101
|
Su Z, Xu D, Hu X, Zhu W, Kong L, Qian Z, Mei J, Ma R, Shang X, Fan W, Zhu C. Biodegradable oxygen-evolving metalloantibiotics for spatiotemporal sono-metalloimmunotherapy against orthopaedic biofilm infections. Nat Commun 2024; 15:8058. [PMID: 39277594 PMCID: PMC11401848 DOI: 10.1038/s41467-024-52489-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
Pathogen-host competition for manganese and intricate immunostimulatory pathways severely attenuates the efficacy of antibacterial immunotherapy against biofilm infections associated with orthopaedic implants. Herein, we introduce a spatiotemporal sono-metalloimmunotherapy (SMIT) strategy aimed at efficient biofilm ablation by custom design of ingenious biomimetic metal-organic framework (PCN-224)-coated MnO2-hydrangea nanoparticles (MnPM) as a metalloantibiotic. Upon reaching the acidic H2O2-enriched biofilm microenvironment, MnPM can convert abundant H2O2 into oxygen, which is conducive to significantly enhancing the efficacy of ultrasound (US)-triggered sonodynamic therapy (SDT), thereby exposing bacteria-associated antigens (BAAs). Moreover, MnPM disrupts bacterial homeostasis, further killing more bacteria. Then, the Mn ions released from the degraded MnO2 can recharge immune cells to enhance the cGAS-STING signaling pathway sensing of BAAs, further boosting the immune response and suppressing biofilm growth via biofilm-specific T cell responses. Following US withdrawal, the sustained oxygenation promotes the survival and migration of fibroblasts, stimulates the expression of angiogenic growth factors and angiogenesis, and neutralizes excessive inflammation. Our findings highlight that MnPM may act as an immune costimulatory metalloantibiotic to regulate the cGAS-STING signaling pathway, presenting a promising alternative to antibiotics for orthopaedic biofilm infection treatment and pro-tissue repair.
Collapse
Affiliation(s)
- Zheng Su
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Dongdong Xu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Xianli Hu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wanbo Zhu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, PR China.
| | - Lingtong Kong
- Department of Orthopedics, Changhai Hospital of Shanghai, Shanghai, 200433, China
| | - Zhengzheng Qian
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiawei Mei
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Ruixiang Ma
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xifu Shang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, China.
| | - Chen Zhu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
102
|
Guo K, Zeng X, Liu X, He P, Zhang Z, Yang Q, Wang L, Jing L. Lifestyle deterioration linked to elevated inflammatory cytokines over a two-month follow-up. Sci Rep 2024; 14:21381. [PMID: 39271678 PMCID: PMC11399254 DOI: 10.1038/s41598-024-69967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Healthy lifestyle reduces the risk of inflammation-related diseases. This study assessed how lifestyle changes affect inflammatory cytokines over 2 months. Involving 179 apparently healthy participants recruited from community, collecting data on lifestyles (smoking, alcohol, BMI, daily activity, sleep, diet) and measured inflammatory cytokines (TNF-α, IL-1β, IL-17A, CRP, IL-8, IL-18, IFN-γ) plus pepsinogens (PG I, PG II) at the baseline and 2-month follow-up. The combined adverse lifestyle score is the sum of scores across six lifestyles, with higher scores indicating more adverse lifestyle factors. Use multiple linear regression and mixed linear models to analyze the relationship between the changes in lifestyle and inflammatory cytokines (follow-up values minus baseline values). For every 1-point increase in combined adverse lifestyle score, IL-17A increased by 0.98 (95% CI 0.23, 1.73) pg/mL, IFN-γ increased by 1.79 (95% CI 0.39, 3.18) pg/mL. Decreased changes in daily activity were associated with higher IL-17A (β = 1.83, 95% CI 0.53, 3.13) and IFN-γ (β = 2.59, 95% CI 0.9, 4.98). Excluding daily activity, changes in combined adverse lifestyle scores were not associated with changes in inflammatory cytokines. Lifestyle improvements at 2-month intervals may reduce TNF-α, IL-17A and IFN-γ, with daily activity making the greatest contribution.
Collapse
Affiliation(s)
- Kai Guo
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu, China
- The School of Public Health, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Xuejiao Zeng
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu, China
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Xiaoming Liu
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Panpan He
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Zhiwei Zhang
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Qianwen Yang
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Lei Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| | - Lipeng Jing
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
103
|
Antony F, Kinha D, Nowińska A, Rouse BT, Suryawanshi A. The immunobiology of corneal HSV-1 infection and herpetic stromal keratitis. Clin Microbiol Rev 2024; 37:e0000624. [PMID: 39078136 PMCID: PMC11391706 DOI: 10.1128/cmr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
SUMMARYHuman alphaherpesvirus 1 (HSV-1) is a highly successful neurotropic pathogen that primarily infects the epithelial cells lining the orofacial mucosa. After primary lytic replication in the oral, ocular, and nasal mucosal epithelial cells, HSV-1 establishes life-long latency in neurons within the trigeminal ganglion. Patients with compromised immune systems experience frequent reactivation of HSV-1 from latency, leading to virus entry in the sensory neurons, followed by anterograde transport and lytic replication at the innervated mucosal epithelial surface. Although recurrent infection of the corneal mucosal surface is rare, it can result in a chronic immuno-inflammatory condition called herpetic stromal keratitis (HSK). HSK leads to gradual vision loss and can cause permanent blindness in severe untreated cases. Currently, there is no cure or successful vaccine to prevent latent or recurrent HSV-1 infections, posing a significant clinical challenge to managing HSK and preventing vision loss. The conventional clinical management of HSK primarily relies on anti-virals to suppress HSV-1 replication, anti-inflammatory drugs (such as corticosteroids) to provide symptomatic relief from pain and inflammation, and surgical interventions in more severe cases to replace damaged cornea. However, each clinical treatment strategy has limitations, such as local and systemic drug toxicities and the emergence of anti-viral-resistant HSV-1 strains. In this review, we summarize the factors and immune cells involved in HSK pathogenesis and highlight alternate therapeutic strategies for successful clinical management of HSK. We also discuss the therapeutic potential of immunoregulatory cytokines and immunometabolism modulators as promising HSK therapies against emerging anti-viral-resistant HSV-1 strains.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Kinha
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Anna Nowińska
- Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
- Ophthalmology Department, Railway Hospital in Katowice, Katowice, Poland
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Amol Suryawanshi
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
104
|
Kanno T, Miyako K, Endo Y. Lipid metabolism: a central modulator of RORγt-mediated Th17 cell differentiation. Int Immunol 2024; 36:487-496. [PMID: 38824406 DOI: 10.1093/intimm/dxae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
Among the T helper cell subsets, Th17 cells contribute to the development of various inflammatory and autoimmune diseases, including psoriasis, rheumatoid arthritis, inflammatory bowel disease, steroid-resistant asthma, and multiple sclerosis. Retinoid-related orphan receptor gamma t (RORγt), a nuclear hormone receptor, serves as a master transcription factor for Th17 cell differentiation. Recent findings have shown that modulating the metabolic pathway is critical for Th17 cell differentiation, particularly through the engagement of de novo lipid biosynthesis. Suppression of lipid biosynthesis, either through the pharmacological inhibition or gene deletion of related enzymes in CD4+ T cells, results in significant impairment of Th17 cell differentiation. Mechanistic studies indicate that metabolic fluxes through both the fatty acid and cholesterol biosynthetic pathways have a pivotal role in the regulation of RORγt activity through the generation of endogenous RORγt lipid ligands. This review discusses recent discoveries highlighting the importance of lipid metabolism in Th17 cell differentiation and function, as well as exploring specific molecular pathways involved in RORγt activation through cellular lipid metabolism. We further elaborate on a pioneering therapeutic approach to improve inflammatory and autoimmune disorders via the inhibition of RORγt.
Collapse
Affiliation(s)
- Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Keisuke Miyako
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
105
|
Azargoonjahromi A. Immunotherapy in Alzheimer's disease: focusing on the efficacy of gantenerumab on amyloid-β clearance and cognitive decline. J Pharm Pharmacol 2024; 76:1115-1131. [PMID: 38767981 DOI: 10.1093/jpp/rgae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Gantenerumab, a human monoclonal antibody (mAb), has been thought of as a potential agent to treat Alzheimer's disease (AD) by specifically targeting regions of the amyloid-β (Aβ) peptide sequence. Aβ protein accumulation in the brain leads to amyloid plaques, causing neuroinflammation, oxidative stress, neuronal damage, and neurotransmitter dysfunction, thereby causing cognitive decline in AD. Gantenerumab involves disrupting Aβ aggregation and promoting the breakdown of larger Aβ aggregates into smaller fragments, which facilitates the action of Aβ-degrading enzymes in the brain, thus slowing down the progression of AD. Moreover, Gantenerumab acts as an opsonin, coating Aβ plaques and enhancing their recognition by immune cells, which, combined with its ability to improve the activity of microglia, makes it an intriguing candidate for promoting Aβ plaque clearance. Indeed, the multifaceted effects of Gantenerumab, including Aβ disaggregation, enhanced immune recognition, and improved microglia activity, may position it as a promising therapeutic approach for AD. Of note, reports suggest that Gantenerumab, albeit its capacity to reduce or eliminate Aβ, has not demonstrated effectiveness in reducing cognitive decline. This review, after providing an overview of immunotherapy approaches that target Aβ in AD, explores the efficacy of Gantenerumab in reducing Aβ levels and cognitive decline.
Collapse
|
106
|
Zhao Y, Yang J, Zhang Q, Chen X, Liang W, Zheng Y, Huang J, Liao Y, Fu C, Huang T, Li X, Zheng Y, Bu J, Shen E. Fasting alleviates bleomycin-induced lung inflammation and fibrosis via decreased Tregs and monocytes. Adv Med Sci 2024; 69:303-311. [PMID: 38986767 DOI: 10.1016/j.advms.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE Idiopathic pulmonary fibrosis (IPF), a chronic and progressively worsening condition characterized by interstitial lung inflammation and fibrosis of unknown etiology, has a grim prognosis. The treatment options for IPF are limited and new therapeutic strategies are urgently needed. Dietary restriction can improve various inflammatory diseases, but its therapeutic effect on bleomycin (BLM)-induced pulmonary fibrosis mouse model remains unclear. This study aims to investigate whether intermittent fasting (IF) can alleviate BLM-induced pulmonary inflammation and fibrosis. METHODS Pulmonary fibrosis mouse models were induced by BLM. The IF group underwent 24-h fasting cycles for one week prior and three weeks following BLM administration. Meanwhile, the ad libitum feeding group had unrestricted access to food throughout the experiment. The evaluation focused on lung pathology via histological staining, qPCR analysis of collagen markers, and immune cell profiling through flow cytometry. RESULTS IF group significantly reduced inflammation and fibrosis in lung tissues of BLM-induced mice compared to ad libitum feeding group. qPCR results showed IF remarkably decreased the mRNA expression of Col 1a and Col 3a in the lungs of BLM-induced mouse models. IF also reduced the numbers of regulatory T cells (Tregs), T helper 17 (Th17) cells, monocytes, and monocyte-derived alveolar macrophages (MoAMs) in the lung tissues. CONCLUSIONS IF may improve BLM-induced pulmonary fibrosis by decreasing numbers of immune cells including Treg cells, Th17 cells, monocytes, and MoAMs in the lungs. This study offers experimental validation for dietary intervention as a viable treatment modality in IPF management.
Collapse
Affiliation(s)
- Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Jingying Yang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China; Department of Clinical Laboratory, Zhuhai Center for Maternal and Child Health Care, Zhuhai, China
| | - Qi Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China; The 903rd Hospital of the PLA, Hangzhou, Zhejiang, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Wenting Liang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yanling Zheng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jijun Huang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yue Liao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Cheng Fu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Ting Huang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Yu Zheng
- Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jin Bu
- Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
107
|
Karaselek MA, Duran T, Kuccukturk S, Vatansev H, Oltulu P. Changes in T-cell subsets occur in interstitial lung disease and may contribute to pathology via complicated immune cascade. APMIS 2024; 132:663-671. [PMID: 38860355 DOI: 10.1111/apm.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
The study aimed to investigate the expression profiles of transcription factors, cytokines, and co-stimulatory molecules in helper T (Th)-cell subsets within bronchoalveolar lavage (BAL) samples of patients with interstitial lung diseases (ILDs). Twenty ILDs patients were included in the study, comprising those with idiopathic pulmonary fibrosis (IPF) (n:8), autoimmune-related ILDs (auto-ILD) (n:4), and orphan diseases (O-ILD) (n:8), alongside five control subjects. Flow cytometry was employed to evaluate the Th to cytotoxic T cell (CTL) ratio in BAL fluid, while cytopathological examination assessed macrophages, lymphocytes, and neutrophils. Quantitative real-time polymerase chain reaction was utilized to investigate the expressions in Th1, Th2, Th17, and regulatory T (Treg) cells. Results revealed elevated Th cell to CTL ratios across all patient groups compared to controls. Furthermore, upregulation of Th1, Th2, Th17, and T-cell factors was observed in all patient groups compared to controls. Interestingly, upregulation of CD28 and downregulation of CTLA-4 and PD-1 gene expression were consistent across all ILDs groups, highlighting potential immune dysregulation. This study provides a comprehensive exploration of molecular immunological mechanisms in ILDs patients, underscoring the dominance of Th2 and Th17 responses and revealing novel findings regarding the dysregulation of CD28, CTLA-4, and PD-1 expressions in ILDs for the first time.
Collapse
Affiliation(s)
- Mehmet Ali Karaselek
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Tugce Duran
- Department of Medical Genetic, Medicine Faculty, KTO Karatay University, Konya, Turkey
| | - Serkan Kuccukturk
- Department of Medical Biology, Medicine Faculty, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | - Hulya Vatansev
- Department of Chest Disease, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Pembe Oltulu
- Department of Pathology, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
108
|
Yuan Y. Imbalance of dendritic cell function in pulmonary fibrosis. Cytokine 2024; 181:156687. [PMID: 38963940 DOI: 10.1016/j.cyto.2024.156687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/08/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Pulmonary fibrosis (PF) is a chronic, irreversible interstitial lung disease. The pathogenesis of PF remains unclear, and there are currently no effective treatments or drugs that can completely cure PF. The primary cause of PF is an imbalance of inflammatory response and inappropriate repair following lung injury. Dendritic cells (DCs), as one of the immune cells in the body, play an important role in regulating immune response, immune tolerance, and promoting tissue repair following lung injury. However, the role of DCs in the PF process is ambiguous or even contradictory in the existing literature. On the one hand, DCs can secrete transforming growth factor β(TGF-β), stimulate Th17 cell differentiation, stimulate fibroblast proliferation, and promote the generation of inflammatory factors interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α), thereby promoting PF. On the other hand, DCs suppress PF through mechanisms including the secretion of IL-10 to inhibit effector T cell activity in the lungs and promote the function of regulatory T cells (Tregs), as well as by expressing matrix metalloproteinases (MMPs) which facilitate the degradation of the extracellular matrix (ECM). This article will infer possible reasons for the different roles of DCs in PF and analyze possible reasons for the functional imbalance of DCs in pulmonary fibrosis from the complexity and changes of the pulmonary microenvironment, autophagy defects of DCs, and changes in the pulmonary physical environment.
Collapse
Affiliation(s)
- Yuan Yuan
- Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China.
| |
Collapse
|
109
|
Cui Y, Hackett RG, Ascue J, Muralidaran V, Patil D, Kang J, Kaufman SS, Khan K, Kroemer A. Innate and Adaptive Immune Responses in Intestinal Transplant Rejection: Through the Lens of Inflammatory Bowel and Intestinal Graft-Versus-Host Diseases. Gastroenterol Clin North Am 2024; 53:359-382. [PMID: 39068000 DOI: 10.1016/j.gtc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intestinal transplantation is a life-saving procedure utilized for patients failing total parenteral nutrition. However, intestinal transplantattion remains plagued with low survival rates and high risk of allograft rejection. The authors explore roles of innate (macrophages, natural killer cells, innate lymphoid cells) and adaptive immune cells (Th1, Th2, Th17, Tregs) in inflammatory responses, particularly inflammatory bowel disease and graft versus host disease, and correlate these findings to intestinal allograft rejection, highlighting which effectors exacerbate or suppress intestinal rejection. Better understanding of this immunology can open further investigation into potential biomolecular targets to develop improved therapeutic treatment options and immunomonitoring techniques to combat allograft rejection and enhance patient lives.
Collapse
Affiliation(s)
- Yuki Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Ryan G Hackett
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Jhalen Ascue
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Vinona Muralidaran
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Stuart S Kaufman
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
110
|
Pastwińska J, Karwaciak I, Karaś K, Sałkowska A, Chałaśkiewicz K, Strapagiel D, Sobalska-Kwapis M, Dastych J, Ratajewski M. α-Hemolysin from Staphylococcus aureus Changes the Epigenetic Landscape of Th17 Cells. Immunohorizons 2024; 8:606-621. [PMID: 39240270 PMCID: PMC11447695 DOI: 10.4049/immunohorizons.2400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
The human body harbors a substantial population of bacteria, which may outnumber host cells. Thus, there are multiple interactions between both cell types. Given the common presence of Staphylococcus aureus in the human body and the role of Th17 cells in controlling this pathogen on mucous membranes, we sought to investigate the effect of α-hemolysin, which is produced by this bacterium, on differentiating Th17 cells. RNA sequencing analysis revealed that α-hemolysin influences the expression of signature genes for Th17 cells as well as genes involved in epigenetic regulation. We observed alterations in various histone marks and genome methylation levels via whole-genome bisulfite sequencing. Our findings underscore how bacterial proteins can significantly influence the transcriptome, epigenome, and phenotype of human Th17 cells, highlighting the intricate and complex nature of the interaction between immune cells and the microbiota.
Collapse
Affiliation(s)
- Joanna Pastwińska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Iwona Karwaciak
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna Sałkowska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Katarzyna Chałaśkiewicz
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marta Sobalska-Kwapis
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jarosław Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
111
|
Lang HP, Osum KC, Friedenberg SG. A review of CD4 + T cell differentiation and diversity in dogs. Vet Immunol Immunopathol 2024; 275:110816. [PMID: 39173398 PMCID: PMC11421293 DOI: 10.1016/j.vetimm.2024.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
CD4+ T cells are an integral component of the adaptive immune response, carrying out many functions to combat a diverse range of pathogenic challenges. These cells exhibit remarkable plasticity, differentiating into specialized subsets such as T helper type 1 (TH1), TH2, TH9, TH17, TH22, regulatory T cells (Tregs), and follicular T helper (TFH) cells. Each subset is capable of addressing a distinct immunological need ranging from pathogen eradication to regulation of immune homeostasis. As the immune response subsides, CD4+ T cells rest down into long-lived memory phenotypes-including central memory (TCM), effector memory (TEM), resident memory (TRM), and terminally differentiated effector memory cells (TEMRA) that are localized to facilitate a swift and potent response upon antigen re-encounter. This capacity for long-term immunological memory and rapid reactivation upon secondary exposure highlights the role CD4+ T cells play in sustaining both adaptive defense mechanisms and maintenance. Decades of mouse, human, and to a lesser extent, pig T cell research has provided the framework for understanding the role of CD4+ T cells in immune responses, but these model systems do not always mimic each other. Although our understanding of pig immunology is not as extensive as mouse or human research, we have gained valuable insight by studying this model. More akin to pigs, our understanding of CD4+ T cells in dogs is much less complete. This disparity exists in part because canine immunologists depend on paradigms from mouse and human studies to characterize CD4+ T cells in dogs, with a fraction of available lineage-defining antibody markers. Despite this, every major CD4+ T cell subset has been described to some extent in dogs. These subsets have been studied in various contexts, including in vitro stimulation, homeostatic conditions, and across a range of disease states. Canine CD4+ T cells have been categorized according to lineage-defining characteristics, trafficking patterns, and what cytokines they produce upon stimulation. This review addresses our current understanding of canine CD4+ T cells from a comparative perspective by highlighting both the similarities and differences from mouse, human, and pig CD4+ T cell biology. We also discuss knowledge gaps in our current understanding of CD4+ T cells in dogs that could provide direction for future studies in the field.
Collapse
Affiliation(s)
- Haeree P Lang
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Kevin C Osum
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA.
| | - Steven G Friedenberg
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
112
|
Ivanova M, Zimba O, Dimitrov I, Angelov AK, Georgiev T. Axial Spondyloarthritis: an overview of the disease. Rheumatol Int 2024; 44:1607-1619. [PMID: 38689098 DOI: 10.1007/s00296-024-05601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Axial Spondyloarthritis (axSpA) is a chronic, inflammatory, immune-mediated rheumatic disease that comprises two subsets, non-radiographic and radiographic axSpA, and belongs to a heterogeneous group of spondyloarthritides (SpA). Over the years, the concept of SpA has evolved significantly, as reflected in the existing classification criteria. Considerable progress has been made in understanding the genetic and immunological basis of axSpA, in studying the processes of chronic inflammation and pathological new bone formation, which are pathognomonic for the disease. As a result, new medication therapies were developed, which bring more effective ways for disease control. This review presents a brief overview of the literature related to these aspects of disease after summarising the available information on the topic that we considered relevant. Specifically, it delves into recent research illuminating the primary pathological processes of enthesitis and associated osteitis in the context of inflammation in axSpA. The exploration extends to discussion of inflammatory pathways, with a particular focus on Th1/Th17-mediated immunity and molecular signaling pathways of syndesmophyte formation. Additionally, the review sheds light on the pivotal role of cytokine dysregulation, highlighting the significance of the IL-23/17 axis and TNF-α in this intricate network of immune responses which is decisive for therapeutic approaches in the disease.
Collapse
Affiliation(s)
- Mariana Ivanova
- Medical Faculty, Medical University-Sofia, Sofia, Bulgaria.
- Clinic of Rheumatology, University Hospital "St. Ivan Rilski", 13, Urvich St., Sofia, 1612, Bulgaria.
| | - Olena Zimba
- Department of Rheumatology, Immunology and Internal Medicine, University Hospital in Krakow, Kraków, Poland
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Department of Internal Medicine N2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Ivan Dimitrov
- Clinic of Orthopedics and Traumatology, University Hospital "Prof. Dr. St. Kirkovich", Stara Zagora, Bulgaria
- Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| | | | - Tsvetoslav Georgiev
- First Department of Internal Medicine, Faculty of Medicine, Medical University-Varna, Varna, Bulgaria
- Rheumatology Clinic, St. Marina University Hospital-Varna, Varna, Bulgaria
| |
Collapse
|
113
|
Fesneau O, Thevin V, Pinet V, Goldsmith C, Vieille B, M'Homa Soudja S, Lattanzio R, Hahne M, Dardalhon V, Hernandez-Vargas H, Benech N, Marie JC. An intestinal T H17 cell-derived subset can initiate cancer. Nat Immunol 2024; 25:1637-1649. [PMID: 39060651 PMCID: PMC11362008 DOI: 10.1038/s41590-024-01909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Approximately 25% of cancers are preceded by chronic inflammation that occurs at the site of tumor development. However, whether this multifactorial oncogenic process, which commonly occurs in the intestines, can be initiated by a specific immune cell population is unclear. Here, we show that an intestinal T cell subset, derived from interleukin-17 (IL-17)-producing helper T (TH17) cells, induces the spontaneous transformation of the intestinal epithelium. This subset produces inflammatory cytokines, and its tumorigenic potential is not dependent on IL-17 production but on the transcription factors KLF6 and T-BET and interferon-γ. The development of this cell type is inhibited by transforming growth factor-β1 (TGFβ1) produced by intestinal epithelial cells. TGFβ signaling acts on the pretumorigenic TH17 cell subset, preventing its progression to the tumorigenic stage by inhibiting KLF6-dependent T-BET expression. This study therefore identifies an intestinal T cell subset initiating cancer.
Collapse
Affiliation(s)
- Olivier Fesneau
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
| | - Valentin Thevin
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
| | - Valérie Pinet
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Chloe Goldsmith
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
| | - Baptiste Vieille
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
| | - Saïdi M'Homa Soudja
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
| | - Rossano Lattanzio
- Department of Innovative Technologies in Medicine & Dentistry, Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Michael Hahne
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Valérie Dardalhon
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France
| | - Hector Hernandez-Vargas
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
| | - Nicolas Benech
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France
- Hospices Civils de Lyon, Service d'Hépato-Gastroentérologie, Croix Rousse Hospital, Lyon, France
| | - Julien C Marie
- Cancer Research Center of Lyon (CRCL) INSERM U 1052, CNRS UMR 5286, Centre Léon Bérard, Claude Bernard Lyon 1 University, Lyon, France.
- Equipe Labellisée Ligue Nationale Contre le Cancer, Lyon, France.
| |
Collapse
|
114
|
Pohlers M, Gies S, Taenzer T, Stroeder R, Theobald L, Ludwig N, Kim Y, Bohle RM, Solomayer EF, Meese E, Hart M, Walch‐Rückheim B. Th17 cells target the metabolic miR-142-5p-succinate dehydrogenase subunit C/D (SDHC/SDHD) axis, promoting invasiveness and progression of cervical cancers. Mol Oncol 2024; 18:2157-2178. [PMID: 37899663 PMCID: PMC11467798 DOI: 10.1002/1878-0261.13546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
During cervical carcinogenesis, T-helper (Th)-17 cells accumulate in the peripheral blood and tumor tissues of cancer patients. We previously demonstrated that Th17 cells are associated with therapy resistance as well as cervical cancer metastases and relapse; however, the underlying Th17-driven mechanisms are not fully understood. Here, using microarrays, we found that Th17 cells induced an epithelial-to-mesenchymal transition (EMT) phenotype of cervical cancer cells and promoted migration and invasion of 2D cultures and 3D spheroids via induction of microRNA miR-142-5p. As the responsible mechanism, we identified the subunits C and D of the succinate dehydrogenase (SDH) complex as new targets of miR-142-5p and provided evidence that Th17-miR-142-5p-dependent reduced expression of SDHC and SDHD mediated enhanced migration and invasion of cancer cells using small interfering RNAs (siRNAs) for SDHC and SDHD, and miR-142-5p inhibitors. Consistently, patients exhibited high levels of succinate in their serum associated with lymph node metastases and diminished expression of SDHD in patient biopsies correlated with increased numbers of Th17 cells. Correspondingly, a combination of weak or negative SDHD expression and a ratio of Th17/CD4+ T cells > 43.90% in situ was associated with reduced recurrence-free survival. In summary, we unraveled a previously unknown molecular mechanism by which Th17 cells promote cervical cancer progression and suggest evaluation of Th17 cells as a potential target for immunotherapy in cervical cancer.
Collapse
Affiliation(s)
- Maike Pohlers
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| | - Selina Gies
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| | - Tanja Taenzer
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| | - Russalina Stroeder
- Department of Obstetrics and GynecologySaarland University Medical CenterHomburg/SaarGermany
| | - Laura Theobald
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| | - Nicole Ludwig
- Institute of Human GeneticsSaarland UniversityHomburg/SaarGermany
| | - Yoo‐Jin Kim
- Institute of PathologySaarland University Medical CenterHomburg/SaarGermany
| | - Rainer Maria Bohle
- Institute of PathologySaarland University Medical CenterHomburg/SaarGermany
| | - Erich Franz Solomayer
- Department of Obstetrics and GynecologySaarland University Medical CenterHomburg/SaarGermany
| | - Eckart Meese
- Institute of Human GeneticsSaarland UniversityHomburg/SaarGermany
| | - Martin Hart
- Institute of Human GeneticsSaarland UniversityHomburg/SaarGermany
| | - Barbara Walch‐Rückheim
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| |
Collapse
|
115
|
Pham T, Nguyen TT, Nguyen NH, Hayles A, Li W, Pham DQ, Nguyen CK, Nguyen T, Vongsvivut J, Ninan N, Sabri Y, Zhang W, Vasilev K, Truong VK. Transforming Spirulina maxima Biomass into Ultrathin Bioactive Coatings Using an Atmospheric Plasma Jet: A New Approach to Healing of Infected Wounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305469. [PMID: 37715087 DOI: 10.1002/smll.202305469] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Indexed: 09/17/2023]
Abstract
The challenge of wound healing, particularly in patients with comorbidities such as diabetes, is intensified by wound infection and the accelerating problem of bacterial resistance to current remedies such as antibiotics and silver. One promising approach harnesses the bioactive and antibacterial compound C-phycocyanin from the microalga Spirulina maxima. However, the current processes of extracting this compound and developing coatings are unsustainable and difficult to achieve. To circumvent these obstacles, a novel, sustainable argon atmospheric plasma jet (Ar-APJ) technology that transforms S. maxima biomass into bioactive coatings is presented. This Ar-APJ can selectively disrupt the cell walls of S. maxima, converting them into bioactive ultrathin coatings, which are found to be durable under aqueous conditions. The findings demonstrate that Ar-APJ-transformed bioactive coatings show better antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Moreover, these coatings exhibit compatibility with macrophages, induce an anti-inflammatory response by reducing interleukin 6 production, and promote cell migration in keratinocytes. This study offers an innovative, single-step, sustainable technology for transforming microalgae into bioactive coatings. The approach reported here has immense potential for the generation of bioactive coatings for combating wound infections and may offer a significant advance in wound care research and application.
Collapse
Affiliation(s)
- Tuyet Pham
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Tien Thanh Nguyen
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
- College of Medicine and Pharmacy, Tra Vinh University, Tra Vinh, 87000, Vietnam
| | - Ngoc Huu Nguyen
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
- School of Biomedical Engineering, University of Sydney, Darlington, NSW, 2006, Australia
| | - Andrew Hayles
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Wenshao Li
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Duy Quang Pham
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
- School of Engineering, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Chung Kim Nguyen
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Trung Nguyen
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy Beamline, ANSTO Australian Synchrotron, Clayton, Victoria, 3168, Australia
| | - Neethu Ninan
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Ylias Sabri
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Wei Zhang
- Advanced Marine Biomanufacturing Laboratory, Centre for Marine Bioproduct Development, College of Medicine and Public Health, Flinders University, Adelaide, 5042, Australia
| | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| |
Collapse
|
116
|
Yeh YA, Liao HY, Hsiao IH, Hsu HC, Lin YW. Electroacupuncture Reduced Fibromyalgia-Pain-like Behavior through Inactivating Transient Receptor Potential V1 and Interleukin-17 in Intermittent Cold Stress Mice Model. Brain Sci 2024; 14:869. [PMID: 39335365 PMCID: PMC11430684 DOI: 10.3390/brainsci14090869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Fibromyalgia (FM) is a widespread musculoskeletal pain associated with psychological disturbances, the etiopathogenesis of which is still not clear. One hypothesis implicates inflammatory cytokines in increasing central and peripheral sensitization along with neuroinflammation, leading to an elevation in pro-inflammatory cytokines, e.g., interleukin-17A (IL-17A), enhanced in FM patients and animal models. The intermittent cold stress (ICS)-induced FM-like model in C57BL/6 mice has been developed since 2008 and proved to have features which mimic the clinical pattern in FM patients such as mechanical allodynia, hyperalgesia, and female predominance of pain. Electroacupuncture (EA) is an effective treatment for relieving pain in FM patients, but its mechanism is not totally clear. It was reported as attenuating pain-like behaviors in the ICS mice model through the transient receptor potential vanilloid 1 (TRPV1) pathway. Limited information indicates that TRPV1-positive neurons trigger IL-17A-mediated inflammation. Therefore, we hypothesized that the IL-17A would be inactivated by EA and TRPV1 deletion in the ICS-induced FM-like model in mice. We distributed mice into a control (CON) group, ICS-induced FM model (FM) group, FM model with EA treatment (EA) group, FM model with sham EA treatment (Sham) group, and TRPV1 gene deletion (Trpv1-/-) group. In the result, ICS-induced mechanical and thermal hyperalgesia increased pro-inflammatory cytokines including IL-6, IL-17, TNFα, and IFNγ in the plasma, as well as TRPV1, IL-17RA, pPI3K, pAkt, pERK, pp38, pJNK, and NF-κB in the somatosensory cortex (SSC) and cerebellum (CB) lobes V, VI, and VII. Moreover, EA and Trpv1-/- but not sham EA countered these effects significantly. The molecular mechanism may involve the pro-inflammatory cytokines, including IL-6, IL-17, TNFα, and IFNγ. IL-17A-IL-17RA play a crucial role in peripheral and central sensitization as well as neuroinflammation and cannot be activated without TRPV1 in the ICS mice model. EA alleviated FM-pain-like behaviors, possibly by abolishing the TRPV1- and IL-17A-related pathways. It suggests that EA is an effective and potential therapeutic strategy in FM.
Collapse
Affiliation(s)
- Yu-An Yeh
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan;
- Department of Chinese Traumatology Medicine, China Medical University Hospital, Taichung 404327, Taiwan
| | - Hsien-Yin Liao
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan; (H.-Y.L.)
| | - I-Han Hsiao
- School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan;
| | - Hsin-Cheng Hsu
- School of Medicine, College of Medicine, China Medical University, Taichung 404328, Taiwan;
- Department of Traditional Chinese Medicine, China Medical University Hsinchu Hospital, Hsinchu 302056, Taiwan
| | - Yi-Wen Lin
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 404328, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
117
|
Delahousse J, Molina L, Paci A. "Cyclophosphamide and analogues; a matter of dose and schedule for dual anticancer activities". Cancer Lett 2024; 598:217119. [PMID: 39002693 DOI: 10.1016/j.canlet.2024.217119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Cyclophosphamide and ifosfamide are major alkylating agents but their therapeutics uses are limiting by the toxicity due to several toxicities. Indeed conventional chemotherapies are generally used with the maximum tolerated dose. In contrast, metronomic schedule aims to get a minimum dose for efficacy with a good safety. Depending on the dose, their mechanisms of action are different and offer a dual activity: at high dose, cyclophosphamide is mainly used in graft conditioning for its immunosuppressive properties, while at metronomic dose it is used as an immunoactive agent. Currently, at metronomic dose, cyclophosphamide is studied in clinic against various types of cancer, alone or in combination with others anticancer drugs (anti-angiogenic, immune-modulating agents, immune checkpoints blockers, vaccines, radiotherapy, others conventional anticancer agents), as a nth-line or first-line treatment. More than three quarters of clinical studies show promising results, mostly in breast, ovarian and prostate cancers. Taking advantage of the immune system, use dual antitumor action's chemotherapy is clearly a therapeutic strategy that deserves to be confirmed in order to improve the efficacy/toxicity balance of anticancer treatments, and to use CPM or analogues as a standard of care.
Collapse
Affiliation(s)
| | - Leonardo Molina
- Gustave Roussy, Department of Pharmacology, Villejuif, France
| | - Angelo Paci
- Gustave Roussy, Department of Pharmacology, Villejuif, France; Pharmacokinetics Department, Faculté de Pharmacie, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
118
|
Arslan D, Ergul-Ulger Z, Goksen S, Esendagli G, Erdem-Ozdamar S, Tan E, Bekircan-Kurt CE. Effect of Follicular T Helper and T Helper 17 Cells-Related Molecules on Disease Severity in Patients with Myasthenia Gravis. Eur Neurol 2024; 87:223-229. [PMID: 39168115 DOI: 10.1159/000540794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION Contribution of T helper 1 and 2 cells-related cytokines to pathogenesis of myasthenia gravis (MG) is well known. Recently, the contribution of follicular T helper (Tfh) and T helper 17 cells-related molecules to the pathogenesis has gained importance. In this study, we aimed to evaluate the changes in Tfh- and Th17-related molecules before and after rescue therapy in patients with myasthenic crisis (cMG) and to reveal the molecular differences between stable MG and cMG patients. METHODS Patients with stable generalized MG (gMG) and cMG were classified according to Myasthenia Gravis Foundation of America (MGFA) classification. Serum samples were collected from cMG patients both before and after rescue therapy (plasmapheresis or intravenous immunoglobulin [IVIg]). Serum levels of Tfh- and selected Th17-related molecules (IL-22, IL-17A, CXCL13, sPD-L1, sICOSLG, and sCD40L) were analyzed by commercial ELISA kits. RESULTS Twelve cMG (6 for IVIg, 6 for plasmapheresis) and 10 gMG patients were included in the study. A decrease in serum sPD-L1 and CXCL13 levels was observed in cMG patients after treatment, regardless of the treatment modality (p < 0.05). In contrast, serum sICOSLG levels decreased only in patients treated with IVIg (p < 0.05) and serum IL-22 levels increased in patients receiving plasmapheresis (p < 0.05). cMG patients had higher serum IL-17A levels compared to stable patients (p < 0.001) and its level was positively correlated with disease severity (r = 0.678, p = 0.001). CONCLUSION Our results confirm the contribution of Tfh- and Th17-related cell pathways to MG pathogenesis. Both IVIg and plasmapheresis appear to be effective in reducing Tfh- and Th17-related cytokine/molecule levels in cMG patients. Increased serum IL-17A levels may contribute to disease severity.
Collapse
Affiliation(s)
- Doruk Arslan
- Department of Neurology, Hacettepe University School of Medicine, Ankara, Turkey
- Department of Neurology, Sincan Research and Training Hospital, Ankara, Turkey
| | - Zeynep Ergul-Ulger
- Department of Neurology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Sibel Goksen
- Department of Medical and Surgical Research, Hacettepe University Institute of Health Sciences, Ankara, Turkey
| | - Gunes Esendagli
- Department of Medical and Surgical Research, Hacettepe University Institute of Health Sciences, Ankara, Turkey
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Sevim Erdem-Ozdamar
- Department of Neurology, Hacettepe University School of Medicine, Ankara, Turkey
- Neuromuscular Diseases and Research Laboratory, Department of Neurology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Ersin Tan
- Department of Neurology, Hacettepe University School of Medicine, Ankara, Turkey
- Neuromuscular Diseases and Research Laboratory, Department of Neurology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Can Ebru Bekircan-Kurt
- Department of Neurology, Hacettepe University School of Medicine, Ankara, Turkey
- Neuromuscular Diseases and Research Laboratory, Department of Neurology, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
119
|
Sun X, Gu R, Bai J. Differentiation and regulation of CD4 + T cell subsets in Parkinson's disease. Cell Mol Life Sci 2024; 81:352. [PMID: 39153043 PMCID: PMC11335276 DOI: 10.1007/s00018-024-05402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and its hallmark pathological features are the loss of dopaminergic (DA) neurons in the midbrain substantia nigra pars compacta (SNpc) and the accumulation of alpha-synuclein (α-syn). It has been shown that the integrity of the blood-brain barrier (BBB) is damaged in PD patients, and a large number of infiltrating T cells and inflammatory cytokines have been detected in the cerebrospinal fluid (CSF) and brain parenchyma of PD patients and PD animal models, including significant change in the number and proportion of different CD4+ T cell subsets. This suggests that the neuroinflammatory response caused by CD4+ T cells is an important risk factor for the development of PD. Here, we systematically review the differentiation of CD4+ T cell subsets, and focus on describing the functions and mechanisms of different CD4+ T cell subsets and their secreted cytokines in PD. We also summarize the current immunotherapy targeting CD4+ T cells with a view to providing assistance in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| | - Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650500, China.
| |
Collapse
|
120
|
Kong B, Lai Y. IL-17 family cytokines in inflammatory or autoimmune skin diseases. Adv Immunol 2024; 163:21-49. [PMID: 39271258 DOI: 10.1016/bs.ai.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
As potent pro-inflammatory mediators, IL-17 family cytokines play crucial roles in the pathogenesis of various inflammatory and autoimmune skin disorders. Although substantial progress has been achieved in understanding the pivotal role of IL-17A signaling in psoriasis, leading to the development of highly effective biologics, the functions of other IL-17 family members in inflammatory or autoimmune skin diseases remain less explored. In this review, we provide a comprehensive overview of IL-17 family cytokines and their receptors, with a particular focus on the recent advancements in identifying cellular sources, receptors and signaling pathways regulated by these cytokines. At the end, we discuss how the aberrant functions of IL-17 family cytokines contribute to the pathogenesis of diverse inflammatory or autoimmune skin diseases.
Collapse
Affiliation(s)
- Baida Kong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, P.R. China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, P.R. China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai, P.R. China.
| |
Collapse
|
121
|
Cascetta G, Colombo G, Eremita G, Garcia JGN, Lenti MV, Di Sabatino A, Travelli C. Pro- and anti-inflammatory cytokines: the hidden keys to autoimmune gastritis therapy. Front Pharmacol 2024; 15:1450558. [PMID: 39193325 PMCID: PMC11347309 DOI: 10.3389/fphar.2024.1450558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Autoimmune gastritis (AIG) is an autoimmune disorder characterized by the destruction of gastric parietal cells and atrophy of the oxyntic mucosa which induces intrinsic factor deficiency and hypo-achlorhydria. AIG predominantly affects the antral mucosa with AIG patients experiencing increased inflammation and a predisposition toward the development of gastric adenocarcinoma and type I neuroendocrine tumors. The exact pathogenesis of this autoimmune disorder is incompletely understood although dysregulated immunological mechanisms appear to major contributors. This review of autoimmune gastritis, an unmet medical need, summarizes current knowledge on pro- and anti-inflammatory cytokines and strategies for the discovery of novel biomarkers and potential pharmacological targets.
Collapse
Affiliation(s)
- Greta Cascetta
- Department of Pharmaceutical Sciences, University of Pavia, Pavia, Italy
| | - Giorgia Colombo
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Gianmarco Eremita
- Department of Pharmaceutical Sciences, University of Pavia, Pavia, Italy
| | - Joe G. N. Garcia
- Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL, United States
| | - Marco Vincenzo Lenti
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
122
|
Zhou Y, Gong J, Deng X, Shen L, Liu L. Novel insights: crosstalk with non-puerperal mastitis and immunity. Front Immunol 2024; 15:1431681. [PMID: 39148739 PMCID: PMC11324573 DOI: 10.3389/fimmu.2024.1431681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
The two primary types of non-puerperal mastitis (NPM) are granulomatous lobular mastitis (GLM) and plasma cell mastitis (PCM). Existing research indicates that immune inflammatory response is considered to be the core of the pathogenesis of GLM and PCM, and both innate and adaptive immune responses play an important role in the pathophysiology of PCM and GLM. However, the regulatory balance between various immune cells in these diseases is still unclear. Consequently, we present a comprehensive summary of the immune-related variables and recent advances in GLM and PCM.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jie Gong
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xianguang Deng
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lele Shen
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lifang Liu
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
123
|
Zhang B, Yang Y, Li Q, Ding X, Tian M, Ma Q, Xu D. Impacts of PFOS, PFOA and their alternatives on the gut, intestinal barriers and gut-organ axis. CHEMOSPHERE 2024; 361:142461. [PMID: 38810808 DOI: 10.1016/j.chemosphere.2024.142461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/28/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
With the restricted use of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), a number of alternatives to PFOS and PFOA have attracted great interest. Most of the alternatives are still characterized by persistence, bioaccumulation, and a variety of toxicity. Due to the production and use of these substances, they can be detected in the atmosphere, soil and water body. They affect human health through several exposure pathways and especially enter the gut by drinking water and eating food, which results in gut toxicity. In this review, we summarized the effects of PFOS, PFOA and 9 alternatives on pathological changes in the gut, the disruption of physical, chemical, biological and immune barriers of the intestine, and the gut-organ axis. This review provides a valuable understanding of the gut toxicity of PFOS, PFOA and their alternatives as well as the human health risks of emerging contaminants.
Collapse
Affiliation(s)
- Boxiang Zhang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Yunhui Yang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Qing Li
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Xiaolin Ding
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Mingming Tian
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Qiao Ma
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Dan Xu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| |
Collapse
|
124
|
Rodríguez-Míguez Y, Lozano-Ordaz V, Ortiz-Cabrera AE, Barrios-Payan J, Mata-Espinosa D, Huerta-Yepez S, Baay-Guzman G, Hernández-Pando R. Effect of IL-17A on the immune response to pulmonary tuberculosis induced by high- and low-virulence strains of Mycobacterium bovis. PLoS One 2024; 19:e0307307. [PMID: 39024223 PMCID: PMC11257284 DOI: 10.1371/journal.pone.0307307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Tuberculosis (TB) is an infectious, chronic, and progressive disease occurring globally. Human TB is caused mainly by Mycobacterium tuberculosis (M. tuberculosis), while the main causative agent of bovine TB is Mycobacterium bovis (M. bovis). The latter is one of the most important cattle pathogens and is considered the main cause of zoonotic TB worldwide. The mechanisms responsible for tissue damage (necrosis) during post-primary TB remain elusive. Recently, IL-17A was reported to be important for protection against M. tuberculosis infection, but it is also related to the production of an intense inflammatory response associated with necrosis. We used two M. bovis isolates with different levels of virulence and high IL-17A production to study this important cytokine's contrasting functions in a BALB/c mouse model of pulmonary TB. In the first part of the study, the gene expression kinetics and cellular sources of IL-17A were determined by real time PCR and immunohistochemistry respectively. Non-infected lungs showed low production of IL-17A, particularly by the bronchial epithelium, while lungs infected with the low-virulence 534 strain showed high IL-17A expression on Day 3 post-infection, followed by a decrease in expression in the early stage of the infection and another increase during late infection, on Day 60, when very low bacillary burdens were found. In contrast, infection with the highly virulent strain 04-303 induced a peak of IL-17A expression on Day 14 of infection, 1 week before extensive pulmonary necrosis was seen, being lymphocytes and macrophages the most important sources. In the second part of the study, the contribution of IL-17A to immune protection and pulmonary necrosis was evaluated by suppressing IL-17A via the administration of specific blocking antibodies. Infection with M. bovis strain 534 and treatment with IL-17A neutralizing antibodies did not affect mouse survival but produced a significant increase in bacillary load and a non-significant decrease in inflammatory infiltrate and granuloma area. In contrast, mice infected with the highly virulent 04-303 strain and treated with IL-17A blocking antibodies showed a significant decrease in survival, an increase in bacillary loads on Day 24 post-infection, and significantly more and earlier necrosis. Our results suggest that high expression of IL-17A is more related to protection than necrosis in a mouse model of pulmonary TB induced by M. bovis strains.
Collapse
Affiliation(s)
- Yadira Rodríguez-Míguez
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Patología, Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Vasti Lozano-Ordaz
- Departamento de Patología, Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Angel E. Ortiz-Cabrera
- Departamento de Patología, Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Jorge Barrios-Payan
- Departamento de Patología, Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Dulce Mata-Espinosa
- Departamento de Patología, Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Guillermina Baay-Guzman
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Departamento de Patología, Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| |
Collapse
|
125
|
Yang S, Li X, Yan J, Jiang F, Fan X, Jin J, Zhang W, Zhong D, Li G. Disulfiram downregulates ferredoxin 1 to maintain copper homeostasis and inhibit inflammation in cerebral ischemia/reperfusion injury. Sci Rep 2024; 14:15175. [PMID: 38956251 PMCID: PMC11219760 DOI: 10.1038/s41598-024-64981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
In the current study, we aimed to investigate whether disulfiram (DSF) exerts a neuroprotective role in cerebral ischemiareperfusion (CI-RI) injury by modulating ferredoxin 1 (FDX1) to regulate copper ion (Cu) levels and inhibiting inflammatory responses. To simulate CI-RI, a transient middle cerebral artery occlusion (tMCAO) model in C57/BL6 mice was employed. Mice were administered with or without DSF before and after tMCAO. Changes in infarct volume after tMCAO were observed using TTC staining. Nissl staining and hematoxylin-eosin (he) staining were used to observe the morphological changes of nerve cells at the microscopic level. The inhibitory effect of DSF on initial inflammation was verified by TUNEL assay, apoptosis-related protein detection and iron concentration detection. FDX1 is the main regulatory protein of copper death, and the occurrence of copper death will lead to the increase of HSP70 stress and inflammatory response. Cuproptosis-related proteins and downstream inflammatory factors were detected by western blotting, immunofluorescence staining, and immunohistochemistry. The content of copper ions was detected using a specific kit, while electron microscopy was employed to examine mitochondrial changes. We found that DSF reduced the cerebral infarction volume, regulated the expression of cuproptosis-related proteins, and modulated copper content through down regulation of FDX1 expression. Moreover, DSF inhibited the HSP70/TLR-4/NLRP3 signaling pathway. Collectively, DSF could regulate Cu homeostasis by inhibiting FDX1, acting on the HSP70/TLR4/NLRP3 pathway to alleviate CI/RI. Accordingly, DSF could mitigate inflammatory responses and safeguard mitochondrial integrity, yielding novel therapeutic targets and mechanisms for the clinical management of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Shuai Yang
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Xudong Li
- The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin, 150001, China
| | - Jinhong Yan
- The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin, 150001, China
| | - Fangchao Jiang
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Xuehui Fan
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Jing Jin
- Heilongjiang Provincial Hospital, Harbin, China
| | - Weihua Zhang
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Di Zhong
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China.
| | - Guozhong Li
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China.
- Heilongjiang Provincial Hospital, Harbin, China.
| |
Collapse
|
126
|
Tian K, Jing D, Lan J, Lv M, Wang T. Commensal microbiome and gastrointestinal mucosal immunity: Harmony and conflict with our closest neighbor. Immun Inflamm Dis 2024; 12:e1316. [PMID: 39023417 PMCID: PMC11256888 DOI: 10.1002/iid3.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The gastrointestinal tract contains a wide range of microorganisms that have evolved alongside the immune system of the host. The intestinal mucosa maintains balance within the intestines by utilizing the mucosal immune system, which is controlled by the complex gut mucosal immune network. OBJECTIVE This review aims to comprehensively introduce current knowledge of the gut mucosal immune system, focusing on its interaction with commensal bacteria. RESULTS The gut mucosal immune network includes gut-associated lymphoid tissue, mucosal immune cells, cytokines, and chemokines. The connection between microbiota and the immune system occurs through the engagement of bacterial components with pattern recognition receptors found in the intestinal epithelium and antigen-presenting cells. This interaction leads to the activation of both innate and adaptive immune responses. The interaction between the microbial community and the host is vital for maintaining the balance and health of the host's mucosal system. CONCLUSION The gut mucosal immune network maintains a delicate equilibrium between active immunity, which defends against infections and damaging non-self antigens, and immunological tolerance, which allows for the presence of commensal microbiota and dietary antigens. This balance is crucial for the maintenance of intestinal health and homeostasis. Disturbance of gut homeostasis leads to enduring or severe gastrointestinal ailments, such as colorectal cancer and inflammatory bowel disease. Utilizing these factors can aid in the development of cutting-edge mucosal vaccines that have the ability to elicit strong protective immune responses at the primary sites of pathogen invasion.
Collapse
Affiliation(s)
- Kexin Tian
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Dehong Jing
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Junzhe Lan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Mingming Lv
- Department of BreastWomen's Hospital of Nanjing Medical University, Nanjing Maternity, and Child Health Care HospitalNanjingChina
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
127
|
Kalim UU, Biradar R, Junttila S, Khan MM, Tripathi S, Khan MH, Smolander J, Kanduri K, Envall T, Laiho A, Marson A, Rasool O, Elo LL, Lahesmaa R. A proximal enhancer regulates RORA expression during early human Th17 cell differentiation. Clin Immunol 2024; 264:110261. [PMID: 38788884 DOI: 10.1016/j.clim.2024.110261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Gene regulatory elements, such as enhancers, greatly influence cell identity by tuning the transcriptional activity of specific cell types. Dynamics of enhancer landscape during early human Th17 cell differentiation remains incompletely understood. Leveraging ATAC-seq-based profiling of chromatin accessibility and comprehensive analysis of key histone marks, we identified a repertoire of enhancers that potentially exert control over the fate specification of Th17 cells. We found 23 SNPs associated with autoimmune diseases within Th17-enhancers that precisely overlapped with the binding sites of transcription factors actively engaged in T-cell functions. Among the Th17-specific enhancers, we identified an enhancer in the intron of RORA and demonstrated that this enhancer positively regulates RORA transcription. Moreover, CRISPR-Cas9-mediated deletion of a transcription factor binding site-rich region within the identified RORA enhancer confirmed its role in regulating RORA transcription. These findings provide insights into the potential mechanism by which the RORA enhancer orchestrates Th17 differentiation.
Collapse
Affiliation(s)
- Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| | - Rahul Biradar
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Mohd Moin Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Subhash Tripathi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Meraj Hasan Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johannes Smolander
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Kartiek Kanduri
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Tapio Envall
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland; Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland; Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
128
|
Heydari R, Karimi P, Meyfour A. Long non-coding RNAs as pathophysiological regulators, therapeutic targets and novel extracellular vesicle biomarkers for the diagnosis of inflammatory bowel disease. Biomed Pharmacother 2024; 176:116868. [PMID: 38850647 DOI: 10.1016/j.biopha.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disease of the gastrointestinal (GI) system that includes two groups, Crohn's disease (CD) and ulcerative colitis (UC). To cope with these two classes of IBD, the investigation of pathogenic mechanisms and the discovery of new diagnostic and therapeutic approaches are crucial. Long non-coding RNAs (lncRNAs) which are non-coding RNAs with a length of longer than 200 nucleotides have indicated significant association with the pathology of IBD and strong potential to be used as accurate biomarkers in diagnosing and predicting responses to the IBD treatment. In the current review, we aim to investigate the role of lncRNAs in the pathology and development of IBD. We first describe recent advances in research on dysregulated lncRNAs in the pathogenesis of IBD from the perspective of epithelial barrier function, intestinal immunity, mitochondrial function, and intestinal autophagy. Then, we highlight the possible translational role of lncRNAs as therapeutic targets, diagnostic biomarkers, and predictors of therapeutic response in colon tissues and plasma samples. Finally, we discuss the potential of extracellular vesicles and their lncRNA cargo in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Padideh Karimi
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
129
|
Elahi R, Nazari M, Mohammadi V, Esmaeilzadeh K, Esmaeilzadeh A. IL-17 in type II diabetes mellitus (T2DM) immunopathogenesis and complications; molecular approaches. Mol Immunol 2024; 171:66-76. [PMID: 38795686 DOI: 10.1016/j.molimm.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 05/28/2024]
Abstract
Chronic inflammation has long been considered the characteristic feature of type II diabetes mellitus (T2DM) Immunopathogenesis. Pro-inflammatory cytokines are considered the central drivers of the inflammatory cascade leading to β-cell dysfunction and insulin resistance (IR), two major pathologic events contributing to T2DM. Analyzing the cytokine profile of T2DM patients has also introduced interleukin-17 (IL-17) as an upstream regulator of inflammation, regarding its role in inducing the nuclear factor-kappa B (NF-κB) pathway. In diabetic tissues, IL-17 induces the expression of inflammatory cytokines and chemokines. Hence, IL-17 can deteriorate insulin signaling and β-cell function by activating the JNK pathway and inducing infiltration of neutrophils into pancreatic islets, respectively. Additionally, higher levels of IL-17 expression in patients with diabetic complications compared to non-complicated individuals have also proposed a role for IL-17 in T2DM complications. Here, we highlight the role of IL-17 in the Immunopathogenesis of T2DM and corresponding pathways, recent advances in preclinical and clinical studies targeting IL-17 in T2DM, and corresponding challenges and possible solutions.
Collapse
Affiliation(s)
- Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
130
|
Li J, Zhao T, Sun Y. Interleukin-17A in diabetic retinopathy: The crosstalk of inflammation and angiogenesis. Biochem Pharmacol 2024; 225:116311. [PMID: 38788958 DOI: 10.1016/j.bcp.2024.116311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Diabetic retinopathy (DR) is a severe ocular complication of diabetes which can leads to irreversible vision loss in its late-stage. Chronic inflammation results from long-term hyperglycemia contributes to the pathogenesis and progression of DR. In recent years, the interleukin-17 (IL-17) family have attracted the interest of researchers. IL-17A is the most widely explored cytokine in IL-17 family, involved in various acute and chronic inflammatory diseases. Growing body of evidence indicate the role of IL-17A in the pathogenesis of DR. However, the pro-inflammatory and pro-angiogenic effect of IL-17A in DR have not hitherto been reviewed. Gaining an understanding of the pro-inflammatory role of IL-17A, and how IL-17A control/impact angiogenesis pathways in the eye will deepen our understanding of how IL-17A contributes to DR pathogenesis. Herein, we aimed to thoroughly review the pro-inflammatory role of IL-17A in DR, with focus in how IL-17A impact inflammation and angiogenesis crosstalk.
Collapse
Affiliation(s)
- Jiani Li
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Tantai Zhao
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China.
| |
Collapse
|
131
|
Liu S, Yang S, Blazekovic B, Li L, Zhang J, Wang Y. Bioactivities, Mechanisms, Production, and Potential Application of Bile Acids in Preventing and Treating Infectious Diseases. ENGINEERING 2024; 38:13-26. [DOI: 10.1016/j.eng.2023.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
132
|
Silveira-Freitas JEP, Campagnolo ML, dos Santos Cortez M, de Melo FF, Zarpelon-Schutz AC, Teixeira KN. Long chikungunya? An overview to immunopathology of persistent arthralgia. World J Virol 2024; 13:89985. [PMID: 38984075 PMCID: PMC11229846 DOI: 10.5501/wjv.v13.i2.89985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 04/12/2024] [Indexed: 06/24/2024] Open
Abstract
Chikungunya fever (CF) is caused by an arbovirus whose manifestations are extremely diverse, and it has evolved with significant severity in recent years. The clinical signs triggered by the Chikungunya virus are similar to those of other arboviruses. Generally, fever starts abruptly and reaches high levels, followed by severe polyarthralgia and myalgia, as well as an erythematous or petechial maculopapular rash, varying in severity and extent. Around 40% to 60% of affected individuals report persistent arthralgia, which can last from months to years. The symptoms of CF mainly represent the tissue tropism of the virus rather than the immunopathogenesis triggered by the host's immune system. The main mechanisms associated with arthralgia have been linked to an increase in T helper type 17 cells and a consequent increase in receptor activator of nuclear factor kappa-Β ligand and bone resorption. This review suggests that persistent arthralgia results from the presence of viral antigens post-infection and the constant activation of signaling lymphocytic activation molecule family member 7 in synovial macrophages, leading to local infiltration of CD4+ T cells, which sustains the inflammatory process in the joints through the secretion of pro-inflammatory cytokines. The term "long chikungunya" was used in this review to refer to persistent arthralgia since, due to its manifestation over long periods after the end of the viral infection, this clinical condition seems to be characterized more as a sequel than as a symptom, given that there is no active infection involved.
Collapse
Affiliation(s)
| | | | | | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Campus Anísio Teixeira, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Ana Carla Zarpelon-Schutz
- Campus Toledo, Universidade Federal do Paraná, Toledo, Paraná 85919-899, Brazil
- Programa de Pós-graduação em Biotecnologia, Palotina, Universidade Federal do Paraná-Setor Palotina, Paraná 85950-000, Brazil
| | - Kádima Nayara Teixeira
- Campus Toledo, Universidade Federal do Paraná, Toledo, Paraná 85919-899, Brazil
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Palotina, Universidade Federal do Paraná-Setor Palotina, Paraná 85950-000, Brazil
| |
Collapse
|
133
|
Wang Q, Wu Y, Wang X, Zhang J, Li L, Wu J, Lu Y, Han L. Genomic correlation, shared loci, and causal relationship between insomnia and psoriasis: a large-scale genome-wide cross-trait analysis. Arch Dermatol Res 2024; 316:425. [PMID: 38904754 DOI: 10.1007/s00403-024-03178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
Psoriasis and insomnia have co-morbidities, however, their common genetic basis is still unclear. We analyzed psoriasis and insomnia with summary statistics from genome-wide association studies. We first quantified overall genetic correlations, then ascertained multiple effector loci and expression-trait associations, and lastly, we analyzed the causal effects between psoriasis and insomnia. A prevalent genetic link between psoriasis and insomnia was found, four pleiotropic loci affecting psoriasis and insomnia were identified, and 154 genes were shared, indicating a genetic link between psoriasis and insomnia. Yet, there is no causal relationship between psoriasis and insomnia by two-sample Mendelian randomization. We discovered a genetic connection between insomnia and psoriasis driven by biological pleiotropy and unrelated to causation. Cross-trait analysis indicates a common genetic basis for psoriasis and insomnia. The results of this study highlight the importance of sleep management in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Qing Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Team of bio-molecular and system biology of Chinese medicine, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
| | - Yuan Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuehua Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junhong Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Team of bio-molecular and system biology of Chinese medicine, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
| | - Li Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Team of bio-molecular and system biology of Chinese medicine, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China
| | - Jingjing Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Research Team of bio-molecular and system biology of Chinese medicine, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China.
| | - Yue Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Research Team of bio-molecular and system biology of Chinese medicine, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China.
| | - Ling Han
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
- Research Team of bio-molecular and system biology of Chinese medicine, Guangdong Academy of Traditional Chinese Medicine, Guangzhou, China.
| |
Collapse
|
134
|
Sharma S, Sharma U. The Pathogenesis of Rheumatic Heart Disease with Unsettled Issues. Indian J Clin Biochem 2024. [DOI: 10.1007/s12291-024-01240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/02/2024] [Indexed: 01/06/2025]
|
135
|
Lima-Silva ML, Torres KCL, Mambrini JVDM, Brot NC, Santos SO, Martins-Filho OA, Teixeira-Carvalho A, Lima-Costa MF, Peixoto SV. A nationwide study on immunosenescence biomarkers profile in older adults: ELSI-Brazil. Exp Gerontol 2024; 191:112433. [PMID: 38621429 DOI: 10.1016/j.exger.2024.112433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/19/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Immunosenescence is a phenomenon caused by changes in the immune system, and part of these changes involves an increase in circulating immunological biomarkers, a process known as "Inflammaging." Inflammaging can be associated with many diseases related to older people. As the older population continues to grow, understanding changes in the immune system becomes essential. While prior studies assessing these alterations have been conducted in countries with Caucasian populations, this investigation marks a pioneering effort. The object of the study is to describe for the first time that the distribution of cytokines, chemokines, and growth factors serum levels, assessed by Luminex platform, has been examined in a Brazilian population-based study of older adult females and males by age. Blood samples from 2111 participants (≥50 years old) were analyzed at the baseline (2015/2016) of the ELSI-Brazil study. The exploratory variables considered in the study were age, sex, educational level, residence area, geographic region, alcohol and smoking consumption, physical activity, and self-reported medical diagnoses of hypertension, diabetes, asthma, arthritis, and cancer. The association between serum biomarker levels and age was assessed by a quantile regression model adjusted in the total population and stratified by sex. The significance level considered in the analysis was 0.05. The mean age of the participants was 62.9 years, with a slight majority of female (52.7 %). Differences were found between the sexes in the median circulating levels of the CCL11, CXCL10, and FGF biomarkers. Eight biomarkers showed significant associations with age, including the pro-inflammatory CXCL10, TNF-α, IL-6, IL-17, and IL-2; and type 2/regulatory CCL11 and IL-4, showing positive associations, and anti-inflammatory IL-1Ra showing a negative association. The results suggest similar associations between the sexes, revealing an inflammatory profile characterized by types 1 and 2. Remarkably, these findings reinforce the concept of the Inflammaging process in Brazilian population. These findings add novel insights to about the immunosenescence aspects in middle-income countries and help define biomarkers capable of monitoring inflammation in older adults.
Collapse
Affiliation(s)
- Maria Luiza Lima-Silva
- Fundação Oswaldo Cruz, Instituto René Rachou, Núcleo de Estudos em Saúde Pública e Envelhecimento, Belo Horizonte, MG, Brazil; Fundação Oswaldo Cruz, Instituto René Rachou, Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, MG, Brazil; Fundação Oswaldo Cruz, Instituto René Rachou, Programa de Pós-Graduação em Saúde Coletiva, Belo Horizonte, MG, Brazil.
| | - Karen Cecília Lima Torres
- Fundação Oswaldo Cruz, Instituto René Rachou, Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, MG, Brazil; Universidade Edson Antônio Velano - UNIFENAS/MG, Brazil.
| | - Juliana Vaz de Melo Mambrini
- Fundação Oswaldo Cruz, Instituto René Rachou, Núcleo de Estudos em Saúde Pública e Envelhecimento, Belo Horizonte, MG, Brazil; Fundação Oswaldo Cruz, Instituto René Rachou, Programa de Pós-Graduação em Saúde Coletiva, Belo Horizonte, MG, Brazil
| | - Nathalia Coimbra Brot
- Fundação Oswaldo Cruz, Instituto René Rachou, Núcleo de Estudos em Saúde Pública e Envelhecimento, Belo Horizonte, MG, Brazil; Fundação Oswaldo Cruz, Instituto René Rachou, Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, MG, Brazil
| | - Sara Oliveira Santos
- Fundação Oswaldo Cruz, Instituto René Rachou, Núcleo de Estudos em Saúde Pública e Envelhecimento, Belo Horizonte, MG, Brazil
| | - Olindo Assis Martins-Filho
- Fundação Oswaldo Cruz, Instituto René Rachou, Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, MG, Brazil; Universidade do Estado do Amazonas - UEA, Brazil
| | - Andréa Teixeira-Carvalho
- Fundação Oswaldo Cruz, Instituto René Rachou, Grupo Integrado de Pesquisas em Biomarcadores, Belo Horizonte, MG, Brazil; Universidade do Estado do Amazonas - UEA, Brazil
| | - Maria Fernanda Lima-Costa
- Fundação Oswaldo Cruz, Instituto René Rachou, Núcleo de Estudos em Saúde Pública e Envelhecimento, Belo Horizonte, MG, Brazil
| | - Sérgio Viana Peixoto
- Fundação Oswaldo Cruz, Instituto René Rachou, Núcleo de Estudos em Saúde Pública e Envelhecimento, Belo Horizonte, MG, Brazil; Universidade Federal de Minas Gerais, Escola de Enfermagem, Departamento de Gestão em Saúde, Belo Horizonte, MG, Brazil.
| |
Collapse
|
136
|
Ibrahim SS, Hassanein FEA, Zaky HW, Gamal H. Clinical and biochemical assessment of the effect of glutamine in management of radiation induced oral mucositis in patients with head and neck cancer: Randomized controlled clinical trial. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101827. [PMID: 38493953 DOI: 10.1016/j.jormas.2024.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND This study aimed to evaluate the effect of oral glutamine suspension on salivary levels of transforming growth factor beta 1 (TGF-β1), a cytokine involved in inflammation and Tumor progression, and the severity of radiation-induced oral mucositis (RIOM) in head and neck cancer patients. This is the first study to investigate the impact of glutamine on TGF-β1 levels in head and neck cancer patients with radiation induced oral mucositis (RIOM). METHODS In this randomized controlled clinical trial, 50 HNC patients were enrolled and received either glutamine oral suspension or maltodextrin as a placebo from the baseline of RIOM to the end of radiotherapy. Salivary TGF-β1 levels were measured at baseline and after treatment. Also, RIOM was assessed using the World Health Organization (WHO) Oral Toxicity Scale, the Oral Mucositis Assessment Scale (OMAS), the Pain Visual Analog Scale (Pain-VAS), the incidence of opioid use, and body mass index (BMI). RESULTS Glutamine significantly reduced salivary TGF-β1 levels and improved RIOM symptoms, such as pain, opioid use, and weight loss. The reduction of TGF-β1 levels was associated with the improvement of RIOM severity. CONCLUSION Glutamine may modulate the inflammatory response and enhance wound healing in RIOM by decreasing salivary TGF-β1 levels. These findings support the use of glutamine as a potential intervention for RIOM and nutritional support for improving radiation sensitivity. TRIAL REGISTRATION This study was registered on clinicalTrials.gov with identifier no. NCT05856188.
Collapse
Affiliation(s)
- Suzan S Ibrahim
- Oral Medicine, Periodontology, and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, Cairo, Egypt; Faculty of Oral and Dental medicine, Nahda university, Beni Suef, Egypt
| | - Fatma E A Hassanein
- Oral Medicine, Periodontology, and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, Cairo, Egypt; Faulty of Dentistry, King Salman International University, El-Tur, Egypt.
| | - Hany W Zaky
- Radiation Oncology, Ahmed Maher Teaching Hospital, Cairo, Egypt
| | - Hadeel Gamal
- Oral Medicine, Periodontology, and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| |
Collapse
|
137
|
Friedmann J, Schuster A, Reichelt-Wurm S, Banas B, Bergler T, Steines L. Serum IL-6 predicts risk of kidney transplant failure independently of immunological risk. Transpl Immunol 2024; 84:102043. [PMID: 38548029 DOI: 10.1016/j.trim.2024.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Interleukin-6 (IL-6) is an important immune mediator and a target for novel antibody therapies. In this study, we aimed to determine whether serum IL-6 levels are associated with immunological risk, allograft rejection and outcomes in kidney transplant (Ktx) patients. We retrospectively analyzed the data of 104 patients who underwent Ktx at our center between 2011 and 2015. The patients were divided into high- and low-risk groups (n = 52 per group) based on panel reactive antibody (PRA) percentage ≥ 35%, the existence of pre-Ktx donor-specific antibodies (DSA), or a previous transplant. IL-6 concentrations were measured before and at 3 months, 12 months, and 3 years after Ktx. Serum IL-6 levels tended to be higher in high-risk patients than in low-risk patients prior to Ktx and at 12 months after Ktx; however, the difference did not reach statistical significance (pre-Ktx, high-risk: 1.995 ± 2.79 pg/ml vs. low-risk: 1.43 ± 1.76 pg/ml, p = 0.051; 12 mo. high-risk: 1.16 ± 1.87 pg/ml vs. low-risk: 0.78 ± 1.13 pg/ml, p = 0.067). IL-6 levels were correlated with the types (no rejection, T cell mediated rejection (TCMR), antibody-mediated rejection (ABMR), or both) and time (<1 year vs. >1 year after Ktx) of rejection, as well as patient and graft survival. Patients with both TCMR and ABMR had significantly higher IL-6 levels at 3 months (14.1 ± 25.2 pg/ml) than patients with ABMR (3.4 ± 4.8 pg/ml, p = 0.017), with TCMR (1.7 ± 1.3 pg/ml, p < 0.001), and without rejection (1.7 ± 1.4 pg/ml, p < 0.001). Three years after Ktx, patients with AMBR had significantly higher IL-6 levels (5.30 ± 7.66 pg/ml) than patients with TCMR (1.81 ± 1.61 pg/ml, p = 0.009) and patients without rejection (1.19 ± 0.95 pg/ml; p = 0.001). Moreover, three years after Ktx IL-6 levels were significantly higher in patients with late rejections (3.5 ± 5.4 pg/ml) than those without rejections (1.2 ± 1.0 pg/ml) (p = 0.006). The risk of death-censored graft failure was significantly increased in patients with elevated IL-6 levels at 12 months (IL-6 level > 1.396 pg/ml, HR 4.61, p = 0.007) and 3 years (IL-6 level > 1.976 pg/ml, HR 6.75, p = 0.003), but elevated IL-6 levels were not associated with a higher risk of death. Overall, our study highlights IL-6 as a risk factor for allograft failure and confirms that IL-6 levels are higher in patients developing ABMR compared to TCMR alone or no rejection.
Collapse
Affiliation(s)
- Julius Friedmann
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Antonia Schuster
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | | | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Bergler
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany; Department of Nephrology, Hospital Ingolstadt, Ingolstadt, Germany
| | - Louisa Steines
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
138
|
Johnston LA, Nagalla RR, Li M, Whitley SK. IL-17 Control of Cutaneous Immune Homeostasis. J Invest Dermatol 2024; 144:1208-1216. [PMID: 38678465 DOI: 10.1016/j.jid.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 05/01/2024]
Abstract
IL-17 is widely recognized for its roles in host defense and inflammatory disorders. However, it has become clear that IL-17 is also an essential regulator of barrier tissue physiology. Steady-state microbe sensing at the skin surface induces low-level IL-17 expression that enhances epithelial integrity and resists pathogens without causing overt inflammation. Recent reports describe novel protective roles for IL-17 in wound healing and counteracting physiologic stress; however, chronic amplification of these beneficial responses contributes to skin pathologies as diverse as fibrosis, cancer, and autoinflammation. In this paper, we discuss the context-specific roles of IL-17 in skin health and disease and therapeutic opportunities.
Collapse
Affiliation(s)
- Leah A Johnston
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raji R Nagalla
- Medical Scientist Training Program, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Mushi Li
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sarah K Whitley
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Autoimmune Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusettes, USA.
| |
Collapse
|
139
|
Trivedi PJ, Hirschfield GM, Adams DH, Vierling JM. Immunopathogenesis of Primary Biliary Cholangitis, Primary Sclerosing Cholangitis and Autoimmune Hepatitis: Themes and Concepts. Gastroenterology 2024; 166:995-1019. [PMID: 38342195 DOI: 10.1053/j.gastro.2024.01.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Autoimmune liver diseases include primary biliary cholangitis, primary sclerosing cholangitis, and autoimmune hepatitis, a family of chronic immune-mediated disorders that target hepatocytes and cholangiocytes. Treatments remain nonspecific, variably effective, and noncurative, and the need for liver transplantation is disproportionate to their rarity. Development of effective therapies requires better knowledge of pathogenic mechanisms, including the roles of genetic risk, and how the environment and gut dysbiosis cause immune cell dysfunction and aberrant bile acid signaling. This review summarizes key etiologic and pathogenic concepts and themes relevant for clinical practice and how such learning can guide the development of new therapies for people living with autoimmune liver diseases.
Collapse
Affiliation(s)
- Palak J Trivedi
- National Institute for Health Research Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom; Liver Unit, University Hospitals Birmingham, Birmingham, United Kingdom; Institute of Translational Medicine, University of Birmingham, Birmingham, United Kingdom.
| | - Gideon M Hirschfield
- Division of Gastroenterology and Hepatology, Toronto Centre for Liver Disease, University of Toronto, Toronto, Ontario, Canada
| | - David H Adams
- National Institute for Health Research Birmingham Biomedical Research Centre, Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom; Liver Unit, University Hospitals Birmingham, Birmingham, United Kingdom
| | - John M Vierling
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas; Division of Abdominal Transplantation, Department of Surgery, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
140
|
Navid F, Gill T, Fones L, Allbritton-King JD, Zhou K, Shen I, Van Doorn J, LiCausi F, Cougnoux A, Randazzo D, Brooks SR, Colbert RA. CHOP-mediated IL-23 overexpression does not drive colitis in experimental spondyloarthritis. Sci Rep 2024; 14:12293. [PMID: 38811719 PMCID: PMC11137091 DOI: 10.1038/s41598-024-62940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
HLA-B27 is a major risk factor for spondyloarthritis (SpA), yet the underlying mechanisms remain unclear. HLA-B27 misfolding-induced IL-23, which is mediated by endoplasmic reticulum (ER) stress has been hypothesized to drive SpA pathogenesis. Expression of HLA-B27 and human β2m (hβ2m) in rats (HLA-B27-Tg) recapitulates key SpA features including gut inflammation. Here we determined whether deleting the transcription factor CHOP (Ddit3-/-), which mediates ER-stress induced IL-23, affects gut inflammation in HLA-B27-Tg animals. ER stress-mediated Il23a overexpression was abolished in CHOP-deficient macrophages. Although CHOP-deficiency also reduced Il23a expression in immune cells isolated from the colon of B27+ rats, Il17a levels were not affected, and gut inflammation was not reduced. Rather, transcriptome analysis revealed increased expression of pro-inflammatory genes, including Il1a, Ifng and Tnf in HLA-B27-Tg colon tissue in the absence of CHOP, which was accompanied by higher histological Z-scores. RNAScope localized Il17a mRNA to the lamina propria of the HLA-B27-Tg rats and revealed similar co-localization with Cd3e (CD3) in the presence and absence of CHOP. This demonstrates that CHOP-deficiency does not improve, but rather exacerbates gut inflammation in HLA-B27-Tg rats, indicating that HLA-B27 is not promoting gut disease through ER stress-induced IL-23. Hence, CHOP may protect rats from more severe HLA-B27-induced gut inflammation.
Collapse
Affiliation(s)
- Fatemeh Navid
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA.
| | - Tejpal Gill
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Lilah Fones
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | | | - Kelly Zhou
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Isabel Shen
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Jinny Van Doorn
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Francesca LiCausi
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Antony Cougnoux
- Section on Molecular Dysmorphology, NICHD, NIH, Bethesda, MD, 20892, USA
| | | | - Stephen R Brooks
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD, 20892, USA
| | - Robert A Colbert
- Pediatric Translational Research Branch, NIAMS, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
141
|
Zhang K, Zhang M, Su H, Zhao F, Wang D, Zhang Y, Cao G, Zhang Y. Regulation of Inflammatory Responses of Cow Mammary Epithelial Cells through MAPK Signaling Pathways of IL-17A Cytokines. Animals (Basel) 2024; 14:1572. [PMID: 38891619 PMCID: PMC11171030 DOI: 10.3390/ani14111572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The aim of this study is to explore the mechanism of IL-17A infection in the development of bacterial mastitis in dairy cows. In this study, RT-qPCR and ELISA were used to measure the promoting effect of IL-17A on the generation of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and chemokine (IL-8). In addition, Western blot (WB) was applied to measure the influences of IL-17A on the inflammation-related ERK and p38 proteins in the MAPK pathways. The results show that under the stimulation of LPS on cow mammary epithelial cells (CMECs), cytokines IL-1β, IL-6, IL-8, TNF-α, and IL-17A will exhibit significantly increased expression levels (p < 0.05). With inhibited endogenous expression of IL-17A, cytokines IL-1β, IL-6, IL-8, and TNF-α will present reduced genetic expression (p < 0.01), with reduced phosphorylation levels of ERK and p38 proteins in the MAPK signaling pathways (p < 0.001). Upon the exogenous addition of the IL-17A cytokine, the genetic expression of cytokines IL-1β, IL-6, IL-8, and TNF-α will increase (p < 0.05), with increased phosphorylation levels of the ERK and p38 proteins in the MAPK signaling pathways (p < 0.001). These results indicate that under the stimulation of CMECs with LPS, IL-17A can be expressed together with relevant inflammatory cytokines. Meanwhile, the inflammatory responses of mammary epithelial cells are directly proportional to the expression levels of IL-17A inhibited alone or exogenously added. In summary, this study shows that IL-17A could be used as an important indicator for assessing the bacterial infections of mammary glands, indicating that IL-17A could be regarded as one potential therapeutic target for mastitis.
Collapse
Affiliation(s)
- Kai Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Min Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Hong Su
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Feifei Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Daqing Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| | - Guifang Cao
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yong Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010011, China; (K.Z.); (M.Z.); (H.S.); (F.Z.); (D.W.); (Y.Z.)
- Animal Embryo and Developmental Engineering Key Laboratory of Higher Education, Institutions of Inner Mongolia Autonomous Region, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Basic Veterinary Medicine, Hohhot 010011, China
| |
Collapse
|
142
|
Ye Z, Cheng P, Huang Q, Hu J, Huang L, Hu G. Immunocytes interact directly with cancer cells in the tumor microenvironment: one coin with two sides and future perspectives. Front Immunol 2024; 15:1388176. [PMID: 38840908 PMCID: PMC11150710 DOI: 10.3389/fimmu.2024.1388176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
The tumor microenvironment is closely linked to the initiation, promotion, and progression of solid tumors. Among its constitutions, immunologic cells emerge as critical players, facilitating immune evasion and tumor progression. Apart from their indirect impact on anti-tumor immunity, immunocytes directly influence neoplastic cells, either bolstering or impeding tumor advancement. However, current therapeutic modalities aimed at alleviating immunosuppression from regulatory cells on effector immune cell populations may not consistently yield satisfactory results in various solid tumors, such as breast carcinoma, colorectal cancer, etc. Therefore, this review outlines and summarizes the direct, dualistic effects of immunocytes such as T cells, innate lymphoid cells, B cells, eosinophils, and tumor-associated macrophages on tumor cells within the tumor microenvironment. The review also delves into the underlying mechanisms involved and presents the outcomes of clinical trials based on these direct effects, aiming to propose innovative and efficacious therapeutic strategies for addressing solid tumors.
Collapse
Affiliation(s)
- Zhiyi Ye
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Pu Cheng
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, Anhui Medical University, Hefei, Anhui, China
| | - Jingjing Hu
- School of Medicine, Shaoxing University, Zhejiang, China
| | - Liming Huang
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Guoming Hu
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| |
Collapse
|
143
|
Chen W, Liao B, Yun C, Zhao M, Pang Y. Interlukin-22 improves ovarian function in polycystic ovary syndrome independent of metabolic regulation: a mouse-based experimental study. J Ovarian Res 2024; 17:100. [PMID: 38734641 PMCID: PMC11088773 DOI: 10.1186/s13048-024-01428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder with multiple metabolic abnormalities. Most PCOS patients have concomitant metabolic syndromes such as insulin resistance and obesity, which often lead to the development of type II diabetes and cardiovascular disease with serious consequences. Current treatment of PCOS with symptomatic treatments such as hormone replacement, which has many side effects. Research on its origin and pathogenesis is urgently needed. Although improving the metabolic status of the body can alleviate reproductive function in some patients, there is still a subset of patients with metabolically normal PCOS that lacks therapeutic tools to address ovarian etiology. METHODS The effect of IL-22 on PCOS ovarian function was verified in a non-metabolic PCOS mouse model induced by dehydroepiandrosterone (DHEA) and rosiglitazone, as well as granulosa cell -specific STAT3 knockout (Fshrcre+Stat3f/f) mice (10 groups totally and n = 5 per group). Mice were maintained under controlled temperature and lighting conditions with free access to food and water in a specific pathogen-free (SPF) facility. Secondary follicles separated from Fshrcre+Stat3f/f mice were cultured in vitro with DHEA to mimic the hyperandrogenic environment in PCOS ovaries (4 groups and n = 7 per group) and then were treated with IL-22 to investigate the specific role of IL-22 on ovarian function. RESULTS We developed a non-metabolic mice model with rosiglitazone superimposed on DHEA. This model has normal metabolic function as evidenced by normal glucose tolerance without insulin resistance and PCOS-like ovarian function as evidenced by irregular estrous cycle, polycystic ovarian morphology (PCOM), abnormalities in sex hormone level. Supplementation with IL-22 improved these ovarian functions in non-metabolic PCOS mice. Application of DHEA in an in vitro follicular culture system to simulate PCOS follicular developmental block and ovulation impairment. Follicles from Fshrcre+Stat3f/f did not show improvement in POCS follicle development with the addition of IL-22. In DHEA-induced PCOS mice, selective ablation of STAT3 in granulosa cells significantly reversed the ameliorative effect of IL-22 on ovarian function. CONCLUSION IL-22 can improve non-metabolic PCOS mice ovarian function. Granulosa cells deficient in STAT3 reverses the role of IL-22 in alleviating ovary dysfunction in non-metabolic PCOS mice.
Collapse
Affiliation(s)
- Weixuan Chen
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynaecology, (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Baoying Liao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynaecology, (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynaecology, (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Min Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynaecology, (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yanli Pang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynaecology, (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| |
Collapse
|
144
|
Peng B, Li Q, Chen J, Wang Z. Research on the role and mechanism of IL-17 in intervertebral disc degeneration. Int Immunopharmacol 2024; 132:111992. [PMID: 38569428 DOI: 10.1016/j.intimp.2024.111992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the primary causes of low back pain (LBP), which seriously affects patients' quality of life. In recent years, interleukin (IL)-17 has been shown to be highly expressed in the intervertebral disc (IVD) tissues and serum of patients with IDD, and IL-17A has been shown to promote IDD through multiple pathways. We first searched databases such as PubMed, Cochrane, Embase, and Web of Science using the search terms "IL-17 or interleukin 17″ and "intervertebral discs". The search period ranged from the inception of the databases to December 2023. A total of 24 articles were selected after full-text screening. The main conclusion of the clinical studies was that IL-17A levels are significantly increased in the IVD tissues and serum of IDD patients. The results from the in vitro studies indicated that IL-17A can activate signaling pathways such as the NF-κB and MAPK pathways; promote inflammatory responses, extracellular matrix degradation, and angiogenesis; and inhibit autophagy in nucleus pulposus cells. The main finding of the in vivo experiments was that puncture of animal IVDs resulted in elevated levels of IL-17A within the IVD, thereby inducing IDD. Clinical studies, in vitro experiments, and in vivo experiments confirmed that IL-17A is closely related to IDD. Therefore, drugs that target IL-17A may be novel treatments for IDD, providing a new theoretical basis for IDD therapy.
Collapse
Affiliation(s)
- Bing Peng
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang City, Hunan Province, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Li
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang City, Hunan Province, China
| | - Jiangping Chen
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang City, Hunan Province, China
| | - Zhexiang Wang
- Hunan Provincial Hospital of Integrative Traditional Chinese and Western Medicine, Changsha City, Hunan Province, China.
| |
Collapse
|
145
|
Lima ADR, Ferrari BB, Pradella F, Carvalho RM, Rivero SLS, Quintiliano RPS, Souza MA, Brunetti NS, Marques AM, Santos IP, Farias AS, Oliveira EC, Santos LMB. Dimethyl fumarate modulates the regulatory T cell response in the mesenteric lymph nodes of mice with experimental autoimmune encephalomyelitis. Front Immunol 2024; 15:1391949. [PMID: 38765015 PMCID: PMC11099268 DOI: 10.3389/fimmu.2024.1391949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Dimethyl fumarate (DMF, Tecfidera) is an oral drug utilized to treat relapsing-remitting multiple sclerosis (MS). DMF treatment reduces disease activity in MS. Gastrointestinal discomfort is a common adverse effect of the treatment with DMF. This study aimed to investigate the effect of DMF administration in the gut draining lymph nodes cells of C57BL6/J female mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We have demonstrated that the treatment with DMF (7.5 mg/kg) significantly reduces the severity of EAE. This reduction of the severity is accompanied by the increase of both proinflammatory and anti-inflammatory mechanisms at the beginning of the treatment. As the treatment progressed, we observed an increasing number of regulatory Foxp3 negative CD4 T cells (Tr1), and anti-inflammatory cytokines such as IL-27, as well as the reduction of PGE2 level in the mesenteric lymph nodes of mice with EAE. We provide evidence that DMF induces a gradual anti-inflammatory response in the gut draining lymph nodes, which might contribute to the reduction of both intestinal discomfort and the inflammatory response of EAE. These findings indicate that the gut is the first microenvironment of action of DMF, which may contribute to its effects of reducing disease severity in MS patients.
Collapse
Affiliation(s)
- Amanda D. R. Lima
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Breno B. Ferrari
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Fernando Pradella
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Rodrigo M. Carvalho
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Sandra L. S. Rivero
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Raphael P. S. Quintiliano
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Matheus A. Souza
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Natália S. Brunetti
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Ana M. Marques
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Irene P. Santos
- Departamento de Citometria do Centro de Hematologia e Hemoterapia da UNICAMP, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Alessandro S. Farias
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Elaine C. Oliveira
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Technology Faculty of Sorocaba- Paula Souza State Center of Technological Education, Sorocaba, Brazil
| | - Leonilda M. B. Santos
- Unidade de Neuroimunologia, Dept.Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, (INCT-NIM), National Council for Scientific and Technological Development (CNPq), Brasilia, Brazil
| |
Collapse
|
146
|
Abstract
Elevated blood pressure is a well-established risk factor for age-related cognitive decline. Long linked to cognitive impairment on vascular bases, increasing evidence suggests a potential association of hypertension with the neurodegenerative pathology underlying Alzheimer disease. Hypertension is well known to disrupt the structural and functional integrity of the cerebral vasculature. However, the mechanisms by which these alterations lead to brain damage, enhance Alzheimer pathology, and promote cognitive impairment remain to be established. Furthermore, critical questions concerning whether lowering blood pressure by antihypertensive medications prevents cognitive impairment have not been answered. Recent developments in neurovascular biology, brain imaging, and epidemiology, as well as new clinical trials, have provided insights into these critical issues. In particular, clinical and basic findings on the link between neurovascular dysfunction and the pathobiology of neurodegeneration have shed new light on the overlap between vascular and Alzheimer pathology. In this review, we will examine the progress made in the relationship between hypertension and cognitive impairment and, after a critical evaluation of the evidence, attempt to identify remaining knowledge gaps and future research directions that may advance our understanding of one of the leading health challenges of our time.
Collapse
Affiliation(s)
- Anthony Pacholko
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
147
|
Zhang C, Xu S, Hu R, Liu X, Yue S, Li X, Dai B, Liang C, Zhan C. Unraveling CCL20's role by regulating Th17 cell chemotaxis in experimental autoimmune prostatitis. J Cell Mol Med 2024; 28:e18445. [PMID: 38801403 PMCID: PMC11129727 DOI: 10.1111/jcmm.18445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/09/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS), a prevalent urological ailment, exerts a profound influence upon the well-being of the males. Autoimmunity driven by Th17 cells has been postulated as a potential factor in CP/CPPS pathogenesis. Nonetheless, elucidating the precise mechanisms governing Th17 cell recruitment to the prostate, triggering inflammation, remained an urgent inquiry. This study illuminated that CCL20 played a pivotal role in attracting Th17 cells to the prostate, thereby contributing to prostatitis development. Furthermore, it identified prostate stromal cells and immune cells as likely sources of CCL20. Additionally, this research unveiled that IL-17A, released by Th17 cells, could stimulate macrophages to produce CCL20 through the NF-κB/MAPK/PI3K pathway. The interplay between IL-17A and CCL20 establishes a positive feedback loop, which might serve as a critical mechanism underpinning the development of chronic prostatitis, thus adding complexity to its treatment challenges.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Shun Xu
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Rui‐Jie Hu
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Xian‐Hong Liu
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Shao‐Yu Yue
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Xiao‐Ling Li
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Bang‐Shun Dai
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Chao‐Zhao Liang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Chang‐Sheng Zhan
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| |
Collapse
|
148
|
Koga T. Understanding the pathogenic significance of altered calcium-calmodulin signaling in T cells in autoimmune diseases. Clin Immunol 2024; 262:110177. [PMID: 38460894 DOI: 10.1016/j.clim.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Calcium/calmodulin-dependent protein kinase IV (CaMK4) serves as a pivotal mediator in the regulation of gene expression, influencing the activity of transcription factors within a variety of immune cells, including T cells. Altered CaMK4 signaling is implicated in autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and psoriasis, which are characterized by dysregulated immune responses and clinical complexity. These conditions share common disturbances in immune cell functionality, cytokine production, and autoantibody generation, all of which are associated with disrupted calcium-calmodulin signaling. This review underscores the consequences of dysregulated CaMK4 signaling across these diseases, with an emphasis on its impact on Th17 differentiation and T cell metabolism-processes central to maintaining immune homeostasis. A comprehensive understanding of roles of CaMK4 in gene regulation across various autoimmune disorders holds promise for the development of targeted therapies, particularly for diseases driven by Th17 cell dysregulation.
Collapse
Affiliation(s)
- Tomohiro Koga
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| |
Collapse
|
149
|
Amr M, Farid A. Impact of cow, buffalo, goat or camel milk consumption on oxidative stress, inflammation and immune response post weaning time. Sci Rep 2024; 14:9967. [PMID: 38693190 PMCID: PMC11063178 DOI: 10.1038/s41598-024-59959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Milk is a whitish liquid that is secreted from mammary glands; and considered as the primary source of nutrition for newborns since they are not able to digest solid food. However, it contains primary nutrients, as well as growth and immune factors. Early weaning is a critical issue that face women and their babies in developing countries. To avoid infant malnutrition, they tend to use other milk types instead of baby formula. Therefore, the present study aimed to evaluate the impact of cow, buffalo, goat or camel milk consumption on oxidative stress, inflammation and immune response in male and female Sprague Dawley rats post weaning time. The amino acids, fatty acids, minerals and vitamins in the tested milk types were evaluated. Animals were divided into 5 groups (control, cow, buffalo, goat and camel milk administrated groups) (10 rats/group); each animal was administrated by 3.4 ml/day. Rats were administered with milk for 6 weeks; at the end of the 5th week, five animals of each group were isolated and the remaining five animals were immunized with sheep red blood cells (SRBCs) and kept for another week to mount immune response. The effect of different milk types on rats' immune response towards SRBCs was evaluated through pro-inflammatory cytokines, antioxidants, ESR and CRP measurement; together, with the histopathological examination of spleen samples and hemagglutination assay. Camel milk consumption reduced oxidative stress and inflammation in spleen that resulted from SRBCs immunization; in addition to, B cell stimulation that was apparent from the high level of anti-SRBCs antibodies. Camel milk is recommended for newborn consumption, due to its high-water content, unsaturated fatty acids, and vitamin C, as well as low lactose and fat content.
Collapse
Affiliation(s)
- Maryam Amr
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Alyaa Farid
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| |
Collapse
|
150
|
Zheng W, Gan Y, Yang Y, Peng K, Li F, Zhao H, Gu W, Jiang M. Clinicopathological features and mucosal microbiota in gastric mucosal damage between nodular and non-nodular gastritis in children with Helicobacter pylori infection. Int Immunopharmacol 2024; 131:111813. [PMID: 38493689 DOI: 10.1016/j.intimp.2024.111813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
AIMS Nodular gastritis (NG) represents a frequently observed clinical presentation of Helicobacter pylori (H. pylori) infection in pediatric patients. This investigation aimed to explore the microbiota and histological features of the gastric mucosa in children with H. pylori colonized NG. MAIN METHODS The current investigation examined a sample of 120 children who underwent gastroscopy due to symptoms of gastrointestinal distress, which showed that 64 were patients with H. pylori infection. Endoscopic procedures were conducted to acquire mucosal biopsies for the purpose of DNA extraction and histopathological analysis. The 16S rRNA profiling was utilized to examine the gastric mucosal microbiota. KEY FINDINGS In conjunction with endoscopic evaluation, 26 of 64 patients were diagnosed with NG. The NG group had significantly higher inflammation scores and activity scores on histological assessment than the non-NG group. The NG group exhibited a significant reduction in the richness levels of the five genera. In terms of the predicted functions, the pathways of synthesis and degradation of ketone bodies and phagosome in the NG group were less abundant compared with the non-NG group, while the Wnt signaling pathway was significantly enriched. NG does not increase a microbial community that possesses genotoxic potential within the gastric mucosa. SIGNIFICANCE In conclusion, NG group exhibited significant severe inflammation and reduced abundance levels of several bacterial genera compared to the non-NG group. However, individuals with NG did not have a dysregulated microbial community with genotoxic potential.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Yongjie Gan
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Yaofeng Yang
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Kerong Peng
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Fubang Li
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Hong Zhao
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Weizhong Gu
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Mizu Jiang
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China; Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China.
| |
Collapse
|