101
|
Tiller Angle Control 1 Is Essential for the Dynamic Changes in Plant Architecture in Rice. Int J Mol Sci 2022; 23:ijms23094997. [PMID: 35563391 PMCID: PMC9105778 DOI: 10.3390/ijms23094997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Plant architecture is dynamic as plants develop. Although many genes associated with specific plant architecture components have been identified in rice, genes related to underlying dynamic changes in plant architecture remain largely unknown. Here, we identified two highly similar recombinant inbred lines (RILs) with different plant architecture: RIL-Dynamic (D) and RIL-Compact (C). The dynamic plant architecture of RIL-D is characterized by ‘loosetiller angle (tillering stage)–compact (heading stage)–loosecurved stem (maturing stage)’ under natural long-day (NLD) conditions, and ‘loosetiller angle (tillering and heading stages)–loosetiller angle and curved stem (maturing stage)’ under natural short-day (NSD) conditions, while RIL-C exhibits a compact plant architecture both under NLD and NSD conditions throughout growth. The candidate locus was mapped to the chromosome 9 tail via the rice 8K chip assay and map-based cloning. Sequencing, complementary tests, and gene knockout tests demonstrated that Tiller Angle Control 1 (TAC1) is responsible for dynamic plant architecture in RIL-D. Moreover, TAC1 positively regulates loose plant architecture, and high TAC1 expression cannot influence the expression of tested tiller-angle-related genes. Our results reveal that TAC1 is necessary for the dynamic changes in plant architecture, which can guide improvements in plant architecture during the modern super rice breeding.
Collapse
|
102
|
Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding. Nat Genet 2022; 54:694-704. [PMID: 35484301 DOI: 10.1038/s41588-022-01055-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 03/18/2022] [Indexed: 01/06/2023]
Abstract
Rapeseed (Brassica napus L.) is an important oil-producing crop for the world. Its adaptation, yield and quality have been considerably improved in recent decades, but the genomic basis underlying successful breeding selection remains unclear. Hence, we conducted a comprehensive genomic assessment of rapeseed in the breeding process based on the whole-genome resequencing of 418 diverse rapeseed accessions. We unraveled the genomic basis for the selection of adaptation and agronomic traits. Genome-wide association studies identified 628 associated loci-related causative candidate genes for 56 agronomically important traits, including plant architecture and yield traits. Furthermore, we uncovered nonsynonymous mutations in plausible candidate genes for agronomic traits with significant differences in allele frequency distributions across the improvement process, including the ribosome recycling factor (BnRRF) gene for seed weight. This study provides insights into the genomic basis for improving rapeseed varieties and a valuable genomic resource for genome-assisted rapeseed breeding.
Collapse
|
103
|
Total and Mitochondrial Transcriptomic and Proteomic Insights into Regulation of Bioenergetic Processes for Shoot Fast-Growth Initiation in Moso Bamboo. Cells 2022; 11:cells11071240. [PMID: 35406802 PMCID: PMC8997719 DOI: 10.3390/cells11071240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
As a fast-growing, woody grass plant, Moso bamboo (Phyllostachys edulis) can supply edible shoots, building materials, fibrous raw material, raw materials for crafts and furniture and so on within a relatively short time. Rapid growth of Moso bamboo occurs after the young bamboo shoots are covered with a shell and emerge from the ground. However, the molecular reactions of bioenergetic processes essential for fast growth remain undefined. Herein, total and mitochondrial transcriptomes and proteomes were compared between spring and winter shoots. Numerous key genes and proteins responsible for energy metabolism were significantly upregulated in spring shoots, including those involved in starch and sucrose catabolism, glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle and oxidative phosphorylation. Accordingly, significant decreases in starch and soluble sugar, higher ATP content and higher rates of respiration and glycolysis were identified in spring shoots. Further, the upregulated genes and proteins related to mitochondrial fission significantly increased the number of mitochondria, indirectly promoting intracellular energy metabolism. Moreover, enhanced alternate-oxidase and uncoupled-protein pathways in winter shoots showed that an efficient energy-dissipating system was important for winter shoots to adapt to the low-temperature environment. Heterologous expression of PeAOX1b in Arabidopsis significantly affected seedling growth and enhanced cold-stress tolerance. Overall, this study highlights the power of comparing total and mitochondrial omics and integrating physiochemical data to understand how bamboo initiates fast growth through modulating bioenergetic processes.
Collapse
|
104
|
Li S, Zhang Q, Zhang H, Wang J, Sun J, Yang X, Huang S, Zhang Z. Deletion of a cyclin-dependent protein kinase inhibitor, CsSMR1, leads to dwarf and determinate growth in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:915-927. [PMID: 34841478 PMCID: PMC8942921 DOI: 10.1007/s00122-021-04006-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 05/12/2023]
Abstract
A 7.9 kb deletion which contains a cyclin-dependent protein kinase inhibitor leads to determinate growth and dwarf phenotype in cucumber. Plant architecture is a composite character which are mainly defined by shoot branching, internode elongation and shoot determinacy. Ideal architecture tends to increase the yield of plants, just like the case of "Green Revolution" increased by the application of semi-dwarf cereal crop varieties in 1960s. Cucumber (Cucumis sativus L.) is an important vegetable cultivated worldwide, and suitable architecture varieties were selected for different production systems. In this study, we obtained a novel dwarf mutant with strikingly shortened plant height and determinate growth habit. By bulked segregant analysis and map-based cloning, we delimited the dw2 locus to a 56.4 kb region which contain five genes. Among all the variations between WT and dw2 within the 56.4 kb region, a 7.9 kb deletion which resulted in complete deletion of CsaV3_5G035790 in dw2 was co-segregated with the dwarf phenotype. Haplotype analysis and gene expression analysis suggest that CsaV3_5G035790 encoding a cyclin-dependent protein kinase inhibitor (CsSMR1) be the candidate gene responsible for the dwarf phenotype in dw2. RNA-seq analysis shows that several kinesin-like proteins, cyclins and reported organ size regulators are expressed differentially between WT and dw2, which may account for the reduced organ size in dwarf plants. Additionally, the down-regulation of CsSTM and CsWOX9 in dw2 resulted in premature termination of shoot apical meristem development, which eventually reduces the internode number and plant height. Identification and characterization of the CsSMR1 provide a new insight into cucumber architecture modification to be applied to mechanized production system.
Collapse
Affiliation(s)
- Shuai Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Qiqi Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huimin Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jinjing Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueyong Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Zhonghua Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
105
|
Basnet P, Um T, Roy NS, Cho WS, Park SC, Park KC, Choi IY. Identification and Characterization of Key Genes Responsible for Weedy and Cultivar Growth Types in Soybean. Front Genet 2022; 13:805347. [PMID: 35281824 PMCID: PMC8907156 DOI: 10.3389/fgene.2022.805347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
In cultivated plants, shoot morphology is an important factor that influences crop economic value. However, the effects of gene expression patterns on shoot morphology are not clearly understood. In this study, the molecular mechanism behind shoot morphology (including leaf, stem, and node) was analyzed using RNA sequencing to compare weedy (creeper) and cultivar (stand) growth types obtained in F7 derived from a cross of wild and cultivated soybeans. A total of 12,513 (in leaves), 14,255 (in stems), and 11,850 (in nodes) differentially expressed genes were identified among weedy and cultivar soybeans. Comparative transcriptome and expression analyses revealed 22 phytohormone-responsive genes. We found that GIBBERELLIN 2-OXIDASE 8 (GA2ox), SPINDLY (SPY), FERONIA (FER), AUXIN RESPONSE FACTOR 8 (ARF8), CYTOKININ DEHYDROGENASE-1 (CKX1), and ARABIDOPSIS HISTIDINE KINASE-3 (AHK3), which are crucial phytohormone response genes, were mainly regulated in the shoot of weedy and cultivar types. These results indicate that interactions between phytohormone signaling genes regulate shoot morphology in weedy and cultivar growth type plants. Our study provides insights that are useful for breeding and improving crops to generate high-yield soybean varieties.
Collapse
Affiliation(s)
- Prakash Basnet
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Taeyoung Um
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Neha Samir Roy
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Woo Suk Cho
- Department of Agricultural Biotechnology/National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Soo Chul Park
- Department of Agricultural Biotechnology/National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea
- *Correspondence: Ik-Young Choi,
| |
Collapse
|
106
|
Du Y, Fu X, Chu Y, Wu P, Liu Y, Ma L, Tian H, Zhu B. Biosynthesis and the Roles of Plant Sterols in Development and Stress Responses. Int J Mol Sci 2022; 23:ijms23042332. [PMID: 35216448 PMCID: PMC8875669 DOI: 10.3390/ijms23042332] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/01/2023] Open
Abstract
Plant sterols are important components of the cell membrane and lipid rafts, which play a crucial role in various physiological and biochemical processes during development and stress resistance in plants. In recent years, many studies in higher plants have been reported in the biosynthesis pathway of plant sterols, whereas the knowledge about the regulation and accumulation of sterols is not well understood. In this review, we summarize and discuss the recent findings in the field of plant sterols, including their biosynthesis, regulation, functions, as well as the mechanism involved in abiotic stress responses. These studies provide better knowledge on the synthesis and regulation of sterols, and the review also aimed to provide new insights for the global role of sterols, which is liable to benefit future research on the development and abiotic stress tolerance in plant.
Collapse
Affiliation(s)
- Yinglin Du
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Xizhe Fu
- The College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310012, China;
| | - Yiyang Chu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Peiwen Wu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Ye Liu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Lili Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Huiqin Tian
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
- Correspondence:
| |
Collapse
|
107
|
Lyu J, Guo Y, Du C, Yu H, Guo L, Liu L, Zhao H, Wang X, Hu S. BnERF114.A1, a Rapeseed Gene Encoding APETALA2/ETHYLENE RESPONSE FACTOR, Regulates Plant Architecture through Auxin Accumulation in the Apex in Arabidopsis. Int J Mol Sci 2022; 23:ijms23042210. [PMID: 35216327 PMCID: PMC8877518 DOI: 10.3390/ijms23042210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Plant architecture is crucial for rapeseed breeding. Here, we demonstrate the involvement of BnERF114.A1, a transcription factor for ETHYLENE RESPONSE FACTOR (ERF), in the regulation of plant architecture in Brassica napus. BnERF114.A1 is a member of the ERF family group X-a, encoding a putative 252-amino acid (aa) protein, which harbours the AP2/ERF domain and the conserved CMX-1 motif. BnERF114.A1 is localised to the nucleus and presents transcriptional activity, with the functional region located at 142–252 aa of the C-terminus. GUS staining revealed high BnERF114.A1 expression in leaf primordia, shoot apical meristem, leaf marginal meristem, and reproductive organs. Ectopic BnERF114.A1 expression in Arabidopsis reduced plant height, increased branch and silique number per plant, and improved seed yield per plant. Furthermore, in Arabidopsis, BnERF114.A1 overexpression inhibited indole-3-acetic acid (IAA) efflux, thus promoting auxin accumulation in the apex and arresting apical dominance. Therefore, BnERF114.A1 probably plays an important role in auxin-dependent plant architecture regulation.
Collapse
Affiliation(s)
- Jinyang Lyu
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Yuan Guo
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Chunlei Du
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Haibo Yu
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Lijian Guo
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Li Liu
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Huixian Zhao
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Correspondence: (X.W.); (S.H.)
| | - Shengwu Hu
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
- Correspondence: (X.W.); (S.H.)
| |
Collapse
|
108
|
Zhang J, Xiong H, Guo H, Li Y, Xie X, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Liu L. Identification of the Q Gene Playing a Role in Spike Morphology Variation in Wheat Mutants and Its Regulatory Network. FRONTIERS IN PLANT SCIENCE 2022; 12:807731. [PMID: 35087560 PMCID: PMC8787668 DOI: 10.3389/fpls.2021.807731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/13/2021] [Indexed: 05/27/2023]
Abstract
The wheat AP2 family gene Q controls domestication traits, including spike morphology and threshability, which are critical for the widespread cultivation and yield improvement of wheat. Although many studies have investigated the molecular mechanisms of the Q gene, its direct target genes, especially those controlling spike morphology, are not clear, and its regulatory pathways are not well established. In this study, we conducted gene mapping of a wheat speltoid spike mutant and found that a new allele of the Q gene with protein truncation played a role in spike morphology variation in the mutant. Dynamic expression levels of the Q gene throughout the spike development process suggested that the transcript abundances of the mutant were decreased at the W6 and W7 scales compared to those of the WT. We identified several mutation sites on the Q gene and showed that mutations in different domains resulted in distinct phenotypes. In addition, we found that the Q gene produced three transcripts via alternative splicing and that they exhibited differential expression patterns in nodes, internodes, flag leaves, and spikes. Finally, we identified several target genes directly downstream of Q, including TaGRF1-2D and TaMGD-6B, and proposed a possible regulatory network. This study uncovered the target genes of Q, and the results can help to clarify the mechanism of wheat spike morphology and thereby improve wheat grain yield.
Collapse
|
109
|
Wang W, Gao H, Liang Y, Li J, Wang Y. Molecular basis underlying rice tiller angle: Current progress and future perspectives. MOLECULAR PLANT 2022; 15:125-137. [PMID: 34896639 DOI: 10.1016/j.molp.2021.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 05/20/2023]
Abstract
Crop plant architecture is an important agronomic trait that contributes greatly to crop yield. Tiller angle is one of the most critical components that determine crop plant architecture, which in turn substantially affects grain yield mainly owing to its large influence on plant density. Gravity is a fundamental physical force that acts on all organisms on earth. Plant organs sense gravity to control their growth orientation, including tiller angle in rice (Oryza sativa). This review summarizes recent research advances made using rice tiller angle as a research model, providing insights into domestication of rice tiller angle, genetic regulation of rice tiller angle, and shoot gravitropism. Finally, we propose that current discoveries in rice can shed light on shoot gravitropism and improvement of plant tiller/branch angle in other species, thereby contributing to agricultural production in the future.
Collapse
Affiliation(s)
- Wenguang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Hengbin Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Liang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jiayang Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
110
|
Yu Q, Liu S, Yu L, Xiao Y, Zhang S, Wang X, Xu Y, Yu H, Li Y, Yang J, Tang J, Duan HC, Wei LH, Zhang H, Wei J, Tang Q, Wang C, Zhang W, Wang Y, Song P, Lu Q, Zhang W, Dong S, Song B, He C, Jia G. RNA demethylation increases the yield and biomass of rice and potato plants in field trials. Nat Biotechnol 2021; 39:1581-1588. [PMID: 34294912 DOI: 10.1038/s41587-021-00982-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
RNA N6-methyladenosine (m6A) modifications are essential in plants. Here, we show that transgenic expression of the human RNA demethylase FTO in rice caused a more than threefold increase in grain yield under greenhouse conditions. In field trials, transgenic expression of FTO in rice and potato caused ~50% increases in yield and biomass. We demonstrate that the presence of FTO stimulates root meristem cell proliferation and tiller bud formation and promotes photosynthetic efficiency and drought tolerance but has no effect on mature cell size, shoot meristem cell proliferation, root diameter, plant height or ploidy. FTO mediates substantial m6A demethylation (around 7% of demethylation in poly(A) RNA and around 35% decrease of m6A in non-ribosomal nuclear RNA) in plant RNA, inducing chromatin openness and transcriptional activation. Therefore, modulation of plant RNA m6A methylation is a promising strategy to dramatically improve plant growth and crop yield.
Collapse
Affiliation(s)
- Qiong Yu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shun Liu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Lu Yu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yu Xiao
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shasha Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xueping Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yingying Xu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yulong Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Junbo Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jun Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Hong-Chao Duan
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Lian-Huan Wei
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Haiyan Zhang
- College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jiangbo Wei
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Qian Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chunling Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wutong Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ye Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Peizhe Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Qiang Lu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wei Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shunqing Dong
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China.
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, Chicago, IL, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- National Engineering Research Center of Pesticide, Nankai University, Tianjin, China.
| |
Collapse
|
111
|
Ding C, Lin X, Zuo Y, Yu Z, Baerson SR, Pan Z, Zeng R, Song Y. Transcription factor OsbZIP49 controls tiller angle and plant architecture through the induction of indole-3-acetic acid-amido synthetases in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1346-1364. [PMID: 34582078 DOI: 10.1111/tpj.15515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Tiller angle is an important determinant of plant architecture in rice (Oryza sativa L.). Auxins play a critical role in determining plant architecture; however, the underlying metabolic and signaling mechanisms are still largely unknown. In this study, we have identified a member of the bZIP family of TGA class transcription factors, OsbZIP49, that participates in the regulation of plant architecture and is specifically expressed in gravity-sensing tissues, including the shoot base, nodes and lamina joints. Transgenic rice plants overexpressing OsbZIP49 displayed a tiller-spreading phenotype with reduced plant height and internode lengths. In contrast, CRISPR/Cas9-mediated knockout of OsbZIP49 resulted in a compact architecture. Follow-up studies indicated that the effects of OsbZIP49 on tiller angles are mediated through changes in shoot gravitropic responses. Additionally, we provide evidence that OsbZIP49 activates the expression of indole-3-acetic acid-amido synthetases OsGH3-2 and OsGH3-13 by directly binding to TGACG motifs located within the promoters of both genes. Increased GH3-catalyzed conjugation of indole-3-acetic acid (IAA) in rice transformants overexpressing OsbZIP49 resulted in the increased accumulation of IAA-Asp and IAA-Glu, and a reduction in local free auxin, tryptamine and IAA-Glc levels. Exogenous IAA or naphthylacetic acid (NAA) partially restored shoot gravitropic responses in OsbZIP49-overexpressing plants. Knockout of OsbZIP49 led to reduced expression of both OsGH3-2 and OsGH3-13 within the shoot base, and increased accumulation of IAA and increased OsIAA20 expression levels were observed in transformants following gravistimulation. Taken together, the present results reveal the role transcription factor OsbZIP49 plays in determining plant architecture, primarily due to its influence on local auxin homeostasis.
Collapse
Affiliation(s)
- Chaohui Ding
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xianhui Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Zuo
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhilin Yu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Scott R Baerson
- United States Department of Agriculture-Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi, 38677, USA
| | - Zhiqiang Pan
- United States Department of Agriculture-Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi, 38677, USA
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
112
|
Targeted CRISPR/Cas9-Based Knock-Out of the Rice Orthologs TILLER ANGLE CONTROL 1 (TAC1) in Poplar Induces Erect Leaf Habit and Shoot Growth. FORESTS 2021. [DOI: 10.3390/f12121615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pyramidal-, erect- or upright-growing plant forms are characterized by narrow branch angles of shoots and leaves. The putative advantage of upright-leaf and shoot habit could be a more efficient penetration of light into lower canopy layers. Pyramidal genotypes have already been reported for various tree genotypes including peach. The paralogous rice ortholog TILLER ANGLE CONTROL 1 (TAC1) has been proposed to be the responsible gene for upright growth. However, it has not really been demonstrated for any of the pyramidal tree genotypes that a knock-out mutation of the TAC1 gene is causing pyramidal plant growth. By in silico analyses, we have identified a putative rice TAC1 ortholog (Potri.014G102600, “TAC-14”) and its paralog (Potri.002G175300, “TAC-2”) in the genome of P. trichocarpa. Two putative PcTAC1 orthologs in the P. × canescens clone INRA 717-1B4 were successfully knocked-out by applying a transgenic CRISPR/Cas9-approach. The mutants were molecularly analyzed and phenotyped over a period of three years in a glasshouse. Our results indicate that the homozygous knock-out of “TAC-14” is sufficient to induce pyramidal plant growth in P. × canescens. If up to twice as many pyramidal individuals were planted on short rotation coppices (SRCs), this could lead to higher wood yield, without any breeding, simply by increasing the number of trees on a default field size.
Collapse
|
113
|
Lv J, Dai CB, Wang WF, Sun YH. Genome-wide identification of the tobacco GDSL family and apical meristem-specific expression conferred by the GDSL promoter. BMC PLANT BIOLOGY 2021; 21:501. [PMID: 34717531 PMCID: PMC8556911 DOI: 10.1186/s12870-021-03278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND GDSL esterases/lipases are a large protein subfamily defined by the distinct GDSL motif, and play important roles in plant development and stress responses. However, few studies have reported on the role of GDSLs in the growth and development of axillary buds. This work aims to identify the GDSL family members in tobacco and explore whether the NtGDSL gene contributes to development of the axillary bud in tobacco. RESULTS One hundred fifty-nine GDSL esterase/lipase genes from cultivated tobacco (Nicotiana tabacum) were identified, and the dynamic changes in the expression levels of 93 of these genes in response to topping, as assessed using transcriptome data of topping-induced axillary shoots, were analysed. In total, 13 GDSL esterase/lipase genes responded with changes in expression level. To identify genes and promoters that drive the tissue-specific expression in tobacco apical and axillary buds, the expression patterns of these 13 genes were verified using qRT-PCR. GUS activity and a lethal gene expression pattern driven by the NtGDSL127 promoter in transgenic tobacco demonstrated that NtGDSL127 is specifically expressed in apical buds, axillary buds, and flowers. Three separate deletions in the NtGDSL127 promoter demonstrated that a minimum upstream segment of 235 bp from the translation start site can drive the tissue-specific expression in the apical meristem. Additionally, NtGDSL127 responded to phytohormones, providing strategies for improving tobacco breeding and growth. CONCLUSION We propose that in tobacco, the NtGDSL127 promoter directs expression specifically in the apical meristem and that expression is closely correlated with axillary bud development.
Collapse
Affiliation(s)
- Jing Lv
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chang-Bo Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| | - Wei-Feng Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Yu-He Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| |
Collapse
|
114
|
Hindhaugh R, Bosch M, Donnison IS. Mechanical stimulation in wheat triggers age- and dose-dependent alterations in growth, development and grain characteristics. ANNALS OF BOTANY 2021; 128:589-603. [PMID: 34091667 PMCID: PMC8422892 DOI: 10.1093/aob/mcab070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Wheat crops are exposed to a range of mechanical stimulations in their natural environment, yet we know very little about their response to such conditions. The aim of this study was to better understand the effect of mechanical stimulation on wheat growth and development, stem mechanical properties and grain measures. We focused on the following questions: (1) Does plant age affect the response to mechanical stimulation? (2) Is there a minimum threshold for the perception of mechanical stimuli? (3) Is the effect of manual brushing different to natural wind stimulation? METHODS For age- and dose-response experiments, wheat plants were grown under controlled glasshouse conditions with brushing treatments applied using a purpose-built rig. The results of the controlled experiments are compared with those from an outside experiment where wheat plants were exposed to natural wind, with or without additional brushing. Detailed phenotypic measurements were conducted and treatment effects on grain characteristics were determined using micro-computed tomography imaging. KEY RESULTS Two-week-old wheat plants were particularly sensitive to mechanical stimulation by controlled brushing treatments. Amongst others, plants exhibited a large reduction in height and grain yield, and an increase in tillers, above-ground biomass and stiffness of stem segments. Plants responded significantly to doses as small as one daily brushstroke. Outdoor experiments by and large confirmed results from controlled environment experiments. CONCLUSIONS The morphological and developmental response to mechanical brushing treatment, in relation to vegetative above-ground biomass and grain yield, is dependent on plant age as well as the dose of the treatments. This study shows that mechanical stimulation of wheat impacts on a multitude of agriculturally relevant traits and provides a much needed advancement of our understanding of wheat thigmomorphogenesis and the potential applications of mechanical conditioning to control relevant traits.
Collapse
Affiliation(s)
- Rebecca Hindhaugh
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
- For correspondence. E-mail or
| | - Iain S Donnison
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
- For correspondence. E-mail or
| |
Collapse
|
115
|
Zhan J, Chu Y, Wang Y, Diao Y, Zhao Y, Liu L, Wei X, Meng Y, Li F, Ge X. The miR164-GhCUC2-GhBRC1 module regulates plant architecture through abscisic acid in cotton. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1839-1851. [PMID: 33960609 PMCID: PMC8428825 DOI: 10.1111/pbi.13599] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/11/2021] [Accepted: 03/28/2021] [Indexed: 05/06/2023]
Abstract
Branching determines cotton architecture and production, but the underlying regulatory mechanisms remain unclear. Here, we report that the miR164-GhCUC2 (CUP-SHAPED COTYLEDON2) module regulates lateral shoot development in cotton and Arabidopsis. We generated OE-GhCUC2m (overexpression GhCUC2m) and STTM164 (short tandem target mimic RNA of miR164) lines in cotton and heterologous expression lines for gh-miR164, GhCUC2 and GhCUC2m in Arabidopsis to study the mechanisms controlling lateral branching. GhCUC2m overexpression resulted in a short-branch phenotype similar to STTM164. In addition, heterologous expression of GhCUC2m led to decreased number and length of branches compared with wild type, opposite to the effects of the OE-gh-pre164 line in Arabidopsis. GhCUC2 interacted with GhBRC1 and exhibited similar negative regulation of branching. Overexpression of GhBRC1 in the brc1-2 mutant partially rescued the mutant phenotype and decreased branch number. GhBRC1 directly bound to the NCED1 promoter and activated its transcription, leading to local abscisic acid (ABA) accumulation and response. Mutation of the NCED1 promoter disrupted activation by GhBRC1. This finding demonstrates a direct relationship between BRC1 and ABA signalling and places ABA downstream of BRC1 in the control of branching development. The miR164-GhCUC2-GhBRC1-GhNCED1 module provides a clear regulatory axis for ABA signalling to control plant architecture.
Collapse
Affiliation(s)
- Jingjing Zhan
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Yu Chu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Ye Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Yangyang Diao
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Yanyan Zhao
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Lisen Liu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Xi Wei
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Yuan Meng
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Fuguang Li
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Xiaoyang Ge
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| |
Collapse
|
116
|
A Gain-of-Function Mutant of IAA7 Inhibits Stem Elongation by Transcriptional Repression of EXPA5 Genes in Brassica napus. Int J Mol Sci 2021; 22:ijms22169018. [PMID: 34445724 PMCID: PMC8396470 DOI: 10.3390/ijms22169018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 01/09/2023] Open
Abstract
Plant height is one of the most important agronomic traits of rapeseeds. In this study, we characterized a dwarf Brassica napus mutant, named ndf-2, obtained from fast neutrons and DES mutagenesis. Based on BSA-Seq and genetic properties, we identified causal mutations with a time-saving approach. The ndf-2 mutation was identified on chromosome A03 and can result in an amino acid substitution in the conserved degron motif (GWPPV to EWPPV) of the Auxin/indole-3-acetic acid protein 7 (BnaA03.IAA7) encoded by the causative gene. Aux/IAA protein is one of the core components of the auxin signaling pathway, which regulates many growth and development processes. However, the molecular mechanism of auxin signal regulating plant height is still not well understood. In the following work, we identified that BnaARF6 and BnaARF8 as interactors of BnaA03.IAA7 and BnaEXPA5 as a target of BnaARF6 and BnaARF8. The three genes BnaA03.IAA7, BnaARF6/8 and BnaEXPA5 were highly expressed in stem, suggesting that these genes were involved in stem development. The overexpression of BnaEXPA5 results in larger rosettes leaves and longer inflorescence stems in Arabidopsis thaliana. Our results indicate that BnaA03.IAA7- and BnaARF6/8-dependent auxin signal control stem elongation and plant height by regulating the transcription of BnaEXPA5 gene, which is one of the targets of this signal.
Collapse
|
117
|
Li W, Ma Q, Yin P, Wen J, Pei Y, Niu L, Lin H. The GA 20-Oxidase Encoding Gene MSD1 Controls the Main Stem Elongation in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2021; 12:709625. [PMID: 34421956 PMCID: PMC8371406 DOI: 10.3389/fpls.2021.709625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Plant height is an important agronomic trait that is closely related to biomass yield and crop production. Despite legumes comprise one of the largest monophyletic families that are second only to grasses in terms of economic and nutritional values, due to an ancient genome duplication event, most legume plants have complex genomes, thus the molecular mechanisms that determine plant height are less known in legumes. Here, we report the identification and characterization of MAIN STEM DWARF1 (MSD1), which is required for the plant height in the model legume Medicago truncatula. Loss of function of MSD1 leads to severely reduced main stem height but normal lateral branch elongation in M. truncatula. Histological analysis revealed that the msd1-1 main stem has shorter internodes with reduced cell size and number compared with the wild type, indicating that MSD1 affects cell elongation and cell proliferation. MSD1 encodes a putative GA 20-oxidase that is expressed at significantly higher levels in the main shoot apex than in the lateral shoot apices, suggesting that MSD1 expression is associated with its effect on the main stem elongation. UPLC-MS/MS analysis showed that GA9 and GA4, two identified products of the GA 20-oxidase, were severely reduced in msd1-1, and the dwarf phenotype of msd1-1 could be rescued by supplementation with gibberellic acid GA3, confirming that MSD1 functions as a biologically active GA 20-oxidase. Moreover, we found that disruption of either MtGA20ox7 or MtGA20ox8, homologs of MSD1, has little effects on the elongation of the main stem, while the msd1-1 mtga20ox7-1 mtga20ox8 triple mutants exhibits a severe short main shoot and lateral branches, as well as reduced leaf size, suggesting that MSD1 and its homologs MtGA20ox7 and MtGA20ox8, redundantly regulate M. truncatula shoot elongation and leaf development. Taken together, our findings demonstrate the molecular mechanism of MSD1-mediated regulation of main stem elongation in M. truncatula and provide insights into understanding the functional diversity of GA 20-oxidases in optimizing plant architecture in legumes.
Collapse
Affiliation(s)
- Wanying Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingxia Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Pengcheng Yin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, United States
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Yanxi Pei
- College of Life Science, Shanxi University, Taiyuan, China
| | - Lifang Niu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
118
|
Seale M. Shoot dominance relationships lead to robust reproductive outputs. PLANT PHYSIOLOGY 2021; 186:1750-1751. [PMID: 34618116 PMCID: PMC8331125 DOI: 10.1093/plphys/kiab234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Madeleine Seale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
119
|
Huang L, Wang W, Zhang N, Cai Y, Liang Y, Meng X, Yuan Y, Li J, Wu D, Wang Y. LAZY2 controls rice tiller angle through regulating starch biosynthesis in gravity-sensing cells. THE NEW PHYTOLOGIST 2021; 231:1073-1087. [PMID: 34042184 DOI: 10.1111/nph.17426] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Rice (Oryza sativa) tiller angle is a key component for achieving ideal plant architecture and higher grain yield. However, the molecular mechanism underlying rice tiller angle remains elusive. We characterized a novel rice tiller angle mutant lazy2 (la2) and isolated the causative gene LA2 through map-based cloning. Biochemical, molecular and genetic studies were conducted to elucidate the LA2-involved tiller angle regulatory mechanism. The la2 mutant shows large tiller angle with impaired shoot gravitropism and defective asymmetric distribution of auxin. We found that starch granules in amyloplasts are completely lost in the gravity-sensing leaf sheath base cells of la2, whereas the seed development is not affected. LA2 encodes a novel chloroplastic protein that can interact with the starch biosynthetic enzyme Oryza sativa plastidic phosphoglucomutase (OspPGM) to regulate starch biosynthesis in rice shoot gravity-sensing cells. Genetic analysis showed that LA2 regulates shoot gravitropism and tiller angle by acting upstream of LA1 to mediate lateral auxin transport. Our studies revealed that LA2 acts as a novel regulator of rice tiller angle by specifically regulating starch biosynthesis in gravity-sensing cells, and established the framework of the starch-statolith-dependent rice tiller angle regulatory pathway, providing new insights into the rice tiller angle regulatory network.
Collapse
Affiliation(s)
- Linzhou Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenguang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ning Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Department of Applied Biosciences, Zhejiang University, Hangzhou, 310029, China
| | - Yueyue Cai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangbing Meng
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yundong Yuan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiayang Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear-Agricultural Sciences, Department of Applied Biosciences, Zhejiang University, Hangzhou, 310029, China
| | - Yonghong Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
120
|
VPB1 Encoding BELL-like Homeodomain Protein Is Involved in Rice Panicle Architecture. Int J Mol Sci 2021; 22:ijms22157909. [PMID: 34360677 PMCID: PMC8348756 DOI: 10.3390/ijms22157909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022] Open
Abstract
Inflorescence architecture in rice (Oryza sativa) is mainly determined by spikelets and the branch arrangement. Primary branches initiate from inflorescence meristem in a spiral phyllotaxic manner, and further develop into the panicle branches. The branching patterns contribute largely to rice production. In this study, we characterized a rice verticillate primary branch 1(vpb1) mutant, which exhibited a clustered primary branches phenotype. Gene isolation revealed that VPB1 was a allele of RI, that it encoded a BELL-like homeodomain (BLH) protein. VPB1 gene preferentially expressed in the inflorescence and branch meristems. The arrangement of primary branch meristems was disturbed in the vpb1 mutant. Transcriptome analysis further revealed that VPB1 affected the expression of some genes involved in inflorescence meristem identity and hormone signaling pathways. In addition, the differentially expressed gene (DEG) promoter analysis showed that OsBOPs involved in boundary organ initiation were potential target genes of VPB1 protein. Electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter system further verified that VPB1 protein bound to the promoter of OsBOP1 gene. Overall, our findings demonstrate that VPB1 controls inflorescence architecture by regulating the expression of genes involved in meristem maintenance and hormone pathways and by interacting with OsBOP genes.
Collapse
|
121
|
Changes in peanut canopy structure and photosynthetic characteristics induced by an arbuscular mycorrhizal fungus in a nutrient-poor environment. Sci Rep 2021; 11:14832. [PMID: 34290277 PMCID: PMC8295368 DOI: 10.1038/s41598-021-94092-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/15/2021] [Indexed: 11/25/2022] Open
Abstract
A well-developed canopy structure can increase the biomass accumulation and yield of crops. Peanut seeds were sown in a soil inoculated with an arbuscular mycorrhizal fungus (AMF) and uninoculated controls were also sown. Canopy structure was monitored using a 3-D laser scanner and photosynthetic characteristics with an LI-6400 XT photosynthesis system after 30, 45 and 70 days of growth to explore the effects of the AMF on growth, canopy structure and photosynthetic characteristics and yield. The AMF colonized the roots and AMF inoculation significantly increased the height, canopy width and total leaf area of the host plants and improved canopy structure. AMF reduced the tiller angle of the upper and middle canopy layers, increased that of the lower layer, reduced the leaf inclination of the upper, middle and lower layers, and increased the average leaf area and leaf area index after 45 days of growth, producing a well-developed and hierarchical canopy. Moreover, AMF inoculation increased the net photosynthetic rate in the upper, middle and lower layers. Plant height, canopy width, and total leaf area were positively correlated with net photosynthetic rate, and the inclination angle and tiller angle of the upper leaves were negatively correlated with net photosynthetic rate. Overall, the results demonstrate the effects of AMF inoculation on plant canopy structure and net photosynthetic rate.
Collapse
|
122
|
Chen K, Łyskowski A, Jaremko Ł, Jaremko M. Genetic and Molecular Factors Determining Grain Weight in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:605799. [PMID: 34322138 PMCID: PMC8313227 DOI: 10.3389/fpls.2021.605799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 06/22/2021] [Indexed: 05/06/2023]
Abstract
Grain weight is one of the major factors determining single plant yield production of rice and other cereal crops. Research has begun to reveal the regulatory mechanisms underlying grain weight as well as grain size, highlighting the importance of this research for plant molecular biology. The developmental trait of grain weight is affected by multiple molecular and genetic aspects that lead to dynamic changes in cell division, expansion and differentiation. Additionally, several important biological pathways contribute to grain weight, such as ubiquitination, phytohormones, G-proteins, photosynthesis, epigenetic modifications and microRNAs. Our review integrates early and more recent findings, and provides future perspectives for how a more complete understanding of grain weight can optimize strategies for improving yield production. It is surprising that the acquired wealth of knowledge has not revealed more insights into the underlying molecular mechanisms. To accelerating molecular breeding of rice and other cereals is becoming an emergent and critical task for agronomists. Lastly, we highlighted the importance of leveraging gene editing technologies as well as structural studies for future rice breeding applications.
Collapse
Affiliation(s)
- Ke Chen
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Andrzej Łyskowski
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Faculty of Chemistry, Rzeszow University of Technology, Rzeszow, Poland
| | - Łukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
123
|
Liu X, Chen J, Zhang X. Genetic regulation of shoot architecture in cucumber. HORTICULTURE RESEARCH 2021; 8:143. [PMID: 34193859 PMCID: PMC8245548 DOI: 10.1038/s41438-021-00577-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 05/08/2023]
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable crop species with great economic value. Shoot architecture determines the visual appearance of plants and has a strong impact on crop management and yield. Unlike most model plant species, cucumber undergoes vegetative growth and reproductive growth simultaneously, in which leaves are produced from the shoot apical meristem and flowers are generated from leaf axils, during the majority of its life, a feature representative of the Cucurbitaceae family. Despite substantial advances achieved in understanding the regulation of plant form in Arabidopsis thaliana, rice, and maize, our understanding of the mechanisms controlling shoot architecture in Cucurbitaceae crop species is still limited. In this review, we focus on recent progress on elucidating the genetic regulatory pathways underlying the determinant/indeterminant growth habit, leaf shape, branch outgrowth, tendril identity, and vine length determination in cucumber. We also discuss the potential of applying biotechnology tools and resources for the generation of ideal plant types with desired architectural features to improve cucumber productivity and cultivation efficiency.
Collapse
Affiliation(s)
- Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiacai Chen
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
124
|
Sreenivasulu N, Pasion E, Kohli A. Idealizing inflorescence architecture to enhance rice yield potential for feeding nine billion people in 2050. MOLECULAR PLANT 2021; 14:861-863. [PMID: 33962061 DOI: 10.1016/j.molp.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Nese Sreenivasulu
- International Rice Research Institute (IRRI), Los Banos 4030, Philippines.
| | - Erstelle Pasion
- International Rice Research Institute (IRRI), Los Banos 4030, Philippines
| | - Ajay Kohli
- International Rice Research Institute (IRRI), Los Banos 4030, Philippines
| |
Collapse
|
125
|
Kong D, Pan X, Jing Y, Zhao Y, Duan Y, Yang J, Wang B, Liu Y, Shen R, Cao Y, Wu H, Wei H, Wang H. ZmSPL10/14/26 are required for epidermal hair cell fate specification on maize leaf. THE NEW PHYTOLOGIST 2021; 230:1533-1549. [PMID: 33626179 DOI: 10.1111/nph.17293] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/12/2021] [Indexed: 05/26/2023]
Abstract
The epidermal hair and stomata are two types of specialized structures on the surface of plant leaves. On mature maize leaves, stomatal complexes and three types of hairs are distributed in a stereotyped pattern on the adaxial epidermis. However, the spatiotemporal relationship between epidermal hair and stomata development and the regulatory mechanisms governing their formation in maize remain largely unknown. Here, we report that three homologous ZmSPL transcription factors, ZmSPL10, ZmSPL14 and ZmSPL26, act in concert to promote epidermal hair fate on maize leaf. Cytological analyses revealed that Zmspl10/14/26 triple mutants are completely glabrous, but possess ectopic stomatal files. Strikingly, the precursor cells for prickle and bicellular hairs are transdifferentiated into ectopic stomatal complexes in the Zmspl10/14/26 mutants. Molecular analyses demonstrated that ZmSPL10/14/26 bind directly to the promoter of a WUSCHEL-related homeobox gene, ZmWOX3A, and upregulate its expression in the hair precursor cells. Moreover, several auxin-related genes are downregulated in the Zmspl10/14/26 triple mutants. Our results suggest that ZmSPL10/14/26 play a key role in promoting epidermal hair fate on maize leaves, possibly through regulating ZmWOX3A and auxin-related gene expression, and that the fates of epidermal hairs and stomata are switchable.
Collapse
Affiliation(s)
- Dexin Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Xuan Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Yifeng Jing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Yongping Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yaping Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Juan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Rongxin Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Yingying Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hongbin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
126
|
Ren Z, Wang X, Tao Q, Guo Q, Zhou Y, Yi F, Huang G, Li Y, Zhang M, Li Z, Duan L. Transcriptome dynamic landscape underlying the improvement of maize lodging resistance under coronatine treatment. BMC PLANT BIOLOGY 2021; 21:202. [PMID: 33906598 PMCID: PMC8077928 DOI: 10.1186/s12870-021-02962-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/07/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Lodging is one of the important factors causing maize yield. Plant height is an important factor in determining plant architecture in maize (Zea mays L.), which is closely related to lodging resistance under high planting density. Coronatine (COR), which is a phytotoxin and produced by the pathogen Pseudomonas syringae, is a functional and structural analogue of jasmonic acid (JA). RESULTS In this study, we found COR, as a new plant growth regulator, could effectively reduce plant height and ear height of both hybrids (ZD958 and XY335) and inbred (B73) maize by inhibiting internode growth during elongation, thus improve maize lodging resistance. To study gene expression changes in internode after COR treatment, we collected spatio-temporal transcriptome of inbred B73 internode under normal condition and COR treatment, including the three different regions of internode (fixed, meristem and elongation regions) at three different developmental stages. The gene expression levels of the three regions at normal condition were described and then compared with that upon COR treatment. In total, 8605 COR-responsive genes (COR-RGs) were found, consist of 802 genes specifically expressed in internode. For these COR-RGs, 614, 870, 2123 of which showed expression changes in only fixed, meristem and elongation region, respectively. Both the number and function were significantly changed for COR-RGs identified in different regions, indicating genes with different functions were regulated at the three regions. Besides, we found more than 80% genes of gibberellin and jasmonic acid were changed under COR treatment. CONCLUSIONS These data provide a gene expression profiling in different regions of internode development and molecular mechanism of COR affecting internode elongation. A putative schematic of the internode response to COR treatment is proposed which shows the basic process of COR affecting internode elongation. This research provides a useful resource for studying maize internode development and improves our understanding of the COR regulation mechanism based on plant height.
Collapse
Affiliation(s)
- Zhaobin Ren
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Xing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Qun Tao
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Qing Guo
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Yuyi Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Fei Yi
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
| | - Guanmin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Yanxia Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education &College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
- College of Plant Science and Technology, Beijing University of Agriculture, No.7 Beinong Road, Changping, Beijing, 102206, China.
| |
Collapse
|
127
|
Zhang X, Man Y, Zhuang X, Shen J, Zhang Y, Cui Y, Yu M, Xing J, Wang G, Lian N, Hu Z, Ma L, Shen W, Yang S, Xu H, Bian J, Jing Y, Li X, Li R, Mao T, Jiao Y, Sodmergen, Ren H, Lin J. Plant multiscale networks: charting plant connectivity by multi-level analysis and imaging techniques. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1392-1422. [PMID: 33974222 DOI: 10.1007/s11427-020-1910-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022]
Abstract
In multicellular and even single-celled organisms, individual components are interconnected at multiscale levels to produce enormously complex biological networks that help these systems maintain homeostasis for development and environmental adaptation. Systems biology studies initially adopted network analysis to explore how relationships between individual components give rise to complex biological processes. Network analysis has been applied to dissect the complex connectivity of mammalian brains across different scales in time and space in The Human Brain Project. In plant science, network analysis has similarly been applied to study the connectivity of plant components at the molecular, subcellular, cellular, organic, and organism levels. Analysis of these multiscale networks contributes to our understanding of how genotype determines phenotype. In this review, we summarized the theoretical framework of plant multiscale networks and introduced studies investigating plant networks by various experimental and computational modalities. We next discussed the currently available analytic methodologies and multi-level imaging techniques used to map multiscale networks in plants. Finally, we highlighted some of the technical challenges and key questions remaining to be addressed in this emerging field.
Collapse
Affiliation(s)
- Xi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yi Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jingjing Xing
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 457004, China
| | - Guangchao Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Na Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Zijian Hu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Lingyu Ma
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Weiwei Shen
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Shunyao Yang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiahui Bian
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanping Jing
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, 100101, China
| | - Sodmergen
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China. .,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
128
|
Abstract
Since 1893, when the word "photosynthesis" was first coined by Charles Reid Barnes and Conway MacMillan, our understanding of the elements and regulation of this complex process is far from being entirely understood. We aim to review the most relevant advances in photosynthesis research from the last few years and to provide a perspective on the forthcoming research in this field. Recent discoveries related to light sensing, harvesting, and dissipation; kinetics of CO2 fixation; components and regulators of CO2 diffusion through stomata and mesophyll; and genetic engineering for improving photosynthetic and production capacities of crops are addressed.
Collapse
Affiliation(s)
- Alicia V Perera-Castro
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
| | - Jaume Flexas
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
| |
Collapse
|
129
|
Zhu M, Hu Y, Tong A, Yan B, Lv Y, Wang S, Ma W, Cui Z, Wang X. LAZY1 Controls Tiller Angle and Shoot Gravitropism by Regulating the Expression of Auxin Transporters and Signaling Factors in Rice. PLANT & CELL PHYSIOLOGY 2021; 61:2111-2125. [PMID: 33067639 DOI: 10.1093/pcp/pcaa131] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/02/2020] [Indexed: 05/17/2023]
Abstract
Tiller angle is a key factor determining rice plant architecture, planting density, light interception, photosynthetic efficiency, disease resistance and grain yield. However, the mechanisms underlying tiller angle control are far from clear. In this study, we identified a mutant, termed bta1-1, with an enlarged tiller angle throughout its life cycle. A detailed analysis reveals that BTA1 has multiple functions because tiller angle, shoot gravitropism and tolerance to drought stress are changed in bta1-1 plants. Moreover, BTA1 is a positive regulator of shoot gravitropism in rice. Shoot responses to gravistimulation are disrupted in bta1-1 under both light and dark conditions. Gene cloning reveals that bta1-1 is a novel mutant allele of LA1 renamed la1-SN. LA1 is able to rescue the tiller angle and shoot gravitropism defects observed in la1-SN. The nuclear localization signal of LA1 is disrupted by la1-SN, causing changes in its subcellular localization. LA1 is required to regulate the expression of auxin transporters and signaling factors that control shoot gravitropism and tiller angle. High-throughput mRNA sequencing is performed to elucidate the molecular and cellular functions of LA1. The results show that LA1 may be involved in the nucleosome and chromatin assembly, and protein-DNA interactions to control gene expression, shoot gravitropism and tiller angle. Our results provide new insight into the mechanisms whereby LA1 controls shoot gravitropism and tiller angle in rice.
Collapse
Affiliation(s)
- Mo Zhu
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, China
| | - Yanjuan Hu
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, China
| | - Aizi Tong
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, China
| | - Bowen Yan
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, China
| | - Yanpeng Lv
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, China
| | - Shiyu Wang
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, China
| | - Wenhong Ma
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, China
- Department of Foreign Language, Shenyang Agricultural University
| | - Zhibo Cui
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, China
| | - Xiaoxue Wang
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, No.120 Dongling Road, Shenhe District, Shenyang 110866, China
| |
Collapse
|
130
|
Mu S, Yamaji N, Sasaki A, Luo L, Du B, Che J, Shi H, Zhao H, Huang S, Deng F, Shen Z, Guerinot ML, Zheng L, Ma JF. A transporter for delivering zinc to the developing tiller bud and panicle in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:786-799. [PMID: 33169459 DOI: 10.1111/tpj.15073] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 05/07/2023]
Abstract
Tiller number is one of the most important agronomic traits that determine rice (Oryza sativa) yield. Active growth of tiller bud (TB) requires high amount of mineral nutrients; however, the mechanism underlying the distribution of mineral nutrients to TB with low transpiration is unknown. Here, we found that the distribution of Zn to TB is mediated by OsZIP4, one of the ZIP (ZRT, IRT-like protein) family members. The expression of OsZIP4 was highly detected in TB and nodes, and was induced by Zn deficiency. Immunostaining analysis revealed that OsZIP4 was mainly expressed in phloem of diffuse vascular bundles in the nodes and the axillary meristem. The mutation of OsZIP4 did not affect the total Zn uptake, but altered Zn distribution; less Zn was delivered to TB and new leaf, but more Zn was retained in the basal stems at the vegetative growth stage. Bioimaging analysis showed that the mutant aberrantly accumulated Zn in enlarged and transit vascular bundles of the basal node, whereas in wild-type high accumulation of Zn was observed in the meristem part. At the reproductive stage, mutation of OsZIP4 resulted in delayed panicle development, which is associated with decreased Zn distribution to the panicles. Collectively, OsZIP4 is involved in transporting Zn to the phloem of diffuse vascular bundles in the nodes for subsequent distribution to TBs and other developing tissues. It also plays a role in transporting Zn to meristem cells in the TBs.
Collapse
Affiliation(s)
- Shuai Mu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Akimasa Sasaki
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Le Luo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Binbin Du
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Che
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Huichao Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haoqiang Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Fenglin Deng
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
131
|
Wang P, Sun X, Zhang K, Fang Y, Wang J, Yang C, Li WX, Ning H. Mapping QTL/QTN and mining candidate genes for plant height and its response to planting densities in soybean [ Glycine max (L.) Merr.] through a FW-RIL population. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:12. [PMID: 37309477 PMCID: PMC10236039 DOI: 10.1007/s11032-021-01209-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/26/2021] [Indexed: 06/13/2023]
Abstract
Plant height (PH) determines the morphology and seed yield of soybean, so it is an important breeding target, which is controlled by multiple genes and affected by plant density. In this research, it was used about a four-way recombinant inbred lines (FW-RIL) with 144 families constructed by double cross (Kenfeng 14 × Kenfeng 15) × (Heinong 48 × Kenfeng 19) as experimental materials, with the purpose to map QTL/QTN associated with PH under densities of 2.2×105 plant/ha (D1) and 3×105 plant/ha (D2) in five environments. The results showed that response of PH to densities varied in accordance to genotypes among environments. A total of 26 QTLs and 13 QTNs were identified specifically in D1; 20 QTLs and 21 QTNs were identified specifically in D2. Nine QTLs and one QTN were discovered commonly in two densities. Fifteen QTLs and 9 QTNs were repeatedly detected by multiple statistical methods, densities, or environments, which could be considered stable. Eighteen QTLs were detected, as well as 7 QTNs underlying responses of PH to density increment. Six QTNs, co-located in the interval of QTL, were detected in more than two environments or methods with a longer genome length over 3000 kb. Based on gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, five genes were predicted as candidates, which were likely to be involved in growth and development of PH. The results will help elucidate the genetic basis and improve molecular assistant selection of PH. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01209-0.
Collapse
Affiliation(s)
- Ping Wang
- Key Laboratory of Soybean Biology, Ministry of Education/Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
- Huaiyin Institute of Technology, Huai’an, China
| | - Xu Sun
- Key Laboratory of Soybean Biology, Ministry of Education/Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Kaixin Zhang
- Key Laboratory of Soybean Biology, Ministry of Education/Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yanlong Fang
- Key Laboratory of Soybean Biology, Ministry of Education/Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jiajing Wang
- Key Laboratory of Soybean Biology, Ministry of Education/Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chang Yang
- Key Laboratory of Soybean Biology, Ministry of Education/Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Wen-Xia Li
- Key Laboratory of Soybean Biology, Ministry of Education/Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hailong Ning
- Key Laboratory of Soybean Biology, Ministry of Education/Key Laboratory of Soybean Biology and Breeding/Genetics, Ministry of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
132
|
Liu H, Dong S, Li M, Gu F, Yang G, Guo T, Chen Z, Wang J. The Class III peroxidase gene OsPrx30, transcriptionally modulated by the AT-hook protein OsATH1, mediates rice bacterial blight-induced ROS accumulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:393-408. [PMID: 33241917 DOI: 10.1111/jipb.13040] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/03/2020] [Indexed: 05/07/2023]
Abstract
Class III peroxidases (CIII Prxs) play critical roles in plant immunity by scavenging reactive oxygen species (ROS). However, the functions of CIII Prxs in rice (Oryza sativa L.) immunity are largely unexplored. Here, we report a Prx precursor, OsPrx30, that is responsive to the bacterial blight Xanthomonas oryzae pv. oryzae (Xoo). OsPrx30 was primarily expressed in rice roots, leaves, and stems, and its protein product was mainly localized at the endoplasmic reticulum. Overexpression of OsPrx30 enhanced the plant's susceptibility to Xoo by maintaining a high level of peroxidase (POD) activity and reducing the content of H2 O2 , whereas depletion of OsPrx30 had the opposite effects. Furthermore, we identified an AT-hook transcription factor, OsATH1, that is specifically bound to the OsPrx30 promoter. As observed in plants overexpressing OsPrx30, depletion of OsATH1 enhanced susceptibility to Xoo. Finally, we demonstrated that depletion of OsATH1 increased histone H3 acetylation at the AT-rich region of the OsPrx30 promoter. Taken together, these results reveal a mechanism underlying the POD-induced natural resistance to bacterial diseases and suggest a model for transcription regulation of Prx genes in rice.
Collapse
Affiliation(s)
- Hao Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shuangyu Dong
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Li
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Fengwei Gu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Guili Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Jiafeng Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
133
|
Mapping quantitative trait loci and predicting candidate genes for leaf angle in maize. PLoS One 2021; 16:e0245129. [PMID: 33406127 PMCID: PMC7787474 DOI: 10.1371/journal.pone.0245129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022] Open
Abstract
Leaf angle of maize is a fundamental determinant of plant architecture and an important trait influencing photosynthetic efficiency and crop yields. To broaden our understanding of the genetic mechanisms of leaf angle formation, we constructed a F3:4 recombinant inbred lines (RIL) population to map QTL for leaf angle. The RIL was derived from a cross between a model inbred line (B73) with expanded leaf architecture and an elite inbred line (Zheng58) with compact leaf architecture. A sum of eight QTL were detected on chromosome 1, 2, 3, 4 and 8. Single QTL explained 4.3 to 14.2% of the leaf angle variance. Additionally, some important QTL were confirmed through a heterogeneous inbred family (HIF) approach. Furthermore, twenty-four candidate genes for leaf angle were predicted through whole-genome re-sequencing and expression analysis in qLA02-01and qLA08-01 regions. These results will be helpful to elucidate the genetic mechanism of leaf angle formation in maize and benefit to clone the favorable allele for leaf angle. Besides, this will be helpful to develop the novel maize varieties with ideal plant architecture through marker-assisted selection.
Collapse
|
134
|
Zhou Y, Gan X, Viñegra de la Torre N, Neumann U, Albani MC. Beyond flowering time: diverse roles of an APETALA2-like transcription factor in shoot architecture and perennial traits. THE NEW PHYTOLOGIST 2021; 229:444-459. [PMID: 32745288 DOI: 10.1111/nph.16839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/22/2020] [Indexed: 05/11/2023]
Abstract
Polycarpic perennials maintain vegetative growth after flowering. PERPETUAL FLOWERING 1 (PEP1), the orthologue of FLOWERING LOCUS C (FLC) in Arabis alpina regulates flowering and contributes to polycarpy in a vernalisation-dependent pathway. pep1 mutants do not require vernalisation to flower and have reduced return to vegetative growth as all of their axillary branches become reproductive. To identify additional genes that regulate flowering and contribute to perennial traits we performed an enhancer screen of pep1. Using mapping-by-sequencing, we cloned a mutant (enhancer of pep1-055, eop055), performed transcriptome analysis and physiologically characterised the role it plays on perennial traits in an introgression line carrying the eop055 mutation and a functional PEP1 wild-type allele. eop055 flowers earlier than pep1 and carries a lesion in the A. alpina orthologue of the APETALA2 (AP2)-like gene, TARGET OF EAT2 (AaTOE2). AaTOE2 is a floral repressor and acts upstream of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 5 (AaSPL5). In the wild-type background, which requires cold treatment to flower, AaTOE2 regulates the age-dependent response to vernalisation. In addition, AaTOE2 ensures the maintenance of vegetative growth by delaying axillary meristem initiation and repressing flowering of axillary buds before and during cold exposure. We conclude that AaTOE2 is instrumental in fine tuning different developmental traits in the perennial life cycle of A. alpina.
Collapse
Affiliation(s)
- Yanhao Zhou
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, Cologne, 50674, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
- Cluster of Excellence on Plant Sciences, "From Complex Traits towards Synthetic Modules", Düsseldorf, 40225, Germany
| | - Xiangchao Gan
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Natanael Viñegra de la Torre
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, Cologne, 50674, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
| | - Maria C Albani
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, Cologne, 50674, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, 50829, Germany
- Cluster of Excellence on Plant Sciences, "From Complex Traits towards Synthetic Modules", Düsseldorf, 40225, Germany
| |
Collapse
|
135
|
Zhang G, Hou X, Wang L, Xu J, Chen J, Fu X, Shen N, Nian J, Jiang Z, Hu J, Zhu L, Rao Y, Shi Y, Ren D, Dong G, Gao Z, Guo L, Qian Q, Luan S. PHOTO-SENSITIVE LEAF ROLLING 1 encodes a polygalacturonase that modifies cell wall structure and drought tolerance in rice. THE NEW PHYTOLOGIST 2021; 229:890-901. [PMID: 32858770 DOI: 10.1111/nph.16899] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/15/2020] [Indexed: 05/15/2023]
Abstract
The biosynthesis and modification of cell wall composition and structure are controlled by hundreds of enzymes and have a direct consequence on plant growth and development. However, the majority of these enzymes has not been functionally characterised. Rice mutants with leaf-rolling phenotypes were screened in a field. Phenotypic analysis under controlled conditions was performed for the selected mutant and the relevant gene was identified by map-based cloning. Cell wall composition was analysed by glycome profiling assay. We identified a photo-sensitive leaf rolling 1 (psl1) mutant with 'napping' (midday depression of photosynthesis) phenotype and reduced growth. The PSL1 gene encodes a cell wall-localised polygalacturonase (PG), a pectin-degrading enzyme. psl1 with a 260-bp deletion in its gene displayed leaf rolling in response to high light intensity and/or low humidity. Biochemical assays revealed PG activity of recombinant PSL1 protein. Significant modifications to cell wall composition in the psl1 mutant compared with the wild-type plants were identified. Such modifications enhanced drought tolerance of the mutant plants by reducing water loss under osmotic stress and drought conditions. Taken together, PSL1 functions as a PG that modifies cell wall biosynthesis, plant development and drought tolerance in rice.
Collapse
Affiliation(s)
- Guangheng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- Department of Plant & Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA
| | - Xin Hou
- Department of Plant & Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Li Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jing Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jian Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xue Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Nianwei Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jinqiang Nian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhuanzhuan Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yuchun Rao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yafei Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Sheng Luan
- Department of Plant & Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA
| |
Collapse
|
136
|
Li H, Sun H, Jiang J, Sun X, Tan L, Sun C. TAC4 controls tiller angle by regulating the endogenous auxin content and distribution in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:64-73. [PMID: 32628357 PMCID: PMC7769243 DOI: 10.1111/pbi.13440] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 04/29/2020] [Accepted: 06/18/2020] [Indexed: 05/17/2023]
Abstract
Tiller angle, an important component of plant architecture, greatly influences the grain yield of rice (Oryza sativa L.). Here, we identified Tiller Angle Control 4 (TAC4) as a novel regulator of rice tiller angle. TAC4 encodes a plant-specific, highly conserved nuclear protein. The loss of TAC4 function leads to a significant increase in the tiller angle. TAC4 can regulate rice shoot gravitropism by increasing the indole acetic acid content and affecting the auxin distribution. A sequence analysis revealed that TAC4 has undergone a bottleneck and become fixed in indica cultivars during domestication and improvement. Our findings facilitate an increased understanding of the regulatory mechanisms of tiller angle and also provide a potential gene resource for the improvement of rice plant architecture.
Collapse
Affiliation(s)
- Hua Li
- State Key Laboratory of Plant Physiology and BiochemistryChina Agricultural UniversityBeijingChina
- National Center for Evaluation of Agricultural Wild Plants (Rice)Beijing Key Laboratory of Crop Genetic ImprovementLaboratory of Crop Heterosis and UtilizationMOEDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Hongying Sun
- State Key Laboratory of Plant Physiology and BiochemistryChina Agricultural UniversityBeijingChina
- National Center for Evaluation of Agricultural Wild Plants (Rice)Beijing Key Laboratory of Crop Genetic ImprovementLaboratory of Crop Heterosis and UtilizationMOEDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Jiahuang Jiang
- National Center for Evaluation of Agricultural Wild Plants (Rice)Beijing Key Laboratory of Crop Genetic ImprovementLaboratory of Crop Heterosis and UtilizationMOEDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Xianyou Sun
- National Center for Evaluation of Agricultural Wild Plants (Rice)Beijing Key Laboratory of Crop Genetic ImprovementLaboratory of Crop Heterosis and UtilizationMOEDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Lubin Tan
- National Center for Evaluation of Agricultural Wild Plants (Rice)Beijing Key Laboratory of Crop Genetic ImprovementLaboratory of Crop Heterosis and UtilizationMOEDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and BiochemistryChina Agricultural UniversityBeijingChina
- National Center for Evaluation of Agricultural Wild Plants (Rice)Beijing Key Laboratory of Crop Genetic ImprovementLaboratory of Crop Heterosis and UtilizationMOEDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
137
|
Liu X, Hu Q, Yan J, Sun K, Liang Y, Jia M, Meng X, Fang S, Wang Y, Jing Y, Liu G, Wu D, Chu C, Smith SM, Chu J, Wang Y, Li J, Wang B. ζ-Carotene Isomerase Suppresses Tillering in Rice through the Coordinated Biosynthesis of Strigolactone and Abscisic Acid. MOLECULAR PLANT 2020; 13:1784-1801. [PMID: 33038484 DOI: 10.1016/j.molp.2020.10.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/06/2020] [Accepted: 10/03/2020] [Indexed: 05/18/2023]
Abstract
Rice tillering is an important agronomic trait affecting grain yield. Here, we identified a high-tillering mutant tillering20 (t20), which could be restored to the wild type by treatment with the strigolactone (SL) analog rac-GR24. T20 encodes a chloroplast ζ-carotene isomerase (Z-ISO), which is involved in the biosynthesis of carotenoids and their metabolites, SL and abscisic acid (ABA). The t20 mutant has reduced SL and ABA, raising the question of how SL and ABA biosynthesis is coordinated, and whether they have overlapping functions in tillering. We discovered that rac-GR24 stimulated T20 expression and enhanced all-trans-β-carotene biosynthesis. Importantly, rac-GR24 also stimulated expression of Oryza sativa 9-CIS-EPOXYCAROTENOID DIOXYGENASE 1 (OsNCED1) through induction of Oryza sativa HOMEOBOX12 (OsHOX12), promoting ABA biosynthesis in shoot base. On the other hand, ABA treatment significantly repressed SL biosynthesis and the ABA biosynthetic mutants displayed elevated SL biosynthesis. ABA treatment reduced the number of basal tillers in both t20 and wild-type plants. Furthermore, while ABA-deficient mutants aba1 and aba2 had the same number of basal tillers as wild type, they had more unproductive upper tillers at maturity. This work demonstrates complex interactions in the biosynthesis of carotenoid, SLs and ABA, and reveals a role for ABA in the regulation of rice tillering.
Collapse
Affiliation(s)
- Xue Liu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingliang Hu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jijun Yan
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Sun
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Meiru Jia
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Fang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiqin Wang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanhui Jing
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Institute of Nuclear Agriculture Sciences, Zhejiang University, Hangzhou 310029, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Steven M Smith
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; School of Natural Sciences, University of Tasmania, Hobart 7001, Australia
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yonghong Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
138
|
Njogu MK, Yang F, Li J, Wang X, Ogweno JO, Chen J. A novel mutation in TFL1 homolog sustaining determinate growth in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3323-3332. [PMID: 32857171 DOI: 10.1007/s00122-020-03671-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
BSA-seq combined with whole-genome resequencing map-based cloning delimited the cucumber det-novel locus into a 44.5 kb region in chromosome 6 harboring a putative candidate gene encoding a phosphatidylethanolamine-binding protein (CsCEN). Determinate and indeterminate growth habits of cucumber can affect plant architecture and crop yield. The TERMINAL FLOWER 1 (TFL1) controls determinate/indeterminate growth in Arabidopsis. In this study, a novel mutation in cucumber TFL1 homolog (CsCEN) has shown to regulate determinate growth and product of terminal flowers in cucumber (Cucumis sativus L.), which is similar to the function of CsTFL1 as previously reported. Genetic analysis in two determinate genotypes (D226 and D082) and indeterminate genotype (CCMC) revealed that a single recessive gene is responsible for this determinate growth trait. With the combination of BSA-seq and whole-genome resequencing, the locus of determinate-novel (det-novel) trait was mapped to a 44.5 kb genomic region in chromosome 6. Sequence alignment identified one non-synonymous SNP mutation (A to T) in the third exon of CsCEN, resulting in an amino acid substitution (Thr to Pro), suggesting that determinate growth might be controlled by a novel gene CsCEN (Csa6G152360) which differed from the reported CsTFL1 gene. The CsCEN expression level in shoot apexes and axillary buds was significantly lower in D226 compared to CCMC, suggesting its essential role in sustaining indeterminate growth habit. Identification and characterization of the CsCEN in the present study provide a new insight into plant architecture modification and development of cucumber cultivars suited to mechanized production system.
Collapse
Affiliation(s)
- Martin Kagiki Njogu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Plant Science, Chuka University, P.O. Box 109-60400, Chuka, Kenya
| | - Fan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xueyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Joshua Otieno Ogweno
- Department of Crops Horticulture and Soil Science, Egerton University, Njoro, Kenya.
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
139
|
Ma X, Li F, Zhang Q, Wang X, Guo H, Xie J, Zhu X, Ullah Khan N, Zhang Z, Li J, Li Z, Zhang H. Genetic architecture to cause dynamic change in tiller and panicle numbers revealed by genome-wide association study and transcriptome profile in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1603-1616. [PMID: 33058400 DOI: 10.1111/tpj.15023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 05/27/2023]
Abstract
Panicle number (PN) is one of the three yield components in rice. As one of the most unstable traits, the dynamic change in tiller number (DCTN) may determine the final PN. However, the genetic basis of DCTN and its relationship with PN remain unclear. Here, 377 deeply re-sequenced rice accessions were used to perform genome-wide association studies (GWAS) for tiller/PN. It was found that the DCTN pattern rather than maximum tiller number or effective tiller ratio is the determinant factor of high PN. The DCTN pattern that affords more panicles exhibits a period of stable tillering peak between 30 and 45 days after transplant (called DT30 and DT45, respectively), which was believed as an ideal pattern contributing to the steady transition from tiller development to panicle development (ST-TtP). Consistently, quantitative trait loci (QTL) expressed near DT30-DT45 were especially critical to the rice DCTN and in supporting the ST-TtP. The spatio-temporal expression analysis showed that the expression pattern of keeping relatively high expression in root at 24:00 (R24-P2) from about DT30 to DT45 is a typical expression pattern of cloned tiller genes, and the candidate genes with R24-P2 can facilitate the prediction of PN. Moreover, gene OsSAUR27 was identified by an integrated approach combining GWAS, bi-parental QTL mapping and transcription. These findings related to the genetic basis underlying the DCTN will provide the genetic theory in making appropriate decisions on field management, and in developing new varieties with high PN and ideal dynamic plant architecture.
Collapse
Affiliation(s)
- Xiaoqian Ma
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Fengmei Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- School of Life Science and Technology, Xinxiang University, Henan, 453003, China
| | - Quan Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xueqiang Wang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Haifeng Guo
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jianyin Xie
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaoyang Zhu
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Najeeb Ullah Khan
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhanying Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinjie Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zichao Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongliang Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
140
|
Li F, Chen X, Zhou S, Xie Q, Wang Y, Xiang X, Hu Z, Chen G. Overexpression of SlMBP22 in Tomato Affects Plant Growth and Enhances Tolerance to Drought Stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110672. [PMID: 33218637 DOI: 10.1016/j.plantsci.2020.110672] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
MADS-box transcription factors play crucial and diverse roles in plant growth and development, and the responses to biotic and abiotic stresses. However, the implementation of MADS-box transcription factors in regulating plant architecture and stress responses has not been fully explored in tomato. Here, we found that a novel MADS-box transcription factor, SlMBP22, participated in the control of agronomical traits, tolerance to abiotic stress, and regulation of auxin and gibberellin signalling. Transgenic plants overexpressing SlMBP22 (SlMBP22-OE) displayed pleiotropic phenotypes, including reduced plant height and leaf size, by affecting auxin and/or gibberellin signalling. SlMBP22 was induced by dehydration treatment, and SlMBP22-OE plants were more tolerant to drought stress than wild-type (WT). Furthermore, SlMBP22 overexpression plants accumulated more chlorophyll, starch and soluble sugar than WT, indicating that the darker green leaves might be attributed to increased chlorophyll levels in the transgenic plants. RNA-Seq results showed that the transcript levels of a series of genes related to chloroplast development, chlorophyll metabolism, starch and sucrose metabolism, hormone signalling, and stress responses were altered. Collectively, our data demonstrate that SlMBP22 plays an important role in both regulating tomato growth and resisting drought stress.
Collapse
Affiliation(s)
- Fenfen Li
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Xinyu Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Shengen Zhou
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Qiaoli Xie
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Yunshu Wang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Xiaoxue Xiang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| |
Collapse
|
141
|
Lin T, Zhou R, Bi B, Song L, Chai M, Wang Q, Song G. Analysis of a radiation-induced dwarf mutant of a warm-season turf grass reveals potential mechanisms involved in the dwarfing mutant. Sci Rep 2020; 10:18913. [PMID: 33144613 PMCID: PMC7609746 DOI: 10.1038/s41598-020-75421-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/14/2020] [Indexed: 11/09/2022] Open
Abstract
Zoysia matrella [L.] Merr. is a widely cultivated warm-season turf grass in subtropical and tropical areas. Dwarf varieties of Z. matrella are attractive to growers because they often reduce lawn mowing frequencies. In this study, we describe a dwarf mutant of Z. matrella induced from the 60Co-γ-irradiated calluses. We conducted morphological test and physiological, biochemical and transcriptional analyses to reveal the dwarfing mechanism in the mutant. Phenotypically, the dwarf mutant showed shorter stems, wider leaves, lower canopy height, and a darker green color than the wild type (WT) control under the greenhouse conditions. Physiologically, we found that the phenotypic changes of the dwarf mutant were associated with the physiological responses in catalase, guaiacol peroxidase, superoxide dismutase, soluble protein, lignin, chlorophyll, and electric conductivity. Of the four endogenous hormones measured in leaves, both indole-3-acetic acid and abscisic acid contents were decreased in the mutant, whereas the contents of gibberellin and brassinosteroid showed no difference between the mutant and the WT control. A transcriptomic comparison between the dwarf mutant and the WT leaves revealed 360 differentially-expressed genes (DEGs), including 62 up-regulated and 298 down-regulated unigenes. The major DEGs related to auxin transportation (e.g., PIN-FORMED1) and cell wall development (i.e., CELLULOSE SYNTHASE1) and expansin homologous genes were all down-regulated, indicating their potential contribution to the phenotypic changes observed in the dwarf mutant. Overall, the results provide information to facilitate a better understanding of the dwarfing mechanism in grasses at physiological and transcript levels. In addition, the results suggest that manipulation of auxin biosynthetic pathway genes can be an effective approach for dwarfing breeding of turf grasses.
Collapse
Affiliation(s)
- Tianyi Lin
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ren Zhou
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bo Bi
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liangyuan Song
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mingliang Chai
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Qiaomei Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Guoqing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
142
|
Zhao D, Yang L, Xu K, Cao S, Tian Y, Yan J, He Z, Xia X, Song X, Zhang Y. Identification and validation of genetic loci for tiller angle in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3037-3047. [PMID: 32685984 DOI: 10.1007/s00122-020-03653-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/08/2020] [Indexed: 05/26/2023]
Abstract
KEY MESSAGE Two major QTL for tiller angle were identified on chromosomes 1AL and 5DL, and TaTAC-D1 might be the candidate gene for QTA.caas-5DL. An ideal plant architecture is important for achieving high grain yield in crops. Tiller angle (TA) is an important factor influencing yield. In the present study, 266 recombinant inbred lines (RILs) derived from a cross between Zhongmai 871 (ZM871) and its sister line Zhongmai 895 (ZM895) was used to map TA by extreme pool-genotyping and inclusive composite interval mapping (ICIM). Two quantitative trait loci (QTL) on chromosomes 1AL and 5DL were identified with reduced tiller angle alleles contributed by ZM895. QTA.caas-1AL was detected in six environments, explaining 5.4-11.2% of the phenotypic variances. The major stable QTL, QTA.caas-5DL, was identified in all eight environments, accounting for 13.8-24.8% of the phenotypic variances. The two QTL were further validated using BC1F4 populations derived from backcrosses ZM871/ZM895//ZM871 (121 lines) and ZM871/ZM895//ZM895 (175 lines). Gene TraesCS5D02G322600, located in the 5DL QTL and designated TaTAC-D1, had a SNP in the third exon with 'A' and 'G' in ZM871 and ZM895, respectively, resulting in a Thr169Ala amino acid change. A KASP marker based on this SNP was validated in two sets of germplasm, providing further evidence for the significant effects of TaTAC-D1 on TA. Thus extreme pool-genotyping can be employed to detect QTL for plant architecture traits and KASP markers tightly linked with the QTL can be used in wheat breeding programs targeting improved plant architecture.
Collapse
Affiliation(s)
- Dehui Zhao
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi province, China
| | - Li Yang
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Kaijie Xu
- Institute of Cotton Research, CAAS, 38 Huanghe Dadao, Anyang, 455000, Henan province, China
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yubing Tian
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jun Yan
- Institute of Cotton Research, CAAS, 38 Huanghe Dadao, Anyang, 455000, Henan province, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- CIMMYT-China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi province, China.
| | - Yong Zhang
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
143
|
Olatoye MO, Hu Z, Morris GP. Genome-wide mapping and prediction of plant architecture in a sorghum nested association mapping population. THE PLANT GENOME 2020; 13:e20038. [PMID: 33217207 DOI: 10.1002/tpg2.20038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Modifying plant architecture is often necessary for yield improvement and climate adaptation, but we lack understanding of the genotype-phenotype map for plant morphology in sorghum. Here, we use a nested association mapping (NAM) population that captures global allelic diversity of sorghum to characterize the genetics of leaf erectness, leaf width (at two stages), and stem diameter. Recombinant inbred lines (n = 2200) were phenotyped in multiple environments (35,200 observations) and joint linkage mapping was performed with ∼93,000 markers. Fifty-four QTL of small to large effect were identified for trait BLUPs (9-16 per trait) each explaining 0.4-4% of variation across the NAM population. While some of these QTL colocalize with sorghum homologs of grass genes (e.g., those involved in transcriptional regulation of hormone synthesis [rice SPINDLY] and transcriptional regulation of development [rice Ideal plant architecture1]), most QTL did not colocalize with an a priori candidate gene (92%). Genomic prediction accuracy was generally high in five-fold cross-validation (0.65-0.83), and varied from low to high in leave-one-family-out cross-validation (0.04-0.61). The findings provide a foundation to identify the molecular basis of architecture variation in sorghum and establish genomic-enabled breeding for improved plant architecture.
Collapse
Affiliation(s)
- Marcus O Olatoye
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
- Current address: Department of Crop Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhenbin Hu
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Geoffrey P Morris
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
144
|
Subudhi PK, Garcia RS, Coronejo S, De Leon TB. A Novel Mutation of the NARROW LEAF 1 Gene Adversely Affects Plant Architecture in Rice ( Oryza sativa L.). Int J Mol Sci 2020; 21:ijms21218106. [PMID: 33143090 PMCID: PMC7672626 DOI: 10.3390/ijms21218106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/25/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022] Open
Abstract
Plant architecture is critical for enhancing the adaptability and productivity of crop plants. Mutants with an altered plant architecture allow researchers to elucidate the genetic network and the underlying mechanisms. In this study, we characterized a novel nal1 rice mutant with short height, small panicle, and narrow and thick deep green leaves that was identified from a cross between a rice cultivar and a weedy rice accession. Bulked segregant analysis coupled with genome re-sequencing and cosegregation analysis revealed that the overall mutant phenotype was caused by a 1395-bp deletion spanning over the last two exons including the transcriptional end site of the nal1 gene. This deletion resulted in chimeric transcripts involving nal1 and the adjacent gene, which were validated by a reference-guided assembly of transcripts followed by PCR amplification. A comparative transcriptome analysis of the mutant and the wild-type rice revealed 263 differentially expressed genes involved in cell division, cell expansion, photosynthesis, reproduction, and gibberellin (GA) and brassinosteroids (BR) signaling pathways, suggesting the important regulatory role of nal1. Our study indicated that nal1 controls plant architecture through the regulation of genes involved in the photosynthetic apparatus, cell cycle, and GA and BR signaling pathways.
Collapse
Affiliation(s)
- Prasanta K. Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (R.S.G.); (S.C.)
- Correspondence: ; Tel.: +1-225-578-1303
| | - Richard S. Garcia
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (R.S.G.); (S.C.)
| | - Sapphire Coronejo
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (R.S.G.); (S.C.)
| | - Teresa B. De Leon
- California Cooperative Rice Research Foundation, Inc., Biggs, CA 95917, USA;
| |
Collapse
|
145
|
Singh H, Kaur K, Singh M, Kaur G, Singh P. Plant Cyclophilins: Multifaceted Proteins With Versatile Roles. FRONTIERS IN PLANT SCIENCE 2020; 11:585212. [PMID: 33193535 PMCID: PMC7641896 DOI: 10.3389/fpls.2020.585212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/22/2020] [Indexed: 05/03/2023]
Abstract
Cyclophilins constitute a family of ubiquitous proteins that bind cyclosporin A (CsA), an immunosuppressant drug. Several of these proteins possess peptidyl-prolyl cis-trans isomerase (PPIase) activity that catalyzes the cis-trans isomerization of the peptide bond preceding a proline residue, essential for correct folding of the proteins. Compared to prokaryotes and other eukaryotes studied until now, the cyclophilin gene families in plants exhibit considerable expansion. With few exceptions, the role of the majority of these proteins in plants is still a matter of conjecture. However, recent studies suggest that cyclophilins are highly versatile proteins with multiple functionalities, and regulate a plethora of growth and development processes in plants, ranging from hormone signaling to the stress response. The present review discusses the implications of cyclophilins in different facets of cellular processes, particularly in the context of plants, and provides a glimpse into the molecular mechanisms by which these proteins fine-tune the diverse physiological pathways.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Kirandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Mangaljeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Gundeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- William Harvey Heart Centre, Queen Mary University of London, London, United Kingdom
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
146
|
Liu H, Wang K, Tang H, Gong Q, Du L, Pei X, Ye X. CRISPR/Cas9 editing of wheat TaQ genes alters spike morphogenesis and grain threshability. J Genet Genomics 2020; 47:563-575. [PMID: 33187879 DOI: 10.1016/j.jgg.2020.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/13/2023]
Abstract
The TaQ alleles as one of the AP2-like transcription factors in common wheat (Triticum aestivum) play an important role in the evolution of spike characteristics from wild and domesticated emmer to modern wheat cultivars. Its loss-of-function mutant not only changed threshability and spike architecture but also affected plant height, flowering time, and floret structure. However, the comprehensive functions of TaAQ and TaDq genes in wheat have not been fully elucidated yet. Here, CRISPR/SpCas9 was used to edit wheat TaAQ and TaDq. We obtained homozygous plants in the T1 generation with loss of function of only TaAQ or TaDq and simultaneous loss of function of TaAQ and TaDq to analyze the effect of these genes on wheat spikes and floret shapes. The results demonstrated that the TaAQ-edited plants and the TaAQ and TaDq simultaneously-edited plants were nearly similar in spike architecture, whereas the TaDq-edited plants were different from the wild-type ones only in plant height. Moreover, the TaAQ-edited plants or the TaAQ and TaDq simultaneously-edited plants were more brittle than the wild-type and the TaDq-edited plants. Based on the expression profiling, we postulated that the VRN1, FUL2, SEP2, SEP5, and SEP6 genes might affect the number of spikelets and florets per spike in wheat by regulating the expression of TaQ. Combining the results of this report and previous reports, we conceived a regulatory network of wheat traits, including plant height, spike shape, and floral organs, which were influenced by AP2-like family genes. The results achieved in this study will help us to understand the regulating mechanisms of TaAQ and TaDq alleles on wheat floral organs and inflorescence development.
Collapse
Affiliation(s)
- Huiyun Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huali Tang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Gong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lipu Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinwu Pei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xingguo Ye
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
147
|
Li Y, Li J, Chen Z, Wei Y, Qi Y, Wu C. OsmiR167a-targeted auxin response factors modulate tiller angle via fine-tuning auxin distribution in rice. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2015-2026. [PMID: 32061119 PMCID: PMC7540336 DOI: 10.1111/pbi.13360] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 05/25/2023]
Abstract
Rice tiller angle determines plant growth density and further contributes grain production. Although a few genes have been characterized to regulate tiller angle in rice, the molecular mechanism underlying the control of tiller angle via microRNA is poorly understood. Here, we report that rice tiller angle is controlled by OsmiR167a-targeted auxin response factors OsARF12, OsARF17 and OsARF25. In the overexpression of OsMIR167a plants, the expression of OsARF12, OsARF17 and OsARF25 was severely repressed and displayed larger tiller angle as well as the osarf12/osarf17 and osarf12/ osarf25 plants. In addition, those plants showed compromised abnormal auxin distribution and less sensitive to gravity. We also demonstrate that OsARF12, OsARF17 and OsARF25 function redundantly and might be involved in HSFA2D and LAZY1-dependent asymmetric auxin distribution pathway to control rice tiller angle. Our results reveal that OsmiR167a represses its targets, OsARF12, OsARF17 and OsARF25, to control rice tiller angle by fine-tuning auxin asymmetric distribution in shoots.
Collapse
Affiliation(s)
- Yan Li
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- College of Life SciencesHubei UniversityWuhanChina
| | - Jiali Li
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
- Institute of Rice ResearchGuizhou Academy of Agricultural SciencesGuiyangChina
| | - Zhihui Chen
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Yi Wei
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Yanhua Qi
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Life SciencesZhejiang UniversityHangzhouChina
| | - Changyin Wu
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| |
Collapse
|
148
|
Bae SY, Kim MH, Cho JS, Park EJ, Lee H, Kim JH, Ko JH. Overexpression of Populus transcription factor PtrTALE12 increases axillary shoot development by regulating WUSCHEL expression. TREE PHYSIOLOGY 2020; 40:1232-1246. [PMID: 32420604 DOI: 10.1093/treephys/tpaa062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
The TALE (Three Amino acid Loop Extension) transcription factor family has been shown to control meristem formation and organogenesis in plants. To understand the functional roles of the TALE family in woody perennials, each of the TALE members of Populus trichocarpa was overexpressed in Arabidopsis as a proxy. Among them, the overexpression of PtrTALE12 (i.e., 35S::PtrTALE12) resulted in a dramatic increase of axillary shoot development with early flowering. Interestingly, expression of WUSCHEL (WUS), a central regulator of both apical and axillary meristem formation, was significantly increased in the 35S::PtrTALE12 Arabidopsis plants. Conversely, WUS expression was downregulated in 35S::PtrTALE12-SRDX (short transcriptional repressor domain) plants. Further analysis found that PtrTALE12, expressed preferentially in meristem tissues, directly regulates WUS expression in transient activation assays using Arabidopsis leaf protoplast. Yeast two-hybrid assays showed that PtrTALE12 interacts with SHOOT MERISTEMLESS (STM); however, the interaction does not affect the WUS expression. In addition, expression of both CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) genes was suppressed accordingly for early flowering 35S::PtrTALE12 Arabidopsis. Indeed, transgenic poplars overexpressing PtrTALE12 as well as Arabidopsis plants overexpressing AtBLH11, a close homolog of PtrTALE12, phenocopied the 35S::PtrTALE12 Arabidopsis (i.e., increased axillary shoot development). Taken together, our results suggest that PtrTALE12 functions as a positive regulator of axillary shoot formation in both Arabidopsis and poplar.
Collapse
Affiliation(s)
- So-Young Bae
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Eung-Jun Park
- Division of Forest Biotechnology, National Institute of Forest Science, 39 Onjeong-ro, Suwon 16631, Republic of Korea
| | - Hyoshin Lee
- Division of Forest Biotechnology, National Institute of Forest Science, 39 Onjeong-ro, Suwon 16631, Republic of Korea
| | - Jeong-Hoe Kim
- Department of Biology, School of Biological Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| |
Collapse
|
149
|
Xu X, Feng G, Liang Y, Shuai Y, Liu Q, Nie G, Yang Z, Hang L, Zhang X. Comparative transcriptome analyses reveal different mechanism of high- and low-tillering genotypes controlling tiller growth in orchardgrass (Dactylis glomerata L.). BMC PLANT BIOLOGY 2020; 20:369. [PMID: 32758131 PMCID: PMC7409468 DOI: 10.1186/s12870-020-02582-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/27/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Tillering is an important agronomic trait underlying the yields and reproduction of orchardgrass (Dactylis glomerata), an important perennial forage grass. Although some genes affecting tiller initiation have been identified, the tillering regulatory network is still largely unknown, especially in perennial forage grasses. Thus, unraveling the regulatory mechanisms of tillering in orchardgrass could be helpful in developing selective strategies for high-yield perennial grasses. In this study, we generated high-throughput RNA-sequencing data from multiple tissues of tillering stage plants to identify differentially expressed genes (DEGs) between high- and low-tillering orchardgrass genotypes. Gene Ontology and pathway enrichment analyses connecting the DEGs to tillering number diversity were conducted. RESULTS In the present study, approximately 26,282 DEGs were identified between two orchardgrass genotypes, AKZ-NRGR667 (a high-tillering genotype) and D20170203 (a low-tillering genotype), which significantly differed in tiller number. Pathway enrichment analysis indicated that DEGs related to the biosynthesis of three classes of phytohormones, i.e., strigolactones (SLs), abscisic acid (ABA), and gibberellic acid (GA), as well as nitrogen metabolism dominated such differences between the high- and low-tillering genotypes. We also confirmed that under phosphorus deficiency, the expression level of the major SL biosynthesis genes encoding DWARF27 (D27), 9-cis-beta-carotene 9',10'-cleaving dioxygenase (CCD7), carlactone synthase (CCD8), and more axillary branching1 (MAX1) proteins in the high-tillering orchardgrass genotype increased more slowly relative to the low-tillering genotype. CONCLUSIONS Here, we used transcriptomic data to study the tillering mechanism of perennial forage grasses. We demonstrated that differential expression patterns of genes involved in SL, ABA, and GA biosynthesis may differentiate high- and low-tillering orchardgrass genotypes at the tillering stage. Furthermore, the core SL biosynthesis-associated genes in high-tillering orchardgrass were more insensitive than the low-tillering genotype to phosphorus deficiency which can lead to increases in SL biosynthesis, raising the possibility that there may be distinct SL biosynthesis way in tillering regulation in orchardgrass. Our research has revealed some candidate genes involved in the regulation of tillering in perennial grasses that is available for establishment of new breeding resources for high-yield perennial grasses and will serve as a new resource for future studies into molecular mechanism of tillering regulation in orchardgrass.
Collapse
Affiliation(s)
- Xiaoheng Xu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guangyan Feng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yueyang Liang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Shuai
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiuxu Liu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Gang Nie
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhongfu Yang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linkai Hang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
150
|
Liu H, Wen Y, Cui M, Qi X, Deng R, Gao J, Cheng Z. Histological, Physiological and Transcriptomic Analysis Reveal Gibberellin-Induced Axillary Meristem Formation in Garlic ( Allium sativum). PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9080970. [PMID: 32751960 PMCID: PMC7464525 DOI: 10.3390/plants9080970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 05/11/2023]
Abstract
The number of cloves in a garlic bulb is controlled by axillary meristem differentiation, which directly determines the propagation efficiency. Our previous study showed that injecting garlic plants with gibberellins (GA3) solution significantly increased clove number per bulb. However, the physiological and molecular mechanism of GA-induced axillary bud formation is still unknown. Herein, dynamic changes in histology, phytohormones, sugars and related genes expression at 2, 4, 8, 16 and 32 days after treatment (DAT) were investigated. Histological results indicated two stages (axillary meristem initiation and dormancy) were in the period of 0-30 days after GA3 treatment. Application of GA3 caused a significant increase of GA3 and GA4, and the downregulation of AsGA20ox expression. Furthermore, the change trends in zeatin riboside (ZR) and soluble sugar were the same, in which a high level of ZR at 2 DAT and high content of soluble sugar, glucose and fructose at 4 DAT were recorded, and a low level of ZR and soluble sugar arose at 16 and 32 DAT. Overall, injection of GA3 firstly caused the downregulation of AsGA20ox, a significant increase in the level of ZR and abscisic acid (ABA), and the upregulation of AsCYP735 and AsAHK to activate axillary meristem initiation. Low level of ZR and soluble sugar and a high level of sucrose maintained axillary meristem dormancy.
Collapse
|