101
|
Wagner S, Steinbeck J, Fuchs P, Lichtenauer S, Elsässer M, Schippers JHM, Nietzel T, Ruberti C, Van Aken O, Meyer AJ, Van Dongen JT, Schmidt RR, Schwarzländer M. Multiparametric real-time sensing of cytosolic physiology links hypoxia responses to mitochondrial electron transport. THE NEW PHYTOLOGIST 2019; 224:1668-1684. [PMID: 31386759 DOI: 10.1111/nph.16093] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/01/2019] [Indexed: 05/24/2023]
Abstract
Hypoxia regularly occurs during plant development and can be induced by the environment through, for example, flooding. To understand how plant tissue physiology responds to progressing oxygen restriction, we aimed to monitor subcellular physiology in real time and in vivo. We establish a fluorescent protein sensor-based system for multiparametric monitoring of dynamic changes in subcellular physiology of living Arabidopsis thaliana leaves and exemplify its applicability for hypoxia stress. By monitoring cytosolic dynamics of magnesium adenosine 5'-triphosphate, free calcium ion concentration, pH, NAD redox status, and glutathione redox status in parallel, linked to transcriptional and metabolic responses, we generate an integrated picture of the physiological response to progressing hypoxia. We show that the physiological changes are surprisingly robust, even when plant carbon status is modified, as achieved by sucrose feeding or extended night. Inhibition of the mitochondrial respiratory chain causes dynamics of cytosolic physiology that are remarkably similar to those under oxygen depletion, highlighting mitochondrial electron transport as a key determinant of the cellular consequences of hypoxia beyond the organelle. A broadly applicable system for parallel in vivo sensing of plant stress physiology is established to map out the physiological context under which both mitochondrial retrograde signalling and low oxygen signalling occur, indicating shared upstream stimuli.
Collapse
Affiliation(s)
- Stephan Wagner
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829, Cologne, Germany
| | - Janina Steinbeck
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Philippe Fuchs
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Marlene Elsässer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Jos H M Schippers
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Gatersleben, Corrensstraße 3, D-06466, Seeland, Germany
| | - Thomas Nietzel
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Cristina Ruberti
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Olivier Van Aken
- Department of Biology, Lund University, Sölvegatan 35, Lund, 223 62, Sweden
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Joost T Van Dongen
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Romy R Schmidt
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143, Münster, Germany
| |
Collapse
|
102
|
Le Gac AL, Laux T. Hypoxia Is a Developmental Regulator in Plant Meristems. MOLECULAR PLANT 2019; 12:1422-1424. [PMID: 31628990 DOI: 10.1016/j.molp.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Anne-Laure Le Gac
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Thomas Laux
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany; Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
103
|
Armstrong W, Beckett PM, Colmer TD, Setter TL, Greenway H. Tolerance of roots to low oxygen: 'Anoxic' cores, the phytoglobin-nitric oxide cycle, and energy or oxygen sensing. JOURNAL OF PLANT PHYSIOLOGY 2019; 239:92-108. [PMID: 31255944 DOI: 10.1016/j.jplph.2019.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Acclimation by plants to hypoxia and anoxia is of importance in various ecological systems, and especially for roots in waterlogged soil. We present evidence for acclimation by roots via 'anoxic' cores rather than being triggered by O2 sensors. The evidence for 'anoxic' cores comes from radial O2 profiles across maize roots and associated metabolic changes such as increases in the 'anaerobic enzymes' ADH and PDC in the 'anoxic' core, and inhibition of Cl- transport to the xylem. These cores are predicted to develop within 15-20 min after sudden transfer of a root to hypoxia, so that the cores are 'anoxically-shocked'. We suggest that 'anoxic' cores could emanate a signal(s), such as ACC the precursor of ethylene and/or propagation of a 'Ca2+ wave', to other tissue zones. There, the signalling would result in acclimation of the tissues to energy crisis metabolism. An O2 diffusion model for tissues with an 'anoxic' core, indicates that the phytoglobin-nitric oxide (Pgb-NO) cycle would only be engaged in a thin 'shell' (annulus) of tissue surrounding the 'anoxic' core, and so would only contribute small amounts of ATP on a whole organ basis (e.g. whole roots). A key feature within this annulus of tissue, where O2 is likely to be limiting, is that the ratio (ATP formed) / (O2 consumed) is 5-6, both when the NAD(P)H of glycolysis is converted to NAD(P)+ by the Pgb-NO cycle or by the TCA cycle linked to the electron transport chain. The main function of the Pgb-NO cycle may be the modulating of NO levels and O2 scavenging, thus preventing oxidative damage. We speculate that an 'anoxic' core in hypoxic plant organs may have a particularly high tolerance to anoxia because cells might receive a prolonged supply of carbohydrates and/or ATP from the regions still receiving sufficient O2 for oxidative phosphorylation. Severely hypoxic or 'anoxic' cores are well documented, but much research on responses of roots to hypoxia is still based on bulk tissue analyses. More research is needed on the interaction between 'anoxic' cores and tissues still receiving sufficient O2 for oxidative phosphorylation, both during a hypoxic exposure and during subsequent anoxia of the tissue/organ as a whole.
Collapse
Affiliation(s)
- William Armstrong
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, WA, Australia; Department of Biological Sciences, The University of Hull, Hull, UK
| | | | - Timothy D Colmer
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, WA, Australia.
| | - Timothy L Setter
- Agricultural and Environmental Consultant, P.O. Box 305, Bull Creek, 6149, WA, Australia
| | - Hank Greenway
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Perth, WA, Australia
| |
Collapse
|
104
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
105
|
Puerta ML, Shukla V, Dalle Carbonare L, Weits DA, Perata P, Licausi F, Giuntoli B. A Ratiometric Sensor Based on Plant N-Terminal Degrons Able to Report Oxygen Dynamics in Saccharomyces cerevisiae. J Mol Biol 2019; 431:2810-2820. [PMID: 31125566 DOI: 10.1016/j.jmb.2019.05.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 11/24/2022]
Abstract
The ability to perceive oxygen levels is crucial to many organisms because it allows discerning environments compatible with aerobic or anaerobic metabolism, as well as enabling rapid switch between these two energy strategies. Organisms from different taxa dedicate distinct mechanisms to associate oxygen fluctuations with biological responses. Following from this observation, we speculated that orthogonal oxygen sensing devices can be created by transfer of essential modules from one species to another in which they are not conserved. We expressed plant cysteine oxidase (PCOs) enzymes in Saccharomyces cerevisiae, to confer oxygen-conditional degradability to a bioluminescent protein tagged with the Cys-exposing N-degron typical of plant ERF-VII factors. Co-translation of a second luciferase protein, not subjected to oxygen-dependent proteolysis, made the resulting Double Luciferase Oxygen Reporter (DLOR) ratiometric. We show that DLOR acts as a proxy for oxygen dynamics in yeast cultures. Moreover, since DLOR activity was enabled by the PCO sensors, we employed this device to disclose some of their properties, such as the dispensability of nitric oxide for N-terminal cysteine oxidation and the individual performance of Arabidopsis PCO isoforms in vivo. In the future, we propose the synthetic DLOR device as a convenient, eukaryotic cell-based tool to easily screen substrates and inhibitors of cysteine oxidase enzymes in vivo. Replacement of the luminescent proteins with fluorescent proteins will further turn our system into a visual reporter for oxygen dynamics in living cells.
Collapse
Affiliation(s)
- Mikel Lavilla Puerta
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 8/10c, 56010 Ghezzano (PI), Italy
| | - Vinay Shukla
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 8/10c, 56010 Ghezzano (PI), Italy
| | - Laura Dalle Carbonare
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 8/10c, 56010 Ghezzano (PI), Italy
| | - Daan A Weits
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 8/10c, 56010 Ghezzano (PI), Italy
| | - Pierdomenico Perata
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 8/10c, 56010 Ghezzano (PI), Italy
| | - Francesco Licausi
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 8/10c, 56010 Ghezzano (PI), Italy; Department of Biology, University of Pisa, Via Luca Ghini 13, 56126 Pisa, Italy.
| | - Beatrice Giuntoli
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 8/10c, 56010 Ghezzano (PI), Italy; Department of Biology, University of Pisa, Via Luca Ghini 13, 56126 Pisa, Italy
| |
Collapse
|
106
|
Savchenko T, Rolletschek H, Heinzel N, Tikhonov K, Dehesh K. Waterlogging tolerance rendered by oxylipin-mediated metabolic reprogramming in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2919-2932. [PMID: 30854562 PMCID: PMC6506769 DOI: 10.1093/jxb/erz110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/26/2019] [Indexed: 05/20/2023]
Abstract
Environmental stresses induce production of oxylipins synthesized by the two main biosynthetic branches, allene oxide synthase (AOS) and hydroperoxide lyase (HPL). Here, we investigate how waterlogging-mediated alteration of AOS- and HPL-derived metabolic profile results in modulation of central metabolism and ultimately enhanced tolerance to this environmental stress in Arabidopsis thaliana. Waterlogging leads to increased levels of AOS- and HPL-derived metabolites, and studies of genotypes lacking either one or both branches further support the key function of these oxylipins in waterlogging tolerance. Targeted quantitative metabolic profiling revealed oxylipin-dependent alterations in selected primary metabolites, and glycolytic and citric acid cycle intermediates, as well as a prominent shift in sucrose cleavage, hexose activation, the methionine salvage pathway, shikimate pathway, antioxidant system, and energy metabolism in genotypes differing in the presence of one or both functional branches of the oxylipin biosynthesis pathway. Interestingly, despite some distinct metabolic alterations caused specifically by individual branches, overexpression of HPL partially or fully alleviates the majority of altered metabolic profiles observed in AOS-depleted lines. Collectively, these data identify the key role of AOS- and HPL-derived oxylipins in altering central metabolism, and further provide a metabolic platform targeted at identification of gene candidates for enhancing plant tolerance to waterlogging.
Collapse
Affiliation(s)
- Tatyana Savchenko
- Institute of Basic Biological Problems, RAS, Pushchino, Russia
- Correspondence:
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nicolas Heinzel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | - Katayoon Dehesh
- Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
107
|
Dissmeyer N. Conditional Protein Function via N-Degron Pathway-Mediated Proteostasis in Stress Physiology. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:83-117. [PMID: 30892918 DOI: 10.1146/annurev-arplant-050718-095937] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The N-degron pathway, formerly the N-end rule pathway, regulates functions of regulatory proteins. It impacts protein half-life and therefore directs the actual presence of target proteins in the cell. The current concept holds that the N-degron pathway depends on the identity of the amino (N)-terminal amino acid and many other factors, such as the follow-up sequence at the N terminus, conformation, flexibility, and protein localization. It is evolutionarily conserved throughout the kingdoms. One possible entry point for substrates of the N-degron pathway is oxidation of N-terminal Cys residues. Oxidation of N-terminal Cys is decisive for further enzymatic modification of various neo-N termini by arginylation that generates potentially neofunctionalized or instable proteoforms. Here, I focus on the posttranslational modifications that are encompassed by protein degradation via the Cys/Arg branch of the N-degron pathway-part of the PROTEOLYSIS 6 (PRT6)/N-degron pathway-as well as the underlying physiological principles of this branch and its biological significance in stress response.
Collapse
Affiliation(s)
- Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB) and ScienceCampus Halle-Plant-Based Bioeconomy, D-06120 Halle (Saale), Germany; ; Twitter: @NDissmeyer
| |
Collapse
|
108
|
Shukla V, Lombardi L, Iacopino S, Pencik A, Novak O, Perata P, Giuntoli B, Licausi F. Endogenous Hypoxia in Lateral Root Primordia Controls Root Architecture by Antagonizing Auxin Signaling in Arabidopsis. MOLECULAR PLANT 2019; 12:538-551. [PMID: 30641154 DOI: 10.1016/j.molp.2019.01.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 05/27/2023]
Abstract
As non-photosynthesizing organs, roots are dependent on diffusion of oxygen from the external environment and, in some instances, from the shoot for their aerobic metabolism. Establishment of hypoxic niches in the developing tissues of plants has been postulated as a consequence of insufficient diffusion of oxygen to satisfy the demands throughout development. Here, we report that such niches are established at specific stages of lateral root primordia development in Arabidopsis thaliana grown under aerobic conditions. Using gain- and loss-of-function mutants, we show that ERF-VII transcription factors, which mediate hypoxic responses, control root architecture by acting in cells with a high level of auxin signaling. ERF-VIIs repress the expression of the auxin-induced genes LBD16, LBD18, and PUCHI, which are essential for lateral root development, by binding to their promoters. Our results support a model in which the establishment of hypoxic niches in the developing lateral root primordia contributes to the shutting down of key auxin-induced genes and regulates the production of lateral roots.
Collapse
Affiliation(s)
- Vinay Shukla
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Sergio Iacopino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ales Pencik
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS & Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Ondrej Novak
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS & Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | | | - Beatrice Giuntoli
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Biology Department, University of Pisa, Pisa, Italy.
| | - Francesco Licausi
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Biology Department, University of Pisa, Pisa, Italy.
| |
Collapse
|
109
|
Bui LT, Novi G, Lombardi L, Iannuzzi C, Rossi J, Santaniello A, Mensuali A, Corbineau F, Giuntoli B, Perata P, Zaffagnini M, Licausi F. Conservation of ethanol fermentation and its regulation in land plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1815-1827. [PMID: 30861072 PMCID: PMC6436157 DOI: 10.1093/jxb/erz052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/24/2019] [Indexed: 05/18/2023]
Abstract
Ethanol fermentation is considered as one of the main metabolic adaptations to ensure energy production in higher plants under anaerobic conditions. Following this pathway, pyruvate is decarboxylated and reduced to ethanol with the concomitant oxidation of NADH to NAD+. Despite its acknowledgement as an essential metabolic strategy, the conservation of this pathway and its regulation throughout plant evolution have not been assessed so far. To address this question, we compared ethanol fermentation in species representing subsequent steps in plant evolution and related it to the structural features and transcriptional regulation of the two enzymes involved: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). We observed that, despite the conserved ability to produce ethanol upon hypoxia in distant phyla, transcriptional regulation of the enzymes involved is not conserved in ancient plant lineages, whose ADH homologues do not share structural features distinctive for acetaldehyde/ethanol-processing enzymes. Moreover, Arabidopsis mutants devoid of ADH expression exhibited enhanced PDC activity and retained substantial ethanol production under hypoxic conditions. Therefore, we concluded that, whereas ethanol production is a highly conserved adaptation to low oxygen, its catalysis and regulation in land plants probably involve components that will be identified in the future.
Collapse
Affiliation(s)
- Liem T Bui
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Giacomo Novi
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | - Cristina Iannuzzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Jacopo Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Anna Mensuali
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Françoise Corbineau
- UMR 7622 CNRS-UPMC, Biologie du développement, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Beatrice Giuntoli
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Biology Department, University of Pisa, Pisa, Italy
| | | | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesco Licausi
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Biology Department, University of Pisa, Pisa, Italy
| |
Collapse
|
110
|
Ruperti B, Botton A, Populin F, Eccher G, Brilli M, Quaggiotti S, Trevisan S, Cainelli N, Guarracino P, Schievano E, Meggio F. Flooding Responses on Grapevine: A Physiological, Transcriptional, and Metabolic Perspective. FRONTIERS IN PLANT SCIENCE 2019; 10:339. [PMID: 30972087 PMCID: PMC6443911 DOI: 10.3389/fpls.2019.00339] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/05/2019] [Indexed: 05/20/2023]
Abstract
Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted. A preliminary experiment under hydroponic conditions enabled the identification of transiently and steadily regulated hypoxia-responsive marker genes and drafting a model for response to oxygen deprivation in grapevine roots. Afterward, over two consecutive vegetative seasons, flooding was imposed to potted vines during the late dormancy period, to mimick the most frequent waterlogging events occurring in the field. Untargeted transcriptomic and metabolic profiling approaches were applied to investigate early responses of grapevine roots during exposure to hypoxia and subsequent recovery after stress removal. The initial hypoxic response was marked by a significant increase of the hypoxia-inducible metabolites ethanol, GABA, succinic acid and alanine which remained high also 1 week after recovery from flooding with the exception of ethanol that leveled off. Transcriptomic data supported the metabolic changes by indicating a substantial rearrangement of primary metabolic pathways through enhancement of the glycolytic and fermentative enzymes and of a subset of enzymes involved in the TCA cycle. GO and KEGG pathway analyses of differentially expressed genes showed a general down-regulation of brassinosteroid, auxin and gibberellin biosynthesis in waterlogged plants, suggesting a general inhibition of root growth and lateral expansion. During recovery, transcriptional activation of gibberellin biosynthetic genes and down-regulation of the metabolic ones may support a role for gibberellins in signaling grapevine rootstocks waterlogging metabolic and hormonal changes to the above ground plant. The significant internode elongation measured upon budbreak during recovery in plants that had experienced flooding supported this hypothesis. Overall integration of these data enabled us to draft a first comprehensive view of the molecular and metabolic pathways involved in grapevine's root responses highlighting a deep metabolic and transcriptomic reprogramming during and after exposure to waterlogging.
Collapse
Affiliation(s)
- Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
- Interdepartmental Research Centre for Viticulture and Enology, University of Padova, Conegliano, Italy
- CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Alessandro Botton
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
- Interdepartmental Research Centre for Viticulture and Enology, University of Padova, Conegliano, Italy
- CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Francesca Populin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Giulia Eccher
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Matteo Brilli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Silvia Quaggiotti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
- CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Sara Trevisan
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Nadia Cainelli
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Paola Guarracino
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | | | - Franco Meggio
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
- Interdepartmental Research Centre for Viticulture and Enology, University of Padova, Conegliano, Italy
| |
Collapse
|
111
|
Fukao T, Barrera-Figueroa BE, Juntawong P, Peña-Castro JM. Submergence and Waterlogging Stress in Plants: A Review Highlighting Research Opportunities and Understudied Aspects. FRONTIERS IN PLANT SCIENCE 2019; 10:340. [PMID: 30967888 PMCID: PMC6439527 DOI: 10.3389/fpls.2019.00340] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/05/2019] [Indexed: 05/20/2023]
Abstract
Soil flooding creates composite and complex stress in plants known as either submergence or waterlogging stress depending on the depth of the water table. In nature, these stresses are important factors dictating the species composition of the ecosystem. On agricultural land, they cause economic damage associated with long-term social consequences. The understanding of the plant molecular responses to these two stresses has benefited from research studying individual components of the stress, in particular low-oxygen stress. To a lesser extent, other associated stresses and plant responses have been incorporated into the molecular framework, such as ion and ROS signaling, pathogen susceptibility, and organ-specific expression and development. In this review, we aim to highlight known or suspected components of submergence/waterlogging stress that have not yet been thoroughly studied at the molecular level in this context, such as miRNA and retrotransposon expression, the influence of light/dark cycles, protein isoforms, root architecture, sugar sensing and signaling, post-stress molecular events, heavy-metal and salinity stress, and mRNA dynamics (splicing, sequestering, and ribosome loading). Finally, we explore biotechnological strategies that have applied this molecular knowledge to develop cultivars resistant to flooding or to offer alternative uses of flooding-prone soils, like bioethanol and biomass production.
Collapse
Affiliation(s)
- Takeshi Fukao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | | | - Piyada Juntawong
- Center for Advanced Studies in Tropical Natural Resources, National Research University – Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Julián Mario Peña-Castro
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Mexico
| |
Collapse
|
112
|
Lin CC, Chao YT, Chen WC, Ho HY, Chou MY, Li YR, Wu YL, Yang HA, Hsieh H, Lin CS, Wu FH, Chou SJ, Jen HC, Huang YH, Irene D, Wu WJ, Wu JL, Gibbs DJ, Ho MC, Shih MC. Regulatory cascade involving transcriptional and N-end rule pathways in rice under submergence. Proc Natl Acad Sci U S A 2019; 116:3300-3309. [PMID: 30723146 PMCID: PMC6386710 DOI: 10.1073/pnas.1818507116] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rice SUB1A-1 gene, which encodes a group VII ethylene response factor (ERFVII), plays a pivotal role in rice survival under flooding stress, as well as other abiotic stresses. In Arabidopsis, five ERFVII factors play roles in regulating hypoxic responses. A characteristic feature of Arabidopsis ERFVIIs is a destabilizing N terminus, which functions as an N-degron that targets them for degradation via the oxygen-dependent N-end rule pathway of proteolysis, but permits their stabilization during hypoxia for hypoxia-responsive signaling. Despite having the canonical N-degron sequence, SUB1A-1 is not under N-end rule regulation, suggesting a distinct hypoxia signaling pathway in rice during submergence. Herein we show that two other rice ERFVIIs gene, ERF66 and ERF67, are directly transcriptionally up-regulated by SUB1A-1 under submergence. In contrast to SUB1A-1, ERF66 and ERF67 are substrates of the N-end rule pathway that are stabilized under hypoxia and may be responsible for triggering a stronger transcriptional response to promote submergence survival. In support of this, overexpression of ERF66 or ERF67 leads to activation of anaerobic survival genes and enhanced submergence tolerance. Furthermore, by using structural and protein-interaction analyses, we show that the C terminus of SUB1A-1 prevents its degradation via the N-end rule and directly interacts with the SUB1A-1 N terminus, which may explain the enhanced stability of SUB1A-1 despite bearing an N-degron sequence. In summary, our results suggest that SUB1A-1, ERF66, and ERF67 form a regulatory cascade involving transcriptional and N-end rule control, which allows rice to distinguish flooding from other SUB1A-1-regulated stresses.
Collapse
Affiliation(s)
- Chih-Cheng Lin
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University, Academia Sinica, 11529 Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, 40227 Taichung, Taiwan
| | - Ya-Ting Chao
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Wan-Chieh Chen
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Hsiu-Yin Ho
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Mei-Yi Chou
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Ya-Ru Li
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Yu-Lin Wu
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Hung-An Yang
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Hsiang Hsieh
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Fu-Hui Wu
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | - Shu-Jen Chou
- Institute of Plant and Microbial Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Hao-Chung Jen
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, 10617 Taipei, Taiwan
| | - Yung-Hsiang Huang
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, 10617 Taipei, Taiwan
| | - Deli Irene
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan
| | - Jian-Li Wu
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan;
- Institute of Biochemical Sciences, National Taiwan University, 10617 Taipei, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, 11529 Taipei, Taiwan;
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University, Academia Sinica, 11529 Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, 40227 Taichung, Taiwan
| |
Collapse
|
113
|
Tan X, Zwiazek JJ. Stable expression of aquaporins and hypoxia-responsive genes in adventitious roots are linked to maintaining hydraulic conductance in tobacco (Nicotiana tabacum) exposed to root hypoxia. PLoS One 2019; 14:e0212059. [PMID: 30730995 PMCID: PMC6366753 DOI: 10.1371/journal.pone.0212059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/26/2019] [Indexed: 11/22/2022] Open
Abstract
Formation of adventitious roots in plants is a common response to hypoxia caused by flooding. In tobacco, after one week of root hypoxia treatment, plants produced twice as many adventitious roots as the aerated plants, but their maximum length was reduced. Hypoxia severely reduced net photosynthesis, transpiration rates, and photosynthetic light responses. Relative transcript abundance of the examined aquaporins in lateral roots was reduced by hypoxia, but in adventitious roots it remained unchanged. This apparent lack of an effect of root hypoxia on the aquaporin expression likely contributed to maintenance of high hydraulic conductance in adventitious roots. Lateral roots had lower porosity compared with adventitious roots and the expression of the ACS (1-aminocyclopropane-1-carboxylate synthase) gene was induced in hypoxic lateral roots, but not in adventitious roots, providing additional evidence that lateral roots were more affected by hypoxia compared with adventitious roots. ATP concentrations were markedly lower in both hypoxic lateral and adventitious roots compared with aerated roots, while the expression of fermentation-related genes, ADH1 (alcohol dehydrogenase 1) and PDC1 (pyruvate decarboxylase 1), was higher in lateral roots compared with adventitious roots. Since root porosity was greater in adventitious compared with lateral roots, the results suggest that the improved O2 delivery and stable root aquaporin expression in adventitious roots were likely the key factors helping flooded tobacco plants maintain high rates of root hydraulic conductance and, consequently, shoot gas exchange.
Collapse
Affiliation(s)
- Xiangfeng Tan
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Janusz J. Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
114
|
Low-oxygen response is triggered by an ATP-dependent shift in oleoyl-CoA in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E12101-E12110. [PMID: 30509981 PMCID: PMC6304976 DOI: 10.1073/pnas.1809429115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To control adaptive responses to the ever-changing environment that plants are continuously exposed to, plant cells must integrate a multitude of information to make optimal decisions. Here, we reveal how plants can link information about the cellular energy status with the actual oxygen concentration of the cell to trigger a response reaction to low-oxygen stress. We reveal that oleoyl-CoA has a moonlighting function in an energy (ATP)-dependent signal transduction pathway in plants, and we provide a model that explains how diminishing oxygen availability can initiate adaptive responses when it coincides with a decreased energy status of the cell. Plant response to environmental stimuli involves integration of multiple signals. Upon low-oxygen stress, plants initiate a set of adaptive responses to circumvent an energy crisis. Here, we reveal how these stress responses are induced by combining (i) energy-dependent changes in the composition of the acyl-CoA pool and (ii) the cellular oxygen concentration. A hypoxia-induced decline of cellular ATP levels reduces LONG-CHAIN ACYL-COA SYNTHETASE activity, which leads to a shift in the composition of the acyl-CoA pool. Subsequently, we show that different acyl-CoAs induce unique molecular responses. Altogether, our data disclose a role for acyl-CoAs acting in a cellular signaling pathway in plants. Upon hypoxia, high oleoyl-CoA levels provide the initial trigger to release the transcription factor RAP2.12 from its interaction partner ACYL-COA BINDING PROTEIN at the plasma membrane. Subsequently, according to the N-end rule for proteasomal degradation, oxygen concentration-dependent stabilization of the subgroup VII ETHYLENE-RESPONSE FACTOR transcription factor RAP2.12 determines the level of hypoxia-specific gene expression. This research unveils a specific mechanism activating low-oxygen stress responses only when a decrease in the oxygen concentration coincides with a drop in energy.
Collapse
|
115
|
Dumont S, Bykova NV, Khaou A, Besserour Y, Dorval M, Rivoal J. Arabidopsis thaliana alcohol dehydrogenase is differently affected by several redox modifications. PLoS One 2018; 13:e0204530. [PMID: 30252897 PMCID: PMC6155552 DOI: 10.1371/journal.pone.0204530] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
In plant cells, many stresses, including low oxygen availability, result in a higher production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). These molecules can lead to redox-dependent post-translational modification of proteins Cys residues. Here, we studied the effect of different redox modifications on alcohol dehydrogenase (ADH) from Arabidopsis thaliana. ADH catalyzes the last step of the ethanol fermentation pathway used by plants to cope with energy deficiency during hypoxic stress. Arabidopsis suspension cell cultures showed decreased ADH activity upon exposure to H2O2, but not to the thiol oxidizing agent diamide. We purified recombinant ADH and observed a significant decrease in the enzyme activity by treatments with H2O2 and diethylamine NONOate (DEA/NO). Treatments leading to the formation of a disulfide bond between ADH and glutathione (protein S-glutathionylation) had no negative effect on the enzyme activity. LC-MS/MS analysis showed that Cys47 and Cys243 could make a stable disulfide bond with glutathione, suggesting redox sensitivity of these residues. Mutation of ADH Cys47 to Ser caused an almost complete loss of the enzyme activity while the Cys243 to Ser mutant had increased specific activity. Incubation of ADH with NAD+ or NADH prevented inhibition of the enzyme by H2O2 or DEA/NO. These results suggest that binding of ADH with its cofactors may limit availability of Cys residues to redox modifications. Our study demonstrates that ADH from A. thaliana is subject to different redox modifications. Implications of ADH sensitivity to ROS and RNS during hypoxic stress conditions are discussed.
Collapse
Affiliation(s)
- Sébastien Dumont
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Natalia V. Bykova
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Manitoba, Canada
| | - Alexia Khaou
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Yasmine Besserour
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Maude Dorval
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
116
|
Abstract
A major problem of climate change is the increasing duration and frequency of heavy rainfall events. This leads to soil flooding that negatively affects plant growth, eventually leading to death of plants if the flooding persists for several days. Most crop plants are very sensitive to flooding, and dramatic yield losses occur due to flooding each year. This review summarizes recent progress and approaches to enhance crop resistance to flooding. Most experiments have been done on maize, barley, and soybean. Work on other crops such as wheat and rape has only started. The most promising traits that might enhance crop flooding tolerance are anatomical adaptations such as aerenchyma formation, the formation of a barrier against radial oxygen loss, and the growth of adventitious roots. Metabolic adaptations might be able to improve waterlogging tolerance as well, but more studies are needed in this direction. Reasonable approaches for future studies are quantitative trait locus (QTL) analyses or genome-wide association (GWA) studies in combination with specific tolerance traits that can be easily assessed. The usage of flooding-tolerant relatives or ancestral cultivars of the crop of interest in these experiments might enhance the chances of finding useful tolerance traits to be used in breeding.
Collapse
|
117
|
Wittmann C, Pfanz H. More than just CO 2 -recycling: corticular photosynthesis as a mechanism to reduce the risk of an energy crisis induced by low oxygen. THE NEW PHYTOLOGIST 2018; 219:551-564. [PMID: 29767842 DOI: 10.1111/nph.15198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Reassimilation of internal CO2 via corticular photosynthesis (PScort ) has an important effect on the carbon economy of trees. However, little is known about its role as a source of O2 supply to the stem parenchyma and its implications in consumption and movement of O2 within trees. PScort of young Populus nigra (black poplar) trees was investigated by combining optical micro-optode measurements with monitoring of stem chlorophyll fluorescence. During times of zero sap flow in spring, stem oxygen concentrations (cO2 ) exhibited large temporal changes. In the sapwood, over 80% of diurnal changes in cO2 could be explained by respiration rates (Rd(mod) ). In the cortex, photosynthetic oxygen release during the day altered this relationship. With daytime illumination, oxygen levels in the cortex steadily increased from subambient and even exhibited a diel period of superoxia of up to 110% (% air sat.). By contrast, in the sapwood, cO2 never reached ambient levels; the diurnal oxygen deficit was up to 25% of air saturation. Our results confirm that PScort is not only a CO2 -recycling mechanism, it is also a mechanism to actively raise the cortical O2 concentration and counteract temporal/spatial hypoxia inside plant stems.
Collapse
Affiliation(s)
- Christiane Wittmann
- Department of Applied Botany and Volcano Biology, University of Duisburg-Essen, Essen, 45117, Germany
| | - Hardy Pfanz
- Department of Applied Botany and Volcano Biology, University of Duisburg-Essen, Essen, 45117, Germany
| |
Collapse
|
118
|
White MD, Kamps JJAG, East S, Taylor Kearney LJ, Flashman E. The plant cysteine oxidases from Arabidopsis thaliana are kinetically tailored to act as oxygen sensors. J Biol Chem 2018; 293:11786-11795. [PMID: 29848548 PMCID: PMC6066304 DOI: 10.1074/jbc.ra118.003496] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/25/2018] [Indexed: 01/02/2023] Open
Abstract
Group VII ethylene response factors (ERF-VIIs) regulate transcriptional adaptation to flooding-induced hypoxia in plants. ERF-VII stability is controlled in an O2-dependent manner by the Cys/Arg branch of the N-end rule pathway whereby oxidation of a conserved N-terminal cysteine residue initiates target degradation. This oxidation is catalyzed by plant cysteine oxidases (PCOs), which use O2 as cosubstrate to generate Cys-sulfinic acid. The PCOs directly link O2 availability to ERF-VII stability and anaerobic adaptation, leading to the suggestion that they act as plant O2 sensors. However, their ability to respond to fluctuations in O2 concentration has not been established. Here, we investigated the steady-state kinetics of Arabidopsis thaliana PCOs 1–5 to ascertain whether their activities are sensitive to O2 levels. We found that the most catalytically competent isoform is AtPCO4, both in terms of responding to O2 and oxidizing AtRAP2.2/2,12 (two of the most prominent ERF-VIIs responsible for promoting the hypoxic response), which suggests that AtPCO4 plays a central role in ERF-VII regulation. Furthermore, we found that AtPCO activity is susceptible to decreases in pH and that the hypoxia-inducible AtPCOs 1/2 and the noninducible AtPCOs 4/5 have discrete AtERF-VII substrate preferences. Pertinently, the AtPCOs had Km(O2)app values in a physiologically relevant range, which should enable them to sensitively react to changes in O2 availability. This work validates an O2-sensing role for the PCOs and suggests that differences in expression pattern, ERF-VII selectivity, and catalytic capability may enable the different isoforms to have distinct biological functions. Individual PCOs could therefore be targeted to manipulate ERF-VII levels and improve stress tolerance in plants.
Collapse
Affiliation(s)
- Mark D White
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jos J A G Kamps
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Samuel East
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Leah J Taylor Kearney
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Emily Flashman
- From the Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
119
|
Demidchik V. ROS-Activated Ion Channels in Plants: Biophysical Characteristics, Physiological Functions and Molecular Nature. Int J Mol Sci 2018; 19:E1263. [PMID: 29690632 PMCID: PMC5979493 DOI: 10.3390/ijms19041263] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022] Open
Abstract
Ion channels activated by reactive oxygen species (ROS) have been found in the plasma membrane of charophyte Nitella flixilis, dicotyledon Arabidopsis thaliana, Pyrus pyrifolia and Pisum sativum, and the monocotyledon Lilium longiflorum. Their activities have been reported in charophyte giant internodes, root trichoblasts and atrichoblasts, pollen tubes, and guard cells. Hydrogen peroxide and hydroxyl radicals are major activating species for these channels. Plant ROS-activated ion channels include inwardly-rectifying, outwardly-rectifying, and voltage-independent groups. The inwardly-rectifying ROS-activated ion channels mediate Ca2+-influx for growth and development in roots and pollen tubes. The outwardly-rectifying group facilitates K⁺ efflux for the regulation of osmotic pressure in guard cells, induction of programmed cell death, and autophagy in roots. The voltage-independent group mediates both Ca2+ influx and K⁺ efflux. Most studies suggest that ROS-activated channels are non-selective cation channels. Single-channel studies revealed activation of 14.5-pS Ca2+ influx and 16-pS K⁺ efflux unitary conductances in response to ROS. The molecular nature of ROS-activated Ca2+ influx channels remains poorly understood, although annexins and cyclic nucleotide-gated channels have been proposed for this role. The ROS-activated K⁺ channels have recently been identified as products of Stellar K⁺ Outward Rectifier (SKOR) and Guard cell Outwardly Rectifying K⁺ channel (GORK) genes.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Horticulture, School of Food Science and Engineering, Foshan University, Foshan 528000, China.
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, 220030 Minsk, Belarus.
- Russian Academy of Sciences, Komarov Botanical Institute, 2 Professora Popova Street, 197376 St. Petersburg, Russia.
| |
Collapse
|
120
|
Gianinetti A, Finocchiaro F, Bagnaresi P, Zechini A, Faccioli P, Cattivelli L, Valè G, Biselli C. Seed Dormancy Involves a Transcriptional Program That Supports Early Plastid Functionality during Imbibition. PLANTS 2018; 7:plants7020035. [PMID: 29671830 PMCID: PMC6026906 DOI: 10.3390/plants7020035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/05/2018] [Accepted: 04/11/2018] [Indexed: 01/18/2023]
Abstract
Red rice fully dormant seeds do not germinate even under favorable germination conditions. In several species, including rice, seed dormancy can be removed by dry-afterripening (warm storage); thus, dormant and non-dormant seeds can be compared for the same genotype. A weedy (red) rice genotype with strong dormancy was used for mRNA expression profiling, by RNA-Seq, of dormant and non-dormant dehulled caryopses (here addressed as seeds) at two temperatures (30 °C and 10 °C) and two durations of incubation in water (8 h and 8 days). Aim of the study was to highlight the differences in the transcriptome of dormant and non-dormant imbibed seeds. Transcript data suggested important differences between these seeds (at least, as inferred by expression-based metabolism reconstruction): dry-afterripening seems to impose a respiratory impairment onto non-dormant seeds, thus glycolysis is deduced to be preferentially directed to alcoholic fermentation in non-dormant seeds but to alanine production in dormant ones; phosphoenolpyruvate carboxykinase, pyruvate phosphate dikinase and alanine aminotransferase pathways appear to have an important gluconeogenetic role associated with the restoration of plastid functions in the dormant seed following imbibition; correspondingly, co-expression analysis pointed out a commitment to guarantee plastid functionality in dormant seeds. At 8 h of imbibition, as inferred by gene expression, dormant seeds appear to preferentially use carbon and nitrogen resources for biosynthetic processes in the plastid, including starch and proanthocyanidins accumulation. Chromatin modification appears to be a possible mechanism involved in the transition from dormancy to germination. Non-dormant seeds show higher expression of genes related to cell wall modification, suggesting they prepare for acrospire/radicle elongation.
Collapse
Affiliation(s)
- Alberto Gianinetti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Franca Finocchiaro
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Antonella Zechini
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Primetta Faccioli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giampiero Valè
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy.
| | - Chiara Biselli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| |
Collapse
|
121
|
Planchet E, Lothier J, Limami AM. Hypoxic Respiratory Metabolism in Plants: Reorchestration of Nitrogen and Carbon Metabolisms. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-68703-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
122
|
Düner M, Lambertz J, Mügge C, Hemschemeier A. The soluble guanylate cyclase CYG12 is required for the acclimation to hypoxia and trophic regimes in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:311-337. [PMID: 29161457 DOI: 10.1111/tpj.13779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 05/27/2023]
Abstract
Oxygenic phototrophs frequently encounter environmental conditions that result in intracellular energy crises. Growth of the unicellular green alga Chlamydomonas reinhardtii in hypoxia in the light depends on acclimatory responses of which the induction of photosynthetic cyclic electron flow is essential. The microalga cannot grow in the absence of molecular oxygen (O2 ) in the dark, although it possesses an elaborate fermentation metabolism. Not much is known about how the microalga senses and signals the lack of O2 or about its survival strategies during energy crises. Recently, nitric oxide (NO) has emerged to be required for the acclimation of C. reinhardtii to hypoxia. In this study, we show that the soluble guanylate cyclase (sGC) CYG12, a homologue of animal NO sensors, is also involved in this response. CYG12 is an active sGC, and post-transcriptional down-regulation of the CYG12 gene impairs hypoxic growth and gene expression in C. reinhardtii. However, it also results in a disturbed photosynthetic apparatus under standard growth conditions and the inability to grow heterotrophically. Transcriptome profiles indicate that the mis-expression of CYG12 results in a perturbation of responses that, in the wild-type, maintain the cellular energy budget. We suggest that CYG12 is required for the proper operation of the photosynthetic apparatus which, in turn, is essential for survival in hypoxia and darkness.
Collapse
Affiliation(s)
- Melis Düner
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Jan Lambertz
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Carolin Mügge
- Junior Research Group for Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Anja Hemschemeier
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
123
|
Eldeeb MA, Leitao LCA, Fahlman RP. Emerging branches of the N-end rule pathways are revealing the sequence complexities of N-termini dependent protein degradation. Biochem Cell Biol 2017; 96:289-294. [PMID: 29253354 DOI: 10.1139/bcb-2017-0274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The N-end rule links the identity of the N-terminal amino acid of a protein to its in vivo half-life, as some N-terminal residues confer metabolic instability to a protein via their recognition by the cellular machinery that targets them for degradation. Since its discovery, the N-end rule has generally been defined as set of rules of whether an N-terminal residue is stabilizing or not. However, recent studies are revealing that the N-terminal code of amino acids conferring protein instability is more complex than previously appreciated, as recent investigations are revealing that the identity of adjoining downstream residues can also influence the metabolic stability of N-end rule substrate. This is exemplified by the recent discovery of a new branch of N-end rule pathways that target proteins bearing N-terminal proline. In addition, recent investigations are demonstrating that the molecular machinery in N-termini dependent protein degradation may also target proteins for lysosomal degradation, in addition to proteasome-dependent degradation. Herein, we describe some of the recent advances in N-end rule pathways and discuss some of the implications regarding the emerging additional sequence requirements.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.,b Department of Chemistry, Faculty of Science, Cairo University, Giza, Cairo, Egypt
| | - Luana C A Leitao
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Richard P Fahlman
- a Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.,c Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
124
|
Pompeiano A, Huarancca Reyes T, Moles TM, Villani M, Volterrani M, Guglielminetti L, Scartazza A. Inter- and intraspecific variability in physiological traits and post-anoxia recovery of photosynthetic efficiency in grasses under oxygen deprivation. PHYSIOLOGIA PLANTARUM 2017; 161:385-399. [PMID: 28767128 DOI: 10.1111/ppl.12608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/23/2017] [Accepted: 07/14/2017] [Indexed: 05/24/2023]
Abstract
Low oxygen conditions occur in grass sites due to high and frequent precipitation, poor soil quality, and over-irrigation followed by slow drainage. Three warm-season and one cool-season grass were analyzed at metabolic level during a time-course experiment performed in a controlled anoxic environment. Prolonged oxygen depletion proved detrimental by leading to premature death to all the species, with the exception of seashore paspalum. Moreover, the anoxia tolerance observed in these grasses has been associated with slow use of carbohydrates, rather than with their relative abundance, which was more important than their antioxidant capacity. Further physiological characterization of eight seashore paspalum genotypes to anoxia was also performed, by examining the variation in photosystem II (PSII) efficiency and gas exchange during post-anoxia recovery. Multivariate analysis highlighted the presence of three main clusters of seashore paspalum genotypes, characterized by different ability to restore the PSII photochemistry during recovery after one day of anoxia. Taken together, our data demonstrate that the analysis of post-anoxia recovery of fluorescence and gas exchange parameters can represent a fast and reliable indicator for selecting species and cultivars more able to acclimate their photosynthetic apparatus.
Collapse
Affiliation(s)
- Antonio Pompeiano
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital, 62500, Brno, Czech Republic
| | - Thais Huarancca Reyes
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | - Tommaso M Moles
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | - Marco Villani
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | - Marco Volterrani
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | | | - Andrea Scartazza
- Institute of Agro-environmental and Forest Biology, National Research Council, 00016, Monterotondo Scalo (RM), Italy
| |
Collapse
|
125
|
|
126
|
Giuntoli B, Shukla V, Maggiorelli F, Giorgi FM, Lombardi L, Perata P, Licausi F. Age-dependent regulation of ERF-VII transcription factor activity in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2017; 40:2333-2346. [PMID: 28741696 DOI: 10.1111/pce.13037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 05/22/2023]
Abstract
The Group VII Ethylene Responsive Factors (ERFs-VII) RAP2.2 and RAP2.12 have been mainly characterized with regard to their contribution as activators of fermentation in plants. However, transcriptional changes measured in conditions that stabilize these transcription factors exceed the mere activation of this biochemical pathway, implying additional roles performed by the ERF-VIIs in other processes. We evaluated gene expression in transgenic Arabidopsis lines expressing a stabilized form of RAP2.12, or hampered in ERF-VII activity, and identified genes affected by this transcriptional regulator and its homologs, including some involved in oxidative stress response, which are not universally induced under anaerobic conditions. The contribution of the ERF-VIIs in regulating this set of genes in response to chemically induced or submergence-stimulated mitochondria malfunctioning was found to depend on the plant developmental stage. A similar age-dependent mechanism also restrained ERF-VII activity upon the core-hypoxic genes, independently of the N-end rule pathway, which is accounted for the control of the anaerobic response. To conclude, this study shed new light on a dual role of ERF-VII proteins under submergence: as positive regulators of the hypoxic response and as repressors of oxidative-stress related genes, depending on the developmental stage at which plants are challenged by stress conditions.
Collapse
Affiliation(s)
- Beatrice Giuntoli
- Scuola Superiore Sant'Anna, Institute of Life Sciences, Plantlab, Via Guidiccioni 8/10, 56017, Pisa, Italy
| | - Vinay Shukla
- Scuola Superiore Sant'Anna, Institute of Life Sciences, Plantlab, Via Guidiccioni 8/10, 56017, Pisa, Italy
| | - Federica Maggiorelli
- Biology Department, Università degli Studi di Pisa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - Federico M Giorgi
- Scuola Superiore Sant'Anna, Institute of Life Sciences, Plantlab, Via Guidiccioni 8/10, 56017, Pisa, Italy
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 1TN, UK
- Department of Systems Biology, Columbia University, New York, NY, 10027, USA
| | - Lara Lombardi
- Biology Department, Università degli Studi di Pisa, Via Luca Ghini 13, 56126, Pisa, Italy
| | - Pierdomenico Perata
- Scuola Superiore Sant'Anna, Institute of Life Sciences, Plantlab, Via Guidiccioni 8/10, 56017, Pisa, Italy
| | - Francesco Licausi
- Scuola Superiore Sant'Anna, Institute of Life Sciences, Plantlab, Via Guidiccioni 8/10, 56017, Pisa, Italy
- Biology Department, Università degli Studi di Pisa, Via Luca Ghini 13, 56126, Pisa, Italy
| |
Collapse
|
127
|
Pedersen O, Perata P, Voesenek LACJ. Flooding and low oxygen responses in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:iii-vi. [PMID: 32480612 DOI: 10.1071/fpv44n9_fo] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The world is currently experiencing dramatic increases in flood events impacting on natural vegetation and crops. Flooding often results in low O2 status in root tissues during waterlogging, but sometimes also in shoot tissues when plants become completely submerged. Plants possess a suite of traits enabling tissue aeration and/or adjusted metabolism during hypoxia or even in the absence of O2. This special issue of Functional Plant Biology presents key papers for plant scientists on the quest to further address and improve flood tolerance of terrestrial plants. The papers address low O2 responses in roots, shoots or whole plants in controlled laboratory conditions or in the field situation using natural wetland plants as models as well as economically important crops, such as rice, wheat and barley. The studies advance our understanding of low O2 responses in plant tissues as caused by O2 shortage during flooding. However, in most instances, submergence not only leads to hypoxic or anoxic tissues, but inundation in water also results in accumulation of CO2 and the important plant hormone ethylene. Thus, carefully designed laboratory studies are often needed to unravel the mechanistic relationships between a combined decline in O2 followed by increases in CO2 and ethylene at tissue as well as on the cellular level.
Collapse
Affiliation(s)
- Ole Pedersen
- Department of Biology, The University of Copenhagen, Universitetsparken 4, 3rd floor, 2100 Copenhagen, Denmark
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Mariscoglio 34, Pisa 56124, Italy
| | - Laurentius A C J Voesenek
- Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
128
|
De Col V, Fuchs P, Nietzel T, Elsässer M, Voon CP, Candeo A, Seeliger I, Fricker MD, Grefen C, Møller IM, Bassi A, Lim BL, Zancani M, Meyer AJ, Costa A, Wagner S, Schwarzländer M. ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology. eLife 2017; 6. [PMID: 28716182 PMCID: PMC5515573 DOI: 10.7554/elife.26770] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/28/2017] [Indexed: 12/13/2022] Open
Abstract
Growth and development of plants is ultimately driven by light energy captured through photosynthesis. ATP acts as universal cellular energy cofactor fuelling all life processes, including gene expression, metabolism, and transport. Despite a mechanistic understanding of ATP biochemistry, ATP dynamics in the living plant have been largely elusive. Here, we establish MgATP2- measurement in living plants using the fluorescent protein biosensor ATeam1.03-nD/nA. We generate Arabidopsis sensor lines and investigate the sensor in vitro under conditions appropriate for the plant cytosol. We establish an assay for ATP fluxes in isolated mitochondria, and demonstrate that the sensor responds rapidly and reliably to MgATP2- changes in planta. A MgATP2- map of the Arabidopsis seedling highlights different MgATP2- concentrations between tissues and within individual cell types, such as root hairs. Progression of hypoxia reveals substantial plasticity of ATP homeostasis in seedlings, demonstrating that ATP dynamics can be monitored in the living plant.
Collapse
Affiliation(s)
- Valentina De Col
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.,Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Philippe Fuchs
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Thomas Nietzel
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Marlene Elsässer
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Chia Pao Voon
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Alessia Candeo
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Ingo Seeliger
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Christopher Grefen
- Centre for Plant Molecular Biology, Developmental Genetics, University of Tübingen, Tübingen, Germany
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Andrea Bassi
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Marco Zancani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.,Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| | - Alex Costa
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Stephan Wagner
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Markus Schwarzländer
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.,Bioeconomy Science Center, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
129
|
Wang F, Chen ZH, Shabala S. Hypoxia Sensing in Plants: On a Quest for Ion Channels as Putative Oxygen Sensors. PLANT & CELL PHYSIOLOGY 2017; 58:1126-1142. [PMID: 28838128 DOI: 10.1093/pcp/pcx079] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/22/2017] [Indexed: 05/18/2023]
Abstract
Over 17 million km2 of land is affected by soil flooding every year, resulting in substantial yield losses and jeopardizing food security across the globe. A key step in resolving this problem and creating stress-tolerant cultivars is an understanding of the mechanisms by which plants sense low-oxygen stress. In this work, we review the current knowledge about the oxygen-sensing and signaling pathway in mammalian and plant systems and postulate the potential role of ion channels as putative oxygen sensors in plant roots. We first discuss the definition and requirements for the oxygen sensor and the difference between sensing and signaling. We then summarize the literature and identify several known candidates for oxygen sensing in the mammalian literature. This includes transient receptor potential (TRP) channels; K+-permeable channels (Kv, BK and TASK); Ca2+ channels (RyR and TPC); and various chemo- and reactive oxygen species (ROS)-dependent oxygen sensors. Identified key oxygen-sensing domains (PAS, GCS, GAF and PHD) in mammalian systems are used to predict the potential plant counterparts in Arabidopsis. Finally, the sequences of known mammalian ion channels with reported roles in oxygen sensing were employed to BLAST the Arabidopsis genome for the candidate genes. Several plasma membrane and tonoplast ion channels (such as TPC, AKT and KCO) and oxygen domain-containing proteins with predicted oxygen-sensing ability were identified and discussed. We propose a testable model for potential roles of ion channels in plant hypoxia sensing.
Collapse
Affiliation(s)
- Feifei Wang
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
130
|
Hwang ST, Li H, Alavilli H, Lee BH, Choi D. Molecular and physiological characterization of AtHIGD1 in Arabidopsis. Biochem Biophys Res Commun 2017; 487:881-886. [PMID: 28465235 DOI: 10.1016/j.bbrc.2017.04.146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 11/30/2022]
Abstract
Flooding is a principal stress that limits plant productivity. The sensing of low oxygen levels (hypoxia) plays a critical role in the signaling pathway that functions in plants in flooded environments. In this study, to investigate hypoxia response mechanisms in Arabidopsis, we identified three hypoxia-related genes and subjected one of these genes, Arabidopsis thaliana HYPOXIA-INDUCED GENE DOMAIN 1 (AtHIGD1), to molecular characterization including gene expression analysis and intracellular localization of the encoded protein. AtHIGD1 was expressed in various organs but was preferentially expressed in developing siliques. Confocal microscopy of transgenic plants harboring eGFP-tagged AtHIGD1 indicated that AtHIGD1 is localized to mitochondria. Importantly, plants overexpressing AtHIGD1 exhibited increased resistance to hypoxia compared to wild type. Our results represent the first report of a biological function for an HIGD protein in plants and indicate that AtHIGD1 is a mitochondrial protein that plays an active role in mitigating the effects of hypoxia on plants.
Collapse
Affiliation(s)
- Soong-Taek Hwang
- Department of Biology, Kunsan National University, Gunsan 54150 South Korea
| | - Huiling Li
- Department of Biology, Kunsan National University, Gunsan 54150 South Korea; Research Department, Shanghai Cuvcell Biosciences Co., Ltd., Shanghai 200052 China
| | | | - Byeong-Ha Lee
- Department of Life Science, Sogang University, Seoul 04107 South Korea
| | - Dongsu Choi
- Department of Biology, Kunsan National University, Gunsan 54150 South Korea.
| |
Collapse
|
131
|
Sasidharan R, Bailey-Serres J, Ashikari M, Atwell BJ, Colmer TD, Fagerstedt K, Fukao T, Geigenberger P, Hebelstrup KH, Hill RD, Holdsworth MJ, Ismail AM, Licausi F, Mustroph A, Nakazono M, Pedersen O, Perata P, Sauter M, Shih MC, Sorrell BK, Striker GG, van Dongen JT, Whelan J, Xiao S, Visser EJW, Voesenek LACJ. Community recommendations on terminology and procedures used in flooding and low oxygen stress research. THE NEW PHYTOLOGIST 2017; 214:1403-1407. [PMID: 28277605 DOI: 10.1111/nph.14519] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Rashmi Sasidharan
- Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, the Netherlands
| | - Julia Bailey-Serres
- Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, the Netherlands
- Center for Plant Cell Biology, Department of Botany and Plant Science, University of California, Riverside, CA, 92521-0124, USA
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Brian J Atwell
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Timothy D Colmer
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Kurt Fagerstedt
- Department of Biosciences, Viikki Plant Science Center, Helsinki University, PO Box 65, Helsinki, FI-00014, Finland
| | - Takeshi Fukao
- Department of Crop and Soil Environmental Sciences, Translational Plant Science Program, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Peter Geigenberger
- Department of Biol 1, Ludwig Maximilian University of Munich, Grosshaderner Str 2-4, Martinsried, Planegg, Munich, D-82152, Germany
| | - Kim H Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Slagelse, 4200, Denmark
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Michael J Holdsworth
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Abdelbagi M Ismail
- International Rice Research Institute, Los Banõs, Laguna, 4031, Philippines
| | - Francesco Licausi
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Mariscoglio 34, Pisa, 56124, Italy
| | - Angelika Mustroph
- Plant Physiology, University Bayreuth, Universitaetsstr. 30, Bayreuth, 95440, Germany
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ole Pedersen
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, Copenhagen, 2100, Denmark
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Mariscoglio 34, Pisa, 56124, Italy
| | - Margret Sauter
- Plant Developmental Biology and Plant Physiology, Kiel University, Kiel, 24118, Germany
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, 115, Taipei, Taiwan
| | - Brian K Sorrell
- Department of Bioscience, Aarhus University, Aarhus, 8000, Denmark
| | - Gustavo G Striker
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Av. San Martin 4453, Buenos Aires, Argentina
| | | | - James Whelan
- Department of Animal, Plant and Soil Science, School of Life Science, Australian Research Council Center of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Eric J W Visser
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Laurentius A C J Voesenek
- Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, the Netherlands
| |
Collapse
|
132
|
Shahzad Z, Maurel C. [Combined adaptation of roots to flooding and soil nutrients: Role of a MAP3K protein kinase]. Med Sci (Paris) 2017; 33:383-385. [PMID: 28497732 DOI: 10.1051/medsci/20173304005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zaigham Shahzad
- Biochimie et physiologie moléculaire des plantes, UMR5004, INRA/CNRS/Montpellier SupAgro/Université Montpellier, 2, place Viala, F-34060 Montpellier, France
| | - Christophe Maurel
- Biochimie et physiologie moléculaire des plantes, UMR5004, INRA/CNRS/Montpellier SupAgro/Université Montpellier, 2, place Viala, F-34060 Montpellier, France
| |
Collapse
|
133
|
Pucciariello C, Perata P. New insights into reactive oxygen species and nitric oxide signalling under low oxygen in plants. PLANT, CELL & ENVIRONMENT 2017; 40:473-482. [PMID: 26799776 DOI: 10.1111/pce.12715] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/30/2015] [Accepted: 01/13/2016] [Indexed: 05/10/2023]
Abstract
Plants produce reactive oxygen species (ROS) when exposed to low oxygen (O2 ). Much experimental evidence has demonstrated the existence of an oxidative burst when there is an O2 shortage. This originates at various subcellular sites. The activation of NADPH oxidase(s), in complex with other proteins, is responsible for ROS production at the plasma membrane. Another source of low O2 -dependent ROS is the mitochondrial electron transport chain, which misfunctions when low O2 limits its activity. Arabidopsis mutants impaired in proteins playing a role in ROS production display an intolerant phenotype to anoxia and submergence, suggesting a role in acclimation to stress. In rice, the presence of the submergence 1A (SUB1A) gene for submergence tolerance is associated with a higher capacity to scavenge ROS. Additionally, the destabilization of group VII ethylene responsive factors, which are involved in the direct O2 sensing mechanism, requires nitric oxide (NO). All this evidence suggests the existence of a ROS and NO - low O2 mechanism interplay which likely includes sensing, anaerobic metabolism and acclimation to stress. In this review, we summarize the most recent findings on this topic, formulating hypotheses on the basis of the latest advances.
Collapse
|
134
|
|
135
|
Considine MJ, Diaz-Vivancos P, Kerchev P, Signorelli S, Agudelo-Romero P, Gibbs DJ, Foyer CH. Learning To Breathe: Developmental Phase Transitions in Oxygen Status. TRENDS IN PLANT SCIENCE 2017; 22:140-153. [PMID: 27986423 DOI: 10.1016/j.tplants.2016.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/01/2016] [Accepted: 11/20/2016] [Indexed: 05/04/2023]
Abstract
Plants are developmentally disposed to significant changes in oxygen availability, but our understanding of the importance of hypoxia is almost entirely limited to stress biology. Differential patterns of the abundance of oxygen, nitric oxide (•NO), and reactive oxygen species (ROS), as well as of redox potential, occur in organs and meristems, and examples are emerging in the literature of mechanistic relationships of these to development. We describe here the convergence of these cues in meristematic and reproductive tissues, and discuss the evidence for regulated hypoxic niches within which oxygen-, ROS-, •NO-, and redox-dependent signalling curate developmental transitions in plants.
Collapse
Affiliation(s)
- Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Department of Agriculture and Food Western Australia, South Perth, WA 6151, Australia; Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Pedro Diaz-Vivancos
- Group of Fruit Biotechnology, Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Murcia 30100, Spain
| | - Pavel Kerchev
- Vlaams Instituut voor Biotechnologie (VIB) Department of Plant Systems Biology, University of Gent Technologiepark 927, Gent, 9052 Belgium
| | - Santiago Signorelli
- School of Plant Biology, The University of Western Australia, Perth, WA 6009, Australia
| | - Patricia Agudelo-Romero
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Christine H Foyer
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
136
|
Mira MM, El-Khateeb EA, SayedAhmed HI, Hill RD, Stasolla C. Are avoidance and acclimation responses during hypoxic stress modulated by distinct cell-specific mechanisms? PLANT SIGNALING & BEHAVIOR 2017; 12:e1273304. [PMID: 28010170 PMCID: PMC5289513 DOI: 10.1080/15592324.2016.1273304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 05/20/2023]
Abstract
Plants respond to hypoxic stress through either acclimation to the stress or avoidance of it, as they do to most environmental stresses. The hypothesis that has general consensus among the community is that ethylene response factors (ERFs) are central elements that control both types of responses to hypoxia. Recent studies suggest that this may not be the case for all cells experiencing hypoxic stress. Mature maize root cells undergoing hypoxic stress were found to undergo acclimation and avoidance mechanisms involving ERFs, whereas meristematic root cells and cells still undergoing differentiation acclimated to the response without the involvement of ethylene synthesis or ERFs. Phytoglobins (PGBs) and NO were demonstrated to be components critical to the acclimation response. These findings are discussed relative to the possibility that PGBs may be acting as molecular switches controlling cellular stress responses and hormonal changes and responses in cells.
Collapse
Affiliation(s)
- Mohamed M. Mira
- Department of Botany, Faculty of Science, Tanta University, Tanta, Egypt
| | - Eman A. El-Khateeb
- Department of Botany, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Robert D. Hill
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
137
|
Giuntoli B, Licausi F, van Veen H, Perata P. Functional Balancing of the Hypoxia Regulators RAP2.12 and HRA1 Takes Place in vivo in Arabidopsis thaliana Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:591. [PMID: 28487707 PMCID: PMC5403939 DOI: 10.3389/fpls.2017.00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/31/2017] [Indexed: 05/21/2023]
Abstract
Plants are known to respond to variations in cellular oxygen availability and distribution by quickly adapting the transcription rate of a number of genes, generally associated to improved energy usage pathways, oxygen homeostasis and protection from harmful products of anaerobic metabolism. In terrestrial plants, such coordinated gene expression program is promoted by a conserved subfamily of ethylene responsive transcription factors called ERF-VII, which act as master activators of hypoxic gene transcription. Their abundance is directly regulated by oxygen through a mechanism of targeted proteolysis present under aerobic conditions, which is triggered by ERF-VII protein oxidation. Beside this, in Arabidopsis thaliana, the activity of the ERF-VII factor RAP2.12 has been shown to be restrained and made transient by the hypoxia-inducible transcription factor HRA1. This feedback mechanism has been proposed to modulate ERF-VII activity in the plant under fluctuating hypoxia, thereby enhancing the flexibility of the response. So far, functional balancing between RAP2.12 and HRA1 has been assessed in isolated leaf protoplasts, resulting in an inverse relationship between HRA1 amount and activation of RAP2.12 target promoters. In the present work, we showed that HRA1 is effective in balancing RAP2.12 activity in whole arabidopsis plants. Examination of a segregating population, generated from RAP2.12 and HRA1 over-expressing plants, led to the first quantitative proof that, over a range of either transgene expression levels, HRA1 counteracts the phenotypic and transcriptional effects of RAP2.12. This report supports the occurrence of fine-tuned regulation of the hypoxic response under physiological growth conditions.
Collapse
Affiliation(s)
- Beatrice Giuntoli
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| | - Francesco Licausi
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
- Biology Department, University of PisaPisa, Italy
| | - Hans van Veen
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| | - Pierdomenico Perata
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
- *Correspondence: Pierdomenico Perata
| |
Collapse
|
138
|
Massange-Sánchez JA, Palmeros-Suárez PA, Espitia-Rangel E, Rodríguez-Arévalo I, Sánchez-Segura L, Martínez-Gallardo NA, Alatorre-Cobos F, Tiessen A, Délano-Frier JP. Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms. PLoS One 2016; 11:e0164280. [PMID: 27749893 PMCID: PMC5066980 DOI: 10.1371/journal.pone.0164280] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/22/2016] [Indexed: 11/19/2022] Open
Abstract
Two grain amaranth transcription factor (TF) genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII) conferred tolerance to water-deficit stress (WS) in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA)-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS). WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI) provided salt-stress (SS) tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms.
Collapse
Affiliation(s)
- Julio A. Massange-Sánchez
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Paola A. Palmeros-Suárez
- Laboratorio de Biología Molecular, Instituto Tecnológico de Tlajomulco, Jalisco, km 10 Carretera a San Miguel Cuyutlán, CP 45640 Tlajomulco de Zúñiga, Jalisco, Mexico
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 13.5 Carrretera Los Reyes-Texcoco, C.P. 56250, Coatlinchán Texcoco, Estado de México, México
| | - Isaac Rodríguez-Arévalo
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, CP 36821, Irapuato, Gto., Mexico
| | - Lino Sánchez-Segura
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Norma A. Martínez-Gallardo
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Fulgencio Alatorre-Cobos
- Conacyt Research Fellow-Colegio de Postgraduados, Campus Campeche. Carretera Haltunchen-Edzna Km 17.5, Sihochac, Champoton, 24450, Campeche, México
| | - Axel Tiessen
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - John P. Délano-Frier
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| |
Collapse
|
139
|
Loreti E, van Veen H, Perata P. Plant responses to flooding stress. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:64-71. [PMID: 27322538 DOI: 10.1016/j.pbi.2016.06.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 05/18/2023]
Abstract
Most plant species cannot survive prolonged submergence or soil waterlogging. Crops are particularly intolerant to the lack of oxygen arising from submergence. Rice can instead germinate and grow even if submerged. The molecular basis for rice tolerance was recently unveiled and will contribute to the development of better rice varieties, well adapted to flooding. The oxygen sensing mechanism was also recently discovered. This system likely operates in all plant species and relies on the oxygen-dependent destabilization of the group VII ethylene response factors (ERFVIIs), a cluster of ethylene responsive transcription factors. An homeostatic mechanism that controls gene expression in plants subjected to hypoxia prevents excessive activation of the anaerobic metabolism that could be detrimental to surviving the stress.
Collapse
Affiliation(s)
- Elena Loreti
- Institute of Agricultural Biology and Biotechnology, CNR, Pisa, Italy
| | - Hans van Veen
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy.
| |
Collapse
|
140
|
Lung SC, Chye ML. Deciphering the roles of acyl-CoA-binding proteins in plant cells. PROTOPLASMA 2016; 253:1177-95. [PMID: 26340904 DOI: 10.1007/s00709-015-0882-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/21/2015] [Indexed: 05/18/2023]
Abstract
Lipid trafficking is vital for metabolite exchange and signal communications between organelles and endomembranes. Acyl-CoA-binding proteins (ACBPs) are involved in the intracellular transport, protection, and pool formation of acyl-CoA esters, which are important intermediates and regulators in lipid metabolism and cellular signaling. In this review, we highlight recent advances in our understanding of plant ACBP families from a cellular and developmental perspective. Plant ACBPs have been extensively studied in Arabidopsis thaliana (a dicot) and to a lesser extent in Oryza sativa (a monocot). Thus far, they have been detected in the plasma membrane, vesicles, endoplasmic reticulum, Golgi apparatus, apoplast, cytosol, nuclear periphery, and peroxisomes. In combination with biochemical and molecular genetic tools, the widespread subcellular distribution of respective ACBP members has been explicitly linked to their functions in lipid metabolism during development and in response to stresses. At the cellular level, strong expression of specific ACBP homologs in specialized cells, such as embryos, stem epidermis, guard cells, male gametophytes, and phloem sap, is of relevance to their corresponding distinct roles in organ development and stress responses. Other interesting patterns in their subcellular localization and spatial expression that prompt new directions in future investigations are discussed.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
141
|
Bjornson M, Dandekar AM, Chory J, Dehesh K. Brassinosteroid's multi-modular interaction with the general stress network customizes stimulus-specific responses in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:165-177. [PMID: 27457993 DOI: 10.1016/j.plantsci.2016.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/24/2016] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
Abstract
Adaptation to fluctuating environmental conditions is a universal feature of plant life, governed by fundamental mechanisms optimizing resource allocation. This balance is achieved in part through tightly regulated communication networks among growth and stress response signaling pathways. Understanding the communication modules between brassinosteroids (BRs), the ubiquitous hormones known to control growth and stress adaptation, and the general stress response (GSR), a rapid and transient transcriptional output in response to perturbations, provides an optimal platform to unravel new facet(s) of plant stress adaptation. Here, we explore communication facets of BR with GSR via in planta quantification of the GSR in Arabidopsis expressing luciferase driven by a functional GSR cis-element, the Rapid Stress Response Element (4xRSRE:LUC). We establish that application of exogenous BR suppresses microbe-associated molecular pattern-activated GSR, but enhances the wound-triggered GSR. The enhanced wound-activated GSR in BR-treated plants results in a greater wound-induced resistance to Botrytis cinerea. A combination of molecular genetics using BR signaling mutants and application of an activator of BR signaling, bikinin, confirms these results and places the chief point of BR-GSR interaction downstream of potential membrane receptor circuitry. These results support a multi-modular interaction between BRs and stress signaling, instrumental in customizing stimulus-specific responses in Arabidopsis.
Collapse
Affiliation(s)
- Marta Bjornson
- Department of Plant Sciences, University of California, Davis, CA, USA; Department of Plant Biology, University of California, Davis, CA, USA
| | - Abhaya M Dandekar
- Department of Plant Biology, University of California, Davis, CA, USA
| | - Joanne Chory
- Howard Hughes Medical Institute and Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Katayoon Dehesh
- Department of Plant Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
142
|
Wadas B, Piatkov KI, Brower CS, Varshavsky A. Analyzing N-terminal Arginylation through the Use of Peptide Arrays and Degradation Assays. J Biol Chem 2016; 291:20976-20992. [PMID: 27510035 DOI: 10.1074/jbc.m116.747956] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 01/29/2023] Open
Abstract
Nα-terminal arginylation (Nt-arginylation) of proteins is mediated by the Ate1 arginyltransferase (R-transferase), a component of the Arg/N-end rule pathway. This proteolytic system recognizes proteins containing N-terminal degradation signals called N-degrons, polyubiquitylates these proteins, and thereby causes their degradation by the proteasome. The definitively identified ("canonical") residues that are Nt-arginylated by R-transferase are N-terminal Asp, Glu, and (oxidized) Cys. Over the last decade, several publications have suggested (i) that Ate1 can also arginylate non-canonical N-terminal residues; (ii) that Ate1 is capable of arginylating not only α-amino groups of N-terminal residues but also γ-carboxyl groups of internal (non-N-terminal) Asp and Glu; and (iii) that some isoforms of Ate1 are specific for substrates bearing N-terminal Cys residues. In the present study, we employed arrays of immobilized 11-residue peptides and pulse-chase assays to examine the substrate specificity of mouse R-transferase. We show that amino acid sequences immediately downstream of a substrate's canonical (Nt-arginylatable) N-terminal residue, particularly a residue at position 2, can affect the rate of Nt-arginylation by R-transferase and thereby the rate of degradation of a substrate protein. We also show that the four major isoforms of mouse R-transferase have similar Nt-arginylation specificities in vitro, contrary to the claim about the specificity of some Ate1 isoforms for N-terminal Cys. In addition, we found no evidence for a significant activity of the Ate1 R-transferase toward previously invoked non-canonical N-terminal or internal amino acid residues. Together, our results raise technical concerns about earlier studies that invoked non-canonical arginylation specificities of Ate1.
Collapse
Affiliation(s)
- Brandon Wadas
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Konstantin I Piatkov
- the Center for Biotechnology and Biomedicine, Skolkovo Institute of Science and Technology, Moscow 143026, Russia, and
| | | | - Alexander Varshavsky
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125,
| |
Collapse
|
143
|
Rivera-Contreras IK, Zamora-Hernández T, Huerta-Heredia AA, Capataz-Tafur J, Barrera-Figueroa BE, Juntawong P, Peña-Castro JM. Transcriptomic analysis of submergence-tolerant and sensitive Brachypodium distachyon ecotypes reveals oxidative stress as a major tolerance factor. Sci Rep 2016; 6:27686. [PMID: 27282694 PMCID: PMC4901394 DOI: 10.1038/srep27686] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/19/2016] [Indexed: 01/01/2023] Open
Abstract
When excessive amounts of water accumulate around roots and aerial parts of plants, submergence stress occurs. To find the integrated mechanisms of tolerance, we used ecotypes of the monocot model plant Brachypodium distachyon to screen for genetic material with contrasting submergence tolerance. For this purpose, we used a set of previously studied drought sensitive/tolerant ecotypes and the knowledge that drought tolerance is positively associated with submergence stress. We decided to contrast aerial tissue transcriptomes of the ecotype Bd21 14-day-old plants as sensitive and ecotype Bd2-3 as tolerant after 2 days of stress under a long-day photoperiod. Gene ontology and the grouping of transcripts indicated that tolerant Bd2-3 differentially down-regulated NITRATE REDUCTASE and ALTERNATIVE OXIDASE under stress and constitutively up-regulated HAEMOGLOBIN, when compared with the sensitive ecotype, Bd21. These results suggested the removal of nitric oxide, a gaseous phytohormone and concomitant reactive oxygen species as a relevant tolerance determinant. Other mechanisms more active in tolerant Bd2-3 were the pathogen response, glyoxylate and tricarboxylic acid cycle integration, and acetate metabolism. This data set could be employed to design further studies on the basic science of plant tolerance to submergence stress and its biotechnological application in the development of submergence-tolerant crops.
Collapse
Affiliation(s)
- Irma Karla Rivera-Contreras
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Oaxaca, México.,División de Estudios de Posgrado, Universidad del Papaloapan, Tuxtepec, Oaxaca, México
| | - Teresa Zamora-Hernández
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Oaxaca, México.,División de Estudios de Posgrado, Universidad del Papaloapan, Tuxtepec, Oaxaca, México
| | - Ariana Arlene Huerta-Heredia
- Catedrática CONACyT-UNPA, Universidad del Papaloapan, Tuxtepec, Oaxaca, México.,Laboratorio de Cultivo de Células Vegetales, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Oaxaca, Mexico
| | - Jacqueline Capataz-Tafur
- Laboratorio de Cultivo de Células Vegetales, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Oaxaca, Mexico
| | | | - Piyada Juntawong
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Julián Mario Peña-Castro
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Oaxaca, México
| |
Collapse
|
144
|
Diab H, Limami AM. Reconfiguration of N Metabolism upon Hypoxia Stress and Recovery: Roles of Alanine Aminotransferase (AlaAT) and Glutamate Dehydrogenase (GDH). PLANTS (BASEL, SWITZERLAND) 2016; 5:E25. [PMID: 27258319 PMCID: PMC4931405 DOI: 10.3390/plants5020025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 11/16/2022]
Abstract
In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other abiotic stresses (e.g., cold, high temperature, drought and saline stress), received little interest from the scientific community and less financial support from stakeholders. Accordingly, breeding programs should be developed and agronomical practices should be adapted in order to save plants' growth and yield-even under conditions of low oxygen availability (e.g., submergence and waterlogging). The prerequisite to the success of such breeding programs and changes in agronomical practices is a good knowledge of how plants adapt to low oxygen stress at the cellular and the whole plant level. In the present paper, we summarized the recent knowledge on metabolic adjustment in general under low oxygen stress and highlighted thereafter the major changes pertaining to the reconfiguration of amino acids syntheses. We propose a model showing (i) how pyruvate derived from active glycolysis upon hypoxia is competitively used by the alanine aminotransferase/glutamate synthase cycle, leading to alanine accumulation and NAD⁺ regeneration. Carbon is then saved in a nitrogen store instead of being lost through ethanol fermentative pathway. (ii) During the post-hypoxia recovery period, the alanine aminotransferase/glutamate dehydrogenase cycle mobilizes this carbon from alanine store. Pyruvate produced by the reverse reaction of alanine aminotransferase is funneled to the TCA cycle, while deaminating glutamate dehydrogenase regenerates, reducing equivalent (NADH) and 2-oxoglutarate to maintain the cycle function.
Collapse
Affiliation(s)
- Houssein Diab
- University of Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, F-49045 Angers, France.
| | - Anis M Limami
- University of Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, F-49045 Angers, France.
| |
Collapse
|
145
|
Schippers JH, Foyer CH, van Dongen JT. Redox regulation in shoot growth, SAM maintenance and flowering. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:121-8. [PMID: 26799134 DOI: 10.1016/j.pbi.2015.11.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) and associated reduction/oxidation (redox) controls involving glutathione, glutaredoxins and thioredoxins play key roles in the regulation of plant growth and development. While many questions remain concerning redox functions in the shoot apical meristem (SAM), accumulating evidence suggests that redox master switches integrate major hormone signals and transcriptional networks in the SAM, and so regulate organ growth, polarity and floral development. Auxin-induced activation of plasma-membrane located NADPH-oxidases and mitochondrial respiratory bioenergetics are likely regulators of the ROS bursts that drive the cell cycle in proliferating regions, with other hormones such as jasmonic acid playing propagating or antagonistic roles in gene regulation. Moreover, the activation of oxygen production by photosynthesis and oxygen-dependent N-end rule controls are linked to the transition from cell proliferation to cell expansion and differentiation. While much remains to be understood, the nexus of available redox controls provides a key underpinning mechanism linking hormonal controls, energy metabolism and bioenergetics to plant growth and development.
Collapse
Affiliation(s)
- Jos Hm Schippers
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Joost T van Dongen
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
146
|
Stefano GB, Kream RM. Dysregulated mitochondrial and chloroplast bioenergetics from a translational medical perspective (Review). Int J Mol Med 2016; 37:547-55. [PMID: 26821064 PMCID: PMC4771107 DOI: 10.3892/ijmm.2016.2471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/22/2016] [Indexed: 02/06/2023] Open
Abstract
Mitochondria and chloroplasts represent endosymbiotic models of complex organelle development, driven by intense evolutionary pressure to provide exponentially enhanced ATP-dependent energy production functionally linked to cellular respiration and photosynthesis. Within the realm of translational medicine, it has become compellingly evident that mitochondrial dysfunction, resulting in compromised cellular bioenergetics, represents a key causative factor in the etiology and persistence of major diseases afflicting human populations. As a pathophysiological consequence of enhanced oxygen utilization that is functionally uncoupled from the oxidative phosphorylation of ADP, significant levels of reactive oxygen species (ROS) may be generated within mitochondria and chloroplasts, which may effectively compromise cellular energy production following prolonged stress/inflammatory conditions. Empirically determined homologies in biochemical pathways, and their respective encoding gene sequences between chloroplasts and mitochondria, suggest common origins via entrapped primordial bacterial ancestors. From evolutionary and developmental perspectives, the elucidation of multiple biochemical and molecular relationships responsible for errorless bioenergetics within mitochondrial and plastid complexes will most certainly enhance the depth of translational approaches to ameliorate or even prevent the destructive effects of multiple disease states. The selective choice of discussion points contained within the present review is designed to provide theoretical bases and translational insights into the pathophysiology of human diseases from a perspective of dysregulated mitochondrial bioenergetics with special reference to chloroplast biology.
Collapse
|
147
|
Voesenek LACJ, Sasidharan R, Visser EJW, Bailey-Serres J. Flooding stress signaling through perturbations in oxygen, ethylene, nitric oxide and light. THE NEW PHYTOLOGIST 2016; 209:39-43. [PMID: 26625347 DOI: 10.1111/nph.13775] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- Laurentius A C J Voesenek
- Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Rashmi Sasidharan
- Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Eric J W Visser
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - Julia Bailey-Serres
- Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
148
|
Breiman A, Fieulaine S, Meinnel T, Giglione C. The intriguing realm of protein biogenesis: Facing the green co-translational protein maturation networks. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:531-50. [PMID: 26555180 DOI: 10.1016/j.bbapap.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
Abstract
The ribosome is the cell's protein-making factory, a huge protein-RNA complex, that is essential to life. Determining the high-resolution structures of the stable "core" of this factory was among the major breakthroughs of the past decades, and was awarded the Nobel Prize in 2009. Now that the mysteries of the ribosome appear to be more traceable, detailed understanding of the mechanisms that regulate protein synthesis includes not only the well-known steps of initiation, elongation, and termination but also the less comprehended features of the co-translational events associated with the maturation of the nascent chains. The ribosome is a platform for co-translational events affecting the nascent polypeptide, including protein modifications, folding, targeting to various cellular compartments for integration into membrane or translocation, and proteolysis. These events are orchestrated by ribosome-associated protein biogenesis factors (RPBs), a group of a dozen or more factors that act as the "welcoming committee" for the nascent chain as it emerges from the ribosome. In plants these factors have evolved to fit the specificity of different cellular compartments: cytoplasm, mitochondria and chloroplast. This review focuses on the current state of knowledge of these factors and their interaction around the exit tunnel of dedicated ribosomes. Particular attention has been accorded to the plant system, highlighting the similarities and differences with other organisms.
Collapse
Affiliation(s)
- Adina Breiman
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France; Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sonia Fieulaine
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
149
|
Gonzali S, Loreti E, Cardarelli F, Novi G, Parlanti S, Pucciariello C, Bassolino L, Banti V, Licausi F, Perata P. Universal stress protein HRU1 mediates ROS homeostasis under anoxia. NATURE PLANTS 2015; 1:15151. [PMID: 27251529 DOI: 10.1038/nplants.2015.151] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/09/2015] [Indexed: 05/24/2023]
Abstract
Plant survival is greatly impaired when oxygen levels are limiting, such as during flooding or when anatomical constraints limit oxygen diffusion. Oxygen sensing in Arabidopsis thaliana is mediated by Ethylene Responsive Factor (ERF)-VII transcription factors, which control a core set of hypoxia- and anoxia-responsive genes responsible for metabolic acclimation to low-oxygen conditions. Anoxic conditions also induce genes related to reactive oxygen species (ROS). Whether the oxygen-sensing machinery coordinates ROS production under anoxia has remained unclear. Here we show that a low-oxygen-responsive universal stress protein (USP), Hypoxia Responsive Universal Stress Protein 1 (HRU1), is induced by RAP2.12 (Related to Apetala 2.12), an ERF-VII protein, and modulates ROS production in Arabidopsis. We found that HRU1 is strongly induced by submergence, but that this induction is abolished in plants lacking RAP2.12. Mutation of HRU1 through transfer DNA (T-DNA) insertion alters hydrogen peroxide production, and reduces tolerance to submergence and anoxia. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) analyses reveal that HRU1 interacts with proteins that induce ROS production, the GTPase ROP2 and the NADPH oxidase RbohD, pointing to the existence of a low-oxygen-specific mechanism for the modulation of ROS levels. We propose that HRU1 coordinates oxygen sensing with ROS signalling under anoxic conditions.
Collapse
Affiliation(s)
- Silvia Gonzali
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Mariscoglio 34, Pisa 56124, Italy
- nanoPlant Center @NEST, Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Elena Loreti
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, Pisa 56100, Italy
| | - Francesco Cardarelli
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Giacomo Novi
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Mariscoglio 34, Pisa 56124, Italy
| | - Sandro Parlanti
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Mariscoglio 34, Pisa 56124, Italy
| | - Chiara Pucciariello
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Mariscoglio 34, Pisa 56124, Italy
- nanoPlant Center @NEST, Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Laura Bassolino
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Mariscoglio 34, Pisa 56124, Italy
| | - Valeria Banti
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Mariscoglio 34, Pisa 56124, Italy
| | - Francesco Licausi
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Mariscoglio 34, Pisa 56124, Italy
- nanoPlant Center @NEST, Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Mariscoglio 34, Pisa 56124, Italy
- nanoPlant Center @NEST, Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza San Silvestro 12, Pisa 56127, Italy
| |
Collapse
|
150
|
Pu X, Lv X, Tan T, Fu F, Qin G, Lin H. Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress. ANNALS OF BOTANY 2015; 116:583-600. [PMID: 25987710 PMCID: PMC4577992 DOI: 10.1093/aob/mcv063] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/16/2015] [Accepted: 03/27/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants are sessile organisms that have the ability to integrate external cues into metabolic and developmental signals. The cues initiate specific signal cascades that can enhance the tolerance of plants to stress, and these mechanisms are crucial to the survival and fitness of plants. The adaption of plants to stresses is a complex process that involves decoding stress inputs as energy-deficiency signals. The process functions through vast metabolic and/or transcriptional reprogramming to re-establish the cellular energy balance. Members of the mitochondrial energy dissipation pathway (MEDP), alternative oxidases (AOXs) and uncoupling proteins (UCPs), act as energy mediators and might play crucial roles in the adaption of plants to stresses. However, their roles in plant growth and development have been relatively less explored. SCOPE This review summarizes current knowledge about the role of members of the MEDP in plant development as well as recent advances in identifying molecular components that regulate the expression of AOXs and UCPs. Highlighted in particular is a comparative analysis of the expression, regulation and stress responses between AOXs and UCPs when plants are exposed to stresses, and a possible signal cross-talk that orchestrates the MEDP, reactive oxygen species (ROS), calcium signalling and hormone signalling. CONCLUSIONS The MEDP might act as a cellular energy/metabolic mediator that integrates ROS signalling, energy signalling and hormone signalling with plant development and stress accumulation. However, the regulation of MEDP members is complex and occurs at transcriptional, translational, post-translational and metabolic levels. How this regulation is linked to actual fluxes through the AOX/UCP in vivo remains elusive.
Collapse
Affiliation(s)
- Xiaojun Pu
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xin Lv
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Tinghong Tan
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Faqiong Fu
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Gongwei Qin
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|