101
|
Patel DS, Ahmad F, Abu Sneineh M, Patel RS, Rohit Reddy S, Llukmani A, Hashim A, Gordon DK. The Importance of Sphingosine Kinase in Breast Cancer: A Potential for Breast Cancer Management. Cureus 2021; 13:e13413. [PMID: 33758708 PMCID: PMC7978154 DOI: 10.7759/cureus.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Breast cancer management includes a combination of surgery, radiation therapy, and chemotherapy. While this management has proven effective, it is not perfect. To expand the umbrella of management to resistant breast cancer tumors, researchers have explored the idea of sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) as a potential target for treatment. In this article, we review the mechanism of the sphingosine kinase/sphingosine-1-phosphate (SphK/S1P) axis along with its effect on the tumor microenvironment (TME) and compounds that have been studied inhibiting the SphK/S1P axis. We searched for relevant articles in the last five years in Medline and PubMed Central. Inclusion criteria, exclusion criteria, and quality checklists were applied to identify the most relevant articles. We compiled the information that has been summarized in the respective tables and figures provided in this review. The metabolism of sphingolipids was summarized, followed by the SphK/S1P upregulation in breast cancer cells. The variety of effects by upregulation of SphK led to an increase in inflammation, growth, and metastasis in breast cancer tumors. The increase in S1P also impacted the TME, including the cells and surrounding tissue, allowing the breast tumors to thrive. The final point made was a summary of the compounds and drugs that inhibited the SphK/S1P axis. They have proven their effectiveness and show even greater efficacy in combination with docetaxel and doxorubicin in preclinical studies. In conclusion, what is known about the SphK/S1P axis within breast cancer cells is immense but incomplete as we summarize what is known so far. Having a complete picture will allow a faster transition to application in the clinical field but clinical trials have not commenced as of yet.
Collapse
Affiliation(s)
- Dutt S Patel
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Farrukh Ahmad
- Emergency Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Emergency Department, Beaumont Hospital, Dublin, IRL
| | - Majdi Abu Sneineh
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ravi S Patel
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sai Rohit Reddy
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Adiona Llukmani
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ayat Hashim
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Domonick K Gordon
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Internal Medicine, Scarborough General Hospital, Scarborough, CAN
| |
Collapse
|
102
|
Olesch C, Sirait-Fischer E, Berkefeld M, Fink AF, Susen RM, Ritter B, Michels BE, Steinhilber D, Greten FR, Savai R, Takeda K, Brüne B, Weigert A. S1PR4 ablation reduces tumor growth and improves chemotherapy via CD8+ T cell expansion. J Clin Invest 2021; 130:5461-5476. [PMID: 32663191 DOI: 10.1172/jci136928] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Tumor immunosuppression is a limiting factor for successful cancer therapy. The lipid sphingosine-1-phosphate (S1P), which signals through 5 distinct G protein-coupled receptors (S1PR1-5), has emerged as an important regulator of carcinogenesis. However, the utility of targeting S1P in tumors is hindered by S1P's impact on immune cell trafficking. Here, we report that ablation of the immune cell-specific receptor S1PR4, which plays a minor role in immune cell trafficking, delayed tumor development and improved therapy success in murine models of mammary and colitis-associated colorectal cancer through increased CD8+ T cell abundance. Transcriptome analysis revealed that S1PR4 affected proliferation and survival of CD8+ T cells in a cell-intrinsic manner via the expression of Pik3ap1 and Lta4h. Accordingly, PIK3AP1 expression was connected to increased CD8+ T cell proliferation and clinical parameters in human breast and colon cancer. Our data indicate a so-far-unappreciated tumor-promoting role of S1P by restricting CD8+ T cell expansion via S1PR4.
Collapse
Affiliation(s)
- Catherine Olesch
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Evelyn Sirait-Fischer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Matthias Berkefeld
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Annika F Fink
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Rosa M Susen
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Birgit Ritter
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany
| | - Birgitta E Michels
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), partner site Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), partner site Frankfurt, Germany
| | - Rajkumar Savai
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany.,Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL) and the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Kazuhiko Takeda
- Research Center of Oncology, ONO Pharmaceutical Co., Ltd., Osaka, Japan
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), partner site Frankfurt, Germany.,Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), partner site Frankfurt, Germany
| |
Collapse
|
103
|
Cortini M, Armirotti A, Columbaro M, Longo DL, Di Pompo G, Cannas E, Maresca A, Errani C, Longhi A, Righi A, Carelli V, Baldini N, Avnet S. Exploring Metabolic Adaptations to the Acidic Microenvironment of Osteosarcoma Cells Unveils Sphingosine 1-Phosphate as a Valuable Therapeutic Target. Cancers (Basel) 2021; 13:cancers13020311. [PMID: 33467731 PMCID: PMC7830496 DOI: 10.3390/cancers13020311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary By studying the role of tumor acidosis in osteosarcoma, we have identified a novel lipid signaling pathway that is selectively activated in acid-induced highly metastatic cell subpopulation. Furthermore, when combined to low-serine/glycine diet, the targeting of this acid-induced lipid pathway by the FDA-approved drug FTY720 significantly impaired tumor growth. This new knowledge will provide a giant leap in the understanding of the molecular mechanisms responsible for sarcoma relapses and metastasis. Finally, we paved the way to the recognition of a novel biomarker, as our data provided evidence of significantly high circulating levels in the serum of osteosarcoma patients of S1P, a lipid member of the identified acid-driven metabolic pathway. Abstract Acidity is a key player in cancer progression, modelling a microenvironment that prevents immune surveillance and enhances invasiveness, survival, and drug resistance. Here, we demonstrated in spheroids from osteosarcoma cell lines that the exposure to acidosis remarkably caused intracellular lipid droplets accumulation. Lipid accumulation was also detected in sarcoma tissues in close proximity to tumor area that express the acid-related biomarker LAMP2. Acid-induced lipid droplets-accumulation was not functional to a higher energetic request, but rather to cell survival. As a mechanism, we found increased levels of sphingomyelin and secretion of the sphingosine 1-phosphate, and the activation of the associated sphingolipid pathway and the non-canonical NF-ĸB pathway, respectively. Moreover, decreasing sphingosine 1-phosphate levels (S1P) by FTY720 (Fingolimod) impaired acid-induced tumor survival and migration. As a confirmation of the role of S1P in osteosarcoma, we found S1P high circulating levels (30.8 ± 2.5 nmol/mL, n = 17) in the serum of patients. Finally, when we treated osteosarcoma xenografts with FTY720 combined with low-serine/glycine diet, both lipid accumulation (as measured by magnetic resonance imaging) and tumor growth were greatly inhibited. For the first time, this study profiles the lipidomic rearrangement of sarcomas under acidic conditions, suggesting the use of anti-S1P strategies in combination with standard chemotherapy.
Collapse
Affiliation(s)
- Margherita Cortini
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
| | - Andrea Armirotti
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (A.A.); (E.C.)
| | - Marta Columbaro
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging, National Research Council of Italy, 10135 Torino, Italy;
| | - Gemma Di Pompo
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
| | - Elena Cannas
- Analytical Chemistry Lab, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy; (A.A.); (E.C.)
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, 40125 Bologna, Italy;
| | - Alessandra Maresca
- Programma di Neurogenetica, IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy;
| | - Costantino Errani
- Oncologic Orthopaedic Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Alessandra Longhi
- Chemotherapy Unit for Musculoskeletal Tumors, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Alberto Righi
- Anatomy and Pathological Histology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, 40125 Bologna, Italy;
- Programma di Neurogenetica, IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy;
| | - Nicola Baldini
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, 40125 Bologna, Italy;
- Correspondence:
| | - Sofia Avnet
- Biomedical Science and Technology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.C.); (M.C.); (G.D.P.); (S.A.)
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, 40125 Bologna, Italy;
| |
Collapse
|
104
|
Ding T, Zhi Y, Xie W, Yao Q, Liu B. Rational design of SphK inhibitors using crystal structures aided by computer. Eur J Med Chem 2021; 213:113164. [PMID: 33454547 DOI: 10.1016/j.ejmech.2021.113164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Sphingosine kinases (SphKs) are lipid kinases that catalyze the phosphorylation of sphingosine (Sph) to sphingosine-1-phosphate (S1P). As a bioactive lipid, S1P plays a role outside and inside the cell to regulate biological processes. The overexpression of SphKs is related to a variety of pathophysiological conditions. Targeting the S1P signaling pathway is a potential treatment strategy for many diseases. SphKs are key kinases of the S1P signaling pathway. The SphK family includes two isoforms: SphK1 and SphK2. Determination of the co-crystal structure of SphK1 with various inhibitors has laid a solid foundation for the development of small molecule inhibitors targeting SphKs. This paper reviews the differences and connections between the two isoforms and the structure of SphK1 crystals, especially the structure of its Sph "J-shaped" channel binding site. This review also summarizes the recent development of SphK1 and SphK2 selective inhibitors and the exploration of the unresolved SphK2 structure.
Collapse
Affiliation(s)
- Tiandi Ding
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China
| | - Ying Zhi
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China
| | - Weilin Xie
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China
| | - Qingqiang Yao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China.
| | - Bo Liu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China.
| |
Collapse
|
105
|
Ishay Y, Rotnemer-Golinkin D, Ilan Y. The role of the sphingosine axis in immune regulation: A dichotomy in the anti-inflammatory effects between sphingosine kinase 1 and sphingosine kinase 2-dependent pathways. Int J Immunopathol Pharmacol 2021; 35:20587384211053274. [PMID: 34789044 PMCID: PMC8645305 DOI: 10.1177/20587384211053274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/21/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Sphingosine kinase has been identified as playing a central role in the immune cascade, being a common mediator in the cellular response to a variety of signals. The different effects of sphingosine kinase 1 and 2 (SphK1 and SphK2, respectively) activity have not been completely characterized. Aim: To determine the different roles played by SphK1 and SphK2 in the regulation of immune-mediated disorders. Methods: Nine groups of mice were studied. Concanavalin A (ConA) injection was used to induce immune-mediated hepatitis. Mice were treated with SphK1 inhibitor (termed SphK-I) and SphK2 inhibitor (termed ABC294640), prior to ConA injection, and effects of treatment on liver enzymes, subsets of T lymphocytes, and serum levels of cytokines were observed. Results: While liver enzyme elevation was ameliorated by administration of SphK1 inhibitor, SphK2 inhibitor-treated mice did not show this tendency. A marked decrease in expression of CD25+ T-cells and Foxp+ T-cells was observed in mice treated with a high dose of SphK1 inhibitor. Alleviation of liver damage was associated with a statistically significant reduction of serum IFNγ levels in mice treated with SphK1 inhibitor and not in those treated with SphK2 inhibitor. Conclusions: Early administration of SphK1 inhibitor in a murine model of immune-mediated hepatitis alleviated liver damage and inflammation with a statistically significant reduction in IFN-γ levels. The data support a dichotomy in the anti-inflammatory effects of SphK1 and SphK2, and suggests that isoenzyme-directed therapies can improve the effect of targeting these pathways.
Collapse
Affiliation(s)
- Yuval Ishay
- Department of Medicine, Hadassah-Hebrew University Medical
Center, Jerusalem Israel
| | | | - Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical
Center, Jerusalem Israel
| |
Collapse
|
106
|
Yi Y, Hu W, Lv W, Zhao C, Xiong M, Wu M, Zhang Q, Wu Y. FTY720 Improves the Survival of Autologous Fat Grafting by Modulating Macrophages Toward M2 Polarization Via STAT3 Pathway. Cell Transplant 2021; 30:9636897211052975. [PMID: 34662222 PMCID: PMC8527580 DOI: 10.1177/09636897211052975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/09/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Autologous fat grafting (AFG) is widely regarded as an important method for breast reconstruction after mastectomy among breast cancer (BC) patients. FTY720 has been proved to affect macrophage polarization and improve the sensitivity of postoperative BC treatment. This study aimed to explore FTY720 function and underlying mechanism in fat transplantation. The C57BL/6 J mice that received AFG were randomly divided into two groups treated with saline and FTY720, respectively. The fat graft samples were obtained at week 1, 2, 4, and 12 post-transplantation. Graft volumes, graft structures, M2 macrophages, and STAT3 protein expression were estimated by histological examination, immunofluorescence, flow cytometry, and western blot, respectively. In vitro, mouse preadipocytes were stimulated with FTY720 treated-M2 macrophages conditioned medium (FTY720-M2-CM) to evaluate the adipogenesis effect. The level of adipogenic mRNA expression in preadipocytes was detected by RT-PCR. The in vivo results showed that FTY720 treatment significantly enhanced the fat graft retention, structure integrity, and neovascularization, indicating the potential of FTY720 in improving graft survival. The histology results showed more polarized M2 macrophage presented in the FTY720 group. In the in vitro assay, after FTY720-M2-CM treatment, the 3T3-L1 preadipocytes showed the increased triglyceride content and adipogenic mRNA expression, including FABP4, C/EBP-α, Adipoq, and PPARγ. Furthermore, FTY720 treatment up-regulated the expression level of M2 biomarker CD206, Arg-1, Fizz-1, which could be weakened by the STAT3 inhibitor. Together, this study confirmed the potential efficacy of FTY720 in improving graft survival in the AFG model, possibly mediated by polarizing macrophages to M2 type through activating the STAT3 pathway.
Collapse
Affiliation(s)
- Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical
College, University of Science and Technology, Huazhong, Wuhan, China
- Yi Yi and Weijie Hu contributed equally to this work
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical
College, University of Science and Technology, Huazhong, Wuhan, China
- Yi Yi and Weijie Hu contributed equally to this work
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical
College, University of Science and Technology, Huazhong, Wuhan, China
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical
College, University of Science and Technology, Huazhong, Wuhan, China
| | - Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical
College, University of Science and Technology, Huazhong, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical
College, University of Science and Technology, Huazhong, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical
College, University of Science and Technology, Huazhong, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical
College, University of Science and Technology, Huazhong, Wuhan, China
| |
Collapse
|
107
|
Joko R, Yamada D, Nakamura M, Yoshida A, Takihira S, Takao T, Lu M, Sato K, Ito T, Kunisada T, Nakata E, Ozaki T, Takarada T. PRRX1 promotes malignant properties in human osteosarcoma. Transl Oncol 2020; 14:100960. [PMID: 33395745 PMCID: PMC7726447 DOI: 10.1016/j.tranon.2020.100960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/29/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
PRRX1 is a poor-prognosis marker of human osteosarcoma. PRRX1 promotes proliferation, invasion, and drug resistance in human osteosarcoma. Forskolin was identified using RNA expression signatures of PRRX1 knockdown. Forskolin decreased proliferation and migration in human osteosarcoma.
Paired related homeobox 1 (PRRX1) is a marker of limb bud mesenchymal cells, and deficiency of p53 or Rb in Prrx1-positive cells induces osteosarcoma in several mouse models. However, the regulatory roles of PRRX1 in human osteosarcoma have not been defined. In this study, we performed PRRX1 immunostaining on 35 human osteosarcoma specimens to assess the correlation between PRRX1 level and overall survival. In patients with osteosarcoma, the expression level of PRRX1 positively correlated with poor prognosis or the ratio of lung metastasis. Additionally, we found PRRX1 expression on in 143B cells, a human osteosarcoma line with a high metastatic capacity. Downregulation of PRRX1 not only suppressed proliferation and invasion but also increased the sensitivity to cisplatin and doxorubicin. When 143B cells were subcutaneously transplanted into nude mice, PRRX1 knockdown decreased tumor sizes and rates of lung metastasis. Interestingly, forskolin, a chemical compound identified by Connectivity Map analysis using RNA expression signatures during PRRX1 knockdown, decreased tumor proliferation and cell migration to the same degree as PRRX1 knockdown. These results demonstrate that PRRX1 promotes tumor malignancy in human osteosarcoma.
Collapse
Affiliation(s)
- Ryoji Joko
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Daisuke Yamada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masahiro Nakamura
- Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Aki Yoshida
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shota Takihira
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Tomoka Takao
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ming Lu
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kohei Sato
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Tatsuo Ito
- Department of Hygiene, Kawasaki Medical School, Kurashiki, Japan
| | - Toshiyuki Kunisada
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Eiji Nakata
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toshifumi Ozaki
- Department Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
108
|
Oshi M, Newman S, Tokumaru Y, Yan L, Matsuyama R, Endo I, Takabe K. Inflammation Is Associated with Worse Outcome in the Whole Cohort but with Better Outcome in Triple-Negative Subtype of Breast Cancer Patients. J Immunol Res 2020; 2020:5618786. [PMID: 33457427 PMCID: PMC7787871 DOI: 10.1155/2020/5618786] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammation has been linked with cancer, but whether it is part of the problem or part of the solution remains to be a matter of debate in breast cancer. Our group and others have demonstrated that inflammation aggravates cancer progression; however, some claim that inflammation may support immune cell infiltration and suppress cancer. We defined the gene set variation analysis of the Molecular Signatures Database Hallmark inflammatory response gene set as the inflammatory pathway score and analyzed 3632 tumors in total from 4 breast cancer cohorts (METABRIC, TCGA, GSE25066, and GSE21094). In the whole breast cancer cohort, high-score tumors were associated with aggressive clinical characteristics, such as worse disease specific survival, higher Nottingham histological grade, and younger age. Inflammatory score was significantly higher in triple-negative (TNBC) as well as basal and normal subtypes compared with the other subtypes, which suggest that the detrimental effect of high level of inflammation may be because it includes a more aggressive subtype. On the contrary, high score within TNBC was significantly associated with better survival. TNBC with high score enriched not only IFN-α, IFN-γ response, IL-2/STAT5 signaling, Allograft rejection, Complement, p53 pathway, Reactive Oxygen, and Apoptosis but also TNF-α signaling, IL6-JAK-STAT signaling, TGF-β signaling, Coagulation, Angiogenesis, EMT, KRAS signaling, and PI3K-AKT-MTOR signaling gene sets. High score was associated with mainly favorable anticancerous immune cell infiltration as well as Leukocyte fraction, TIL regional fraction, Lymphocyte infiltration, IFN-γ response, TGF-β response, and cytolytic activity scores. Although the inflammatory pathway score was not associated with neoadjuvant treatment response, it associated with expressions of immune checkpoint molecules. In conclusion, inflammation was associated with worse outcome in the whole breast cancer cohort, but with better outcome in TNBC, which was associated with favorable anticancerous immune response and immune cell infiltrations.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Stephanie Newman
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14263, USA
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14263, USA
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
109
|
Oshi M, Tokumaru Y, Angarita FA, Yan L, Matsuyama R, Endo I, Takabe K. Degree of Early Estrogen Response Predict Survival after Endocrine Therapy in Primary and Metastatic ER-Positive Breast Cancer. Cancers (Basel) 2020; 12:E3557. [PMID: 33260779 PMCID: PMC7760577 DOI: 10.3390/cancers12123557] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Endocrine therapy is the gold-standard treatment for ER-positive/HER2-negative breast cancer. Although its clear benefit, patient compliance is poor (50-80%) due to its long administration period and adverse effects. Therefore, a predictive biomarker that can predict whether endocrine therapy is truly beneficial may improve patient compliance. In this study, we use estrogen response early gene sets of gene set enrichment assay algorithm as the score. We hypothesize that the score could predict the response to endocrine therapy and survival of breast cancer patients. A total of 6549 breast cancer from multiple patient cohorts were analyzed. The score was highest in ER-positive/HER2-negative compared to the other subtypes. Earlier AJCC stage, as well as lower Nottingham pathological grade, were associated with a high score. Low score tumors enriched only allograft rejection gene set, and was significantly infiltrated with immune cells, and high cytolytic activity score. A low score was significantly associated with a worse response to endocrine therapy and worse survival in both primary and metastatic breast cancer patients. The hazard ratio was double that of ESR1 expression. In conclusion, the estrogen response early score predicts response to endocrine therapy and is associated with survival in primary and metastatic breast cancer.
Collapse
Affiliation(s)
- Masanori Oshi
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA; (M.O.); (Y.T.); (F.A.A.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA; (M.O.); (Y.T.); (F.A.A.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Fernando A. Angarita
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA; (M.O.); (Y.T.); (F.A.A.)
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA;
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA; (M.O.); (Y.T.); (F.A.A.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, NY 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
110
|
Petti L, Rizzo G, Rubbino F, Elangovan S, Colombo P, Restelli S, Piontini A, Arena V, Carvello M, Romano B, Cavalleri T, Anselmo A, Ungaro F, D'Alessio S, Spinelli A, Stifter S, Grizzi F, Sgambato A, Danese S, Laghi L, Malesci A, Vetrano S. Unveiling role of sphingosine-1-phosphate receptor 2 as a brake of epithelial stem cell proliferation and a tumor suppressor in colorectal cancer. J Exp Clin Cancer Res 2020; 39:253. [PMID: 33225975 PMCID: PMC7682101 DOI: 10.1186/s13046-020-01740-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Sphingosine-1-phosphate receptor 2 (S1PR2) mediates pleiotropic functions encompassing cell proliferation, survival, and migration, which become collectively de-regulated in cancer. Information on whether S1PR2 participates in colorectal carcinogenesis/cancer is scanty, and we set out to fill the gap. METHODS We screened expression changes of S1PR2 in human CRC and matched normal mucosa specimens [N = 76]. We compared CRC arising in inflammation-driven and genetically engineered models in wild-type (S1PR2+/+) and S1PR2 deficient (S1PR2-/-) mice. We reconstituted S1PR2 expression in RKO cells and assessed their growth in xenografts. Functionally, we mimicked the ablation of S1PR2 in normal mucosa by treating S1PR2+/+ organoids with JTE013 and characterized intestinal epithelial stem cells isolated from S1PR2-/-Lgr5-EGFP- mice. RESULTS S1PR2 expression was lost in 33% of CRC; in 55%, it was significantly decreased, only 12% retaining expression comparable to normal mucosa. Both colitis-induced and genetic Apc+/min mouse models of CRC showed a higher incidence in size and number of carcinomas and/or high-grade adenomas, with increased cell proliferation in S1PR2-/- mice compared to S1PR2+/+ controls. Loss of S1PR2 impaired mucosal regeneration, ultimately promoting the expansion of intestinal stem cells. Whereas its overexpression attenuated cell cycle progression, it reduced the phosphorylation of AKT and augmented the levels of PTEN. CONCLUSIONS In normal colonic crypts, S1PR2 gains expression along with intestinal epithelial cells differentiation, but not in intestinal stem cells, and contrasts intestinal tumorigenesis by promoting epithelial differentiation, preventing the expansion of stem cells and braking their malignant transformation. Targeting of S1PR2 may be of therapeutic benefit for CRC expressing high Lgr5.
Collapse
Affiliation(s)
- Luciana Petti
- IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Giulia Rizzo
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy
| | - Federica Rubbino
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy
| | - Sudharshan Elangovan
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy
| | - Piergiuseppe Colombo
- Department of Pathology, Humanitas Clinical, and Research Center-IRCCS, Milan, Italy
| | - Silvia Restelli
- IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Andrea Piontini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy
| | - Vincenzo Arena
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Michele Carvello
- Colon and Rectal Surgery Unit, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Barbara Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Tommaso Cavalleri
- Laboratory of Molecular Gastroenterology, Department of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Achille Anselmo
- Flow Cytometry Core, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Federica Ungaro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy
| | - Silvia D'Alessio
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy
| | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy
- Colon and Rectal Surgery Unit, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Sanja Stifter
- Department of Pathology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Fabio Grizzi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Alessandro Sgambato
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Silvio Danese
- IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, Department of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Alberto Malesci
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy
- Laboratory of Molecular Gastroenterology, Department of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Stefania Vetrano
- IBD Center, Department of Gastroenterology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy.
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, Italy.
| |
Collapse
|
111
|
Regulatory Mechanisms of Coicis Semen on Bionetwork of Liver Cancer Based on Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5860704. [PMID: 33294448 PMCID: PMC7700039 DOI: 10.1155/2020/5860704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/08/2020] [Accepted: 10/31/2020] [Indexed: 01/10/2023]
Abstract
At present, there is an increasing incidence and mortality of liver cancer. Despite surgery and chemoradiotherapy, there is a lack of effective oral medications with low side effects. In East Asia, Coicis Semen (CS) is used as both food and natural medicine and has a significant impact on the treatment of liver cancer. However, due to its multicomponent and multitarget characteristics, the mechanisms of CS against liver cancer remain unclear. This study collected CS compounds and target proteins in SymMap, then cross-matched with the liver cancer targets in the CTD database to construct an interaction network of CS-liver cancer proteins, and visualized by Cytoscape software. DAVID database was used to perform pathway enrichment analysis to find target proteins in core pathways and the related small molecules in CS. The results showed that a total of 103 common genes shared by CS and liver cancer were obtained, which were enriched for precancerous lesion pathways such as hepatitis B and fatty liver and biological signaling pathways such as HIF-1 and TNF. The combination of sitosterol and CASP3 in CS, acting on “pathways in cancer” and restoring normal cell apoptosis, could be the core mechanisms of CS in the treatment of liver cancer. Based on the system biology analysis, it is speculated that CS may not only participate in multiple mechanisms of action to treat liver cancer synergistically but may also be involved in factors that reduce the incidence of liver cancer.
Collapse
|
112
|
Rupp T, Pelouin O, Genest L, Legrand C, Froget G, Castagné V. Therapeutic potential of Fingolimod in triple negative breast cancer preclinical models. Transl Oncol 2020; 14:100926. [PMID: 33157518 PMCID: PMC7649527 DOI: 10.1016/j.tranon.2020.100926] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/29/2022] Open
Abstract
Fingolimod represses triple negative breast cancer cells survival in vitro by inducing cell apoptosis. Fingolimod represses triple negative breast cancer progression in orthotopic graft murine in vivo models. Fingolimod represses spleen and liver metastases without affecting lung metastasis in murine in vivo models. In contrast with Cisplatin, Fingolimod is well tolerated in murine in vivo models.
Surgery followed by a chemotherapy agent is the first-line treatment for breast cancer patients. Nevertheless, new targets are required for women with triple-negative breast cancer (TNBC) in order to improve the treatment of this aggressive cancer subtype. Multiple pro-inflammatory molecules including lipid-based substances such as sphingosine-1-phosphate (S1P) promote cancer progression. In this preclinical study, we aim to investigate the efficacy of Fingolimod, an inhibitor of S1P / S1P receptors axis, already approved as an immunomodulator in multiple sclerosis. The impact of Fingolimod was analyzed using in vitro 2D and 3D cell survival analysis and in vivo orthotopic graft models, using mouse and human TNBC cells implanted in immunocompetent or immunodeficient mice, respectively. Resection of the tumor primary mass was also performed to mimic the clinical standard of care. We demonstrated that Fingolimod repressed tumor cell survival in vitro. We also showed in preclinical mouse TNBC models that Fingolimod repressed tumor progression and liver and spleen metastases without apparent adverse effects on the animals. Our data indicate that Fingolimod induces tumor cells apoptosis and thereby represses tumor progression. Globally, our data suggest that Fingolimod merits further evaluation as a potential therapeutic opportunity for TNBC.
Collapse
Affiliation(s)
- Tristan Rupp
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France.
| | - Océane Pelouin
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France
| | - Laurie Genest
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France
| | | | | | | |
Collapse
|
113
|
Abstract
It is a great honor to be asked to write a "Reflections" article by one of the true icons of biochemistry, Herb Tabor. I felt humbled, especially since it follows many written by biochemists I admire and whose contributions have shaped major advances in biochemistry and molecular biology in the last century. Here I present my personal reflections on my adventure with the bioactive sphingolipid metabolite sphingosine-1-phosphate intertwined with those of my family life as a wife, mother, and grandmother. These reflections brought back many memories of events in my early career that played significant roles in determining the path I have taken for more than 40 years and that brought much fun and satisfaction into my life. It has been an exciting journey so far, with many surprises along the way, that still continues.
Collapse
Affiliation(s)
- Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| |
Collapse
|
114
|
Fang T, Jiang YX, Chen L, Huang L, Tian XH, Zhou YD, Nagle DG, Zhang DD. Coix Seed Oil Exerts an Anti-Triple-Negative Breast Cancer Effect by Disrupting miR-205/S1PR1 Axis. Front Pharmacol 2020; 11:529962. [PMID: 33101013 PMCID: PMC7556270 DOI: 10.3389/fphar.2020.529962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Coix Seed Oil (CSO) possesses a wide range of pharmacological activities. Kanglaite Injection, a commercial product of CSO, has been used clinically as an anticancer drug in China for decades. However, its molecular mechanisms on triple-negative breast cancer (TNBC) remains to be elucidated. In this study, the effect of CSO was evaluated on murine TNBC 4T1 cells and the orthotopic tumor-bearing mouse model and underlying mechanisms were explored. CSO suppressed cell proliferation, colony formation in vitro, and tumor growth in vivo. miR-205-5p was substantially altered in CSO treated tumor tissues compared to the control group by miRNA-sequencing analysis. Sphingomyelin metabolism (SM) decreased in serum in model group compared to the control group, while it increased by CSO administration by lipid metabolomics analysis. The expression of sphingosine 1 phosphate receptor 1 (S1PR1), the critical effector of SM, was downregulated upon CSO treatment. Mechanically, miRNA-205 directly targeted S1PR1 to regulate SM and cell proliferation. CSO reduced the expression of S1PR1, cyclinD1, and phosphorylation levels of STAT3, MAPK, and AKT while upregulated p27. These results revealed that CSO exerted an anti-TNBC effect via the miR-205/S1PR1 axis to regulate sphingomyelin metabolism, and the downstream STAT3/MAPK/AKT signal pathways were partly involved.
Collapse
Affiliation(s)
- Ting Fang
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yi-Xin Jiang
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Huang
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin-Hui Tian
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Dong Zhou
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Chemistry and Biochemistry, College of Liberal Arts, University of Mississippi, University, Misissippi, MS, United States
| | - Dale G Nagle
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences (RIPS), School of Pharmacy, University of Mississippi, University, Mississippi, MS, United States
| | - Dan-Dan Zhang
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
115
|
Hawkins CC, Ali T, Ramanadham S, Hjelmeland AB. Sphingolipid Metabolism in Glioblastoma and Metastatic Brain Tumors: A Review of Sphingomyelinases and Sphingosine-1-Phosphate. Biomolecules 2020; 10:E1357. [PMID: 32977496 PMCID: PMC7598277 DOI: 10.3390/biom10101357] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is a primary malignant brain tumor with a dismal prognosis, partially due to our inability to completely remove and kill all GBM cells. Rapid tumor recurrence contributes to a median survival of only 15 months with the current standard of care which includes maximal surgical resection, radiation, and temozolomide (TMZ), a blood-brain barrier (BBB) penetrant chemotherapy. Radiation and TMZ cause sphingomyelinases (SMase) to hydrolyze sphingomyelins to generate ceramides, which induce apoptosis. However, cells can evade apoptosis by converting ceramides to sphingosine-1-phosphate (S1P). S1P has been implicated in a wide range of cancers including GBM. Upregulation of S1P has been linked to the proliferation and invasion of GBM and other cancers that display a propensity for brain metastasis. To mediate their biological effects, SMases and S1P modulate signaling via phospholipase C (PLC) and phospholipase D (PLD). In addition, both SMase and S1P may alter the integrity of the BBB leading to infiltration of tumor-promoting immune populations. SMase activity has been associated with tumor evasion of the immune system, while S1P creates a gradient for trafficking of innate and adaptive immune cells. This review will explore the role of sphingolipid metabolism and pharmacological interventions in GBM and metastatic brain tumors with a focus on SMase and S1P.
Collapse
Affiliation(s)
- Cyntanna C. Hawkins
- Department of Cell, Developmental, and Integrative Biology, University of Birmingham at Alabama, Birmingham, AL 35233, USA; (C.C.H.); (S.R.)
| | - Tomader Ali
- Research Department, Imperial College London Diabetes Centre, Abu Dhabi P.O. Box 48338, UAE;
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, University of Birmingham at Alabama, Birmingham, AL 35233, USA; (C.C.H.); (S.R.)
- Comprehensive Diabetes Center, University of Birmingham at Alabama, Birmingham, AL 35294, USA
| | - Anita B. Hjelmeland
- Department of Cell, Developmental, and Integrative Biology, University of Birmingham at Alabama, Birmingham, AL 35233, USA; (C.C.H.); (S.R.)
| |
Collapse
|
116
|
Oshi M, Newman S, Tokumaru Y, Yan L, Matsuyama R, Endo I, Nagahashi M, Takabe K. Intra-Tumoral Angiogenesis Is Associated with Inflammation, Immune Reaction and Metastatic Recurrence in Breast Cancer. Int J Mol Sci 2020; 21:ijms21186708. [PMID: 32933189 PMCID: PMC7555442 DOI: 10.3390/ijms21186708] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is one of the hallmarks of cancer. We hypothesized that intra-tumoral angiogenesis correlates with inflammation and metastasis in breast cancer patients. To test this hypothesis, we generated an angiogenesis pathway score using gene set variation analysis and analyzed the tumor transcriptome of 3999 breast cancer patients from The Cancer Genome Atlas Breast Cancer (TCGA-BRCA), Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), GSE20194, GSE25066, GSE32646, and GSE2034 cohorts. We found that the score correlated with expression of various angiogenesis-, vascular stability-, and sphingosine-1-phosphate (S1P)-related genes. Surprisingly, the angiogenesis score was not associated with breast cancer subtype, Nottingham pathological grade, clinical stage, response to neoadjuvant chemotherapy, or patient survival. However, a high score was associated with a low fraction of both favorable and unfavorable immune cell infiltrations except for dendritic cell and M2 macrophage, and with Leukocyte Fraction, Tumor Infiltrating Lymphocyte Regional Fraction and Lymphocyte Infiltration Signature scores. High-score tumors had significant enrichment for unfavorable inflammation-related gene sets (interleukin (IL)6, and tumor necrosis factor (TNF)α- and TGFβ-signaling), as well as metastasis-related gene sets (epithelial mesenchymal transition, and Hedgehog-, Notch-, and WNT-signaling). High score was significantly associated with metastatic recurrence particularly to brain and bone. In conclusion, using the angiogenesis pathway score, we found that intra-tumoral angiogenesis is associated with immune reaction, inflammation and metastasis-related pathways, and metastatic recurrence in breast cancer.
Collapse
Affiliation(s)
- Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA; (M.O.); (S.N.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Stephanie Newman
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA; (M.O.); (S.N.); (Y.T.)
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, NY 14263, USA
| | - Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA; (M.O.); (S.N.); (Y.T.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA;
| | - Ryusei Matsuyama
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan;
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY 14263, USA; (M.O.); (S.N.); (Y.T.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; (R.M.); (I.E.)
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York, NY 14263, USA
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan;
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Correspondence: ; Tel.: +1-716-8455540; Fax: +1-716-8451668
| |
Collapse
|
117
|
Resop RS, Fromentin R, Newman D, Rigsby H, Dubrovsky L, Bukrinsky M, Chomont N, Bosque A. Fingolimod inhibits multiple stages of the HIV-1 life cycle. PLoS Pathog 2020; 16:e1008679. [PMID: 32790802 PMCID: PMC7425850 DOI: 10.1371/journal.ppat.1008679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Antiretroviral drugs that target various stages of the Human Immunodeficiency Virus (HIV) life cycle have been effective in curbing the AIDS epidemic. However, drug resistance, off-target effects of antiretroviral therapy (ART), and varying efficacy in prevention underscore the need to develop novel and alternative therapeutics. In this study, we investigated whether targeting the signaling molecule Sphingosine-1-phosphate (S1P) would inhibit HIV-1 infection and generation of the latent reservoir in primary CD4 T cells. We show that FTY720 (Fingolimod), an FDA-approved functional antagonist of S1P receptors, blocks cell-free and cell-to-cell transmission of HIV and consequently reduces detectable latent virus. Mechanistically, FTY720 impacts the HIV-1 life cycle at two levels. Firstly, FTY720 reduces the surface density of CD4, thereby inhibiting viral binding and fusion. Secondly, FTY720 decreases the phosphorylation of the innate HIV restriction factor SAMHD1 which is associated with reduced levels of total and integrated HIV, while reducing the expression of Cyclin D3. In conclusion, targeting the S1P pathway with FTY720 could be a novel strategy to inhibit HIV replication and reduce the seeding of the latent reservoir.
Collapse
Affiliation(s)
- Rachel S. Resop
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Rémi Fromentin
- Centre de recherche du CHUM and Department of microbiology, infectiology and immunology, Université de Montréal, Montreal, Canada
| | - Daniel Newman
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Hawley Rigsby
- Centre de recherche du CHUM and Department of microbiology, infectiology and immunology, Université de Montréal, Montreal, Canada
| | - Larisa Dubrovsky
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Nicolas Chomont
- Centre de recherche du CHUM and Department of microbiology, infectiology and immunology, Université de Montréal, Montreal, Canada
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
118
|
Wang K, Sun JZ, Wu QX, Li ZY, Li DX, Xiong YF, Zhong GC, Shi Y, Li Q, Zheng J, Shivappa N, Hébert JR, Foukakis T, Zhang X, Li HY, Xiang TX, Ren GS. Long-term anti-inflammatory diet in relation to improved breast cancer prognosis: a prospective cohort study. NPJ Breast Cancer 2020; 6:36. [PMID: 32821804 PMCID: PMC7426822 DOI: 10.1038/s41523-020-00179-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/22/2020] [Indexed: 02/05/2023] Open
Abstract
Inflammation-modulating nutrients and inflammatory markers are established cancer risk factors, however, evidence regarding the association between post-diagnosis diet-associated inflammation and breast cancer survival is relatively sparse. We aimed to examine the association between post-diagnosis dietary inflammatory index (DII®) and risks of all-cause and breast cancer-specific mortality. A total of 1064 female breast cancer survivors in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening (PLCO) Trial prospective cohort, were included in this analysis if they had completed the diet history questionnaire (DHQ). Energy-adjusted DII (E-DIITM) scores were calculated based on food and supplement intake. Cox regression and competing risk models were used to estimate multivariable-adjusted hazards ratios (HRs) and 95% confidence intervals (95% CIs) by E-DII tertile (T) for all-cause and breast cancer-specific mortality. With median follow-up of 14.6 years, there were 296 (27.8%) deaths from all causes and 100 (9.4%) breast cancer-specific death. The E-DII was associated with all-cause mortality (HR T3 vs T1, 1.34; 95% CI, 1.01-1.81; P trend, 0.049, Table 2) and breast cancer mortality (HR T3 vs T1, 1.47; 95% CI, 0.89-2.43; P trend, 0.13; multivariable-adjusted HR for 1-unit increment: 1.10; 95% CI: 1.00-1.22). Non-linear positive dose-response associations with mortality from all causes were identified for E-DII scores (P non-linearity < 0.05). The post-diagnosis E-DII was statistically significantly associated with mortality risk among breast cancer survivors. Long-term anti-inflammatory diet might be a means of improving survival of breast cancer survivors.
Collapse
Affiliation(s)
- Kang Wang
- Department of the Endocrine and Breast Surgery, The First Affiliated hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016 China
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia-Zheng Sun
- Department of the Endocrine and Breast Surgery, The First Affiliated hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016 China
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian-Xue Wu
- Department of the Endocrine and Breast Surgery, The First Affiliated hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016 China
| | - Zhu-Yue Li
- West China Hospital/West China School of Nursing, Sichuan University, Chengdu, China
| | - Da-Xue Li
- Department of Breast Surgery, Chongqing Health Center for Women and Children, Chongqing, 400000 China
| | - Yong-Fu Xiong
- The First Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637007 China
| | - Guo-Chao Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Shi
- Division of Biostatistics and Data Science, Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Qing Li
- Department of the Endocrine and Breast Surgery, The First Affiliated hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016 China
| | - Jiali Zheng
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 USA
| | - Nitin Shivappa
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 USA
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC 29208 USA
- Connecting Health Innovations, LLC, Columbia, SC 29201 USA
| | - James R. Hébert
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 USA
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC 29208 USA
- Connecting Health Innovations, LLC, Columbia, SC 29201 USA
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Xiang Zhang
- Department of the Endocrine and Breast Surgery, The First Affiliated hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016 China
| | - Hong-Yuan Li
- Department of the Endocrine and Breast Surgery, The First Affiliated hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016 China
| | - Ting-Xiu Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guo-Sheng Ren
- Department of the Endocrine and Breast Surgery, The First Affiliated hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016 China
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
119
|
Tokumaru Y, Oshi M, Katsuta E, Yan L, Huang JL, Nagahashi M, Matsuhashi N, Futamura M, Yoshida K, Takabe K. Intratumoral Adipocyte-High Breast Cancer Enrich for Metastatic and Inflammation-Related Pathways but Associated with Less Cancer Cell Proliferation. Int J Mol Sci 2020; 21:E5744. [PMID: 32796516 PMCID: PMC7461211 DOI: 10.3390/ijms21165744] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-associated adipocytes are known to cause inflammation, leading to cancer progression and metastasis. The clinicopathological and transcriptomic data from 2256 patients with breast cancer were obtained based on three cohorts: The Cancer Genome Atlas (TCGA), GSE25066, and a study by Yau et al. For the current study, we defined the adipocyte, which is calculated by utilizing a computational algorithm, xCell, as "intratumoral adipocyte". These intratumoral adipocytes appropriately reflected mature adipocytes in a bulk tumor. The amount of intratumoral adipocytes demonstrated no relationship with survival. Intratumoral adipocyte-high tumors significantly enriched for metastasis and inflammation-related gene sets and are associated with a favorable tumor immune microenvironment, especially in the ER+/HER2- subtype. On the other hand, intratumoral adipocyte-low tumors significantly enriched for cell cycle and cell proliferation-related gene sets. Correspondingly, intratumoral adipocyte-low tumors are associated with advanced pathological grades and inversely correlated with MKI67 expression. In conclusion, a high amount of intratumoral adipocytes in breast cancer was associated with inflammation, metastatic pathways, cancer stemness, and favorable tumor immune microenvironment. However, a low amount of adipocytes was associated with a highly proliferative tumor in ER-positive breast cancer. This cancer biology may explain the reason why patient survival did not differ by the amount of adipocytes.
Collapse
Affiliation(s)
- Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.O.); (E.K.); (J.L.H.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.M.); (M.F.); (K.Y.)
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.O.); (E.K.); (J.L.H.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Eriko Katsuta
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.O.); (E.K.); (J.L.H.)
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Jing Li Huang
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.O.); (E.K.); (J.L.H.)
| | - Masayuki Nagahashi
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan;
| | - Nobuhisa Matsuhashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.M.); (M.F.); (K.Y.)
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.M.); (M.F.); (K.Y.)
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.M.); (M.F.); (K.Y.)
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.O.); (E.K.); (J.L.H.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan;
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY 14263, USA
- Department of Breast Oncology and Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku, Tokyo 160-8402, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
120
|
Jairajpuri D, Mohammad T, Adhikari K, Gupta P, Hasan GM, Alajmi MF, Rehman MT, Hussain A, Hassan MI. Identification of Sphingosine Kinase-1 Inhibitors from Bioactive Natural Products Targeting Cancer Therapy. ACS OMEGA 2020; 5:14720-14729. [PMID: 32596609 PMCID: PMC7315586 DOI: 10.1021/acsomega.0c01511] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/28/2020] [Indexed: 05/28/2023]
Abstract
Sphingosine kinase 1 (SphK1) is an oncogenic lipid kinase that catalyzes the formation of sphingosine-1-phosphate via phosphorylation of sphingosine and known to play a crucial role in angiogenesis, lymphocyte trafficking, signal transduction pathways, and response to apoptotic stimuli. SphK1 has received attention because of its involvement in varying types of cancer and inflammatory diseases such as rheumatoid arthritis, diabetes, renal fibrosis, pulmonary fibrosis, asthma, and neurodegenerative disorders. In the malignancies of breast, lung, uterus, ovary, kidney, and leukemia, overexpression of SphK1 has been reported and thus considered as a potential drug target. In this study, we have performed virtual high-throughput screening of ∼90,000 natural products from the ZINC database to find potential SphK1-inhibitors. Initially, the hits were selected by applying absorption, distribution, metabolism, excretion, and toxicity properties, Lipinski's rule, and PAINS filters. Further, docking analysis was performed to estimate the binding affinities and specificity to find safe and effective preclinical leads against SphK1. Two compounds, ZINC05434006 and ZINC04260971, bearing appreciable binding affinity and SphK1 selectivity were selected for 100 ns molecular dynamics (MD) simulations under explicit water conditions. The all-atom MD simulation results suggested that the ZINC05434006 and ZINC04260971 binding induces a slight structural change and stabilizes the SphK1 structure. In conclusion, we propose natural compounds, ZINC05434006 and ZINC04260971, as potential inhibitors of SphK1, which may be further exploited as potential leads to develop effective therapeutics against SphK1-associated diseases including cancer after in vitro and in vivo validations.
Collapse
Affiliation(s)
- Deeba
Shamim Jairajpuri
- Department
of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, P.O. Box 22971, Manama, Bahrain
| | - Taj Mohammad
- Center
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Kirtika Adhikari
- Department
of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Preeti Gupta
- Center
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department
of Biochemistry, College of Medicine, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohamed F. Alajmi
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Md. Tabish Rehman
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Afzal Hussain
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Center
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
121
|
Xie Y, Chen L, Gao Y, Ma X, He W, Zhang Y, Zhang F, Fan Y, Gu L, Li P, Zhang X, Gou X. miR-363 suppresses the proliferation, migration and invasion of clear cell renal cell carcinoma by downregulating S1PR1. Cancer Cell Int 2020; 20:227. [PMID: 32536815 PMCID: PMC7288407 DOI: 10.1186/s12935-020-01313-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background MicroRNAs (miRNAs) serve as important regulators of the tumorigenesis and progression of many human cancers. Therefore, we evaluated the biological function and underlying mechanism of miR-363 in clear cell renal cell carcinoma (ccRCC). Methods The expression of miR-363 in ccRCC tissues compared with adjacent normal renal tissues was detected by quantitative real-time polymerase chain reaction, and the association between miR-363 levels and prognosis of ccRCC patients was analyzed. The candidate target gene of miR-363 was determined by in silico analysis and luciferase reporter assays. The effects of miR-363 on the proliferation, migration and invasion of ccRCC cells in vitro were determined by MTS assay, colony formation assay, Transwell assay and wound healing assay. We also investigated the roles of miR-363 in vivo by a xenograft tumour model. The mechanism of miR-363 on the proliferation, migration and invasion of ccRCC was determined by gain- and loss-of-function analyses. Results we demonstrated that miR-363 expression was obviously downregulated in ccRCC tissues and that reduced miR-363 expression was correlated with poor disease-free survival (DFS) in ccRCC patients after surgery. S1PR1 expression was inversely correlated with the level of miR-363 in human ccRCC samples. Luciferase reporter assays suggested that S1PR1 was a direct functional target of miR-363. miR-363 downregulated S1PR1 expression and suppressed the proliferation, migration and invasion abilities of ccRCC cells in vitro and suppressed xenograft tumour growth in vivo. Importantly, miR-363 exerted its biological function by inhibiting S1PR1 expression in ccRCC cells, leading to the repression of ERK activation. Moreover, we found that the levels of downstream effectors of ERK, including PDGF-A, PDGF-B, and epithelial-mesenchymal transition (EMT)-related genes, were decreased after miR-363 overexpression. Conclusions Our results suggest that miR-363 acts as a tumour suppressor by directly targeting S1PR1 in ccRCC and may be a potential new therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Yongpeng Xie
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Luyao Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Yu Gao
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853 China
| | - Xin Ma
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853 China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| | - Yu Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853 China
| | - Fan Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853 China
| | - Yang Fan
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853 China
| | - Liangyou Gu
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853 China
| | - Pin Li
- Department of Pediatric Urology, Bayi Children's Hospital Affiliated to the Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xu Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100853 China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016 China
| |
Collapse
|
122
|
Clinical relevance of tumor microenvironment: immune cells, vessels, and mouse models. Hum Cell 2020; 33:930-937. [PMID: 32507979 DOI: 10.1007/s13577-020-00380-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022]
Abstract
The tumor microenvironment (TME) plays a crucial role in tumor progression, therapeutic response, and patient outcomes. TME includes immune cells, blood and lymphatic vessels, and so on. There are anti-cancer and pro-cancer immune cells. In general, infiltration of anti-cancer immune cells, such as cytotoxic T cells (CTLs), is associated with a favorable patient prognosis. In contrast, infiltration of pro-cancer immune cells, such as regulatory T cells (Tregs), tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), is associated with a worse prognosis. However, some immune cells, which play an ambivalent role in cancer immunity, have demonstrated contradictory impacts on patient prognosis. Blood and lymphatic vessels play crucial roles in TME not only as delivery and draining systems of fluid and molecules, but also allowing cancer cells access to systematic circulation to metastasize. Angiogenesis promotes cancer aggressiveness and is associated with a worse prognosis. Its targeted therapy shows a benefit in some cancers, however, because the target can vary by caner type, a benefit of anti-angiogenesis therapy is limited in the current standard of care. Lymphangiogenesis plays a role in lymph node metastasis, thus, it is associated with a poor prognosis in some cancers. To study TME, the mouse model is one of the most commonly used tools. The choice of appropriate mouse model depends on the hypothesis being tested and the scientific question being asked. Here, we review recent studies that investigated the clinical relevance of TME components and introduce mouse models to study TME.
Collapse
|
123
|
Chen Q, Yang H, Zhu X, Xiong S, Chi H, Xu W. Integrative Analysis of the Doxorubicin-Associated LncRNA-mRNA Network Identifies Chemoresistance-Associated lnc-TRDMT1-5 as a Biomarker of Breast Cancer Progression. Front Genet 2020; 11:566. [PMID: 32547604 PMCID: PMC7272716 DOI: 10.3389/fgene.2020.00566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence has revealed close relationships between long non-coding RNAs (lncRNAs) and chemoresistance in multiple types of tumors; however, functional lncRNAs in breast cancer (BC) have not been completely identified. In this study, we aimed to identify novel lncRNAs that might play critical roles in doxorubicn resistance, which could reveal potential biomarkers of BC. Using a BC dataset (GSE81971), we identified 452 lncRNAs that were upregulated and 659 that were downregulated; furthermore, there were 1896 differentially expressed mRNAs, of which 1137 were upregulated and 758 were downregulated in MCF-7/ADR cells compared with the expression in MCF-7 cells. We constructed an lncRNA–mRNA network by integrating probe reannotation and regulatory interactions. To elucidate the key lncRNAs in BC, we further analyzed dysregulated lncRNA–mRNA crosstalk, and six candidate lncRNAs (lnc-TRDMT1-5, ZNF667-AS1, lnc-MPPE1-13, DSCAM-AS1:5, DSCAM-AS1:2, and lnc-CFI-3) were identified. Notably, the expression level of lnc-TRDMT1-5 was significantly upregulated in resistant cells compared with sensitive cells, and its levels were increased in BC tissues compared with adjacent tissues. Levels were positively associated with estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) expression levels. High expression of lnc-TRDMT1-5 predicted poor prognosis in ER-positve and HER2-positive BC patients, especially in patients with chemoresistance. Bioinformatic and functional analysis revealed that lnc-TRDMT1-5 was involved in many crucial pathways in cancer, such as the PI3K/AKT and Wnt signaling pathways. Subcellular localization predicted that lnc-TRDMT1-5 was located in the cytoplasm, and the lncRNA–miRNA–mRNA network showed that lnc-TRDMT1-5 might serve as a regulator in BC. Here, our results demonstrated a dysregulated lncRNA–mRNA network that might provide new treatment strategies for chemoresistant BC, and the results identified a new lncRNA, lnc-TRDMT1-5, with oncogenic and prognostic functions in human BC.
Collapse
Affiliation(s)
- Qi Chen
- Department of Breast Diseases, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hui Yang
- Department of Breast Diseases, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shangwan Xiong
- Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huamao Chi
- Department of Breast Diseases, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenlin Xu
- Department of Breast Diseases, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
124
|
Chen L, Xia Y, Lu J, Xie Q, Ye A, Sun W. A 50-Hz magnetic-field exposure promotes human amniotic cells proliferation via SphK-S1P-S1PR cascade mediated ERK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110407. [PMID: 32146198 DOI: 10.1016/j.ecoenv.2020.110407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Extremely low-frequency electromagnetic fields (ELF-EMFs) present a kind of common non-ionizing radiation in public and occupational environments. Previous studies have suggested that ELF-EMF exposure might have a potential impact on co-carcinogenesis and the progression of tumorigenesis by inducing cell proliferation. However, the underlying mechanisms remain largely unknown. In this study, we investigated the possible role of the sphingosine-1-phosphate (S1P)-related pathway in regulating cell proliferation induced by 50-Hz, 0.4-mT magnetic-field (MF) exposure. The results showed that MF exposure significantly promoted sphingosine kinase 1 (SphK1) activity, and that inhibition of the SphK1-S1P-S1P receptor (S1PR) pathway could remarkably reverse MF-induced cell proliferation. Additionally, we could infer indirectly from an exogenous-S1P experiment that MF-induced S1P might act on S1PR1/3 in a paracrine and/or autocrine manner to mediate the proliferation effect. Notably, although the MF activated the extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) pathways, the SphK1-S1P-S1PR1/3 cascade regulated MF-induced proliferation by activating the ERK rather than the Akt pathway. Taken together, the findings of this study indicated that the SphK1-S1P-S1PR1/3 cascade played an important role in MF-induced proliferation by mediating the ERK signaling pathway, which could bring new insights into understanding and preventing the adverse effects of MFs.
Collapse
Affiliation(s)
- Liangjing Chen
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yongpeng Xia
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingchun Lu
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qixin Xie
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Anfang Ye
- Department of Occupational Disease of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Wenjun Sun
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Occupational Disease of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
125
|
Tokumaru Y, Asaoka M, Oshi M, Katsuta E, Yan L, Narayanan S, Sugito N, Matsuhashi N, Futamura M, Akao Y, Yoshida K, Takabe K. High Expression of microRNA-143 is Associated with Favorable Tumor Immune Microenvironment and Better Survival in Estrogen Receptor Positive Breast Cancer. Int J Mol Sci 2020; 21:ijms21093213. [PMID: 32370060 PMCID: PMC7246786 DOI: 10.3390/ijms21093213] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
microRNA-143 (miR-143) is a well-known tumor suppressive microRNA that exhibits anti-tumoral function by targeting KRAS signaling pathways in various malignancies. We hypothesized that miR-143 suppresses breast cancer progression by targeting KRAS and its effector molecules. We further hypothesized that high expression of miR-143 is associated with a favorable tumor immune microenvironment of estrogen receptor (ER)-positive breast cancer patients which result in improved survival. Two major publicly available breast cancer cohorts; The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) were used. The miR-143 high expression group was associated with increased infiltration of anti-cancer immune cells and decreased pro-cancer immune cells, as well as enrichment of the genes relating to T helper (Th1) cells resulting in improved overall survival (OS) in ER-positive breast cancer patients. To the best of our knowledge, this is the first study to demonstrate that high expression of miR-143 in cancer cells associates with a favorable tumor immune microenvironment, upregulation of anti-cancer immune cells, and suppression of the pro-cancer immune cells, associating with better survival of the breast cancer patients.
Collapse
Affiliation(s)
- Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.A.); (M.O.); (E.K.)
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.M.); (M.F.); (K.Y.)
| | - Mariko Asaoka
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.A.); (M.O.); (E.K.)
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.A.); (M.O.); (E.K.)
- Department of Surgery, Yokohama City University, Yokohama 236-0004, Japan
| | - Eriko Katsuta
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.A.); (M.O.); (E.K.)
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA;
| | - Sumana Narayanan
- Department of Surgical Oncology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA;
| | - Nobuhiko Sugito
- United Graduate School of Drug and Medical Information Sciences, Gifu University, Gifu 501-1194, Japan; (N.S.); (Y.A.)
| | - Nobuhisa Matsuhashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.M.); (M.F.); (K.Y.)
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.M.); (M.F.); (K.Y.)
| | - Yukihiro Akao
- United Graduate School of Drug and Medical Information Sciences, Gifu University, Gifu 501-1194, Japan; (N.S.); (Y.A.)
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.M.); (M.F.); (K.Y.)
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (Y.T.); (M.A.); (M.O.); (E.K.)
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Surgery, Yokohama City University, Yokohama 236-0004, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY 14203, USA
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Correspondence:
| |
Collapse
|
126
|
Inflammatory Conditions Disrupt Constitutive Endothelial Cell Barrier Stabilization by Alleviating Autonomous Secretion of Sphingosine 1-Phosphate. Cells 2020; 9:cells9040928. [PMID: 32290092 PMCID: PMC7226983 DOI: 10.3390/cells9040928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 01/29/2023] Open
Abstract
The breakdown of the endothelial cell (EC) barrier contributes significantly to sepsis mortality. Sphingosine 1-phosphate (S1P) is one of the most effective EC barrier-stabilizing signaling molecules. Stabilization is mainly transduced via the S1P receptor type 1 (S1PR1). Here, we demonstrate that S1P was autonomously produced by ECs. S1P secretion was significantly higher in primary human umbilical vein endothelial cells (HUVEC) compared to the endothelial cell line EA.hy926. Constitutive barrier stability of HUVEC, but not EA.hy926, was significantly compromised by the S1PR1 antagonist W146 and by the anti-S1P antibody Sphingomab. HUVEC and EA.hy926 differed in the expression of the S1P-transporter Spns2, which allowed HUVEC, but not EA.hy926, to secrete S1P into the extracellular space. Spns2 deficient mice showed increased serum albumin leakage in bronchoalveolar lavage fluid (BALF). Lung ECs isolated from Spns2 deficient mice revealed increased leakage of fluorescein isothiocyanate (FITC) labeled dextran and decreased resistance in electric cell-substrate impedance sensing (ECIS) measurements. Spns2 was down-regulated in HUVEC after stimulation with pro-inflammatory cytokines and lipopolysaccharides (LPS), which contributed to destabilization of the EC barrier. Our work suggests a new mechanism for barrier integrity maintenance. Secretion of S1P by EC via Spns2 contributed to constitutive EC barrier maintenance, which was disrupted under inflammatory conditions via the down-regulation of the S1P-transporter Spns2.
Collapse
|
127
|
Alshaker H, Thrower H, Pchejetski D. Sphingosine Kinase 1 in Breast Cancer-A New Molecular Marker and a Therapy Target. Front Oncol 2020; 10:289. [PMID: 32266132 PMCID: PMC7098968 DOI: 10.3389/fonc.2020.00289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
It is now well-established that sphingosine kinase 1 (SK1) plays a significant role in breast cancer development, progression, and spread, whereas SK1 knockdown can reverse these processes. In breast cancer cells and tumors, SK1 was shown to interact with various pathways involved in cell survival and chemoresistance, such as nuclear factor-kappa B (NFκB), Notch, Ras/MAPK, PKC, and PI3K. SK1 is upregulated by estrogen signaling, which, in turn, confers cancer cells with resistance to tamoxifen. Sphingosine-1-phosphate (S1P) produced by SK1 has been linked to tumor invasion and metastasis. Both SK1 and S1P are closely linked to inflammation and adipokine signaling in breast cancer. In human tumors, high SK1 expression has been linked with poorer survival and prognosis. SK1 is upregulated in triple negative tumors and basal-like subtypes. It is often associated with high phosphorylation levels of ERK1/2, SFK, LYN, AKT, and NFκB. Higher tumor SK1 mRNA levels were correlated with poor response to chemotherapy. This review summarizes the up-to-date evidence and discusses the therapeutic potential for the SK1 inhibition in breast cancer, with emphasis on the mechanisms of chemoresistance and combination with other therapies such as gefitinib or docetaxel. We have outlined four key areas for future development, including tumor microenvironment, combination therapies, and nanomedicine. We conclude that SK1 may have a potential as a target for precision medicine, its high expression being a negative prognostic marker in ER-negative breast cancer, as well as a target for chemosensitization therapy.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| | - Hannah Thrower
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
128
|
Chen G, Cai Z, Dong X, Zhao J, Lin S, Hu X, Liu FE, Liu X, Zhang H. Genomic and Transcriptomic Landscape of Tumor Clonal Evolution in Cholangiocarcinoma. Front Genet 2020; 11:195. [PMID: 32231683 PMCID: PMC7083074 DOI: 10.3389/fgene.2020.00195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma remained a severe threat to human health. Deciphering the genomic and/or transcriptomic profiles of tumor has been proved to be a promising strategy for exploring the mechanism of tumorigenesis and development, which could also provide valuable insights into Cholangiocarcinoma. However, little knowledge has been obtained regarding to how the alteration among different omics levels is connected. Here, using whole exome sequencing and transcriptome sequencing, we performed a thorough evaluation for the landscape of genome and transcriptome in cholangiocarcinoma and illustrate the alteration of tumor on different biological levels. Meanwhile, we also identified the clonal structure of each included tumor sample and discovered different clonal evolution patterns related to patients' survival. Furthermore, we extracted subnetworks that were greatly influenced by tumor clonal/subclonal mutations or transcriptome change. The topology relationship between genes affected by genomic/transcriptomic changes in biological interaction networks revealed that alteration of genome and transcriptome was highly correlated, and somatic mutations located on important genes might affect the expression of numerous genes in close range.
Collapse
Affiliation(s)
- Geng Chen
- School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Zhixiong Cai
- School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Xiuqing Dong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jing Zhao
- School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Song Lin
- School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Xi Hu
- School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Fang-E Liu
- Department of Nursing, School of Medicine, Xi’an Peihua University, Xi’an, China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Huqing Zhang
- School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
129
|
Okano M, Oshi M, Butash A, Okano I, Saito K, Kawaguchi T, Nagahashi M, Kono K, Ohtake T, Takabe K. Orthotopic Implantation Achieves Better Engraftment and Faster Growth Than Subcutaneous Implantation in Breast Cancer Patient-Derived Xenografts. J Mammary Gland Biol Neoplasia 2020; 25:27-36. [PMID: 32109311 PMCID: PMC7141774 DOI: 10.1007/s10911-020-09442-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/22/2020] [Indexed: 01/18/2023] Open
Abstract
Patient-Derived Xenograft (PDX) is now accepted as a murine model that better mimics human cancer when compared to a conventional cancer cell-line inoculation model. Some claim the advantage of orthotopic site implantation of patient tumor (OS) over ectopic implantation into the subcutaneous space (SQ); however, there has been no study that describes a head-to-head comparison of oncological differences between these two models to date. We hypothesize that OS tumors re-transplant and grow better than SQ tumors and are therefore a better model to evaluate tumor aggressiveness. Breast cancer PDXs were generated using the tumors derived from 11 patients into NOD scid gamma (NSG) mice. We used six ER(+)HER2(-) tumors and five triple negative (TN) tumors for a total of 11 tumors. Five PDX lines grew for an overall engraftment rate of 45%. We present our OS implantation method in detail. The re-transplantation rate of TN tumors in each transplant site was significantly higher in OS when compared to SQ tumors (70.1% vs. 32.1%, p < 0.01). OS tumors grow significantly faster than SQ tumors. Similarly, OS tumors demonstrated significantly more mitotic figures and Ki-67 positive cells than SQ tumors. The tumor re-transplantation rate significantly increased by the second and third generations with the OS method. The time from implantation to development of a palpable tumor dramatically decreased after the first passage. PDX of ER(+) tumors demonstrated significantly lower engraftment rates and slower tumor growth than TN tumors, which remarkably improved by the first passage. Orthotopically implanted PDX tumors showed better re-transplantation rates, greater tumor size, and more significant growth compared to the subcutaneously implanted model.
Collapse
Affiliation(s)
- Maiko Okano
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Ali Butash
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Ichiro Okano
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tsutomu Kawaguchi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Toru Ohtake
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, NY, 14263, USA.
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA.
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan.
- Department of Surgery, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
130
|
Fang H, Feng Q, Shi Y, Zhou J, Wang Q, Zhong L. Hepatic insulin resistance induced by mitochondrial oxidative stress can be ameliorated by sphingosine 1-phosphate. Mol Cell Endocrinol 2020; 501:110660. [PMID: 31759099 DOI: 10.1016/j.mce.2019.110660] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/22/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
The bioactive lipid mediator sphingosine 1-phosphate (S1P) is considered to be involved in the development of insulin resistance (IR) via effects on oxidative stress; the mechanism however is not yet fully revealed. To this end, we investigated the role and mechanism of S1P on hepatic IR. We found that treatment of the normal human liver cell LO2 with 1000 nM insulin for 48 h reduced glucose uptake and increased serine phosphorylation of insulin receptor substrate-1, indicating a reduction in insulin receptor signaling. Moreover, the same concentration of insulin caused accumulation of reactive oxygen species (ROS) in the cytosol and mitochondria, and enhanced expression of the antioxidant transcription factor (Nrf2) and upregulated Nrf2 nuclear translocation. Using known inhibitors and donors of ROS (H2O2, ·O2-, ·OH), the results demonstrated the differential roles for the specific ROS in regulating IR in LO2 cells, with H2O2 having a more significant inhibitory role compared with ·O2- and ·OH. Cell treatment with S1P at 0.1-5.0 μM reversed the effects of high insulin concentrations on ROS generation, glucose uptake, and insulin signaling. H2O2 also reversed the beneficial effects of S1P in alleviating IR. These results show that H2O2 signaling plays a key determinant in hepatic IR induced by insulin. S1P can ameliorate hepatic IR by reducing mitochondrial ROS generation, and the possible anti-IR effect mechanism may be involved in H2O2 signaling.
Collapse
Affiliation(s)
- Hongjuan Fang
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Qiong Feng
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, 100071, China
| | - Yunxiang Shi
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, 100071, China
| | - Jiping Zhou
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, 100071, China
| | - Qiang Wang
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, 100071, China.
| | - Liyong Zhong
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
131
|
Hait NC, Maiti A, Xu P, Qi Q, Kawaguchi T, Okano M, Takabe K, Yan L, Luo C. Regulation of hypoxia-inducible factor functions in the nucleus by sphingosine-1-phosphate. FASEB J 2020; 34:4293-4310. [PMID: 32017264 PMCID: PMC10112293 DOI: 10.1096/fj.201901734rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Sphingosine kinase 2 (SphK2) is known to phosphorylate the nuclear sphingolipid metabolite to generate sphingosine-1-phosphate (S1P). Nuclear S1P is involved in epigenetic regulation of gene expression; however, the underlying mechanisms are not well understood. In this work, we have identified the role of nuclear S1P and SphK2 in regulating hypoxia-responsive master transcription factors hypoxia-inducible factor (HIF)-1α/2α, and their functions in breast cancer, with a focus on triple-negative breast cancer (TNBC). We have shown SphK2 is associated with HIF-1α in protein complexes, and is enriched at the promoters of HIF target genes, including vascular endothelial growth factor (VEGF), where it enhances local histone H3 acetylation and transcription. S1P specifically binds to the PAS domains of HIF-1α. SphK2, and HIF-1α expression levels are elevated in metastatic estrogen receptor-positive (ER+) and TNBC clinical tissue specimens compared to healthy breast tissue samples. To determine if S1P formation in the nucleus by SphK2 is a key regulator of HIF functions, we found using a preclinical TNBC xenograft mouse model, and an existing selective SphK2 inhibitor K-145, that nuclear S1P, histone acetylation, HIF-1α expression, and TNBC tumor growth were all reduced in vivo. Our results suggest that S1P and SphK2 in the nucleus are linked to the regulation of HIF-1α/2α functions associated with breast cancer progression, and may provide potential therapeutic targets.
Collapse
Affiliation(s)
- Nitai C Hait
- Division of Breast Surgery and Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Aparna Maiti
- Division of Breast Surgery and Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Pan Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Qianya Qi
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tsutomu Kawaguchi
- Division of Breast Surgery and Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Maiko Okano
- Division of Breast Surgery and Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kazuaki Takabe
- Division of Breast Surgery and Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
132
|
Kim EY, Choi B, Kim JE, Park SO, Kim SM, Chang EJ. Interleukin-22 Mediates the Chemotactic Migration of Breast Cancer Cells and Macrophage Infiltration of the Bone Microenvironment by Potentiating S1P/SIPR Signaling. Cells 2020; 9:E131. [PMID: 31935914 PMCID: PMC7017200 DOI: 10.3390/cells9010131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
The interleukin-22 (IL-22) signaling pathway is well known to be involved in the progression of various cancer types but its role in bone metastatic breast cancer remains unclear. We demonstrate using human GEO profiling that bone metastatic breast cancer displays elevated interleukin-22 receptor 1 (IL-22R1) and sphingosine-1-phosphate receptor 1 (S1PR1) expression. Importantly, IL-22 stimuli promoted the expression of IL-22R1 and S1PR1 in aggressive MDA-MB-231 breast cancer cells. IL-22 treatment also increased sphingosine-1-phosphate production in mesenchymal stem cells (MSCs) and induced the sphingosine-1-phosphate (S1P)-mediated chemotactic migration of MDA-MB-231 cells. This effect was inhibited by an S1P antagonist. In addition to the S1PR1 axis, IL-22 stimulated the expression of matrix metalloproteinase-9 (MMP-9), thereby promoting breast cancer cell invasion. Moreover, IL-22 induced IL22R1 and S1PR1 expression in macrophages, myeloid cell, and MCP1 expression in MSCs to facilitate macrophage infiltration. Immunohistochemistry indicated that IL-22R1 and S1PR1 are overexpressed in invasive malignant breast cancers and that this correlates with the MMP-9 levels. Collectively, our present results indicate a potential role of IL-22 in driving the metastasis of breast cancers into the bone microenvironment through the IL22R1-S1PR1 axis.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (E.-Y.K.); (B.C.); (J.-E.K.); (S.-O.P.); (S.-M.K.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Bongkun Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (E.-Y.K.); (B.C.); (J.-E.K.); (S.-O.P.); (S.-M.K.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Ji-Eun Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (E.-Y.K.); (B.C.); (J.-E.K.); (S.-O.P.); (S.-M.K.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Si-On Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (E.-Y.K.); (B.C.); (J.-E.K.); (S.-O.P.); (S.-M.K.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sang-Min Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (E.-Y.K.); (B.C.); (J.-E.K.); (S.-O.P.); (S.-M.K.)
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (E.-Y.K.); (B.C.); (J.-E.K.); (S.-O.P.); (S.-M.K.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
133
|
Wang X, Sun Y, Peng X, Naqvi SMAS, Yang Y, Zhang J, Chen M, Chen Y, Chen H, Yan H, Wei G, Hong P, Lu Y. The Tumorigenic Effect of Sphingosine Kinase 1 and Its Potential Therapeutic Target. Cancer Control 2020; 27:1073274820976664. [PMID: 33317322 PMCID: PMC8480355 DOI: 10.1177/1073274820976664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Sphingosine kinase 1 (SPHK1) regulates cell proliferation and survival by converting sphingosine to the signaling mediator sphingosine 1-phosphate (S1P). SPHK1 is widely overexpressed in most cancers, promoting tumor progression and is associated with clinical prognosis. Numerous studies have explored SPHK1 as a promising target for cancer therapy. However, due to insufficient knowledge of SPHK1 oncogenic mechanisms, its inhibitors' therapeutic potential in preventing and treating cancer still needs further investigation. In this review, we summarized the metabolic balance regulated by the SPHK1/S1P signaling pathway and highlighted the oncogenic mechanisms of SPHK1 via the upregulation of autophagy, proliferation, and survival, migration, angiogenesis and inflammation, and inhibition of apoptosis. Drug candidates targeting SPHK1 were also discussed at the end. This review provides new insights into the oncogenic effect of SPHK1 and sheds light on the future direction for targeting SPHK1 as cancer therapy.
Collapse
Affiliation(s)
- Xianwang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yong Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Syed Manzar Abbas Shah Naqvi
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yue Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Meiwen Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yuan Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Hongyue Chen
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huizi Yan
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Guangliang Wei
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Peng Hong
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yingying Lu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
134
|
Gupta P, Mohammad T, Dahiya R, Roy S, Noman OMA, Alajmi MF, Hussain A, Hassan MI. Evaluation of binding and inhibition mechanism of dietary phytochemicals with sphingosine kinase 1: Towards targeted anticancer therapy. Sci Rep 2019; 9:18727. [PMID: 31822735 PMCID: PMC6904568 DOI: 10.1038/s41598-019-55199-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Sphingosine kinase 1 (SphK1) has recently gained attention as a potential drug target for its association with cancer and other inflammatory diseases. Here, we have investigated the binding affinity of dietary phytochemicals viz., ursolic acid, capsaicin, DL-α tocopherol acetate, quercetin, vanillin, citral, limonin and simvastatin with the SphK1. Docking studies revealed that all these compounds bind to the SphK1 with varying affinities. Fluorescence binding and isothermal titration calorimetric measurements suggested that quercetin and capsaicin bind to SphK1 with an excellent affinity, and significantly inhibits its activity with an admirable IC50 values. The binding mechanism of quercetin was assessed by docking and molecular dynamics simulation studies for 100 ns in detail. We found that quercetin acts as a lipid substrate competitive inhibitor, and it interacts with important residues of active-site pocket through hydrogen bonds and other non-covalent interactions. Quercetin forms a stable complex with SphK1 without inducing any significant conformational changes in the protein structure. In conclusion, we infer that quercetin and capsaicin provide a chemical scaffold to develop potent and selective inhibitors of SphK1 after required modifications for the clinical management of cancer.
Collapse
Affiliation(s)
- Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Rashmi Dahiya
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Sonam Roy
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Omar Mohammed Ali Noman
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
135
|
Torretta E, Barbacini P, Al-Daghri NM, Gelfi C. Sphingolipids in Obesity and Correlated Co-Morbidities: The Contribution of Gender, Age and Environment. Int J Mol Sci 2019; 20:ijms20235901. [PMID: 31771303 PMCID: PMC6929069 DOI: 10.3390/ijms20235901] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
This paper reviews our present knowledge on the contribution of ceramide (Cer), sphingomyelin (SM), dihydroceramide (DhCer) and sphingosine-1-phosphate (S1P) in obesity and related co-morbidities. Specifically, in this paper, we address the role of acyl chain composition in bodily fluids for monitoring obesity in males and females, in aging persons and in situations of environmental hypoxia adaptation. After a brief introduction on sphingolipid synthesis and compartmentalization, the node of detection methods has been critically revised as the node of the use of animal models. The latter do not recapitulate the human condition, making it difficult to compare levels of sphingolipids found in animal tissues and human bodily fluids, and thus, to find definitive conclusions. In human subjects, the search for putative biomarkers has to be performed on easily accessible material, such as serum. The serum “sphingolipidome” profile indicates that attention should be focused on specific acyl chains associated with obesity, per se, since total Cer and SM levels coupled with dyslipidemia and vitamin D deficiency can be confounding factors. Furthermore, exposure to hypoxia indicates a relationship between dyslipidemia, obesity, oxygen level and aerobic/anaerobic metabolism, thus, opening new research avenues in the role of sphingolipids.
Collapse
Affiliation(s)
- Enrica Torretta
- Department of Biomedical Sciences for Health, University of Milan, Luigi Mangiagalli 31, 20133 Milan, Italy; (E.T.); (P.B.)
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, Luigi Mangiagalli 31, 20133 Milan, Italy; (E.T.); (P.B.)
- Ph.D. school in Molecular and Translational Medicine, University of Milan, 20142 Milan, Italy
| | - Nasser M. Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department,College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Luigi Mangiagalli 31, 20133 Milan, Italy; (E.T.); (P.B.)
- I.R.C.C.S Orthopedic Institute Galeazzi, R. Galeazzi 4, 20161 Milan, Italy
- Correspondence: ; Tel.: +39-025-033-0475
| |
Collapse
|
136
|
Repeated Fractions of X-Radiation to the Breast Fat Pads of Mice Augment Activation of the Autotaxin-Lysophosphatidate-Inflammatory Cycle. Cancers (Basel) 2019; 11:cancers11111816. [PMID: 31752313 PMCID: PMC6895803 DOI: 10.3390/cancers11111816] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Breast cancer patients are usually treated with multiple fractions of radiotherapy (RT) to the whole breast after lumpectomy. We hypothesized that repeated fractions of RT would progressively activate the autotaxin–lysophosphatidate-inflammatory cycle. To test this, a normal breast fat pad and a fat pad containing a mouse 4T1 tumor were irradiated with X-rays using a small-animal “image-guided” RT platform. A single RT dose of 7.5 Gy and three daily doses of 7.5 Gy increased ATX activity and decreased plasma adiponectin concentrations. The concentrations of IL-6 and TNFα in plasma and of VEGF, G-CSF, CCL11 and CXCL10 in the irradiated fat pad were increased, but only after three fractions of RT. In 4T1 breast tumor-bearing mice, three fractions of 7.5 Gy augmented tumor-induced increases in plasma ATX activity and decreased adiponectin levels in the tumor-associated mammary fat pad. There were also increased expressions of multiple inflammatory mediators in the tumor-associated mammary fat pad and in tumors, which was accompanied by increased infiltration of CD45+ leukocytes into tumor-associated adipose tissue. This work provides novel evidence that increased ATX production is an early response to RT and that repeated fractions of RT activate the autotaxin–lysophosphatidate-inflammatory cycle. This wound healing response to RT-induced damage could decrease the efficacy of further fractions of RT.
Collapse
|
137
|
Wang P, Yuan Y, Lin W, Zhong H, Xu K, Qi X. Roles of sphingosine-1-phosphate signaling in cancer. Cancer Cell Int 2019; 19:295. [PMID: 31807117 PMCID: PMC6857321 DOI: 10.1186/s12935-019-1014-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022] Open
Abstract
The potent pleiotropic lipid mediator sphingosine-1-phosphate (S1P) participates in numerous cellular processes, including angiogenesis and cell survival, proliferation, and migration. It is formed by one of two sphingosine kinases (SphKs), SphK1 and SphK2. These enzymes largely exert their various biological and pathophysiological actions through one of five G protein-coupled receptors (S1PR1–5), with receptor activation setting in motion various signaling cascades. Considerable evidence has been accumulated on S1P signaling and its pathogenic roles in diseases, as well as on novel modulators of S1P signaling, such as SphK inhibitors and S1P agonists and antagonists. S1P and ceramide, composed of sphingosine and a fatty acid, are reciprocal cell fate regulators, and S1P signaling plays essential roles in several diseases, including inflammation, cancer, and autoimmune disorders. Thus, targeting of S1P signaling may be one way to block the pathogenesis and may be a therapeutic target in these conditions. Increasingly strong evidence indicates a role for the S1P signaling pathway in the progression of cancer and its effects. In the present review, we discuss recent progress in our understanding of S1P and its related proteins in cancer progression. Also described is the therapeutic potential of S1P receptors and their downstream signaling cascades as targets for cancer treatment.
Collapse
Affiliation(s)
- Peng Wang
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Yonghui Yuan
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China.,2Research and Academic Department, Cancer Hospital of China Medical University Liaoning Cancer Hospital & Institute, Shenyang, 110042 Liaoning China
| | - Wenda Lin
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Hongshan Zhong
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Ke Xu
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Xun Qi
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| |
Collapse
|
138
|
Yang Y, Liu F, Lu R, Jia J. Berberine Inhibits Adipogenesis in Porcine Adipocytes
via
AMP‐Activated Protein Kinase‐Dependent and ‐Independent Mechanisms. Lipids 2019; 54:667-678. [DOI: 10.1002/lipd.12200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 09/20/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Yongqing Yang
- College of Life ScienceShanxi Normal University The First Gongyuan Road, Linfen Shanxi Province 041000 People's Republic of China
| | - Fenglan Liu
- College of Life ScienceShanxi Normal University The First Gongyuan Road, Linfen Shanxi Province 041000 People's Republic of China
| | - Rongsheng Lu
- College of Life ScienceShanxi Normal University The First Gongyuan Road, Linfen Shanxi Province 041000 People's Republic of China
| | - Junli Jia
- College of Life ScienceShanxi Normal University The First Gongyuan Road, Linfen Shanxi Province 041000 People's Republic of China
| |
Collapse
|
139
|
Zimta AA, Tigu AB, Muntean M, Cenariu D, Slaby O, Berindan-Neagoe I. Molecular Links between Central Obesity and Breast Cancer. Int J Mol Sci 2019; 20:ijms20215364. [PMID: 31661891 PMCID: PMC6862548 DOI: 10.3390/ijms20215364] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
Worldwide, breast cancer (BC) is the most common malignancy in women, in regard to incidence and mortality. In recent years, the negative role of obesity during BC development and progression has been made abundantly clear in several studies. However, the distribution of body fat may be more important to analyze than the overall body weight. In our review of literature, we reported some key findings regarding the role of obesity in BC development, but focused more on central adiposity. Firstly, the adipose microenvironment in obese people bears many similarities with the tumor microenvironment, in respect to associated cellular composition, chronic low-grade inflammation, and high ratio of reactive oxygen species to antioxidants. Secondly, the adipose tissue functions as an endocrine organ, which in obese people produces a high level of tumor-promoting hormones, such as leptin and estrogen, and a low level of the tumor suppressor hormone, adiponectin. As follows, in BC this leads to the activation of oncogenic signaling pathways: NFκB, JAK, STAT3, AKT. Moreover, overall obesity, but especially central obesity, promotes a systemic and local low grade chronic inflammation that further stimulates the increase of tumor-promoting oxidative stress. Lastly, there is a constant exchange of information between BC cells and adipocytes, mediated especially by extracellular vesicles, and which changes the transcription profile of both cell types to an oncogenic one with the help of regulatory non-coding RNAs.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine, and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Adrian Bogdan Tigu
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine, and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
- Babeș-Bolyai University, Faculty of Biology, and Geology, 42 Republicii Street, 400015 Cluj-Napoca, Romania.
| | - Maximilian Muntean
- Department of Plastic Surgery, University of Medicine and Pharmacy "Iuliu Hatieganu", 400337 Cluj-Napoca, Romania.
| | - Diana Cenariu
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine, and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 62100 Brno, Czech Republic.
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, 60200 Brno, Czech Republic.
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine, and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine, and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
- Department of Functional Genomics, and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34th street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
140
|
Singh SK, Spiegel S. Sphingosine-1-phosphate signaling: A novel target for simultaneous adjuvant treatment of triple negative breast cancer and chemotherapy-induced neuropathic pain. Adv Biol Regul 2019; 75:100670. [PMID: 31708456 DOI: 10.1016/j.jbior.2019.100670] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
Abstract
Triple-negative breast cancer (TNBC) is very aggressive with high metastatic and mortality rates and unfortunately, except for chemotherapy, there are few therapeutic options. The bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) regulates numerous processes important for cancer progression, metastasis, and neuropathic pain. The pro-drug FTY720 (fingolimod, Gilenya) used to treat multiple sclerosis is phosphorylated in the body to a S1P mimic that binds to S1PRs, except S1PR2, and also acts as a functional antagonist of S1PR1. This review highlights current findings showing that FTY720 has multiple anti-cancer activities and simultaneously prevents formation and actions of S1P. Moreover, in mouse breast cancer models, treatment with FTY720 reduces tumor growth, metastasis, and enhances sensitivity of advanced and hormonal refractory breast cancer and TNBC to conventional therapies. We discuss recent studies demonstrating that neuropathic pain induced by the chemotherapeutic bortezomib is also greatly reduced by administration of clinically relevant doses of FTY720, likely by targeting S1PR1 on astrocytes. FTY720 also shows promising anticancer potential in pre-clinical studies and is FDA approved, thus we suggest in this review that further studies are needed to pave the way for fast-tracking approval of FTY720/fingolimod for enhancing chemotherapy effectiveness and reduction of painful neuropathies.
Collapse
Affiliation(s)
- Sandeep K Singh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, VA, USA.
| |
Collapse
|
141
|
Funcke JB, Scherer PE. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60:1648-1684. [PMID: 31209153 PMCID: PMC6795086 DOI: 10.1194/jlr.r094060] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.
Collapse
Affiliation(s)
- Jan-Bernd Funcke
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
142
|
Triple-Negative Breast Cancer with High Levels of Annexin A1 Expression Is Associated with Mast Cell Infiltration, Inflammation, and Angiogenesis. Int J Mol Sci 2019; 20:ijms20174197. [PMID: 31461932 PMCID: PMC6747082 DOI: 10.3390/ijms20174197] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 01/07/2023] Open
Abstract
Annexin A1 (ANXA1) is a phospholipid-linked protein involved in inflammation, immune response, and mast cell reactivity. Recently, we reported that ANXA1 is associated with aggressive features of triple-negative breast cancer (TNBC); however, its clinical relevance remains controversial. We hypothesized that human TNBC with high expression of ANXA1 mRNA is associated with pro-cancerous immune cell infiltration, including mast cells, and with an aggressive phenotype. Clinical and RNA-seq data were obtained from The Cancer Genome Atlas (TCGA, n = 1079) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) (n = 1904). TNBC patients had significantly higher levels of ANXA1 expression compared to the other subtypes in both TCGA and METABRIC cohorts (p < 0.001). ANXA1 protein expression was assessed by immunohistochemistry in Japanese TNBC patient cohort (n = 48), where 17 cases (35.4%) had positive ANXA1 staining, and their overall survival was significantly shorter compared with negative staining group (p = 0.008). The CIBERSORT algorithm was used to calculate immune cell infiltrations. ANXA1 high tumors were associated with activated mast cells and M2 macrophages (p > 0.01), but did not show any association with tumor heterogeneity nor cytolytic activity. High expression of ANXA1 group enriched inflammation, epithelial-to-mesenchymal transition (EMT), and angiogenesis-related genes in a gene set enrichment assay in both cohorts. To our knowledge, this is the first study to demonstrate that ANXA1 is associated with infiltration of mast cells and inflammation that is associated with the aggressive phenotype of TNBC, such as EMT and angiogenesis.
Collapse
|
143
|
Liu Y, Zhi Y, Song H, Zong M, Yi J, Mao G, Chen L, Huang G. S1PR1 promotes proliferation and inhibits apoptosis of esophageal squamous cell carcinoma through activating STAT3 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:369. [PMID: 31438989 PMCID: PMC6706905 DOI: 10.1186/s13046-019-1369-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide, which lacks effective biomarkers for prognosis. Therefore, it is urgent to explore new potential molecular markers to discriminate patients with poorer survival in ESCC. Methods Bioinformatics analysis, qRT-PCR, and western blot were applied to investigate S1PR1 expression. CCK-8 assay, colony formation assay, flow cytometry dual staining assay, and immunofluorescence were performed to examine cell proliferation ability and apoptosis rate. Mouse xenograft model of TE-13 cells was established to confirm the roles of S1PR1 in vivo. Gene set enrichment analysis (GSEA) was used to investigate the downstream signaling pathways related to S1PR1 functions. Co-IP was performed to verify the direct binding of S1PR1 and STAT3. Western blot was applied to determine the phosphorylation level of STAT3. Immunohistochemistry was conducted to identify protein expression of S1PR1 and p- STAT3 in tumor tissues. Results In the present study, we found that S1PR1 expression was higher in ESCC patients and was a potential biomarker for poor prognosis. Silencing S1PR1 expression inhibited proliferation, and increased apoptosis of ESCC cells, while overexpression of S1PR1 had opposite effects. Mechanistically, S1PR1 played the roles of promoting proliferation and attenuating apoptosis through directly activating p-STAT3. Furthermore, in vivo experiments verified this mechanism. Conclusion Our findings indicated that S1PR1 enhanced proliferation and inhibited apoptosis of ESCC cells by activating STAT3 signaling pathway. S1PR1 may serve as a prognostic biomarker for clinical applications. Electronic supplementary material The online version of this article (10.1186/s13046-019-1369-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Liu
- Department of Medical Oncology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yingru Zhi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Mingzhu Zong
- Department of Medical Oncology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jun Yi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Guoxin Mao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Guichun Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
144
|
Qiu M, Huang K, Liu Y, Yang Y, Tang H, Liu X, Wang C, Chen H, Xiong Y, Zhang J, Yang J. Modulation of intestinal microbiota by glycyrrhizic acid prevents high-fat diet-enhanced pre-metastatic niche formation and metastasis. Mucosal Immunol 2019; 12:945-957. [PMID: 30755716 DOI: 10.1038/s41385-019-0144-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/09/2019] [Accepted: 01/27/2019] [Indexed: 02/06/2023]
Abstract
High-fat diet (HFD) promotes lung pre-metastatic niche formation and metastasis. Thus, there is an urgent need to identify the underlying mechanisms and develop strategies to overcome them. Here we demonstrate that glycyrrhizic acid (GA) prevents HFD-enhanced pre-metastatic niche formation and metastasis through gut microbiota. GA reduced HFD-enhanced myeloid-derived suppressor cell recruitment, pro-metastatic protein S100A8/A9 expression and metastasis burden of 4T1 breast cancer and B16F10 melanoma, accompanied by gut microbiota alteration and colonic macrophage polarization far away the M1-like phenotype. These parameters were greatly decreased by treatment with antibiotics, recolonization of Desulfovibrio vulgaris and Clostridium sordellii, and administration of lipopolysaccharide or deoxycholic acid. Macrophage depletion attenuated HFD-enhanced pre-metastatic niche formation and metastasis, but failed to further affect the effects of GA. Mechanistically, counteraction of HFD-enhanced gut microbiota dysbiosis by GA inhibited Gr-1+ myeloid cell migration and S100A8/A9 expression through decreasing the proportion of M1-like macrophages and their production of CCL2 and TNF-α in the colons via LPS/HMGB1/NF-κB signaling inactivation. Together, targeting the gut microbiota by GA to modulate colonic macrophages could be a novel strategy for the prevention of HFD-enhanced pre-metastatic niche formation and metastasis.
Collapse
Affiliation(s)
- Miao Qiu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, China
| | - Keqing Huang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, China
| | - Yanzhuo Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, China
| | - Yuqing Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Honglin Tang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, China
| | - Xiaoxiao Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, China
| | - Chenlong Wang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, China
| | - Honglei Chen
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, China
| | - Yu Xiong
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Jing Zhang
- Animal Experimental Center of Wuhan University, 430071, Wuhan, China
| | - Jing Yang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases, School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, China.
| |
Collapse
|
145
|
Ding R, Yang M, Quan J, Li S, Zhuang Z, Zhou S, Zheng E, Hong L, Li Z, Cai G, Huang W, Wu Z, Yang J. Single-Locus and Multi-Locus Genome-Wide Association Studies for Intramuscular Fat in Duroc Pigs. Front Genet 2019; 10:619. [PMID: 31316554 PMCID: PMC6609572 DOI: 10.3389/fgene.2019.00619] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 06/13/2019] [Indexed: 12/26/2022] Open
Abstract
Intramuscular fat (IMF) is an important quantitative trait of meat, which affects the associated sensory properties and nutritional value of pork. To gain a better understanding of the genetic determinants of IMF, we used a composite strategy, including single-locus and multi-locus association analyses to perform genome-wide association studies (GWAS) for IMF in 1,490 Duroc boars. We estimated the genomic heritability of IMF to be 0.23 ± 0.04. A total of 30 single nucleotide polymorphisms (SNPs) were found to be significantly associated with IMF. The single-locus mixed linear model (MLM) and multiple-locus methods multi-locus random-SNP-effect mixed linear model (mrMLM), fast multi-locus random-SNP-effect efficient mixed model association (FASTmrEMMA), and integrative sure independence screening expectation maximization Bayesian least absolute shrinkage and selection operator model (ISIS EM-BLASSO) analyses identified 5, 9, 8, and 21 significant SNPs, respectively. Interestingly, a novel quantitative trait locus (QTL) on SSC 7 was found to affect IMF. In addition, 10 candidate genes (BDKRB2, GTF2IRD1, UTRN, TMEM138, DPYD, CASQ2, ZNF518B, S1PR1, GPC6, and GLI1) were found to be associated with IMF based on their potential functional roles in IMF. GO analysis showed that most of the genes were involved in muscle and organ development. A significantly enriched KEGG pathway, the sphingolipid signaling pathway, was reported to be associated with fat deposition and obesity. Identification of novel variants and functional genes will advance our understanding of the genetic mechanisms of IMF and provide specific opportunities for marker-assisted or genomic selection in pigs. In general, such a composite single-locus and multi-locus strategy for GWAS may be useful for understanding the genetic architecture of economic traits in livestock.
Collapse
Affiliation(s)
- Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Ming Yang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuffs Group, Co., Ltd., Guangdong, China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Shaoyun Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Linjun Hong
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Zicong Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China.,National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuffs Group, Co., Ltd., Guangdong, China
| | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China.,National Engineering Research Center for Breeding Swine Industry, Guangdong Wens Foodstuffs Group, Co., Ltd., Guangdong, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| |
Collapse
|
146
|
Weigert A, von Knethen A, Thomas D, Faria I, Namgaladze D, Zezina E, Fuhrmann D, Petcherski A, Heringdorf DMZ, Radeke HH, Brüne B. Sphingosine kinase 2 is a negative regulator of inflammatory macrophage activation. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1235-1246. [PMID: 31128248 DOI: 10.1016/j.bbalip.2019.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 01/25/2023]
Abstract
Sphingosine kinases (SPHK) generate the sphingolipid sphingosine-1-phosphate, which, among other functions, is a potent regulator of inflammation. While SPHK1 produces S1P to promote inflammatory signaling, the role of SPHK2 is unclear due to divergent findings in studies utilizing gene depletion versus inhibition of catalytic activity. We sought to clarify how SPHK2 affects inflammatory signaling in human macrophages, which are main regulators of inflammation. SPHK2 expression and activity were rapidly decreased within 6 h upon stimulating primary human macrophages with lipopolysaccharide (LPS), but was upregulated after 24 h. At 24 h following LPS stimulation, targeting SPHK2 with the inhibitor ABC294640, a specific siRNA or by using Sphk2-/- mouse peritoneal macrophages increased inflammatory cytokine production. Downregulation of SPHK2 in primary human macrophages within 6 h of LPS treatment was blocked by inhibiting autophagy. SPHK2 overexpression or inhibiting autophagy 6 h after human macrophage activation with LPS suppressed inflammatory cytokine release. Mechanistically, SPHK2 suppressed LPS-triggered NF-κB activation independent of its catalytic activity and prevented increased mitochondrial ROS formation downstream of LPS. In conclusion, SPHK2 is an anti-inflammatory protein in human macrophages that is inversely coupled to inflammatory cytokine production. This needs consideration when targeting SPHK2 with specific inhibitors.
Collapse
Affiliation(s)
- Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Andreas von Knethen
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Isabel Faria
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; Branch for Translational Medicine and Pharmacology TMP of the Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 60590 Frankfurt, Germany
| | - Dmitry Namgaladze
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Ekaterina Zezina
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Dominik Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Anton Petcherski
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institut für Allgemeine Pharmakologie und Toxikologie, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Heinfried H Radeke
- Institut für Allgemeine Pharmakologie und Toxikologie, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; Branch for Translational Medicine and Pharmacology TMP of the Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 60590 Frankfurt, Germany.
| |
Collapse
|
147
|
Chang YC, Chuang HL, Yin JH, Liao JW, Chen TH, Wang YC. Significance of sphingosine kinase 1 expression in feline mammary tumors. BMC Vet Res 2019; 15:155. [PMID: 31101115 PMCID: PMC6525354 DOI: 10.1186/s12917-019-1883-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/25/2019] [Indexed: 11/20/2022] Open
Abstract
Background Sphingosine kinase 1 (SPHK1) is an enzyme that converts pro-apoptotic ceramide and sphingosine into anti-apoptotic sphingosine-1-phosphate. There is growing evidence that SPHK1 activation promotes oncogenic transformation, tumor growth, chemotherapy resistance, and metastatic spread. High SPHK1 expression has been associated with a poor prognosis in several human cancers. Results In the present study, the expression level of SPHK1 was examined in feline mammary tumor (FMT) specimens, and the IHC expression level of SPHK1 was associated with the histological grade of FMTs. IHC analysis of 88 FMT cases revealed that the expression level of SPHK1 was upregulated in 53 tumor tissues (60.2%) compared to adjacent mammary tissues. SPHK1 expression in FMTs was significantly associated with histological grade, presence of lymphovascular invasion, and estrogen receptor negativity. Treatment of primary FMT cells with SPHK1 inhibitors reduced cell viability, indicating that SPHK1 acts to promote FMT cell survival. These results indicate that SPHK1 may play an important role in FMTs and may be a therapeutic target in cats with FMT. Conclusions SPHK1 over-expression in breast cancer tissues is associated with a poor prognosis in humans. SPHK1 over-expression in more aggressive FMTs provides support for a potential role of SPHK1 inhibitors for the treatment of FMTs. Targeting SPHK1 has potent cytotoxic effects in primary FMT cells. These findings suggest that further examination of the role SPHK1 plays in FMTs will pave the way for the investigation of SPHK1 inhibitors in future clinical applications. Electronic supplementary material The online version of this article (10.1186/s12917-019-1883-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi-Chih Chang
- Department of Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Ji-Hang Yin
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Yu-Chih Wang, 145 Xingda Rd., South Dist, Taichung City, 402, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Yu-Chih Wang, 145 Xingda Rd., South Dist, Taichung City, 402, Taiwan
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Yu-Chih Wang, 145 Xingda Rd., South Dist, Taichung City, 402, Taiwan
| | - Yu-Chih Wang
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Yu-Chih Wang, 145 Xingda Rd., South Dist, Taichung City, 402, Taiwan.
| |
Collapse
|
148
|
Plöhn S, Edelmann B, Japtok L, He X, Hose M, Hansen W, Schuchman EH, Eckstein A, Berchner-Pfannschmidt U. CD40 Enhances Sphingolipids in Orbital Fibroblasts: Potential Role of Sphingosine-1-Phosphate in Inflammatory T-Cell Migration in Graves' Orbitopathy. Invest Ophthalmol Vis Sci 2019; 59:5391-5397. [PMID: 30452592 DOI: 10.1167/iovs.18-25466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Graves' orbitopathy (GO) is an autoimmune orbital disorder associated with Graves' disease caused by thyrotropin receptor autoantibodies. Orbital fibroblasts (OFs) and CD40 play a key role in disease pathogenesis. The bioactive lipid sphingosine-1-phosphate (S1P) has been implicated in promoting adipogenesis, fibrosis, and inflammation in OFs. We investigated the role of CD40 signaling in inducing S1P activity in orbital inflammation. Methods OFs and T cells were derived from GO patients and healthy control (Ctl) persons. S1P abundance in orbital tissues was evaluated by immunofluorescence. OFs were stimulated with CD40 ligand and S1P levels were determined by ELISA. Further, activities of acid sphingomyelinase (ASM), acid ceramidase, and sphingosine kinase were measured by ultraperformance liquid chromatography. Sphingosine and ceramide contents were analyzed by mass spectrometry. Finally, the role for S1P in T-cell attraction was investigated by T-cell migration assays. Results GO orbital tissue showed elevated amounts of S1P as compared to control samples. Stimulation of CD40 induced S1P expression in GO-derived OFs, while Ctl-OFs remained unaffected. A significant increase of ASM and sphingosine kinase activities, as well as lipid formation, was observed in GO-derived OFs. Migration assay of T cells in the presence of SphK inhibitor revealed that S1P released by GO-OFs attracted T cells for migration. Conclusions The results demonstrated that CD40 ligand stimulates GO fibroblast to produce S1P, which is a driving force for T-cell migration. The results support the use of S1P receptor signaling modulators in GO management.
Collapse
Affiliation(s)
- Svenja Plöhn
- Molecular Ophthalmology, Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Bärbel Edelmann
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany.,Department for Haematology and Oncology, Otto-von-Guericke University, Magdeburg, Germany
| | - Lukasz Japtok
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Xingxuan He
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Matthias Hose
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Anja Eckstein
- Molecular Ophthalmology, Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
149
|
Zhang C, Wang K, Yang L, Liu R, Chu Y, Qin X, Yang P, Yu H. Lipid metabolism in inflammation-related diseases. Analyst 2019; 143:4526-4536. [PMID: 30128447 DOI: 10.1039/c8an01046c] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There are thousands of lipid species existing in cells, which belong to eight different categories. Lipids are the essential building blocks of cells. Recent studies have started to unveil the important functions of lipids in regulating cell metabolism. However, we are still at a very early stage in fully understanding the physiological and pathological functions of lipids. The application of lipidomics for studying lipid metabolism can provide a direct readout of the cellular status and broadens our understanding of the mechanisms that underpin metabolic disease states. This review provides an introduction to lipid metabolism and its role in modulating homeostasis and immunity. We also describe representative applications of lipidomics for studying lipid metabolism in inflammation-related diseases.
Collapse
Affiliation(s)
- Cuiping Zhang
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
The tumor immune landscape gained considerable interest based on the knowledge that genetic aberrations in cancer cells alone are insufficient for tumor development. Macrophages are basically supporting all hallmarks of cancer and owing to their tremendous plasticity they may exert a whole spectrum of anti-tumor and pro-tumor activities. As part of the innate immune response, macrophages are armed to attack tumor cells, alone or in concert with distinct T cell subsets. However, in the tumor microenvironment, they sense nutrient and oxygen gradients, receive multiple signals, and respond to this incoming information with a phenotype shift. Often, their functional output repertoire is shifted to become tumor-supportive. Incoming and outgoing signals are chemically heterogeneous but also comprise lipid mediators. Here, we review the current understanding whereby arachidonate metabolites derived from the cyclooxygenase and lipoxygenase pathways shape the macrophage phenotype in a tumor setting. We discuss these findings in the context of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) expression and concomitant prostaglandin E2 (PGE2) formation. We elaborate the multiple actions of this lipid in affecting macrophage biology, which are sensors for and generators of this lipid. Moreover, we summarize properties of 5-lipoxygenases (ALOX5) and 15-lipoxygenases (ALOX15, ALOX15B) in macrophages and clarify how these enzymes add to the role of macrophages in a dynamically changing tumor environment. This review will illustrate the potential routes how COX-2/mPGES-1 and ALOX5/-15 in macrophages contribute to the development and progression of a tumor.
Collapse
Affiliation(s)
- Andreas Weigert
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Elisabeth Strack
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ryan G Snodgrass
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany. .,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.
| |
Collapse
|