DOI: 10.1039/d3lc00707c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Bacteria secrete extracellular vesicles (EVs), also referred to as bacterial membrane vesicles, which carry, among other compounds, lipids, nucleic acids and virulence factors. Recent studies highlight the role of EVs in the emergence of antibiotic resistance, e.g. as carrier and absorbent particles of the drug to protect the cells, or as a pathway to disseminate resistance elements. In this study, we are interested in characterizing the secretion of EVs at the single bacterial level to ultimately understand how cells respond to antibiotic treatment. We introduce a microfluidic device that enables culture of single bacterial cells and capture of EVs secreted from these individuals. The device incorporates parallel, narrow winding channels to trap single rod-shaped E. coli cells at their entrances. The daughter cells are immediately removed by continuous flow on the open side of the trap, so that the trap contains always only a single cell. Cells grew in these traps over 24 h with a doubling time of 25 minutes. Under antibiotic treatment, the doubling time did not change, but we observed small changes in the cell length of the trapped cells (decrease from 4.0 μm to 3.6 μm for 0 and 250 ng mL-1 polymyxin B, respectively), and cells stopped growing within hours, depending on the drug concentration. Compared to bulk culture, the results indicate a higher susceptibility of on-chip-cultured cells (250 ng mL-1vs. >500 ng mL-1 in bulk), which may be caused, among other reasons, by the space limitation in the cell trap and shear forces. During the culture, EVs secreted by the trapped cells entered the winding channel. We developed a procedure to selectively coat these channels with poly-L-lysine resulting in a positively charged surface, which enabled electrostatic capture of negatively charged EVs. Subsequently, the immobilized EVs were stained with a lipophilic dye and detected by fluorescence microscopy. Our findings confirm large variations of EV secretion among individual bacteria and indicate a relative high rate of EV secretion under antibiotic treatment. The proposed method can be extended to the detection of other secreted substances of interest and may facilitate the elucidation of unknown heterogeneities in bacteria.
Collapse
Affiliation(s)
- Fumiaki Yokoyama
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4056 Basel, Switzerland.
- The University of Tokyo, Department of Physics, Tokyo 113-0033, Japan
| | - André Kling
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4056 Basel, Switzerland.
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4056 Basel, Switzerland.
| |
Collapse
|
104
|
Sena L, Mica E, Valè G, Vaccino P, Pecchioni N. Exploring the potential of endophyte-plant interactions for improving crop sustainable yields in a changing climate. FRONTIERS IN PLANT SCIENCE 2024; 15:1349401. [PMID: 38571718 PMCID: PMC10988515 DOI: 10.3389/fpls.2024.1349401] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Climate change poses a major threat to global food security, significantly reducing crop yields as cause of abiotic stresses, and for boosting the spread of new and old pathogens and pests. Sustainable crop management as a route to mitigation poses the challenge of recruiting an array of solutions and tools for the new aims. Among these, the deployment of positive interactions between the micro-biotic components of agroecosystems and plants can play a highly significant role, as part of the agro-ecological revolution. Endophytic microorganisms have emerged as a promising solution to tackle this challenge. Among these, Arbuscular Mycorrhizal Fungi (AMF) and endophytic bacteria and fungi have demonstrated their potential to alleviate abiotic stresses such as drought and heat stress, as well as the impacts of biotic stresses. They can enhance crop yields in a sustainable way also by other mechanisms, such as improving the nutrient uptake, or by direct effects on plant physiology. In this review we summarize and update on the main types of endophytes, we highlight several studies that demonstrate their efficacy in improving sustainable yields and explore possible avenues for implementing crop-microbiota interactions. The mechanisms underlying these interactions are highly complex and require a comprehensive understanding. For this reason, omic technologies such as genomics, transcriptomics, proteomics, and metabolomics have been employed to unravel, by a higher level of information, the complex network of interactions between plants and microorganisms. Therefore, we also discuss the various omic approaches and techniques that have been used so far to study plant-endophyte interactions.
Collapse
Affiliation(s)
- Lorenzo Sena
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Erica Mica
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Giampiero Valè
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, UPO – Università del Piemonte Orientale, Complesso San Giuseppe, Vercelli, Italy
| | - Patrizia Vaccino
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Nicola Pecchioni
- Dipartimento di Scienze della Vita, Sede Agraria, UNIMORE - Università di Modena e Reggio Emilia, Reggio Emilia, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
- Centro di Ricerca Cerealicoltura e Colture Industriali, CREA – Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Foggia, Italy
| |
Collapse
|
105
|
Langford L, Shah DD. Bioinformatic Analysis of Sulfotransferases from an Unexplored Gut Microbe, Sutterella wadsworthensis 3_1_45B: Possible Roles towards Detoxification via Sulfonation by Members of the Human Gut Microbiome. Int J Mol Sci 2024; 25:2983. [PMID: 38474230 DOI: 10.3390/ijms25052983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Sulfonation, primarily facilitated by sulfotransferases, plays a crucial role in the detoxification pathways of endogenous substances and xenobiotics, promoting metabolism and elimination. Traditionally, this bioconversion has been attributed to a family of human cytosolic sulfotransferases (hSULTs) known for their high sequence similarity and dependence on 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as a sulfo donor. However, recent studies have revealed the presence of PAPS-dependent sulfotransferases within gut commensals, indicating that the gut microbiome may harbor a diverse array of sulfotransferase enzymes and contribute to detoxification processes via sulfation. In this study, we investigated the prevalence of sulfotransferases in members of the human gut microbiome. Interestingly, we stumbled upon PAPS-independent sulfotransferases, known as aryl-sulfate sulfotransferases (ASSTs). Our bioinformatics analyses revealed that members of the gut microbial genus Sutterella harbor multiple asst genes, possibly encoding multiple ASST enzymes within its members. Fluctuations in the microbes of the genus Sutterella have been associated with various health conditions. For this reason, we characterized 17 different ASSTs from Sutterella wadsworthensis 3_1_45B. Our findings reveal that SwASSTs share similarities with E. coli ASST but also exhibit significant structural variations and sequence diversity. These differences might drive potential functional diversification and likely reflect an evolutionary divergence from their PAPS-dependent counterparts.
Collapse
Affiliation(s)
- Lauryn Langford
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281, USA
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Dhara D Shah
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281, USA
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| |
Collapse
|
106
|
Zhang GL, Wang ZC, Li CP, Chen DP, Li ZR, Li Y, Ouyang GP. Discovery of tryptanthrin analogues bearing F and piperazine moieties as novel phytopathogenic antibacterial and antiviral agents. PEST MANAGEMENT SCIENCE 2024; 80:1026-1038. [PMID: 37842924 DOI: 10.1002/ps.7834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Plant bacterial infections and plant viruses seriously affect the yield and quality of crops. Based on the various activities of tryptanthrin, a series of tryptanthrin analogues bearing F and piperazine moieties were designed, synthesized, and evaluated for their biological activities against three plant bacteria and tobacco mosaic virus (TMV). RESULTS Bioassay results indicated that compounds 6a-6l displayed excellent antibacterial activities in vitro and 6a-6c and 6g exhibited better antiviral activities against TMV than commercial ribavirin. In particular, 6b showed the most effect on Xanthomonas oryzae pv. oryzae (Xoo) with a half-maximal effective concentration (EC50 ) of 1.26 μg mL-1 , compared with the commercial pesticide bismerthiazol (BT; EC50 = 34.3 μg mL-1 ) and thiodiazole copper (TC; EC50 = 73.3 μg mL-1 ). Meanwhile, 6a also had the best antiviral activity at 500 μg mL-1 for curative, protection, and inactivation purposes, compared with ribavirin in vivo. CONCLUSION Compound 6b could cause changes in bacterial morphology, induce the accumulation of reactive oxygen species, promote apoptosis of bacterial cells, inhibit the formation of biofilm, and block the growth of Xoo cells. Proteomic analysis revealed major differences in the bacterial secretory system pathways T2SS and T6SS, which inhibited membrane transport. Molecular docking revealed that 6a and 6g could interact with TMV coat protein preventing virus assembly. These results suggest that tryptanthrin analogues bearing F and piperazine moieties could be promising candidate agents for antibacterial and antiviral use in agricultural production. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guang-Long Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhen-Chao Wang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Cheng-Peng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Dan-Ping Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Zhu-Rui Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Yan Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Gui-Ping Ouyang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| |
Collapse
|
107
|
Gupta G, Chauhan PS, Jha PN, Verma RK, Singh S, Yadav VK, Sahoo DK, Patel A. Secretory molecules from secretion systems fine-tune the host-beneficial bacteria (PGPRs) interaction. Front Microbiol 2024; 15:1355750. [PMID: 38468848 PMCID: PMC10925705 DOI: 10.3389/fmicb.2024.1355750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Numerous bacterial species associate with plants through commensal, mutualistic, or parasitic association, affecting host physiology and health. The mechanism for such association is intricate and involves the secretion of multiple biochemical substances through dedicated protein systems called secretion systems SS. Eleven SS pathways deliver protein factors and enzymes in their immediate environment or host cells, as well as in competing microbial cells in a contact-dependent or independent fashion. These SS are instrumental in competition, initiation of infection, colonization, and establishment of association (positive or negative) with host organisms. The role of SS in infection and pathogenesis has been demonstrated for several phytopathogens, including Agrobacterium, Xanthomonas, Ralstonia, and Pseudomonas. Since there is overlap in mechanisms of establishing association with host plants, several studies have investigated the role of SSs in the interaction of plant and beneficial bacteria, including symbiotic rhizobia and plant growth bacteria (PGPB). Therefore, the present review updates the role of different SSs required for the colonization of beneficial bacteria such as rhizobia, Burkholderia, Pseudomonas, Herbaspirillum, etc., on or inside plants, which can lead to a long-term association. Most SS like T3SS, T4SS, T5SS, and T6SS are required for the antagonistic activity needed to prevent competing microbes, including phytopathogens, ameliorate biotic stress in plants, and produce substances for successful colonization. Others are required for chemotaxis, adherence, niche formation, and suppression of immune response to establish mutualistic association with host plants.
Collapse
Affiliation(s)
- Garima Gupta
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
- Microbial Technologies Group, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Puneet Singh Chauhan
- Microbial Technologies Group, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Prabhat Nath Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Rakesh Kumar Verma
- Department of Biosciences, SLAS Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Sachidanand Singh
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
108
|
Fiedler SM, Graumann PL. B. subtilis Sec and Srp Systems Show Dynamic Adaptations to Different Conditions of Protein Secretion. Cells 2024; 13:377. [PMID: 38474341 PMCID: PMC10930709 DOI: 10.3390/cells13050377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
SecA is a widely conserved ATPase that drives the secretion of proteins across the cell membrane via the SecYEG translocon, while the SRP system is a key player in the insertion of membrane proteins via SecYEG. How SecA gains access to substrate proteins in Bacillus subtilis cells and copes with an increase in substrate availability during biotechnologically desired, high-level expression of secreted proteins is poorly understood. Using single molecule tracking, we found that SecA localization closely mimics that of ribosomes, and its molecule dynamics change similarly to those of ribosomes after inhibition of transcription or translation. These data suggest that B. subtilis SecA associates with signal peptides as they are synthesized at the ribosome, similar to the SRP system. In agreement with this, SecA is a largely mobile cytosolic protein; only a subset is statically associated with the cell membrane, i.e., likely with the Sec translocon. SecA dynamics were considerably different during the late exponential, transition, and stationary growth phases, revealing that single molecule dynamics considerably alter during different genetic programs in cells. During overproduction of a secretory protein, AmyE, SecA showed the strongest changes during the transition phase, i.e., where general protein secretion is high. To investigate whether the overproduction of AmyE also has an influence on other proteins that interact with SecYEG, we analyzed the dynamics of SecDF, YidC, and FtsY with and without AmyE overproduction. SecDF and YidC did not reveal considerable differences in single molecule dynamics during overexpression, while the SRP component FtsY changed markedly in its behavior and became more statically engaged. These findings indicate that the SRP pathway becomes involved in protein secretion upon an overload of proteins carrying a signal sequence. Thus, our data reveal high plasticity of the SecA and SRP systems in dealing with different needs for protein secretion.
Collapse
Affiliation(s)
| | - Peter L. Graumann
- Fachbereich Chemie und Zentrum für Synthetische Mikrobiologie, SYNMIKRO, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany;
| |
Collapse
|
109
|
Bhardwaj RG, Khalaf ME, Karched M. Secretome analysis and virulence assessment in Abiotrophia defectiva. J Oral Microbiol 2024; 16:2307067. [PMID: 38352067 PMCID: PMC10863525 DOI: 10.1080/20002297.2024.2307067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
Background Abiotrophia defectiva, although infrequently occurring, is a notable cause of culture-negative infective endocarditis with limited research on its virulence. Associated with oral infections such as dental caries, exploring its secretome may provide insights into virulence mechanisms. Our study aimed to analyze and characterize the secretome of A. defectiva strain CCUG 27639. Methods Secretome of A. defectiva was prepared from broth cultures and subjected to mass spectrometry and proteomics for protein identification. Inflammatory potential of the secretome was assessed by ELISA. Results Eighty-four proteins were identified, with diverse subcellular localizations predicted by PSORTb. Notably, 20 were cytoplasmic, 12 cytoplasmic membrane, 5 extracellular, and 9 cell wall-anchored proteins. Bioinformatics tools revealed 54 proteins secreted via the 'Sec' pathway and 8 via a non-classical pathway. Moonlighting functions were found in 23 proteins, with over 20 exhibiting potential virulence properties, including peroxiredoxin and oligopeptide ABC transporter substrate-binding protein. Gene Ontology and KEGG analyses categorized protein sequences in various pathways. STRING analysis revealed functional protein association networks. Cytokine profiling demonstrated significant proinflammatory cytokine release (IL-8, IL-1β, and CCL5) from human PBMCs. Conclusions Our study provides a comprehensive understanding of A. defectiva's secretome, laying the foundation for insights into its pathogenicity.
Collapse
Affiliation(s)
- Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences College of Dentistry, Kuwait University, Safat, Kuwait
| | - Mai E Khalaf
- Department of General Dental Practice, College of Dentistry, Kuwait University, Safat, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences College of Dentistry, Kuwait University, Safat, Kuwait
| |
Collapse
|
110
|
Castelli M, Nardi T, Gammuto L, Bellinzona G, Sabaneyeva E, Potekhin A, Serra V, Petroni G, Sassera D. Host association and intracellularity evolved multiple times independently in the Rickettsiales. Nat Commun 2024; 15:1093. [PMID: 38321113 PMCID: PMC10847448 DOI: 10.1038/s41467-024-45351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The order Rickettsiales (Alphaproteobacteria) encompasses multiple diverse lineages of host-associated bacteria, including pathogens, reproductive manipulators, and mutualists. Here, in order to understand how intracellularity and host association originated in this order, and whether they are ancestral or convergently evolved characteristics, we built a large and phylogenetically-balanced dataset that includes de novo sequenced genomes and a selection of published genomic and metagenomic assemblies. We perform detailed functional reconstructions that clearly indicates "late" and parallel evolution of obligate host-association in different Rickettsiales lineages. According to the depicted scenario, multiple independent horizontal acquisitions of transporters led to the progressive loss of biosynthesis of nucleotides, amino acids and other metabolites, producing distinct conditions of host-dependence. Each clade experienced a different pattern of evolution of the ancestral arsenal of interaction apparatuses, including development of specialised effectors involved in the lineage-specific mechanisms of host cell adhesion and/or invasion.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Greta Bellinzona
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Elena Sabaneyeva
- Department of Cytology and Histology, Saint Petersburg State University, Petersburg, Russia
| | - Alexey Potekhin
- Department of Microbiology, Saint Petersburg State University, Petersburg, Russia
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | | | | | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
- IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
111
|
Hahn J, Ding S, Im J, Harimoto T, Leong KW, Danino T. Bacterial therapies at the interface of synthetic biology and nanomedicine. NATURE REVIEWS BIOENGINEERING 2024; 2:120-135. [PMID: 38962719 PMCID: PMC11218715 DOI: 10.1038/s44222-023-00119-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 07/05/2024]
Abstract
Bacteria are emerging as living drugs to treat a broad range of disease indications. However, the inherent advantages of these replicating and immunostimulatory therapies also carry the potential for toxicity. Advances in synthetic biology and the integration of nanomedicine can address this challenge through the engineering of controllable systems that regulate spatial and temporal activation for improved safety and efficacy. Here, we review recent progress in nanobiotechnology-driven engineering of bacteria-based therapies, highlighting limitations and opportunities that will facilitate clinical translation.
Collapse
Affiliation(s)
- Jaeseung Hahn
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jongwon Im
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Tetsuhiro Harimoto
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| |
Collapse
|
112
|
Sitsel O, Wang Z, Janning P, Kroczek L, Wagner T, Raunser S. Yersinia entomophaga Tc toxin is released by T10SS-dependent lysis of specialized cell subpopulations. Nat Microbiol 2024; 9:390-404. [PMID: 38238469 PMCID: PMC10847048 DOI: 10.1038/s41564-023-01571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/29/2023] [Indexed: 02/04/2024]
Abstract
Disease-causing bacteria secrete numerous toxins to invade and subjugate their hosts. Unlike many smaller toxins, the secretion machinery of most large toxins remains enigmatic. By combining genomic editing, proteomic profiling and cryo-electron tomography of the insect pathogen Yersinia entomophaga, we demonstrate that a specialized subset of these cells produces a complex toxin cocktail, including the nearly ribosome-sized Tc toxin YenTc, which is subsequently exported by controlled cell lysis using a transcriptionally coupled, pH-dependent type 10 secretion system (T10SS). Our results dissect the Tc toxin export process by a T10SS, identifying that T10SSs operate via a previously unknown lytic mode of action and establishing them as crucial players in the size-insensitive release of cytoplasmically folded toxins. With T10SSs directly embedded in Tc toxin operons of major pathogens, we anticipate that our findings may model an important aspect of pathogenesis in bacteria with substantial impact on agriculture and healthcare.
Collapse
Affiliation(s)
- Oleg Sitsel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Zhexin Wang
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Petra Janning
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Lara Kroczek
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Thorsten Wagner
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
113
|
Lu L, Wang J, Wang C, Zhu J, Wang H, Liao L, Zhao Y, Wang X, Yang C, He Z, Li M. Plant-derived virulence arresting drugs as novel antimicrobial agents: Discovery, perspective, and challenges in clinical use. Phytother Res 2024; 38:727-754. [PMID: 38014754 DOI: 10.1002/ptr.8072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/23/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Antimicrobial resistance (AMR) emerges as a severe crisis to public health and requires global action. The occurrence of bacterial pathogens with multi-drug resistance appeals to exploring alternative therapeutic strategies. Antivirulence treatment has been a positive substitute in seeking to circumvent AMR, which aims to target virulence factors directly to combat bacterial infections. Accumulated evidence suggests that plant-derived natural products, which have been utilized to treat infectious diseases for centuries, can be abundant sources for screening potential virulence-arresting drugs (VADs) to develop advanced therapeutics for infectious diseases. This review sums up some virulence factors and their actions in various species of bacteria, as well as recent advances pertaining to plant-derived natural products as VAD candidates. Furthermore, we also discuss natural VAD-related clinical trials and patents, the perspective of VAD-based advanced therapeutics for infectious diseases and critical challenges hampering clinical use of VADs, and genomics-guided identification for VAD therapeutic. These newly discovered natural VADs will be encouraging and optimistic candidates that may sustainably combat AMR.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Chongrui Wang
- Faculty of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P.R. China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Hongping Wang
- Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, Sichuan, P.R. China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Yuting Zhao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Xiaobo Wang
- Department of Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, P.R. China
| | - Chen Yang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Zhengyou He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| |
Collapse
|
114
|
Connor A, Zha RH, Koffas M. Production and secretion of recombinant spider silk in Bacillus megaterium. Microb Cell Fact 2024; 23:35. [PMID: 38279170 PMCID: PMC10821235 DOI: 10.1186/s12934-024-02304-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Silk proteins have emerged as versatile biomaterials with unique chemical and physical properties, making them appealing for various applications. Among them, spider silk, known for its exceptional mechanical strength, has attracted considerable attention. Recombinant production of spider silk represents the most promising route towards its scaled production; however, challenges persist within the upstream optimization of host organisms, including toxicity and low yields. The high cost of downstream cell lysis and protein purification is an additional barrier preventing the widespread production and use of spider silk proteins. Gram-positive bacteria represent an attractive, but underexplored, microbial chassis that may enable a reduction in the cost and difficulty of recombinant silk production through attributes that include, superior secretory capabilities, frequent GRAS status, and previously established use in industry. RESULTS In this study, we explore the potential of gram-positive hosts by engineering the first production and secretion of recombinant spider silk in the Bacillus genus. Using an industrially relevant B. megaterium host, it was found that the Sec secretion pathway enables secretory production of silk, however, the choice of signal sequence plays a vital role in successful secretion. Attempts at increasing secreted titers revealed that multiple translation initiation sites in tandem do not significantly impact silk production levels, contrary to previous findings for other gram-positive hosts and recombinant proteins. Notwithstanding, targeted amino acid supplementation in minimal media was found to increase production by 135% relative to both rich media and unaltered minimal media, yielding secretory titers of approximately 100 mg/L in flask cultures. CONCLUSION It is hypothesized that the supplementation strategy addressed metabolic bottlenecks, specifically depletion of ATP and NADPH within the central metabolism, that were previously observed for an E. coli host producing the same recombinant silk construct. Furthermore, this study supports the hypothesis that secretion mitigates the toxicity of the produced silk protein on the host organism and enhances host performance in glucose-based minimal media. While promising, future research is warranted to understand metabolic changes more precisely in the Bacillus host system in response to silk production, optimize signal sequences and promoter strengths, investigate the mechanisms behind the effect of tandem translation initiation sites, and evaluate the performance of this system within a bioreactor.
Collapse
Affiliation(s)
- Alexander Connor
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - R Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
115
|
Cinar MS, Niyas A, Avci FY. Serine-rich repeat proteins: well-known yet little-understood bacterial adhesins. J Bacteriol 2024; 206:e0024123. [PMID: 37975670 PMCID: PMC10810200 DOI: 10.1128/jb.00241-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Serine-rich-repeat proteins (SRRPs) are large mucin-like glycoprotein adhesins expressed by a plethora of pathogenic and symbiotic Gram-positive bacteria. SRRPs play major functional roles in bacterial-host interactions, like adhesion, aggregation, biofilm formation, virulence, and pathogenesis. Through their functional roles, SRRPs aid in the development of host microbiomes but also diseases like infective endocarditis, otitis media, meningitis, and pneumonia. SRRPs comprise shared domains across different species, including two or more heavily O-glycosylated long stretches of serine-rich repeat regions. With loci that can be as large as ~40 kb and can encode up to 10 distinct glycosyltransferases that specifically facilitate SRRP glycosylation, the SRRP loci makes up a significant portion of the bacterial genome. The significance of SRRPs and their glycans in host-microbe communications is becoming increasingly evident. Studies are beginning to reveal the glycosylation pathways and mature O-glycans presented by SRRPs. Here we review the glycosylation machinery of SRRPs across species and discuss the functional roles and clinical manifestations of SRRP glycosylation.
Collapse
Affiliation(s)
- Mukaddes S. Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Afaq Niyas
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y. Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
116
|
Peng M, Lin W, Zhou A, Jiang Z, Zhou F, Wang Z. High genetic diversity and different type VI secretion systems in Enterobacter species revealed by comparative genomics analysis. BMC Microbiol 2024; 24:26. [PMID: 38238664 PMCID: PMC10797944 DOI: 10.1186/s12866-023-03164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024] Open
Abstract
The human-pathogenic Enterobacter species are widely distributed in diverse environmental conditions, however, the understanding of the virulence factors and genetic variations within the genus is very limited. In this study, we performed comparative genomics analysis of 49 strains originated from diverse niches and belonged to eight Enterobacter species, in order to further understand the mechanism of adaption to the environment in Enterobacter. The results showed that they had an open pan-genome and high genomic diversity which allowed adaptation to distinctive ecological niches. We found the number of secretion systems was the highest among various virulence factors in these Enterobacter strains. Three types of T6SS gene clusters including T6SS-A, T6SS-B and T6SS-C were detected in most Enterobacter strains. T6SS-A and T6SS-B shared 13 specific core genes, but they had different gene structures, suggesting they probably have different biological functions. Notably, T6SS-C was restricted to E. cancerogenus. We detected a T6SS gene cluster, highly similar to T6SS-C (91.2%), in the remote related Citrobacter rodenitum, suggesting that this unique gene cluster was probably acquired by horizontal gene transfer. The genomes of Enterobacter strains possess high genetic diversity, limited number of conserved core genes, and multiple copies of T6SS gene clusters with differentiated structures, suggesting that the origins of T6SS were not by duplication instead by independent acquisition. These findings provide valuable information for better understanding of the functional features of Enterobacter species and their evolutionary relationships.
Collapse
Affiliation(s)
- Mu Peng
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China.
- College of Biological and Food Engineering, College of Biological and Food Engineering, Hubei Minzu University, Hubei Minzu University, No. 39 Xueyuan Street, Enshi, 445000, China.
| | - Weiyuan Lin
- College of Biological and Food Engineering, College of Biological and Food Engineering, Hubei Minzu University, Hubei Minzu University, No. 39 Xueyuan Street, Enshi, 445000, China
| | - Aifen Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Zhihui Jiang
- College of Biological and Food Engineering, College of Biological and Food Engineering, Hubei Minzu University, Hubei Minzu University, No. 39 Xueyuan Street, Enshi, 445000, China
| | - Fangzhen Zhou
- College of Biological and Food Engineering, College of Biological and Food Engineering, Hubei Minzu University, Hubei Minzu University, No. 39 Xueyuan Street, Enshi, 445000, China
| | - Zhiyong Wang
- College of Biological and Food Engineering, College of Biological and Food Engineering, Hubei Minzu University, Hubei Minzu University, No. 39 Xueyuan Street, Enshi, 445000, China.
| |
Collapse
|
117
|
Li T, Xu B, Chen H, Shi Y, Li J, Yu M, Xia S, Wu S. Gut toxicity of polystyrene microplastics and polychlorinated biphenyls to Eisenia fetida: Single and co-exposure effects with a focus on links between gut bacteria and bacterial translocation stemming from gut barrier damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168254. [PMID: 37923278 DOI: 10.1016/j.scitotenv.2023.168254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Microplastics' (MPs) ability to sorb and transport polychlorinated biphenyls (PCBs) in soil ecosystems warrants significant attention. Although organisms mainly encounter pollutants through the gut, the combined pollution impact of MPs and PCBs on soil fauna gut toxicity remains incompletely understood. Consequently, this study examined the gut toxicity of polystyrene MPs (PS-MPs) and PCB126 on Eisenia fetida, emphasizing the links between gut bacteria and bacterial translocation instigated by gut barrier impairment. Our findings underscored that E. fetida could ingest PS-MPs, which mitigated the PCB126 accumulation in E. fetida by 9.43 %. Exposure to PCB126 inhibited the expression of gut tight junction (TJ) protein genes. Although the presence of PS-MPs attenuated this suppression, it didn't alleviate gut barrier damage and bacterial translocation in the co-exposure group. This group demonstrated a significantly increased level of gut bacterial load (BLT, ANOVA, p = 0.005 vs control group) and lipopolysaccharide-binding protein (LBP, ANOVA, all p < 0.001 vs control, PCB, and PS groups), both of which displayed significant positive correlations with antibacterial defense. Furthermore, exposure to PS-MPs and PCB126, particularly within the co-exposure group, results in a marked decline in the dispersal ability of gut bacteria. This leads to dysbiosis (Adonis, R2 = 0.294, p = 0.001), with remarkable signature taxa such as Janthinobacterium, Microbacterium and Pseudomonas, being implicated in gut barrier dysfunction. This research illuminates the mechanism of gut toxicity induced by PS-MPs and PCB126 combined pollution in earthworms, providing novel insights for the ecological risk assessment of soil.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Baohua Xu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Chen
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Shi
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mengwei Yu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shaohui Xia
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shijin Wu
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
118
|
Ramamoorthy S, Pena M, Ghosh P, Liao YY, Paret M, Jones JB, Potnis N. Transcriptome profiling of type VI secretion system core gene tssM mutant of Xanthomonas perforans highlights regulators controlling diverse functions ranging from virulence to metabolism. Microbiol Spectr 2024; 12:e0285223. [PMID: 38018859 PMCID: PMC10782981 DOI: 10.1128/spectrum.02852-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE T6SS has received attention due to its significance in mediating interorganismal competition through contact-dependent release of effector molecules into prokaryotic and eukaryotic cells. Reverse-genetic studies have indicated the role of T6SS in virulence in a variety of plant pathogenic bacteria, including the one studied here, Xanthomonas. However, it is not clear whether such effect on virulence is merely due to a shift in the microbiome-mediated protection or if T6SS is involved in a complex virulence regulatory network. In this study, we conducted in vitro transcriptome profiling in minimal medium to decipher the signaling pathways regulated by tssM-i3* in X. perforans AL65. We show that TssM-i3* regulates the expression of a suite of genes associated with virulence and metabolism either directly or indirectly by altering the transcription of several regulators. These findings further expand our knowledge on the intricate molecular circuits regulated by T6SS in phytopathogenic bacteria.
Collapse
Affiliation(s)
- Sivakumar Ramamoorthy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Michelle Pena
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Palash Ghosh
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Ying-Yu Liao
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Mathews Paret
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
119
|
Wierz JC, Dirksen P, Kirsch R, Krüsemer R, Weiss B, Pauchet Y, Engl T, Kaltenpoth M. Intracellular symbiont Symbiodolus is vertically transmitted and widespread across insect orders. THE ISME JOURNAL 2024; 18:wrae099. [PMID: 38874172 PMCID: PMC11322605 DOI: 10.1093/ismejo/wrae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/05/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Insects engage in manifold interactions with bacteria that can shift along the parasitism-mutualism continuum. However, only a small number of bacterial taxa managed to successfully colonize a wide diversity of insects, by evolving mechanisms for host-cell entry, immune evasion, germline tropism, reproductive manipulation, and/or by providing benefits to the host that stabilize the symbiotic association. Here, we report on the discovery of an Enterobacterales endosymbiont (Symbiodolus, type species Symbiodolus clandestinus) that is widespread across at least six insect orders and occurs at high prevalence within host populations. Fluorescence in situ hybridization in several Coleopteran and one Dipteran species revealed Symbiodolus' intracellular presence in all host life stages and across tissues, with a high abundance in female ovaries, indicating transovarial vertical transmission. Symbiont genome sequencing across 16 host taxa revealed a high degree of functional conservation in the eroding and transposon-rich genomes. All sequenced Symbiodolus genomes encode for multiple secretion systems, alongside effectors and toxin-antitoxin systems, which likely facilitate host-cell entry and interactions with the host. However, Symbiodolus-infected insects show no obvious signs of disease, and biosynthetic pathways for several amino acids and cofactors encoded by the bacterial genomes suggest that the symbionts may also be able to provide benefits to the hosts. A lack of host-symbiont cospeciation provides evidence for occasional horizontal transmission, so Symbiodolus' success is likely based on a mixed transmission mode. Our findings uncover a hitherto undescribed and widespread insect endosymbiont that may present valuable opportunities to unravel the molecular underpinnings of symbiosis establishment and maintenance.
Collapse
Affiliation(s)
- Jürgen C Wierz
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Philipp Dirksen
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Roy Kirsch
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ronja Krüsemer
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Benjamin Weiss
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Yannick Pauchet
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Tobias Engl
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
120
|
Marquez CA, Oh CI, Ahn G, Shin WR, Kim YH, Ahn JY. Synergistic vesicle-vector systems for targeted delivery. J Nanobiotechnology 2024; 22:6. [PMID: 38167116 PMCID: PMC10763086 DOI: 10.1186/s12951-023-02275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
With the immense progress in drug delivery systems (DDS) and the rise of nanotechnology, challenges such as target specificity remain. The vesicle-vector system (VVS) is a delivery system that uses lipid-based vesicles as vectors for a targeted drug delivery. When modified with target-probing materials, these vesicles become powerful vectors for drug delivery with high target specificity. In this review, we discuss three general types of VVS based on different modification strategies: (1) vesicle-probes; (2) vesicle-vesicles; and (3) genetically engineered vesicles. The synthesis of each VVS type and their corresponding properties that are advantageous for targeted drug delivery, are also highlighted. The applications, challenges, and limitations of VVS are briefly examined. Finally, we share a number of insights and perspectives regarding the future of VVS as a targeted drug delivery system at the nanoscale.
Collapse
Affiliation(s)
- Christine Ardelle Marquez
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Cho-Im Oh
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Gna Ahn
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Woo-Ri Shin
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St, Philadelphia, PA, 19104, USA
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Ji-Young Ahn
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
121
|
Orsini Delgado ML, Gamelas Magalhaes J, Morra R, Cultrone A. Muropeptides and muropeptide transporters impact on host immune response. Gut Microbes 2024; 16:2418412. [PMID: 39439228 PMCID: PMC11509177 DOI: 10.1080/19490976.2024.2418412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
In bacteria, the cell envelope is the key element surrounding and protecting the bacterial content from mechanical or osmotic damages. It allows the selective interchanges of solutes, ions, cellular debris, and drugs between the cellular compartments and the external environment, thanks to the presence of transmembrane proteins called transporters. The major component of the cell envelope is the peptidoglycan, consisting of long linear glycan strands cross-linked by short peptide stems. During cell growth or under stress conditions, peptidoglycan fragments, the muropeptides, are released by bacteria and recognized by the host Pattern Recognition Receptor, promoting the activation of their innate defense mechanisms. The review sums up the salient aspects of microbiota-host interaction with a focus on the NOD-dependent immune response to bacterial peptidoglycan and on the accountability of muropeptide transporters in the crosstalk with the host and in antibiotic resistance. Furthermore, it retraces the discoveries and applications of microorganisms-derived components such as vaccines or vaccine adjuvants.
Collapse
|
122
|
Wang S, Mu L, Yu C, He Y, Hu X, Jiao Y, Xu Z, You S, Liu SL, Bao H. Microbial collaborations and conflicts: unraveling interactions in the gut ecosystem. Gut Microbes 2024; 16:2296603. [PMID: 38149632 PMCID: PMC10761165 DOI: 10.1080/19490976.2023.2296603] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023] Open
Abstract
The human gut microbiota constitutes a vast and complex community of microorganisms. The myriad of microorganisms present in the intestinal tract exhibits highly intricate interactions, which play a crucial role in maintaining the stability and balance of the gut microbial ecosystem. These interactions, in turn, influence the overall health of the host. The mammalian gut microbes have evolved a wide range of mechanisms to suppress or even eliminate their competitors for nutrients and space. Simultaneously, extensive cooperative interactions exist among different microbes to optimize resource utilization and enhance their own fitness. This review will focus on the competitive mechanisms among members of the gut microorganisms and discuss key modes of actions, including bacterial secretion systems, bacteriocins, membrane vesicles (MVs) etc. Additionally, we will summarize the current knowledge of the often-overlooked positive interactions within the gut microbiota, and showcase representative machineries. This information will serve as a reference for better understanding the complex interactions occurring within the mammalian gut environment. Understanding the interaction dynamics of competition and cooperation within the gut microbiota is crucial to unraveling the ecology of the mammalian gut microbial communities. Targeted interventions aimed at modulating these interactions may offer potential therapeutic strategies for disease conditions.
Collapse
Affiliation(s)
- Shuang Wang
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- Department of Biopharmaceutical Sciences (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lingyi Mu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chong Yu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Yuting He
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Xinliang Hu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Yanlei Jiao
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Ziqiong Xu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shaohui You
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Hongxia Bao
- Genomics Research Center, Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD) College of Pharmacy, Harbin Medical University, Harbin, China
- Harbin Medical University-University of Calgary Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| |
Collapse
|
123
|
Franco IS, Pais SV, Charro N, Mota LJ. Effector Translocation Assay: Differential Solubilization. Methods Mol Biol 2024; 2715:547-561. [PMID: 37930551 DOI: 10.1007/978-1-0716-3445-5_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The identification of effector proteins delivered into mammalian host cells by bacterial pathogens possessing syringe-like nanomachines is an important step towards an understanding of the mechanisms underlying virulence of these pathogens. In this chapter, we describe a method based on mammalian tissue culture infection models where incubation with a non-ionic detergent (Triton X-100) enables solubilization of host cell membranes but not of bacterial membranes. This allows the isolation of a Triton-soluble fraction lacking bacteria but enriched in proteins present in the host cell cytoplasm, nucleus, and plasma membrane. Using appropriate controls, this fraction can be probed by immunoblotting for the presence of bacterial effector proteins delivered into host cells.
Collapse
Affiliation(s)
- Irina S Franco
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Sara V Pais
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Nuno Charro
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Luís Jaime Mota
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| |
Collapse
|
124
|
Diepold A. Defining Assembly Pathways by Fluorescence Microscopy. Methods Mol Biol 2024; 2715:383-394. [PMID: 37930541 DOI: 10.1007/978-1-0716-3445-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Bacterial secretion systems are among the largest protein complexes in prokaryotes and display remarkably complex architectures. Their assembly often follows clearly defined pathways. Deciphering these pathways not only reveals how bacteria accomplish to build these large functional complexes but can provide crucial information on the interactions and subcomplexes within secretion systems, their distribution within the bacterium, and even functional insights. Fluorescence microscopy provides a powerful tool for biological imaging, which presents an interesting method to accurately define the biogenesis of macromolecular complexes using fluorescently labeled components. Here, I describe the use of this method to decipher the assembly pathway of bacterial secretion systems.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
125
|
Li N, Xiao X, Zhang H, Bai Z, Li M, Sun J, Dong Y, Zhu W, Fei Z, Sun X, Xiao P, Gao Y, Zhou D. Sterile soil mitigates the intergenerational loss of gut microbial diversity and anxiety-like behavior induced by antibiotics in mice. Brain Behav Immun 2024; 115:179-190. [PMID: 37848098 DOI: 10.1016/j.bbi.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
The decline in gut microbial diversity in modern humans is closely associated with the rising prevalence of various diseases. It is imperative to investigate the underlying causes of gut microbial loss and restoring methods. Although the impact of non-perinatal antibiotic use on gut microbiota has been recognized, its intergenerational effects remain unexplored. Our previous research has highlighted soil in the farm environment as a key factor for gut microbiome health by restoring gut microbial diversity and balance. In this study, we investigated the intergenerational consequences of antibiotic exposure and the therapeutic potential of sterile soil. We treated C57BL/6 mice with vancomycin and streptomycin for 2 weeks continuously, followed by a 4-8 week withdrawal period before breeding. The process was repeated across 3 generations. Half of the mice in each generation received an oral sterile soil intervention. We assessed gut microbial diversity, anxiety behavior, microglial reactivity, and gut barrier integrity across generations. Antibiotic exposure led to a decrease in gut microbial diversity over generations, along with aggravated anxiety behavior, microgliosis, and altered intestinal tight junction protein expression. Oral sterile soil intervention restored gut microbial diversity in adult mice across generations, concomitantly rescuing abnormalities in behavior, microgliosis, and intestinal barrier integrity. In conclusion, this study simulated an important process of the progressive loss of gut microbiota diversity in modern humans and demonstrated the potential of sterile soil to reverse this process. This study provides a theoretical and experimental basis for research and interventions targeting multiple modern chronic diseases related to intestinal microorganisms.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Child Development and Learning Science of Department of Education, Southeast University, Nanjing 210096, China
| | - Xiaoao Xiao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Honglin Zhang
- College of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Zhimao Bai
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, China
| | - Mengjie Li
- Key Laboratory of Child Development and Learning Science of Department of Education, Southeast University, Nanjing 210096, China
| | - Jia Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yangyang Dong
- Key Laboratory of Child Development and Learning Science of Department of Education, Southeast University, Nanjing 210096, China
| | - Wenyong Zhu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Zhongjie Fei
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Yuanqing Gao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Dongrui Zhou
- Key Laboratory of Child Development and Learning Science of Department of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
126
|
Di Mauro S, Filipe J, Facchin A, Roveri L, Addis MF, Monistero V, Piccinini R, Sala G, Pravettoni D, Zamboni C, Ceciliani F, Lecchi C. The secretome of Staphylococcus aureus strains with opposite within-herd epidemiological behavior affects bovine mononuclear cell response. Vet Res 2023; 54:120. [PMID: 38098120 PMCID: PMC10720180 DOI: 10.1186/s13567-023-01247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/19/2023] [Indexed: 12/18/2023] Open
Abstract
Staphylococcus aureus modulates the host immune response directly by interacting with the immune cells or indirectly by secreting molecules (secretome). Relevant differences in virulence mechanisms have been reported for the secretome produced by different S. aureus strains. The present study investigated the S. aureus secretome impact on peripheral bovine mononuclear cells (PBMCs) by comparing two S. aureus strains with opposite epidemiological behavior, the genotype B (GTB)/sequence type (ST) 8, associated with a high within-herd prevalence, and GTS/ST398, associated with a low within-herd prevalence. PBMCs were incubated with different concentrations (0%, 0.5%, 1%, and 2.5%) of GTB/ST8 and GTS/ST398 secretome for 18 and 48 h, and the viability was assessed. The mRNA levels of pro- (IL1-β and STAT1) and anti-inflammatory (IL-10, STAT6, and TGF-β) genes, and the amount of pro- (miR-155-5p and miR-125b-5p) and anti-inflammatory (miR-146a and miR-145) miRNAs were quantified by RT-qPCR. Results showed that incubation with 2.5% of GTB/ST8 secretome increased the viability of cells. In contrast, incubation with the GTS/ST398 secretome strongly decreased cell viability, preventing any further assays. The GTB/ST8 secretome promoted PBMC polarization towards the pro-inflammatory phenotype inducing the overexpression of IL1-β, STAT1 and miR-155-5p, while the expression of genes involved in the anti-inflammatory response was not affected. In conclusion, the challenge of PBMC to the GTS/ST398 secretome strongly impaired cell viability, while exposure to the GTB/ST8 secretome increased cell viability and enhanced a pro-inflammatory response, further highlighting the different effects exerted on host cells by S. aureus strains with epidemiologically divergent behaviors.
Collapse
Affiliation(s)
- Susanna Di Mauro
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
| | - Joel Filipe
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
| | - Alessia Facchin
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
| | - Laura Roveri
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
| | - Maria Filippa Addis
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali-MILab, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Valentina Monistero
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali-MILab, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Renata Piccinini
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
- Laboratorio di Malattie Infettive degli Animali-MILab, Università degli Studi di Milano, Via dell'Università 6, 26900, Lodi, Italy
| | - Giulia Sala
- Department of Veterinary Sciences, University of Pisa, via Livornese s.n.c, 56122, San Piero a Grado, Italy
| | - Davide Pravettoni
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
| | - Clarissa Zamboni
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy
| | - Cristina Lecchi
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, via dell'Università 6, 26900, Lodi, Italy.
| |
Collapse
|
127
|
Wang B, Zhang Z, Xu F, Yang Z, Li Z, Shen D, Wang L, Wu H, Li T, Yan Q, Wei Q, Shao X, Qian G. Soil bacterium manipulates antifungal weapons by sensing intracellular type IVA secretion system effectors of a competitor. THE ISME JOURNAL 2023; 17:2232-2246. [PMID: 37838821 PMCID: PMC10689834 DOI: 10.1038/s41396-023-01533-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Soil beneficial bacteria can effectively inhibit bacterial pathogens by assembling contact-dependent killing weapons, such as the type IVA secretion system (T4ASS). It's not clear whether these antibacterial weapons are involved in biotrophic microbial interactions in soil. Here we showed that an antifungal antibiotic 2,4-DAPG production of the soil bacterium, Pseudomonas protegens can be triggered by another soil bacterium, Lysobacter enzymogenes, via T4ASS by co-culturing on agar plates to mimic cell-to-cell contact. We demonstrated that the induced 2,4-DAPG production of P. protegens is achieved by intracellular detection of the T4ASS effector protein Le1519 translocated from L. enzymogenes. We defined Le1519 as LtaE (Lysobacter T4E triggering antifungal effects), which specifically stimulates the expression of 2,4-DAPG biosynthesis genes in P. protegens, thereby protecting soybean seedlings from infection by the fungus Rhizoctonia solani. We further found that LtaE directly bound to PhlF, a pathway-specific transcriptional repressor of the 2,4-DAPG biosynthesis, then activated the 2,4-DAPG production. Our results highlight a novel pattern of microbial interspecies and interkingdom interactions, providing a unique case for expanding the diversity of soil microbial interactions.
Collapse
Affiliation(s)
- Bingxin Wang
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Zeyu Zhang
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Fugui Xu
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Zixiang Yang
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Zihan Li
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Danyu Shen
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Limin Wang
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Huijun Wu
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Qi Wei
- Industrial Crops Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiaolong Shao
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Guoliang Qian
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| |
Collapse
|
128
|
Ramdass AC, Rampersad SN. Genome features of a novel hydrocarbonoclastic Chryseobacterium oranimense strain and its comparison to bacterial oil-degraders and to other C. oranimense strains. DNA Res 2023; 30:dsad025. [PMID: 37952165 PMCID: PMC10710014 DOI: 10.1093/dnares/dsad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
For the first time, we report the whole genome sequence of a hydrocarbonoclastic Chryseobacterium oranimense strain isolated from Trinidad and Tobago (COTT) and its genes involved in the biotransformation of hydrocarbons and xenobiotics through functional annotation. The assembly consisted of 11 contigs with 2,794 predicted protein-coding genes which included a diverse group of gene families involved in aliphatic and polycyclic hydrocarbon degradation. Comparative genomic analyses with 18 crude-oil degrading bacteria in addition to two C. oranimense strains not associated with oil were carried out. The data revealed important differences in terms of annotated genes involved in the hydrocarbon degradation process that may explain the molecular mechanisms of hydrocarbon and xenobiotic biotransformation. Notably, many gene families were expanded to explain COTT's competitive ability to manage habitat-specific stressors. Gene-based evidence of the metabolic potential of COTT supports the application of indigenous microbes for the remediation of polluted terrestrial environments and provides a genomic resource for improving our understanding of how to optimize these characteristics for more effective bioremediation.
Collapse
Affiliation(s)
- Amanda Christine Ramdass
- Biochemistry Research Lab (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies
| | - Sephra Nalini Rampersad
- Biochemistry Research Lab (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago, West Indies
| |
Collapse
|
129
|
Soto Perezchica MM, Guerrero Barrera AL, Avelar Gonzalez FJ, Quezada Tristan T, Macias Marin O. Actinobacillus pleuropneumoniae, surface proteins and virulence: a review. Front Vet Sci 2023; 10:1276712. [PMID: 38098987 PMCID: PMC10720984 DOI: 10.3389/fvets.2023.1276712] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/17/2023] [Indexed: 12/17/2023] Open
Abstract
Actinobacillus pleuropneumoniae (App) is a globally distributed Gram-negative bacterium that produces porcine pleuropneumonia. This highly contagious disease produces high morbidity and mortality in the swine industry. However, no effective vaccine exists to prevent it. The infection caused by App provokes characteristic lesions, such as edema, inflammation, hemorrhage, and necrosis, that involve different virulence factors. The colonization and invasion of host surfaces involved structures and proteins such as outer membrane vesicles (OMVs), pili, flagella, adhesins, outer membrane proteins (OMPs), also participates proteases, autotransporters, and lipoproteins. The recent findings on surface structures and proteins described in this review highlight them as potential immunogens for vaccine development.
Collapse
Affiliation(s)
- María M. Soto Perezchica
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Alma L. Guerrero Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Francisco J. Avelar Gonzalez
- Laboratorio de Estudios Ambientales, Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Teodulo Quezada Tristan
- Departamento de Ciencias Veterinaria, Centro de Ciencias Agropecuarias, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Osvaldo Macias Marin
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
130
|
Maurya S, Arya CK, Parmar N, Sathyanarayanan N, Joshi CG, Ramanathan G. Genomic profiling and characteristics of a C1 degrading heterotrophic fresh-water bacterium Paracoccus sp. strain DMF. Arch Microbiol 2023; 206:6. [PMID: 38015256 DOI: 10.1007/s00203-023-03729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Paracoccus species are metabolically versatile gram-negative, aerobic facultative methylotrophic bacteria showing enormous promise for environmental and bioremediation studies. Here we report, the complete genome analysis of Paracoccus sp. strain DMF (P. DMF) that was isolated from a domestic wastewater treatment plant in Kanpur, India (26.4287 °N, 80.3891 °E) based on its ability to degrade a recalcitrant organic solvent N, N-dimethylformamide (DMF). The results reveal a genome size of 4,202,269 base pairs (bp) with a G + C content of 67.9%. The assembled genome comprises 4141 coding sequences (CDS), 46 RNA sequences, and 2 CRISPRs. Interestingly, catabolic operons related to the conventional marine-based methylated amines (MAs) degradation pathway were functionally annotated within the genome of an obligated aerobic heterotroph that is P. DMF. The genomic data-based characterization presented here for the novel heterotroph P. DMF aims to improve the understanding of the phenotypic gene products, enzymes, and pathways involved with greater emphasis on facultative methylotrophic motility-based latent pathogenicity.
Collapse
Affiliation(s)
- Shiwangi Maurya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Chetan Kumar Arya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Nidhi Parmar
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382 011, India
| | - Nitish Sathyanarayanan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382 011, India
| | - Gurunath Ramanathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
131
|
Delumeau A, Quétel I, Harnais F, Sellin A, Gros O, Talarmin A, Marcelino I. Bacterial microbiota management in free-living amoebae (Heterolobosea lineage) isolated from water: The impact of amoebae identity, grazing conditions, and passage number. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165816. [PMID: 37506913 DOI: 10.1016/j.scitotenv.2023.165816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Free-living amoebae (FLA) are ubiquitous protozoa mainly found in aquatic environments. They are well-known reservoirs and vectors for the transmission of amoeba-resistant bacteria (ARB), most of which are pathogenic to humans. Yet, the natural bacterial microbiota associated with FLA remains largely unknown. Herein, we characterized the natural bacterial microbiota of different FLA species isolated from recreational waters in Guadeloupe. Monoxenic cultures of Naegleria australiensis, Naegleria sp. WTP3, Paravahlkampfia ustiana and Vahlkampfia sp. AK-2007 (Heterolobosea lineage) were cultivated under different grazing conditions, during successive passages. The whole bacterial microbiota of the waters and the amoebal cysts was characterized using 16S rRNA gene metabarcoding. The culturable subset of ARB was analyzed by mass spectrometry (MALDI-TOF MS), conventional 16S PCR, and disk diffusion method (to assess bacterial antibiotic resistance). Transmission electron microscopy was used to locate the ARB inside the amoebae. According to alpha and beta-diversity analyses, FLA bacterial microbiota were significantly different from the ones of their habitat. While Vogesella and Aquabacterium genera were detected in water, the most common ARB belonged to Pseudomonas, Bosea, and Escherichia/Shigella genera. The different FLA species showed both temporary and permanent associations with differentially bacterial taxa, suggesting host specificity. These associations depend on the number of passages and grazing conditions. Additionally, Naegleria, Vahlkampfia and Paravahlkampfia cysts were shown to naturally harbor viable bacteria of the Acinetobacter, Escherichia, Enterobacter, Pseudomonas and Microbacterium genera, all being pathogenic to humans. To our knowledge, this is the first time Paravahlkampfia and Vahlkampfia have been demonstrated as hosts of pathogenic ARB in water. Globally, the persistence of these ARB inside resistant cysts represents a potential health risk. To ensure the continued safety of recreational waters, it is crucial to (i) regularly control both the amoebae and their ARB and (ii) improve knowledge on amoebae-bacteria interactions to establish better water management protocols.
Collapse
Affiliation(s)
- Aurélie Delumeau
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Isaure Quétel
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Florian Harnais
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Arantxa Sellin
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Olivier Gros
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, Guadeloupe, France
| | - Antoine Talarmin
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Isabel Marcelino
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France.
| |
Collapse
|
132
|
Miller J, Murray PJ. Space and time on the membrane: modelling Type VI secretion system dynamics as a state-dependent random walk. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230284. [PMID: 37920566 PMCID: PMC10618060 DOI: 10.1098/rsos.230284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023]
Abstract
The type six secretion system (T6SS) is a transmembrane protein complex that mediates bacterial cell killing. The T6SS comprises three main components (transmembrane, baseplate and sheath/tube complexes) that are sequentially assembled in order to enable an attacking cell to transport payloads into neighbouring cells. A T6SS attack disrupts the function of essential cellular components of target cells, typically resulting in their death. While the assembled T6SS adopts a fixed position in the cell membrane of the attacking cell, the location of the firing site varies between firing events. In Serratia marcescens, a post-translational regulatory network regulates the assembly and firing kinetics of the T6SS in a manner that affects the attacking cell's ability to kill target cells. Moreover, when the ability of membrane complexes to reorient is reduced, an attacking cell's competitiveness is also reduced. In this study, we will develop a mathematical model that describes both the spatial motion and assembly/disassembly of a firing T6SS. The model represents the motion of a T6SS on the cell membrane as a state-dependent random walk. Using the model, we will explore how both spatial and temporal effects can combine to give rise to different firing phenotypes. Using parameters inferred from the available literature, we show that variation in estimated diffusion coefficients is sufficient to give rise to either spatially local or global firers.
Collapse
|
133
|
Malakar B, Chauhan K, Sanyal P, Naz S, Kalam H, Vivek-Ananth RP, Singh LV, Samal A, Kumar D, Nandicoori VK. Phosphorylation of CFP10 modulates Mycobacterium tuberculosis virulence. mBio 2023; 14:e0123223. [PMID: 37791794 PMCID: PMC10653824 DOI: 10.1128/mbio.01232-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/25/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Secreted virulence factors play a critical role in bacterial pathogenesis. Virulence effectors not only help bacteria to overcome the host immune system but also aid in establishing infection. Mtb, which causes tuberculosis in humans, encodes various virulence effectors. Triggers that modulate the secretion of virulence effectors in Mtb are yet to be fully understood. To gain mechanistic insight into the secretion of virulence effectors, we performed high-throughput proteomic studies. With the help of system-level protein-protein interaction network analysis and empirical validations, we unravelled a link between phosphorylation and secretion. Taking the example of the well-known virulence factor of CFP10, we show that the dynamics of CFP10 phosphorylation strongly influenced bacterial virulence and survival ex vivo and in vivo. This study presents the role of phosphorylation in modulating the secretion of virulence factors.
Collapse
Affiliation(s)
- Basanti Malakar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Komal Chauhan
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Priyadarshini Sanyal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Centre for Cellular and Molecular Biology Campus, Hyderabad, India
| | - Saba Naz
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Haroon Kalam
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - R. P. Vivek-Ananth
- The Institute of Mathematical Sciences (IMSc), Homi Bhabha National Institute (HBNI), Chennai, India
| | - Lakshya Veer Singh
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Homi Bhabha National Institute (HBNI), Chennai, India
| | - Dhiraj Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Vinay Kumar Nandicoori
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Centre for Cellular and Molecular Biology Campus, Hyderabad, India
| |
Collapse
|
134
|
Wang X, Uppu DSSM, Dickey SW, Burgin DJ, Otto M, Lee JC. Staphylococcus aureus delta toxin modulates both extracellular membrane vesicle biogenesis and amyloid formation. mBio 2023; 14:e0174823. [PMID: 37795985 PMCID: PMC10653798 DOI: 10.1128/mbio.01748-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/15/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Extracellular membrane vesicles (MVs) produced by Staphylococcus aureus in planktonic cultures encapsulate a diverse cargo of bacterial proteins, nucleic acids, and glycopolymers that are protected from destruction by external factors. δ-toxin, a member of the phenol soluble modulin family, was shown to be critical for MV biogenesis. Amyloid fibrils co-purified with MVs generated by virulent, community-acquired S. aureus strains, and fibril formation was dependent on expression of the S. aureus δ-toxin gene (hld). Mass spectrometry data confirmed that the amyloid fibrils were comprised of δ-toxin. Although S. aureus MVs were produced in vivo in a localized murine infection model, amyloid fibrils were not observed in the in vivo setting. Our findings provide critical insights into staphylococcal factors involved in MV biogenesis and amyloid formation.
Collapse
Affiliation(s)
- Xiaogang Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Divakara SSM Uppu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Seth W. Dickey
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine,University of Maryland, Bethesda, Maryland, USA
| | - Dylan J. Burgin
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Jean C. Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
135
|
Pino-Rosa S, Medina-Pascual MJ, Carrasco G, Garrido N, Villalón P, Valiente M, Valdezate S. Focusing on Gordonia Infections: Distribution, Antimicrobial Susceptibilities and Phylogeny. Antibiotics (Basel) 2023; 12:1568. [PMID: 37998770 PMCID: PMC10668661 DOI: 10.3390/antibiotics12111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
The immunosuppression conditions and the presence of medical devices in patients favor the Gordonia infections. However, the features of this aerobic actinomycete have been little explored. Strains (n = 164) were characterized with 16S rDNA and secA1 genes to define their phylogenetic relationships, and subjected to broth microdilution to profile the antimicrobial susceptibilities of Gordonia species that caused infections in Spain during the 2005-2021 period. Four out of the eleven identified species were responsible for 86.0% of the infections: Gordonia sputi (53.0%), Gordonia bronchialis (18.3%), Gordonia terrae (8.5%) and Gordonia otitidis (6.1%). Respiratory tract infections (61.6%) and bacteremia (21.9%) were the most common infections. The secA1 gene resolved the inconclusive identification, and two major clonal lineages were observed for G. sputi and G. bronchialis. Species showed a wide antimicrobial susceptibility profile. Cefoxitin resistance varies depending on the species, reaching 94.2% for G. sputi and 36.0% for G. terrae. What is noteworthy is the minocycline resistance in G. sputi (11.5%), the clarithromycin resistance in G. bronchialis secA1 lineage II (30.0%) and the amoxicillin-clavulanate and cefepime resistance in G. terrae (21.4% and 42.8%, respectively). G. sputi and G. bronchialis stand out as the prevalent species causing infections in Spain. Resistance against cefoxitin and other antimicrobials should be considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sylvia Valdezate
- Reference and Research Laboratory for Taxonomy, National Centre of Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (S.P.-R.); (M.J.M.-P.); (G.C.); (N.G.); (P.V.); (M.V.)
| |
Collapse
|
136
|
Zhang Y, Guan J, Li C, Wang Z, Deng Z, Gasser RB, Song J, Ou HY. DeepSecE: A Deep-Learning-Based Framework for Multiclass Prediction of Secreted Proteins in Gram-Negative Bacteria. RESEARCH (WASHINGTON, D.C.) 2023; 6:0258. [PMID: 37886621 PMCID: PMC10599158 DOI: 10.34133/research.0258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023]
Abstract
Proteins secreted by Gram-negative bacteria are tightly linked to the virulence and adaptability of these microbes to environmental changes. Accurate identification of such secreted proteins can facilitate the investigations of infections and diseases caused by these bacterial pathogens. However, current bioinformatic methods for predicting bacterial secreted substrate proteins have limited computational efficiency and application scope on a genome-wide scale. Here, we propose a novel deep-learning-based framework-DeepSecE-for the simultaneous inference of multiple distinct groups of secreted proteins produced by Gram-negative bacteria. DeepSecE remarkably improves their classification from nonsecreted proteins using a pretrained protein language model and transformer, achieving a macro-average accuracy of 0.883 on 5-fold cross-validation. Performance benchmarking suggests that DeepSecE achieves competitive performance with the state-of-the-art binary predictors specialized for individual types of secreted substrates. The attention mechanism corroborates salient patterns and motifs at the N or C termini of the protein sequences. Using this pipeline, we further investigate the genome-wide prediction of novel secreted proteins and their taxonomic distribution across ~1,000 Gram-negative bacterial genomes. The present analysis demonstrates that DeepSecE has major potential for the discovery of disease-associated secreted proteins in a diverse range of Gram-negative bacteria. An online web server of DeepSecE is also publicly available to predict and explore various secreted substrate proteins via the input of bacterial genome sequences.
Collapse
Affiliation(s)
- Yumeng Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology,
Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology,
Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahao Guan
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology,
Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen Li
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology,
Monash University, Melbourne, VIC 3800, Australia
| | - Zhikang Wang
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology,
Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute,
Monash University, Melbourne, VIC 3800, Australia
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology,
Shanghai Jiao Tong University, Shanghai 200240, China
| | - Robin B. Gasser
- Melbourne Veterinary School, Faculty of Science,
The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology,
Monash University, Melbourne, VIC 3800, Australia
- Monash Data Futures Institute,
Monash University, Melbourne, VIC 3800, Australia
- Melbourne Veterinary School, Faculty of Science,
The University of Melbourne, Parkville, VIC 3010, Australia
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology,
Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Veterinary Biotechnology,
Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
137
|
Lakes JE, Fu X, Harvey BT, Neupane KR, Aryal SP, Ferrell JL, Flythe MD, Richards CI. Impact of nicotine and cotinine on macrophage inflammatory plasticity via vesicular modifications in gastrointestinal bacteria. Anaerobe 2023; 83:102787. [PMID: 37827238 PMCID: PMC10841519 DOI: 10.1016/j.anaerobe.2023.102787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVES This study aimed to elucidate mechanistic explanation(s) for compositional changes to enteric microbiota by determining the impacts of continuous nicotine/cotinine exposure on representative gastrointestinal bacteria and how these alterations impact innate immune cell plasticity. METHODS In vitro cultures of the gastrointestinal bacteria (Bacteroides fragilis 25285, Prevotella bryantii B14, and Acetoanaerobium sticklandii SR) were continuously exposed to nicotine or cotinine. Supernatant samples were collected for fermentation acid analysis. Vesicles were collected and analyzed for physiological changes in number, size, and total protein cargo. Cultured macrophages were stimulated to a tolerogenic phenotype, exposed to control or altered (nicotine or cotinine - exposed) vesicles, and inflammatory plasticity assessed via inflammatory cytokine production. RESULTS Nicotine/cotinine exposure differentially affected metabolism of all bacteria tested in a Gram (nicotine) and concentration-dependent (cotinine) manner. Physiological studies demonstrated changes in vesiculation number and protein cargo following nicotine/cotinine exposures. Continuous exposure to 1 μM nicotine and 10 μM cotinine concentrations reduced total protein cargo of Gram (-) - 25285 and B14 vesicles, while cotinine generally increased total protein in Gram (+) - SR vesicles. We found that theses physiological changes to the vesicles of 25285 and SR formed under nicotine and cotinine, respectively, challenged the plasticity of tolerogenic macrophages. Tolerogenic macrophages exposed to vesicles from 1 μM nicotine, and 5 or 10 μΜ cotinine cultures produced significantly less IL-12p70, TNFα, or KC/GRO, regardless of macrophage exposure to nicotine/cotinine. CONCLUSIONS Nicotine/cotinine exposure differentially alters bacterial metabolism and vesicle physiology, ultimately impacting the inflammatory response of tolerogenic macrophages.
Collapse
Affiliation(s)
- Jourdan E Lakes
- Department of Chemistry, College of Arts & Sciences, University of Kentucky, Lexington, KY, USA.
| | - Xu Fu
- Department of Chemistry, College of Arts & Sciences, University of Kentucky, Lexington, KY, USA.
| | - Brock T Harvey
- Department of Chemistry, College of Arts & Sciences, University of Kentucky, Lexington, KY, USA.
| | - Khaga R Neupane
- Department of Chemistry, College of Arts & Sciences, University of Kentucky, Lexington, KY, USA.
| | - Surya P Aryal
- Department of Chemistry, College of Arts & Sciences, University of Kentucky, Lexington, KY, USA.
| | - Jessica L Ferrell
- USDA Agricultural Research Service Forage-Animal Production Research Unit, Lexington, KY, USA.
| | - Michael D Flythe
- USDA Agricultural Research Service Forage-Animal Production Research Unit, Lexington, KY, USA; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA.
| | - Christopher I Richards
- Department of Chemistry, College of Arts & Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
138
|
Venturi V, Bez C. Novel T4ASS effector with quorum quenching activity. THE ISME JOURNAL 2023; 17:1523-1525. [PMID: 37620539 PMCID: PMC10504337 DOI: 10.1038/s41396-023-01497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Affiliation(s)
- Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy.
| | - Cristina Bez
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| |
Collapse
|
139
|
Sharma A, Singh RN, Song XP, Singh RK, Guo DJ, Singh P, Verma KK, Li YR. Genome analysis of a halophilic Virgibacillus halodenitrificans ASH15 revealed salt adaptation, plant growth promotion, and isoprenoid biosynthetic machinery. Front Microbiol 2023; 14:1229955. [PMID: 37808307 PMCID: PMC10556750 DOI: 10.3389/fmicb.2023.1229955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/31/2023] [Indexed: 10/10/2023] Open
Abstract
Globally, due to widespread dispersion, intraspecific diversity, and crucial ecological components of halophilic ecosystems, halophilic bacteria is considered one of the key models for ecological, adaptative, and biotechnological applications research in saline environments. With this aim, the present study was to enlighten the plant growth-promoting features and investigate the systematic genome of a halophilic bacteria, Virgibacillus halodenitrificans ASH15, through single-molecule real-time (SMRT) sequencing technology. Results showed that strain ASH15 could survive in high salinity up to 25% (w/v) NaCl concentration and express plant growth-promoting traits such as nitrogen fixation, plant growth hormones, and hydrolytic enzymes, which sustain salt stress. The results of pot experiment revealed that strain ASH15 significantly enhanced sugarcane plant growth (root shoot length and weight) under salt stress conditions. Moreover, the sequencing analysis of the strain ASH15 genome exhibited that this strain contained a circular chromosome of 3,832,903 bp with an average G+C content of 37.54%: 3721 predicted protein-coding sequences (CDSs), 24 rRNA genes, and 62 tRNA genes. Genome analysis revealed that the genes related to the synthesis and transport of compatible solutes (glycine, betaine, ectoine, hydroxyectoine, and glutamate) confirm salt stress as well as heavy metal resistance. Furthermore, functional annotation showed that the strain ASH15 encodes genes for root colonization, biofilm formation, phytohormone IAA production, nitrogen fixation, phosphate metabolism, and siderophore production, which are beneficial for plant growth promotion. Strain ASH15 also has a gene resistance to antibiotics and pathogens. In addition, analysis also revealed that the genome strain ASH15 has insertion sequences and CRISPRs, which suggest its ability to acquire new genes through horizontal gene transfer and acquire immunity to the attack of viruses. This work provides knowledge of the mechanism through which V. halodenitrificans ASH15 tolerates salt stress. Deep genome analysis, identified MVA pathway involved in biosynthesis of isoprenoids, more precisely "Squalene." Squalene has various applications, such as an antioxidant, anti-cancer agent, anti-aging agent, hemopreventive agent, anti-bacterial agent, adjuvant for vaccines and drug carriers, and detoxifier. Our findings indicated that strain ASH15 has enormous potential in industries such as in agriculture, pharmaceuticals, cosmetics, and food.
Collapse
Affiliation(s)
- Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Ram Nageena Singh
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Xiu-Peng Song
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Dao-Jun Guo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- State Key Laboratory of Conservation and Utilization of Subtropical, College of Agriculture, Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- State Key Laboratory of Conservation and Utilization of Subtropical, College of Agriculture, Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
140
|
DiBenedetto NV, Oberkampf M, Cersosimo L, Yeliseyev V, Bry L, Peltier J, Dupuy B. The TcdE holin drives toxin secretion and virulence in Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558055. [PMID: 37745472 PMCID: PMC10516005 DOI: 10.1101/2023.09.16.558055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Clostridioides difficile is the leading cause of healthcare associated infections. The Pathogenicity Locus (PaLoc) toxins TcdA and TcdB promote host disease. These toxins lack canonical N-terminal signal sequences for translocation across the bacterial membrane, suggesting alternate mechanisms of release, which have included targeted secretion and passive release from cell lysis. While the holin TcdE has been implicated in TcdA and TcdB release, its role in vivo remains unknown. Here, we show profound reductions in toxin secretion in ΔtcdE mutants in the highly virulent strains UK1 (epidemic ribotype 027, Clade 3) and VPI10463 (ribotype 087, Clade 1). Notably, tcdE deletion in either strain rescued highly susceptible gnotobiotic mice from lethal infection by reducing acute extracellular toxin to undetectable levels, limiting mucosal damage, and enabling long-term survival, in spite of continued toxin gene expression in ΔtcdE mutants. Our findings confirm TcdE's critical functions in vivo for toxin secretion and C. difficile virulence.
Collapse
Affiliation(s)
- N V DiBenedetto
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Oberkampf
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - L Cersosimo
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - V Yeliseyev
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - L Bry
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - J Peltier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - B Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| |
Collapse
|
141
|
Abstract
Small regulatory RNA (sRNAs) are key mediators of posttranscriptional gene control in bacteria. Assisted by RNA-binding proteins, a single sRNA often modulates the expression of dozens of genes, and thus sRNAs frequently adopt central roles in regulatory networks. Posttranscriptional regulation by sRNAs comes with several unique features that cannot be achieved by transcriptional regulators. However, for optimal network performance, transcriptional and posttranscriptional control mechanisms typically go hand-in-hand. This view is reflected by the ever-growing class of mixed network motifs involving sRNAs and transcription factors, which are ubiquitous in biology and whose regulatory properties we are beginning to understand. In addition, sRNA activity can be antagonized by base-pairing with sponge RNAs, adding yet another layer of complexity to these networks. In this article, we summarize the regulatory concepts underlying sRNA-mediated gene control in bacteria and discuss how sRNAs shape the output of a network, focusing on several key examples.
Collapse
Affiliation(s)
- Kai Papenfort
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany;
- Microverse Cluster, Friedrich Schiller University Jena, Jena, Germany
| | - Sahar Melamed
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
142
|
Worrall LJ, Majewski DD, Strynadka NCJ. Structural Insights into Type III Secretion Systems of the Bacterial Flagellum and Injectisome. Annu Rev Microbiol 2023; 77:669-698. [PMID: 37713458 DOI: 10.1146/annurev-micro-032521-025503] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Two of the most fascinating bacterial nanomachines-the broadly disseminated rotary flagellum at the heart of cellular motility and the eukaryotic cell-puncturing injectisome essential to specific pathogenic species-utilize at their core a conserved export machinery called the type III secretion system (T3SS). The T3SS not only secretes the components that self-assemble into their extracellular appendages but also, in the case of the injectisome, subsequently directly translocates modulating effector proteins from the bacterial cell into the infected host. The injectisome is thought to have evolved from the flagellum as a minimal secretory system lacking motility, with the subsequent acquisition of additional components tailored to its specialized role in manipulating eukaryotic hosts for pathogenic advantage. Both nanomachines have long been the focus of intense interest, but advances in structural and functional understanding have taken a significant step forward since 2015, facilitated by the revolutionary advances in cryo-electron microscopy technologies. With several seminal structures of each nanomachine now captured, we review here the molecular similarities and differences that underlie their diverse functions.
Collapse
Affiliation(s)
- Liam J Worrall
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; , ,
| | - Dorothy D Majewski
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; , ,
- Current affiliation: Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; , ,
| |
Collapse
|
143
|
Zhou J, Ma H, Zhang L. Mechanisms of Virulence Reprogramming in Bacterial Pathogens. Annu Rev Microbiol 2023; 77:561-581. [PMID: 37406345 DOI: 10.1146/annurev-micro-032521-025954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Bacteria are single-celled organisms that carry a comparatively small set of genetic information, typically consisting of a few thousand genes that can be selectively activated or repressed in an energy-efficient manner and transcribed to encode various biological functions in accordance with environmental changes. Research over the last few decades has uncovered various ingenious molecular mechanisms that allow bacterial pathogens to sense and respond to different environmental cues or signals to activate or suppress the expression of specific genes in order to suppress host defenses and establish infections. In the setting of infection, pathogenic bacteria have evolved various intelligent mechanisms to reprogram their virulence to adapt to environmental changes and maintain a dominant advantage over host and microbial competitors in new niches. This review summarizes the bacterial virulence programming mechanisms that enable pathogens to switch from acute to chronic infection, from local to systemic infection, and from infection to colonization. It also discusses the implications of these findings for the development of new strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| | - Hongmei Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| | - Lianhui Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| |
Collapse
|
144
|
Totsline N, Kniel KE, Bais HP. Microgravity and evasion of plant innate immunity by human bacterial pathogens. NPJ Microgravity 2023; 9:71. [PMID: 37679341 PMCID: PMC10485020 DOI: 10.1038/s41526-023-00323-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Spaceflight microgravity and modeled-microgravity analogs (MMA) broadly alter gene expression and physiology in both pathogens and plants. Research elucidating plant and bacterial responses to normal gravity or microgravity has shown the involvement of both physiological and molecular mechanisms. Under true and simulated microgravity, plants display differential expression of pathogen-defense genes while human bacterial pathogens exhibit increased virulence, antibiotic resistance, stress tolerance, and reduced LD50 in animal hosts. Human bacterial pathogens including Salmonella enterica and E. coli act as cross-kingdom foodborne pathogens by evading and suppressing the innate immunity of plants for colonization of intracellular spaces. It is unknown if evasion and colonization of plants by human pathogens occurs under microgravity and if there is increased infection capability as demonstrated using animal hosts. Understanding the relationship between microgravity, plant immunity, and human pathogens could prevent potentially deadly outbreaks of foodborne disease during spaceflight. This review will summarize (1) alterations to the virulency of human pathogens under microgravity and MMA, (2) alterations to plant physiology and gene expression under microgravity and MMA, (3) suppression and evasion of plant immunity by human pathogens under normal gravity, (4) studies of plant-microbe interactions under microgravity and MMA. A conclusion suggests future study of interactions between plants and human pathogens under microgravity is beneficial to human safety, and an investment in humanity's long and short-term space travel goals.
Collapse
Affiliation(s)
- Noah Totsline
- Department of Plant and Soil Sciences, AP Biopharma, University of Delaware, Newark, DE, USA.
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Harsh P Bais
- Department of Plant and Soil Sciences, AP Biopharma, University of Delaware, Newark, DE, USA
| |
Collapse
|
145
|
Shen X, Yang Z, Li Z, Xiong D, Liao J, He W, Shen D, Shao X, Niu B, He Y, Gao Y, Qian G. Identification of atypical T4SS effector proteins mediating bacterial defense. MLIFE 2023; 2:295-307. [PMID: 38817810 PMCID: PMC10989847 DOI: 10.1002/mlf2.12084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 06/01/2024]
Abstract
To remain competitive, proteobacteria use various contact-dependent weapon systems to defend against microbial competitors. The bacterial-killing type IV secretion system (T4SS) is one such powerful weapon. It commonly controls the killing/competition between species by secreting the lethal T4SS effector (T4E) proteins carrying conserved XVIPCD domains into competing cells. In this study, we sought knowledge to understand whether the bacterial-killing T4SS-producing bacteria encode T4E-like proteins and further explore their biological functions. To achieve this, we designed a T4E-guided approach to discover T4E-like proteins that are designated as atypical T4Es. Initially, this approach required scientists to perform simple BlastP search to identify T4E homologs that lack the XVIPCD domain in the genomes of T4SS-producing bacteria. These homologous genes were then screened in Escherichia coli to identify antibacterial candidates (atypical T4Es) and their neighboring detoxification proteins, followed by testing their gene cotranscription and validating their physical interactions. Using this approach, we did discover two atypical T4E proteins from the plant-beneficial Lysobacter enzymogenes and the phytopathogen Xanthomonas citri. We also provided substantial evidence to show that the atypical T4E protein Le1637-mediated bacterial defense in interspecies interactions between L. enzymogenes and its competitors. Therefore, the newly designed T4E-guided approach holds promise for detecting functional atypical T4E proteins in bacterial cells.
Collapse
Affiliation(s)
- Xi Shen
- State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Zixiang Yang
- State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Zihan Li
- State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Dan Xiong
- State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Jinxing Liao
- State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Weimei He
- State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Danyu Shen
- State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Xiaolong Shao
- State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Ben Niu
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Yongxing He
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsLanzhou UniversityLanzhouChina
| | - Yong‐Gui Gao
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Guoliang Qian
- State Key Laboratory of Biological Interactions and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
146
|
Doering T, Tandon K, Topa SH, Pidot SJ, Blackall LL, van Oppen MJH. Genomic exploration of coral-associated bacteria: identifying probiotic candidates to increase coral bleaching resilience in Galaxea fascicularis. MICROBIOME 2023; 11:185. [PMID: 37596630 PMCID: PMC10439622 DOI: 10.1186/s40168-023-01622-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/14/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Reef-building corals are acutely threatened by ocean warming, calling for active interventions to reduce coral bleaching and mortality. Corals associate with a wide diversity of bacteria which can influence coral health, but knowledge of specific functions that may be beneficial for corals under thermal stress is scant. Under the oxidative stress theory of coral bleaching, bacteria that scavenge reactive oxygen (ROS) or nitrogen species (RNS) are expected to enhance coral thermal resilience. Further, bacterial carbon export might substitute the carbon supply from algal photosymbionts, enhance thermal resilience and facilitate bleaching recovery. To identify probiotic bacterial candidates, we sequenced the genomes of 82 pure-cultured bacteria that were isolated from the emerging coral model Galaxea fascicularis. RESULTS Genomic analyses showed bacterial isolates were affiliated with 37 genera. Isolates such as Ruegeria, Muricauda and Roseovarius were found to encode genes for the synthesis of the antioxidants mannitol, glutathione, dimethylsulfide, dimethylsulfoniopropionate, zeaxanthin and/or β-carotene. Genes involved in RNS-scavenging were found in many G. fascicularis-associated bacteria, which represents a novel finding for several genera (including Pseudophaeobacter). Transporters that are suggested to export carbon (semiSWEET) were detected in seven isolates, including Pseudovibrio and Roseibium. Further, a range of bacterial strains, including strains of Roseibium and Roseovarius, revealed genomic features that may enhance colonisation and association of bacteria with the coral host, such as secretion systems and eukaryote-like repeat proteins. CONCLUSIONS Our work provides an in-depth genomic analysis of the functional potential of G. fascicularis-associated bacteria and identifies novel combinations of traits that may enhance the coral's ability to withstand coral bleaching. Identifying and characterising bacteria that are beneficial for corals is critical for the development of effective probiotics that boost coral climate resilience. Video Abstract.
Collapse
Affiliation(s)
- Talisa Doering
- School of BioSciences, The University of Melbourne, Parkville, VIC Australia
| | - Kshitij Tandon
- School of BioSciences, The University of Melbourne, Parkville, VIC Australia
| | - Sanjida H. Topa
- School of BioSciences, The University of Melbourne, Parkville, VIC Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC Australia
| | - Linda L. Blackall
- School of BioSciences, The University of Melbourne, Parkville, VIC Australia
| | - Madeleine J. H. van Oppen
- School of BioSciences, The University of Melbourne, Parkville, VIC Australia
- Australian Institute of Marine Science, Townsville, QLD Australia
| |
Collapse
|
147
|
Dermastia M, Tomaž Š, Strah R, Lukan T, Coll A, Dušak B, Anžič B, Čepin T, Wienkoop S, Kladnik A, Zagorščak M, Riedle-Bauer M, Schönhuber C, Weckwerth W, Gruden K, Roitsch T, Pompe Novak M, Brader G. Candidate pathogenicity factor/effector proteins of ' Candidatus Phytoplasma solani' modulate plant carbohydrate metabolism, accelerate the ascorbate-glutathione cycle, and induce autophagosomes. FRONTIERS IN PLANT SCIENCE 2023; 14:1232367. [PMID: 37662165 PMCID: PMC10471893 DOI: 10.3389/fpls.2023.1232367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
The pathogenicity of intracellular plant pathogenic bacteria is associated with the action of pathogenicity factors/effectors, but their physiological roles for most phytoplasma species, including 'Candidiatus Phytoplasma solani' are unknown. Six putative pathogenicity factors/effectors from six different strains of 'Ca. P. solani' were selected by bioinformatic analysis. The way in which they manipulate the host cellular machinery was elucidated by analyzing Nicotiana benthamiana leaves after Agrobacterium-mediated transient transformation with the pathogenicity factor/effector constructs using confocal microscopy, pull-down, and co-immunoprecipitation, and enzyme assays. Candidate pathogenicity factors/effectors were shown to modulate plant carbohydrate metabolism and the ascorbate-glutathione cycle and to induce autophagosomes. PoStoSP06, PoStoSP13, and PoStoSP28 were localized in the nucleus and cytosol. The most active effector in the processes studied was PoStoSP06. PoStoSP18 was associated with an increase in phosphoglucomutase activity, whereas PoStoSP28, previously annotated as an antigenic membrane protein StAMP, specifically interacted with phosphoglucomutase. PoStoSP04 induced only the ascorbate-glutathione cycle along with other pathogenicity factors/effectors. Candidate pathogenicity factors/effectors were involved in reprogramming host carbohydrate metabolism in favor of phytoplasma own growth and infection. They were specifically associated with three distinct metabolic pathways leading to fructose-6-phosphate as an input substrate for glycolysis. The possible significance of autophagosome induction by PoStoSP28 is discussed.
Collapse
Affiliation(s)
- Marina Dermastia
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Špela Tomaž
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Rebeka Strah
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Tjaša Lukan
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Barbara Dušak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Barbara Anžič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Timotej Čepin
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Stefanie Wienkoop
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Aleš Kladnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Monika Riedle-Bauer
- Federal College and Research Institute for Viticulture and Pomology Klosterneuburg, Klosterneuburg, Austria
| | - Christina Schönhuber
- Bioresources Unit, Health & Environment Department, Austrian Institute of Technology, Tulln, Austria
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Maruša Pompe Novak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Faculty of Viticulture and Enology, University of Nova Gorica, Vipava, Slovenia
| | - Günter Brader
- Bioresources Unit, Health & Environment Department, Austrian Institute of Technology, Tulln, Austria
| |
Collapse
|
148
|
Fereshteh S, Haririzadeh Jouriani F, Noori Goodarzi N, Torkamaneh M, Khasheii B, Badmasti F. Defeating a superbug: A breakthrough in vaccine design against multidrug-resistant Pseudomonas aeruginosa using reverse vaccinology. PLoS One 2023; 18:e0289609. [PMID: 37535697 PMCID: PMC10399887 DOI: 10.1371/journal.pone.0289609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Multidrug-resistant Pseudomonas aeruginosa has become a major cause of severe infections. Due to the lack of approved vaccines, this study has presented putative vaccine candidates against it. METHODS P. aeruginosa 24Pae112 as a reference strain was retrieved from GenBank database. The surface-exposed, antigenic, non-allergenic, and non-homologous human proteins were selected. The conserved domains of selected proteins were evaluated, and the prevalence of proteins was assessed among 395 genomes. Next, linear and conformational B-cell epitopes, and human MHC II binding sites were determined. Finally, five conserved and highly antigenic B-cell epitopes from OMPs were implanted on the three platforms as multi-epitope vaccines, including FliC, the bacteriophage T7 tail, and the cell wall-associated transporter proteins. The immunoreactivity was investigated using molecular docking and immune simulation. Furthermore, molecular dynamics simulation was done to refine the chimeric cell-wall-associated transporter-TLR4 complex as the best interaction. RESULTS Among 6494 total proteins of P. aeruginosa 24Pae112, 16 proteins (seven OMPs and nine secreted) were ideal according to the defined criteria. These proteins had a molecular weight of 110 kDa and were prevalent in ≥ 75% of P. aeruginosa genomes. Among the presented multi-epitope vaccines, the chimeric cell-wall-associated transporter had the strongest interaction with TLR4. Moreover, the immune simulation response revealed that the bacteriophage T7 tail chimeric protein had the strongest ability to stimulate the immune system. In addition, molecular docking and molecular dynamic simulation indicated the proper and stable interactions between the chimeric cell-wall-associated transporter and TLR4. CONCLUSION This study proposed 16 shortlisted proteins as promising immunogenic targets. Two novel platforms (e.g. cell-wall-associated transporter and bacteriophage T7 tail proteins) for designing of multi-epitope vaccines (MEVs), showed the better performance compared to FliC. In our future studies, these two MEVs will receive more scrutiny to evaluate their immunoreactivity.
Collapse
Affiliation(s)
| | | | - Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Torkamaneh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Behnoush Khasheii
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
149
|
Zhao M, Peng Z, Qin Y, Tamang TM, Zhang L, Tian B, Chen Y, Liu Y, Zhang J, Lin G, Zheng H, He C, Lv K, Klaus A, Marcon C, Hochholdinger F, Trick HN, Liu Y, Cho MJ, Park S, Wei H, Zheng J, White FF, Liu S. Bacterium-enabled transient gene activation by artificial transcription factors for resolving gene regulation in maize. THE PLANT CELL 2023; 35:2736-2749. [PMID: 37233025 PMCID: PMC10396389 DOI: 10.1093/plcell/koad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
Understanding gene regulatory networks is essential to elucidate developmental processes and environmental responses. Here, we studied regulation of a maize (Zea mays) transcription factor gene using designer transcription activator-like effectors (dTALes), which are synthetic Type III TALes of the bacterial genus Xanthomonas and serve as inducers of disease susceptibility gene transcription in host cells. The maize pathogen Xanthomonas vasicola pv. vasculorum was used to introduce 2 independent dTALes into maize cells to induced expression of the gene glossy3 (gl3), which encodes a MYB transcription factor involved in biosynthesis of cuticular wax. RNA-seq analysis of leaf samples identified, in addition to gl3, 146 genes altered in expression by the 2 dTALes. Nine of the 10 genes known to be involved in cuticular wax biosynthesis were upregulated by at least 1 of the 2 dTALes. A gene previously unknown to be associated with gl3, Zm00001d017418, which encodes aldehyde dehydrogenase, was also expressed in a dTALe-dependent manner. A chemically induced mutant and a CRISPR-Cas9 mutant of Zm00001d017418 both exhibited glossy leaf phenotypes, indicating that Zm00001d017418 is involved in biosynthesis of cuticular waxes. Bacterial protein delivery of dTALes proved to be a straightforward and practical approach for the analysis and discovery of pathway-specific genes in maize.
Collapse
Affiliation(s)
- Mingxia Zhao
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Zhao Peng
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yang Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tej Man Tamang
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Ling Zhang
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Bin Tian
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Yueying Chen
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junli Zhang
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Guifang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Huakun Zheng
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Cheng He
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Kaiwen Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Heilongjiang 150040, China
| | - Alina Klaus
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Caroline Marcon
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, University of Bonn, Bonn 53113, Germany
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Myeong-Je Cho
- Innovative Genomics Institute, University of California, Berkeley, CA 94704, USA
| | - Sunghun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Jun Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
150
|
Emani SS, Kan A, Storms T, Bonanno S, Law J, Ray S, Joshi NS. Periplasmic stress contributes to a trade-off between protein secretion and cell growth in Escherichia coli Nissle 1917. Synth Biol (Oxf) 2023; 8:ysad013. [PMID: 37601821 PMCID: PMC10439730 DOI: 10.1093/synbio/ysad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/29/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
Maximizing protein secretion is an important target in the design of engineered living systems. In this paper, we characterize a trade-off between cell growth and per-cell protein secretion in the curli biofilm secretion system of Escherichia coli Nissle 1917. Initial characterization using 24-h continuous growth and protein production monitoring confirms decreased growth rates at high induction, leading to a local maximum in total protein production at intermediate induction. Propidium iodide (PI) staining at the endpoint indicates that cellular death is a dominant cause of growth reduction. Assaying variants with combinatorial constructs of inner and outer membrane secretion tags, we find that diminished growth at high production is specific to secretory variants associated with periplasmic stress mediated by outer membrane secretion and periplasmic accumulation of protein containing the outer membrane transport tag. RNA sequencing experiments indicate upregulation of known periplasmic stress response genes in the highly secreting variant, further implicating periplasmic stress in the growth-secretion trade-off. Overall, these results motivate additional strategies for optimizing total protein production and longevity of secretory engineered living systems Graphical Abstract.
Collapse
Affiliation(s)
| | - Anton Kan
- Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Timothy Storms
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Shanna Bonanno
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Jade Law
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Sanhita Ray
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
| | - Neel S Joshi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|