101
|
Abstract
Platelets, small anucleate cells circulating in the blood, are critical mediators in haemostasis and thrombosis. Interestingly, recent studies demonstrated that platelets contain both pro-inflammatory and anti-inflammatory molecules, equipping platelets with immunoregulatory function in both innate and adaptive immunity. In the context of infectious diseases, platelets are involved in early detection of invading microorganisms and are actively recruited to sites of infection. Platelets exert their effects on microbial pathogens either by direct binding to eliminate or restrict dissemination, or by shaping the subsequent host immune response. Reciprocally, many invading microbial pathogens can directly or indirectly target host platelets, altering platelet count or/and function. In addition, microbial pathogens can impact the host auto- and alloimmune responses to platelet antigens in several immune-mediated diseases, such as immune thrombocytopenia, and fetal and neonatal alloimmune thrombocytopenia. In this review, we discuss the mechanisms that contribute to the bidirectional interactions between platelets and various microbial pathogens, and how these interactions hold relevant implications in the pathogenesis of many infectious diseases. The knowledge obtained from "well-studied" microbes may also help us understand the pathogenesis of emerging microbes, such as SARS-CoV-2 coronavirus.
Collapse
Affiliation(s)
- Conglei Li
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, ON, Canada
| | - June Li
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Heyu Ni
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
102
|
Banerjee M, Huang Y, Joshi S, Popa GJ, Mendenhall MD, Wang QJ, Garvy BA, Myint T, Whiteheart SW. Platelets Endocytose Viral Particles and Are Activated via TLR (Toll-Like Receptor) Signaling. Arterioscler Thromb Vasc Biol 2020; 40:1635-1650. [PMID: 32434410 PMCID: PMC7316618 DOI: 10.1161/atvbaha.120.314180] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Thrombocytopenia is associated with many viral infections suggesting virions interact with and affect platelets. Consistently, viral particles are seen inside platelets, and platelet activation markers are detected in viremic patients. In this article, we sought mechanistic insights into these virion/platelet interactions by examining how platelets endocytose, traffic, and are activated by a model virion. Approach and Results: Using fluorescently tagged HIV-1 pseudovirions, 3-dimensional structured illumination microscopy, and transgenic mouse models, we probed the interactions between platelets and virions. Mouse platelets used known endocytic machinery, that is, dynamin, VAMP (vesicle-associated membrane protein)-3, and Arf6 (ADP-ribosylation factor 6), to take up and traffic HIV-1 pseudovirions. Endocytosed HIV-1 pseudovirions trafficked through early (Rab4+) and late endosomes (Rab7+), and then to an LC3+ (microtubule-associated protein 1A/1B-light chain 3) compartment. Incubation with virions induced IRAK4 (interleukin 1 receptor-associated kinase 4), Akt (protein kinase B), and IKK (IκB kinase) activation, granule secretion, and platelet-leukocyte aggregate formation. This activation required TLRs (Toll-like receptors) and MyD88 (myeloid differentiation primary response protein 88) but was less extensive and slower than activation with thrombin. In vivo, HIV-1 pseudovirions injection led to virion uptake and platelet activation, as measured by IKK activation, platelet-leukocyte aggregate formation, and mild thrombocytopenia. All were decreased in VAMP-3-/- and, megakaryocyte/platelet-specific, Arf6-/- mice. Similar platelet activation profiles (increased platelet-leukocyte aggregates, plasma platelet factor 4, and phospho-IκBα) were detected in newly diagnosed and antiretroviral therapy-controlled HIV-1+ patients. CONCLUSIONS Collectively, our data provide mechanistic insights into the cell biology of how platelets endocytose and process virions. We propose a mechanism by which platelets sample the circulation and respond to potential pathogens that they take up.
Collapse
Affiliation(s)
- Meenakshi Banerjee
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Yunjie Huang
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Smita Joshi
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
- Lexington VA Health Care System, Lexington, KY
| | - Gabriel J. Popa
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Michael D. Mendenhall
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Qing Jun Wang
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY
| | - Beth A. Garvy
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY
| | - Thein Myint
- Department of Infectious Diseases, Bluegrass Care Clinic, Kentucky Clinic, University of Kentucky, Lexington, KY
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
- Lexington VA Health Care System, Lexington, KY
| |
Collapse
|
103
|
Platelet factor 4 and β-thromboglobulin mRNAs in circulating microparticles of trauma patients as diagnostic markers for deep vein thrombosis. J Thromb Thrombolysis 2020; 50:525-532. [PMID: 32347511 DOI: 10.1007/s11239-020-02124-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Deep vein thrombosis (DVT) is a common complication after trauma. The development of markers to predict DVT in trauma patients is needed, and circulating microparticles (MPs) and their contents are possible candidates. In this study, we aimed to identify platelet factor 4 (PF4) and β-thromboglobulin (β-TG) mRNAs in circulating MPs as potential markers for DVT diagnosis in trauma patients. Fifteen trauma patients diagnosed with DVT and fifteen matched patients without DVT were included in this study. Fifteen healthy volunteers also were included as controls. Circulating MPs were obtained from the plasma of all study subjects. Annexin V+ MPs and platelet-derived MPs (PMPs) were quantified using flow cytometry. PF4 and β-TG mRNAs in MPs were determined by qPCR, and the common logarithm of relative quantitation (RQ) was calculated using the comparative Ct method. Receiver-operating characteristic (ROC) curves were performed to analyze the diagnostic value of PF4 and β-TG mRNAs. No significant differences were found in Annexin V+ MPs and PMPs levels between trauma patients with and without DVT. However, both PF4 and β-TG mRNAs in MPs from the DVT group were significantly higher than the non-DVT group and healthy controls (P = 0.014 for PF4, P = 0.010 for β-TG). The ROC curve analysis showed that both the PF4 mRNA (area-under curve (AUC) 0.756, P = 0.017) and the β-TG mRNA (AUC 0.751, P = 0.019) had a positive predictive value for DVT. This finding indicates that the PF4 and β-TG mRNAs in MPs may be used as potential biomarkers for DVT diagnosis in trauma patients.
Collapse
|
104
|
McDonald B, Dunbar M. Platelets and Intravascular Immunity: Guardians of the Vascular Space During Bloodstream Infections and Sepsis. Front Immunol 2019; 10:2400. [PMID: 31681291 PMCID: PMC6797619 DOI: 10.3389/fimmu.2019.02400] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Despite their humble origins as anuclear fragments of megakaryocytes, platelets have emerged as versatile mediators of thrombosis and immunity. The diverse spectrum of platelet functions are on full display during the host response to severe infection and sepsis, with platelets taking center-stage in the intravascular immune response to blood-borne pathogens. Platelets are endowed with a comprehensive armamentarium of pathogen detection systems that enable them to function as sentinels in the bloodstream for rapid identification of microbial invasion. Through both autonomous anti-microbial effector functions and collaborations with other innate immune cells, platelets orchestrate a complex intravascular immune defense system that protects against bacterial dissemination. As with any powerful immune defense system, dysregulation of platelet-mediated intravascular immunity can lead to profound collateral damage to host cells and tissues, resulting in sepsis-associated organ dysfunction. In this article, the cellular and molecular contributions of platelets to intravascular immune defenses in sepsis will be reviewed, including the roles of platelets in surveillance of the microcirculation and elicitation of protective anti-bacterial responses. Mechanisms of platelet-mediated thromboinflammatory organ dysfunction will be explored, with linkages to clinical biomarkers of platelet homeostasis that aid in the diagnosis and prognostication of human sepsis. Lastly, we discuss novel therapeutic opportunities that take advantage of our evolving understanding of platelets and intravascular immunity in severe infection.
Collapse
Affiliation(s)
- Braedon McDonald
- Department of Critical Care Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mary Dunbar
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
105
|
Cheng X, Ferino E, Hull H, Jickling GC, Ander BP, Stamova B, Sharp FR. Smoking affects gene expression in blood of patients with ischemic stroke. Ann Clin Transl Neurol 2019; 6:1748-1756. [PMID: 31436916 PMCID: PMC6764500 DOI: 10.1002/acn3.50876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/27/2019] [Accepted: 07/27/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Though cigarette smoking (CS) is a well-known risk factor for ischemic stroke (IS), there is no data on how CS affects the blood transcriptome in IS patients. METHODS We recruited IS-current smokers (IS-SM), IS-never smokers (IS-NSM), control-smokers (C-SM), and control-never smokers (C-NSM). mRNA expression was assessed on HTA-2.0 microarrays and unique as well as commonly expressed genes identified for IS-SM versus IS-NSM and C-SM versus C-NSM. RESULTS One hundred and fifty-eight genes were differentially expressed in IS-SM versus IS-NSM; 100 genes were differentially expressed in C-SM versus C-NSM; and 10 genes were common to both IS-SM and C-SM (P < 0.01; |fold change| ≥ 1.2). Functional pathway analysis showed the 158 IS-SM-regulated genes were associated with T-cell receptor, cytokine-cytokine receptor, chemokine, adipocytokine, tight junction, Jak-STAT, ubiquitin-mediated proteolysis, and adherens junction signaling. IS-SM showed more altered genes and functional networks than C-SM. INTERPRETATION We propose some of the 10 genes that are elevated in both IS-SM and C-SM (GRP15, LRRN3, CLDND1, ICOS, GCNT4, VPS13A, DAP3, SNORA54, HIST1H1D, and SCARNA6) might contribute to increased risk of stroke in current smokers, and some genes expressed by blood leukocytes and platelets after stroke in smokers might contribute to worse stroke outcomes that occur in smokers.
Collapse
Affiliation(s)
- Xiyuan Cheng
- Department of Neurology, University of California at Davis, Sacramento, California.,Toxicology and Pharmacology Graduate Program, University of California at Davis, Davis, California
| | - Eva Ferino
- Department of Neurology, University of California at Davis, Sacramento, California
| | - Heather Hull
- Department of Neurology, University of California at Davis, Sacramento, California
| | - Glen C Jickling
- Department of Neurology, University of California at Davis, Sacramento, California.,Department of Neurology, University of Alberta, Edmonton, California
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, Sacramento, California
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, Sacramento, California
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, Sacramento, California.,Toxicology and Pharmacology Graduate Program, University of California at Davis, Davis, California
| |
Collapse
|
106
|
Gaertner F, Massberg S. Patrolling the vascular borders: platelets in immunity to infection and cancer. Nat Rev Immunol 2019; 19:747-760. [DOI: 10.1038/s41577-019-0202-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
|
107
|
Understanding Platelets in Infectious and Allergic Lung Diseases. Int J Mol Sci 2019; 20:ijms20071730. [PMID: 30965568 PMCID: PMC6480134 DOI: 10.3390/ijms20071730] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/29/2022] Open
Abstract
Emerging evidence suggests that platelets, cytoplasmic fragments derived from megakaryocytes, can no longer be considered just as mediators in hemostasis and coagulation processes, but as key modulators of immunity. Platelets have received increasing attention as the emergence of new methodologies has allowed the characterization of their components and functions in the immune continuum. Platelet activation in infectious and allergic lung diseases has been well documented and associated with bacterial infections reproduced in several animal models of pulmonary bacterial infections. Direct interactions between platelets and bacteria have been associated with increased pulmonary platelet accumulation, whereas bacterial-derived toxins have also been reported to modulate platelet function. Recently, platelets have been found extravascular in the lungs of patients with asthma, and in animal models of allergic lung inflammation. Their ability to interact with immune and endothelial cells and secrete immune mediators makes them one attractive target for biomarker identification that will help characterize their contribution to lung diseases. Here, we present an original review of the last advances in the platelet field with a focus on the contribution of platelets to respiratory infections and allergic-mediated diseases.
Collapse
|
108
|
Scherer LD, Brenner MK, Mamonkin M. Chimeric Antigen Receptors for T-Cell Malignancies. Front Oncol 2019; 9:126. [PMID: 30891427 PMCID: PMC6411696 DOI: 10.3389/fonc.2019.00126] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/12/2019] [Indexed: 12/27/2022] Open
Abstract
Development of chimeric antigen receptor (CAR)-modified T cells for the treatment of T-lineage leukemia and lymphoma has encountered several unique challenges. The most widely expressed tumor antigen targets for malignant T cells are often also expressed on non-malignant T cells. Transducing T cells with CARs targeted to these shared antigens can therefore promote over-activation or fratricide of CAR T cells, reducing their therapeutic potency. If fratricide is resolved, clinical CAR T cell activity may eliminate normal T-cell subsets and cause temporary immunosuppression. In this review, we summarize the preclinical development of CAR-based therapies for T-cell malignancies and discuss strategies to minimize toxicities associated with on-target fratricide and off-tumor activity.
Collapse
Affiliation(s)
- Lauren D Scherer
- Texas Children's Hospital, Houston, TX, United States.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Malcolm K Brenner
- Texas Children's Hospital, Houston, TX, United States.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States.,Houston Methodist Hospital, Houston, TX, United States
| | - Maksim Mamonkin
- Texas Children's Hospital, Houston, TX, United States.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States.,Houston Methodist Hospital, Houston, TX, United States.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
109
|
Luyendyk JP, Schoenecker JG, Flick MJ. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood 2019; 133:511-520. [PMID: 30523120 PMCID: PMC6367649 DOI: 10.1182/blood-2018-07-818211] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/26/2018] [Indexed: 02/08/2023] Open
Abstract
The canonical role of the hemostatic and fibrinolytic systems is to maintain vascular integrity. Perturbations in either system can prompt primary pathological end points of hemorrhage or thrombosis with vessel occlusion. However, fibrin(ogen) and proteases controlling its deposition and clearance, including (pro)thrombin and plasmin(ogen), have powerful roles in driving acute and reparative inflammatory pathways that affect the spectrum of tissue injury, remodeling, and repair. Indeed, fibrin(ogen) deposits are a near-universal feature of tissue injury, regardless of the nature of the inciting event, including injuries driven by mechanical insult, infection, or immunological derangements. Fibrin can modify multiple aspects of inflammatory cell function by engaging leukocytes through a variety of cellular receptors and mechanisms. Studies on the role of coagulation system activation and fibrin(ogen) deposition in models of inflammatory disease and tissue injury have revealed points of commonality, as well as context-dependent contributions of coagulation and fibrinolytic factors. However, there remains a critical need to define the precise temporal and spatial mechanisms by which fibrinogen-directed inflammatory events may dictate the severity of tissue injury and coordinate the remodeling and repair events essential to restore normal organ function. Current research trends suggest that future studies will give way to the identification of novel hemostatic factor-targeted therapies for a range of tissue injuries and disease.
Collapse
Affiliation(s)
- James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation
- Department of Pharmacology and Toxicology, and
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI
| | - Jonathan G Schoenecker
- Department of Orthopaedics
- Department of Pharmacology
- Department of Pediatrics, and
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN; and
| | - Matthew J Flick
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
110
|
|
111
|
|
112
|
The Role of Platelets in Antimicrobial Host Defense. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
113
|
A dichotomy in platelet activation: Evidence of different functional platelet responses to inflammatory versus haemostatic stimuli. Thromb Res 2018; 172:110-118. [DOI: 10.1016/j.thromres.2018.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/18/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
|
114
|
Rossaint J, Margraf A, Zarbock A. Role of Platelets in Leukocyte Recruitment and Resolution of Inflammation. Front Immunol 2018; 9:2712. [PMID: 30515177 PMCID: PMC6255980 DOI: 10.3389/fimmu.2018.02712] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/02/2018] [Indexed: 12/30/2022] Open
Abstract
Platelets are most often recognized for their crucial role in the control of acute hemorrhage. However, current research has greatly expanded the appreciation of platelets beyond their contribution to primary hemostasis, indicating that platelets also actively participate in leukocyte recruitment and the regulation of the host defense in response to exogenous pathogens and sterile injury. Early recruitment of leukocytes, especially neutrophils, is the evolutionary stronghold of the innate immune response to successfully control exogenous infections. Platelets have been shown to physically interact with different leukocyte subsets during inflammatory processes. This interaction holds far-reaching implications for the leukocyte recruitment into peripheral tissues as well as the regulation of leukocyte cell autonomous functions, including the formation and liberation of neutrophil extracellular traps. These functions critically depend on the interaction of platelets with leukocytes. The host immune response and leukocyte recruitment must be tightly regulated to avoid excessive tissue and organ damage and to avoid chronification of inflammation. Thus, platelet-leukocyte interactions and the resulting leukocyte activation and recruitment also underlies tight regulation by several inherited feedback mechanisms to limit the extend of vascular inflammation and to protect the host from collateral damage caused by overshooting immune system activation. After the acute inflammatory phase has been overcome the host defense response must eventually be terminated to allow for resolution from inflammation and restoration of tissue and organ function. Besides their essential role for leukocyte recruitment and the initiation and propagation of vascular inflammation, platelets have lately also been implicated in the resolution process. Here, their contribution to phagocyte clearance, T cell recruitment and macrophage reprogramming is also of outmost importance. This review will focus on the role of platelets in leukocyte recruitment during the initiation of the host defense and we will also discuss the participation of platelets in the resolution process after acute inflammation.
Collapse
Affiliation(s)
- Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany.,Interdisciplinary Centre for Clinical Research, University Hospital Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| |
Collapse
|
115
|
Abstract
Platelet P2Y1 receptor signalling via RhoGTPases is necessary for platelet-dependent leukocyte recruitment, where no platelet aggregation is observed. We investigated signalling cascades involved in distinct P2Y1-dependent platelet activities in vitro, using specific inhibitors for phospholipase C (PLC) (U73122, to inhibit the canonical pathway), and RhoGTPases: Rac1 (NSC23766) and RhoA (ROCK inhibitor GSK429286). Human platelet rich plasma (for platelet aggregation) or isolated washed platelets (for chemotaxis assays) was treated with U73122, GSK429286 or NSC23766 prior to stimulation with adenosine diphosphate (ADP) or the P2Y1 specific agonist MRS2365. Aggregation, chemotaxis (towards f-MLP), or platelet-induced human neutrophil chemotaxis (PINC) towards macrophage derived chemokine (MDC) was assessed. Molecular docking of ADP and MRS2365 to P2Y1 was analysed using AutoDock Smina followed by GOLD molecular docking in the Accelrys Discovery Studio software. Inhibition of PLC, but not Rac1 or RhoA, suppressed platelet aggregation induced by ADP and MRS2365. In contrast, platelet chemotaxis and PINC, were significantly attenuated by inhibition of platelet Rac1 or RhoA, but not PLC. MRS2365, compared to ADP had a less pronounced effect on P2Y1-induced aggregation, but a similar efficacy to stimulate platelet chemotaxis and PINC, which might be explained by differences in molecular interaction of ADP compared to MRS2365 with the P2Y1 receptor. Platelet P2Y1 receptor activation during inflammation signals through alternate pathways involving Rho GTPases in contrast to canonical P2Y1 receptor induced PLC signalling. This might be explained by selective molecular interactions of ligands within the orthosteric site of the P2Y1 receptor.
Collapse
|
116
|
Flierl U, Schäfer A. Fractalkine – a local inflammatory marker aggravating platelet activation at the vulnerable plaque. Thromb Haemost 2017; 108:457-63. [DOI: 10.1160/th12-04-0271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 05/30/2012] [Indexed: 01/10/2023]
Abstract
SummaryChemokines play an important role in inducing chemotaxis of cells, piloting white blood cells in immune surveillance and are crucial parts in the development and progression of atherosclerosis. Platelets are mandatory players in the initiation of atherosclerotic lesion formation and are susceptible targets for and producers of chemokines. Several chemokine receptors on platelets have been described previously, amongst them CX3CR1, the receptor for fractalkine. The unique chemokine fractalkine (CX3CL1, FKN) exists as a soluble as well as a membrane-anchored glycoprotein. Its essential role in the formation of atherosclerotic lesions and atherosclerosis progression has been impressively described in mouse models. Moreover, fractalkine induces platelet activation and adhesion via a functional fractalkine receptor (CX3CR1) expressed on the platelet surface. Platelet activation via the FKN/CX3CR1-axis triggers leukocyte adhesion to activated endothelium, and fractalkine-induced platelet P-selectin is mandatory for leukocyte recruitment under arterial flow conditions. This review summarises the role of fractalkine as a potential local inflammatory mediator which influences platelet activation in the setting of atherosclerosis. Beyond that, aspects of a potential interaction between fractalkine and platelet responsiveness to antiplatelet drugs are described. Furthermore, the possible impact of high-density lipoprotein cholesterol (HDL-C) on atherosclerosis progression, platelet activation and fractalkine signalling are discussed.
Collapse
|
117
|
Human endoglin as a potential new partner involved in platelet-endothelium interactions. Cell Mol Life Sci 2017; 75:1269-1284. [PMID: 29080903 PMCID: PMC5843676 DOI: 10.1007/s00018-017-2694-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 11/20/2022]
Abstract
Complex interactions between platelets and activated endothelium occur during the thrombo-inflammatory reaction at sites of vascular injuries and during vascular hemostasis. The endothelial receptor endoglin is involved in inflammation through integrin-mediated leukocyte adhesion and transmigration; and heterozygous mutations in the endoglin gene cause hereditary hemorrhagic telangiectasia type 1. This vascular disease is characterized by a bleeding tendency that is postulated to be a consequence of telangiectasia fragility rather than a platelet defect, since platelets display normal functions in vitro in this condition. Here, we hypothesize that endoglin may act as an adhesion molecule involved in the interaction between endothelial cells and platelets through integrin recognition. We find that the extracellular domain of human endoglin promotes specific platelet adhesion under static conditions and confers resistance of adherent platelets to detachment upon exposure to flow. Also, platelets adhere to confluent endothelial cells in an endoglin-mediated process. Remarkably, Chinese hamster ovary cells ectopically expressing the human αIIbβ3 integrin acquire the capacity to adhere to myoblast transfectants expressing human endoglin, whereas platelets from Glanzmann’s thrombasthenia patients lacking the αIIbβ3 integrin are defective for endoglin-dependent adhesion to endothelial cells. Furthermore, the bleeding time, but not the prothrombin time, is significantly prolonged in endoglin-haplodeficient (Eng+/−) mice compared to Eng+/+ animals. These results suggest a new role for endoglin in αIIbβ3 integrin-mediated adhesion of platelets to the endothelium, and may provide a better understanding on the basic cellular mechanisms involved in hemostasis and thrombo-inflammatory events.
Collapse
|
118
|
Perera LP, Zhang M, Nakagawa M, Petrus MN, Maeda M, Kadin ME, Waldmann TA, Perera PY. Chimeric antigen receptor modified T cells that target chemokine receptor CCR4 as a therapeutic modality for T-cell malignancies. Am J Hematol 2017; 92:892-901. [PMID: 28543380 DOI: 10.1002/ajh.24794] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023]
Abstract
With the emerging success of treating CD19 expressing B cell malignancies with ex vivo modified, autologous T cells that express CD19-directed chimeric antigen receptors (CAR), there is intense interest in expanding this evolving technology to develop effective modalities to treat other malignancies including solid tumors. Exploiting this approach to develop a therapeutic modality for T cell malignancies for which the available regimens are neither curative, nor confer long term survival we generated a lentivirus-based CAR gene transfer system to target the chemokine receptor CCR4 that is over-expressed in a spectrum of T cell malignancies as well as in CD4+ CD25+ Foxp3+ T regulatory cells that accumulate in the tumor microenvironment constituting a barrier against anti-tumor immunity. Ex vivo modified, donor-derived T cells that expressed CCR4 directed CAR displayed antigen-dependent potent cytotoxicity against patient-derived cell lines representing ATL, CTCL, ALCL and a subset of HDL. Furthermore, these CAR T cells also eradicated leukemia in a mouse xenograft model of ATL illustrating the potential utility of this modality in the treatment of a wide spectrum of T cell malignancies.
Collapse
Affiliation(s)
- Liyanage P. Perera
- Lymphoid Malignancies Branch, National Cancer Institute; Bethesda Maryland 20892-1374 USA
| | - Meili Zhang
- Lymphoid Malignancies Branch, National Cancer Institute; Bethesda Maryland 20892-1374 USA
| | - Masao Nakagawa
- Lymphoid Malignancies Branch, National Cancer Institute; Bethesda Maryland 20892-1374 USA
| | - Michael N. Petrus
- Lymphoid Malignancies Branch, National Cancer Institute; Bethesda Maryland 20892-1374 USA
| | - Michiyuki Maeda
- Institute for Virus Research, Kyoto University; Sakyo-ku Kyoto Japan
| | - Marshall E. Kadin
- Boston University School of Medicine, Department of Dermatology and Skin Surgery; Roger Williams Medical Center; Providence Rhode 02908
| | - Thomas A. Waldmann
- Lymphoid Malignancies Branch, National Cancer Institute; Bethesda Maryland 20892-1374 USA
| | - Pin-Yu Perera
- Veterans Affairs Medical Center; Washington D.C. 20422 USA
| |
Collapse
|
119
|
Shah SA, Page CP, Pitchford SC. Platelet-Eosinophil Interactions As a Potential Therapeutic Target in Allergic Inflammation and Asthma. Front Med (Lausanne) 2017; 4:129. [PMID: 28848732 PMCID: PMC5550710 DOI: 10.3389/fmed.2017.00129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/24/2017] [Indexed: 01/24/2023] Open
Abstract
The importance of platelet activation during hemostasis is well understood. An understanding of these mechanisms has led to the use of several classes of anti-platelet drugs to inhibit aggregation for the prevention of thrombi during cardiovascular disease. It is now also recognized that platelets can function very differently during inflammation, as part of their role in the innate immune response against pathogens. This dichotomy in platelet function occurs through distinct physiological processes and alternative signaling pathways compared to that of hemostasis (leading to platelet aggregation) and is manifested as increased rheological interactions with leukocytes, the ability to undergo chemotaxis, communication with antigen-presenting cells, and direct anti-pathogen responses. Mounting evidence suggests platelets are also critical in the pathogenesis of allergic diseases such as asthma, where they have been associated with antigen presentation, bronchoconstriction, bronchial hyperresponsiveness, airway inflammation, and airway remodeling in both clinical and experimental studies. In particular, platelets have been reported bound to eosinophils in the blood of patients with asthma and the incidence of these events increases after both spontaneous asthma attacks in a biphasic manner, or after allergen challenge in the clinic. Platelet depletion in animal models of allergic airway inflammation causes a profound reduction in eosinophil recruitment to the lung, suggesting that the association of platelets with eosinophils is indeed an important event during eosinophil activation. Furthermore, in cases of severe asthma, and in animal models of allergic airways inflammation, platelet–eosinophil complexes move into the lung through a platelet P-selectin-mediated, eosinophil β1-integrin activation-dependent process, while platelets increase adherence of eosinophils to the vascular endothelium in vitro, demonstrating a clear interaction between these cell types in allergic inflammatory diseases. This review will explore non-thrombotic platelet activation in the context of allergy and the association of platelets with eosinophils, to reveal how these phenomena may lead to the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Sajeel A Shah
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| |
Collapse
|
120
|
Abstract
The role of platelets as inflammatory cells is now well established. Given the peculiar characteristics of the lung circulation, with a broad capillary bed, platelets are especially involved with the physiology of the lungs and play a key role in a number of inflammatory lung disorders. The platelet precursors, megakaryocytes, are detected in the lung microcirculation; moreover platelets with their endothelium-protective and vascular reparative activities contribute to the lung capillary blood barrier integrity. Given the function of the lungs as first wall against pathogen invasion, platelets participate in immune defence of the normal lung. On the other hand, platelets may turn into effectors of the inflammatory reaction of the lungs to allergens, to infectious agents, to chemical agents and may contribute strongly to the perpetuation of chronic inflammatory reactions, largely by their ability to interact with other inflammatory cells and the endothelium. In this chapter we provide an overview of the role of platelets in several inflammatory lung disorders discussing the pathophysiologic bases of platelet involvement in these conditions and the experimental and clinical evidence for a role of platelets in lung diseases.
Collapse
|
121
|
Li J, Zhou Z, Zhang X, Zheng L, He D, Ye Y, Zhang QQ, Qi CL, He XD, Yu C, Shao CK, Qiao L, Wang L. Inflammatory Molecule, PSGL-1, Deficiency Activates Macrophages to Promote Colorectal Cancer Growth through NFκB Signaling. Mol Cancer Res 2017; 15:467-477. [PMID: 28108624 DOI: 10.1158/1541-7786.mcr-16-0309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 11/16/2022]
Abstract
P-selectin glycoprotein ligand 1 (SELPLG/PSGL-1) is an inflammatory molecule that is functionally related to immune cell differentiation and leukocyte mobilization. However, the role of PSGL-1 in tumor development remains unknown. Therefore, this study investigates the mechanistic role of PSGL-1 in the development of intestinal tumors in colorectal cancer. ApcMin/+ mice are highly susceptible to spontaneous intestinal adenoma formation, and were crossbred with PSGL1-null mice to generate compound transgenic mice with a ApcMin/+;PSGL-1-/- genotype. The incidence and pathologic features of the intestinal tumors were compared between the ApcMin/+ mice and ApcMin/+;PSGL-1-/- mice. Importantly, PSGL-1-deficient mice showed increased susceptibility to develop intestinal tumors and accelerated tumor growth. Mechanistically, increased production of the mouse chemokine ligand 9 (CCL9/MIP-1γ) was found in the PSGL-1-deficient mice, and the macrophages are likely the major source of macrophage inflammatory protein-1 gamma (MIP-1γ). Studies in vitro demonstrated that macrophage-derived MIP-1γ promoted colorectal cancer tumor cell growth through activating NFκB signaling. Conversely, restoration of the PSGL-1 signaling via bone marrow transplantation reduced MIP-1γ production and attenuated the ability of ApcMin/+;PSGL-1-/- mice to generate intestinal tumors. In human colorectal cancer clinical specimens, the presence of PSGL-1-positive cells was associated with a favorable tumor-node-metastasis staging and decreased lymph node metastasis.Implications:PSGL-1 deficiency and inflammation render intestinal tissue more vulnerable to develop colorectal tumors through a MIP-1γ/NFκB signaling axis. Mol Cancer Res; 15(4); 467-77. ©2017 AACR.
Collapse
Affiliation(s)
- Jiangchao Li
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zeqi Zhou
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaohan Zhang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zheng
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dan He
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuxiang Ye
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qian-Qian Zhang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Cui-Ling Qi
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao-Dong He
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chen Yu
- Department of Gastroenterology, The First Affiliated Hospital of Pharmaceutical University, Guangzhou, China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Qiao
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at the Westmead, New South Wales, Australia
| | - Lijing Wang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
122
|
Tan C, Lu X, Chen W, Chen S. Serum ubiquitin via CXC chemokine receptor 4 triggered cyclooxygenase-1 ubiquitination possibly involved in the pathogenesis of aspirin resistance. Clin Hemorheol Microcirc 2016; 61:59-81. [PMID: 25267459 DOI: 10.3233/ch-141900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Extracellular ubiquitin (Ub) with platelet aggregation property was found higher in acute myocardial infarction (AMI) patients. Here we detected the platelet functions and serum Ub levels in 250 AMI patients and 50 healthy volunteers before and after aspirin treatment. The influence of serum Ub on platelet functions was determined in vitro. We found that 47 out of 250 AMI patients showed aspirin resistance (AR) and 203 showed aspirin sensitivity (AS). During hospitalization, AR group had higher serum Ub levels than the AS group or the healthy group, and the serum Ub levels was related to the rates of thrombosis events. The patients with higher serum Ub levels showed that the platelets had more ubiquitinated platelets, higher contents of ubiquitinated proteins and ubiquitinated cyclooxygenase-1 (COX-1). The levels of ubiquitinated COX-1 in the platelets was inversely correlated with acetylated COX-1, the separated ubiquitinated COX-1 activity was approximately twofold or fourfold higher than the total COX-1(ubiquitinated COX-1 and COX-1) or COX-1. In vitro, we found that extracellular Ub, via the CXC chemokine receptor 4 (CXCR4) pathway, facilitated COX-1 to be ubiquitined and prevented aspirin to acetylate its target. Platelets had higher levels of ubiquitinated COX-1 showing poor response to aspirin. Such results were not detected in Ub-free serum or ovalbumin incubated platelets. Serum Ub, via the CXCR4 pathway, facilitated COX-1 to be ubiquitined and activated the platelets possibly involved in the pathogenesis of AR.
Collapse
Affiliation(s)
- Chunjiang Tan
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Xiao Lu
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Wenlie Chen
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Songming Chen
- Cardiovascular Department of First Affiliated Hospital, Medical College, Shantou University, Guangdong, China
| |
Collapse
|
123
|
Grotto RMT, Cantão NM, Padovani JL, Souza LDRD, Silva GF, Ferrasi AC, Pardini MIDMC. Human platelets antigens influence the viral load of platelets after the interaction of the platelets with HCV and HIV in vitro. Rev Soc Bras Med Trop 2016; 49:491-3. [DOI: 10.1590/0037-8682-0105-2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 11/21/2022] Open
|
124
|
CCL5 derived from platelets increases megakaryocyte proplatelet formation. Blood 2015; 127:921-6. [PMID: 26647394 DOI: 10.1182/blood-2015-05-644583] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
In times of physiological stress, platelet count can transiently rise. What initiates this reactive thrombocytosis is poorly understood. Intriguingly, we found that treating megakaryocytes (MKs) with the releasate from activated platelets increased proplatelet production by 47%. Platelets store inflammatory cytokines, including the chemokine ligand 5 (CCL5, RANTES); after TRAP activation, platelets release over 25 ng/mL CCL5. We hypothesized that CCL5 could regulate platelet production by binding to its receptor, CCR5, on MKs. Maraviroc (CCR5 antagonist) or CCL5 immunodepletion diminished 95% and 70% of the effect of platelet releasate, respectively, suggesting CCL5 derived from platelets is sufficient to drive increased platelet production through MK CCR5. MKs cultured with recombinant CCL5 increased proplatelet production by 50% and had significantly higher ploidy. Pretreating the MK cultures with maraviroc prior to exposure to CCL5 reversed the augmented proplatelet formation and ploidy, suggesting that CCL5 increases MK ploidy and proplatelet formation in a CCR5-dependent manner. Interrogation of the Akt signaling pathway suggested that CCL5/CCR5 may influence proplatelet production by suppressing apoptosis. In an in vivo murine acute colitis model, platelet count significantly correlated with inflammation whereas maraviroc treatment abolished this correlation. We propose that CCL5 signaling through CCR5 may increase platelet counts during physiological stress.
Collapse
|
125
|
Yadav H, Kor DJ. Platelets in the pathogenesis of acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2015; 309:L915-23. [PMID: 26320157 PMCID: PMC4628982 DOI: 10.1152/ajplung.00266.2015] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/26/2015] [Indexed: 12/29/2022] Open
Abstract
Platelets have an emerging and incompletely understood role in a myriad of host immune responses, extending their role well beyond regulating thrombosis. Acute respiratory distress syndrome is a complex disease process characterized by a range of pathophysiologic processes including oxidative stress, lung deformation, inflammation, and intravascular coagulation. The objective of this review is to summarize existing knowledge on platelets and their putative role in the development and resolution of lung injury.
Collapse
Affiliation(s)
- Hemang Yadav
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Daryl J Kor
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
126
|
Solari R, Pease JE. Targeting chemokine receptors in disease--a case study of CCR4. Eur J Pharmacol 2015; 763:169-77. [PMID: 25981299 PMCID: PMC4784718 DOI: 10.1016/j.ejphar.2015.05.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/17/2015] [Accepted: 05/12/2015] [Indexed: 01/14/2023]
Abstract
Since their early 1990s, the chemokine receptor family of G protein-coupled receptors (GPCRs) has been the source of much pharmacological endeavour. Best known for their key roles in recruiting leukocytes to sites of infection and inflammation, the receptors present themselves as plausible drug targets for therapeutic intervention. In this article, we will focus our attention upon CC Chemokine Receptor Four (CCR4) which has been implicated in diseases as diverse as allergic asthma and lymphoma. We will review the discovery of the receptors and their ligands, their perceived roles in disease and the successful targeting of CCR4 by both small molecule antagonists and monoclonal antibodies. We will also discuss future directions and strategies for drug discovery in this field.
Collapse
Affiliation(s)
- Roberto Solari
- Airway Disease Infection Section, MRC-Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom
| | - James E Pease
- Leukocyte Biology Section, MRC-Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
| |
Collapse
|
127
|
Role of chemokine receptors CXCR4 and CXCR7 for platelet function. Biochem Soc Trans 2015; 43:720-6. [PMID: 26551719 DOI: 10.1042/bst20150113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 02/07/2023]
Abstract
Platelet-derived SDF-1α (stromal cell derived factor-α) mediates inflammation, immune defence and repair mechanisms at site of tissue injury. This review summarizes the relative expression of CXC chemokine receptor 4 (CXCR4) and CXCR7 in platelets, their dynamic trafficking in presence of ligands like chemokine C-X-C-motif ligand 11 (CXCL11), CXCL12 and MIF (macrophage migration inhibitory factor); how these receptors differentially mediate the functional and survival response to the chemokines CXCL11, CXCL12 and MIF. We further elaborate and emphasize the prognostic significance of platelet surface expression of CXCR4-CXCR7 in the context of coronary artery disease (CAD). SDF-1α/CXCL12, CXCL11, MIF effects mediated through CXCR4 and CXCR7 may play a regulatory role at the site of vascular and tissue inflammation, immune defence and repair where activated platelets reach as forerunners and function as critical players.
Collapse
|
128
|
Abstract
Rho GTPases are critical for platelet function. Although the roles of RhoA, Rac and Cdc42 are characterized, platelets express other Rho GTPases, whose activities are less well understood. This review summarizes our understanding of the roles of platelet Rho GTPases and focuses particularly on the functions of Rif and RhoG. In human platelets, Rif interacts with cytoskeleton regulators including formins mDia1 and mDia3, whereas RhoG binds SNARE-complex proteins and cytoskeletal regulators ELMO and DOCK1. Knockout mouse studies suggest that Rif plays no critical functions in platelets, likely due to functional overlap with other Rho GTPases. In contrast, RhoG is essential for normal granule secretion downstream of the collagen receptor GPVI. The central defect in RhoG-/- platelets is reduced dense granule secretion, which impedes integrin activation and aggregation and limits platelet recruitment to growing thrombi under shear, translating into reduced thrombus formation in vivo. Potential avenues for future work on Rho GTPases in platelets are also highlighted, including identification of the key regulator for platelet filopodia formation and investigation of the role of the many Rho GTPase regulators in platelet function in both health and disease.
Collapse
|
129
|
Chabert A, Hamzeh-Cognasse H, Pozzetto B, Cognasse F, Schattner M, Gomez RM, Garraud O. Human platelets and their capacity of binding viruses: meaning and challenges? BMC Immunol 2015; 16:26. [PMID: 25913718 PMCID: PMC4411926 DOI: 10.1186/s12865-015-0092-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/03/2015] [Indexed: 01/16/2023] Open
Abstract
Blood platelets are first aimed at ensuring primary hemostasis. Beyond this role, they have been acknowledged as having functions in the maintenance of the vascular arborescence and, more recently, as being also innate immune cells, devoted notably to the detection of danger signals, of which infectious ones. Platelets express pathogen recognition receptors that can sense bacterial and viral moieties. Besides, several molecules that bind epithelial or sub-endothelial molecules and, so forth, are involved in hemostasis, happen to be able to ligate viral determinants, making platelets capable of either binding viruses or even to be infected by some of them. Further, as platelets express both Fc-receptors for Ig and complement receptors, they also bind occasionally virus-Ig or virus-Ig-complement immune complexes. Interplays of viruses with platelets are very complex and viral infections often interfere with platelet number and functions. Through a few instances of viral infections, the present review aims at presenting some of the most important interactions from pathophysiological and clinical points of view, which are observed between human viruses and platelets.
Collapse
Affiliation(s)
- Adrien Chabert
- EA3064-GIMAP, Université de Lyon, 42023, Saint-Etienne, France.
| | | | - Bruno Pozzetto
- EA3064-GIMAP, Université de Lyon, 42023, Saint-Etienne, France.
- Service des Agents infectieux et d'Hygiène, CHU de Saint-Etienne, 42055, Saint-Etienne, France.
| | - Fabrice Cognasse
- EA3064-GIMAP, Université de Lyon, 42023, Saint-Etienne, France.
- EFS Auvergne-Loire, 42023, Saint-Etienne, France.
| | - Mirta Schattner
- Laboratorio de Trombosis Experimental, Instituto de Medicina Experimental, ANM-CONICET, Buenos Aires, Argentina.
| | - Ricardo M Gomez
- Laboratorio de Virus Animales, Instituto de Biotecnología y Biología Molecular, UNLP-CONICET, La Plata, Argentina.
| | - Olivier Garraud
- EA3064-GIMAP, Université de Lyon, 42023, Saint-Etienne, France.
- Institut National de la Transfusion Sanguine, 75015, Paris, France.
- INTS, 6 rue Alexandre-Cabanel, 75015, Paris, France.
| |
Collapse
|
130
|
Liu Y, Bao L, Xuan L, Song B, Lin L, Han H. Chebulagic acid inhibits the LPS-induced expression of TNF-α and IL-1β in endothelial cells by suppressing MAPK activation. Exp Ther Med 2015; 10:263-268. [PMID: 26170946 DOI: 10.3892/etm.2015.2447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 04/13/2015] [Indexed: 01/17/2023] Open
Abstract
Inflammatory response in the vasculature, including the overexpression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, has been demonstrated to increase the risk of thrombosis development. Chebulagic acid (CA) is a key chemical component in the traditional Mongolian anti-thrombotic drug Garidi-13, and has been suggested to exert anti-inflammatory and anti-infective effects. The present study aimed to evaluate the regulatory impact of CA on a number of biological processes, including lipopolysaccharide (LPS)-induced inflammation, LPS-promoted mitogen-activated protein kinase (MAPK) activation and the expression of toll-like receptor (TLR)4 in EA.hy926 human endothelial cells. The results indicated that CA significantly inhibited the LPS-induced upregulation of TNF-α and IL-1β in a dose- and time-dependent manner. Furthermore, LPS-activated MAPK signaling was inhibited by CA treatment in the EA.hy926 cells. However, TLR4, which serves a key function in LPS-induced inflammation as the receptor of LPS, was not regulated by the CA treatment. In summary, the results of the present study indicate that CA inhibits the LPS-induced promotion of TNF-α and IL-1β in endothelial cells by suppressing MAPK activation, which may contribute to the anti-thrombotic effect of Garidi-13.
Collapse
Affiliation(s)
- Yueying Liu
- Teaching and Research Section of Physiology and Pathophysiology, Medical College, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028041, P.R. China
| | - Luer Bao
- Teaching and Research Section of Physiology and Pathophysiology, Medical College, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028041, P.R. China
| | - Liying Xuan
- Teaching and Research Section of Physiology and Pathophysiology, Medical College, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028041, P.R. China
| | - Baohua Song
- Teaching and Research Section of Physiology and Pathophysiology, Medical College, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028041, P.R. China
| | - Lin Lin
- Teaching and Research Section of Physiology and Pathophysiology, Medical College, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028041, P.R. China
| | - Hao Han
- Teaching and Research Section of Physiology and Pathophysiology, Medical College, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028041, P.R. China
| |
Collapse
|
131
|
Abstract
Given their small size, platelets are emerging as being one of the most important entities in the bloodstream. Not only do they play a key role in maintaining thrombosis and haemostasis, platelets also play a critical role in orchestrating the immune response. Being the first cell at the site of injury, they are perfectly placed to assess the extent of the damage and recruit immune cells as is necessary. As a first line of defence, platelets can act as primitive immune cells themselves by interacting with invading pathogens. A number of platelet receptors have been shown to interact with bacteria either directly or indirectly, involving a plasma protein bridge. This review will discuss the molecular mechanisms that exist between platelets and bacteria and the functional response to the interaction. We will also discuss the importance of considering animal models of disease and the use of physiological shear when studying platelet-bacterial interactions.
Collapse
Affiliation(s)
- Steven W Kerrigan
- School of Pharmacy & Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland , Dublin , Ireland
| |
Collapse
|
132
|
Abstract
Irrefutable clinical evidence demonstrates the activation of platelets in allergic diseases, including asthma, allergic rhinitis, and eczema. Indeed, experimental models of allergic disease have now shown that platelets play a fundamental role in the tissue recruitment of leucocytes following exposure to allergens. Furthermore, the extravascular presence of platelets in lungs of patients with asthma, and in animal models of allergic lung inflammation suggests that platelets may also contribute directly to allergic inflammation, through alterations in lung function, or by modulating processes involved in airway wall remodelling. Despite significant platelet activation in patients with allergic diseases, it is of note that these patients have been described as having a mild haemostastic defect, rather than an increased incidence of thrombosis. This suggests a dichotomy exists in platelet activation during inflammation compared to haemostasis, and that hitherto undiscovered platelet activation pathways might be exploited to create novel anti-inflammatory therapies without affecting the critical function of platelets in haemostasis.
Collapse
Affiliation(s)
- C Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| | | |
Collapse
|
133
|
Rossaint J, Zarbock A. Platelets in leucocyte recruitment and function. Cardiovasc Res 2015; 107:386-95. [PMID: 25712962 DOI: 10.1093/cvr/cvv048] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/08/2015] [Indexed: 11/14/2022] Open
Abstract
Platelets have a longstanding recognition as an essential cellular component of the coagulation system. However, substantial research over the last decade has added another important aspect to platelet function in that they are also an integral part of the innate immune system. Complex organisms are facing a constant threat of infections by invading pathogens, and they have developed a sophisticated and elegant measure to combat this threat, namely the immune system. Leucocyte recruitment to sites of infections is an essential step at the forefront of the immune response. Platelets have been shown to be involved in several steps of this process and they are an integrated connecting element among haemostasis, host defence, and additional immunological functions (e.g. neutrophil extracellular traps formation). However, the immune system also requires a tight regulation, as an overshooting immune response carries the risk of harming the host itself. This review aims at highlighting the unique features and molecular mechanisms that allow for the interactions of platelets and leucocytes and the regulation of this process. Furthermore, this article identifies the functional relevance of these events for the immune response.
Collapse
Affiliation(s)
- Jan Rossaint
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, Münster 48149, Germany Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, Münster 48149, Germany Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
134
|
Garraud O, Cognasse F. Are Platelets Cells? And if Yes, are They Immune Cells? Front Immunol 2015; 6:70. [PMID: 25750642 PMCID: PMC4335469 DOI: 10.3389/fimmu.2015.00070] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/03/2015] [Indexed: 02/06/2023] Open
Abstract
Small fragments circulating in the blood were formally identified by the end of the nineteenth century, and it was suggested that they assisted coagulation via interactions with vessel endothelia. Wright, at the beginning of the twentieth century, identified their bone-marrow origin. For long, platelets have been considered sticky assistants of hemostasis and pollutants of blood or tissue samples; they were just cell fragments. As such, however, they were acknowledged as immunizing (to specific HPA and HLA markers): the platelet’s dark face. The enlightened face showed that besides hemostasis, platelets contained factors involved in healing. As early as 1930s, platelets entered the arsenal of medicines were transfused, and were soon manipulated to become a kind of glue to repair damaged tissues. Some gladly categorized platelets as cells but they were certainly not fully licensed as such for cell physiologists. Actually, platelets possess almost every characteristic of cells, apart from being capable of organizing their genes: they have neither a nucleus nor genes. This view prevailed until it became evident that platelets play a role in homeostasis and interact with cells other than with vascular endothelial cells; then began the era of physiological and also pathological inflammation. Platelets have now entered the field of immunity as inflammatory cells. Does assistance to immune cells itself suffice to license a cell as an “immune cell”? Platelets prove capable of sensing different types of signals and organizing an appropriate response. Many cells can do that. However, platelets can use a complete signalosome (apart from the last transcription step, though it is likely that this step can be circumvented by retrotranscribing RNA messages). The question has also arisen as to whether platelets can present antigen via their abundantly expressed MHC class I molecules. In combination, these properties argue in favor of allowing platelets the title of immune cells.
Collapse
Affiliation(s)
- Olivier Garraud
- Institut National de la Transfusion Sanguine , Paris , France ; EA3064, Université de Lyon , Saint-Etienne , France
| | - Fabrice Cognasse
- EA3064, Université de Lyon , Saint-Etienne , France ; Etablissement Français du Sang Auvergne-Loire , Saint-Etienne , France
| |
Collapse
|
135
|
Ni X, Jorgensen JL, Goswami M, Challagundla P, Decker WK, Kim YH, Duvic MA. Reduction of Regulatory T Cells by Mogamulizumab, a Defucosylated Anti-CC Chemokine Receptor 4 Antibody, in Patients with Aggressive/Refractory Mycosis Fungoides and Sézary Syndrome. Clin Cancer Res 2014; 21:274-85. [DOI: 10.1158/1078-0432.ccr-14-0830] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
136
|
Remer M, Al-Shamkhani A, Glennie M, Johnson P. Mogamulizumab and the treatment of CCR4-positive T-cell lymphomas. Immunotherapy 2014; 6:1187-206. [DOI: 10.2217/imt.14.94] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glyco-engineering has been developed to enhance the pharmacological properties of monoclonal antibodies (mAbs) resulting in superior immune effector function. Mogamulizumab is the first approved glyco-engineered therapeutic antibody and first approved mAb to target the CC chemokine receptor 4 (CCR4). CCR4 is principally expressed on Tregs and helper T cells (Th) where it functions to induce homing of these leukocytes to sites of inflammation. Tregs play an essential role in maintaining immune balance; however, in malignancy, Tregs impair host antitumor immunity and provide a favorable environment for tumors to grow. CCR4 is highly expressed by aggressive peripheral T-cell lymphomas (PTCLs), particularly adult T-cell leukemia/lymphoma (ATL) and cutaneous T-cell lymphomas (CTCLs). Mogamulizumab is a humanized anti-CCR4 mAb with a defucosylated Fc region that enhances antibody-dependent cellular cytotoxicity (ADCC). In addition, mogamulizumab depletes CCR4+ Tregs, potentially evoking antitumor immune responses by autologous effector cells. This ability is highly pertinent as subsets of malignant T cells are believed to function as CD4+ Tregs, overexpressing CCR4. Clinical trials with mogamulizumab have demonstrated clinical efficacy and tolerability for the treatment of relapsed/refractory aggressive T-cell lymphomas, previously associated with very poor outcomes.
Collapse
Affiliation(s)
- Marcus Remer
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, SO16 6YD, UK
| | - Aymen Al-Shamkhani
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, SO16 6YD, UK
| | - Martin Glennie
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, SO16 6YD, UK
| | - Peter Johnson
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, SO16 6YD, UK
| |
Collapse
|
137
|
Walsh TG, Harper MT, Poole AW. SDF-1α is a novel autocrine activator of platelets operating through its receptor CXCR4. Cell Signal 2014; 27:37-46. [PMID: 25283599 PMCID: PMC4265729 DOI: 10.1016/j.cellsig.2014.09.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/23/2014] [Indexed: 11/12/2022]
Abstract
Platelets store and secrete the chemokine stromal cell-derived factor (SDF)-1α upon platelet activation, but the ability of platelet-derived SDF-1α to signal in an autocrine/paracrine manner mediating functional platelet responses relevant to thrombosis and haemostasis is unknown. We sought to explore the role of platelet-derived SDF-1α and its receptors, CXCR4 and CXCR7 in facilitating platelet activation and determine the mechanism facilitating SDF-1α-mediated regulation of platelet function. Using human washed platelets, CXCR4 inhibition, but not CXCR7 blockade significantly abrogated collagen-mediated platelet aggregation, dense granule secretion and thromboxane (Tx) A2 production. Time-dependent release of SDF-1α from collagen-activated platelets supports a functional role for SDF-1α in this regard. Using an in vitro whole blood perfusion assay, collagen-induced thrombus formation was substantially reduced with CXCR4 inhibition. In washed platelets, recombinant SDF-1α in the range of 20–100 ng/mL− 1 could significantly enhance platelet aggregation responses to a threshold concentration of collagen. These enhancements were completely dependent on CXCR4, but not CXCR7, which triggered TxA2 production and dense granule secretion. Rises in cAMP were significantly blunted by SDF-1α, which could also enhance collagen-mediated Ca(2 +) mobilisation, both of which were mediated by CXCR4. This potentiating effect of SDF-1α primarily required TxA2 signalling acting upstream of dense granule secretion, whereas blockade of ADP signalling could only partially attenuate SDF-1α-induced platelet activation. Therefore, this study supports a potentially novel autocrine/paracrine role for platelet-derived SDF-1α during thrombosis and haemostasis, through a predominantly TxA2-dependent and ADP-independent pathway. Collagen-induced platelet aggregation, TxA2 production and dense granule secretion require CXCR4 signalling. CXCR4 regulates platelet thrombus formation. SDF-1α-induced changes in cAMP and Ca(2 +) signalling require CXCR4. SDF-1α, via CXCR4, enhances platelet activation responses to collagen, primarily through a TxA2-dependent and ADP-independent pathway.
Collapse
Affiliation(s)
- Tony G Walsh
- School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Matthew T Harper
- School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Alastair W Poole
- School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, United Kingdom.
| |
Collapse
|
138
|
|
139
|
Hagemann UB, Gunnarsson L, Géraudie S, Scheffler U, Griep RA, Reiersen H, Duncan AR, Kiprijanov SM. Fully human antagonistic antibodies against CCR4 potently inhibit cell signaling and chemotaxis. PLoS One 2014; 9:e103776. [PMID: 25080123 PMCID: PMC4117600 DOI: 10.1371/journal.pone.0103776] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 06/30/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND CC chemokine receptor 4 (CCR4) represents a potentially important target for cancer immunotherapy due to its expression on tumor infiltrating immune cells including regulatory T cells (Tregs) and on tumor cells in several cancer types and its role in metastasis. METHODOLOGY Using phage display, human antibody library, affinity maturation and a cell-based antibody selection strategy, the antibody variants against human CCR4 were generated. These antibodies effectively competed with ligand binding, were able to block ligand-induced signaling and cell migration, and demonstrated efficient killing of CCR4-positive tumor cells via ADCC and phagocytosis. In a mouse model of human T-cell lymphoma, significant survival benefit was demonstrated for animals treated with the newly selected anti-CCR4 antibodies. SIGNIFICANCE For the first time, successful generation of anti- G-protein coupled chemokine receptor (GPCR) antibodies using human non-immune library and phage display on GPCR-expressing cells was demonstrated. The generated anti-CCR4 antibodies possess a dual mode of action (inhibition of ligand-induced signaling and antibody-directed tumor cell killing). The data demonstrate that the anti-tumor activity in vivo is mediated, at least in part, through Fc-receptor dependent effector mechanisms, such as ADCC and phagocytosis. Anti-CC chemokine receptor 4 antibodies inhibiting receptor signaling have potential as immunomodulatory antibodies for cancer.
Collapse
|
140
|
|
141
|
Slack RJ, Russell LJ, Barton NP, Weston C, Nalesso G, Thompson SA, Allen M, Chen YH, Barnes A, Hodgson ST, Hall DA. Antagonism of human CC-chemokine receptor 4 can be achieved through three distinct binding sites on the receptor. Pharmacol Res Perspect 2013; 1:e00019. [PMID: 25505571 PMCID: PMC4186434 DOI: 10.1002/prp2.19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/08/2013] [Accepted: 11/21/2013] [Indexed: 11/28/2022] Open
Abstract
Chemokine receptor antagonists appear to access two distinct binding sites on different members of this receptor family. One class of CCR4 antagonists has been suggested to bind to a site accessible from the cytoplasm while a second class did not bind to this site. In this report, we demonstrate that antagonists representing a variety of structural classes bind to two distinct allosteric sites on CCR4. The effects of pairs of low-molecular weight and/or chemokine CCR4 antagonists were evaluated on CCL17- and CCL22-induced responses of human CCR4+ T cells. This provided an initial grouping of the antagonists into sets which appeared to bind to distinct binding sites. Binding studies were then performed with radioligands from each set to confirm these groupings. Some novel receptor theory was developed to allow the interpretation of the effects of the antagonist combinations. The theory indicates that, generally, the concentration-ratio of a pair of competing allosteric modulators is maximally the sum of their individual effects while that of two modulators acting at different sites is likely to be greater than their sum. The low-molecular weight antagonists could be grouped into two sets on the basis of the functional and binding experiments. The antagonistic chemokines formed a third set whose behaviour was consistent with that of simple competitive antagonists. These studies indicate that there are two allosteric regulatory sites on CCR4.
Collapse
Affiliation(s)
- Robert J Slack
- Lead Optimisation, Respiratory CEDD, GlaxoSmithKline Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK
| | - Linda J Russell
- Lead Optimisation, Respiratory CEDD, GlaxoSmithKline Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK
| | - Nick P Barton
- Computational Chemistry, GlaxoSmithKline Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK
| | - Cathryn Weston
- Lead Optimisation, Respiratory CEDD, GlaxoSmithKline Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK
| | - Giovanna Nalesso
- Lead Optimisation, Respiratory CEDD, GlaxoSmithKline Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK
| | - Sally-Anne Thompson
- Lead Optimisation, Respiratory CEDD, GlaxoSmithKline Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK
| | - Morven Allen
- Biological Reagents and Assay Development, GlaxoSmithKline Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK
| | - Yu Hua Chen
- Biological Reagents and Assay Development, GlaxoSmithKline Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK
| | - Ashley Barnes
- Biological Reagents and Assay Development, GlaxoSmithKline Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK
| | - Simon T Hodgson
- Medicinal Chemistry, Respiratory CEDD, GlaxoSmithKline Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK
| | - David A Hall
- Lead Optimisation, Respiratory CEDD, GlaxoSmithKline Gunnels Wood Road, Stevenage, Herts, SG1 2NY, UK
| |
Collapse
|
142
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 PMCID: PMC3880466 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 691] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Speth C, Löffler J, Krappmann S, Lass-Flörl C, Rambach G. Platelets as immune cells in infectious diseases. Future Microbiol 2013; 8:1431-51. [DOI: 10.2217/fmb.13.104] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Platelets have been shown to cover a broad range of functions. Besides their role in hemostasis, they have immunological functions and thus participate in the interaction between pathogens and host defense. Platelets have a broad repertoire of receptor molecules that enable them to sense invading pathogens and infection-induced inflammation. Consequently, platelets exert antimicrobial effector mechanisms, but also initiate an intense crosstalk with other arms of the innate and adaptive immunity, including neutrophils, monocytes/macrophages, dendritic cells, B cells and T cells. There is a fragile balance between beneficial antimicrobial effects and detrimental reactions that contribute to the pathogenesis, and many pathogens have developed mechanisms to influence these two outcomes. This review aims to highlight aspects of the interaction strategies between platelets and pathogenic bacteria, viruses, fungi and parasites, in addition to the subsequent networking between platelets and other immune cells, and the relevance of these processes for the pathogenesis of infections.
Collapse
Affiliation(s)
- Cornelia Speth
- Division of Hygiene & Medical Microbiology, Innsbruck Medical University Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria
| | - Jürgen Löffler
- Laboratory of Innate Immunity, Infection, Inflammation, University Hospital Würzburg, Würzburg, Germany
| | - Sven Krappmann
- Microbiology Institute – Clinical Microbiology, Immunology & Hygiene, University Hospital of Erlangen & Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Cornelia Lass-Flörl
- Division of Hygiene & Medical Microbiology, Innsbruck Medical University Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria
| | - Günter Rambach
- Division of Hygiene & Medical Microbiology, Innsbruck Medical University Fritz-Pregl-Straße 3, A-6020 Innsbruck, Austria
| |
Collapse
|
144
|
Chatterjee M, Gawaz M. Platelet-derived CXCL12 (SDF-1α): basic mechanisms and clinical implications. J Thromb Haemost 2013; 11:1954-67. [PMID: 24024928 DOI: 10.1111/jth.12404] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Indexed: 12/19/2022]
Abstract
Platelets are a major source of CXCL12 (stromal cell-derived factor -1α, SDF-1α) and store CXCL12 as part of their α-granule secretome. Platelet activation enhances surface expression and release of CXCL12. Platelets and megakaryocytes express CXCR4, the major receptor for CXCL12, and interaction of CXCL12 with CXCR4 regulates megakaryopoiesis and the function of circulating platelets. Platelet-derived CXCL12 also modulates paracrine mechanisms such as chemotaxis, adhesion, proliferation and differentiation of nucleated cells, including progenitor cells. Platelet-derived CXCL12 enhances peripheral recruitment of progenitor cells to the sites of vascular and tissue injury both in vitro and in vivo and thereby promotes repair mechanisms. CXCL12 expression on platelets is elevated in patients with acute myocardial infarction, correlates with the number of circulating progenitor cells, is associated with preservation of myocardial function and is an independent predictor of clinical outcome. Administration of recombinant CXCL12 reduces infarct size following transient ischemia in mice. The present review summarizes the role of platelet-derived CXCL12 in cardiovascular biology and its diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- M Chatterjee
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls Universität, Tübingen, Germany
| | | |
Collapse
|
145
|
Shahabi P, Siest G, Visvikis-siest S. Influence of inflammation on cardiovascular protective effects of cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids. Drug Metab Rev 2013; 46:33-56. [DOI: 10.3109/03602532.2013.837916] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
146
|
The NF-κB specific inhibitor DHMEQ prevents thrombus formation in a mouse model of antiphospholipid syndrome. J Nephropathol 2013. [DOI: 10.5812/nephropathol.10112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
147
|
|
148
|
Abstract
Inflammation is an underlying feature of a variety of human diseases. Because inflammatory diseases are a major cause of morbidity and mortality in developed countries, understanding the interaction of the most important factors involved is an important challenge. Although platelets are widely recognized as having a critical role in primary hemostasis and thrombosis, basic and clinical evidence increasingly identifies these enucleated cells as relevant modulators, as both effector and target cells, of the inflammatory response. The cross-talk between platelets, endothelial cells and leukocytes in the inflammatory milieu mat be seen as a double-edged sword which functions not only as an effective first-line defense mechanism but may also lead to organ failure and death in the absence of counter-regulation systems. The molecular mechanisms involved in the reciprocal activation of platelets, endothelial cells and leukocytes are beginning to be elucidated. In the light of the existing data from experimental and clinical studies it is conceivable that platelet adhesion molecules and platelet mediators provide promising targets for novel therapeutic strategies in inflammatory diseases. The potentially adverse effects of these approaches need to be carefully addressed and monitored, including alterations in hemostasis and coagulation and particularly the impairment of host defense mechanisms, given the recently identified pivotal role of platelets in pathogen recognition and bacterial trapping. In this review we discuss the most important recent advances in research into the cross-talk between platelets and vascular cells during inflammation and the clinical consequences of these interactions.
Collapse
|
149
|
Kuo HH, Morrell CN, Baldwin WM. Alloantibody induced platelet responses in transplants: potent mediators in small packages. Hum Immunol 2012; 73:1233-8. [PMID: 22789623 PMCID: PMC3496803 DOI: 10.1016/j.humimm.2012.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/11/2012] [Accepted: 06/29/2012] [Indexed: 12/11/2022]
Abstract
The early histological studies of organ allografts noted platelets attached to vascular endothelium. Platelets adhere to vessels before any morphological evidence of endothelial injury. Subsequently, in vitro and in vivo experiments have demonstrated that alloantibodies can induce exocytosis of von Willebrand factor and P-selectin from endothelial cells and attachment of platelets within minutes. Platelets also adhere to and stimulate leukocytes. These interactions are increased by complement activation. After attachment platelets degranulate, releasing preformed mediators. Some chemokines stored together in platelet granules can form heteromers with synergistic functions. Heteromers containing platelet factor 4 (PF4; CXCL4) are specific to platelets and provide insights to unique platelet functions and opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Hsiao-Hsuan Kuo
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Craig N. Morrell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, New York 14642
| | - William M. Baldwin
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
150
|
Ferroni P, Riondino S, Vazzana N, Santoro N, Guadagni F, Davì G. Biomarkers of platelet activation in acute coronary syndromes. Thromb Haemost 2012; 108:1109-23. [PMID: 23014768 DOI: 10.1160/th12-08-0550] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 09/07/2012] [Indexed: 12/17/2022]
Abstract
The most convincing evidence for the participation of platelets in arterial thrombosis in humans comes from studies of platelet activation in patients with acute coronary syndromes (ACS) and from trials of antiplatelet drugs. Both strongly support the concept that repeated episodes of platelet activation over the thrombogenic surface of a vulnerable plaque may contribute to the risk of death from coronary causes. However, the relation of in vivo platelet activation and adverse clinical events to results of platelet function tests remains largely unknown. A valuable marker of in vivo platelet activation should be specific, unaltered by pre-analytical artefacts and reproducibly measured by easily performed methods. This article describes current biomarkers of platelet activation in ACS, reviews their advantages and disadvantages, discusses their potential pitfalls, and demonstrates emerging data supporting the positive clinical implications of monitoring in vivo platelet activation in the setting of ACS.
Collapse
Affiliation(s)
- Patrizia Ferroni
- Department of Advanced Biotechnologies and Bioimaging, IRCCS San Raffaele Pisana, Rome, Italy
| | | | | | | | | | | |
Collapse
|