101
|
Pan Y, Chang J, Xu P, Xie Y, Yang L, Hao W, Li J, Wan B. Twenty-four hours of Thiamethoxam: In vivo and molecular dynamics simulation study on the toxicokinetic and underlying mechanisms in quails (Coturnix japonica). JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128159. [PMID: 34979383 DOI: 10.1016/j.jhazmat.2021.128159] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Neonicotinoids is the most widely used insecticide, its contamination has led to sustained bird population declines. However, the toxicokinetic and underlying mechanisms of neonicotinoid toxicity in birds are largely unknown. Thiamethoxam (TMX), as a representative neonicotinoid insecticide, is now widely detected in most environmental medium and animal bodies. In this study, 5 mg/kg body weight TMX (potential environmental intake level) were orally administrated to male Japanese quails (Coturnix japonica). We found a rapid absorption, distribution, metabolism and elimination of TMX in quails in a period of 24 h, with the main metabolite, clothianidin (CLO), being extensively distributed and rapidly eliminated from tissues as well. The maximum plasm concentration of CLO was consistent with wild birds. Metabolomics analysis and followed determination of liver enzymes mRNA expression indicated the rapid metabolism was mediated mainly by CYPs and GSTs that involved riboflavin metabolism and glutathione metabolism pathways upon TMX exposure. Molecular dynamic simulation showed the strongest binding interaction in quail CYP2H1-TMX and CYP3A12-CLO complexes among a set of CYPs-substrate. The present study elucidated toxicokinetic and underlying metabolic mechanisms of TMX in quails at environmentally-relevant concentration, the findings would facilitate the understanding of potential risks of TMX and its metabolites to birds.
Collapse
Affiliation(s)
- Yifan Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Yun Xie
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Lu Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China; Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weiyu Hao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Jianzhong Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Bin Wan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China.
| |
Collapse
|
102
|
Nimako C, Ichise T, Hasegawa H, Akoto O, Boadi NO, Taira K, Fujioka K, Isoda N, Nakayama SMM, Ishizuka M, Ikenaka Y. Assessment of ameliorative effects of organic dietary interventions on neonicotinoid exposure rates in a Japanese population. ENVIRONMENT INTERNATIONAL 2022; 162:107169. [PMID: 35289289 DOI: 10.1016/j.envint.2022.107169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Neonicotinoid insecticides (NNIs) are a popular class of insecticides used in various pest management regimens worldwide. Biomonitoring studies continuously report high exposure rates of NNIs in various human populations across the globe. Yet, there is no validated countermeasure for combating the recent exponential rise in NNI exposure rates observed in human populations. The current study assessed the impacts of organic dietary interventions on NNI exposure rates in a Japanese population. A total of 103 volunteers were recruited into the study. Subjects were either served with Organic diets for 5 and 30 days or conventional diets. A total of 919 repeated urine samples were collected from the participants and then subjected to LC-MS/MS analysis to determine urinary concentrations of 7 NNIs parent compounds and an NNI metabolite. Eight NNIs were detected; with a decreasing detection frequency (%Dfs) pattern; desmethyl-acetamiprid (dm-ACE) (64.96%) > dinotefuran (52.12%), imidacloprid (39.61%) > clothianidin (33.95%) > thiamethoxam (28.51%) > acetamiprid (12.62%) > nitenpyram (5.33%) > thiacloprid (2.83%). Dinotefuran, dm-ACE, and clothianidin recorded the highest concentrations in the subjects. The %Df of NNIs in the 5-days or 30-days organic diet group were lower than those of the conventional diet consumers. The organic diet group showed lower rates of multiple NNI exposures than those of the conventional diet consumers. The mean and median cumulative levels of NNIs (median IMIeq) were significantly lower in the organic diet group than the conventional diet group (p < 0.0001). The estimated daily intakes (EDIs) of NNIs were higher in adults than children, but less than 1% of NNI cRfDs, except for clothianidin, which exhibited a %cRfD of 1.32 in children. Compared to the conventional diet group, the 5- and 30-day organic dietary intervention showed drastic reductions in NNI EDIs. Findings from the present study give credence to organic dietary interventions as potential ameliorative strategies for NNI exposure rates in human populations.
Collapse
Affiliation(s)
- Collins Nimako
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Takahiro Ichise
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Hiroshi Hasegawa
- Fukushima Organic Agriculture Network, 964-0871, 1-511 Narita Cho, Nihonmatsu, Fukushima, Japan
| | - Osei Akoto
- Chemistry Department, Kwame Nkrumah University of Science and Technology, Ghana
| | - Nathaniel O Boadi
- Chemistry Department, Kwame Nkrumah University of Science and Technology, Ghana
| | - Kumiko Taira
- Department of Anesthesiology, Adachi Medical Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazutoshi Fujioka
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, United States
| | - Norikazu Isoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; One Health Research Center, Hokkaido University, Hokkaido, Japan; Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan.
| |
Collapse
|
103
|
Neonicotinoids: mechanisms of systemic toxicity based on oxidative stress-mitochondrial damage. Arch Toxicol 2022; 96:1493-1520. [PMID: 35344072 DOI: 10.1007/s00204-022-03267-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/23/2022] [Indexed: 11/02/2022]
Abstract
Neonicotinoids are the most widely used pesticides in the world. However, research studies have shown that it can affect the cognitive abilities and health of non-target bees and other wild pollinators by inducing DNA damage, apoptosis and mitochondrial damage, injure to its central nervous system, and it is even developmentally neurotoxic to mammals and humans, with mitochondria being an important target of neonicotinoids. Therefore, this article reviews the role of mitochondrial morphology, calcium ions (Ca2+) homeostasis, respiratory function, apoptosis, and DNA damage in neonicotinoids-induced systemic toxicity. Additionally, it evaluates the protective effects of various active substances including vitamin C, N-acetylcysteine (NAC), curcumin (CUR), glutathione reduced (GSH), caffeic acid phenethyl ester (CAPE), resveratrol, and thymoquinone (TQ) on neonicotinoids-induced toxicity. This review manuscript found that mitochondria are important targets to neonicotinoids. Neonicotinoids can cause DNA damage, apoptosis, protein oxidation, and lipid peroxidation in non-target organisms by altering mitochondrial Ca2+ homeostasis, inhibiting mitochondrial respiration, and inducing reactive oxygen species (ROS) production. Several active substances (vitamin C, NAC, CUR, GSH, resveratrol, CAPE, and TQ) play a protective role against neonicotinoid-induced systemic toxicity by inhibiting ROS signaling pathways, apoptosis, and lipid peroxidation. This review manuscript emphasizes the importance and urgency of the development of neonicotinoid antidotes, emphasizes the prospect of the application of targeted mitochondrial antidotes, and prospects the development of neonicotinoid antidotes in order to provide some strategies for the prevention of neonicotinoid toxicity.
Collapse
|
104
|
Wang A, Wan Y, Zhou L, Xia W, Guo Y, Mahai G, Yang Z, Xu S, Zhang R. Neonicotinoid insecticide metabolites in seminal plasma: Associations with semen quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151407. [PMID: 34808154 DOI: 10.1016/j.scitotenv.2021.151407] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Animal studies have revealed that exposure to neonicotinoid insecticides (NNIs) could compromise male reproductive function; however, related data on the occurrence of NNIs and their specific metabolites in human seminal plasma are scarce. To explore the potential effects of NNI exposure on male semen quality, we determined the concentrations of NNIs and some of their metabolites (collectively defined as mNNIs) in seminal plasma samples collected from men (n = 191) who visited a fertility clinic in Shijiazhuang, North China from 2018 to 2019. Associations between the mNNI concentrations and semen quality parameters were assessed using linear regression models, adjusting for important covariates. In the seminal plasma samples, desmethyl-acetamiprid (DM-ACE, detection frequency: 98.4%), imidacloprid-olefin (IMI-olefin, detection frequency: 86.5%), and desmethyl-clothianidin (DM-CLO, detection frequency: 70.8%) were frequently detected at median concentrations of 0.052, 0.003, and 0.007 ng/mL, respectively; meanwhile other compounds were detected at less than the method detection limits. In the single-mNNI models, the IMI-olefin concentration was associated with decreased progressive motility [IMI-olefin concentration: percent change (%Δ) = -17.0; 95% confidence interval (CI) = -30.3, -0.92; the highest tertile compared with the lowest tertile: %Δ = -21.1; 95% CI = -37.5, -0.23]. Similar results were found in the multiple-mNNIs models. No other inverse associations were found between the other mNNI concentrations and semen quality parameters. This is the first study to identify the occurrence of mNNIs in the seminal plasma and the potential associations of their concentrations with human semen quality parameters. These findings imply an inverse association between the IMI-olefin concentration and semen quality.
Collapse
Affiliation(s)
- Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China
| | - Lixiao Zhou
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China; Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Yinsheng Guo
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, PR China
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | | | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| |
Collapse
|
105
|
You T, Ding Y, Chen H, Song G, Huang L, Wang M, Hua X. Development of competitive and noncompetitive immunoassays for clothianidin with high sensitivity and specificity using phage-displayed peptides. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128011. [PMID: 34896720 DOI: 10.1016/j.jhazmat.2021.128011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Clothianidin is a widely used pesticide that has been banned from outdoor use by the European Union due to its toxicity. To improve the sensitivity and specificity of existing clothianidin immunoassays, we developed competitive and noncompetitive immunoassays for clothianidin based on phage-displayed peptides. Cyclic 8-, 9-, and 10-residue peptide libraries were constructed using an optimized phagemid pComb-pVIII to prevent the loss of theoretical library diversity. Twenty-eight peptidomimetics and two anti-immunocomplex peptides were isolated through a blended panning process and used to develop competitive and noncompetitive phage enzyme-linked immunosorbent assays (P-ELISAs), respectively. After optimization, the half inhibition concentration (IC50) and half saturation concentration (SC50) of competitive and noncompetitive P-ELISAs were 3.83 ± 0.23 and 0.45 ± 0.02 ng/mL, respectively. Competitive P-ELISA showed 2.6-18.2% cross-reactivity with imidaclothiz, nitenpyram and imidacloprid. Importantly, noncompetitive P-ELISA, which has the best specificity and great sensitivity for clothianidin, showed no cross-reactivity with the analogs. The average recoveries of competitive and noncompetitive P-ELISAs were 73.8-104.1% and 76.6-102.2%, respectively, while the relative standard deviations were ≤ 11.0%. In addition, the results of P-ELISAs in the analysis of blind samples were consistent with those of high-performance liquid chromatography.
Collapse
Affiliation(s)
- Tianyang You
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yuan Ding
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - He Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Guangyue Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Lianrun Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Xiude Hua
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China.
| |
Collapse
|
106
|
Nan Z, Bata W, Zhanpeng Z, Chen X, Yue H, Qihui L, Zhang H. Response to comment on "Occurrence of neonicotinoid insecticides and their metabolites in tooth samples collected from south China: Associations with periodontitis". CHEMOSPHERE 2022; 291:132804. [PMID: 34800512 DOI: 10.1016/j.chemosphere.2021.132804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Zhang Nan
- Department of Stomatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Wang Bata
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Zhang Zhanpeng
- Department of Dermatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Xufeng Chen
- Department of Stomatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Huang Yue
- Department of Stomatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Liu Qihui
- The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China.
| | - Hua Zhang
- The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
107
|
Zhao Y, Zhu Z, Xiao Q, Li Z, Jia X, Hu W, Liu K, Lu S. Urinary neonicotinoid insecticides in children from South China: Concentrations, profiles and influencing factors. CHEMOSPHERE 2022; 291:132937. [PMID: 34798106 DOI: 10.1016/j.chemosphere.2021.132937] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Neonicotinoid insecticides can selectively interact with the unique nicotinic acetylcholine receptor subtypes in insects and are considered to be low toxic to mammals. However, there is still insufficient knowledge on human exposure to neonicotinoid insecticides, especially for children. This study aimed to investigate urinary concentrations and profiles of neonicotinoid insecticides in South China children and to analyze potential influencing factors. Six neonicotinoid insecticides, including imidacloprid (IMI), thiamethoxam (THM), acetamiprid (ACE), clothianidin (CLO), thiacloprid (THD) and dinotefuran (DIN), exhibited high detection frequencies (>90%) in urine samples collected from 305 children, suggesting broad exposure in South China children. The median concentrations were determined to be 0.13, 0.21, 0.01, 0.19, 0.002 and 1.64 μg/L, respectively. Among the target neonicotinoids, urinary concentrations of CLO and THM exhibited a significant and positive correlation between each other (p < 0.05), suggesting similar sources of these two chemicals.
Collapse
Affiliation(s)
- Yang Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zhou Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zihan Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Jia
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Wanting Hu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Kuancheng Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
108
|
Milojević-Rakić M, Popadić D, Janošević Ležaić A, Jevremović A, Nedić Vasiljević B, Uskoković-Marković S, Bajuk-Bogdanović D. MFI, BEA and FAU zeolite scavenging role in neonicotinoids and radical species elimination. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:265-276. [PMID: 35037685 DOI: 10.1039/d1em00437a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ecotoxicity caused by neonicotinoid pesticides is largely due to oxidative stress on non-target species. Due to the fact that reactive radical species reach the environment, materials intended for pesticide removal should be applicable for the simultaneous removal of reactive radicals, as well. This work uses the spectroscopic, adsorptive and antioxidant responses from MFI, FAU and BEA zeolites as descriptors of their potential environmental importance. Different network structures and Si/Al ratios were correlated with excellent zeolite adsorption properties, as over 200 mg g-1 of investigated neonicotinoids, acetamiprid and imidacloprid, was achieved in one cycle. Additionally, after two regeneration steps, over 450 mg g-1 adsorbed pesticides were retained, in three adsorption cycles. Overall the best results were detected for the FAU zeotype in both tested applications, insecticide adsorption and radical-scavenging performance, with and without insecticides present. The proposed mechanism for adsorption relies on kinetic investigation, isotherm modelling and spectroscopic post-adsorption analysis and targets zeolite hydroxyl/siloxane groups as active sites for insecticide adsorption via hydrogen bonding. Neat, well-defined zeolite structures enable their prospective application in ecotoxic species removal.
Collapse
Affiliation(s)
- M Milojević-Rakić
- University of Belgrade-Faculty of Physical Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia.
| | - D Popadić
- Department of Organic Residual Analysis, National Laboratory Sector, Serbian Environmental Protection Agency, Žabljačka 10A, 11160 Belgrade, Serbia
| | - A Janošević Ležaić
- University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - A Jevremović
- University of Belgrade-Faculty of Physical Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia.
| | - B Nedić Vasiljević
- University of Belgrade-Faculty of Physical Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia.
| | - S Uskoković-Marković
- University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - D Bajuk-Bogdanović
- University of Belgrade-Faculty of Physical Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia.
| |
Collapse
|
109
|
Xu L, Xu X, Wu X, Kuang H, Xu C. Sex-Dependent Environmental Health Risk Analysis of Flupyradifurone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1841-1853. [PMID: 35041393 DOI: 10.1021/acs.est.1c07726] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pesticides are used in agricultural production worldwide, resulting in widespread environmental pollution. Many diseases are closely related to exposure to pesticide residues. In this study, the association between exposure to the pesticide flupyradifurone (FPF), a substitute for neonicotinoids, and sex-dependent thyroid dysfunction was explored for the first time. Exposure using rat models revealed that the FPF metabolism is sex-dependent, with males preferring N-dealkylation and hydrolytic metabolism and females preferring hydroxylation. In particular, novel chloropyridine-site hydroxylation I and II metabolic pathways of FPF were discovered. More importantly, differential metabolic pathways of FPF induced sex-based dysregulation of the hypothalamic-pituitary-thyroid axis, in which females exhibited subclinical hyperthyroidism, while males displayed abnormal hypothyroidism. This may be attributed to the potential agonistic or antagonistic effect of FPF sex-dependent metabolites on liver thyroid hormone receptors. Furthermore, FPF exposure further mediated sex-specific dysregulation of cellular lipid homeostasis, with abnormal fatty acid β-oxidation and excessive energy expenditure in females and the risk of excessive accumulation of triglycerides in males. These results illustrate the potential risk of sex-related thyroid metabolic diseases caused by FPF and provide an important basis and support for further studies of FPF on human health and as an environmental pollutant.
Collapse
Affiliation(s)
- Liwei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
110
|
Zhang H, Zhu K, Du J, Ou M, Hou J, Wang D, Wang J, Zhang W, Sun G. Serum concentrations of neonicotinoids and their characteristic metabolites in elderly population from South China: Association with osteoporosis. ENVIRONMENTAL RESEARCH 2022; 203:111772. [PMID: 34324851 DOI: 10.1016/j.envres.2021.111772] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Neonicotinoids (NEOs) are extensively applied in global agricultural production for pest control but have adverse effects on human health. In this study, the concentrations of six NEOs and three characteristic metabolites were investigated by collecting 200 serum samples from an elderly population in China. Results showed that the NEOs and their metabolites were widely detected (89%-98 %) in the serum samples from the osteoporosis (OP) (n = 120) and non-OP (n = 80) population, and their median concentrations ranged from 0.04 ng/mL to 5.99 ng/mL and 0.01 ng/mL to 2.02 ng/mL, respectively. N-desmethyl-acetamiprid (ACE-dm) was the most abundant NEOs in the serum samples. Gender-related differences were found in concentrations of most NEOs and their metabolites in serum, with males having higher target analytes than females. Significantly (p < 0.05) positive correlations were observed among most NEO concentrations, suggesting that exposure source of these substances is common or related. However, associations between the concentrations of characteristic metabolites and their corresponding NEOs were insignificant, probably because the exogenous intake are the primary sources of metabolites of NEOs instead of the internal biotransformation. The associations between NEO concentrations (i.e., ACE-dm, dinotefuran, and olefin-imidacloprid) and OP (OR = 2.33-6.92, 95 % CI = 0.37-16.9, p-trend < 0.05) indicate that NEO exposure is correlated with increased odds of prevalent OP. This study is the first to document the profiles of NEOs and their metabolites in serum samples collected from an elderly population in South China and examine the relationships between NEO exposure and OP.
Collapse
Affiliation(s)
- Hua Zhang
- The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China
| | - Kairui Zhu
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Jiang Du
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Maota Ou
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Junlong Hou
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Desheng Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jing Wang
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China.
| | - Wencai Zhang
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China.
| | - Guodong Sun
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital) Jinan University, Heyuan, 517000, China; Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
111
|
Hassan AI, Bondouk II, Omar K, Esawii HA, Saleh HM. Chemical toxicity assessment and Physiological investigation in rats exposed to pyrethroid insecticide type 1 and possible mitigation of propolis. THE EUROBIOTECH JOURNAL 2022; 6:9-26. [DOI: 10.2478/ebtj-2022-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The current investigation aims to study the potential protective effects of propolis methanolic extract (100 mg/kg BW) on the systemic toxic effects after dietary exposure concentration (1/100 LD50 for 30 days) of permethrin (PM) administered in experimental rats. In this experiment, we added propolis four weeks after PM -administration to examining the medicinal effects. Therapeutic use of propolis mitigated PM -induced deterioration of liver and kidney functions and myocardial damage measured by cardiac enzymes lactate dehydrogenase (LDH) and creatine kinase MB (CK-MB) in serum. In addition, propolis treatment (prophylactic and therapeutic) prevented PM-induced apoptosis index, including B-cell lymphoma protein 2 (BCL-2)-associated X (BAX) protein activates, and lipid peroxide (LP). The results showed propolis induced a significant decrease in serum levels of thyroid hormones (T3 and T4), proinflammatory cytokines tumor necrosis factor-alpha (TNF-α), interferon-gamma (INF-γ), interleukin one beta (IL-1β), interleukin 12 (IL-12), and interleukin 6 (IL-6). Besides, nuclear factor-kappa B (NF-kB), acetylcholine esterase (AChE), and hematological constituents. Cardiac biomarkers, liver, and kidney functions were substantially lower in propolis treatment. High-performance liquid chromatography (HPLC) and Gas chromatography–mass spectrometry (GC- MS) of the propolis-MeOH extract showed valuable antioxidant phenolics and flavonoids capable of alleviating oxidative stress through the free-radical scavenging efficacy and regulating signaling pathways of proinflammatory cytokines.
Collapse
Affiliation(s)
- Amal I. Hassan
- Radioisotope Department , Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA) , Egypt
| | - Ibrahim I. Bondouk
- Physics Department, Faculty of Science , University of Tanta , Tanta , Egypt
| | - Khalid Omar
- Physics Department, Faculty of Science , University of Tanta , Tanta , Egypt
| | - Heba A. Esawii
- Basic Science Department, Faculty of Engineering , British University (BUE) , Cairo , Egypt
| | - Hosam M. Saleh
- Radioisotope Department , Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA) , Egypt
| |
Collapse
|
112
|
Vuong AM, Zhang C, Chen A. Associations of neonicotinoids with insulin and glucose homeostasis parameters in US adults: NHANES 2015-2016. CHEMOSPHERE 2022; 286:131642. [PMID: 34351280 PMCID: PMC8578312 DOI: 10.1016/j.chemosphere.2021.131642] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 05/19/2023]
Abstract
Neonicotinoids are replacement insecticides increasingly used for organophosphates, methylcarbamates, and pyrethroids. Experimental evidence suggests neonicotinoids may affect glucose metabolism and insulin secretion through pancreatic β cell dysfunction, oxidative stress, and inflammation. However, no epidemiologic study has investigated neonicotinoids as potential diabetogens. We examined associations between neonicotinoids with insulin and glucose homeostasis parameters among 1381 non-diabetic adults in the National Health and Nutrition Examination Survey (2015-2016). Urinary concentrations of acetamiprid, clothianidin, imidacloprid, N-desmethyl-acetamiprid, and 5-hydroxy-imidacloprid were quantified. Fasting plasma glucose, insulin, and hemoglobin A1c (HbA1c) were assessed. Insulin resistance was defined as a homeostatic model assessment of insulin resistance ≥2.5. We used weighted linear and logistic regression to estimate associations between detectable neonicotinoids with insulin and glucose homeostasis parameters compared to non-detectable neonicotinoid concentrations. Weighted detection frequencies for imidacloprid, 5-hydroxy-imidacloprid, and N-desmethyl-acetamiprid were 4.4 %, 21.5 %, and 32.8 %, respectively. Detectable imidacloprid (β = -4.7 μIU/mL, 95 % confidence interval [CI] -8.5, -0.8) and 5-hydroxy-imidacloprid (β = -2.4 μIU/mL, 95 % CI -4.6, -0.2) were associated with lower fasting plasma insulin levels. Individuals with detectable 5-hydroxy-imidacloprid had lower odds of insulin resistance (odds ratio [OR] = 0.3, 95 % CI 0.2, 0.7). We observed evidence of sexually dimorphic associations between N-desmethyl-acetamiprid with glucose (pint = 0.079) and 5-hydroxy-imidacloprid with HbA1c (pint = 0.038), with patterns suggesting positive associations in males and negative associations in females. Associations between 5-hydroxy-imidacloprid and insulin were modified by body mass index (BMI) (pint = 0.013). We additionally observed age modified associations between 5-hydyroxy-imidacloprid and glucose (pint = 0.048). Results suggest neonicotinoids may be associated with insulin and glucose homeostasis indices and call for prospective studies to examine the metabolic impact of these replacement insecticides in humans.
Collapse
Affiliation(s)
- Ann M Vuong
- Department of Epidemiology and Biostatistics, University of Nevada Las Vegas, School of Public Health, Las Vegas, NV, United States.
| | - Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
113
|
Piner Benli P, Kaya M, Dağlıoğlu YK. Fucoidan Protects against Acute Sulfoxaflor-Induced Hematological/Biochemical Alterations and Oxidative Stress in Male Mice. Pharmaceuticals (Basel) 2021; 15:ph15010016. [PMID: 35056073 PMCID: PMC8778046 DOI: 10.3390/ph15010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 01/30/2023] Open
Abstract
Fucoidan is a sulfated polysaccharide which can be found among a number of macroalgea species. It has a broad spectrum of biological activities including anti-oxidant, anti-tumor, immunoregulation, anti-viral and anti-coagulant. The current study was performed to investigate possible protective effects of fucoidan for sulfoxaflor-induced hematological/biochemical alterations and oxidative stress in the blood of male Swiss albino mice. For this purpose, sulfoxaflor was administered at a dose of 15 mg/kg/day (1/50 oral LD50), and fucoidan was administered at a dose of 50 mg/kg/day by oral gavage alone and combined for 24 h and 7 days. Hematological parameters (RBC, HGB, HCT, MCV, MCH, MCHC, Plt, WBC, Neu, Lym and Mon), serum biochemical parameters (AST, ALT, GGT, LDH, BUN, Cre and TBil), and serum oxidative stress/antioxidant markers (8-OHdG, MDA, POC and GSH) were analyzed. The results indicated that sulfoxaflor altered hematological and biochemical parameters and caused oxidative stress in mice; fucoidan ameliorated some hematological and biochemical parameters and exhibited a protective role as an antioxidant against sulfoxaflor-induced oxidative stress.
Collapse
Affiliation(s)
- Petek Piner Benli
- Department of Veterinary Pharmacology and Toxicology, Faculty of Ceyhan Veterinary Medicine, Cukurova University, 01330 Adana, Turkey
- Correspondence: ; Tel./Fax: +90-322-6133507
| | - Merve Kaya
- Department of Biotechnology, Institute of Natural and Applied Sciences, Cukurova University, 01330 Adana, Turkey;
| | - Yusuf Kenan Dağlıoğlu
- Department of Microbiology, Faculty of Medicine, Kırsehir Ahi Evran University, 40100 Kırsehir, Turkey;
| |
Collapse
|
114
|
Tariba Lovaković B, Kašuba V, Sekovanić A, Orct T, Jančec A, Pizent A. Effects of Sub-Chronic Exposure to Imidacloprid on Reproductive Organs of Adult Male Rats: Antioxidant State, DNA Damage, and Levels of Essential Elements. Antioxidants (Basel) 2021; 10:1965. [PMID: 34943068 PMCID: PMC8750738 DOI: 10.3390/antiox10121965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Although considered a good alternative to organophosphate pesticides, there are reports indicating adverse effects of neonicotinoid insecticides on reproduction. Our aim was to assess the effects of exposure to low doses of imidacloprid on antioxidant state, DNA damage, and concentration of essential elements in the testes and epididymis using a rat model. Adult male Wistar rats were orally treated with doses comparable to currently proposed health-based reference values: 0.06 (ADI), 0.80 (10× AOEL), or 2.25 (1/200 LD50) mg/kg b.w./day for 28 consecutive days. Exposure to 2.25 mg/kg b.w./day of imidacloprid resulted in a significantly lower testis weight (1.30 ± 0.17 g compared to 1.63 ± 0.15 g in controls). Treatment with 0.06 mg/kg b.w./day increased the level of reduced glutathione in the epididymis (73%), while the activities of epididymal glutathione peroxidase and superoxide dismutase significantly increased in all treated rats (74-92% and 26-39%, respectively). Exposure to imidacloprid resulted in a low, but significant, level of DNA damage in testicular sperm cells regardless of the concentration applied (<28% compared to the negative control). Higher concentrations of Mo were measured in the testes of rats treated with 0.80 and 2.25 mg/kg b.w./day (72.9 ± 7.9 and 73.9 ± 9.1 mg/g, respectively) compared to the control animals (60.5 ± 7.8 mg/g). Higher concentrations of Na were measured in the testes of rats treated with 2.25 mg/kg b.w./day (1679 ± 82 mg/g compared to 1562 ± 56 mg/g in controls). The fact that such low doses of imidacloprid were able to produce measurable biological effects calls for the further evaluation of this widely used insecticide.
Collapse
Affiliation(s)
- Blanka Tariba Lovaković
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia; (B.T.L.); (A.S.); (T.O.); (A.J.)
| | - Vilena Kašuba
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia;
| | - Ankica Sekovanić
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia; (B.T.L.); (A.S.); (T.O.); (A.J.)
| | - Tatjana Orct
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia; (B.T.L.); (A.S.); (T.O.); (A.J.)
| | - Antonija Jančec
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia; (B.T.L.); (A.S.); (T.O.); (A.J.)
| | - Alica Pizent
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia; (B.T.L.); (A.S.); (T.O.); (A.J.)
| |
Collapse
|
115
|
Poliserpi MB, Cristos D, Pérez-Iglesias JM, Brodeur JC. Tissue distribution and sublethal effects of imidacloprid in the South American grayish baywing (Agelaioides badius). CHEMOSPHERE 2021; 284:131327. [PMID: 34216921 DOI: 10.1016/j.chemosphere.2021.131327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The neonicotinoids are globally used insecticides, which have been shown to cause negative impacts on birds. The current study aimed to evaluate the distribution of the neonicotinoid imidacloprid (IMI) in the tissues of a songbird and identify related physiological effects. Adults of the grayish baywing (Agelaioides baduis) were administered with a single dose of 35 mg IMI/kg, and the IMI concentration was evaluated in liver, kidney and plasma at 4, 12, 24, and 48 h after dosing. At the same time points, effects on hematological, genetic and enzymatic parameters were assessed. Results showed that IMI was absorbed before 4 h, and eliminated at 48 h, in every tissue, and the highest concentrations were detected in plasma. Baywings showed intoxication signs and reduced mobility within the first 5 min post-dosing. Hematological parameters: red blood cells, packed cell volume, hemoglobin, and their derived indices exhibited a transient elevation 24 h after dosing, which coincided with maximum concentrations of IMI in the tissues. No effects were observed on the genotoxicity parameters evaluated: micronuclei and comet assay. Treated birds exhibited an alteration of cholinesterases activity in the muscle and plasma, and of glutathione-S-transferase (GST) activity in the plasma, brain, liver, and muscle. Based on the results obtained, the combined detection of IMI and inhibition of GST activity in the plasma is suggested as a non-lethal biomarker of IMI exposure in wild birds. As efficient field monitoring depends on the availability of proven biomarkers, the current study provides valuable tools for bird conservation in agroecosystems.
Collapse
Affiliation(s)
- María Belén Poliserpi
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina.
| | - Diego Cristos
- Instituto Tecnología de Alimentos, Centro de Investigación de Agroindustria (CIA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Juan Manuel Pérez-Iglesias
- INQUISAL, Universidad Nacional de San Luis, San Luis, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Julie Céline Brodeur
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
116
|
Piner Benli P, Kaya M, Coskun C. Fucoidan Modulated Oxidative Stress and Caspase-3 mRNA Expression Induced by Sulfoxaflor in the Brain of Mice. Neurotox Res 2021; 39:1908-1919. [PMID: 34570347 DOI: 10.1007/s12640-021-00415-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/07/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022]
Abstract
The current study aimed to investigate the role of fucoidan in the oxidative and apoptotic effects of sulfoxaflor, a neonicotinoid sulfoximine insecticide, in the brain of Swiss albino mice (Mus musculus). Sulfoxaflor and fucoidan were administered to mice at doses of 15 mg/kg/day (1/50 oral LD50) and 50 mg/kg/day, respectively, by oral gavage for 24 h or 7 days. The tGSH, TBARS and protein levels, and GPx, GR, and GST enzyme activities were determined by spectrophotometric methods. Caspase-3 gene expression level was determined by RT-PCR. Data analysis showed that brains of sulfoxaflor-treated mice exhibited higher TBARS levels; GPx, GR, and GST enzyme activities; and caspase-3 expression levels, as well as lower levels of tGSH. Co-administration of fucoidan and sulfoxaflor reduced the TBARS levels, increased tGSH levels, and increased GPx, GR, and GST enzyme activities. Fucoidan also decreased the sulfoxaflor-induced up-regulation of caspase-3 mRNA expression. Results of the present study showed that sulfoxaflor caused oxidative stress by inducing lipid peroxidation and altering GSH-dependent antioxidants in the brain of mice. In addition, sulfoxaflor may trigger apoptotic cell death shown by the up-regulation of caspase-3. Fucoidan treatment modulated all the aforementioned alterations in the brain of mice. It was concluded that fucoidan might have antioxidant effects that support the GSH-dependent antioxidant system and can play a modulator role in oxidative stress and caspase-3 expression in the brain of sulfoxaflor treated-mice.
Collapse
Affiliation(s)
- Petek Piner Benli
- Department of Veterinary Pharmacology and Toxicology, Faculty of Ceyhan Veterinary Medicine, Cukurova University, 01330, Adana, Turkey.
| | - Merve Kaya
- Department of Biotechnology, Institute of Natural and Applied Sciences, Cukurova University, 01330, Adana, Turkey
| | - Cagil Coskun
- Department of Biophysics, Faculty of Medicine, Cukurova University, 01330, Adana, Turkey
| |
Collapse
|
117
|
Stara A, Pagano M, Albano M, Savoca S, Di Bella G, Albergamo A, Koutkova Z, Sandova M, Velisek J, Fabrello J, Matozzo V, Faggio C. Effects of long-term exposure of Mytilus galloprovincialis to thiacloprid: A multibiomarker approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117892. [PMID: 34385134 DOI: 10.1016/j.envpol.2021.117892] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 05/24/2023]
Abstract
Thiacloprid is a neonicotinoid insecticide widely exploited in agriculture and easily mobilized towards aquatic environments by atmospheric agents. However, little information about its toxicological effects on aquatic invertebrate bioindicators is available. In this study, specimens of the mussel Mytilus galloprovincialis were exposed to thiacloprid at environmental (4.5 μg L-1) and 100 times higher than environmental (450 μg L-1) concentrations for 20 days. Thiacloprid affected haemolymph biochemical parameters, cell viability in the digestive gland, antioxidant biomarkers and lipid peroxidation in the digestive gland and gills at environmentally relevant concentrations (4.5 μg L-1). In addition, thiacloprid exposure caused histological damage to the digestive gland and gills. Interestingly, the pesticide was detected at levels equal to 0.14 ng g-1 in the soft tissues of sentinels exposed for 20 days to 450 μg L-1 thiacloprid in seawaterμ. Due to its harmful potential and cumulative effects after long-term exposure of M. galloprovincialis, thiacloprid may pose a potential risk to nontarget aquatic organisms, as well as to human health. This aspect requires further in-depth investigation.
Collapse
Affiliation(s)
- Alzbeta Stara
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Maria Pagano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Marco Albano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Serena Savoca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Giuseppa Di Bella
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, Messina, Italy
| | - Ambrogina Albergamo
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, Messina, Italy
| | - Zuzana Koutkova
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Marie Sandova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Jacopo Fabrello
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
118
|
Zhao GP, Li JW, Yang FW, Yin XF, Ren FZ, Fang B, Pang GF. Spermiogenesis toxicity of imidacloprid in rats, possible role of CYP3A4. CHEMOSPHERE 2021; 282:131120. [PMID: 34470165 DOI: 10.1016/j.chemosphere.2021.131120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the adverse effects of low-dose imidacloprid (IMI) on the characteristics of sperm from male Wistar rats. Thirty mature male rats were equally divided into three groups and orally administered vehicle (Control Group), acceptable daily intake (ADI) concentration of IMI (Group 1), and IMI at a dose 10-fold that of the ADI (Group 2) for 90 days. The findings revealed that IMI caused abnormalities in sperm concentrations and morphologies, accompanied by an imbalance of the gonadal hormone testosterone. Histopathological damage and decrease of testosterone levels were observed in testes from rats treated with IMI. However, estradiol and gonadotropin levels were unchanged after IMI treatment. IMI inhibited the activity of cytochrome P450 3A4 (CYP3A4) and left itself existed in the organism of rats. The indicators relating to sperms and CYP3A4 activity were recovered when rats were co-treated with IMI and CYP3A4 inducer rifampicin together. These results indicated that low-dose IMI exposure caused sperm abnormalities through affecting on the spermiogenesis in testis. Inhibition of CYP3A4 activity by IMI largely contributed to its sperm toxicity. Thus, IMI exposure at doses close to real-world settings resulted in sperm toxicity on rats, which might be a potential risk factor for human reproductive diseases.
Collapse
Affiliation(s)
- Guo-Ping Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Jin-Wang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang-Wei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xue-Feng Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| | - Guo-Fang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
119
|
Dimitri VDP, Yao KS, Li D, Lei HJ, Van den Brink PJ, Ying GG. Imidacloprid treatments induces cyanobacteria blooms in freshwater communities under sub-tropical conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105992. [PMID: 34656895 DOI: 10.1016/j.aquatox.2021.105992] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/06/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Imidacloprid is one of the most used neonicotinoid insecticides all over the world and is considered as a contaminant of concern due to its high toxicity potential to aquatic organisms. However, the majority of the studies that have evaluated the effects of imidacloprid on aquatic organisms were conducted under temperate conditions. In the present study, a mesocosm experiment was conducted under sub-tropical conditions to assess the effects of imidacloprid on the structure (macroinvertebrates, zooplankton and phytoplankton) and functional endpoints of an aquatic ecosystem and to compare the results with similar temperate and (sub-)tropical mesocosm studies. Imidacloprid (0, 0.03, 0.3 and 3 µg/L) was applied to 13 mesocosms weekly over a period of 4 weeks, followed by a one month recovery period. At the community level a lowest NOECcommunity of 0.03 µg/L was calculated for the zooplankton, phytoplankton and macroinvertebrate communities. The highest sensitivity to imidacloprid (NOEC < 0.03 µg/L) were observed for Gerris sp., Diaptomus sp. and Brachionus quadridentatus. Imidacloprid induced population declines of the larger zooplankton species (Diaptomus sp. and Ostracoda) resulted in increased rotifer abundances and shifted the phytoplankton community to a graze resistant gelatinous cyanobacteria dominated ecosystem. These cyanobacteria blooms occurred at all different concentrations and could pose an important public health and environmental concern. Although there are some differences in species and community sensitivity between the present and the other (sub-)topical mesocosm studies, it can be observed that all show a similar general community response to imidacloprid. Under (sub-)tropical conditions, the toxic effects of imidacloprid occur at lower concentrations than found for temperate ecosystems.
Collapse
Affiliation(s)
- Van de Perre Dimitri
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Kai-Sheng Yao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; Wageningen University, Aquatic Ecology and Water Quality Management Group, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Hao-Jun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Paul J Van den Brink
- Wageningen University, Aquatic Ecology and Water Quality Management Group, P.O. Box 47, 6700 AA Wageningen, The Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| |
Collapse
|
120
|
Chai L, Zhang H, Song R, Yang H, Yu H, Paneth P, Kepp KP, Akamatsu M, Ji L. Precision Biotransformation of Emerging Pollutants by Human Cytochrome P450 Using Computational-Experimental Synergy: A Case Study of Tris(1,3-dichloro-2-propyl) Phosphate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14037-14050. [PMID: 34663070 DOI: 10.1021/acs.est.1c03036] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Precision biotransformation is an envisioned strategy offering detailed insights into biotransformation pathways in real environmental settings using experimentally guided high-accuracy quantum chemistry. Emerging pollutants, whose metabolites are easily overlooked but may cause idiosyncratic toxicity, are important targets of such a strategy. We demonstrate here that complex metabolic reactions of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) catalyzed by human CYP450 enzymes can be mapped via a three-step synergy strategy: (i) screening the possible metabolites via high-throughout (moderate-accuracy) computations; (ii) analyzing the proposed metabolites in vitro by human liver microsomes and recombinant human CYP450 enzymes; and (iii) rationalizing the experimental data via precise mechanisms using high-level targeted computations. Through the bilateral dialogues from qualitative to semi-quantitative to quantitative levels, we show how TDCIPP metabolism especially by CYP3A4 generates bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) as an O-dealkylation metabolite and bis(1,3-dichloro-2-propyl) 3-chloro-1-hydroxy-2-propyl phosphate (alcoholβ-dehalogen) as a dehalogenation/reduction metabolite via the initial rate-determining H-abstraction from αC- and βC-positions. The relative yield ratio [dehalogenation/reduction]/[O-dealkylation] is derived from the relative barriers of H-abstraction at the βC- and αC-positions by CYP3A4, estimated as 0.002 to 0.23, viz., an in vitro measured ratio of 0.04. Importantly, alcoholβ-dehalogen formation points to a new mechanism involving successive oxidation and reduction functions of CYP450, with its precursor aldehydeβ-dehalogen being a key intermediate detected by trapping assays and rationalized by computations. We conclude that the proposed three-step synergy strategy may meet the increasing challenge of elucidating biotransformation mechanisms of substantial synthesized organic compounds in the future.
Collapse
Affiliation(s)
- Lihong Chai
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Huanni Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Runqian Song
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Haohan Yang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, Kgs. Lyngby DK-2800, Denmark
| | - Miki Akamatsu
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
121
|
Habotta OA, Ateya A, Saleh RM, El-Ashry ES. Thiamethoxam-induced oxidative stress, lipid peroxidation, and disturbance of steroidogenic genes in male rats: Palliative role of Saussurea lappa and Silybum marianum. ENVIRONMENTAL TOXICOLOGY 2021; 36:2051-2061. [PMID: 34181816 DOI: 10.1002/tox.23322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 05/02/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Thiamethoxam (TMX) belongs to the neonicotinoid insecticide family and may evoke marked endocrine disruption. In this study, the reproductive toxicity of TMX on male rats was assessed along with the ability of Saussurea lappa (costus roots) and/or Silybum marianum extract (SM) to alleviate TMX toxicity. Male rats were allocated to seven groups and orally treated daily for 4 weeks: Control (saline), Costus (200 mg/kg), SM (150 mg/kg), TMX (78.15 mg/kg), TMX-costus, TMX-SM, and TMX-costus-SM (at the aforementioned doses). Compared with control group, TMX administration induced reductions in testicular levels of glutathione and antioxidant activities of SOD and CAT. In addition, TMX-exposed rats showed lower serum testosterone hormonal levels as well as higher malondialdehyde and nitric acid levels were detected in TMX-administered rats. On a molecular basis, mRNA expressions of StAR, CYP17a, 3β-HSD, SR-B1, and P450scc genes were significantly down-regulated in TMX group, whereas the expression of LHR and aromatase genes was up-regulated. Moreover, TMX-induced testicular damage was confirmed by histopathological screening. Importantly, however, the administration of either costus roots or SM significantly alleviated all aforementioned TMX-induced changes, indicating the effective antioxidant activities of these plant products. Interestingly, simultaneous treatment with costus root and SM provided better protection against TMX reproduction toxicity than treatment with either agent alone.
Collapse
Affiliation(s)
- Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Ateya
- Department of Animal Husbandry and Wealth Development Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Rasha M Saleh
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Eman S El-Ashry
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
122
|
Said NI, Abd-Elrazek AM, El-Dash HA. The protective role of resveratrol against sulfoxaflor-induced toxicity in testis of adult male rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:2105-2115. [PMID: 34236127 DOI: 10.1002/tox.23326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/16/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
This work was designed to explore the protective role of resveratrol (RES) against sulfoxaflor (Sulfx)-induced reproductive toxicity in adult male rats. The animals were divided into six groups: Control group, Sulfx treated groups (79.5 and 205 mg/kg/day), RES treated group (20 mg/kg/day), RES + Sulfx treated groups (20 mg/kg Res + 79.5 or 205 mg/kg Sulfx) orally for 28 consecutive days. Testicular samples were collected from all groups at the end of the treatment period. Tissue supernatants were isolated for oxidative stress and cellular energy parameters; tissue samples were prepared for histopathological examination. In addition, caspase-3 activity was calculated to assess spermatogenesis. Finally, DNA laddering assay was performed to detect DNA fragmentation as a hallmark of apoptosis. Our results showed that Sulfx treatment induced a significant increase in testicular levels of MDA, NOx, GSSG and reduced GSH level and cellular energy parameters in a dose-dependent manner compared to the control group. The results were confirmed by histopathological study which showed pathological changes in Sulfx treated groups. A significant increase in caspase 3 and DNA fragmentation was also observed. However, concomitant administration of RES to Sulfx -treated rats showed significant modulation against Sulfx-induced reproductive toxicity and attenuated the biochemical, apoptotic and histopathological changes. In conclusion, our results suggest that exposure to Sulfx at the two selected doses induces testicular toxicity and these effects can be ameliorated by supplementation of RES.
Collapse
Affiliation(s)
- Noha I Said
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Areeg M Abd-Elrazek
- Department of Physiology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Heba A El-Dash
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt
| |
Collapse
|
123
|
Laino A, Romero S, Cunningham M, Molina G, Gabellone C, Trabalon M, Garcia CF. Can Wolf Spider Mothers Detect Insecticides in the Environment? Does the Silk of the Egg-Sac Protect Juveniles from Insecticides? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2861-2873. [PMID: 34314524 DOI: 10.1002/etc.5157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/19/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The use of pesticides for plague control in agroecosystems generates a threat to wildlife and a major problem for human health. Pesticide compounds are also an important source of water and atmosphere contamination. Although insecticides are effective on their target organisms, they often affect organisms that are not their target. The aim of the present study was to research the effects of 3 types of neurotoxic insecticides-a pyrethroid (cypermethrin), a neonicotinoid (imidacloprid), and an organophosphate (chlorpyrifos)-on behavioral and physiological parameters of Pardosa saltans spider (Lycosidae). Our study analyzed for the first time the exploratory behavior of the spider mothers in the presence of these 3 insecticides on their egg-sacs and also on the ground. We also evaluated the oxidative stress effects on the juveniles hatched in the egg-sac protected by silk in relation to variations in detoxification enzymes (catalase, glutathione reductase, superoxide dismutase, glutathione-S-transferase, and glutathione peroxidase) and lipid peroxidation (reactive oxygen species [ROS]). The results show that these insecticides are repellents for mothers (cypermethrin is the most repellent), and maternal behavior is modified after detection of an insecticide on their egg-sac but mothers do not abandon their egg-sacs. These neurotoxic insecticides affect the juveniles inside their egg-sac. Cypermethrin and chlorpyrifos caused more oxidative stress in juveniles than did imidacloprid. The ROS generated by these insecticides seemed to be adequately eliminated by the juveniles' antioxidant systems. Environ Toxicol Chem 2021;40:2861-2873. © 2021 SETAC.
Collapse
Affiliation(s)
- A Laino
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| | - S Romero
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| | - M Cunningham
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| | - G Molina
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| | - C Gabellone
- Centro de Estudios Parasitológicos y Vectores, La Plata, Argentina
| | - M Trabalon
- Université de Rennes 1, CNRS, EthoS-UMR 6552, Rennes, France
| | - C F Garcia
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| |
Collapse
|
124
|
Georgieva M, Bonchev G, Zehirov G, Vasileva V, Vassileva V. Neonicotinoid insecticides exert diverse cytotoxic and genotoxic effects on cultivated sunflower. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53193-53207. [PMID: 34023994 DOI: 10.1007/s11356-021-14497-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Contamination with neonicotinoids is a global problem affecting environment and target and non-target organisms including plants. The present study explored the potential genotoxic and cytotoxic effects of the insecticides Actara 25 WD and Nuprid 200 SL containing the active substances thiamethoxam (TMX) and imidacloprid (IMI), respectively, on cultivated sunflower (Helianthus annuus L.). The half maximal effective concentration (½EC50) of the tested substances was calculated using a dose-response inhibition analysis of the growth of plant roots relative to the corresponding controls. Application of approximately ½EC50 or higher TMX doses significantly increased the antioxidant activity in sunflower leaves, whereas IMI led to a significant decrease in root antioxidant capacity, indicating organ-specific insecticide effects on sunflower plants. Even low doses (½EC50) of the studied neonicotinoids led to irregularities in mitotic phases and abnormalities in the cytokinesis and chromosome segregation, such as bridges, laggards, stickiness, and C-mitosis. Genotoxic effects manifested by a dose-independent induction of primary DNA damages and retrotransposon dynamics were also observed. The used set of physiological, biochemical, and genetic traits provides new information about the organ-specific effects of neonicotinoids in sunflower plants and elaborates on the complexity of mechanisms underpinning these effects that include DNA damages, cytokinesis defects, and genome instability.
Collapse
Affiliation(s)
- Mariyana Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria
| | - Georgi Bonchev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria
| | - Grigor Zehirov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria
| | - Vesela Vasileva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113, Sofia, Bulgaria.
| |
Collapse
|
125
|
Zhao GP, Wang XY, Li JW, Wang R, Ren FZ, Pang GF, Li YX. Imidacloprid increases intestinal permeability by disrupting tight junctions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112476. [PMID: 34214772 DOI: 10.1016/j.ecoenv.2021.112476] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/09/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The neonicotinoid pesticide, imidacloprid (IMI), is frequently detected in the environment and in foods. It is absorbed and metabolized by the intestine; however, its effects on intestinal barrier integrity are not well studied. We investigated whether IMI disrupts the permeability of the intestinal epithelial barrier via in vivo tests on male Wistar rats, in vitro assays using the human intestinal epithelial cell line, Caco-2, and in silico analyses. A repeated oral dose 90-day toxicity study was performed (0.06 mg/kg body weight/day). IMI exposure significantly increased intestinal permeability, which led to significantly elevated serum levels of endotoxin and inflammatory biomarkers (tumor necrosis factor-alpha and interleukin-1 beta) without any variation in body weight. Decreased transepithelial electrical resistance with increased permeability was also observed in 100 nM and 100 μM IMI-treated Caco-2 cell monolayers. Amounts of tight junction proteins in IMI-treated colon tissues and between IMI-treated Caco-2 cells were significantly lower than those of controls. Increased levels of myosin light chain phosphorylation, myosin light chain kinase (MLCK), and p65 subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB p65) phosphorylation were found in IMI-exposed cells compared with control cells. Furthermore, the barrier loss caused by IMI was rescued by the MLCK inhibitor, ML-7, and cycloheximide. Pregnane X receptor (PXR, NR1I2) was inhibited by low-dose IMI treatment. In silico analysis indicated potent binding sites between PXR and IMI. Together, these data illustrate that IMI induces intestinal epithelial barrier disruption and produces an inflammatory response, involving the down-regulation of tight junctions and disturbance of the PXR-NF-κB p65-MLCK signaling pathway. The intestinal barrier disruption caused by IMI deserves attention in assessing the safety of this neonicotinoid pesticide.
Collapse
Affiliation(s)
- Guo-Ping Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Xiao-Yu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jin-Wang Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ran Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Guo-Fang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yi-Xuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
126
|
Zhang H, Aspinall JV, Lv W, Zheng X, Zhang H, Li S, Zhang J, Bai N, Zhang Y, Wang X. Differences in kinetic metabolomics in Eisenia fetida under single and dual exposure of imidacloprid and dinotefuran at environmentally relevant concentrations. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126001. [PMID: 33992008 DOI: 10.1016/j.jhazmat.2021.126001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Metabolomic responses of earthworms to neonicotinoids are important for understanding their molecular-level toxicity and assessing their ecological risks, but little is known until now. We investigated impact of imidacloprid (IMI, 52.6 ng/g) and dinotefuran (DIN, 52.5 ng/g) on Eisenia fetida metabolomics under single- and dual-compound exposure scenarios for one to four weeks. Dissimilar metabolites and anti-stress strategies were found for different neonicotinoids and exposure scenarios. Specifically, IMI exposure first increased myo-inositol and UDP-glucuronate associated with transmembrane absorption and transformation to IMI-urea, and then increased glutathione and fourteen amino acids (TCA cycle precursors) to resist stress and replenish energy. In contrast, worms exposed to DIN first prepared TCA cycle intermediates from glucosamine-6-phosphate and amino acids, suppressed urea cycle and DIN transformation, and then alleviated oxidative stress by increasing carnosine, nicotinate-D-ribonucleotide and nicotinamide-β-riboside. Dual exposure increased four eicosanoids by 1.6-1.9-fold, possibly associated with membrane lipid peroxidation; the amino acids consumed to balance the energy metabolism exhibited a wave-like pattern. This study first systematically revealed the compound/time/exposure scenario- dependent effects of trace neonicotinoids on earthworm metabolomics and advanced the understanding of their action modes. Neonicotinoid transformation was closely related to worms' metabolic profiles, providing important insights in contaminant fate in soil ecosystems.
Collapse
Affiliation(s)
- Haiyun Zhang
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai 201403, China
| | | | - Weiguang Lv
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai 201403, China.
| | - Xianqing Zheng
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai 201403, China
| | - Hanlin Zhang
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai 201403, China
| | - Shuangxi Li
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai 201403, China
| | - Juanqin Zhang
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai 201403, China
| | - Naling Bai
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Agricultural Environment and Farmland Conservation Experiment Station of Ministry Agriculture, Shanghai 201403, China
| | - Yue Zhang
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xilong Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
127
|
Wang X, Qiu J, Xu Y, Liao G, Jia Q, Pan Y, Wang T, Qian Y. Integrated non-targeted lipidomics and metabolomics analyses for fluctuations of neonicotinoids imidacloprid and acetamiprid on Neuro-2a cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117327. [PMID: 34030083 DOI: 10.1016/j.envpol.2021.117327] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoid insecticides are widely used for pest control. However, they are highly water-soluble and easily ingested by organisms, posing potential health risks. In this study, cytotoxicity evaluations of imidacloprid and acetamiprid were conducted in Neuro-2a cells by obtaining their half maximal inhibitory concentration (IC50 values) (1152.1 and 936.5 μM, respectively). The toxic effects at the IC10 and IC20 on cell metabolism were determined by integrated non-targeted lipidomics and metabolomics analyses. Changes in the concentration of acetamiprid caused the most drastic perturbations of metabolism in Neuro-2a cells. Altogether, the detected lipids were mainly attributed to triglyceride, phosphatidylcholine (PC), and diglyceride. These three categories of lipids accounted for more than 67% of the sum in Neuro-2a cells. A total of 14 lipids and other 40 metabolites were screened as differential metabolites based on multivariate data analysis, and PCs were most frequently observed with a proportion of 25.9%. The results demonstrated that lipid metabolism should be paid considerable attention after imidacloprid and acetamiprid exposure. Pathway analysis showed that the metabolisms of glycerophospholipid, sphingolipid, and glutathione were the dominant pathways that were interfered. The present study is the first to investigate the cellular toxic mechanisms after separate imidacloprid and acetamiprid exposure by using lipidomics and metabolomics simultaneously. This research also provides novel insights into the evaluation of the ecological risk of imidacloprid and acetamiprid and contribute to the study of toxicity mechanism of these neonicotinoid insecticides to animals and humans in the future.
Collapse
Affiliation(s)
- Xinlu Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yanyang Xu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Guangqin Liao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yecan Pan
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Tiancai Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yongzhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
128
|
Nimako C, Ikenaka Y, Akoto O, Fujioka K, Taira K, Arizono K, Kato K, Takahashi K, Nakayama SMM, Ichise T, Ishizuka M. Simultaneous quantification of imidacloprid and its metabolites in tissues of mice upon chronic low-dose administration of imidacloprid. J Chromatogr A 2021; 1652:462350. [PMID: 34198103 DOI: 10.1016/j.chroma.2021.462350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/07/2023]
Abstract
This study aimed to (i) develop a sensitive method for simultaneous detection and quantification of imidacloprid (IMI) and seven of its metabolites in tissue specimens, and to (ii) determine the biodistribution of the IMI compounds in tissues of C57BL/6J male mice; after exposure to 0.6 mg/kg bw/day of IMI (10% of no observable adverse effect level of IMI) through a powdered diet for 24 weeks. We successfully developed a method which was accurate (recoveries were ≥ 70% for most compounds), sensitive (LODs ≤ 0.47 ng/mL and LOQs ≤ 1.43 ng/mL were recorded for all detected compounds, R2 ≥ 0.99) and precise (RSDs ≤ 20%) for routine analysis of IMI and seven of its metabolites in blood and various tissue matrices. After bio-distributional analysis, IMI and five of its metabolites were detected in mice. Brain, testis, lung, kidney, inguinal white adipose tissue and gonadal white adipose tissue mainly accumulated IMI, blood and mesenteric white adipose tissue mainly accumulated IMI-olefin; liver mainly accumulated desnitro-IMI; pancreas predominately accumulated 4-hydroxy-IMI. The desnitro-dehydro-IMI and the desnitro-IMI metabolites recorded tissue-blood concentration ratios ≥ 1.0 for testis, brain, lung and kidney. The cumulative levels of the six detected IMI compounds (Σ6 IMI compounds) were found in the decreasing order: blood > testis > brain > kidney > lung > iWAT > gWAT > mWAT > liver > pancreas. Altogether, this study provided essential data needed for effective mechanistic elucidation of compound-specific adverse outcomes associated with chronic exposures to IMI in mammalian species.
Collapse
Affiliation(s)
- Collins Nimako
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Japan; One Health Research Center, Hokkaido University, Japan.
| | - Osei Akoto
- Chemistry Department, Kwame Nkrumah University of Science and Technology, Ghana
| | - Kazutoshi Fujioka
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, United States
| | - Kumiko Taira
- Department of Anesthesiology, Tokyo Women's Medical University Center east, Tokyo, Japan
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, Japan
| | - Keisuke Kato
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Keisuke Takahashi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Japan
| | - Takahiro Ichise
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Japan
| |
Collapse
|
129
|
Zhou Y, Lu X, Yu B, Wang D, Zhao C, Yang Q, Zhang Q, Tan Y, Wang X, Guo J. Comparison of neonicotinoid residues in soils of different land use types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146803. [PMID: 33848872 DOI: 10.1016/j.scitotenv.2021.146803] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 05/27/2023]
Abstract
Neonicotinoid insecticides (NEOs) have attracted particular attention in recent years due to their wide occurrence and potential impacts on the ecosystem and human health. This study aimed to compare the composition and level of NEOs in soils of different land use types. Two rounds of sampling were performed in Tianjin, China, with 158 soil samples in fall and 61 soil samples in spring collected from five types of land, i.e., greenhouse, orchard, farm, park and residential area. The concentrations of eight NEOs, i.e., imidacloprid (IMI), acetamiprid (ACE), thiamethoxam (THX), clothianidin (CLO), thiacloprid (THA), dinotefuran (DIN), nitenpyram (NIT) and flonicamid (FLO), were analyzed in the soil samples using LC-MS/MS. Six NEOs were detected, with IMI, ACE and THX being the most frequently detected ones. Concentrations of NEOs (arithmetic means in fall and spring, respectively) in greenhouse were the highest (2.52×102 and 4.59×102 ng g-1), followed by in orchard (35.1 and 1.31×102 ng g-1), park (50.4 and 1.02×102 ng g-1), residential area (20.2 and 1.38×102 ng g-1) and farm (25.5 and 84.2 ng g-1). The contribution of individual NEO varied in soils of different land use types. Both IMI and THX were largely used in greenhouse, while IMI was the main NEO in the other four lands. The NEO levels in soils planted with different crops varied greatly. Extremely high levels of NEOs (>103 ng g-1) were observed in soils planted with watermelon, tomato and peach in greenhouse. The ubiquitous presence of NEOs in soils deserves more attention, particularly in greenhouse.
Collapse
Affiliation(s)
- Ying Zhou
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China; State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaoxia Lu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China.
| | - Bo Yu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Dan Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Cheng Zhao
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Qiong Yang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Qi Zhang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Ying Tan
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Xinyi Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Junyu Guo
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
130
|
Nimako C, Ikenaka Y, Akoto O, Bortey-Sam N, Ichise T, Nakayama SMM, Asante KA, Fujioka K, Taira K, Ishizuka M. Human Exposures to Neonicotinoids in Kumasi, Ghana. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2306-2318. [PMID: 33822397 DOI: 10.1002/etc.5065] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoid insecticides (NNIs) are now popular in many agricultural systems across Africa; however, the extent of human exposures to NNIs in African countries is scarcely reported. The present study evaluates neonicotinoid exposures in the consumer population of Kumasi, a cosmopolitan city in Ghana. A total of 75 human urine samples were collected from healthy volunteers (nonfarmers, aged 13-80 yr) and analyzed with a liquid chromatography electrospray ionization tandem mass spectrometry system. Seven NNIs and 3 NNI metabolites were detected in the following pattern (frequency, median concentration, maximum concentration): N-dm-acetamiprid (94.7%, 0.41 µg/L, 8.79 µg/L) > imidacloprid (70.7%, 0.15 µg/L, 211.62 µg/L) > N-(6-chloro-3-pyridylmethyl)-N-ethyl-N'-methylformamidine (62.2%, 0.43 µg/L, 53.85 µg/L) > 2-[N-(6-chloro-3-pyridylmethyl)-N-ethylamino]-2-(methylimino)acetic acid (56.8%, 0.10 µg/L, 3.53 µg/L) > clothianidin (40%, >limit of quantification [LOQ], 0.45 µg/L) > nitenpyram (18.7%, >LOQ, 0.14 µg/L) ≈ thiamethoxam (18.7%, >LOQ, 0.21 µg/L) > dinotefuran (12.0%, >LOQ, 1.01 µg/L) > acetamiprid (2.7%, >LOQ, 0.08 µg/L) ≈ thiacloprid (2.7%, >LOQ, 0.14 µg/L). Approximately 92% of the subjects were found to be exposed to multiple neonicotinoids simultaneously. The mean, median, and maximum imidacloprid equivalent of the relative potency factor of NNIs were found to be 1.6, 0.5, and 22.52, respectively. The median estimated daily intakes of acetamiprid, imidacloprid, and nitenpyram were 0.47, 1.27, and 0.02 µg/kg/d for females and 0.91, 0.66, and 0.08 µg/kg/d for males, respectively. The maximum daily intakes of all the NNIs were <1% of their chronic reference doses (cRfDs), except for imidacloprid and thiacloprid which recorded maximum daily intakes corresponding to 17.97 and 8.28% of cRfDs, respectively. To the best of our knowledge, the present study is the first biomonitoring report on neonicotinoid insecticides in Africa. Environ Toxicol Chem 2021;40:2306-2318. © 2021 SETAC.
Collapse
Affiliation(s)
- Collins Nimako
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Osei Akoto
- Chemistry Department, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Nesta Bortey-Sam
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takahiro Ichise
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kwadwo A Asante
- Council for Scientific and Industrial Research-Water Research Institute, Achimota-Accra, Ghana
| | - Kazutoshi Fujioka
- Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Kumiko Taira
- Department of Anesthesiology, Tokyo Women's Medical University, Medical Center East, Tokyo, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
131
|
Li X, Zhao X, Yao Y, Guo M, Li S. New insights into crosstalk between apoptosis and necroptosis co-induced by chlorothalonil and imidacloprid in Ctenopharyngodon idellus kidney cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146591. [PMID: 33770597 DOI: 10.1016/j.scitotenv.2021.146591] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Overuse and co-exposure of pesticides have become a public health problem and threat seriously water health and environmental organisms and even humans. Chlorothalonil (CT) and imidacloprid (IMI) are high-selling pesticides worldwide, which can persist in the environment, and present a series of severely toxic effects on non-target animals. However, the effect of co-application on aquatic organisms is unknown. Based on the concept of the toxic unit (TU), toxic interaction of CT and IMI was evaluated and showed the additive and synergistic toxicity on Ctenopharyngodon idellus (grass carp) kidney cell line (CIK cells). Cell death analysis found an obvious increase of the apoptosis and necrosis rates exposed to CT and IMI, and aggravation when applied together. Moreover, CT and IMI co-exposure accelerated the inhibition of CYP450s/ROS/HIF-1α signal, the decline of energy metabolism, mitochondrial dynamics disorder, activation of Bcl2/Bax/Cyt C/Casp3/Casp9 pathway and RIP1/RIP3/MLKL pathway. Bioinformatics analysis showed autophagy, cell response, NOD-like receptor signaling pathway might be affected by co-exposure. In summary, the above results indicate that co-exposure to CT and IMI has synergistic toxicity and aggravates cell death via inhibition of the CYP450s/ROS/HIF-1α signal. These data provide new insights for evaluating the stacking interaction and revealing the toxicological effects of pesticide mixture.
Collapse
Affiliation(s)
- Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengyao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
132
|
Guerra LJ, do Amaral AMB, de Quadros VA, da Luz Fiuza T, Rosemberg DB, Prestes OD, Zanella R, Clasen B, Loro VL. Biochemical and Behavioral Responses in Zebrafish Exposed to Imidacloprid Oxidative Damage and Antioxidant Responses. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:255-264. [PMID: 34137922 DOI: 10.1007/s00244-021-00865-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Imidacloprid (IMI) is an insecticide used worldwide, a neonicotinoid that could cause toxicity in non-target organisms. Zebrafish (Danio rerio) is a model organism widely used in different fields of research such as behavioral studies, biochemical parameters as well as neurotoxicity research. Here, we investigate whether the exposure to three concentrations (0.15, 15, and 45 μg/L) of IMI for 96 h alters responses in zebrafish. Oxidative stress parameters and acetylcholinesterase activity (AChE) as well as the behavioral responses of locomotion were measured. IMI exposure decreased distance traveled in fish exposed to the 45 μg/L. In the exploratory activity, time spent and transitions to the top area of the water column decreased in fish exposed to all concentrations of IMI. In addition, exposures to 45 and 15 μg/L of IMI decreased episodes of erratic movement in the zebrafish. Exposures to IMI at a concentration of 45 μg/L decreased the time spent in erratic movements and increased the time spent with no movement (i.e., "freezing"). Glutathione S-transferase (GST) activity was increased in the brain of zebrafish exposed for 96 h to concentrations of 0.15 and 45 μg/L. Brain AChE activity was reduced and the levels of carbonyl protein (CP) increased in brain of zebrafish at concentrations of 15 and 45 μg/L. Lipid peroxidation measured by TBARS and, also non-protein thiols (NPSH) did not show any variation in the brain of zebrafish exposed to IMI. Changes in the activity of cholinergic neurotransmitters in the brain tissues of zebrafish indicate IMI toxicity. Exposures of fish over 96 h to IMI at a nominal concentration of 45 μg/L caused more extensive sublethal responses in zebrafish, but this concentration is well above those expected in the aquatic environment. Studies are warranted to evaluate the effects on behavior and biomarker responses in fish exposed over longer periods to IMI at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Luciana Joner Guerra
- Laboratory of Aquatic Toxicology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Aline Monique Blank do Amaral
- Laboratory of Aquatic Toxicology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Graduate Program in Animal Biodiversity, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Vanessa Andreatta de Quadros
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Tiago da Luz Fiuza
- Laboratory of Aquatic Toxicology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Denis Broock Rosemberg
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Osmar Damian Prestes
- Laboratory of Residue of Pesticides (LARP), Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Renato Zanella
- Laboratory of Residue of Pesticides (LARP), Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Barbara Clasen
- Department of Environmental Sciences, State University of Rio Grande Do Sul, 98.600-000, Três Passos, RS, Brazil
| | - Vania Lucia Loro
- Laboratory of Aquatic Toxicology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
- Graduate Program in Animal Biodiversity, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
133
|
Baysal M, Atlı-Eklioğlu Ö. Comparison of the toxicity of pure compounds and commercial formulations of imidacloprid and acetamiprid on HT-29 cells: Single and mixture exposure. Food Chem Toxicol 2021; 155:112430. [PMID: 34289392 DOI: 10.1016/j.fct.2021.112430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/28/2021] [Accepted: 07/17/2021] [Indexed: 01/06/2023]
Abstract
Neonicotinoids, which are widely used worldwide, including in Turkey, are an insecticide group that are synthetic derivatives of nicotine. Recently, they have attracted attention due to their toxic effects on non-target organisms, especially bees. Numerous studies have shown that neonicotinoids have been found in detectable levels in the environment and cause various undesirable effects on living organisms, including humans and other mammals. In this study, the possible toxic effects of imidacloprid and acetamiprid, commonly used neonicotinoids, are investigated by their pure forms and commercial formulations on HT-29 cells with individual and combined exposures. According to our results, imidacloprid and acetamiprid induced cytotoxicity by caspase-mediated apoptosis, mitochondrial membrane depolarization, DNA damage, and oxidative stress under these experimental conditions. It is worth mentioning low doses of DNA damage, mixture exposure causes toxic effects at lower concentrations than individual exposure, and formulation groups are at the forefront of toxicity formation, though this varies depending on the parameters.
Collapse
Affiliation(s)
- Merve Baysal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| | - Özlem Atlı-Eklioğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey.
| |
Collapse
|
134
|
Xu M, Zhang Z, Li Z, Kan S, Liu Z, Wang D, Liu Q, Zhang H. Profiles of neonicotinoid insecticides and characteristic metabolites in paired urine and blood samples: Partitioning between urine and blood and implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145582. [PMID: 33582343 DOI: 10.1016/j.scitotenv.2021.145582] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoid insecticides (NEOs) are widely used for pest control worldwide. However, only a few studies have analyzed NEOs and their metabolites in blood samples, and no study has measured the concentrations of NEOs and their metabolites in paired urine and blood samples. In this study, six NEOs and three characteristic metabolites were detected in 196 paired urine and blood samples collected from young adults from China. The NEOs and their metabolites were widely detected in paired urine (67%-91%) and blood (64%-97%) samples, and the median levels ranged within 0.01-1.15 ng/mL in urine and 0.08-0.80 ng/mL in blood. Olefin-imidacloprid (Of-IMI) and 1-methyl-3-(tetrahydro-3-furylmethyl) urea (UF) were the most abundant target compounds in the urine (32.4%) and blood (26.4%) samples, respectively. Gender-related differences were observed in the concentrations of most NEOs and their metabolites in the urine and blood samples. The partitioning of target analytes between blood and urine (NEOs-B/NEOs-U ratios) was also calculated in this study. The B/U ratios of most NEOs and their metabolites were below 1, and positive correlations were observed between urine and blood in most levels of NEOs and their metabolites. This finding indicates that urinary levels are good predictors of human exposure to NEOs and their metabolites. The estimated daily intake (EDI) and the imidacloprid-equivalent (IMIeq) levels of NEOs and their metabolites in 196 young adults were also determined. The median EDI values (ng/kg bw/day) of ΣNEOs (sum of NEOs and their metabolites) and IMIeq in females (194.9 and 458.2) were slightly higher than (p > 0.05) those in males (157.1 and 439.7). This finding shows young adults are extensively exposed to NEOs and their metabolites. To our knowledge, this study is the first to report about NEOs and their metabolites in paired samples of urine and blood in China.
Collapse
Affiliation(s)
- Miaomiao Xu
- The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Zhanpeng Zhang
- Department of Dermatology, The first Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Zhiyong Li
- The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Shunyan Kan
- The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Zhaoxiang Liu
- Xiangtan Central Hospital, Xiangtan, Hunan 411100, PR China.
| | - Desheng Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, PR China
| | - Qihui Liu
- The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, PR China.
| | - Hua Zhang
- The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, PR China.
| |
Collapse
|
135
|
Zhou W, Yue M, Liu Q, Wang F, Liu L, Wang L, Liu X, Zheng M, Xiao H, Bai Q, Gao J. Measuring urinary concentrations of neonicotinoid insecticides by modified solid-phase extraction-ultrahigh performance liquid chromatography-tandem mass spectrometry: Application to human exposure and risk assessment. CHEMOSPHERE 2021; 273:129714. [PMID: 33515959 DOI: 10.1016/j.chemosphere.2021.129714] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoid insecticides are the most widely used insecticides in the world. However, some experiments in vivo and vitro have shown association between neonicotinoids exposure and adverse effects in non-target mammals. The aims of this study were to 1) develop a robust method for simultaneous quantification of urinary neonicotinoids with a wide water solubility range by modified solid-phase extraction-ultrahigh performance liquid chromatography- tandem mass spectrometry and 2) quantify the concentrations of ten neonicotinoids in 386 adolescents in Chongqing of Southwest China by using the developed method and assess health risks of exposure to neonicotinoids. The introduction of extractive crystallization effectively removed interfering inorganic salts and improved the sensitivity of the method. The mean recoveries of all the analytes were satisfactory in the range of 89.1-104.8% and the limits of detection ranged from 0.001 to 0.02 ng/mL. The developed method was sensitive, accurate and suitable for trace detection and batch analysis in biomonitoring-based studies. Of the ten examined neonicotinoids, acetamiprid had the highest geometric mean concentration (49.43 μg/g creatinine), followed by clothianidin (5.01), imidacloprid (3.80), thiamethoxam (3.24), thiacloprid (2.25), nitenpyram (1.79), dinotefuran (1.76), sulfoxaflor (1.65), imidaclothiz (1.28) and flonicamid (1.01). High detection rates of neonicotinoids (79.3-100.0%) indicated a ubiquitous adolescents' exposure to neonicotinoids in urban areas of Chongqing. Nevertheless, hazard quotient and hazard index data exhibited a low health risk caused by the individual and cumulative exposure to neonicotinoids on the basis of the reference limit values recommended by the U.S. Environmental Protection Agency and the National Food Safety Standard of China.
Collapse
Affiliation(s)
- Wenli Zhou
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Min Yue
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qin Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Feng Wang
- Chongqing Nan'an Center for Disease Control and Prevention, Chongqing, 400067, PR China
| | - Liying Liu
- Chongqing Nan'an Center for Disease Control and Prevention, Chongqing, 400067, PR China
| | - Lu Wang
- Chongqing Nan'an Center for Disease Control and Prevention, Chongqing, 400067, PR China
| | - Xiaoqiang Liu
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Meilin Zheng
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hong Xiao
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qunhua Bai
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jieying Gao
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
136
|
Bruzaca EES, de Oliveira RC, Duarte MSS, Sousa CP, Morais S, Correia AN, de Lima-Neto P. Electrochemical sensor based on multi-walled carbon nanotubes for imidacloprid determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2124-2136. [PMID: 33876058 DOI: 10.1039/d1ay00198a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A simple and robust sensor (fMWCNT-Nafion®0.5%/GCE) for determination of imidacloprid (IMI), a widely used neonicotinoid, was developed using a glassy carbon electrode (GCE) modified with functionalized multi-walled carbon nanotubes (fMWCNT) and Nafion®. The obtained data suggest that IMI reduction is an irreversible process, due to the reduction of the nitro group to hydroxylamine derivatives, with the participation of two protons and four electrons, and a charge transfer coefficient of 0.141. The optimized square-wave voltammetric conditions were: McIlvaine buffer at pH 6.0, 0.5% of Nafion® in the fMWCNT suspension, -0.6 V and 180 s as accumulation potential and time, respectively. A linearity in the range of 2.00 × 10-7 to 1.77 × 10-6 mol L-1 IMI, with the values of limit of detection and limit of quantification were equal to 3.74 × 10-8 mol L-1 and 1.25 × 10-7 mol L-1, respectively. Repeatability and reproducibility displayed relative standard deviations lower than 5%. Recovery tests performed in tap water, melon, and shrimp yielded mean values of 94 ± 6%, 97 ± 10% and 93 ± 10%, respectively. Moreover, several inorganic and organic compounds did not significantly interfere (0.6 to 4.5%) on the IMI signal, proving the selectivity and applicability of the developed sensor for IMI detection in complex samples.
Collapse
Affiliation(s)
- Evellin E S Bruzaca
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, 60440-900, Fortaleza, CE, Brazil.
| | - Raissa C de Oliveira
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, 60440-900, Fortaleza, CE, Brazil.
| | - Mateus S S Duarte
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, 60440-900, Fortaleza, CE, Brazil.
| | - Camila P Sousa
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, 60440-900, Fortaleza, CE, Brazil.
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr António Bernardino de Almeida 431, 4200-072, Porto, Portugal
| | - Adriana N Correia
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, 60440-900, Fortaleza, CE, Brazil.
| | - Pedro de Lima-Neto
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, 60440-900, Fortaleza, CE, Brazil.
| |
Collapse
|
137
|
Park J, Taly A, Bourreau J, De Nardi F, Legendre C, Henrion D, Guérineau NC, Legros C, Mattei C, Tricoire-Leignel H. Partial Agonist Activity of Neonicotinoids on Rat Nicotinic Receptors: Consequences over Epinephrine Secretion and In Vivo Blood Pressure. Int J Mol Sci 2021; 22:ijms22105106. [PMID: 34065933 PMCID: PMC8151892 DOI: 10.3390/ijms22105106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Neonicotinoid insecticides are nicotine-derived molecules which exert acute neurotoxic effects over the insect central nervous system by activating nicotinic acetylcholine receptors (nAChRs). However, these receptors are also present in the mammalian central and peripheral nervous system, where the effects of neonicotinoids are faintly known. In mammals, cholinergic synapses are crucial for the control of vascular tone, blood pressure and skeletal muscle contraction. We therefore hypothesized that neonicotinoids could affect cholinergic networks in mammals and sought to highlight functional consequences of acute intoxication in rats with sub-lethal concentrations of the highly used acetamiprid (ACE) and clothianidin (CLO). In this view, we characterized their electrophysiological effects on rat α3β4 nAChRs, knowing that it is predominantly expressed in ganglia of the vegetative nervous system and the adrenal medulla, which initiates catecholamine secretion. Both molecules exhibited a weak agonist effect on α3β4 receptors. Accordingly, their influence on epinephrine secretion from rat adrenal glands was also weak at 100 μM, but it was stronger at 500 μM. Challenging ACE or CLO together with nicotine (NIC) ended up with paradoxical effects on secretion. In addition, we measured the rat arterial blood pressure (ABP) in vivo by arterial catheterization. As expected, NIC induced a significant increase in ABP. ACE and CLO did not affect the ABP in the same conditions. However, simultaneous exposure of rats to both NIC and ACE/CLO promoted an increase of ABP and induced a biphasic response. Modeling the interaction of ACE or CLO on α3β4 nAChR is consistent with a binding site located in the agonist pocket of the receptor. We present a transversal experimental approach of mammal intoxication with neonicotinoids at different scales, including in vitro, ex vivo, in vivo and in silico. It paves the way of the acute and chronic toxicity for this class of insecticides on mammalian organisms.
Collapse
Affiliation(s)
- Joohee Park
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Antoine Taly
- Theoretical Biochemistry Laboratory, Institute of Physico-Chemical Biology, CNRS UPR 9080, University of Paris Diderot Sorbonne Paris Cité, 75005 Paris, France;
| | - Jennifer Bourreau
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Frédéric De Nardi
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Claire Legendre
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Daniel Henrion
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - Nathalie C. Guérineau
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
- IGF, University of Montpellier, CNRS, INSERM, 34000 Montpellier, France
| | - Christian Legros
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
| | - César Mattei
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
- Correspondence: (C.M.); (H.T.-L.)
| | - Hélène Tricoire-Leignel
- University of Angers, INSERM U1083, CNRS UMR 6015, MITOVASC, SFR ICAT, 49000 Angers, France; (J.P.); (J.B.); (F.D.N.); (C.L.); (D.H.); (N.C.G.); (C.L.)
- Correspondence: (C.M.); (H.T.-L.)
| |
Collapse
|
138
|
Kuchovská E, Morin B, López-Cabeza R, Barré M, Gouffier C, Bláhová L, Cachot J, Bláha L, Gonzalez P. Comparison of imidacloprid, propiconazole, and nanopropiconazole effects on the development, behavior, and gene expression biomarkers of the Pacific oyster (Magallana gigas). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142921. [PMID: 33757243 DOI: 10.1016/j.scitotenv.2020.142921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Coastal areas are final recipients of various contaminants including pesticides. The effects of pesticides on non-target organisms are often unclear, especially at environmentally relevant concentrations. This study investigated the impacts of insecticide imidacloprid (IMI) and fungicide propiconazole (PRO), some of the most detected pesticides in the Arcachon Bay in France. This work also included the research of propiconazole nanoformulation (nanoPRO). The effects were assessed studying the development of the early life stages of the Pacific oyster (Magallana gigas). Oyster embryos were exposed for 24, 30, and 42 h (depending on the endpoint) at 24 °C to environmentally relevant concentrations of the two pesticides as well as to nanoPRO. The research focused on sublethal endpoints such as the presence of developmental malformations, alterations of locomotion patterns, or changes in the gene expression levels. No developmental abnormalities were observed after exposure to environmental concentrations detected in the Arcachon Bay in recent years (maximal detected concentration of IMI and PRO were 174 ng/L and 29 ng/L, respectively). EC50 of PRO and nanoPRO were comparable, 2.93 ± 1.35 and 2.26 ± 1.36 mg/L, while EC50 of IMI exceeded 200 mg/L. IMI did not affect larval behavior. PRO affected larval movement trajectory and decreased average larvae swimming speed (2 μg/L), while nanoPRO increased the maximal larvae swimming speed (0.02 μg/L). PRO upregulated especially genes linked to reactive oxygen species (ROS) production and detoxification. NanoPRO effects on gene expression were less pronounced - half of the genes were altered in comparison with PRO. IMI induced a strong dose-response impact on the genes linked to the detoxification, ROS production, cell cycle, and apoptosis regulation. In conclusion, our results suggest that current pesticide concentrations detected in the Arcachon Bay are safe for the Pacific oyster early development, but they might have a small direct effect via altered gene expressions, whose longer-term impacts cannot be ruled out.
Collapse
Affiliation(s)
- Eliška Kuchovská
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic; Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600 Pessac, France
| | - Bénédicte Morin
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600 Pessac, France
| | - Rocío López-Cabeza
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Mathilde Barré
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600 Pessac, France
| | | | - Lucie Bláhová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jérôme Cachot
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600 Pessac, France
| | - Luděk Bláha
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Patrice Gonzalez
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600 Pessac, France.
| |
Collapse
|
139
|
NIMAKO C, IKENAKA Y, OKAMATSU-OGURA Y, BARIUAN JV, KOBAYASHI A, YAMAZAKI R, TAIRA K, HOSHI N, HIRANO T, NAKAYAMA SMM, ISHIZUKA M. Chronic low-dose exposure to imidacloprid potentiates high fat diet-mediated liver steatosis in C57BL/6J male mice. J Vet Med Sci 2021; 83:487-500. [PMID: 33487623 PMCID: PMC8025430 DOI: 10.1292/jvms.20-0479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022] Open
Abstract
Hepatic steatosis is known to precede a continuum of events that lead to hepatic metabolic dysfunction, inflammation and carcinogenesis. Recently, studies have linked xenobiotic exposures to hepatic steatogenesis and its associated metabolic disorders; however, the underlying mechanisms remain elusive. This study aimed to elucidate the mechanistic role of imidacloprid in the prevalence of high fat diet (HFD)-induced liver steatosis, using a C57BL/6J mice model. Mice (3 weeks old) were fed with HFD and treated with 0.6 mg/kg bw/day (one-tenth of the NOAEL) of imidacloprid through water or diet, for 24 weeks. In a controlled group, mice were fed with only HFD. At the end of the study, imidacloprid treatment significantly potentiated HFD-induced body weight gain in mice. Also, imidacloprid increased the liver weights of mice, with complimentary reductions in mesenteric and gonadal white adipose tissue weights. Histopathological analysis of liver revealed a drastic steatosis in imidacloprid treated mice. Following a real-time qPCR analysis, imidacloprid upregulated transcriptions of hepatic fatty acid biosynthesis-related transcription factors and genes. Imidacloprid also induced hepatic expression of the gene encoding pregnane X receptor; but had no significant effect on hepatic expressions of liver X receptor and aryl hydrocarbon receptor. The imidacloprid treatment further enhanced serum alanine aminotransferase levels but downregulated hepatic antioxidant mRNA expressions. Ultimately, this study suggested an imidacloprid-potentiation effects on prevalence of HFD-induced liver steatosis via transcriptional modulations of the hepatic FA biosynthesis pathway.
Collapse
Affiliation(s)
- Collins NIMAKO
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University,
Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University,
Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman Street, Potchefstroom
2531, South Africa
| | - Yuko OKAMATSU-OGURA
- Laboratory of Biochemistry, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18,
Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Jussiaea V. BARIUAN
- Laboratory of Biochemistry, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18,
Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Atsushi KOBAYASHI
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita
18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Ryo YAMAZAKI
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita
18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kumiko TAIRA
- Department of Anesthesiology, Tokyo Women’s Medical University Center East, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666,
Japan
| | - Nobuhiko HOSHI
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo
657-8501, Japan
| | - Tetsushi HIRANO
- Division of Drug and Structure Research, Life Science Research Center, University of Toyama, Sugitani 2630, Toyama 930-0194,
Japan
| | - Shouta M. M. NAKAYAMA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University,
Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Mayumi ISHIZUKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University,
Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
140
|
Lv N, Ma K, Li R, Liang P, Liang P, Gao X. Sublethal and lethal effects of the imidacloprid on the metabolic characteristics based on high-throughput non-targeted metabolomics in Aphis gossypii Glover. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111969. [PMID: 33561773 DOI: 10.1016/j.ecoenv.2021.111969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Sublethal effect considered as an emerging factor to assess the environmental risk of insecticides, which can impact the insects on both physiology and behavior. Lethal exposure can be causing near immediate mortality. Pests are inevitably exposed to sublethal and lethal dose in the agroecosystem following application of pesticides. Insecticides, widely used for the control of insect pests, are irreplaceable in insect pest management. The effects of imidacloprid by the method of high-throughput non-targeted metabolomics was investigated in Aphis gossypii Glover exposed to LC10 and LC90 doses of the imidacloprid, and the control group was treated with the same condition without imidacloprid. Pairwise comparisons showed that 111 metabolites changed significantly, 60 in the LC10 group, and 66 in the LC90 group compared to the control group, while only 16 changes in the LC10 were same with that in LC90 group. Among the changed metabolites, a total of 16 metabolites were identified as potential biomarkers, which represented the most influential pathways including glycolysis and gluconeogenesis, alanine, aspartate, and glutamate metabolism, ascorbate and aldarate metabolism, glutathione metabolism, phenylalanine metabolism, tyrosine metabolism, caffeine metabolism and parkinson's disease (PD), which could account for the sublethal and lethal effects on A. gossypii. These modified metabolic pathways demonstrated that high energy consumption, excitotoxicity and oxidative stress (OS) were appeared in both LC10 and LC90 groups, while PD was detected only in the LC90 group. The results of non-targeted metabolomics revealed the effects of neonicotinoid pesticide exposure on A. gossypii successfully, and provided a deep insight into the influenced physiology by the stress of neonicotinoid pesticide in the insect.
Collapse
Affiliation(s)
- Nannan Lv
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Kangsheng Ma
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Ren Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Pingzhuo Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
141
|
Zhang H, Zhang N, Zhou W, Zeng X, Wang X, Zhan M, Xu W, Huang Y, Lu L, Li Z, Gao Y. Profiles of neonicotinoid insecticides and their metabolites in paired saliva and periodontal blood samples in human from South China: Association with oxidative stress markers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112001. [PMID: 33545407 DOI: 10.1016/j.ecoenv.2021.112001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoid insecticides (NEOs) are widely used around the world. The distribution of NEOs in paired saliva and periodontal blood samples was not previously documented in China. In this study, the concentrations of six NEOs and three corresponding metabolites were measured in 188 paired saliva and periodontal blood samples collected from South China. NEOs and their metabolites were frequently detected (68-94%) in paired saliva and periodontal blood, with median levels of 0.01-0.99 ng/mL. 1-Methyl-3-(tetrahydro-3-furylmethyl) urea was the most predominant NEO in paired saliva (39%) and periodontal blood (42%). Gender-related differences in NEOs and their metabolite concentrations were found: males showed lower levels than females. We calculated the concentration ratios between saliva and periodontal blood (S/PB ratios), and found that the median S/PB ratios of NEO and their metabolites were higher than 1, indicating that NEOs and their metabolites were easily excreted via saliva. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) was measured in paired saliva and periodontal blood as a marker of oxidative stress. 8-OHdG concentrations in saliva and periodontal blood were significantly and positively correlated (p < 0.05) with the concentrations of most NEOs and their metabolites in saliva and periodontal blood samples. These findings indicated that exposure to NEOs and their metabolites is associated with oxidative stress. This study is the first to report NEOs and their metabolites in paired saliva and periodontal blood samples collected from South China.
Collapse
Affiliation(s)
- Hua Zhang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Nan Zhang
- School of Stomatology, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Wei Zhou
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Xujia Zeng
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Xiao Wang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Meixiao Zhan
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, Guangdong, PR China
| | - Weiguo Xu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, Guangdong, PR China
| | - Yue Huang
- School of Stomatology, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Ligong Lu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, Guangdong, PR China.
| | - Zhizhong Li
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou 510632, Guangdong, PR China; The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, Guangdong, PR China.
| | - Yunfei Gao
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, PR China.
| |
Collapse
|
142
|
Piner Benli P, Çelik M. Glutathione and its dependent enzymes' modulatory responses to neonicotinoid insecticide sulfoxaflor induced oxidative damage in zebrafish in vivo. Sci Prog 2021; 104:368504211028361. [PMID: 34176341 PMCID: PMC10454941 DOI: 10.1177/00368504211028361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The use of neonicotinoid insecticides has progressively increased worldwide when compared with other insecticide groups. Due to this increase, non-target animal species such as fish are exposed to neonicotinoids from different sources, so they can be accumulated at trophic levels and cause various toxic effects by reaching humans. There are limited studies related to the toxic effects of neonicotinoid sulfoximine insecticides including sulfoxaflor on non-target species. The purpose of the present study was to evaluate the effects of sulfoxaflor on GSH-related antioxidants and to determine oxidative stress-producing effect of sulfoxaflor in the gill of zebrafish (Danio rerio). For this purpose, three sublethal concentrations of sulfoxaflor 0.87 mg/L (2.5% of 96 h LC50), 1.75 mg/L (5% of 96 h LC50), 3.51 mg/L (10% of 96 h LC50) of sulfoxaflor were exposed to zebrafish for 24, 48, and 96 h. GSH related antioxidants were evaluated by analyzing tGSH levels and GPx, GR, GST specific enzyme activities in the gill of zebrafish. The oxidative damage of sulfoxaflor on gill cells was determined by measuring TBARS levels. The results of this study demonstrated that sulfoxaflor activated GSH related antioxidants by increasing tGSH levels, GPx, GR enzyme activities and by diminishing GST enzyme activity in the gill of zebrafish. Sulfoxaflor also caused oxidative damage in the gill of zebrafish by increasing lipid peroxidation. In conclusion, this study indicated that sulfoxaflor led to oxidative stress and activation of GSH related antioxidants in the gill of zebrafish.
Collapse
Affiliation(s)
- Petek Piner Benli
- Department of Veterinary Pharmacology and Toxicology, Faculty of Ceyhan Veterinary Medicine, Cukurova University, Adana, Turkey
| | - Mehmet Çelik
- Department of Veterinary Food Hygiene and Technology, Faculty of Ceyhan Veterinary Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
143
|
Katić A, Kašuba V, Kopjar N, Lovaković BT, Marjanović Čermak AM, Mendaš G, Micek V, Milić M, Pavičić I, Pizent A, Žunec S, Želježić D. Effects of low-level imidacloprid oral exposure on cholinesterase activity, oxidative stress responses, and primary DNA damage in the blood and brain of male Wistar rats. Chem Biol Interact 2021; 338:109287. [PMID: 33129804 DOI: 10.1016/j.cbi.2020.109287] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/11/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Imidacloprid is a neonicotinoid insecticide that acts selectively as an agonist on insect nicotinic acetylcholine receptors. It is used for crop protection worldwide, as well as for non-agricultural uses. Imidacloprid systemic accumulation in food is an important source of imidacloprid exposure. Due to the undisputable need for investigations of imidacloprid toxicity in non-target species, we evaluated the effects of a 28-day oral exposure to low doses of imidacloprid (0.06 mg/kg b. w./day, 0.8 mg/kg b. w./day and 2.25 mg/kg b. w./day) on cholinesterase activity, oxidative stress responses and primary DNA damage in the blood and brain tissue of male Wistar rats. Exposure to imidacloprid did not cause significant changes in total cholinesterase, acetylcholinesterase and butyrylcholinesterase activities in plasma and brain tissue. Reactive oxygen species levels and lipid peroxidation increased significantly in the plasma of rats treated with the lowest dose of imidacloprid. Activities of glutathione-peroxidase in plasma and brain and superoxide dismutase in erythrocytes increased significantly at the highest applied dose. High performance liquid chromatography with UV diode array detector revealed the presence of imidacloprid in the plasma of all the treated animals and in the brain of the animals treated with the two higher doses. The alkaline comet assay results showed significant peripheral blood leukocyte damage at the lowest dose of imidacloprid and dose-dependent brain cell DNA damage. Oral 28-day exposure to low doses of imidacloprid in rats resulted in detectable levels of imidacloprid in plasma and brain tissue that directly induced DNA damage, particularly in brain tissue, with slight changes in plasma oxidative stress parameters.
Collapse
Affiliation(s)
- Anja Katić
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia.
| | - Vilena Kašuba
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Nevenka Kopjar
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Blanka Tariba Lovaković
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Ana Marija Marjanović Čermak
- Radiation Dosimetry and Radiobiology Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Gordana Mendaš
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Vedran Micek
- Animal Breeding Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Ivan Pavičić
- Radiation Dosimetry and Radiobiology Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Alica Pizent
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Suzana Žunec
- Toxicology Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Davor Želježić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| |
Collapse
|
144
|
Wei F, Wang D, Li H, You J. Joint toxicity of imidacloprid and azoxystrobin to Chironomus dilutus at organism, cell, and gene levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105783. [PMID: 33662881 DOI: 10.1016/j.aquatox.2021.105783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Pesticides occur in the environment as mixtures, yet the joint toxicity of pesticide mixtures remains largely under-explored and is usually overlooked in ecological risk assessment. In the current study, joint toxicity of a neonicotinoid insecticide (imidacloprid, IMI) and a strobilurin fungicide (azoxystrobin, AZO) was investigated with Chironomus dilutus over a wide range of concentrations and at different effect levels (organism, cell, and gene levels). The two pesticides, both individually and in combination, were found to induce oxidative stress and cause lethality in C. dilutus. Median lethal concentrations for IMI and AZO were 3.98 ± 1.17 and 52.9 ± 1.1 μg/L, respectively. Mixtures of the two pesticides presented synergetic effects at environmentally relevant concentrations whilst antagonistic effects at high concentrations, showing concentration-dependent joint toxicity. Investigation on the expressions of 12 genes (cyt b, coi, cox1, cyp4, cyp12m1, cyp9au1, cyp6fv1, cyp315, gst, Zn/Cu-sod, Mn-sod, and cat) revealed that the two pesticides impaired mitochondrial respiration, detoxification, and antioxidant system of C. dilutus, and the joint effects of the two pesticides were likely due to an interplay between their respective influences on these physiological processes. Collectively, the synergistic effects of the two pesticides at environmentally relevant concentrations highlight the importance to incorporate combined toxicity studies into ecological risk assessment of pesticides.
Collapse
Affiliation(s)
- Fenghua Wei
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China; School of Chemistry and Environment, Jiaying University, Meizhou, 514015, China
| | - Dali Wang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| | - Huizhen Li
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Jing You
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
145
|
Eng ML, Hao C, Watts C, Sun F, Morrissey CA. Characterizing imidacloprid and metabolites in songbird blood with applications for diagnosing field exposures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143409. [PMID: 33218798 DOI: 10.1016/j.scitotenv.2020.143409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Neonicotinoids are the most widely used insecticides globally, but their rapid metabolism in vertebrates makes diagnosing wildlife exposure challenging. More detailed information on the pattern of imidacloprid metabolites over time could be used to better approximate the timing and level of exposure. Here, we applied recently developed sensitive analytical methods to measure imidacloprid (IMI) parent compound along with an expanded suite of metabolites (5-OH-IMI, IMI-olefin, desnitro-IMI, IMI-urea, 6-chloronicotinic acid, 5-AMCP, 6-OH nicotinic acid) and six other neonicotinoids in adult red-winged blackbirds (Agelaius phoeniceus) that were experimentally exposed to one of two field-realistic concentrations of imidacloprid (0.8 or 6.9 mg/kg bw). We measured concentrations in small (25 μL) plasma samples collected pre-exposure and at 1-, 6-, 24- and 48-h post-exposure. Imidacloprid was rapidly absorbed and metabolized within 48 h at both doses, with the largest decrease within 6 h post-exposure. The average proportion of parent IMI decreased from 68% of total detectable residues at 1-h to 34% at 6-h post-exposure. Two primary metabolites in blood were 5-OH-IMI and IMI-olefin, and 5-OH-IMI was the most persistent marker of exposure at 48-h. Desnitro-IMI was consistently detected following very recent (≤ 1-h) IMI exposure, and a higher ratio of parent IMI to metabolites also indicated recent exposure. Other metabolites were only detected in the higher dose group, and could be used as indicators of exposure to higher IMI concentrations. This sensitive analytical method and the observed metabolite patterns could be used to inform a growing body of field studies linking neonicotinoid exposure and effects in free-living birds.
Collapse
Affiliation(s)
- Margaret L Eng
- Toxicology Centre, University of Saskatchewan, Saskatchewan S7N 5B3, Canada
| | - Chunyan Hao
- Laboratory Services Branch, Ontario Ministry of the Environment, Conservation and Parks, Etobicoke, Ontario M9P 3V6, Canada
| | - Christena Watts
- Laboratory Services Branch, Ontario Ministry of the Environment, Conservation and Parks, Etobicoke, Ontario M9P 3V6, Canada
| | - Fengrong Sun
- Laboratory Services Branch, Ontario Ministry of the Environment, Conservation and Parks, Etobicoke, Ontario M9P 3V6, Canada
| | - Christy A Morrissey
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada.
| |
Collapse
|
146
|
Furlan L, Pozzebon A, Duso C, Simon-Delso N, Sánchez-Bayo F, Marchand PA, Codato F, Bijleveld van Lexmond M, Bonmatin JM. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 3: alternatives to systemic insecticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11798-11820. [PMID: 29478160 PMCID: PMC7921064 DOI: 10.1007/s11356-017-1052-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/13/2017] [Indexed: 05/14/2023]
Abstract
Over-reliance on pesticides for pest control is inflicting serious damage to the environmental services that underpin agricultural productivity. The widespread use of systemic insecticides, neonicotinoids, and the phenylpyrazole fipronil in particular is assessed here in terms of their actual use in pest management, effects on crop yields, and the development of pest resistance to these compounds in many crops after two decades of usage. Resistance can only be overcome in the longterm by implementing methods that are not exclusively based on synthetic pesticides. A diverse range of pest management tactics is already available, all of which can achieve efficient pest control below the economic injury level while maintaining the productivity of the crops. A novel insurance method against crop failure is shown here as an example of alternative methods that can protect farmer's crops and their livelihoods without having to use insecticides. Finally, some concluding remarks about the need for a new framework for a truly sustainable agriculture that relies mainly on natural ecosystem services instead of chemicals are included; this reinforcing the previous WIA conclusions (van der Sluijs et al. Environ Sci Pollut Res 22:148-154, 2015).
Collapse
Affiliation(s)
| | - Alberto Pozzebon
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Carlo Duso
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Noa Simon-Delso
- Beekeeping Research and Information Centre, Louvain la Neuve, Belgium
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, NSW, 2015, Australia
| | - Patrice A Marchand
- Institut Technique de l'Agriculture Biologique (ITAB), 149 Rue de Bercy, 75595, Paris, France
| | - Filippo Codato
- Condifesa Veneto, Associazione regionale dei ccnsorzi di difesa del Veneto, Via F.S. Orologio 6, 35129, Padova (PD), Italy
| | | | - Jean-Marc Bonmatin
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Rue Charles Sadron, 45071, Orléans, France.
| |
Collapse
|
147
|
Bonmatin JM, Giorio C, Sánchez-Bayo F, Bijleveld van Lexmond M. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11709-11715. [PMID: 33620685 DOI: 10.1007/s11356-021-12853-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Jean-Marc Bonmatin
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Rue Charles Sadron, 45071, Orléans, France.
| | - Chiara Giorio
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, NSW, 2015, Australia
| | | |
Collapse
|
148
|
Liu Y, He QK, Xu ZR, Xu CL, Zhao SC, Luo YS, Sun X, Qi ZQ, Wang HL. Thiamethoxam Exposure Induces Endoplasmic Reticulum Stress and Affects Ovarian Function and Oocyte Development in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1942-1952. [PMID: 33533595 DOI: 10.1021/acs.jafc.0c06340] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Neonicotinoids are the most widely used insecticides in modern agriculture, and their residues have been found in the environment and food. Previous studies reported that neonicotinoids exert toxic effects in various tissues, but whether they interfered with the female reproductive process remains unknown. In our present research, thiamethoxam was selected as a representative neonicotinoid to establish a mouse toxicity model with gavage. We found that thiamethoxam decreased the ovarian coefficient and disrupted the expression of female hormone receptors, subsequently affecting follicle development. Ovarian granulosa cells from the thiamethoxam exposure group underwent a high level of apoptosis. Using transcriptome analysis, we showed that thiamethoxam exposure altered the expression of multiple oocyte genes related to inflammation, apoptosis, and endoplasmic reticulum stress. Thiamethoxam also adversely affected oocyte and embryo development. Western blotting and fluorescence staining results confirmed that thiamethoxam affected the integrity of DNA, triggered apoptosis, promoted oxidative stress and endoplasmic reticulum stress, and impaired mitochondrial function. Collectively, our results indicated that thiamethoxam exposure disrupts ovarian homeostasis and decreases oocyte quality via endoplasmic reticulum stress and apoptosis induction.
Collapse
Affiliation(s)
- Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Quan-Kuo He
- Medical College, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhi-Ran Xu
- Center for Translational Medicine Research, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, People's Republic of China
| | - Chang-Long Xu
- Reproductive Medical Center of Nanning Second People's Hospital, Nanning, Guangxi 530031, People's Republic of China
| | - Si-Cheng Zhao
- Medical College, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yu-Shen Luo
- Medical College, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Xue Sun
- Medical College, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhong-Quan Qi
- Medical College, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Hai-Long Wang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| |
Collapse
|
149
|
Zhang N, Wang B, Zhang Z, Chen X, Huang Y, Liu Q, Zhang H. Occurrence of neonicotinoid insecticides and their metabolites in tooth samples collected from south China: Associations with periodontitis. CHEMOSPHERE 2021; 264:128498. [PMID: 33032210 DOI: 10.1016/j.chemosphere.2020.128498] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Neonicotinoid insecticides (NEOs) are widely used in agricultural production processes in China and worldwide. NEOs have been an increasing concern because of their potential toxicity to nontarget organisms. However, studies that focused on human exposure to NEOs in China are limited. In this study, levels of six parent NEOs (p-NEOs), namely imidacloprid (IMI), acetamiprid (ACE), clothianidin (CLO), dinotefuran (DIN), thiamethoxam (THIX), and thiacloprid (THI), and three metabolites (m-NEOs), such as 5-hydroxy-imidacloprid (5-OH-IMI), 1-methyl-3-(tetrahydro-3-furyl methyl) urea (UF), and N-desmethyl-acetamiprid (N-dm-ACE) were measured in 127 tooth samples collected from South China. P-NEOs and m-NEOs are frequently detected (76%-93%) in tooth samples, with median levels of 0.03-1.20 ng/g. UF is the most abundant NEOs in tooth samples (36%). Females have higher NEO levels than males, and gender-related differences in NEO levels are found. Associations among most p-NEOs are also found (p < 0.05), indicating the source of human exposure to p-NEOs is related. However, no significant relationships (p > 0.05) between levels of m-NEOs and their corresponding p-NEOs are found, suggesting that exogenous m-NEOs contribute to exposure. We have also examined the associations between human NEOs exposure and periodontitis, and associations between NEO exposure and periodontitis are observed (OR = 2.63-7.33; 95% CI = 1.01-21.1, p-trend < 0.05). Our results suggest that NEO levels are associated with increased odds of prevalent periodontitis. This study is the first to report about p-NEOs and m-NEOs in tooth samples collected from South China.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Stomatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Bata Wang
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Zhanpeng Zhang
- Department of Dermatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Xufeng Chen
- Department of Stomatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Yue Huang
- Department of Stomatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China
| | - Qihui Liu
- The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China.
| | - Hua Zhang
- The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
150
|
Xie Y, Hou X. Molecular Assessment of the Toxic Mechanism of the Latest Neonicotinoid Dinotefuran with Glutathione Peroxidase 6 from Arabidopsis thaliana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:638-645. [PMID: 33398988 DOI: 10.1021/acs.jafc.0c05948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With widespread applications of the latest neonicotinoid in agriculture, dinotefuran has gradually become a hazardous contaminant for plants through the generation of excessive reactive oxygen species. However, the potential toxic mechanisms of oxidative damages to plants induced by dinotefuran are still unknown. As a core component of the glutathione antioxidant enzyme system, glutathione peroxidases have been used as biomarkers to reflect excessive oxidative stress. In this study, the hazardous effects of dinotefuran on AtGPX6 were investigated at the molecular level. The intrinsic fluorescence intensity of AtGPX6 was quenched using the static quenching mechanism upon binding with dinotefuran. Moreover, a single binding site was predicted for AtGPX6 toward dinotefuran, and the complex formation was presumed to be driven by hydrogen bonds or van der Waals forces, which conformed with the molecular docking results. In addition, AtGPX6 exhibited moderate binding affinity with dinotefuran based on the bio-layer interferometry assay. In addition, the loosening and unfolding of the protein skeleton of AtGPX6 with the addition of dinotefuran were explored along with the increase of hydrophobicity around tryptophan residues. Lastly, the toxic effects of dinotefuran on the root growth of Arabidopsis seedlings were also examined. The exploration of the binding mechanism of dinotefuran with AtGPX6 at the molecular level would provide the toxicity assessment of dinotefuran on plants.
Collapse
Affiliation(s)
- Yanhua Xie
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomin Hou
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|