101
|
Liu XL, Zuo R, Ou WB. The hippo pathway provides novel insights into lung cancer and mesothelioma treatment. J Cancer Res Clin Oncol 2018; 144:2097-2106. [PMID: 30073421 DOI: 10.1007/s00432-018-2727-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Lung cancer and mesothelioma are two types of respiratory disease that have fatal courses and poor prognoses. Although a substantial number of targeted small molecules and antibody drugs have been developed, the 5-year survival rates of these patients remain relatively low. Moreover, most patients inevitably develop clinical resistance to treatment. Therefore, novel therapeutic options and cancer prognostic biomarkers are urgently needed. METHODS In this review, we summarized the recent literature from various electronic databases, including PubMed, and highlighted the most advanced findings regarding the hippo pathway in lung cancer and mesothelioma. CONCLUSION The hippo signaling transduction pathway has been demonstrated to play crucial roles in lung cancer and mesothelioma pathogenesis, including tumor development and multidrug resistance, and is emerging as a promising therapeutic target, potentially providing new tools for the detection of these tumors at an early stage.
Collapse
Affiliation(s)
- Xiao-Lan Liu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Rui Zuo
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China.
| |
Collapse
|
102
|
Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nat Genet 2018; 50:1399-1411. [DOI: 10.1038/s41588-018-0209-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
|
103
|
Zhong R, Li H, Zhang S, Liu J, Cheng Y. [Advances on Recognizing and Managing Tumor Heterogeneity]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:712-718. [PMID: 30201072 PMCID: PMC6136997 DOI: 10.3779/j.issn.1009-3419.2018.09.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
肿瘤异质性是恶性肿瘤的特征之一,可使肿瘤的生长速度、侵袭与转移、药物敏感性、预后等各方面产生差异。肿瘤驱动基因和靶向药物的发现发展开启了战胜肿瘤的希望之门,然而异质性的存在又让肿瘤治疗陷入了难以攻克的困境。在肿瘤复发、进展演化的过程中肿瘤异质性如影随形,纷繁复杂。凭借不断进步的检测技术认识和理解肿瘤异质性,针对肿瘤异质性的原因和表型,定制治疗方案已成为当今精准医疗领域的重点范畴。本综述对肿瘤异质性进行了分析和探讨,从而更好的帮助我们了解肿瘤异质性,有利于我们通过多种手段对抗肿瘤异质性。
Collapse
Affiliation(s)
- Rui Zhong
- Medical Oncology Translational Research Lab, Jilin Provincial Cancer Hospital, Changchun 130012, China
| | - Hui Li
- Medical Oncology Translational Research Lab, Jilin Provincial Cancer Hospital, Changchun 130012, China
| | - Shuang Zhang
- Department of Toracic Oncology, Jilin Provincial Cancer Hospital, Changchun 130012, China
| | - Jingjing Liu
- Department of Toracic Oncology, Jilin Provincial Cancer Hospital, Changchun 130012, China
| | - Ying Cheng
- Department of Toracic Oncology, Jilin Provincial Cancer Hospital, Changchun 130012, China
| |
Collapse
|
104
|
Nagathihalli NS, Castellanos JA, Lamichhane P, Messaggio F, Shi C, Dai X, Rai P, Chen X, VanSaun MN, Merchant NB. Inverse Correlation of STAT3 and MEK Signaling Mediates Resistance to RAS Pathway Inhibition in Pancreatic Cancer. Cancer Res 2018; 78:6235-6246. [PMID: 30154150 DOI: 10.1158/0008-5472.can-18-0634] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/05/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022]
Abstract
Major contributors to therapeutic resistance in pancreatic ductal adenocarcinoma (PDAC) include Kras mutations, a dense desmoplastic stroma that prevents drug delivery to the tumor, and activation of redundant signaling pathways. We have previously identified a mechanistic rationale for targeting STAT3 signaling to overcome therapeutic resistance in PDAC. In this study, we investigate the molecular mechanisms underlying the heterogeneous response to STAT3 and RAS pathway inhibition in PDAC. Effects of JAK/STAT3 inhibition (STAT3i) or MEK inhibition (MEKi) were established in Ptf1acre/+; LSL-KrasG12D/+ ; and Tgfbr2flox/flox (PKT) mice and patient-derived xenografts (PDX). Amphiregulin (AREG) levels were determined in serum from human patients with PDAC, LSL-KrasG12D/+;Trp53R172H/+;Pdx1Cre/+ (KPC), and PKT mice. MEKi/STAT3i-treated tumors were analyzed for integrity of the pancreas and the presence of cancer stem cells (CSC). We observed an inverse correlation between ERK and STAT3 phosphorylation. MEKi resulted in an immediate activation of STAT3, whereas STAT3i resulted in TACE-induced, AREG-dependent activation of EGFR and ERK. Combined MEKi/STAT3i sustained blockade of ERK, EGFR, and STAT3 signaling, overcoming resistance to individual MEKi or STAT3i. This combined inhibition attenuated tumor growth in PDX and increased survival of PKT mice while reducing serum AREG levels. Furthermore, MEKi/STAT3i altered the PDAC tumor microenvironment by depleting tumor fibrosis, maintaining pancreatic integrity, and downregulating CD44+ and CD133+ CSCs. These results demonstrate that resistance to MEKi is mediated through activation of STAT3, whereas TACE-AREG-EGFR-dependent activation of RAS pathway signaling confers resistance to STAT3 inhibition. Combined MEKi/STAT3i overcomes these resistances and provides a novel therapeutic strategy to target the RAS and STAT3 pathway in PDAC.Significance: This report describes an inverse correlation between MEK and STAT3 signaling as key mechanisms of resistance in PDAC and shows that combined inhibition of MEK and STAT3 overcomes this resistance and provides an improved therapeutic strategy to target the RAS pathway in PDAC.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/21/6235/F1.large.jpg Cancer Res; 78(21); 6235-46. ©2018 AACR.
Collapse
Affiliation(s)
- Nagaraj S Nagathihalli
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Jason A Castellanos
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Fanuel Messaggio
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Chanjuan Shi
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Xizi Dai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Priyamvada Rai
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Xi Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Department of Public Health, University of Miami Miller School of Medicine, Miami, Florida
| | - Michael N VanSaun
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Nipun B Merchant
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
105
|
Peh J, Boudreau MW, Smith HM, Hergenrother PJ. Overcoming Resistance to Targeted Anticancer Therapies through Small-Molecule-Mediated MEK Degradation. Cell Chem Biol 2018; 25:996-1005.e4. [PMID: 29909991 PMCID: PMC6097934 DOI: 10.1016/j.chembiol.2018.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/31/2018] [Accepted: 05/04/2018] [Indexed: 02/09/2023]
Abstract
The discovery of mutant or fusion kinases that drive oncogenesis, and the subsequent approval of specific inhibitors for these enzymes, has been instrumental in the management of some cancers. However, acquired resistance remains a significant problem in the clinic, limiting the long-term effectiveness of most of these drugs. Here we demonstrate a general strategy to overcome this resistance through drug-induced MEK cleavage (via direct procaspase-3 activation) combined with targeted kinase inhibition. This combination effect is shown to be general across diverse tumor histologies (melanoma, lung cancer, and leukemia) and driver mutations (mutant BRAF or EGFR, fusion kinases EML4-ALK and BCR-ABL). Caspase-3-mediated degradation of MEK kinases results in sustained pathway inhibition and substantially delayed or eliminated resistance in cancer cells in a manner far superior to combinations with MEK inhibitors. These data suggest the generality of drug-mediated MEK kinase cleavage as a therapeutic strategy to prevent resistance to targeted anticancer therapies.
Collapse
Affiliation(s)
- Jessie Peh
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 261 Roger Adams Lab Box 36-5, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Matthew W Boudreau
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 261 Roger Adams Lab Box 36-5, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Hannah M Smith
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 261 Roger Adams Lab Box 36-5, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Paul J Hergenrother
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 261 Roger Adams Lab Box 36-5, 600 S. Mathews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
106
|
Attili I, Karachaliou N, Conte P, Bonanno L, Rosell R. Therapeutic approaches for T790M mutation positive non-small-cell lung cancer. Expert Rev Anticancer Ther 2018; 18:1021-1030. [PMID: 30079781 DOI: 10.1080/14737140.2018.1508347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Epidermal growth factor receptor (EGFR) mutation positive non-small cell lung cancer (NSCLC) is a subset of lung cancer with demonstrated response to targeted therapies. However, resistance to the first targeted approach usually occurs within the first year, and it is associated in 50-60% of cases to the T790M resistance mutation. Areas covered: The review provides an overview on the significance of the presence of the T790M mutation, its detection, treatment options and subsequent mechanisms of resistance. Expert commentary: Osimertinib is the current treatment option for T790M mutation positive NSCLC after progression to first or second-generation EGFR TKIs, with activity also on brain metastasis. However, the scenario is in continuous evolution and results from clinical trials are awaited in first-line setting and in combination strategies.
Collapse
Affiliation(s)
- Ilaria Attili
- a Department of Surgical, Oncological and Gastroenterological Sciences , University of Padova , Padova , Italy
| | - Niki Karachaliou
- b Instituto Oncológico Dr Rosell (IOR) , University Hospital Sagrat Cor , Barcelona , Spain.,c Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology , Quirón-Dexeus University Institute , Barcelona , Spain
| | - PierFranco Conte
- a Department of Surgical, Oncological and Gastroenterological Sciences , University of Padova , Padova , Italy
| | - Laura Bonanno
- d Medical Oncology 2 , Istituto Oncologico Veneto, IRCCS , Padova , Italy
| | - Rafael Rosell
- c Coyote Research Group, Pangaea Oncology, Laboratory of Molecular Biology , Quirón-Dexeus University Institute , Barcelona , Spain.,e Institut d'Investigació en Ciències Germans Trias i Pujol , Badalona , Spain.,f Instituto Oncológico Dr Rosell (IOR) , Quirón-Dexeus University Institute , Barcelona , Spain.,g Institut Català d'Oncologia , Hospital Germans Trias i Pujol , Badalona , Spain
| |
Collapse
|
107
|
Mitchell RA, Luwor RB, Burgess AW. Epidermal growth factor receptor: Structure-function informing the design of anticancer therapeutics. Exp Cell Res 2018; 371:1-19. [PMID: 30098332 DOI: 10.1016/j.yexcr.2018.08.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022]
Abstract
Research on the epidermal growth factor (EGF) family and the family of receptors (EGFR) has progressed rapidly in recent times. New crystal structures of the ectodomains with different ligands, the activation of the kinase domain through oligomerisation and the use of fluorescence techniques have revealed profound conformational changes on ligand binding. The control of cell signaling from the EGFR-family is complex, with heterodimerisation, ligand affinity and signaling cross-talk influencing cellular outcomes. Analysis of tissue homeostasis indicates that the control of pro-ligand processing is likely to be as important as receptor activation events. Several members of the EGFR-family are overexpressed and/or mutated in cancer cells. The perturbation of EGFR-family signaling drives the malignant phenotype of many cancers and both inhibitors and antagonists of signaling from these receptors have already produced therapeutic benefits for patients. The design of affibodies, antibodies, small molecule inhibitors and even immunotherapeutic drugs targeting the EGFR-family has yielded promising new approaches to improving outcomes for cancer patients. In this review, we describe recent discoveries which have increased our understanding of the structure and dynamics of signaling from the EGFR-family, the roles of ligand processing and receptor cross-talk. We discuss the relevance of these studies to the development of strategies for designing more effective targeted treatments for cancer patients.
Collapse
Affiliation(s)
- Ruth A Mitchell
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Antony W Burgess
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| |
Collapse
|
108
|
Xu J, Zhao X, He D, Wang J, Li W, Liu Y, Ma L, Jiang M, Teng Y, Wang Z, Gu M, Wu J, Wang Y, Yue W, Zhang S. Loss of EGFR confers acquired resistance to AZD9291 in an EGFR-mutant non-small cell lung cancer cell line with an epithelial-mesenchymal transition phenotype. J Cancer Res Clin Oncol 2018; 144:1413-1422. [PMID: 29797219 DOI: 10.1007/s00432-018-2668-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 05/14/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE AZD9291 is an irreversible, small-molecule inhibitor which has potency against mutant EGFR- and T790M-resistant mutation. Despite the encouraging efficacy in clinical, the acquired resistance will finally occur. Further study will need to be done to identify the acquired resistance mechanisms and determine the next treatment. METHODS We established an AZD9291-resistant cell line (HCC827/AZDR) from parental HCC827 cell line through stepwise pulsed selection of AZD9291. The expression of EGFR and its downstream pathways were determined by western blot analysis or immunofluorescence assay. The sensitivity to indicated agents were evaluated by MTS. RESULTS Compared with parental HCC827 cells, the HCC827/AZDR cells showed high resistance to AZD9291 and other EGFR-TKIs, and exhibited a mesenchymal-like phenotype. Almost complete loss of EGFR expression was observed in HCC827/AZDR cells. But the activation of downstream pathway, MAPK signaling, was found in HCC827/AZDR cells even in the presence of AZD9291. Inhibition of MAPK signaling had no effect on cell viability of HCC827/AZDR and could not reverse AZD9291 resistance because of the subsequent activation of AKT signaling. When treated with the combination of AKT and MAPK inhibitor, HCC827/AZDR showed remarkable growth inhibition. CONCLUSIONS Loss of EGFR could be proposed as a potential acquired resistance mechanism of AZD9291 in EGFR-mutant NSCLC cells with an EMT phenotype. Despite the loss of EGFR, the activation of MAPK pathway which had crosstalk with AKT pathway could maintain the proliferation and survival of resistant cells. Blocking MAPK and AKT signaling may be a potential therapeutic strategy following AZD9291 resistance.
Collapse
Affiliation(s)
- Jing Xu
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Xiaoting Zhao
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Dengfeng He
- Department of Traditional Chinese medicine, 263 Clinical Department of General Hospital of Beijing Military Region, Beijing, 101149, China
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Weiying Li
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Yinghui Liu
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Li Ma
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Mei Jiang
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Yu Teng
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Ziyu Wang
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Meng Gu
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jianbin Wu
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Yue Wang
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Wentao Yue
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| | - Shucai Zhang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
109
|
Dasatinib sensitises KRAS -mutant cancer cells to mitogen-activated protein kinase kinase inhibitor via inhibition of TAZ activity. Eur J Cancer 2018; 99:37-48. [DOI: 10.1016/j.ejca.2018.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/30/2022]
|
110
|
Mulder C, Prust N, van Doorn S, Reinecke M, Kuster B, van Bergen en Henegouwen P, Lemeer S. Adaptive Resistance to EGFR-Targeted Therapy by Calcium Signaling in NSCLC Cells. Mol Cancer Res 2018; 16:1773-1784. [DOI: 10.1158/1541-7786.mcr-18-0212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/26/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022]
|
111
|
Antitumor Efficacy of Dual Blockade of EGFR Signaling by Osimertinib in Combination With Selumetinib or Cetuximab in Activated EGFR Human NCLC Tumor Models. J Thorac Oncol 2018. [DOI: 10.1016/j.jtho.2018.02.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
112
|
Arbour KC, Riely GJ. Improving therapy for patients with epidermal growth factor receptor-mutant lung cancer. Cancer 2018; 124:2272-2275. [PMID: 29645085 DOI: 10.1002/cncr.31289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Kathryn C Arbour
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, New York
| | - Gregory J Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, New York
| |
Collapse
|
113
|
Piñeiro-Yáñez E, Reboiro-Jato M, Gómez-López G, Perales-Patón J, Troulé K, Rodríguez JM, Tejero H, Shimamura T, López-Casas PP, Carretero J, Valencia A, Hidalgo M, Glez-Peña D, Al-Shahrour F. PanDrugs: a novel method to prioritize anticancer drug treatments according to individual genomic data. Genome Med 2018; 10:41. [PMID: 29848362 PMCID: PMC5977747 DOI: 10.1186/s13073-018-0546-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/04/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Large-sequencing cancer genome projects have shown that tumors have thousands of molecular alterations and their frequency is highly heterogeneous. In such scenarios, physicians and oncologists routinely face lists of cancer genomic alterations where only a minority of them are relevant biomarkers to drive clinical decision-making. For this reason, the medical community agrees on the urgent need of methodologies to establish the relevance of tumor alterations, assisting in genomic profile interpretation, and, more importantly, to prioritize those that could be clinically actionable for cancer therapy. RESULTS We present PanDrugs, a new computational methodology to guide the selection of personalized treatments in cancer patients using the variant lists provided by genome-wide sequencing analyses. PanDrugs offers the largest database of drug-target associations available from well-known targeted therapies to preclinical drugs. Scoring data-driven gene cancer relevance and drug feasibility PanDrugs interprets genomic alterations and provides a prioritized evidence-based list of anticancer therapies. Our tool represents the first drug prescription strategy applying a rational based on pathway context, multi-gene markers impact and information provided by functional experiments. Our approach has been systematically applied to TCGA patients and successfully validated in a cancer case study with a xenograft mouse model demonstrating its utility. CONCLUSIONS PanDrugs is a feasible method to identify potentially druggable molecular alterations and prioritize drugs to facilitate the interpretation of genomic landscape and clinical decision-making in cancer patients. Our approach expands the search of druggable genomic alterations from the concept of cancer driver genes to the druggable pathway context extending anticancer therapeutic options beyond already known cancer genes. The methodology is public and easily integratable with custom pipelines through its programmatic API or its docker image. The PanDrugs webtool is freely accessible at http://www.pandrugs.org .
Collapse
Affiliation(s)
- Elena Piñeiro-Yáñez
- Spanish National Cancer Research Centre (CNIO), 3rd Melchor Fernandez Almagro st., E-28029, Madrid, Spain
| | - Miguel Reboiro-Jato
- Computer Science Department - University of Vigo, Vigo, Spain
- Biomedical Research Centre (CINBIO), Vigo, Spain
| | - Gonzalo Gómez-López
- Spanish National Cancer Research Centre (CNIO), 3rd Melchor Fernandez Almagro st., E-28029, Madrid, Spain
| | - Javier Perales-Patón
- Spanish National Cancer Research Centre (CNIO), 3rd Melchor Fernandez Almagro st., E-28029, Madrid, Spain
| | - Kevin Troulé
- Spanish National Cancer Research Centre (CNIO), 3rd Melchor Fernandez Almagro st., E-28029, Madrid, Spain
| | | | - Héctor Tejero
- Spanish National Cancer Research Centre (CNIO), 3rd Melchor Fernandez Almagro st., E-28029, Madrid, Spain
| | - Takeshi Shimamura
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Pedro Pablo López-Casas
- Spanish National Cancer Research Centre (CNIO), 3rd Melchor Fernandez Almagro st., E-28029, Madrid, Spain
| | - Julián Carretero
- Department of Physiology - University of Valencia, Valencia, Spain
| | - Alfonso Valencia
- Spanish National Cancer Research Centre (CNIO), 3rd Melchor Fernandez Almagro st., E-28029, Madrid, Spain
| | - Manuel Hidalgo
- Spanish National Cancer Research Centre (CNIO), 3rd Melchor Fernandez Almagro st., E-28029, Madrid, Spain
- Beth Israel Deaconess Medical Center, Boston, USA
| | - Daniel Glez-Peña
- Computer Science Department - University of Vigo, Vigo, Spain
- Biomedical Research Centre (CINBIO), Vigo, Spain
| | - Fátima Al-Shahrour
- Spanish National Cancer Research Centre (CNIO), 3rd Melchor Fernandez Almagro st., E-28029, Madrid, Spain.
| |
Collapse
|
114
|
Peters S, Zimmermann S. Management of Resistance to First-Line Anaplastic Lymphoma Kinase Tyrosine Kinase Inhibitor Therapy. Curr Treat Options Oncol 2018; 19:37. [DOI: 10.1007/s11864-018-0553-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
115
|
Anti-Epidermal Growth Factor Vaccine Antibodies Enhance the Efficacy of Tyrosine Kinase Inhibitors and Delay the Emergence of Resistance in EGFR Mutant Lung Cancer Cells. J Thorac Oncol 2018; 13:1324-1337. [PMID: 29751136 DOI: 10.1016/j.jtho.2018.04.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/10/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Mutations in EGFR correlate with impaired response to immune checkpoint inhibitors and the development of novel immunotherapeutic approaches for EGFR mutant NSCLC is of particular interest. Immunization against epidermal growth factor (EGF) has shown efficacy in a phase III trial including unselected NSCLC patients, but little was known about the mechanisms involved in the effects of the anti-EGF antibodies generated by vaccination (anti-EGF VacAbs) or their activity in tumor cells with EGFR mutations. METHODS The EGFR-mutant, NSCLC cell lines H1975, and PC9, together with several gefitinib and osimertinib-resistant cells derived from PC9, were treated with anti-EGF VacAbs and/or EGFR tyrosine kinase inhibitors (TKIs). Cell viability was analyzed by proliferation assays, cell cycle by fluorescence-activated cell sorting analysis, and levels of RNA and proteins by quantitative retro-transcription polymerase chain reaction and Western blotting. RESULTS Anti-EGF VacAbs generated in rabbits suppressed EGF-induced cell proliferation and cycle progression and inhibited downstream EGFR signaling in EGFR-mutant cells. Sera from patients immunized with an EGF vaccine were also able to block activation of EGFR effectors. In combination, the anti-EGF VacAbs significantly enhanced the antitumor activity of all TKIs tested, suppressed Erk1/2 phosphorylation, blocked the activation of signal transducer and activator of transcription 3 (STAT3) and downregulated the expression of AXL receptor tyrosine kinase (AXL). Finally, anti-EGF VacAbs significantly delayed the emergence in vitro of EGFR TKI resistant clones. CONCLUSIONS EGFR-mutant patients can derive benefit from immunization against EGF, particularly if combined with EGFR TKIs. A phase I trial of an EGF vaccine in combination with afatinib has been initiated.
Collapse
|
116
|
YAP and TAZ in Lung Cancer: Oncogenic Role and Clinical Targeting. Cancers (Basel) 2018; 10:cancers10050137. [PMID: 29734788 PMCID: PMC5977110 DOI: 10.3390/cancers10050137] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer death in the world and there is no current treatment able to efficiently treat the disease as the tumor is often diagnosed at an advanced stage. Moreover, cancer cells are often resistant or acquire resistance to the treatment. Further knowledge of the mechanisms driving lung tumorigenesis, aggressiveness, metastasization, and resistance to treatments could provide new tools for detecting the disease at an earlier stage and for a better response to therapy. In this scenario, Yes Associated Protein (YAP) and Trascriptional Coactivator with PDZ-binding motif (TAZ), the final effectors of the Hippo signaling transduction pathway, are emerging as promising therapeutic targets. Here, we will discuss the most recent advances made in YAP and TAZ biology in lung cancer and, more importantly, on the newly discovered mechanisms of YAP and TAZ inhibition in lung cancer as well as their clinical implications.
Collapse
|
117
|
Du W, Ni L, Liu B, Wei Y, Lv Y, Qiang S, Dong J, Liu X. Upregulation of SALL4 by EGFR activation regulates the stemness of CD44-positive lung cancer. Oncogenesis 2018; 7:36. [PMID: 29691367 PMCID: PMC5915399 DOI: 10.1038/s41389-018-0045-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/05/2018] [Accepted: 03/26/2018] [Indexed: 12/16/2022] Open
Abstract
The transcriptional factor SALL4, an important stem cell regulator, is expressed in hematopoietic stem cells and various malignancies, but its role in EGFR-mutated NSCLCs has not been studied yet. Here, we report that the expression of Sal-like protein 4 (SALL4), was significantly higher in EGFR mutated lung tumors than in non-tumor tissue. SALL4-high lung cancer patients had poorer prognosis after surgery than SALL4-low patients. The expression of SALL4 could be induced by the activation of EGFR through the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. The knockdown of SALL4 expression could suppress spheroid formation and the expression of lung cancer stem cell marker CD44. More interestingly, the knockdown of SALL4 expression could suppress the migration, invasion, and metastasis of the lung cancer cells and significantly increase the sensitivity of EGFR mutated cells to Erlotinib. These results suggest that SALL4 may be a novel potential therapeutic target for the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Wenjing Du
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Lan Ni
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yubao Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Sujing Qiang
- Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China. .,The Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Xijun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China. .,The Institutes of Integrative Medicine, Fudan University, Shanghai, China. .,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
118
|
Ku BM, Choi MK, Sun JM, Lee SH, Ahn JS, Park K, Ahn MJ. Acquired resistance to AZD9291 as an upfront treatment is dependent on ERK signaling in a preclinical model. PLoS One 2018; 13:e0194730. [PMID: 29641535 PMCID: PMC5895014 DOI: 10.1371/journal.pone.0194730] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/08/2018] [Indexed: 01/06/2023] Open
Abstract
AZD9291 (osimertinib) is approved for standard care in patients with EGFR T790M-positive non-small cell lung cancer (NSCLC) after prior EGFR TKI progression. Furthermore, AZD9291 is now being evaluated as a first-line treatment for NSCLC patients with activation EGFR mutations. Based on previous experiments, resistance to AZD9291 as a first-line treatment may also emerge. Thus, identification and understanding of resistance mechanisms to AZD9291 as a first-line treatment can help direct development of future therapies. AZD9291-resistant cells (PC9/AZDR) were established using EGFR inhibitor-naïve PC9 cells. Resistance mechanisms were analyzed using next-generation sequencing (NGS) and a proteome profiler array. Resistance to AZD9291 developed through aberrant activation of ERK signaling by an EGFR-independent mechanism. The combination of a MEK inhibitor with AZD9291 restored the sensitivity of PC9/AZDR cells in vitro and in vivo. PC9/AZDR cells also showed increased MET expression and an HRAS G13R mutation. In addition, maspin expression was higher after AZD9291 treatment in PC9/AZDR cells. Sustained ERK activation confers resistance to AZD9291 as a first-line therapy. Thus, co-targeting EGFR and MEK may be an effective strategy to overcome resistance to AZD9291.
Collapse
Affiliation(s)
- Bo Mi Ku
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Moon Ki Choi
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- * E-mail: ,
| |
Collapse
|
119
|
Heydt C, Michels S, Thress KS, Bergner S, Wolf J, Buettner R. Novel approaches against epidermal growth factor receptor tyrosine kinase inhibitor resistance. Oncotarget 2018; 9:15418-15434. [PMID: 29632655 PMCID: PMC5880615 DOI: 10.18632/oncotarget.24624] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/21/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The identification and characterization of molecular biomarkers has helped to revolutionize non-small-cell lung cancer (NSCLC) management, as it transitions from target-focused to patient-based treatment, centered on the evolving genomic profile of the individual. Determination of epidermal growth factor receptor (EGFR) mutation status represents a critical step in the diagnostic process. The recent emergence of acquired resistance to "third-generation" EGFR tyrosine kinase inhibitors (TKIs) via multiple mechanisms serves to illustrate the important influence of tumor heterogeneity on prognostic outcomes in patients with NSCLC. DESIGN This literature review examines the emergence of TKI resistance and the course of disease progression and, consequently, the clinical decision-making process in NSCLC. RESULTS Molecular markers of acquired resistance, of which T790M and HER2 or MET amplifications are the most common, help to guide ongoing treatment past the point of progression. Although tissue biopsy techniques remain the gold standard, the emergence of liquid biopsies and advances in analytical techniques may eventually allow "real-time" monitoring of tumor evolution and, in this way, help to optimize targeted treatment approaches. CONCLUSIONS The influence of inter- and intra-tumor heterogeneity on resistance mechanisms should be considered when treating patients using resistance-specific therapies. New tools are necessary to analyze changes in heterogeneity and clonal composition during drug treatment. The refinement and standardization of diagnostic procedures and increased accessibility to technology will ultimately help in personalizing the management of NSCLC.
Collapse
Affiliation(s)
- Carina Heydt
- Molecular Pathological Diagnostics, Institute of Pathology, University Hospital Cologne, Cologne, Germany
- Center of Integrated Oncology Köln-Bonn, University Hospital Cologne, Cologne, Germany
| | - Sebastian Michels
- Center of Integrated Oncology Köln-Bonn, University Hospital Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Köln-Bonn, University Hospital of Cologne, Cologne, Germany
| | | | - Sven Bergner
- Medical Affairs, AstraZeneca Oncology, Wedel, Germany
| | - Jürgen Wolf
- Center of Integrated Oncology Köln-Bonn, University Hospital Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology Köln-Bonn, University Hospital of Cologne, Cologne, Germany
| | - Reinhard Buettner
- Molecular Pathological Diagnostics, Institute of Pathology, University Hospital Cologne, Cologne, Germany
- Center of Integrated Oncology Köln-Bonn, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
120
|
Tomasello C, Baldessari C, Napolitano M, Orsi G, Grizzi G, Bertolini F, Barbieri F, Cascinu S. Resistance to EGFR inhibitors in non-small cell lung cancer: Clinical management and future perspectives. Crit Rev Oncol Hematol 2018; 123:149-161. [DOI: 10.1016/j.critrevonc.2018.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/09/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022] Open
|
121
|
Sahni JM, Keri RA. Targeting bromodomain and extraterminal proteins in breast cancer. Pharmacol Res 2018; 129:156-176. [PMID: 29154989 PMCID: PMC5828951 DOI: 10.1016/j.phrs.2017.11.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Abstract
Breast cancer is a collection of distinct tumor subtypes that are driven by unique gene expression profiles. These transcriptomes are controlled by various epigenetic marks that dictate which genes are expressed and suppressed. During carcinogenesis, extensive restructuring of the epigenome occurs, including aberrant acetylation, alteration of methylation patterns, and accumulation of epigenetic readers at oncogenes. As epigenetic alterations are reversible, epigenome-modulating drugs could provide a mechanism to silence numerous oncogenes simultaneously. Here, we review the impact of inhibitors of the Bromodomain and Extraterminal (BET) family of epigenetic readers in breast cancer. These agents, including the prototypical BET inhibitor JQ1, have been shown to suppress a variety of oncogenic pathways while inducing minimal, if any, toxicity in models of several subtypes of breast cancer. BET inhibitors also synergize with multiple approved anti-cancer drugs, providing a greater response in breast cancer cell lines and mouse models than either single agent. The combined findings of the studies discussed here provide an excellent rationale for the continued investigation of the utility of BET inhibitors in breast cancer.
Collapse
Affiliation(s)
- Jennifer M Sahni
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, United States; Department of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
122
|
Elshimali YI, Wu Y, Khaddour H, Wu Y, Gradinaru D, Sukhija H, Chung SS, Vadgama JV. Optimization Of Cancer Treatment Through Overcoming Drug Resistance. JOURNAL OF CANCER RESEARCH AND ONCOBIOLOGY 2018; 1:107. [PMID: 29932172 PMCID: PMC6007995 DOI: 10.31021/jcro.20181107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer Drug resistance is a medical concern that requires extensive research and a thorough understanding in order to overcome. Remarkable achievements related to this field have been accomplished and further work is needed in order to optimize the cure for cancer and serve as the basis for precise medicine with few or no side effects.
Collapse
Affiliation(s)
- Yahya I. Elshimali
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| | - Hussein Khaddour
- Faculty of Pharmacy, Mazzeh (17th April Street), Damascus University, Damascus, Syria
- Carol Davila - University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Romania
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| | - Daniela Gradinaru
- Carol Davila - University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Romania
| | - Hema Sukhija
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
| | - Seyung S. Chung
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, USA
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, USA
| |
Collapse
|
123
|
Inhibition of oxidative phosphorylation suppresses the development of osimertinib resistance in a preclinical model of EGFR-driven lung adenocarcinoma. Oncotarget 2018; 7:86313-86325. [PMID: 27861144 PMCID: PMC5349916 DOI: 10.18632/oncotarget.13388] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/31/2016] [Indexed: 12/23/2022] Open
Abstract
Metabolic plasticity is an emerging hallmark of cancer, and increased glycolysis is often observed in transformed cells. Small molecule inhibitors that target driver oncogenes can potentially inhibit the glycolytic pathway. Osimertinib (AZD9291) is a novel EGFR tyrosine kinase inhibitor (TKI) that is potent and selective for sensitising (EGFRm) and T790M resistance mutations. Clinical studies have shown osimertinib to be efficacious in patients with EGFRm/ T790M advanced NSCLC who have progressed after EGFR-TKI treatment. However experience with targeted therapies suggests that acquired resistance may emerge. Thus there is a need to characterize resistance mechanisms and to devise ways to prevent, delay or overcome osimertinib resistance. We show here that osimertinib suppresses glycolysis in parental EGFR-mutant lung adenocarcinoma lines, but has not in osimertinib-resistant cell lines. Critically, we show osimertinib treatment induces a strict dependence on mitochondrial oxidative phosphorylation (OxPhos), as OxPhos inhibitors significantly delay the long-term development of osimertinib resistance in osimertinib-sensitive lines. Accordingly, growth conditions which promote a less glycolytic phenotype confer a degree of osimertinib resistance. Our data support a model in which the combination of osimertinib and OxPhos inhibitors can delay or prevent resistance in osimertinib-naïve tumour cells, and represents a novel strategy that warrants further pre-clinical investigation.
Collapse
|
124
|
Shah B, Zhao X, Silva AS, Shain KH, Tao J. Resistance to Ibrutinib in B Cell Malignancies: One Size Does Not Fit All. Trends Cancer 2018; 4:197-206. [PMID: 29506670 DOI: 10.1016/j.trecan.2018.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/28/2017] [Accepted: 01/17/2018] [Indexed: 12/16/2022]
Abstract
Ibrutinib resistance, as a result of coordinated rewiring of signaling networks and enforced tumor microenvironment (TME)-lymphoma interactions, drives unrestrained proliferation and disease progression. To combat resistance mechanisms, we must identify the compensatory resistance pathways and the central modulators of reprogramming events. Targeting the transcriptome and kinome reprogramming of lymphoma cells represents a rational approach to mitigate ibrutinib resistance in B cell malignancies. However, with the apparent heterogeneity and plasticity of tumors shown in therapy response, a one size fits all approach may be unattainable. To this end, a reliable and real-time drug screening platform to tailor effective individualized therapies in patients with B cell malignancies is warranted. Here, we describe the complexity of ibrutinib resistance in B cell lymphomas and the current approaches, including a drug screening assay, which has the potential to further explore the mechanisms of ibrutinib resistance and to design effective individualized combination therapies to overcome resistance and disable aggressive lymphomas (see Outstanding Questions).
Collapse
Affiliation(s)
- Bijal Shah
- Department of Malignant Hematology and Department of Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Xiaohong Zhao
- Department of Malignant Hematology and Department of Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Ariosto S Silva
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kenneth H Shain
- Department of Malignant Hematology and Department of Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jianguo Tao
- Department of Hematopathology and Laboratory Medicine and Department of Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
125
|
Terai H, Kitajima S, Potter DS, Matsui Y, Quiceno LG, Chen T, Kim TJ, Rusan M, Thai TC, Piccioni F, Donovan KA, Kwiatkowski N, Hinohara K, Wei G, Gray NS, Fischer ES, Wong KK, Shimamura T, Letai A, Hammerman PS, Barbie DA. ER Stress Signaling Promotes the Survival of Cancer "Persister Cells" Tolerant to EGFR Tyrosine Kinase Inhibitors. Cancer Res 2018; 78:1044-1057. [PMID: 29259014 PMCID: PMC5815936 DOI: 10.1158/0008-5472.can-17-1904] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/13/2017] [Accepted: 12/13/2017] [Indexed: 12/26/2022]
Abstract
An increasingly recognized component of resistance to tyrosine kinase inhibitors (TKI) involves persistence of a drug-tolerant subpopulation of cancer cells that survive despite effective eradication of the majority of the cell population. Multiple groups have demonstrated that these drug-tolerant persister cells undergo transcriptional adaptation via an epigenetic state change that promotes cell survival. Because this mode of TKI drug tolerance appears to involve transcriptional addiction to specific genes and pathways, we hypothesized that systematic functional screening of EGFR TKI/transcriptional inhibitor combination therapy would yield important mechanistic insights and alternative drug escape pathways. We therefore performed a genome-wide CRISPR/Cas9 enhancer/suppressor screen in EGFR-dependent lung cancer PC9 cells treated with erlotinib + THZ1 (CDK7/12 inhibitor) combination therapy, a combination previously shown to suppress drug-tolerant cells in this setting. As expected, suppression of multiple genes associated with transcriptional complexes (EP300, CREBBP, and MED1) enhanced erlotinib/THZ1 synergy. Unexpectedly, we uncovered nearly every component of the recently described ufmylation pathway in the synergy suppressor group. Loss of ufmylation did not affect canonical downstream EGFR signaling. Instead, absence of this pathway triggered a protective unfolded protein response associated with STING upregulation, promoting protumorigenic inflammatory signaling but also unique dependence on Bcl-xL. These data reveal that dysregulation of ufmylation and ER stress comprise a previously unrecognized TKI drug tolerance pathway that engages survival signaling, with potentially important therapeutic implications.Significance: These findings reveal a novel function of the recently described ufmylation pathway, an ER stress survival signaling in drug-tolerant persister cells, which has important biological and therapeutic implications. Cancer Res; 78(4); 1044-57. ©2017 AACR.
Collapse
Affiliation(s)
- Hideki Terai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Danielle S Potter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yusuke Matsui
- Department of Systems Biology Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | | | - Ting Chen
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Tae-Jung Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Maria Rusan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tran C Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Federica Piccioni
- Genetic Perturbation Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, Boston, Massachusetts
| | - Nicholas Kwiatkowski
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, Boston, Massachusetts
| | - Kunihiko Hinohara
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Guo Wei
- Cancer Program, Broad Institute or MIT and Harvard, Cambridge, Massachusetts
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, Boston, Massachusetts
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, Boston, Massachusetts
| | - Kwok-Kin Wong
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Teppei Shimamura
- Department of Systems Biology Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Peter S Hammerman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
126
|
Karachaliou N, Chaib I, Cardona AF, Berenguer J, Bracht JWP, Yang J, Cai X, Wang Z, Hu C, Drozdowskyj A, Servat CC, Servat JC, Ito M, Attili I, Aldeguer E, Capitan AG, Rodriguez J, Rojas L, Viteri S, Molina-Vila MA, Ou SHI, Okada M, Mok TS, Bivona TG, Ono M, Cui J, Ramón Y Cajal S, Frias A, Cao P, Rosell R. Common Co-activation of AXL and CDCP1 in EGFR-mutation-positive Non-smallcell Lung Cancer Associated With Poor Prognosis. EBioMedicine 2018; 29:112-127. [PMID: 29433983 PMCID: PMC5925453 DOI: 10.1016/j.ebiom.2018.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 01/05/2023] Open
Abstract
Epidermal growth factor receptor (EGFR)-mutation-positive non-small cell lung cancer (NSCLC) is incurable, despite high rates of response to EGFR tyrosine kinase inhibitors (TKIs). We investigated receptor tyrosine kinases (RTKs), Src family kinases and focal adhesion kinase (FAK) as genetic modifiers of innate resistance in EGFR-mutation-positive NSCLC. We performed gene expression analysis in two cohorts (Cohort 1 and Cohort 2) of EGFR-mutation-positive NSCLC patients treated with EGFR TKI. We evaluated the efficacy of gefitinib or osimertinib with the Src/FAK/Janus kinase 2 (JAK2) inhibitor, TPX0005 in vitro and in vivo. In Cohort 1, CUB domain-containing protein-1 (CDCP1) was an independent negative prognostic factor for progression-free survival (hazard ratio of 1.79, p = 0.0407) and overall survival (hazard ratio of 2.23, p = 0.0192). A two-gene model based on AXL and CDCP1 expression was strongly associated with the clinical outcome to EGFR TKIs, in both cohorts of patients. Our preclinical experiments revealed that several RTKs and non-RTKs, were up-regulated at baseline or after treatment with gefitinib or osimertinib. TPX-0005 plus EGFR TKI suppressed expression and activation of RTKs and downstream signaling intermediates. Co-expression of CDCP1 and AXL is often observed in EGFR-mutation-positive tumors, limiting the efficacy of EGFR TKIs. Co-treatment with EGFR TKI and TPX-0005 warrants testing. AXL and CDCP1 are co-expressed in treatment-naïve EGFR-mutation-positive NSCLC patients. AXL and CDCP1 are related to shorter progression-free survival with EGFR inhibitors and shorter overall survival. Src family kinases and YAP1 are regulatory nodes for AXL and CDCP1 expression. The combination of EGFR TKI with TPX-0005 is synergistic in EGFR-mutation-positive lung tumors in culture and in vivo.
We explore the molecular changes that occur after the application of an EGFR inhibitor in EGFR-mutation positive tumors. The tumors do not acquire secondary drivers to overcome a primary driver but, counter-regulatory nodes observable before treatment, are immediately made apparent by pathway-specific intervention. The expression of the receptor tyrosine kinase AXL and the transmembrane protein CDCP1 in baseline samples of EGFR-mutation positive NSCLC patients can provide us with information on the treatment outcome. The upfront combination of an EGFR inhibitor with a multikinase inhibitor, that controls the regulatory nodes for RTKs activation, is a therapeutic approach that deserves to be further explored.
Collapse
Affiliation(s)
- Niki Karachaliou
- Instituto Oncológico Dr Rosell (IOR), University Hospital Sagrat Cor, QuironSalud Group, Barcelona, Spain; Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Imane Chaib
- Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain
| | - Andres Felipe Cardona
- Clinical and Translational Oncology Group, Thoracic Oncology Unit, Institute of Oncology, Clínica del Country, Bogotá, Colombia; Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
| | - Jordi Berenguer
- Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain
| | | | - Jie Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xueting Cai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhigang Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Chunping Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | | | - Carles Codony Servat
- Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Jordi Codony Servat
- Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Masaoki Ito
- Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain; Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Ilaria Attili
- Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain; Istituto Oncologico Veneto, IRCCS, Padova, Italy; Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Erika Aldeguer
- Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Ana Gimenez Capitan
- Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain
| | - July Rodriguez
- Clinical and Translational Oncology Group, Thoracic Oncology Unit, Institute of Oncology, Clínica del Country, Bogotá, Colombia
| | - Leonardo Rojas
- Clinical and Translational Oncology Group, Thoracic Oncology Unit, Institute of Oncology, Clínica del Country, Bogotá, Colombia
| | - Santiago Viteri
- Instituto Oncológico Dr Rosell (IOR), Quirón-Dexeus University Institute, Barcelona, Spain
| | - Miguel Angel Molina-Vila
- Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain
| | - Sai-Hong Ignatius Ou
- Department of Medicine, Division of Hematology-Oncology, University of California Irvine School of Medicine, Orange, CA, United States
| | - Morihito Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Tony S Mok
- The State Key Laboratory in Oncology in South China, Sir Y.K. Pao Centre for Cancer, Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong
| | - Trever G Bivona
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, United States
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Jean Cui
- TP Therapeutics, Inc., San Diego, CA, United States
| | | | - Alex Frias
- Brain Tumor Biology, Danish Cancer Society Research Center, Denmark
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| | - Rafael Rosell
- Pangaea Oncology, Laboratory of Molecular Biology, Coyote Reserach Group, Quirón-Dexeus University Institute, Barcelona, Spain; Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain; Instituto Oncológico Dr Rosell (IOR), Quirón-Dexeus University Institute, Barcelona, Spain; Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Badalona, Spain.
| |
Collapse
|
127
|
Hazar-Rethinam M, Kleyman M, Han GC, Liu D, Ahronian LG, Shahzade HA, Chen L, Parikh AR, Allen JN, Clark JW, Kwak EL, Faris JE, Murphy JE, Hong TS, Van Seventer EE, Nadres B, Hong CB, Gurski JM, Jessop NA, Dias-Santagata D, Iafrate AJ, Van Allen EM, Corcoran RB. Convergent Therapeutic Strategies to Overcome the Heterogeneity of Acquired Resistance in BRAFV600E Colorectal Cancer. Cancer Discov 2018; 8:417-427. [PMID: 29431697 DOI: 10.1158/2159-8290.cd-17-1227] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 01/18/2023]
Abstract
Clonal heterogeneity associated with acquired resistance presents a critical therapeutic challenge. Whole-exome sequencing of paired tumor biopsies and targeted sequencing of cell-free DNA (cfDNA) from patients with BRAFV600E colorectal cancer receiving BRAF inhibitor combinations identified 14 distinct alterations in MAPK pathway components driving acquired resistance, with as many as eight alterations in a single patient. We developed a pooled clone system to study clonal outgrowth during acquired resistance, in vitro and in vivoIn vitro, the dynamics of individual resistant clones could be monitored in real time in cfDNA isolated from culture media during therapy. Outgrowth of multiple resistant clones was observed during therapy with BRAF, EGFR, and MEK inhibitor combinations. However, ERK inhibition, particularly in combination with BRAF and EGFR inhibition, markedly abrogated clonal outgrowth in vitro and in vivo Thus, convergent, up-front therapy may suppress outgrowth of heterogeneous clones harboring clinically observed resistance alterations, which may improve clinical outcome.Significance: We observed heterogeneous, recurrent alterations in the MAPK pathway as key drivers of acquired resistance in BRAFV600E colorectal cancer, with multiple concurrent resistance alterations detectable in individual patients. Using a novel pooled clone system, we identify convergent up-front therapeutic strategies capable of intercepting multiple resistance mechanisms as potential approaches to suppress emergence of acquired resistance. Cancer Discov; 8(4); 417-27. ©2018 AACR.See related commentary by Janku, p. 389See related article by Corcoran et al., p. 428This article is highlighted in the In This Issue feature, p. 371.
Collapse
Affiliation(s)
- Mehlika Hazar-Rethinam
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Marianna Kleyman
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - G Celine Han
- Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - David Liu
- Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Leanne G Ahronian
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Heather A Shahzade
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Lifeng Chen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Aparna R Parikh
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jill N Allen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey W Clark
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Eunice L Kwak
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jason E Faris
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Janet E Murphy
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Theodore S Hong
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Emily E Van Seventer
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Brandon Nadres
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Catriona B Hong
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Joseph M Gurski
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Nicholas A Jessop
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Dora Dias-Santagata
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - A John Iafrate
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Eliezer M Van Allen
- Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Ryan B Corcoran
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts. .,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
128
|
Calvayrac O, Pradines A, Mazières J, Favre G. [The Ras-related GTPase RhoB, a relevant actor in the adaptive resistance to EGFR tyrosine kinase inhibitors in lung cancers]. Med Sci (Paris) 2018; 34:12-14. [PMID: 29384086 DOI: 10.1051/medsci/20183401003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Olivier Calvayrac
- Inserm U1037, centre de recherches en cancérologie de Toulouse, université Paul Sabatier, F-31057, Toulouse, France
| | - Anne Pradines
- Inserm U1037, centre de recherches en cancérologie de Toulouse, université Paul Sabatier, F-31057, Toulouse, France - Institut Claudius Regaud, Institut universitaire du cancer-oncopole, F-31057, Toulouse, France
| | - Julien Mazières
- Inserm U1037, centre de recherches en cancérologie de Toulouse, université Paul Sabatier, F-31057, Toulouse, France - CHU de Toulouse, Institut universitaire du cancer - Rangueil Larrey, F-31057, Toulouse, France
| | - Gilles Favre
- Inserm U1037, centre de recherches en cancérologie de Toulouse, université Paul Sabatier, F-31057, Toulouse, France - Institut Claudius Regaud, Institut universitaire du cancer-oncopole, F-31057, Toulouse, France
| |
Collapse
|
129
|
Abstract
Drug resistance inevitably limits the efficacy of all targeted therapies including tyrosine kinase inhibitors (TKIs). Understanding the biological underpinnings of TKI resistance is key to the successful development of future therapeutic strategies. Traditionally, mechanisms of TKI resistance have been viewed under a dichotomous lens. Tumor cells are TKI-sensitive or TKI-refractory, exhibit intrinsic or acquired resistance, and accumulate alterations within or outside the target to promote their survival. Such classifications facilitate our comprehension of an otherwise complex biology, but are likely an oversimplification. Recent studies underscore the multifaceted, genetically heterogeneous nature of TKI resistance, which evolves dynamically with changes in therapy. In this Review, we provide a broad framework for understanding the diverse mechanisms of resistance at play in oncogene-driven lung cancers.
Collapse
Affiliation(s)
- Jessica J Lin
- Department of Thoracic Oncology, Massachusetts General Hospital Cancer Center, 32 Fruit Street, Boston, MA 02114, USA
| | - Alice T Shaw
- Department of Thoracic Oncology, Massachusetts General Hospital Cancer Center, 32 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
130
|
Dopeso H, Jiao HK, Cuesta AM, Henze AT, Jurida L, Kracht M, Acker-Palmer A, Garvalov BK, Acker T. PHD3 Controls Lung Cancer Metastasis and Resistance to EGFR Inhibitors through TGFα. Cancer Res 2018; 78:1805-1819. [PMID: 29339541 DOI: 10.1158/0008-5472.can-17-1346] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/27/2017] [Accepted: 01/10/2018] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, in large part due to its high propensity to metastasize and to develop therapy resistance. Adaptive responses to hypoxia and epithelial-mesenchymal transition (EMT) are linked to tumor metastasis and drug resistance, but little is known about how oxygen sensing and EMT intersect to control these hallmarks of cancer. Here, we show that the oxygen sensor PHD3 links hypoxic signaling and EMT regulation in the lung tumor microenvironment. PHD3 was repressed by signals that induce EMT and acted as a negative regulator of EMT, metastasis, and therapeutic resistance. PHD3 depletion in tumors, which can be caused by the EMT inducer TGFβ or by promoter methylation, enhanced EMT and spontaneous metastasis via HIF-dependent upregulation of the EGFR ligand TGFα. In turn, TGFα stimulated EGFR, which potentiated SMAD signaling, reinforcing EMT and metastasis. In clinical specimens of lung cancer, reduced PHD3 expression was linked to poor prognosis and to therapeutic resistance against EGFR inhibitors such as erlotinib. Reexpression of PHD3 in lung cancer cells suppressed EMT and metastasis and restored sensitivity to erlotinib. Taken together, our results establish a key function for PHD3 in metastasis and drug resistance and suggest opportunities to improve patient treatment by interfering with the feedforward signaling mechanisms activated by PHD3 silencing.Significance: This study links the oxygen sensor PHD3 to metastasis and drug resistance in cancer, with implications for therapeutic improvement by targeting this system. Cancer Res; 78(7); 1805-19. ©2018 AACR.
Collapse
Affiliation(s)
- Higinio Dopeso
- Institute of Neuropathology, University of Giessen, Giessen, Germany
| | - Hui-Ke Jiao
- Institute of Neuropathology, University of Giessen, Giessen, Germany
| | - Angel M Cuesta
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt am Main, Germany.,Focus Program Translational Neurosciences (FTN), University of Mainz, Mainz, Germany
| | - Anne-Theres Henze
- Institute of Neuropathology, University of Giessen, Giessen, Germany
| | - Liane Jurida
- Rudolf-Buchheim-Institute of Pharmacology, University of Giessen, Giessen, Germany
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, University of Giessen, Giessen, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Frankfurt am Main, Germany.,Focus Program Translational Neurosciences (FTN), University of Mainz, Mainz, Germany
| | - Boyan K Garvalov
- Institute of Neuropathology, University of Giessen, Giessen, Germany.
| | - Till Acker
- Institute of Neuropathology, University of Giessen, Giessen, Germany.
| |
Collapse
|
131
|
Cavalloni G, Peraldo-Neia C, Varamo C, Chiorino G, Sassi F, Aglietta M, Leone F. Preclinical activity of EGFR and MEK1/2 inhibitors in the treatment of biliary tract carcinoma. Oncotarget 2018; 7:52354-52363. [PMID: 27429047 PMCID: PMC5239557 DOI: 10.18632/oncotarget.10587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/17/2016] [Indexed: 01/08/2023] Open
Abstract
Biliary tract carcinomas (BTC) are malignant tumors with limited therapeutic options. Clinical experiences with anti-EGFR therapies have produced unsatisfactory results. The strategies of combined inhibition of EGFR and MEK1/2 could be a promising therapeutic option in BTC treatment. Preclinical activity of Panitumumab and Trametinib was tested in in vitro (EGI-1, MT-CHC01 and WITT cells) and in in vivo (xenograft) BTC models with different K-RAS mutational status. Trametinib reduced MAPK phosphorylation in wild type (WT) WITT cells and in both K-RAS mutated cells; in EGI-1 was also able to switch off EGFR activation. Panitumumab reduced the activation of its target only in EGI-1 cells, and of MAPK only in WITT cells. While Trametinib inhibited cell growth in K-RAS mutated cell lines, Panitumumab had no effect on proliferation independently by K-RAS status. The addition of Panitumumab to Trametinib did not significantly potentiate its anti-proliferative effect also in mutated cells. In vivo, Trametinib was able to significantly slow the tumor growth in K-RAS mutated xenograft models, but did not have effect on K-RAS WT cells; the addition of Panitumumab potentiated the Trametinib efficacy in MT-CHC01 and overcame the resistance to the anti-EGFR in WITT cells, in which the monotherapy was ineffective. Only in K-RAS mutated xenografts Trametinib alone or in combination with Panitumumab significantly decreased Ki67 positive cell fraction and CD31 angiogenesis markers. In conclusion, this preclinical study provides a rational to plan clinical trials assessing the efficacy of Trametinib in K-RAS mutated BTC patients and the combination with anti-EGFR in WT BTC patients.
Collapse
Affiliation(s)
- Giuliana Cavalloni
- Medical Oncology Division, Fondazione del Piemonte per l'Oncologia (FPO), Candiolo Cancer Institute IRCCS, Candiolo, Italy
| | - Caterina Peraldo-Neia
- Department of Oncology, University of Turin, Candiolo Cancer Institute IRCCS, Candiolo, Italy
| | - Chiara Varamo
- Department of Oncology, University of Turin, Candiolo Cancer Institute IRCCS, Candiolo, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia Valenta, Biella, Italy
| | - Francesco Sassi
- Unit of Molecular Pharmacology, University of Turin Medical School, Candiolo Cancer Institute IRCCS, Candiolo, Italy
| | - Massimo Aglietta
- Medical Oncology Division, Fondazione del Piemonte per l'Oncologia (FPO), Candiolo Cancer Institute IRCCS, Candiolo, Italy.,Department of Oncology, University of Turin, Candiolo Cancer Institute IRCCS, Candiolo, Italy
| | - Francesco Leone
- Medical Oncology Division, Fondazione del Piemonte per l'Oncologia (FPO), Candiolo Cancer Institute IRCCS, Candiolo, Italy.,Department of Oncology, University of Turin, Candiolo Cancer Institute IRCCS, Candiolo, Italy
| |
Collapse
|
132
|
Hsu PC, You B, Yang YL, Zhang WQ, Wang YC, Xu Z, Dai Y, Liu S, Yang CT, Li H, Hu B, Jablons DM, You L. YAP promotes erlotinib resistance in human non-small cell lung cancer cells. Oncotarget 2018; 7:51922-51933. [PMID: 27409162 PMCID: PMC5239524 DOI: 10.18632/oncotarget.10458] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 06/17/2016] [Indexed: 12/29/2022] Open
Abstract
Yes-associated protein (YAP) is a main mediator of the Hippo pathway, which promotes cancer development. Here we show that YAP promotes resistance to erlotinib in human non-small cell lung cancer (NSCLC) cells. We found that forced YAP overexpression through YAP plasmid transfection promotes erlotinib resistance in HCC827 (exon 19 deletion) cells. In YAP plasmid-transfected HCC827 cells, GTIIC reporter activity and Hippo downstream gene expression of AREG and CTGF increased significantly (P<0.05), as did ERBB3 mRNA expression (P<0.05). GTIIC reporter activity, ERBB3 protein and mRNA expression all increased in HCC827 erlotinib-resistance (ER) cells compared to parental HCC827 cells. Inhibition of YAP by small interfering RNA (siRNA) increased the cytotoxicity of erlotinib to H1975 (L858R+T790M) cells. In YAP siRNA-transfected H1975 cells, GTIIC reporter activity and downstream gene expression of AREG and CTGF decreased significantly (P<0.05). Verteporfin, YAP inhibitor had an effect similar to that of YAP siRNA; it increased sensitivity of H1975 cells to erlotinib and in combination with erlotinib, synergistically reduced migration, invasion and tumor sphere formation abilities in H1975 cells. Our results indicate that YAP promotes erlotinib resistance in the erlotinib-sensitive NSCLC cell line HCC827. Inhibition of YAP by siRNA increases sensitivity of erlotinib-resistant NSCLC cell line H1975 to erlotinib.
Collapse
Affiliation(s)
- Ping-Chih Hsu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Bin You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital University of Medical Science, Beijing, People's Republic of China
| | - Yi-Lin Yang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Wen-Qian Zhang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital University of Medical Science, Beijing, People's Republic of China
| | - Yu-Cheng Wang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Zhidong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Yuyuan Dai
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Shu Liu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Cheng-Ta Yang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Hui Li
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital University of Medical Science, Beijing, People's Republic of China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital University of Medical Science, Beijing, People's Republic of China
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
133
|
Singleton KR, Crawford L, Tsui E, Manchester HE, Maertens O, Liu X, Liberti MV, Magpusao AN, Stein EM, Tingley JP, Frederick DT, Boland GM, Flaherty KT, McCall SJ, Krepler C, Sproesser K, Herlyn M, Adams DJ, Locasale JW, Cichowski K, Mukherjee S, Wood KC. Melanoma Therapeutic Strategies that Select against Resistance by Exploiting MYC-Driven Evolutionary Convergence. Cell Rep 2017; 21:2796-2812. [PMID: 29212027 PMCID: PMC5728698 DOI: 10.1016/j.celrep.2017.11.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/02/2017] [Accepted: 11/03/2017] [Indexed: 12/12/2022] Open
Abstract
Diverse pathways drive resistance to BRAF/MEK inhibitors in BRAF-mutant melanoma, suggesting that durable control of resistance will be a challenge. By combining statistical modeling of genomic data from matched pre-treatment and post-relapse patient tumors with functional interrogation of >20 in vitro and in vivo resistance models, we discovered that major pathways of resistance converge to activate the transcription factor, c-MYC (MYC). MYC expression and pathway gene signatures were suppressed following drug treatment, and then rebounded during progression. Critically, MYC activation was necessary and sufficient for resistance, and suppression of MYC activity using genetic approaches or BET bromodomain inhibition was sufficient to resensitize cells and delay BRAFi resistance. Finally, MYC-driven, BRAFi-resistant cells are hypersensitive to the inhibition of MYC synthetic lethal partners, including SRC family and c-KIT tyrosine kinases, as well as glucose, glutamine, and serine metabolic pathways. These insights enable the design of combination therapies that select against resistance evolution.
Collapse
Affiliation(s)
- Katherine R Singleton
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Lorin Crawford
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Elizabeth Tsui
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Haley E Manchester
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Ophelia Maertens
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Maria V Liberti
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Department of Molecular Biology and Genetics, Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Anniefer N Magpusao
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Elizabeth M Stein
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Jennifer P Tingley
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Dennie T Frederick
- Harvard Medical School, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Genevieve M Boland
- Harvard Medical School, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Keith T Flaherty
- Harvard Medical School, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | | | - Clemens Krepler
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Katrin Sproesser
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Drew J Adams
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Sayan Mukherjee
- Department of Statistical Science, Duke University, Durham, NC 27708, USA; Departments of Mathematics and Computer Science, Duke University, Durham, NC 27708, USA
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
134
|
Lovly CM, Iyengar P, Gainor JF. Managing Resistance to EFGR- and ALK-Targeted Therapies. Am Soc Clin Oncol Educ Book 2017; 37:607-618. [PMID: 28561721 PMCID: PMC10183098 DOI: 10.1200/edbk_176251] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Targeted therapies have transformed the management of non-small cell lung cancer (NSCLC) and placed an increased emphasis on stratifying patients on the basis of genetic alterations in oncogenic drivers. To date, the best characterized molecular targets in NSCLC are the epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK). Despite steady advances in targeted therapies within these molecular subsets, however, acquired resistance to therapy is near universal. Recent preclinical models and translational efforts have provided critical insights into the molecular mechanisms of resistance to EGFR and ALK inhibitors. In this review, we present a framework for understanding resistance to targeted therapies. We also provide overviews of the molecular mechanisms of resistance and strategies to overcome resistance among EGFR-mutant and ALK-rearranged lung cancers. To date, these strategies have centered on the development of novel next-generation inhibitors, rationale combinations, and use of local ablative therapies, such as radiotherapy.
Collapse
Affiliation(s)
- Christine M Lovly
- From the Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN; Department of Radiation Oncology, Thoracic Disease Oriented Team, Thoracic Radiation Oncology Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX; Harvard Medical School, Massachusetts General Hospital, Boston, MA
| | - Puneeth Iyengar
- From the Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN; Department of Radiation Oncology, Thoracic Disease Oriented Team, Thoracic Radiation Oncology Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX; Harvard Medical School, Massachusetts General Hospital, Boston, MA
| | - Justin F Gainor
- From the Division of Hematology and Oncology, Vanderbilt University School of Medicine, Nashville, TN; Department of Radiation Oncology, Thoracic Disease Oriented Team, Thoracic Radiation Oncology Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX; Harvard Medical School, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
135
|
Umapathy G, Guan J, Gustafsson DE, Javanmardi N, Cervantes-Madrid D, Djos A, Martinsson T, Palmer RH, Hallberg B. MEK inhibitor trametinib does not prevent the growth of anaplastic lymphoma kinase (ALK)-addicted neuroblastomas. Sci Signal 2017; 10:10/507/eaam7550. [PMID: 29184034 DOI: 10.1126/scisignal.aam7550] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activation of the RAS-RAF-MEK-ERK signaling pathway is implicated in driving the initiation and progression of multiple cancers. Several inhibitors targeting the RAS-MAPK pathway are clinically approved as single- or polyagent therapies for patients with specific types of cancer. One example is the MEK inhibitor trametinib, which is included as a rational polytherapy strategy for treating EML4-ALK-positive, EGFR-activated, or KRAS-mutant lung cancers and neuroblastomas that also contain activating mutations in the RAS-MAPK pathway. In addition, in neuroblastoma, a heterogeneous disease, relapse cases display an increased rate of mutations in ALK, NRAS, and NF1, leading to increased activation of RAS-MAPK signaling. Co-targeting ALK and the RAS-MAPK pathway is an attractive option, because monotherapies have not yet produced effective results in ALK-addicted neuroblastoma patients. We evaluated the response of neuroblastoma cell lines to MEK-ERK pathway inhibition by trametinib. In contrast to RAS-MAPK pathway-mutated neuroblastoma cell lines, ALK-addicted neuroblastoma cells treated with trametinib showed increased activation (inferred by phosphorylation) of the kinases AKT and ERK5. This feedback response was mediated by the mammalian target of rapamycin complex 2-associated protein SIN1, resulting in increased survival and proliferation that depended on AKT signaling. In xenografts in mice, trametinib inhibited the growth of EML4-ALK-positive non-small cell lung cancer and RAS-mutant neuroblastoma but not ALK-addicted neuroblastoma. Thus, our results advise against the seemingly rational option of using MEK inhibitors to treat ALK-addicted neuroblastoma.
Collapse
Affiliation(s)
- Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Dan E Gustafsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Niloufar Javanmardi
- Department of Clinical Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Diana Cervantes-Madrid
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Anna Djos
- Department of Clinical Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Tommy Martinsson
- Department of Clinical Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.
| |
Collapse
|
136
|
Nilsson MB, Sun H, Diao L, Tong P, Liu D, Li L, Fan Y, Poteete A, Lim SO, Howells K, Haddad V, Gomez D, Tran H, Pena GA, Sequist LV, Yang JC, Wang J, Kim ES, Herbst R, Lee JJ, Hong WK, Wistuba I, Hung MC, Sood AK, Heymach JV. Stress hormones promote EGFR inhibitor resistance in NSCLC: Implications for combinations with β-blockers. Sci Transl Med 2017; 9:eaao4307. [PMID: 29118262 PMCID: PMC5870120 DOI: 10.1126/scitranslmed.aao4307] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) resistance mediated by T790M-independent mechanisms remains a major challenge in the treatment of non-small cell lung cancer (NSCLC). We identified a targetable mechanism of EGFR inhibitor resistance whereby stress hormones activate β2-adrenergic receptors (β2-ARs) on NSCLC cells, which cooperatively signal with mutant EGFR, resulting in the inactivation of the tumor suppressor, liver kinase B1 (LKB1), and subsequently induce interleukin-6 (IL-6) expression. We show that stress and β2-AR activation promote tumor growth and EGFR inhibitor resistance, which can be abrogated with β-blockers or IL-6 inhibition. IL-6 was associated with a worse outcome in EGFR TKI-treated NSCLC patients, and β-blocker use was associated with lower IL-6 concentrations and improved benefit from EGFR inhibitors. These findings provide evidence that chronic stress hormones promote EGFR TKI resistance via β2-AR signaling by an LKB1/CREB (cyclic adenosine 3',5'-monophosphate response element-binding protein)/IL-6-dependent mechanism and suggest that combinations of β-blockers with EGFR TKIs merit further investigation as a strategy to abrogate resistance.
Collapse
Affiliation(s)
- Monique B Nilsson
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huiying Sun
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Diane Liu
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lerong Li
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Youhong Fan
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alissa Poteete
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Seung-Oe Lim
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | - Daniel Gomez
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hai Tran
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guillermo Armaiz Pena
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lecia V Sequist
- Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - James C Yang
- Graduate Institute of Oncology, National Taiwan University and National Taiwan University Hospital, Taipei City 100, Taiwan
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edward S Kim
- Solid Tumor Oncology and Investigational Therapeutics, Levine Cancer Institute Carolinas HealthCare System, Charlotte, NC 28204, USA
| | - Roy Herbst
- Section of Medical Oncology, Yale Cancer Center and Smilow Cancer Hospital, Yale, New Haven, CT 06510, USA
| | - J Jack Lee
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Waun Ki Hong
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ignacio Wistuba
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
137
|
Abstract
Cancer is a dynamic disease. During the course of disease, cancers generally become more heterogeneous. As a result of this heterogeneity, the bulk tumour might include a diverse collection of cells harbouring distinct molecular signatures with differential levels of sensitivity to treatment. This heterogeneity might result in a non-uniform distribution of genetically distinct tumour-cell subpopulations across and within disease sites (spatial heterogeneity) or temporal variations in the molecular makeup of cancer cells (temporal heterogeneity). Heterogeneity provides the fuel for resistance; therefore, an accurate assessment of tumour heterogeneity is essential for the development of effective therapies. Multiregion sequencing, single-cell sequencing, analysis of autopsy samples, and longitudinal analysis of liquid biopsy samples are all emerging technologies with considerable potential to dissect the complex clonal architecture of cancers. In this Review, we discuss the driving forces behind intratumoural heterogeneity and the current approaches used to combat this heterogeneity and its consequences. We also explore how clinical assessments of tumour heterogeneity might facilitate the development of more-effective personalized therapies.
Collapse
|
138
|
Shi P, Oh YT, Deng L, Zhang G, Qian G, Zhang S, Ren H, Wu G, Legendre B, Anderson E, Ramalingam SS, Owonikoko TK, Chen M, Sun SY. Overcoming Acquired Resistance to AZD9291, A Third-Generation EGFR Inhibitor, through Modulation of MEK/ERK-Dependent Bim and Mcl-1 Degradation. Clin Cancer Res 2017; 23:6567-6579. [PMID: 28765329 PMCID: PMC5668147 DOI: 10.1158/1078-0432.ccr-17-1574] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/06/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022]
Abstract
Purpose: The mechanisms accounting for anticancer activity of AZD9291 (osimertinib or TAGRISSO), an approved third-generation EGFR inhibitor, in EGFR-mutant non-small cell lung cancer (NSCLC) cells and particularly for the subsequent development of acquired resistance are unclear and thus are the focus of this study.Experimental Design: AZD9219-resistant cell lines were established by exposing sensitive cell lines to AZD9291. Protein alterations were detected with Western blotting. Apoptosis was measured with annexin V/flow cytometry. Growth-inhibitory effects of tested drugs were evaluated in vitro with cell number estimation and colony formation assay and in vivo with mouse xenograft models. Protein degradation was determined by comparing protein half-lives and inhibiting proteasome. Gene knockdown were achieved with siRNA or shRNA.Results: AZD9291 potently induced apoptosis in EGFR-mutant NSCLC cell lines, in which ERK phosphorylation was suppressed accompanied with Bim elevation and Mcl-1 reduction likely due to enhanced Mcl-1 degradation and increased Bim stability. Blocking Bim elevation by gene knockdown or enforcing Mcl-1 expression attenuated or abolished AZD9291-induced apoptosis. Moreover, AZD9291 lost its ability to modulate Bim and Mcl-1 levels in AZD9291-resistant cell lines. The combination of a MEK inhibitor with AZD9291 restores the sensitivity of AZD9291-resistant cells including those with C797S mutation to undergo apoptosis and growth regression in vitro and in vivoConclusions: Modulation of MEK/ERK-dependent Bim and Mcl-1 degradation critically mediates sensitivity and resistance of EGFR-mutant NSCLC cells to AZD9291 and hence is an effective strategy to overcome acquired resistance to AZD9291. Clin Cancer Res; 23(21); 6567-79. ©2017 AACR.
Collapse
Affiliation(s)
- Puyu Shi
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - You-Take Oh
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Liang Deng
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Guojing Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Guoqing Qian
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Shuo Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Hui Ren
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Grant Wu
- Transgenomic, Inc., Omaha, Nebraska
| | | | | | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia.
| |
Collapse
|
139
|
Xu J, Wang J, Zhang S. Mechanisms of resistance to irreversible epidermal growth factor receptor tyrosine kinase inhibitors and therapeutic strategies in non-small cell lung cancer. Oncotarget 2017; 8:90557-90578. [PMID: 29163853 PMCID: PMC5685774 DOI: 10.18632/oncotarget.21164] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/28/2017] [Indexed: 11/25/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) T790M mutation is the most frequent mechanism which accounts for about 60% of acquired resistance to first-generation EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) patients harboring EGFR activating mutations. Irreversible EGFR-TKIs which include the second-generation and third-generation EGFR-TKIs are developed to overcome T790M mediated resistance. The second-generation EGFR-TKIs inhibit the wide type (WT) EGFR combined with dose-limiting toxicity which limits its application in clinics, while the development of third-generation EGFR-TKIs brings inspiring efficacy either in vitro or in vivo. The acquired resistance, however, will also occur and limit their response. Understanding the mechanisms of resistance to irreversible EGFR-TKIs plays an important role in the choice of subsequent treatment. In this review, we show the currently known mechanisms of resistance which can be summarized as EGFR dependent and independent mechanisms and potential therapeutic strategies to irreversible EGFR-TKIs.
Collapse
Affiliation(s)
- Jing Xu
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Shucai Zhang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
140
|
Abstract
The expanding spectrum of both established and candidate oncogenic driver mutations identified in non-small-cell lung cancer (NSCLC), coupled with the increasing number of clinically available signal transduction pathway inhibitors targeting these driver mutations, offers a tremendous opportunity to enhance patient outcomes. Despite these molecular advances, advanced-stage NSCLC remains largely incurable due to therapeutic resistance. In this Review, we discuss alterations in the targeted oncogene ('on-target' resistance) and in other downstream and parallel pathways ('off-target' resistance) leading to resistance to targeted therapies in NSCLC, and we provide an overview of the current understanding of the bidirectional interactions with the tumour microenvironment that promote therapeutic resistance. We highlight common mechanistic themes underpinning resistance to targeted therapies that are shared by NSCLC subtypes, including those with oncogenic alterations in epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), ROS1 proto-oncogene receptor tyrosine kinase (ROS1), serine/threonine-protein kinase b-raf (BRAF) and other less established oncoproteins. Finally, we discuss how understanding these themes can inform therapeutic strategies, including combination therapy approaches, and overcome the challenge of tumour heterogeneity.
Collapse
Affiliation(s)
- Julia Rotow
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, 505 Parnassus Avenue, Box 1270, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0981, San Francisco, California 94143, USA
| | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, 505 Parnassus Avenue, Box 1270, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0981, San Francisco, California 94143, USA
- Cellular and Molecular Pharmacology, University of California San Francisco, Box 2140, San Francisco, California 94158, USA
| |
Collapse
|
141
|
Del Re M, Tiseo M, Bordi P, D'Incecco A, Camerini A, Petrini I, Lucchesi M, Inno A, Spada D, Vasile E, Citi V, Malpeli G, Testa E, Gori S, Falcone A, Amoroso D, Chella A, Cappuzzo F, Ardizzoni A, Scarpa A, Danesi R. Contribution of KRAS mutations and c.2369C > T (p.T790M) EGFR to acquired resistance to EGFR-TKIs in EGFR mutant NSCLC: a study on circulating tumor DNA. Oncotarget 2017; 8:13611-13619. [PMID: 26799287 PMCID: PMC5355124 DOI: 10.18632/oncotarget.6957] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/29/2015] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION KRAS oncogene mutations (MUTKRAS) drive resistance to EGFR inhibition by providing alternative signaling as demonstrated in colo-rectal cancer. In non-small cell lung cancer (NSCLC), the efficacy of treatment with EGFR tyrosine kinase inhibitors (EGFR-TKIs) depends on activating EGFR mutations (MUTEGFR). However, inhibition of EGFR may select resistant cells displaying alternative signaling, i.e., KRAS, or restoration of EGFR activity due to additional MUTEGFR, i.e., the c.2369C > T (p.T790MEGFR). AIM The aim of this study was to investigate the appearance of MUTKRAS during EGFR-TKI treatment and their contribution to drug resistance. METHODS This study used cell-free circulating tumor DNA (cftDNA) to evaluate the appearance of codon 12 MUTKRAS and p.T790MEGFR mutations in 33 advanced NSCLC patients progressing after an EGFR-TKI. RESULTS p.T790MEGFR was detected in 11 (33.3%) patients, MUTKRAS at codon 12 in 3 (9.1%) while both p.T790MEGFR and MUTKRAS codon 12 were found in 13 (39.4%) patients. Six patients (18.2%) were KRAS wild-type (WTKRAS) and negative for p.T790MEGFR. In 8 subjects paired tumor re-biopsy/plasma samples were available; the percent concordance of tissue/plasma was 62.5% for p.T790MEGFR and 37.5% for MUTKRAS. The analysis of time to progression (TTP) and overall survival (OS) in WTKRAS vs. MUTKRAS were not statistically different, even if there was a better survival with WTKRAS vs. MUTKRAS, i.e., TTP 14.4 vs. 11.4 months (p = 0.97) and OS 40.2 vs. 35.0 months (p = 0.56), respectively. CONCLUSIONS MUTKRAS could be an additional mechanism of escape from EGFR-TKI inhibition and cftDNA is a feasible approach to monitor the molecular development of drug resistance.
Collapse
Affiliation(s)
- Marzia Del Re
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marcello Tiseo
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Parma, Italy
| | - Paola Bordi
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Parma, Italy
| | - Armida D'Incecco
- Medical Oncology Unit, AUSL6, Istituto Toscano Tumori, Livorno, Italy
| | - Andrea Camerini
- Medical Oncology Unit, AUSL12, Istituto Toscano Tumori, Lido di Camaiore, Italy
| | - Iacopo Petrini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maurizio Lucchesi
- Medical Oncology Unit 2, Azienda Ospedaliero-Universitaria, Pisa, Italy
| | | | - Daniele Spada
- Medical Oncolgy Unit, Ospedale Santa Maria della Misericordia, Urbino, Italy
| | - Enrico Vasile
- Medical Oncology Unit 2, Azienda Ospedaliero-Universitaria, Pisa, Italy
| | - Valentina Citi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giorgio Malpeli
- ARC-NET Research Centre and Department of Pathology and Diagnostics, Azienda Ospedaliero-Universitaria, Verona, Italy
| | - Enrica Testa
- Medical Oncolgy Unit, Ospedale Santa Maria della Misericordia, Urbino, Italy
| | - Stefania Gori
- Medical Oncology Unit, Ospedale Sacro Cuore, Negrar, Italy
| | - Alfredo Falcone
- Medical Oncology Unit 2, Azienda Ospedaliero-Universitaria, Pisa, Italy
| | - Domenico Amoroso
- Medical Oncology Unit, AUSL12, Istituto Toscano Tumori, Lido di Camaiore, Italy
| | - Antonio Chella
- Lung Diseases Unit, Azienda Ospedaliero-Universitaria, Pisa, Italy
| | - Federico Cappuzzo
- Medical Oncology Unit, AUSL6, Istituto Toscano Tumori, Livorno, Italy
| | - Andrea Ardizzoni
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Parma, Italy
| | - Aldo Scarpa
- ARC-NET Research Centre and Department of Pathology and Diagnostics, Azienda Ospedaliero-Universitaria, Verona, Italy
| | - Romano Danesi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
142
|
Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer. Nat Commun 2017; 8:410. [PMID: 28871105 PMCID: PMC5583255 DOI: 10.1038/s41467-017-00450-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 06/29/2017] [Indexed: 12/20/2022] Open
Abstract
Non-small-cell lung cancer patients with activating epidermal growth factor receptor (EGFR) mutations typically benefit from EGFR tyrosine kinase inhibitor treatment. However, virtually all patients succumb to acquired EGFR tyrosine kinase inhibitor resistance that occurs via diverse mechanisms. The diversity and unpredictability of EGFR tyrosine kinase inhibitor resistance mechanisms presents a challenge for developing new treatments to overcome EGFR tyrosine kinase inhibitor resistance. Here, we show that Akt activation is a convergent feature of acquired EGFR tyrosine kinase inhibitor resistance, across a spectrum of diverse, established upstream resistance mechanisms. Combined treatment with an EGFR tyrosine kinase inhibitor and Akt inhibitor causes apoptosis and synergistic growth inhibition in multiple EGFR tyrosine kinase inhibitor-resistant non-small-cell lung cancer models. Moreover, phospho-Akt levels are increased in most clinical specimens obtained from EGFR-mutant non-small-cell lung cancer patients with acquired EGFR tyrosine kinase inhibitor resistance. Our findings provide a rationale for clinical trials testing Akt and EGFR inhibitor co-treatment in patients with elevated phospho-Akt levels to therapeutically combat the heterogeneity of EGFR tyrosine kinase inhibitor resistance mechanisms. EGFR-mutant non-small cell lung cancer are often resistant to EGFR tyrosine kinase inhibitor treatment. In this study, the authors show that resistant tumors display high Akt activation and that a combined treatment with AKT inhibitors causes synergistic tumour growth inhibition in vitro and in vivo.
Collapse
|
143
|
Santarpia M, Liguori A, Karachaliou N, Gonzalez-Cao M, Daffinà MG, D'Aveni A, Marabello G, Altavilla G, Rosell R. Osimertinib in the treatment of non-small-cell lung cancer: design, development and place in therapy. LUNG CANCER-TARGETS AND THERAPY 2017; 8:109-125. [PMID: 28860885 PMCID: PMC5571822 DOI: 10.2147/lctt.s119644] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of epidermal growth factor receptor (EGFR) mutations and subsequent demonstration of the efficacy of genotype-directed therapies with EGFR tyrosine kinase inhibitors (TKIs) marked the advent of the era of precision medicine for non-small-cell lung cancer (NSCLC). First- and second-generation EGFR TKIs, including erlotinib, gefitinib and afatinib, have consistently shown superior efficacy and better toxicity compared with first-line platinum-based chemotherapy and currently represent the standard of care for EGFR-mutated advanced NSCLC patients. However, tumors invariably develop acquired resistance to EGFR TKIs, thereby limiting the long-term efficacy of these agents. The T790M mutation in exon 20 of the EGFR gene has been identified as the most common mechanism of acquired resistance. Osimertinib is a third-generation TKI designed to target both EGFR TKI-sensitizing mutations and T790M, while sparing wild-type EGFR. Based on its pronounced clinical activity and good safety profile demonstrated in early Phase I and II trials, osimertinib received first approval in 2015 by the US FDA and in early 2016 by European Medicines Agency for the treatment of EGFR T790M mutation-positive NSCLC patients in progression after EGFR TKI therapy. Recent results from the Phase III AURA3 trial demonstrated the superiority of osimertinib over standard platinum-based doublet chemotherapy for treatment of patients with advanced EGFR T790M mutation-positive NSCLC with disease progression following first-line EGFR TKI therapy, thus definitively establishing this third-generation TKI as the standard of care in this setting. Herein, we review preclinical findings and clinical data from Phase I–III trials of osimertinib, including its efficacy in patients with central nervous system metastases. We further discuss currently available methods used to analyze T790M mutation status and the main mechanisms of resistance to osimertinib. Finally, we provide an outlook on ongoing trials with osimertinib and novel therapeutic combinations that might continue to improve the clinical outcome of EGFR-mutated NSCLC patients.
Collapse
Affiliation(s)
- Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Alessia Liguori
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Niki Karachaliou
- Institute of Oncology Rosell (IOR), University Hospital Sagrat Cor
| | - Maria Gonzalez-Cao
- Department of Oncology, Institute of Oncology Rosell (IOR), Quirón-Dexeus University Institute, Barcelona
| | - Maria Grazia Daffinà
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Alessandro D'Aveni
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Grazia Marabello
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Giuseppe Altavilla
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Rafael Rosell
- Department of Oncology, Institute of Oncology Rosell (IOR), Quirón-Dexeus University Institute, Barcelona.,Cancer Biology and Precision Medicine Program, Germans Trias i Pujol Research Institute.,Catalan Institute of Oncology, Germans Trias i Pujol University Hospital, Badalona, Spain
| |
Collapse
|
144
|
Nelson-Taylor SK, Le AT, Yoo M, Schubert L, Mishall KM, Doak A, Varella-Garcia M, Tan AC, Doebele RC. Resistance to RET-Inhibition in RET-Rearranged NSCLC Is Mediated By Reactivation of RAS/MAPK Signaling. Mol Cancer Ther 2017; 16:1623-1633. [PMID: 28500237 PMCID: PMC5544556 DOI: 10.1158/1535-7163.mct-17-0008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/19/2017] [Accepted: 04/28/2017] [Indexed: 02/07/2023]
Abstract
Oncogenic rearrangements in RET are present in 1%-2% of lung adenocarcinoma patients. Ponatinib is a multi-kinase inhibitor with low-nanomolar potency against the RET kinase domain. Here, we demonstrate that ponatinib exhibits potent antiproliferative activity in RET fusion-positive LC-2/ad lung adenocarcinoma cells and inhibits phosphorylation of the RET fusion protein and signaling through ERK1/2 and AKT. Using distinct dose escalation strategies, two ponatinib-resistant LC-2/ad cell lines, PR1 and PR2, were derived. PR1 and PR2 cell lines retained expression, but not phosphorylation of the RET fusion and lacked evidence of a resistance mutation in the RET kinase domain. Both resistant lines retained activation of the MAPK pathway. Next-generation RNA sequencing revealed an oncogenic NRAS p.Q61K mutation in the PR1 cell. PR1 cell proliferation was preferentially sensitive to siRNA knockdown of NRAS compared with knockdown of RET, more sensitive to MEK inhibition than the parental line, and NRAS dependence was maintained in the absence of chronic RET inhibition. Expression of NRAS p.Q61K in RET fusion expressing TPC1 cells conferred resistance to ponatinib. PR2 cells exhibited increased expression of EGFR and AXL. EGFR inhibition decreased cell proliferation and phosphorylation of ERK1/2 and AKT in PR2 cells, but not LC-2/ad cells. Although AXL inhibition enhanced PR2 sensitivity to afatinib, it was unable to decrease cell proliferation by itself. Thus, EGFR and AXL cooperatively rescued signaling from RET inhibition in the PR2 cells. Collectively, these findings demonstrate that resistance to ponatinib in RET-rearranged lung adenocarcinoma is mediated by bypass signaling mechanisms that result in restored RAS/MAPK activation. Mol Cancer Ther; 16(8); 1623-33. ©2017 AACR.
Collapse
Affiliation(s)
- Sarah K. Nelson-Taylor
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Anh T. Le
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Minjae Yoo
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Laura Schubert
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | | | - Andrea Doak
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | | | - Aik-Choon Tan
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Robert C. Doebele
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
145
|
Amirouchene-Angelozzi N, Swanton C, Bardelli A. Tumor Evolution as a Therapeutic Target. Cancer Discov 2017; 7:2159-8290.CD-17-0343. [PMID: 28729406 DOI: 10.1158/2159-8290.cd-17-0343] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/22/2017] [Accepted: 06/14/2017] [Indexed: 11/16/2022]
Abstract
Recent technological advances in the field of molecular diagnostics (including blood-based tumor genotyping) allow the measurement of clonal evolution in patients with cancer, thus adding a new dimension to precision medicine: time. The translation of this new knowledge into clinical benefit implies rethinking therapeutic strategies. In essence, it means considering as a target not only individual oncogenes but also the evolving nature of human tumors. Here, we analyze the limitations of targeted therapies and propose approaches for treatment within an evolutionary framework.Significance: Precision cancer medicine relies on the possibility to match, in daily medical practice, detailed genomic profiles of a patient's disease with a portfolio of drugs targeted against tumor-specific alterations. Clinical blockade of oncogenes is effective but only transiently; an approach to monitor clonal evolution in patients and develop therapies that also evolve over time may result in improved therapeutic control and survival outcomes. Cancer Discov; 7(8); 1-13. ©2017 AACR.
Collapse
Affiliation(s)
| | - Charles Swanton
- University College London Cancer Institute and The Francis Crick Institute, London, United Kingdom
| | - Alberto Bardelli
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO), IRCCS, Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, Torino, Italy
| |
Collapse
|
146
|
Suda K, Rivard CJ, Mitsudomi T, Hirsch FR. Overcoming resistance to EGFR tyrosine kinase inhibitors in lung cancer, focusing on non-T790M mechanisms. Expert Rev Anticancer Ther 2017; 17:779-786. [PMID: 28701107 DOI: 10.1080/14737140.2017.1355243] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION despite initial dramatic efficacy of EGFR tyrosine kinase inhibitors (TKIs) in EGFR-mutant lung cancer patients, emergence of acquired resistance is almost inevitable. The EGFR T790M secondary mutation that accounts for ~50% of resistance is now treatable with osimertinib. However, for the remaining 50% of patients who develop resistance mechanisms other than T790M mutation, cytotoxic chemotherapies are still the standard of care and novel treatment strategies are urgently needed. Areas covered: In this review, we discuss current experimental and clinical evidence to develop better treatment strategies to overcome or prevent acquired resistance to EGFR-TKIs in lung cancers, focusing on non-T790M mechanisms. Expert commentary: There are numerous non-T790M resistant mechanisms to EGFR-TKIs, and therefore, strategies that can be applied to many of these resistance mechanisms may be reasonable and useful in clinical practice. Although the combination of cytotoxic chemotherapy plus an EGFR-TKI has proved to be detrimental following front-line EGFR-TKI treatment failure, promising experimental and/or early clinical data have been reported for the combination of bevacizumab or anti-EGFR monoclonal antibody plus EGFR-TKIs. Upfront polytherapy, which co-targets potential resistance mechanisms or other important signaling for EGFR-mutant lung cancer cells, is also a promising strategy.
Collapse
Affiliation(s)
- Kenichi Suda
- a Division of Medical Oncology , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Division of Thoracic Surgery, Department of Surgery , Kindai University Faculty of Medicine , Osaka-Sayama , JAPAN
| | - Christopher J Rivard
- a Division of Medical Oncology , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Tetsuya Mitsudomi
- b Division of Thoracic Surgery, Department of Surgery , Kindai University Faculty of Medicine , Osaka-Sayama , JAPAN
| | - Fred R Hirsch
- a Division of Medical Oncology , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
147
|
Ahronian LG, Corcoran RB. Strategies for monitoring and combating resistance to combination kinase inhibitors for cancer therapy. Genome Med 2017; 9:37. [PMID: 28431544 PMCID: PMC5399860 DOI: 10.1186/s13073-017-0431-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Targeted therapies such as kinase inhibitors and monoclonal antibodies have dramatically altered cancer care in recent decades. Although these targeted therapies have improved patient outcomes in several cancer types, resistance ultimately develops to these agents. One potential strategy proposed to overcome acquired resistance involves taking repeat tumor biopsies at the time of disease progression, to identify the specific molecular mechanism driving resistance in an individual patient and to select a new agent or combination of agents capable of surmounting that specific resistance mechanism. However, recent studies sampling multiple metastatic lesions upon acquired resistance, or employing “liquid biopsy” analyses of circulating tumor DNA, have revealed that multiple, heterogeneous resistance mechanisms can emerge in distinct tumor subclones in the same patient. This heterogeneity represents a major clinical challenge for devising therapeutic strategies to overcome resistance. In many cancers, multiple drug resistance mechanisms often converge to reactivate the original pathway targeted by the drug. This convergent evolution creates an opportunity to target a common signaling node to overcome resistance. Furthermore, integration of liquid biopsy approaches into clinical practice may allow real-time monitoring of emerging resistance alterations, allowing intervention prior to standard detection of radiographic progression. In this review, we discuss recent advances in understanding tumor heterogeneity and resistance to targeted therapies, focusing on combination kinase inhibitors, and we discuss approaches to address these issues in the clinic.
Collapse
Affiliation(s)
- Leanne G Ahronian
- Massachusetts General Hospital Cancer Center, Boston, MA, 02129, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Ryan B Corcoran
- Massachusetts General Hospital Cancer Center, Boston, MA, 02129, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
148
|
Ichihara E, Westover D, Meador CB, Yan Y, Bauer JA, Lu P, Ye F, Kulick A, de Stanchina E, McEwen R, Ladanyi M, Cross D, Pao W, Lovly CM. SFK/FAK Signaling Attenuates Osimertinib Efficacy in Both Drug-Sensitive and Drug-Resistant Models of EGFR-Mutant Lung Cancer. Cancer Res 2017; 77:2990-3000. [PMID: 28416483 DOI: 10.1158/0008-5472.can-16-2300] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/24/2016] [Accepted: 04/03/2017] [Indexed: 12/11/2022]
Abstract
Mutant-selective EGFR tyrosine kinase inhibitors (TKI), such as osimertinib, are active agents for the treatment of EGFR-mutant lung cancer. Specifically, these agents can overcome the effects of the T790M mutation, which mediates resistance to first- and second-generation EGFR TKI, and recent clinical trials have documented their efficacy in patients with EGFR-mutant lung cancer. Despite promising results, therapeutic efficacy is limited by the development of acquired resistance. Here we report that Src family kinases (SFK) and focal adhesion kinase (FAK) sustain AKT and MAPK pathway signaling under continuous EGFR inhibition in osimertinib-sensitive cells. Inhibiting either the MAPK pathway or the AKT pathway enhanced the effects of osimertinib. Combined SFK/FAK inhibition exhibited the most potent effects on growth inhibition, induction of apoptosis, and delay of acquired resistance. SFK family member YES1 was amplified in osimertinib-resistant EGFR-mutant tumor cells, the effects of which were overcome by combined treatment with osimertinib and SFK inhibitors. In conclusion, our data suggest that the concomitant inhibition of both SFK/FAK and EGFR may be a promising therapeutic strategy for EGFR-mutant lung cancer. Cancer Res; 77(11); 2990-3000. ©2017 AACR.
Collapse
Affiliation(s)
- Eiki Ichihara
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - David Westover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Catherine B Meador
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yingjun Yan
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Joshua A Bauer
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee.,Institute of Chemical Biology, High-Throughput Screening Facility, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Pengcheng Lu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Amanda Kulick
- Anti-Tumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Anti-Tumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Marc Ladanyi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | - William Pao
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Christine M Lovly
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee. .,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
149
|
Eduati F, Doldàn-Martelli V, Klinger B, Cokelaer T, Sieber A, Kogera F, Dorel M, Garnett MJ, Blüthgen N, Saez-Rodriguez J. Drug Resistance Mechanisms in Colorectal Cancer Dissected with Cell Type-Specific Dynamic Logic Models. Cancer Res 2017; 77:3364-3375. [PMID: 28381545 DOI: 10.1158/0008-5472.can-17-0078] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/17/2017] [Accepted: 03/31/2017] [Indexed: 12/20/2022]
Abstract
Genomic features are used as biomarkers of sensitivity to kinase inhibitors used widely to treat human cancer, but effective patient stratification based on these principles remains limited in impact. Insofar as kinase inhibitors interfere with signaling dynamics, and, in turn, signaling dynamics affects inhibitor responses, we investigated associations in this study between cell-specific dynamic signaling pathways and drug sensitivity. Specifically, we measured 14 phosphoproteins under 43 different perturbed conditions (combinations of 5 stimuli and 7 inhibitors) in 14 colorectal cancer cell lines, building cell line-specific dynamic logic models of underlying signaling networks. Model parameters representing pathway dynamics were used as features to predict sensitivity to a panel of 27 drugs. Specific parameters of signaling dynamics correlated strongly with drug sensitivity for 14 of the drugs, 9 of which had no genomic biomarker. Following one of these associations, we validated a drug combination predicted to overcome resistance to MEK inhibitors by coblockade of GSK3, which was not found based on associations with genomic data. These results suggest that to better understand the cancer resistance and move toward personalized medicine, it is essential to consider signaling network dynamics that cannot be inferred from static genotypes. Cancer Res; 77(12); 3364-75. ©2017 AACR.
Collapse
Affiliation(s)
- Federica Eduati
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Victoria Doldàn-Martelli
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, United Kingdom.,Departamento de Física de la Materia Condensada, Condensed Matter Physics Center (IFIMAC) and Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Bertram Klinger
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Integrative Research Institute (IRI) Life Sciences and Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Cokelaer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Anja Sieber
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Integrative Research Institute (IRI) Life Sciences and Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fiona Kogera
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Mathurin Dorel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Integrative Research Institute (IRI) Life Sciences and Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Mathew J Garnett
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Nils Blüthgen
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Integrative Research Institute (IRI) Life Sciences and Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, United Kingdom. .,Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| |
Collapse
|
150
|
Abstract
The advent of genomics has led to the identification of specific "driver" mutations in oncogenic kinases, and the development of targeted small molecule inhibitors to block their tumor-driving functions. These specific inhibitors have been a clinical success, and often significantly prolong the lives of individuals with cancer. Inevitably, however, the treated tumors recur as resistance to these targeted therapies develops. Here, we review the major mechanisms by which a cancer cell can evade targeted therapy, focusing on mechanisms of resistance to kinase inhibitors in lung cancer. We discuss the promising concept of rational upfront polytherapy in lung cancer, which involves concurrently targeting multiple proteins in critical signaling pathways in a cancer cell to prevent or delay resistance.
Collapse
|