101
|
Hoda U, Pavlidis S, Bansal AT, Takahashi K, Hu S, Ng Kee Kwong F, Rossios C, Sun K, Bhavsar P, Loza M, Baribaud F, Chanez P, Fowler SJ, Horvath I, Montuschi P, Singer F, Musial J, Dahlen B, Krug N, Sandstrom T, Shaw DE, Lutter R, Fleming LJ, Howarth PH, Caruso M, Sousa AR, Corfield J, Auffray C, De Meulder B, Lefaudeux D, Dahlen SE, Djukanovic R, Sterk PJ, Guo Y, Adcock IM, Chung KF. Clinical and transcriptomic features of persistent exacerbation-prone severe asthma in U-BIOPRED cohort. Clin Transl Med 2022; 12:e816. [PMID: 35474304 PMCID: PMC9043117 DOI: 10.1002/ctm2.816] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 01/28/2023] Open
Abstract
Background Exacerbation‐prone asthma is a feature of severe disease. However, the basis for its persistency remains unclear. Objectives To determine the clinical and transcriptomic features of frequent exacerbators (FEs) and persistent FEs (PFEs) in the U‐BIOPRED cohort. Methods We compared features of FE (≥2 exacerbations in past year) to infrequent exacerbators (IE, <2 exacerbations) and of PFE with repeat ≥2 exacerbations during the following year to persistent IE (PIE). Transcriptomic data in blood, bronchial and nasal epithelial brushings, bronchial biopsies and sputum cells were analysed by gene set variation analysis for 103 gene signatures. Results Of 317 patients, 62.4% had FE, of whom 63.6% had PFE, while 37.6% had IE, of whom 61.3% had PIE. Using multivariate analysis, FE was associated with short‐acting beta‐agonist use, sinusitis and daily oral corticosteroid use, while PFE was associated with eczema, short‐acting beta‐agonist use and asthma control index. CEA cell adhesion molecule 5 (CEACAM5) was the only differentially expressed transcript in bronchial biopsies between PE and IE. There were no differentially expressed genes in the other four compartments. There were higher expression scores for type 2, T‐helper type‐17 and type 1 pathway signatures together with those associated with viral infections in bronchial biopsies from FE compared to IE, while there were higher expression scores of type 2, type 1 and steroid insensitivity pathway signatures in bronchial biopsies of PFE compared to PIE. Conclusion The FE group and its PFE subgroup are associated with poor asthma control while expressing higher type 1 and type 2 activation pathways compared to IE and PIE, respectively.
Collapse
Affiliation(s)
- Uruj Hoda
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Stelios Pavlidis
- Department of Computing & Data Science Institute, Imperial College London
| | | | - Kentaro Takahashi
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK.,Research Centre for Allergy and Clinical Immunology, Asahi General Hospital, Asahi, Japan
| | | | - Francois Ng Kee Kwong
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Christos Rossios
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | | | - Pankaj Bhavsar
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Matthew Loza
- Janssen Research and Development, High Wycombe, Buckinghamshire, UK
| | | | - Pascal Chanez
- Assistance Publique des Hôpitaux de Marseille, Clinique des Bronches, Allergies et Sommeil, Aix Marseille Université, Marseille, France
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, School of Biological Sciences, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, and NIHR Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Ildiko Horvath
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | | | - Florian Singer
- Department of Respiratory Medicine, University Children's Hospital Zurich and Childhood Research Center, Zurich, and Department of Paediatrics, Inselspital, University of Bern, Switzerland
| | - Jacek Musial
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Barbro Dahlen
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Thomas Sandstrom
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Rene Lutter
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Louise J Fleming
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Peter H Howarth
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Massimo Caruso
- Department of Biochemical and Biotechnological Medicine, University of Catania, Catania, Italy
| | - Ana R Sousa
- Respiratory Therapeutic Unit, GSK, Stockley Park, UK
| | - Julie Corfield
- AstraZeneca R&D, Molndal, Sweden, and Areteva R&D, Nottingham, UK
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Diane Lefaudeux
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL-INSERM, Lyon, France
| | - Sven-Erik Dahlen
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Ratko Djukanovic
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Peter J Sterk
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | | |
Collapse
|
102
|
Niessen NM, Fricker M, McDonald VM, Gibson PG. T2-low: what do we know?: Past, present, and future of biologic therapies in noneosinophilic asthma. Ann Allergy Asthma Immunol 2022; 129:150-159. [PMID: 35487388 DOI: 10.1016/j.anai.2022.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
Abstract
T2-low asthma is an often severe asthma subtype with limited treatment options and biologic therapeutics are lacking. Several monoclonal antibodies (mAbs) targeting non-T2 cytokines were previously reported to be ineffective in asthma. These trials often investigated heterogeneous asthma populations and negative outcomes could be related to unsuitable study cohorts. More tailored approaches in selecting participants based on specific biomarkers have been beneficial in treating severe T2-high asthma. Similarly, mAbs previously deemed ineffective bear the potential to be useful when administered to the correct target population. Here, we review individual clinical trials conducted between 2005 and 2021 and assess the suitability of the selected cohorts, whether study end points were met, and whether outcome measures were appropriate to investigate the effectiveness of the respective drug. We discuss potential target groups within the T2-low asthma population and suggest biomarkers that may predict a treatment response. Furthermore, we assess whether biomarker-guided approaches or subgroup analyses were associated with more positive study outcomes. The mAbs directed against alarmins intervene early in the inflammatory cascade and are the first mAbs found to have efficacy in T2-low asthma. Several randomized controlled trials performed predefined subgroup analyses that included T2-low asthma. Subgroup analyses were associated with positive outcomes and were able to reveal a stronger response in at least 1 subgroup. A better understanding of T2-low subgroups and specific biomarkers is necessary to identify the most responsive target population for a given mAb.
Collapse
Affiliation(s)
- Natalie M Niessen
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia.
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Vanessa M McDonald
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Nursing and Midwifery, The University of Newcastle, Newcastle, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Peter G Gibson
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
103
|
Lyu M, Wang Y, Chen Q, Qin J, Hou D, Huang S, Shao D, Gong X, Huang G, Zhang S, Zhang Z, Cui H. Molecular Mechanism Underlying Effects of Wumeiwan on Steroid-Dependent Asthma: A Network Pharmacology, Molecular Docking, and Experimental Verification Study. Drug Des Devel Ther 2022; 16:909-929. [PMID: 35386850 PMCID: PMC8978578 DOI: 10.2147/dddt.s349950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Background Steroid-dependent asthma (SDA) is characterized by oral corticosteroid (OCS) resistance and dependence. Wumeiwan (WMW) showed potentials in reducing the dose of OCS of SDA patients based on our previous studies. Methods Network pharmacology was conducted to explore the molecular mechanism of WMW against SDA with the databases of TCMSP, STRING, etcetera. GO annotation and KEGG functional enrichment analysis were conducted by metascape database. Pymol performed the molecular docking. In the experiment, the OVA-induced plus descending dexamethasone intervention chronic asthmatic rat model was conducted. Lung pathological changes were analyzed by H&E, Masson, and IHC staining. Relative expressions of the gene were performed by real-time PCR. Results A total of 102 bioactive ingredients in WMW were identified, as well as 191 common targets were found from 241 predicted targets in WMW and 3539 SDA-related targets. The top five bioactive ingredients were identified as pivotal ingredients, which included quercetin, candletoxin A, palmidin A, kaempferol, and beta-sitosterol. Besides, 35 HUB genes were obtained from the PPI network, namely, TP53, AKT1, MAPK1, JUN, HSP90AA1, TNF, RELA, IL6, CXCL8, EGFR, etcetera. GO biological process analysis indicated that HUB genes were related to bacteria, transferase, cell differentiation, and steroid. KEGG pathway enrichment analysis indicated that the potential mechanism might be associated with IL-17 and MAPK signaling pathways. Molecular docking results supported these findings. H&E and Masson staining proved that WMW could reduce airway inflammation and remodeling of model rats, which might be related to the downward expression of IL-8 proved by IHC staining and real-time PCR. Conclusion WMW could be a complementary and alternative therapy for SDA by reducing airway inflammation.
Collapse
Affiliation(s)
- Mingsheng Lyu
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yahui Wang
- Department of Neurology and Stroke Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Qiuyi Chen
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Jingbo Qin
- National Institute of TCM Constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Dan Hou
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shuaiyang Huang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Dongmei Shao
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xuefeng Gong
- Department of Traditional Chinese Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Guirui Huang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shiyu Zhang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zhijie Zhang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Hongsheng Cui
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
104
|
Therapeutic Potential for Intractable Asthma by Targeting L-Type Amino Acid Transporter 1. Biomolecules 2022; 12:biom12040553. [PMID: 35454142 PMCID: PMC9029068 DOI: 10.3390/biom12040553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Bronchial asthma is a chronic disease characterized by airway inflammation, obstruction, and hyperresponsiveness. CD4+ T cells, particularly T helper (Th) 2 cells, and their specific cytokines are important mediators in asthma pathogenesis. However, it has been established that Th subsets, other than Th2, as well as various cell types, including innate lymphoid cells (ILCs), significantly contribute to the development of allergic inflammation. These cells require facilitated amino acid uptake to ensure their full function upon activation. Emerging studies have suggested the potential of pharmacological inhibition of amino acid transporters to inhibit T cell activation and the application of this strategy for treating immunological and inflammatory disorders. In the present review, we explore the possibility of targeting L-type amino acid transporter (LAT) as a novel therapeutic approach for bronchial asthma, including its steroid-resistant endotypes.
Collapse
|
105
|
Busse WW, Kraft M. Current unmet needs and potential solutions to uncontrolled asthma. Eur Respir Rev 2022; 31:210176. [PMID: 35082128 PMCID: PMC9488919 DOI: 10.1183/16000617.0176-2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Despite the availability of effective inhaled therapies, many patients with asthma have poor asthma control. Uncontrolled asthma presents a significant burden on the patient and society, and, for many, remains largely preventable. There are numerous reasons why a patient may remain uncontrolled despite access to therapies, including incorrect inhaler technique, poor adherence to treatment, oversight of triggers and suboptimal medical care. Shared decision-making, good patient-clinician communication, supported self-management, multidisciplinary patient education, new technology and risk stratification may all provide solutions to this major unmet need in asthma. Novel treatments such as biologics could benefit patients' lives, while the investigations into biomarkers, non-Type 2 asthma, treatable traits and disease modification give an exciting glimpse into the future of asthma care.
Collapse
Affiliation(s)
- William W Busse
- Dept of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Monica Kraft
- University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
106
|
Whetstone CE, Ranjbar M, Omer H, Cusack RP, Gauvreau GM. The Role of Airway Epithelial Cell Alarmins in Asthma. Cells 2022; 11:1105. [PMID: 35406669 PMCID: PMC8997824 DOI: 10.3390/cells11071105] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
The airway epithelium is the first line of defense for the lungs, detecting inhaled environmental threats through pattern recognition receptors expressed transmembrane or intracellularly. Activation of pattern recognition receptors triggers the release of alarmin cytokines IL-25, IL-33, and TSLP. These alarmins are important mediators of inflammation, with receptors widely expressed in structural cells as well as innate and adaptive immune cells. Many of the key effector cells in the allergic cascade also produce alarmins, thereby contributing to the airways disease by driving downstream type 2 inflammatory processes. Randomized controlled clinical trials have demonstrated benefit when blockade of TSLP and IL-33 were added to standard of care medications, suggesting these are important new targets for treatment of asthma. With genome-wide association studies demonstrating associations between single-nucleotide polymorphisms of the TSLP and IL-33 gene and risk of asthma, it will be important to understand which subsets of asthma patients will benefit most from anti-alarmin therapy.
Collapse
Affiliation(s)
| | | | | | | | - Gail M. Gauvreau
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (C.E.W.); (M.R.); (H.O.); (R.P.C.)
| |
Collapse
|
107
|
Abstract
INTRODUCTION New targets are needed to enable more accurate diagnosis, monitoring and effective therapy in uncontrolled asthma and chronic obstructive pulmonary disease (COPD), two disorders characterized by pathogenic alterations in the innate immune response. Interestingly, the IL-10-related cytokine IL-26 has been found to be abundantly expressed in human airways and alterations in its expression have been linked to reduced lung function and markers of neutrophilic inflammation in patients with uncontrolled asthma or COPD. AREAS COVERED Literature search was conducted on PubMed to identify articles in the field of IL-26 immunology, as well as clinical studies on IL-26 in asthma and COPD, published between 2000 and 2021. We outline the main sources of IL-26 in human airways, as well as the effect of this cytokine on relevant immune and structural cells. Finally, we discuss the potential involvement of IL-26 in the pathophysiology of uncontrolled asthma and COPD. EXPERT OPINION IL-26 constitutes a potential target for diagnostic purposes and therapeutic modulation of the innate immune response in the airways of patients with asthma and COPD. It seems reasonable to expect more conclusive evidence of its clinical utility for personalized medicine within the coming 5-year period.
Collapse
Affiliation(s)
- Eduardo I Cardenas
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Karlhans Fru Che
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Jon R Konradsen
- Division of Clinical Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden.,Center for Allergy Research, Karolinska Institute, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Aihua Bao
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Anders Lindén
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.,Karolinska Severe COPD Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
108
|
Seys SF, Long MB. The quest for biomarkers in asthma: challenging the T2 versus non-T2 paradigm. Eur Respir J 2022; 59:59/2/2102669. [PMID: 35177484 DOI: 10.1183/13993003.02669-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Sven F Seys
- Allergy and Clinical Immunology Research Group, Dept of Microbiology, Immunology & Transplantation, KU Leuven, Leuven, Belgium
| | - Merete B Long
- Division of Molecular and Clinical Medicine, Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
109
|
Margelidon-Cozzolino V, Tsicopoulos A, Chenivesse C, de Nadai P. Role of Th17 Cytokines in Airway Remodeling in Asthma and Therapy Perspectives. FRONTIERS IN ALLERGY 2022; 3:806391. [PMID: 35386663 PMCID: PMC8974749 DOI: 10.3389/falgy.2022.806391] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/07/2022] Open
Abstract
Airway remodeling is a frequent pathological feature of severe asthma leading to permanent airway obstruction in up to 50% of cases and to respiratory disability. Although structural changes related to airway remodeling are well-characterized, immunological processes triggering and maintaining this phenomenon are still poorly understood. As a consequence, no biotherapy targeting cytokines are currently efficient to treat airway remodeling and only bronchial thermoplasty may have an effect on bronchial nerves and smooth muscles with uncertain clinical relevance. Th17 cytokines, including interleukin (IL)-17 and IL-22, play a role in neutrophilic inflammation in severe asthma and may be involved in airway remodeling. Indeed, IL-17 is increased in sputum from severe asthmatic patients, induces the expression of "profibrotic" cytokines by epithelial, endothelial cells and fibroblasts, and provokes human airway smooth muscle cell migration in in vitro studies. IL-22 is also increased in asthmatic samples, promotes myofibroblast differentiation, epithelial-mesenchymal transition and proliferation and migration of smooth muscle cells in vitro. Accordingly, we also found high levels of IL-17 and IL-22 in a mouse model of dog-allergen induced asthma characterized by a strong airway remodeling. Clinical trials found no effect of therapy targeting IL-17 in an unselected population of asthmatic patients but showed a potential benefit in a sub-population of patients exhibiting a high level of airway reversibility, suggesting a potential role on airway remodeling. Anti-IL-22 therapies have not been evaluated in asthma yet but were demonstrated efficient in severe atopic dermatitis including an effect on skin remodeling. In this review, we will address the role of Th17 cytokines in airway remodeling through data from in vitro, in vivo and translational studies, and examine the potential place of Th17-targeting therapies in the treatment of asthma with airway remodeling.
Collapse
Affiliation(s)
- Victor Margelidon-Cozzolino
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Cécile Chenivesse
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
- CRISALIS (Clinical Research Initiative in Severe Asthma: a Lever for Innovation & Science), F-CRIN Network, INSERM US015, Toulouse, France
| | - Patricia de Nadai
- Univ. Lille, CNRS, INSERM, CHU de Lille, Institut Pasteur de Lille, Unité INSERM U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
110
|
Xie Y, Abel PW, Casale TB, Tu Y. T H17 cells and corticosteroid insensitivity in severe asthma. J Allergy Clin Immunol 2022; 149:467-479. [PMID: 34953791 PMCID: PMC8821175 DOI: 10.1016/j.jaci.2021.12.769] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Asthma is classically described as having either a type 2 (T2) eosinophilic phenotype or a non-T2 neutrophilic phenotype. T2 asthma usually responds to classical bronchodilation therapy and corticosteroid treatment. Non-T2 neutrophilic asthma is often more severe. Patients with non-T2 asthma or late-onset T2 asthma show poor response to the currently available anti-inflammatory therapies. These therapeutic failures result in increased morbidity and cost associated with asthma and pose a major health care problem. Recent evidence suggests that some non-T2 asthma is associated with elevated TH17 cell immune responses. TH17 cells producing Il-17A and IL-17F are involved in the neutrophilic inflammation and airway remodeling processes in severe asthma and have been suggested to contribute to the development of subsets of corticosteroid-insensitive asthma. This review explores the pathologic role of TH17 cells in corticosteroid insensitivity of severe asthma and potential targets to treat this endotype of asthma.
Collapse
Affiliation(s)
- Yan Xie
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Peter W. Abel
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Thomas B. Casale
- Department of Internal Medicine, University of South Florida School of Medicine, Tampa, FL, USA
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
111
|
Al Heialy S, Ramakrishnan RK, Hamid Q. Recent advances in the immunopathogenesis of severe asthma. J Allergy Clin Immunol 2022; 149:455-465. [DOI: 10.1016/j.jaci.2021.12.765] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
|
112
|
Menzies-Gow A, Moore WC, Wechsler ME. Difficult-to-Control Asthma Management in Adults. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:378-384. [PMID: 34954122 DOI: 10.1016/j.jaip.2021.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023]
Abstract
The management of difficult-to-control asthma remains a significant challenge, which frequently requires the input of the wider multidisciplinary team. This review covers the importance of systematic assessment, phenotyping, treatment options at step 4, an overview of biologics and novel therapies for type 2 (T2) inflammation, and nonpharmacological interventions. Once people have been identified as suffering from difficult-to-control asthma, it is important to use the systematic assessment process to allow accurate diagnosis and optimization of adherence as well as identification and treatment of any relevant comorbidities. Before initiating a biologic, it is important to optimize inhaled therapies and sufficiently phenotype individual patients to allow for the logical use of biologic agents targeting T2 inflammation. For patients who either do not have evidence of T2 inflammation or remain symptomatic despite biologics, attention should be paid to the available nonpharmacological interventions. Difficult-to-treat asthma remains an area of significant unmet need, but improvements in models of service delivery and the ongoing pharmacological pipeline are causes for significant optimism that sooner rather than later there will no longer be asthmatic patients who are difficult to treat.
Collapse
Affiliation(s)
- Andrew Menzies-Gow
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, London, UK.
| | | | | |
Collapse
|
113
|
Bush A, Fitzpatrick AM, Saglani S, Anderson WC, Szefler SJ. Difficult-to-Treat Asthma Management in School-Age Children. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:359-375. [PMID: 34838706 DOI: 10.1016/j.jaip.2021.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022]
Abstract
The World Health Organization divides severe asthma into three categories: untreated severe asthma; difficult-to-treat severe asthma; and severe, therapy-resistant asthma. The apparent frequency of severe asthma in the general population of asthmatic children is probably around 5%. Upon referral of these children, it is important to evaluate the diagnosis of asthma carefully before modifying management and applying a long-term monitoring plan. Identification of pathophysiologic phenotypes using objective biomarkers is essential in our routine assessments of severe asthma. Although conventional pharmacologic approaches should be attempted first, there is growing recognition that children with difficult-to-treat asthma may have unique clinical phenotypes that may necessitate alternative treatment approaches including asthma biologics. These new medications, especially those with effects on multiple pathologic features of asthma, raise the hope that new treatment strategies could induce remission. Besides introducing new medications, the opportunity for closer monitoring is feasible with advances in digital health. Therefore, we have the opportunity to improve response to medications, individualize treatment, and monitor response along with potential steps to prevent severe asthma.
Collapse
Affiliation(s)
- Andy Bush
- Director, Imperial Centre for Paediatrics and Child Health, Professor of Paediatrics and Paediatric Respirology, National Heart and Lung Institute, Imperial College, Consultant Paediatric Chest Physician, Royal Brompton Hospital, London, United Kingdom
| | - Anne M Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta, Ga; Children's Healthcare of Atlanta, Atlanta, Ga
| | - Sejal Saglani
- National Heart & Lung Institute, Imperial College London and Department of Respiratory Paediatrics, Royal Brompton Hospital, London, United Kingdom
| | - William C Anderson
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colo; Allergy and Immunology Section, Children's Hospital Colorado, Aurora, Colo
| | - Stanley J Szefler
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colo; Breathing Institute, Children's Hospital Colorado, Aurora, Colo; University of Colorado Anschutz Medical Campus, Adult and Child Consortium for Outcomes Research and Delivery Science, Aurora, Colo.
| |
Collapse
|
114
|
Zhang X, Xu Z, Wen X, Huang G, Nian S, Li L, Guo X, Ye Y, Yuan Q. The onset, development and pathogenesis of severe neutrophilic asthma. Immunol Cell Biol 2022; 100:144-159. [PMID: 35080788 DOI: 10.1111/imcb.12522] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/02/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
Bronchial asthma is divided into Th2 high, Th2 low and mixed types. The Th2 high type is dominated by eosinophils while the Th2 low type is divided into neutrophilic and paucigranulocytic types. Eosinophilic asthma has gained increased attention recently, and its pathogenesis and treatment are well understood. However, severe neutrophilic asthma requires more in-depth research because its pathogenesis is not well understood, and no effective treatment exists. This review looks at the advances made in asthma research, the pathogenesis of neutrophilic asthma, the mechanisms of progression to severe asthma, risk factors for asthma exacerbations, and biomarkers and treatment of neutrophilic asthma. The pathogenesis of neutrophilic asthma is further discussed from four aspects: Th17-type inflammatory response, inflammasomes, exosomes and microRNAs. This review provides direction for the mechanistic study, diagnosis and treatment of neutrophilic asthma. The treatment of neutrophilic asthma remains a significant challenge for clinical therapists and is an important area of future clinical research.
Collapse
Affiliation(s)
- Xingli Zhang
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Zixi Xu
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xue Wen
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Guoping Huang
- Zigong Hospital of Woman and Children Healthcare, Sichuan, China
| | - Siji Nian
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Li
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiyuan Guo
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Ye
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Qing Yuan
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
115
|
Sunil AA, Skaria T. Novel regulators of airway epithelial barrier function during inflammation: potential targets for drug repurposing. Expert Opin Ther Targets 2022; 26:119-132. [PMID: 35085478 DOI: 10.1080/14728222.2022.2035720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Endogenous inflammatory signaling molecules resulting from deregulated immune responses, can impair airway epithelial barrier function and predispose individuals with airway inflammatory diseases to exacerbations and lung infections. Targeting the specific endogenous factors disrupting the airway barrier therefore has the potential to prevent disease exacerbations without affecting the protective immune responses. AREAS COVERED Here, we review the endogenous factors and specific mechanisms disrupting airway epithelial barrier during inflammation and reflect on whether these factors can be specifically targeted by repurposed existing drugs. Literature search was conducted using PubMed, drug database of US FDA and European Medicines Agency until and including September 2021. EXPERT OPINION IL-4 and IL-13 signaling are the major pathways disrupting the airway epithelial barrier during airway inflammation. However, blocking IL-4/IL-13 signaling may adversely affect protective immune responses and increase susceptibility of host to infections. An alternate approach to modulate airway epithelial barrier function involves targeting specific downstream component of IL-4/IL-13 signaling or different inflammatory mediators responsible for regulation of airway epithelial barrier. Airway epithelium-targeted therapy using inhibitors of HDAC, HSP90, MIF, mTOR, IL-17A and VEGF may be a potential strategy to prevent airway epithelial barrier dysfunction in airway inflammatory diseases.
Collapse
Affiliation(s)
- Ahsan Anjoom Sunil
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
116
|
Kang N, Song WJ. Discovering Biomarkers of Neutrophilic Asthma: A Clinician's Perspective. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:1-4. [PMID: 34983102 PMCID: PMC8724821 DOI: 10.4168/aair.2022.14.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Noeul Kang
- Division of Allergy, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
117
|
Hayashi K, Kaminuma O. [Possible therapeutic use of L-type amino acid transporter 1 (LAT1)-specific inhibitor for intractable asthma treatment]. Nihon Yakurigaku Zasshi 2022; 157:305-309. [PMID: 36047140 DOI: 10.1254/fpj.22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bronchial asthma (asthma) is characterized by chronic airway inflammation, reversible obstruction, and hyperresponsive conditions. Although most asthma patients have been becoming controllable by virtue of inhaled corticosteroid (ICS), substantial number of patients still do not respond to the steroid-based therapy. Mast cells, eosinophils, and helper T (Th) 2 cells have been considered as key players in asthma pathogenesis. However, emerging studies have revealed that Th subsets other than Th2, as well as various other immune cells, significantly contribute to the development of steroid-resistant intractable asthma. T cells and other inflammatory cells require incorporating a large amount of nutrients such as amino acids and glucose to exhibit their full function following activation. Based on this remarkable character, it has recently been suggested that the pharmacological inhibition of amino acid transporters is promising for treating immunological and inflammatory disorders through the suppression of inflammatory cell activation. In this review, we explore the possible management of intractable asthma by developing a selective inhibitor for L-type amino acid transporter (LAT) 1.
Collapse
Affiliation(s)
- Keitaro Hayashi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine
| | - Osamu Kaminuma
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University
| |
Collapse
|
118
|
Krčmová I, Novosad J. Allergen immunotherapy in treating allergic eosinophilic asthma. VNITRNI LEKARSTVI 2022; 68:517-524. [PMID: 36575070 DOI: 10.36290/vnl.2022.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Currently, the approach to a patient with asthma is in accordance with personalized medicine wherein the decision on the treatment pathway is based on the type of asthmatic inflammation and other comorbidities that accompany asthma. For an allergic asthma patient, allergen immunotherapy (AIT), which has a disease-modifying effect and the potential to prevent further progression of allergic symptoms, is one of the treatment modalities. It is an effective treatment that, unlike pharmacotherapy, modifies the course of allergic respiratory diseases and induces allergen specific immune tolerance that persists for up to several years after treatment cessation. Therapeutic allergens of high quality, efficacy, and safety according to European regulatory authorities are an integral part of the treatment of respiratory allergies. It is a safe treatment option which still remains the only causal immuno¬modulatory therapy for allergic eosinophilic asthma.
Collapse
|
119
|
Novel Immunomodulatory Therapies for Respiratory Pathologies. COMPREHENSIVE PHARMACOLOGY 2022. [PMCID: PMC8238403 DOI: 10.1016/b978-0-12-820472-6.00073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
120
|
Abstract
Asthma is chronic eosinophilic bronchitis with the dominancy of T helper 2 (Th2) inflammation. However, patients with asthma and metabolic dysfunction have pathogenic and pathological differences from those with Th2 inflammation. Metabolic dysfunction, typically presented as metabolic syndrome, has several important clinical components including central obesity, insulin resistance or glucose intolerance, dyslipidemia, and vitamin D deficiency. Data from large epidemiological studies support the significance of these components in the control of asthma and their contribution to airway remodeling, suggesting the presence of an asthma phenotype with metabolic dysfunction. These components are quite interactive with each other, so it is difficult to reveal the individual role of each. It is well known that asthma is difficult to treat in patients with obesity, due in part to inadequate response to inhaled corticosteroids. Additionally, vitamin D deficiency and insulin resistance have been regarded as aggravating factors of asthma control and airway remodeling. Recent clinical and in vivo studies have revealed the specific mechanisms of these components, which may aggravate asthma control and airway remodeling. In this review article, I summarize the recent studies and unmet needs for patients with asthma and metabolic dysfunction.
Collapse
Affiliation(s)
- Jung-Won Park
- Institute for Allergy & Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
121
|
Which Therapy for Non-Type(T)2/T2-Low Asthma. J Pers Med 2021; 12:jpm12010010. [PMID: 35055325 PMCID: PMC8779705 DOI: 10.3390/jpm12010010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Currently, the asthmatic population is divided into Type 2-high and non-Type 2/Type 2-low asthmatics, with 50% of patients belonging to one of the two groups. Differently from T2-high, T2-low asthma has not been clearly defined yet, and the T2-low patients are identified on the basis of the absence or non-predominant expression of T2-high biomarkers. The information about the molecular mechanisms underpinning T2-low asthma is scarce, but researchers have recognized as T2-low endotypes type 1 and type 3 immune response, and remodeling events occurring without inflammatory processes. In addition, the lack of agreed biomarkers reprents a challenge for the research of an effective therapy. The first-choice medication is represented by inhaled corticosteroids despite a low efficacy is reported for/in T2-low patients. However, macrolides and long-acting anti-muscarinic drugs have been recognized as efficacious. In recent years, clinical trials targeting biomarkers playing key roles in T3 and T1 immune pathways, alarmins, and molecules involved in neutrophil recruitment have provided conflicting results probably misleading (or biased) in patients' selection. However, further studies are warranted to achieve a precise characterization of T2-low asthma with the aim of defining a tailored therapy for each single asthmatic patient.
Collapse
|
122
|
Custovic A, Siddiqui S, Saglani S. Considering biomarkers in asthma disease severity. J Allergy Clin Immunol 2021; 149:480-487. [PMID: 34942235 DOI: 10.1016/j.jaci.2021.11.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
Amongst patients with asthma, reliance on the type/dose of prescribed medication and symptom control does not adequately capture those at risk of adverse outcomes, and we need biomarkers for risk and treatment stratification which are consistently accurate, readily quantifiable and reproducible. The majority of patients with severe asthma, regardless of age, have predominant type-2 (T2) inflammation mediated disease, making airway/blood eosinophils, FeNO, periostin and/or allergic sensitization potentially important biomarkers for severe disease. In both adult and pediatric asthma, there is scope to improve prediction of severe attacks by using a composite T2 biomarkers of blood eosinophils and FeNO. Technological advances in component-resolved diagnostics (CRD) microarray technologies coupled with the development of interpretation software offer a possibility to use CRD as biomarkers of asthma severity amongst sensitized asthmatics. Genetic predisposition and polygenic risk scores of relevant traits (e.g., lung function, host immune responses, biomarkers of exposure from the indoor and outdoor environment, infection and microbial dysbiosis) may also contribute to prediction algorithms. We challenge the idea that asthma can be accurately defined in an individual patient by a discrete and static "endotype" (e.g., T2-high asthma). As we traverse the new era of molecular endotyping in asthma, we need to understand how relevant mechanisms impact patient outcomes, and in parallel develop new tools and approaches to stratify therapies and define individual patient trajectories.
Collapse
Affiliation(s)
- Adnan Custovic
- National Heart and Lung Institute, Imperial College London, UK.
| | - Salman Siddiqui
- Department of Respiratory Sciences, University of Leicester and NIHR Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester UK
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
123
|
Berry SPDG, Dossou C, Kashif A, Sharifinejad N, Azizi G, Hamedifar H, Sabzvari A, Zian Z. The role of IL-17 and anti-IL-17 agents in the immunopathogenesis and management of autoimmune and inflammatory diseases. Int Immunopharmacol 2021; 102:108402. [PMID: 34863654 DOI: 10.1016/j.intimp.2021.108402] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
Interleukin-17 (IL-17) is a proinflammatory cytokine involved in chronic inflammation occurring during the pathogenesis of allergy, malignancy, and autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and psoriasis. IL-17 is produced by multiple cell types of adaptive and innate immunity, including T helper 17 cells, CD8 + T cells, γδ T cells, natural killer T cells, and innate lymphoid cells. Monoclonal antibodies (mAbs) targeting IL-17 and/or IL-17R would be a potential approach to study this therapeutic tool for these diseases. In the current review, we aimed to highlight the characteristics of IL-17 and its important role in the pathogenesis of related diseases. Critical evaluation of the mAbs targeting IL-17A and IL-17 receptors (e.g., Ixekizumab, Secukinumab, and Brodalumab) in various immune-mediated diseases will be provided, and finally, their clinical efficacy and safety will be reported.
Collapse
Affiliation(s)
- S P Déo-Gracias Berry
- Centre de Recherches Médicales (CERMEL) de Lambaréné, B.P: 242, Gabon; Technical University of Munich, 80333, Germany
| | - Camille Dossou
- Laboratory of Biology and Molecular Typing in Microbiology. Faculty of Sciences and Techniques/University of Abomey-Calavi, Cotonou 05 BP 1604, Benin
| | - Ali Kashif
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Niusha Sharifinejad
- Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj 3149779453, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran; CinnaGen Research and Production Co, Alborz, Iran
| | - Araz Sabzvari
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran; Orchid Pharmed Company, Tehran, Iran.
| | - Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, P.B. 416, Abdelmalek Essaadi University, Tetouan, Morocco.
| |
Collapse
|
124
|
Mincham KT, Bruno N, Singanayagam A, Snelgrove RJ. Our evolving view of neutrophils in defining the pathology of chronic lung disease. Immunology 2021; 164:701-721. [PMID: 34547115 PMCID: PMC8561104 DOI: 10.1111/imm.13419] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are critical components of the body's immune response to infection, being loaded with a potent arsenal of toxic mediators and displaying immense destructive capacity. Given the potential of neutrophils to impart extensive tissue damage, it is perhaps not surprising that when augmented these cells are also implicated in the pathology of inflammatory diseases. Prominent neutrophilic inflammation is a hallmark feature of patients with chronic lung diseases such as chronic obstructive pulmonary disease, severe asthma, bronchiectasis and cystic fibrosis, with their numbers frequently associating with worse prognosis. Accordingly, it is anticipated that neutrophils are central to the pathology of these diseases and represent an attractive therapeutic target. However, in many instances, evidence directly linking neutrophils to the pathology of disease has remained somewhat circumstantial and strategies that have looked to reduce neutrophilic inflammation in the clinic have proved largely disappointing. We have classically viewed neutrophils as somewhat crude, terminally differentiated, insular and homogeneous protagonists of pathology. However, it is now clear that this does not do the neutrophil justice, and we now recognize that these cells exhibit heterogeneity, a pronounced awareness of the localized environment and a remarkable capacity to interact with and modulate the behaviour of a multitude of cells, even exhibiting anti-inflammatory, pro-resolving and pro-repair functions. In this review, we discuss evidence for the role of neutrophils in chronic lung disease and how our evolving view of these cells may impact upon our perceived assessment of their contribution to disease pathology and efforts to target them therapeutically.
Collapse
Affiliation(s)
- Kyle T. Mincham
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Nicoletta Bruno
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Aran Singanayagam
- National Heart and Lung InstituteImperial College LondonLondonUK
- Department of Infectious DiseaseImperial College LondonLondonUK
| | | |
Collapse
|
125
|
Bridgewood C, Newton D, Bragazzi N, Wittmann M, McGonagle D. Unexpected connections of the IL-23/IL-17 and IL-4/IL-13 cytokine axes in inflammatory arthritis and enthesitis. Semin Immunol 2021; 58:101520. [PMID: 34799224 DOI: 10.1016/j.smim.2021.101520] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
The IL-23/IL-17 cytokine axis is related to spondyloarthropathy (SpA) pattern diseases that target the skin, eye, gut and joints. These share overlapping target tissues with Th2 type or allergic diseases, including the skin, eye and gut but SpA diseases exhibit distinct microanatomical topography, molecular characteristics, and clinical features including uveitis, psoriasis, apical pulmonary involvement, lower gastrointestinal involvement with colitis, and related arthritides including psoriatic arthritis and ankylosing spondylitis. Inflammatory arthritis is conspicuously absent from the Th2 diseases which are characterised IL-4/IL-13 dependent pathway activation including allergic rhino-conjunctivitis, atopic eczema, allergic asthma and food allergies. This traditional understanding of non-overlap of musculoskeletal territory between that atopic diseases and the IL-17 -mediated SpA diseases is undergoing a critical reappraisal with the recent demonstration of IL-4/IL-13 blockade, may be associated with the development of SpA pattern arthritis, psoriasiform skin disease and occasional anterior uveitis. Given the known plasticity within Th paradigm pathways, these findings suggest dynamic Th2 cytokine and Th17 cytokine counter regulation in vivo in humans. Unexpected, this is the case in peripheral enthesis and when the IL-4/13 immunological brake on IL-23/17 cytokines is removed, a SpA phenotype may emerge. We discuss hitherto unexpected observations in SpA, showing counter regulation between the Th17 and Th2 pathways at sites including the entheses that collectively indicate that the emergent reverse translational therapeutic data is more than coincidental and offers new insights into the "Th paradigms" in atopy and SpA.
Collapse
Affiliation(s)
- Charlie Bridgewood
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK.
| | - Darren Newton
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Nicola Bragazzi
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK; National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals, Leeds, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK; National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals, Leeds, UK
| |
Collapse
|
126
|
Moya B, Mukherjee M, Nair P. Notch4, uncovering an immunomodulator in allergic asthma. Allergy 2021; 76:3852-3854. [PMID: 34050948 DOI: 10.1111/all.14968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Beatriz Moya
- Department of Allergy Hospital Universitario 12 de Octubre Madrid Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12) Madrid Spain
| | - Manali Mukherjee
- Division of Respirology, Department of Medicine McMaster University, Hamilton & Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton ON Canada
| | - Parameswaran Nair
- Division of Respirology, Department of Medicine McMaster University, Hamilton & Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton ON Canada
| |
Collapse
|
127
|
Ackland J, Watson A, Wilkinson TMA, Staples KJ. Interrupting the Conversation: Implications for Crosstalk Between Viral and Bacterial Infections in the Asthmatic Airway. FRONTIERS IN ALLERGY 2021; 2:738987. [PMID: 35386999 PMCID: PMC8974750 DOI: 10.3389/falgy.2021.738987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Asthma is a heterogeneous, chronic respiratory disease affecting 300 million people and is thought to be driven by different inflammatory endotypes influenced by a myriad of genetic and environmental factors. The complexity of asthma has rendered it challenging to develop preventative and disease modifying therapies and it remains an unmet clinical need. Whilst many factors have been implicated in asthma pathogenesis and exacerbations, evidence indicates a prominent role for respiratory viruses. However, advances in culture-independent detection methods and extensive microbial profiling of the lung, have also demonstrated a role for respiratory bacteria in asthma. In particular, airway colonization by the Proteobacteria species Nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) is associated with increased risk of developing recurrent wheeze and asthma in early life, poor clinical outcomes in established adult asthma and the development of more severe inflammatory phenotypes. Furthermore, emerging evidence indicates that bacterial-viral interactions may influence exacerbation risk and disease severity, highlighting the need to consider the impact chronic airway colonization by respiratory bacteria has on influencing host responses to viral infection. In this review, we first outline the currently understood role of viral and bacterial infections in precipitating asthma exacerbations and discuss the underappreciated potential impact of bacteria-virus crosstalk in modulating host responses. We discuss the mechanisms by which early life infection may predispose to asthma development. Finally, we consider how infection and persistent airway colonization may drive different asthma phenotypes, with a view to identifying pathophysiological mechanisms that may prove tractable to new treatment modalities.
Collapse
Affiliation(s)
- Jodie Ackland
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
- *Correspondence: Karl J. Staples
| |
Collapse
|
128
|
Carr TF. Treatment approaches for the patient with T2 low asthma. Ann Allergy Asthma Immunol 2021; 127:530-535. [PMID: 34688426 DOI: 10.1016/j.anai.2021.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To identify treatment approaches that can be used in the management of patients with asthma who lack significant type 2 inflammation, also called T2 low asthma. DATA SOURCES Recent expert guideline updates on the management of asthma, recent journal articles and review articles, and foundational journal articles are referenced. STUDY SELECTIONS This review cites clinical cohort studies of highly characterized patients with asthma, clinical interventional trials of high impact, mechanistic studies relevant to T2 low asthma, and emerging work in this area. RESULTS T2 low asthma accounts for approximately one-third to one-half of individuals with asthma. Characteristics of participants with T2 low asthma include higher body mass index, cigarette smoking/smoke exposure, relative lack of responsiveness to steroids, less bronchodilator reversibility, and often the presence of neutrophilic inflammation. Multiple available interventions target these characteristics, including standard inhalers, azithromycin, and lifestyle interventions of weight loss and smoking cessation. CONCLUSION Treatment of T2 low asthma should involve currently available approaches and will benefit from improved definition and understanding of disease pathobiology.
Collapse
Affiliation(s)
- Tara F Carr
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona.
| |
Collapse
|
129
|
Puzzovio PG, Levi-Schaffer F. Latest Progresses in Allergic Diseases Biomarkers: Asthma and Atopic Dermatitis. Front Pharmacol 2021; 12:747364. [PMID: 34658882 PMCID: PMC8514744 DOI: 10.3389/fphar.2021.747364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
In the last years, the understanding of the pathologic mechanisms of asthma and atopic dermatitis, both characterized by allergic inflammation, has greatly improved. However, it is evident that both diseases present with high heterogeneity, which complicates the diagnosis and the therapeutic approach of the patients. Moreover, some of the currently available strategies to treat asthma and atopic dermatitis are still mostly controlling the symptoms, but not to lead towards full healing, thus having these two diseases labelled as unmet clinical needs by WHO. Therefore, the "one-size-fits-all" strategy is outdated for asthma and atopic dermatitis, and there is the need of better methods to clearly diagnose the disease and tailor the therapy according to the specific symptomatology. In this regard, the use of biomarkers has been advanced in order to characterize both diseases according to their clinical signs and to facilitate the subsequent treatment. Despite the advancements made in this regard, there is still need for better and more sensitive biomarkers and for less invasive sampling methodologies, with the aim to diagnose specifically each manifestation of asthma and atopic dermatitis and to provide the best treatment with the least suffering for the patients.
Collapse
Affiliation(s)
- Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
130
|
Georas SN, Donohue P, Connolly M, Wechsler ME. JAK inhibitors for asthma. J Allergy Clin Immunol 2021; 148:953-963. [PMID: 34625142 DOI: 10.1016/j.jaci.2021.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 02/06/2023]
Abstract
Asthma is an inflammatory disease of the airways characterized by intermittent episodes of wheezing, chest tightness, and cough. Many of the inflammatory pathways implicated in asthma involve cytokines and growth factors that activate Janus kinases (JAKs). The discovery of the JAK/signal transducer and activator of transcription (STAT) signaling pathway was a major breakthrough that revolutionized our understanding of cell growth and differentiation. JAK inhibitors are under active investigation for immune and inflammatory diseases, and they have demonstrated clinical efficacy in diseases such as rheumatoid arthritis and atopic dermatitis. Substantial preclinical data support the idea that inhibiting JAKs will ameliorate airway inflammation and hyperreactivity in asthma. Here, we review the rationale for use of JAK inhibitors in different asthma endotypes as well as the preclinical and early clinical evidence supporting such use. We review preclinical data from the use of systemic and inhaled JAK inhibitors in animal models of asthma and safety data based on the use of JAK inhibitors in other diseases. We conclude that JAK inhibitors have the potential to usher in a new era of anti-inflammatory treatment for asthma.
Collapse
Affiliation(s)
- Steve N Georas
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY.
| | | | - Margaret Connolly
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, Rochester, NY
| | | |
Collapse
|
131
|
Abstract
Asthma is a complex, heterogeneous chronic airway disease with high prevalence of uncontrolled disease. New therapies, including biologics, are now available to treat T2 high asthma. Treatment of T2 low asthma remains a challenge. Asthma guidelines need be to updated to incorporate new therapeutics.
Collapse
Affiliation(s)
- Jenny Huang
- Division of Allergy and Immunology, Department of Pediatrics,Children's Hospital of Michigan, Suite #4022, 4th Floor, 3950 Beaubien Boulevard, Detroit, MI 48201, USA
| | - Milind Pansare
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Michigan, Pediatric Specialty Center, Wayne State University, Suite # 4018, 4th Floor, 3950 Beaubien Boulevard, Detroit, MI 48201, USA.
| |
Collapse
|
132
|
Camiolo MJ, Kale SL, Oriss TB, Gauthier M, Ray A. Immune responses and exacerbations in severe asthma. Curr Opin Immunol 2021; 72:34-42. [PMID: 33773471 PMCID: PMC8460694 DOI: 10.1016/j.coi.2021.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Asthma as a clinical entity manifests with a broad spectrum of disease severity. Unlike milder asthma, severe disease is poorly controlled by inhaled corticosteroids, the current standard of care. Transcriptomic data, along with patient characteristics and response to biologics show that though Type 2 (T2) immune response remains an integral feature of asthma, additional molecular and immunologic factors may play important roles in pathogenesis. Mechanisms of T2 development, cellular sources of T2 cytokines and their relationship to additional immune pathways concurrently activated may distinguish several different subphenotypes, and perhaps endotypes of asthma, with differential response to non-specific and targeted anti-inflammatory therapies. Recent data have also associated non-T2 cytokines derived from T cells, particularly IFN-γ, and epithelial mediators with severe asthma. These topics and their relationships to acute asthma exacerbations are discussed in this review.
Collapse
Affiliation(s)
- Matthew J Camiolo
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sagar L Kale
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Timothy B Oriss
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marc Gauthier
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
133
|
Foster PS, Barnes JL, Tay HL, Gibson PG. Transcriptomic drug-response gene signatures are informative for the stratification of patients for clinical trials. J Allergy Clin Immunol 2021; 149:55-57. [PMID: 34582880 DOI: 10.1016/j.jaci.2021.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Paul S Foster
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, New Lambton Heights, Australia.
| | - Jessica L Barnes
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Hock L Tay
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Peter G Gibson
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia; Hunter Medical Research Institute, New Lambton Heights, Australia
| |
Collapse
|
134
|
Lourenço LO, Ribeiro AM, Lopes FDTQDS, Tibério IDFLC, Tavares-de-Lima W, Prado CM. Different Phenotypes in Asthma: Clinical Findings and Experimental Animal Models. Clin Rev Allergy Immunol 2021; 62:240-263. [PMID: 34542807 DOI: 10.1007/s12016-021-08894-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Asthma is a respiratory allergic disease presenting a high prevalence worldwide, and it is responsible for several complications throughout life, including death. Fortunately, asthma is no longer recognized as a unique manifestation but as a very heterogenic manifestation. Its phenotypes and endotypes are known, respectively, as pathologic and molecular features that might not be directly associated with each other. The increasing number of studies covering this issue has brought significant insights and knowledge that are constantly expanding. In this review, we intended to summarize this new information obtained from clinical studies, which not only allowed for the creation of patient clusters by means of personalized medicine and a deeper molecular evaluation, but also created a connection with data obtained from experimental models, especially murine models. We gathered information regarding sensitization and trigger and emphasizing the most relevant phenotypes and endotypes, such as Th2-high asthma and Th2-low asthma, which included smoking and obesity-related asthma and mixed and paucigranulocytic asthma, not only in physiopathology and the clinic but also in how these phenotypes can be determined with relative similarity using murine models. We also further investigated how clinical studies have been treating patients using newly developed drugs focusing on specific biomarkers that are more relevant according to the patient's clinical manifestation of the disease.
Collapse
Affiliation(s)
- Luiz Otávio Lourenço
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Santos, SP, Brazil
| | - Alessandra Mussi Ribeiro
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Santos, SP, Brazil
| | | | | | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Carla Máximo Prado
- Department of Biosciences, Federal University of São Paulo, Campus Baixada Santista, Santos, SP, Brazil. .,Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
135
|
Rahmawati SF, te Velde M, Kerstjens HAM, Dömling ASS, Groves MR, Gosens R. Pharmacological Rationale for Targeting IL-17 in Asthma. FRONTIERS IN ALLERGY 2021; 2:694514. [PMID: 35387016 PMCID: PMC8974835 DOI: 10.3389/falgy.2021.694514] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/07/2021] [Indexed: 01/09/2023] Open
Abstract
Asthma is a respiratory disease that currently affects around 300 million people worldwide and is defined by coughing, shortness of breath, wheezing, mucus overproduction, chest tightness, and expiratory airflow limitation. Increased levels of interleukin 17 (IL-17) have been observed in sputum, nasal and bronchial biopsies, and serum of patients with asthma compared to healthy controls. Patients with higher levels of IL-17 have a more severe asthma phenotype. Biologics are available for T helper 2 (Th2)-high asthmatics, but the Th17-high subpopulation has a relatively low response to these treatments, rendering it a rather severe asthma phenotype to treat. Several experimental models suggest that targeting the IL-17 pathway may be beneficial in asthma. Moreover, as increased activation of the Th17/IL-17 axis is correlated with reduced inhaled corticosteroids (ICS) sensitivity, targeting the IL-17 pathway might reverse ICS unresponsiveness. In this review, we present and discuss the current knowledge on the role of IL-17 in asthma and its interaction with the Th2 pathway, focusing on the rationale for therapeutic targeting of the IL-17 pathway.
Collapse
Affiliation(s)
- Siti Farah Rahmawati
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Department of Pharmacology and Clinical Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen (UMCG), Groningen, Netherlands
| | - Maurice te Velde
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen (UMCG), Groningen, Netherlands
| | - Huib A. M. Kerstjens
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen (UMCG), Groningen, Netherlands
- Department of Pulmonary Medicine, University of Groningen and University Medical Center Groningen (UMCG), Groningen, Netherlands
| | | | | | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Centre Groningen (UMCG), Groningen, Netherlands
- *Correspondence: Reinoud Gosens
| |
Collapse
|
136
|
Dragonieri S, Carpagnano GE. Biological therapy for severe asthma. Asthma Res Pract 2021; 7:12. [PMID: 34389053 PMCID: PMC8362167 DOI: 10.1186/s40733-021-00078-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 02/01/2023] Open
Abstract
Around 5-10% of the total asthmatic population suffer from severe or uncontrolled asthma, which is associated with increased mortality and hospitalization, increased health care burden and worse quality of life. In the last few years, new drugs have been launched and several asthma phenotypes according to definite biomarkers have been identified. In particular, therapy with biologics has revolutionized the management and the treatment of severe asthma, showing high therapeutic efficacy associated with significant clinical benefits. To date, four types of biologics are licensed for severe asthma, i.e. omalizumab (anti-immunoglobulin E) antibody, mepolizumab and reslizumab (anti-interleukin [IL]-5antibody), benralizumab (anti-IL-5 receptor a antibody) and dupilumab (anti-IL-4 receptor alpha antibody). The aim of this article was to review the biologic therapies currently available for the treatment of severe asthma, in order to help physicians to choose the most suitable biologic agent for their asthmatic patients.
Collapse
Affiliation(s)
- Silvano Dragonieri
- Department of Respiratory Diseases, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy.
| | | |
Collapse
|
137
|
Ghilardi N, Pappu R, Arron JR, Chan AC. 30 Years of Biotherapeutics Development-What Have We Learned? Annu Rev Immunol 2021; 38:249-287. [PMID: 32340579 DOI: 10.1146/annurev-immunol-101619-031510] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the birth of biotechnology, hundreds of biotherapeutics have been developed and approved by the US Food and Drug Administration (FDA) for human use. These novel medicines not only bring significant benefit to patients but also represent precision tools to interrogate human disease biology. Accordingly, much has been learned from the successes and failures of hundreds of high-quality clinical trials. In this review, we discuss general and broadly applicable themes that have emerged from this collective experience. We base our discussion on insights gained from exploring some of the most important target classes, including interleukin-1 (IL-1), tumor necrosis factor α (TNF-α), IL-6, IL-12/23, IL-17, IL-4/13, IL-5, immunoglobulin E (IgE), integrins and B cells. We also describe current challenges and speculate about how emerging technological capabilities may enable the discovery and development of the next generation of biotherapeutics.
Collapse
Affiliation(s)
- Nico Ghilardi
- Department of Immunology, Genentech, South San Francisco, California 94080, USA; , ,
| | - Rajita Pappu
- Department of Immunology, Genentech, South San Francisco, California 94080, USA; , ,
| | - Joseph R Arron
- Department of Immunology, Genentech, South San Francisco, California 94080, USA; , ,
| | - Andrew C Chan
- Research-Biology, Genentech, South San Francisco, California 94080, USA;
| |
Collapse
|
138
|
Huang C, Li F, Wang J, Tian Z. Innate-like Lymphocytes and Innate Lymphoid Cells in Asthma. Clin Rev Allergy Immunol 2021; 59:359-370. [PMID: 31776937 DOI: 10.1007/s12016-019-08773-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Asthma is a chronic pulmonary disease, highly associated with immune disorders. The typical symptoms of asthma include airway hyperresponsiveness (AHR), airway remodeling, mucus overproduction, and airflow limitation. The etiology of asthma is multifactorial and affected by genetic and environmental factors. Increasing trends toward dysbiosis, smoking, stress, air pollution, and a western lifestyle may account for the increasing incidence of asthma. Based on the presence or absence of eosinophilic inflammation, asthma is mainly divided into T helper 2 (Th2) and non-Th2 asthma. Th2 asthma is mediated by allergen-specific Th2 cells, and eosinophils activated by Th2 cells via the secretion of interleukin (IL)-4, IL-5, and IL-13. Different from Th2 asthma, non-Th2 asthma shows little eosinophilic inflammation, resists to corticosteroid treatment, and occurs mainly in severe asthmatic patients. Previous studies of asthma primarily focused on the function of Th2 cells, but, with the discovery of non-Th2 asthma and the involvement of innate lymphoid cells (ILCs) in the pathogenesis of asthma, tissue-resident innate immune cells in the lung have become the focus of attention in asthma research. Currently, innate-like lymphocytes (ILLs) and ILCs as important components of the innate immune system in mucosal tissues are reportedly involved in the pathogenesis of or protection against both Th2 and non-Th2 asthma. These findings of the functions of different subsets of ILLs and ILCs may provide clues for the treatment of asthma.
Collapse
Affiliation(s)
- Chao Huang
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Fengqi Li
- Institute of Molecular Health Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Jian Wang
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zürich, University Hospital Zürich, 8091, Zürich, Switzerland.
| | - Zhigang Tian
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
139
|
Hofmann MA, Fluhr JW, Ruwwe‐Glösenkamp C, Stevanovic K, Bergmann K, Zuberbier T. Role of IL-17 in atopy-A systematic review. Clin Transl Allergy 2021; 11:e12047. [PMID: 34429872 PMCID: PMC8361814 DOI: 10.1002/clt2.12047] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/25/2021] [Accepted: 06/25/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE OF REVIEW Atopy is defined as the genetic predisposition to react with type I allergic diseases such as food-, skin-, and respiratory allergies. Distinct molecular mechanisms have been described, including the known Th2 driven immune response. IL-17A (IL-17) is mainly produced by Th17 cells and belongs to the IL-17 family of cytokines, IL-17A to F. While IL-17 plays a major role in inflammatory and autoimmune disorders, more data was published in recent years elucidating the role of IL-17 in allergic diseases. The present study aimed to elaborate specifically the role of IL-17 in atopy. METHODS A systematic literature search was conducted in MEDLINE, Embase, and Cochrane Central Register of Controlled Trials, regarding IL-17 and atopy/allergic diseases. RESULTS In total, 31 novel publications could be identified (food allergy n = 3, allergic asthma n = 7, allergic rhinitis [AR] n = 10, atopic dermatitis [AD] n = 11). In all allergic diseases, the IL-17 pathway has been investigated. Serum IL-17 was elevated in all allergic diseases. In AR, serum and nasal IL-17 levels correlated with the severity of the disease. In food allergies, serum IL-17E was also elevated in children. In AD, there is a trend for higher IL-17 values in the serum and skin specimen, while it is more expressed in acute lesions. In allergic asthma, serum IL-17 levels were increased. In two studies, higher serum IL-17 levels were found in severe persistent asthmatic patients than in intermittent asthmatics or healthy controls. Only one therapeutic clinical study exists on allergic diseases (asthma patients) using a monoclonal antibody against the IL-17 receptor A. No clinical efficacy was found in the total study population, except for a subgroup of patients with (post-bronchodilator) high reversibility. SUMMARY The role of IL 17 in the pathogenesis of allergic diseases is evident, but the involvement of the Th17 cytokine in the pathophysiological pathway is not conclusively defined. IL-17 is most likely relevant and will be a clinical target in subgroups of patients. The current data indicates that IL-17 is elevated more often in acute and severe forms of allergic diseases.
Collapse
Affiliation(s)
- Maja A. Hofmann
- Department of Dermatology and AllergyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| | - Joachim W. Fluhr
- Department of Dermatology and AllergyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| | | | - Katarina Stevanovic
- Department of Dermatology and AllergyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| | | | - Torsten Zuberbier
- Department of Dermatology and AllergyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
140
|
Murphy RC, Pavord ID, Alam R, Altman MC. Management Strategies to Reduce Exacerbations in non-T2 Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:2588-2597. [PMID: 34246435 DOI: 10.1016/j.jaip.2021.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
There have been considerable advances in our understanding of asthmatic airway inflammation, resulting in a paradigm shift of classifying individuals on the basis of either the presence or the absence of type 2 (T2) inflammatory markers. Several novel monoclonal antibody therapies targeting T2 cytokines have demonstrated significant clinical effects including reductions in acute exacerbations and improvements in asthma-related quality of life and lung function for individuals with T2-high asthma. However, there have been fewer advancements in developing therapies for those without evidence of T2 airway inflammation (so-called non-T2 asthma). Here, we review the heterogeneity of molecular mechanisms responsible for initiation and regulation of non-T2 inflammation and discuss both current and potential future therapeutic options for individuals with non-T2 asthma.
Collapse
Affiliation(s)
- Ryan C Murphy
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Wash; Center for Lung Biology, Department of Medicine, University of Washington, Seattle, Wash.
| | - Ian D Pavord
- Respiratory Medicine Unit and Oxford Respiratory NIHR Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rafeul Alam
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health and University of Colorado, Denver, Colo
| | - Matthew C Altman
- Center for Lung Biology, Department of Medicine, University of Washington, Seattle, Wash; Division of Allergy and Immunology, University of Washington, Seattle, Wash
| |
Collapse
|
141
|
Wang H, Aloe C, McQualter J, Papanicolaou A, Vlahos R, Wilson N, Bozinovski S. G-CSFR antagonism reduces mucosal injury and airways fibrosis in a virus-dependent model of severe asthma. Br J Pharmacol 2021; 178:1869-1885. [PMID: 33609280 DOI: 10.1111/bph.15415] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/26/2021] [Accepted: 02/14/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Asthma is a chronic disease that displays heterogeneous clinical and molecular features. A phenotypic subset of late-onset severe asthmatics has debilitating fixed airflow obstruction, increased neutrophilic inflammation and a history of pneumonia. Influenza A virus (IAV) is an important viral cause of pneumonia and asthmatics are frequently hospitalised during IAV epidemics. This study aims to determine whether antagonising granulocyte colony stimulating factor receptor (G-CSFR) prevents pneumonia-associated severe asthma. EXPERIMENTAL APPROACH Mice were sensitised to house dust mite (HDM) to establish allergic airway inflammation and subsequently infected with IAV (HKx31/H3N2 subtype). A neutralising monoclonal antibody against G-CSFR was therapeutically administered. KEY RESULTS In IAV-infected mice with prior HDM sensitisation, a significant increase in airway fibrotic remodelling and airways hyper-reactivity was observed. A mixed granulocytic inflammatory profile consisting of neutrophils, macrophages and eosinophils was prominent and at a molecular level, G-CSF expression was significantly increased in HDMIAV-treated mice. Blockage of G-CSFR reduced neutrophilic inflammation in the bronchoalveolar and lungs by over 80% in HDMIAV-treated mice without altering viral clearance. Markers of NETosis (dsDNA and myeloperoxidase in bronchoalveolar), tissue injury (LDH activity in bronchoalveolar) and oedema (total bronchoalveolar-fluid protein) were also significantly reduced with anti-G-CSFR treatment. In addition, anti-G-CSFR antagonism significantly reduced bronchoalveolar gelatinase activity, active TFGβ lung levels, collagen lung expression, airways fibrosis and airways hyper-reactivity in HDMIAV-treated mice. CONCLUSIONS AND IMPLICATIONS We have shown that antagonising G-CSFR-dependent neutrophilic inflammation reduced pathological disruption of the mucosal barrier and airways fibrosis in an IAV-induced severe asthma model.
Collapse
Affiliation(s)
- Hao Wang
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Christian Aloe
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Jonathan McQualter
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Angelica Papanicolaou
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | | | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
142
|
Parkinson JE, Pearson S, Rückerl D, Allen JE, Sutherland TE. The magnitude of airway remodeling is not altered by distinct allergic inflammatory responses in BALB/c versus C57BL/6 mice but matrix composition differs. Immunol Cell Biol 2021; 99:640-655. [PMID: 33587776 PMCID: PMC7616144 DOI: 10.1111/imcb.12448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/23/2021] [Accepted: 02/11/2021] [Indexed: 01/07/2023]
Abstract
Allergic airway inflammation is heterogeneous with variability in immune phenotypes observed across asthmatic patients. Inflammation has been thought to directly contribute to airway remodeling in asthma, but clinical data suggest that neutralizing type 2 cytokines does not necessarily alter disease pathogenesis. Here, we utilized C57BL/6 and BALB/c mice to investigate the development of allergic airway inflammation and remodeling. Exposure to an allergen cocktail for up to 8 weeks led to type 2 and type 17 inflammation, characterized by airway eosinophilia and neutrophilia and increased expression of chitinase-like proteins in both C57BL/6 and BALB/c mice. However, BALB/c mice developed much greater inflammatory responses than C57BL/6 mice, effects possibly explained by a failure to induce pathways that regulate and maintain T-cell activation in C57BL/6 mice, as shown by whole lung RNA transcript analysis. Allergen administration resulted in a similar degree of airway remodeling between mouse strains but with differences in collagen subtype composition. Increased collagen III was observed around the airways of C57BL/6 but not BALB/c mice while allergen-induced loss of basement membrane collagen IV was only observed in BALB/c mice. This study highlights a model of type 2/type 17 airway inflammation in mice whereby development of airway remodeling can occur in both BALB/c and C57BL/6 mice despite differences in immune response dynamics between strains. Importantly, compositional changes in the extracellular matrix between genetic strains of mice may help us better understand the relationships between lung function, remodeling and airway inflammation.
Collapse
Affiliation(s)
- James E Parkinson
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Stella Pearson
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Dominik Rückerl
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Judith E Allen
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Tara E Sutherland
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
143
|
Santos RVC, Cunha EGC, de Mello GSV, Rizzo JÂ, de Oliveira JF, do Carmo Alves de Lima M, da Rocha Pitta I, da Rocha Pitta MG, de Melo Rêgo MJB. New Oxazolidines Inhibit the Secretion of IFN-γ and IL-17 by PBMCS from Moderate to Severe Asthmatic Patients. Med Chem 2021; 17:289-297. [PMID: 32914717 DOI: 10.2174/1573406416666200910151950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Moderate to severe asthma could be induced by diverse proinflammatory cytokines, as IL-17 and IFN-γ, which are also related to treatment resistance and airway hyperresponsiveness. Oxazolidines emerged as a novel approach for asthma treatment, since some chemical peculiarities were suggested by previous studies. OBJECTIVE The present study aimed to evaluate the IL-17A and IFN-γ modulatory effect of two new oxazolidine derivatives (LPSF/NB-12 and -13) on mononucleated cells of patients with moderate and severe asthma. METHODS The study first looked at potential targets for oxazolidine derivatives using SWISS-ADME. After the synthesis of the compounds, cytotoxicity and cytokine levels were analyzed. RESULTS We demonstrated that LPSF/NB-12 and -13 reduced IFN-γ and IL-17 production in peripheral blood mononucleated cells from asthmatic patients in a concentrated manner. Our in silico analysis showed the neurokinin-1 receptor as a common target for both compounds, which is responsible for diverse proinflammatory effects of moderate and severe asthma. CONCLUSION The work demonstrated a novel approach against asthma, which deserves further studies of its mechanisms of action.
Collapse
Affiliation(s)
- Renata Virgínia Cavalcanti Santos
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Eudes Gustavo Constantino Cunha
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Gabriela Souto Vieira de Mello
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - José Ângelo Rizzo
- Servico de Pneumologia, Hospital das Clinicas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Jamerson Ferreira de Oliveira
- Laboratorio de Quimica e Inovacao Terapeutica (LQIT), Departamento de Antibioticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Maria do Carmo Alves de Lima
- Laboratorio de Quimica e Inovacao Terapeutica (LQIT), Departamento de Antibioticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Ivan da Rocha Pitta
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
144
|
Liu S, Ngo U, Tang XZ, Ren X, Qiu W, Huang X, DeGrado W, Allen CD, Jo H, Sheppard D, Sundaram AB. Integrin α2β1 regulates collagen I tethering to modulate hyperresponsiveness in reactive airway disease models. J Clin Invest 2021; 131:138140. [PMID: 33956668 DOI: 10.1172/jci138140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Severe asthma remains challenging to manage and has limited treatment options. We have previously shown that targeting smooth muscle integrin α5β1 interaction with fibronectin can mitigate the effects of airway hyperresponsiveness by impairing force transmission. In this study, we show that another member of the integrin superfamily, integrin α2β1, is present in airway smooth muscle and capable of regulating force transmission via cellular tethering to the matrix protein collagen I and, to a lesser degree, laminin-111. The addition of an inhibitor of integrin α2β1 impaired IL-13-enhanced contraction in mouse tracheal rings and human bronchial rings and abrogated the exaggerated bronchoconstriction induced by allergen sensitization and challenge. We confirmed that this effect was not due to alterations in classic intracellular myosin light chain phosphorylation regulating muscle shortening. Although IL-13 did not affect surface expression of α2β1, it did increase α2β1-mediated adhesion and the level of expression of an activation-specific epitope on the β1 subunit. We developed a method to simultaneously quantify airway narrowing and muscle shortening using 2-photon microscopy and demonstrated that inhibition of α2β1 mitigated IL-13-enhanced airway narrowing without altering muscle shortening by impairing the tethering of muscle to the surrounding matrix. Our data identified cell matrix tethering as an attractive therapeutic target to mitigate the severity of airway contraction in asthma.
Collapse
Affiliation(s)
- Sean Liu
- Lung Biology Center, Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine
| | - Uyen Ngo
- Lung Biology Center, Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine
| | - Xin-Zi Tang
- Cardiovascular Research Institute.,Sandler Asthma Basic Research Center.,Biomedical Sciences Graduate Program
| | - Xin Ren
- Lung Biology Center, Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine
| | - Wenli Qiu
- Lung Biology Center, Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine
| | - Xiaozhu Huang
- Lung Biology Center, Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine
| | - William DeGrado
- Cardiovascular Research Institute.,Department of Pharmaceutical Chemistry, and
| | - Christopher Dc Allen
- Cardiovascular Research Institute.,Sandler Asthma Basic Research Center.,Department of Anatomy, UCSF, San Francisco, California, USA
| | - Hyunil Jo
- Cardiovascular Research Institute.,Department of Pharmaceutical Chemistry, and
| | - Dean Sheppard
- Lung Biology Center, Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine.,Cardiovascular Research Institute
| | - Aparna B Sundaram
- Lung Biology Center, Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine
| |
Collapse
|
145
|
Wang Z, Locantore N, Haldar K, Ramsheh MY, Beech AS, Ma W, Brown JR, Tal-Singer R, Barer MR, Bafadhel M, Donaldson GC, Wedzicha JA, Singh D, Wilkinson TMA, Miller BE, Brightling CE. Inflammatory Endotype-associated Airway Microbiome in Chronic Obstructive Pulmonary Disease Clinical Stability and Exacerbations: A Multicohort Longitudinal Analysis. Am J Respir Crit Care Med 2021; 203:1488-1502. [PMID: 33332995 PMCID: PMC8483235 DOI: 10.1164/rccm.202009-3448oc] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Rationale: Understanding the role of the airway microbiome in chronic obstructive pulmonary disease (COPD) inflammatory endotypes may help to develop microbiome-based diagnostic and therapeutic approaches. Objectives: To understand the association of the airway microbiome with neutrophilic and eosinophilic COPD at stability and during exacerbations. Methods: An integrative analysis was performed on 1,706 sputum samples collected longitudinally from 510 patients with COPD recruited at four UK sites of the BEAT-COPD (Biomarkers to Target Antibiotic and Systemic COPD), COPDMAP (Chronic Obstructive Pulmonary Disease Medical Research Council/Association of the British Pharmaceutical Industry), and AERIS (Acute Exacerbation and Respiratory Infections in COPD) cohorts. The microbiome was analyzed using COPDMAP and AERIS as a discovery data set and BEAT-COPD as a validation data set. Measurements and Main Results: The airway microbiome in neutrophilic COPD was heterogeneous, with two primary community types differentiated by the predominance of Haemophilus. The Haemophilus-predominant subgroup had elevated sputum IL-1β and TNFα (tumor necrosis factor α) and was relatively stable over time. The other neutrophilic subgroup with a balanced microbiome profile had elevated sputum and serum IL-17A and was temporally dynamic. Patients in this state at stability were susceptible to the greatest microbiome shifts during exacerbations. This subgroup can temporally switch to both neutrophilic Haemophilus-predominant and eosinophilic states that were otherwise mutually exclusive. Time-series analysis on the microbiome showed that the temporal trajectories of Campylobacter and Granulicatella were indicative of intrapatient switches from neutrophilic to eosinophilic inflammation, in track with patient sputum eosinophilia over time. Network analysis revealed distinct host-microbiome interaction patterns among neutrophilic Haemophilus-predominant, neutrophilic balanced microbiome, and eosinophilic subgroups. Conclusions: The airway microbiome can stratify neutrophilic COPD into subgroups that justify different therapies. Neutrophilic and eosinophilic COPD are interchangeable in some patients. Monitoring temporal variability of the airway microbiome may track patient inflammatory status over time.
Collapse
Affiliation(s)
- Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, China
| | | | - Koirobi Haldar
- Human Genetics, Research and Development, GlaxoSmithKline, Collegeville, Pennsylvania
| | | | - Augusta S. Beech
- Department of Respiratory Sciences, Institute for Lung Health, Leicester National Institute for Health Research Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Wei Ma
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - James R. Brown
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - Ruth Tal-Singer
- Chronic Obstructive Pulmonary Disease Foundation, Research Department, Washington, District of Columbia
| | - Michael R. Barer
- Human Genetics, Research and Development, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Mona Bafadhel
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gavin C. Donaldson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Jadwiga A. Wedzicha
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Dave Singh
- Department of Respiratory Sciences, Institute for Lung Health, Leicester National Institute for Health Research Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Tom M. A. Wilkinson
- National Institute for Health Research Southampton Respiratory Biomedical Research Unit, University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| | | | | |
Collapse
|
146
|
Hamilton D, Lehman H. Asthma Phenotypes as a Guide for Current and Future Biologic Therapies. Clin Rev Allergy Immunol 2021; 59:160-174. [PMID: 31359247 DOI: 10.1007/s12016-019-08760-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asthma has been increasingly recognized as being a heterogeneous disease with multiple distinct mechanisms and pathophysiologies. Evidence continues to build regarding the existence of different cell types, environmental exposures, pathogens, and other factors that produce a similar set of symptoms known collectively as asthma. This has led to a movement from a "one size fits all" symptom-based methodology to a more patient-centered, individualized approach to asthma treatment targeting the underlying disease process. A significant contributor to this shift to more personalized asthma therapy has been the increasing availability of numerous biologic therapies in recent years, providing the opportunity for more targeted treatments. When targeted biologics began to be developed for treatment of asthma, the hope was that distinct biomarkers would become available, allowing the clinician to determine which biologic therapy was best suited for which patients. Presence of certain biomarkers, like eosinophilia or antigen-specific IgE, is important features of specific asthma phenotypes. Currently available biomarkers can help with decision making about biologics, but are generally too broad and non-specific to clearly identify an asthma phenotype or the single biologic best suited to an asthmatic. Identification of further biomarkers is the subject of intense research. Yet, identifying a patient's asthma phenotype can help in predicting disease course, response to treatment, and biologic therapies to consider. In this review, major asthma phenotypes are reviewed, and the evidence for the utility of various biologics, both those currently on the market and those in the development process, in each of these phenotypes is explored.
Collapse
Affiliation(s)
- Daniel Hamilton
- SUNY Upstate Medical University College of Medicine, Syracuse, NY, USA
| | - Heather Lehman
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 1001 Main Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
147
|
Dual interleukin-17A/F deficiency protects against acute and chronic response to cigarette smoke exposure in mice. Sci Rep 2021; 11:11508. [PMID: 34075087 PMCID: PMC8169846 DOI: 10.1038/s41598-021-90853-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
IL-17A and IL-17F are both involved in the pathogenesis of neutrophilic inflammation observed in COPD and severe asthma. To explore this, mice deficient in both Il17a and Il17f and wild type (WT) mice were exposed to cigarette smoke or environmental air for 5 to 28 days and changes in inflammatory cells in bronchoalveolar lavage (BAL) fluid were determined. We also measured the mRNA expression of keratinocyte derived chemokine (Kc), macrophage inflammatory protein-2 (Mip2), granulocyte–macrophage colony stimulating factor (Gmcsf) and matrix metalloproteinase-9 (Mmp9 ) in lung tissue after 8 days, and lung morphometric changes after 24 weeks of exposure to cigarette smoke compared to air-exposed control animals. Macrophage counts in BAL fluid initially peaked at day 8 and again on day 28, while neutrophil counts peaked between day 8 and 12 in WT mice. Mice dual deficient with Il17a and 1l17f showed similar kinetics with macrophages and neutrophils, but cell numbers at day 8 and mRNA expression of Kc, Gmcsf and Mmp9 were significantly reduced. Furthermore, airspaces in WT mice became larger after cigarette smoke exposure for 24 weeks, whereas this was not seen dual Il17a and 1l17f deficient mice. Combined Il17a and Il17f deficiency resulted in significant attenuation of neutrophilic inflammatory response and protection against structural lung changes after long term cigarette smoke exposure compared with WT mice. Dual IL-17A/F signalling plays an important role in pro-inflammatory responses associated with histological changes induced by cigarette smoke exposure.
Collapse
|
148
|
Biomarkers in Different Asthma Phenotypes. Genes (Basel) 2021; 12:genes12060801. [PMID: 34070316 PMCID: PMC8226821 DOI: 10.3390/genes12060801] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/18/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
Asthma is the most common respiratory disease. It has multiple phenotypes thatcan be partially differentiated by measuring the disease’s specific characteristics—biomarkers. The pathogenetic mechanisms are complex, and it is still a challenge to choose suitable biomarkers to adequately stratify patients, which became especially important with the introduction of biologicals in asthma treatment. Usage of biomarkers and an understanding of the underlying pathobiological mechanisms lead to the definition of endotypes. Asthma can be broadly divided into two endotypes, T2-high and T2-low. The right combination of various biomarkers in different phenotypes is under investigation, hoping to help researchers and clinicians in better disease evaluation since theindividual approach and personalized medicine are imperative. Multiple biomarkers are superior to a single biomarker.
Collapse
|
149
|
Lamb D, De Sousa D, Quast K, Fundel-Clemens K, Erjefält JS, Sandén C, Hoffmann HJ, Kästle M, Schmid R, Menden K, Delic D. RORγt inhibitors block both IL-17 and IL-22 conferring a potential advantage over anti-IL-17 alone to treat severe asthma. Respir Res 2021; 22:158. [PMID: 34022896 PMCID: PMC8141258 DOI: 10.1186/s12931-021-01743-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND RORγt is a transcription factor that enables elaboration of Th17-associated cytokines (including IL-17 and IL-22) and is proposed as a pharmacological target for severe asthma. METHODS IL-17 immunohistochemistry was performed in severe asthma bronchial biopsies (specificity confirmed with in situ hybridization). Primary human small airway epithelial cells in air liquid interface and primary bronchial smooth muscle cells were stimulated with recombinant human IL-17 and/or IL-22 and pro-inflammatory cytokines measured. Balb/c mice were challenged intratracheally with IL-17 and/or IL-22 and airway hyperreactivity, pro-inflammatory cytokines and airway neutrophilia measured. Balb/c mice were sensitized intraperitoneally and challenged intratracheally with house dust mite extract and the effect of either a RORγt inhibitor (BIX119) or an anti-IL-11 antibody assessed on airway hyperreactivity, pro-inflammatory cytokines and airway neutrophilia measured. RESULTS We confirmed in severe asthma bronchial biopsies both the presence of IL-17-positive lymphocytes and that an IL-17 transcriptome profile in a severe asthma patient sub-population. Both IL-17 and IL-22 stimulated the release of pro-inflammatory cytokine and chemokine release from primary human lung cells and in mice. Furthermore, IL-22 in combination with IL-17, but neither alone, elicits airway hyperresponsiveness (AHR) in naïve mice. A RORγt inhibitor specifically blocked both IL-17 and IL-22, AHR and neutrophilia in a mouse house dust mite model unlike other registered or advanced pipeline modes of action. Full efficacy versus these parameters was associated with 90% inhibition of IL-17 and 50% inhibition of IL-22. In contrast, anti-IL-17 also blocked IL-17, but not IL-22, AHR or neutrophilia. Moreover, the deregulated genes in the lungs from these mice correlated well with deregulated genes from severe asthma biopsies suggesting that this model recapitulates significant severe asthma-relevant biology. Furthermore, these genes were reversed upon RORγt inhibition in the HDM model. Cell deconvolution suggested that the responsible cells were corticosteroid insensitive γδ-T-cells. CONCLUSION These data strongly suggest that both IL-17 and IL-22 are required for Th2-low endotype associated biology and that a RORγt inhibitor may provide improved clinical benefit in a severe asthma sub-population of patients by blocking both IL-17 and IL-22 biology compared with blocking IL-17 alone.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Animals
- Anti-Asthmatic Agents/pharmacology
- Asthma/drug therapy
- Asthma/immunology
- Asthma/metabolism
- Asthma/physiopathology
- Cells, Cultured
- Disease Models, Animal
- Epithelial Cells/drug effects
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- Female
- Humans
- Interleukin-17/metabolism
- Interleukins/antagonists & inhibitors
- Interleukins/metabolism
- Lung/drug effects
- Lung/immunology
- Lung/metabolism
- Lung/physiopathology
- Male
- Mice, Inbred BALB C
- Middle Aged
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Pyroglyphidae/immunology
- Signal Transduction
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Young Adult
- Interleukin-22
- Mice
Collapse
Affiliation(s)
- David Lamb
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany.
| | | | - Karsten Quast
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany
| | - Katrin Fundel-Clemens
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany
| | | | | | | | - Marc Kästle
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany
| | - Ramona Schmid
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany
| | - Kevin Menden
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany
| | - Denis Delic
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany
| |
Collapse
|
150
|
Matera MG, Calzetta L, Annibale R, Russo F, Cazzola M. Classes of drugs that target the cellular components of inflammation under clinical development for COPD. Expert Rev Clin Pharmacol 2021; 14:1015-1027. [PMID: 33957839 DOI: 10.1080/17512433.2021.1925537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The persistent inflammation that characterizes COPD and affects its natural course also impacting on symptoms has prompted research to find molecules that can regulate the inflammatory process but still available anti-inflammatory therapies provide little or no benefit in COPD patients. Consequently, numerous anti-inflammatory molecules that are effective in animal models of COPD have been or are being evaluated in humans. AREAS COVERED In this article we describe several classes of drugs that target the cellular components of inflammation under clinical development for COPD. EXPERT OPINION Although the results of many clinical trials with new molecules have often been disappointing, several studies are underway to investigate whether some of these molecules may be effective in treating specific subgroups of COPD patients. Indeed, the current perspective is to apply a more personalized treatment to the patient. This means being able to better define the patient's inflammatory state and treat it in a targeted manner. Unfortunately, the difficulty in translating encouraging experimental data into human clinical trials, the redundancy in the effects induced by signal-transmitting substances and the nonspecific effects of many classes that are undergoing clinical trials, do not yet allow specific inflammatory cell types to be targeted.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rosa Annibale
- Pharmacy Unit, "Luigi Vanvitelli" University Hospital, Naples, Italy
| | - Francesco Russo
- Pharmacy Unit, "Luigi Vanvitelli" University Hospital, Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|