101
|
Sharma T, Ettensohn CA. Activation of the skeletogenic gene regulatory network in the early sea urchin embryo. Development 2010; 137:1149-57. [PMID: 20181745 DOI: 10.1242/dev.048652] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene regulatory network (GRN) that underlies the development of the embryonic skeleton in sea urchins is an important model for understanding the architecture and evolution of developmental GRNs. The initial deployment of the network is thought to be regulated by a derepression mechanism, which is mediated by the products of the pmar1 and hesC genes. Here, we show that the activation of the skeletogenic network occurs by a mechanism that is distinct from the transcriptional repression of hesC. By means of quantitative, fluorescent whole-mount in situ hybridization, we find that two pivotal early genes in the network, alx1 and delta, are activated in prospective skeletogenic cells prior to the downregulation of hesC expression. An analysis of the upstream regulation of alx1 shows that this gene is regulated by MAPK signaling and by the transcription factor Ets1; however, these inputs influence only the maintenance of alx1 expression and not its activation, which occurs by a distinct mechanism. By altering normal cleavage patterns, we show that the zygotic activation of alx1 and delta, but not that of pmar1, is dependent upon the unequal division of vegetal blastomeres. Based on these findings, we conclude that the widely accepted double-repression model is insufficient to account for the localized activation of the skeletogenic GRN. We postulate the existence of additional, unidentified repressors that are controlled by pmar1, and propose that the ability of pmar1 to derepress alx1 and delta is regulated by the unequal division of vegetal blastomeres.
Collapse
Affiliation(s)
- Tara Sharma
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
102
|
Regulative recovery in the sea urchin embryo and the stabilizing role of fail-safe gene network wiring. Proc Natl Acad Sci U S A 2009; 106:18291-6. [PMID: 19822764 DOI: 10.1073/pnas.0910007106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Design features that ensure reproducible and invariant embryonic processes are major characteristics of current gene regulatory network models. New cis-regulatory studies on a gene regulatory network subcircuit activated early in the development of the sea urchin embryo reveal a sequence of encoded "fail-safe" regulatory devices. These ensure the maintenance of fate separation between skeletogenic and nonskeletogenic mesoderm lineages. An unexpected consequence of the network design revealed in the course of these experiments is that it enables the embryo to "recover" from regulatory interference that has catastrophic effects if this feature is disarmed. A reengineered regulatory system inserted into the embryo was used to prove how this system operates in vivo. Genomically encoded backup control circuitry thus provides the mechanism underlying a specific example of the regulative development for which the sea urchin embryo has long been famous.
Collapse
|
103
|
Ben-Tabou de-Leon S, Davidson EH. Experimentally based sea urchin gene regulatory network and the causal explanation of developmental phenomenology. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2009; 1:237-246. [PMID: 20228891 PMCID: PMC2836836 DOI: 10.1002/wsbm.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene regulatory networks for development underlie cell fate specification and differentiation. Network topology, logic and dynamics can be obtained by thorough experimental analysis. Our understanding of the gene regulatory network controlling endomesoderm specification in the sea urchin embryo has attained an advanced level such that it explains developmental phenomenology. Here we review how the network explains the mechanisms utilized in development to control the formation of dynamic expression patterns of transcription factors and signaling molecules. The network represents the genomic program controlling timely activation of specification and differentiation genes in the correct embryonic lineages. It can also be used to study evolution of body plans. We demonstrate how comparing the sea urchin gene regulatory network to that of the sea star and to that of later developmental stages in the sea urchin, reveals mechanisms underlying the origin of evolutionary novelty. The experimentally based gene regulatory network for endomesoderm specification in the sea urchin embryo provides unique insights into the system level properties of cell fate specification and its evolution.
Collapse
Affiliation(s)
| | - Eric H Davidson
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
104
|
Kayserili H, Uz E, Niessen C, Vargel I, Alanay Y, Tuncbilek G, Yigit G, Uyguner O, Candan S, Okur H, Kaygin S, Balci S, Mavili E, Alikasifoglu M, Haase I, Wollnik B, Akarsu NA. ALX4 dysfunction disrupts craniofacial and epidermal development. Hum Mol Genet 2009; 18:4357-66. [PMID: 19692347 DOI: 10.1093/hmg/ddp391] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genetic control of craniofacial morphogenesis requires a complex interaction of numerous genes encoding factors essential for patterning and differentiation. We present two Turkish families with a new autosomal recessive frontofacial dysostosis syndrome characterized by total alopecia, a large skull defect, coronal craniosynostosis, hypertelorism, severely depressed nasal bridge and ridge, bifid nasal tip, hypogonadism, callosal body agenesis and mental retardation. Using homozygosity mapping, we mapped the entity to chromosome 11p11.2-q12.3 and subsequently identified a homozygous c.793C-->T nonsense mutation in the human ortholog of the mouse aristaless-like homeobox 4 (ALX4) gene. This mutation is predicted to result in a premature stop codon (p.R265X) of ALX4 truncating 146 amino acids of the protein including a part of the highly conserved homeodomain and the C-terminal paired tail domain. Although the RNA is stable and not degraded by nonsense-mediated RNA decay, the mutant protein is likely to be non-functional. In a skin biopsy of an affected individual, we observed a hypomorphic interfollicular epidermis with reduced suprabasal layers associated with impaired interfollicular epidermal differentiation. Hair follicle-like structures were present but showed altered differentiation. Our data indicate that ALX4 plays a critical role both in craniofacial development as in skin and hair follicle development in human.
Collapse
Affiliation(s)
- Hulya Kayserili
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Yamazaki A, Ki S, Kokubo T, Yamaguchi M. Structure–function correlation of micro1 for micromere specification in sea urchin embryos. Mech Dev 2009; 126:611-23. [DOI: 10.1016/j.mod.2009.06.1083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/12/2009] [Accepted: 06/16/2009] [Indexed: 10/20/2022]
|
106
|
Byrum CA, Xu R, Bince JM, McClay DR, Wikramanayake AH. Blocking Dishevelled signaling in the noncanonical Wnt pathway in sea urchins disrupts endoderm formation and spiculogenesis, but not secondary mesoderm formation. Dev Dyn 2009; 238:1649-65. [PMID: 19449300 PMCID: PMC3057072 DOI: 10.1002/dvdy.21978] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dishevelled (Dsh) is a phosphoprotein key to beta-catenin dependent (canonical) and beta-catenin independent (noncanonical) Wnt signaling. Whereas canonical Wnt signaling has been intensively studied in sea urchin development, little is known about other Wnt pathways. To examine roles of these beta-catenin independent pathways in embryogenesis, we used Dsh-DEP, a deletion construct blocking planar cell polarity (PCP) and Wnt/Ca(2+) signaling. Embryos overexpressing Dsh-DEP failed to gastrulate or undergo skeletogenesis, but produced pigment cells. Although early mesodermal gene expression was largely unperturbed, embryos exhibited reduced expression of genes regulating endoderm specification and differentiation. Overexpressing activated beta-catenin failed to rescue Dsh-DEP embryos, indicating that Dsh-DEP blocks endoderm formation downstream of initial canonical Wnt signaling. Because Dsh-DEP-like constructs block PCP signaling in other metazoans, and disrupting RhoA or Fz 5/8 in echinoids blocks subsets of the Dsh-DEP phenotypes, our data suggest that noncanonical Wnt signaling is crucial for sea urchin endoderm formation and skeletogenesis.
Collapse
Affiliation(s)
- Christine A. Byrum
- Department of Zoology, University of Hawaii at Manoa, Honolulu, Hawaii
- Developmental, Cell and Molecular Biology Group, Duke University, Durham, North Carolina
- Department of Biology, College of Charleston, Charleston, South Carolina
| | - Ronghui Xu
- Department of Zoology, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Joanna M. Bince
- Department of Zoology, University of Hawaii at Manoa, Honolulu, Hawaii
| | - David R. McClay
- Developmental, Cell and Molecular Biology Group, Duke University, Durham, North Carolina
| | - Athula H. Wikramanayake
- Department of Zoology, University of Hawaii at Manoa, Honolulu, Hawaii
- Department of Biology, The University of Miami, Coral Gables, Florida
| |
Collapse
|
107
|
Ettensohn CA. Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis. Development 2009; 136:11-21. [PMID: 19060330 DOI: 10.1242/dev.023564] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Significant new insights have emerged from the analysis of a gene regulatory network (GRN) that underlies the development of the endoskeleton of the sea urchin embryo. Comparative studies have revealed ways in which this GRN has been modified (and conserved) during echinoderm evolution, and point to mechanisms associated with the evolution of a new cell lineage. The skeletogenic GRN has also recently been used to study the long-standing problem of developmental plasticity. Other recent findings have linked this transcriptional GRN to morphoregulatory proteins that control skeletal anatomy. These new studies highlight powerful new ways in which GRNs can be used to dissect development and the evolution of morphogenesis.
Collapse
Affiliation(s)
- Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
108
|
Abstract
Sea urchin embryos are characterized by an extremely simple mode of development, rapid cleavage, high transparency, and well-defined cell lineage. Although they are not suitable for genetic studies, other approaches are successfully used to unravel mechanisms and molecules involved in cell fate specification and morphogenesis. Microinjection is the elective method to study gene function in sea urchin embryos. It is used to deliver precise amounts of DNA, RNA, oligonucleotides, peptides, or antibodies into the eggs or even into blastomeres. Here we describe microinjection as it is currently applied in our laboratory and show how it has been used in gene perturbation analyses and dissection of cis-regulatory DNA elements.
Collapse
|
109
|
Swalla BJ, Smith AB. Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives. Philos Trans R Soc Lond B Biol Sci 2008; 363:1557-68. [PMID: 18192178 DOI: 10.1098/rstb.2007.2246] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Deuterostomes are a monophyletic group of animals that include the vertebrates, invertebrate chordates, ambulacrarians and xenoturbellids. Fossil representatives from most major deuterostome groups, including some phylum-level crown groups, are found in the Lower Cambrian, suggesting that evolutionary divergence occurred in the Late Precambrian, in agreement with some molecular clock estimates. Molecular phylogenies, larval morphology and the adult heart/kidney complex all support echinoderms and hemichordates as a sister grouping (Ambulacraria). Xenoturbellids are a relatively newly discovered phylum of worm-like deuterostomes that lacks a fossil record, but molecular evidence suggests that these animals are a sister group to the Ambulacraria. Within the chordates, cephalochordates share large stretches of chromosomal synteny with the vertebrates, have a complete Hox complex and are sister group to the vertebrates based on ribosomal and mitochondrial gene evidence. In contrast, tunicates have a highly derived adult body plan and are sister group to the vertebrates based on the analyses of concatenated genomic sequences. Cephalochordates and hemichordates share gill slits and an acellular cartilage, suggesting that the ancestral deuterostome also shared these features. Gene network data suggest that the deuterostome ancestor had an anterior-posterior body axis specified by Hox and Wnt genes, a dorsoventral axis specified by a BMP/chordin gradient, and was bilaterally symmetrical with left-right asymmetry determined by expression of nodal.
Collapse
Affiliation(s)
- Billie J Swalla
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| | | |
Collapse
|
110
|
Mahmud AA, Amore G. The surprising complexity of the transcriptional regulation of the spdri gene reveals the existence of new linkages inside sea urchin's PMC and Oral Ectoderm Gene Regulatory Networks. Dev Biol 2008; 322:425-34. [PMID: 18718463 DOI: 10.1016/j.ydbio.2008.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/26/2022]
Abstract
During sea urchin embryogenesis the spdri gene participates in two separate Gene Regulatory Networks (GRNs): the Primary Mesenchyme Cells' (PMCs) and the Oral Ectoderm's one. In both cases, activation of the gene follows initial specification events [Amore, G., Yavrouian, R., Peterson, K., Ransick, A., McClay, D., Davidson, E., 2003. Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks. Dev. Biol. 261, 55-81.]. We identified a portion of genomic DNA ("4.7IL" -3456;+389) which is sufficient to replicate sdpri's expression pattern in experiments of transgenesis, using a GFP reporter. In our experiments, the activation kinetic of 4.7IL-GFP was similar to that of the endogenous gene and the reporter responded to known spdri's transcriptional regulators (Ets1, Alx1, Gsc and Dri). Here we present a dissection of this regulatory region and a description of the modules involved in spdri's transcriptional regulation. Both in the PMCs' and Oral Ectoderm's expression phases, activation of spdri is obtained through the integration of three kinds of inputs: positive and globally distributed ones; negative ones (that prevent ectopic expression); positive and tissue-specific ones. Our results allow to expand the map of the regulatory connections at the spdri node, both in the PMCs and in the Oral Ectoderm Gene Regulatory Networks (GRNs).
Collapse
Affiliation(s)
- Abdullah Al Mahmud
- Molecular Evolution Group, Stazione Zoologica Anton Dohrn, Napoli, Villa Comunale Napoli, Italy
| | | |
Collapse
|
111
|
Wu SY, Yang YP, McClay DR. Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo. Dev Biol 2008; 319:406-15. [PMID: 18495103 PMCID: PMC2517249 DOI: 10.1016/j.ydbio.2008.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 01/16/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
Recent work on the sea urchin endomesoderm gene regulatory network (GRN) offers many opportunities to study the specification and differentiation of each cell type during early development at a mechanistic level. The mesoderm lineages consist of two cell populations, primary and secondary mesenchyme cells (PMCs and SMCs). The micromere-PMC GRN governs the development of the larval skeleton, which is the exclusive fate of PMCs, and SMCs diverge into four lineages, each with its own GRN state. Here we identify a sea urchin ortholog of the Twist transcription factor, and show that it plays an essential role in the PMC GRN and later is involved in SMC formation. Perturbations of Twist either by morpholino knockdown or by overexpression result in defects in progressive phases of PMC development, including specification, ingression/EMT, differentiation and skeletogenesis. Evidence is presented that Twist expression is required for the maintenance of the PMC specification state, and a reciprocal regulation between Alx1 and Twist offers stability for the subsequent processes, such as PMC differentiation and skeletogenesis. These data illustrate the significance of regulatory state maintenance and continuous progression during cell specification, and the dynamics of the sequential events that depend on those earlier regulatory states.
Collapse
Affiliation(s)
- Shu-Yu Wu
- Department of Biology, French Family Science Center, Duke University, Durham, NC 27708, USA.
| | | | | |
Collapse
|
112
|
Smith J, Davidson EH. A new method, using cis-regulatory control, for blocking embryonic gene expression. Dev Biol 2008; 318:360-5. [PMID: 18423438 PMCID: PMC3929273 DOI: 10.1016/j.ydbio.2008.02.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/29/2008] [Accepted: 02/29/2008] [Indexed: 11/17/2022]
Abstract
Many genes, and particularly regulatory genes, are utilized multiple times in unrelated phases of development. For studies of gene function during embryogenesis, there is often need of a method for interfering with expression only at a specific developmental time or place. Here we show that in sea urchin embryos cis-regulatory control systems which operate only at specific times and places can be used to drive expression of short designed sequences targeting given primary transcripts, thereby effectively taking out the function of the target genes. The active sequences are designed to be complementary to intronic sequences of the primary transcript of the target genes. In this work, the target genes were the transcription factors alx1 and ets1, both required for skeletogenesis, and the regulatory drivers were from the sm30 and tbr genes. The sm30 gene is expressed only after skeletogenic cell ingression. When its regulatory apparatus was used as driver, the alx1 and ets1 repression constructs had the effect of preventing postgastrular skeletogenesis, while not interfering with earlier alx1 and ets1 function in promoting skeletogenic mesenchyme ingression. In contrast, repression constructs using the tbr driver, which is active in blastula stage, block ingression. This method thus provides the opportunity to study regulatory requirements of skeletogenesis after ingression, and may be similarly useful in many other developmental contexts.
Collapse
Affiliation(s)
- Joel Smith
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
113
|
Cavalieri V, Di Bernardo M, Anello L, Spinelli G. cis-Regulatory sequences driving the expression of the Hbox12 homeobox-containing gene in the presumptive aboral ectoderm territory of the Paracentrotus lividus sea urchin embryo. Dev Biol 2008; 321:455-69. [PMID: 18585371 DOI: 10.1016/j.ydbio.2008.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 05/23/2008] [Accepted: 06/03/2008] [Indexed: 11/17/2022]
Abstract
Embryonic development is coordinated by networks of evolutionary conserved regulatory genes encoding transcription factors and components of cell signalling pathways. In the sea urchin embryo, a number of genes encoding transcription factors display territorial restricted expression. Among these, the zygotic Hbox12 homeobox gene is transiently transcribed in a limited number of cells of the animal-lateral half of the early Paracentrotus lividus embryo, whose descendants will constitute part of the ectoderm territory. To obtain insights on the regulation of Hbox12 expression, we have explored the cis-regulatory apparatus of the gene. In this paper, we show that the intergenic region of the tandem Hbox12 repeats drives GFP expression in the presumptive aboral ectoderm and that a 234 bp fragment, defined aboral ectoderm (AE) module, accounts for the restricted expression of the transgene. Within this module, a consensus sequence for a Sox factor and the binding of the Otx activator are both required for correct Hbox12 gene expression. Spatial restriction to the aboral ectoderm is achieved by a combination of different repressive sequence elements. Negative sequence elements necessary for repression in the endomesoderm map within the most upstream 60 bp region and nearby the Sox binding site. Strikingly, a Myb-like consensus is necessary for repression in the oral ectoderm, while down-regulation at the gastrula stage depends on a GA-rich region. These results suggest a role for Hbox12 in aboral ectoderm specification and represent our first attempt in the identification of the gene regulatory circuits involved in this process.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Dipartimento di Biologia Cellulare e dello Sviluppo A. Monroy, Università di Palermo, Viale delle Scienze Edificio 16, 90128 Palermo, Italy
| | | | | | | |
Collapse
|
114
|
Oliveri P, Tu Q, Davidson EH. Global regulatory logic for specification of an embryonic cell lineage. Proc Natl Acad Sci U S A 2008; 105:5955-62. [PMID: 18413610 PMCID: PMC2329687 DOI: 10.1073/pnas.0711220105] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Indexed: 11/18/2022] Open
Abstract
Explanation of a process of development must ultimately be couched in the terms of the genomic regulatory code. Specification of an embryonic cell lineage is driven by a network of interactions among genes encoding transcription factors. Here, we present the gene regulatory network (GRN) that directs the specification of the skeletogenic micromere lineage of the sea urchin embryo. The GRN now includes all regulatory genes expressed in this lineage up to late blastula stage, as identified in a genomewide survey. The architecture of the GRN was established by a large-scale perturbation analysis in which the expression of each gene in the GRN was cut off by use of morpholinos, and the effects on all other genes were measured quantitatively. Several cis-regulatory analyses provided additional evidence. The explanatory power of the GRN suffices to provide a causal explanation for all observable developmental functions of the micromere lineage during the specification period. These functions are: (i) initial acquisition of identity through transcriptional interpretation of localized maternal cues; (ii) activation of specific regulatory genes by use of a double negative gate; (iii) dynamic stabilization of the regulatory state by activation of a feedback subcircuit; (iv) exclusion of alternative regulatory states; (v) presentation of a signal required by the micromeres themselves and of two different signals required for development of adjacent endomesodermal lineages; and (vi) lineage-specific activation of batteries of skeletogenic genes. The GRN precisely predicts gene expression responses and provides a coherent explanation of the biology of specification.
Collapse
Affiliation(s)
- Paola Oliveri
- Division of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Qiang Tu
- Division of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Eric H. Davidson
- Division of Biology, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
115
|
Sethmann I, Wörheide G. Structure and composition of calcareous sponge spicules: A review and comparison to structurally related biominerals. Micron 2008; 39:209-28. [PMID: 17360189 DOI: 10.1016/j.micron.2007.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 01/18/2007] [Accepted: 01/18/2007] [Indexed: 11/24/2022]
Abstract
Since the early 19th century, the skeletons of calcareous sponges (Porifera: Calcarea) with their mineralized spicules have been investigated for their morphologies, structures, and mineralogical and organic compositions. These biomineral spicules, up to about 10mm in size, with one to four rays called actines, have various specific shapes and consist mainly of magnesium-calcite: in only one case has an additional phase of stabilized amorphous CaCO3 (ACC) been discovered. The spicules are invariably covered by a thin organic sheath and display a number of intriguing properties. Despite their complex morphologies and rounded surfaces without flat crystal faces they behave largely as single crystal individuals of calcite, and to some degree crystallographic orientation is related to morphology. Despite their single-crystalline nature, most spicules show nearly isotropic fracture behaviour, not typical for calcite crystals, indicating enhanced fracture resistance. These unusual morphological and mechanical properties are the result of their mechanism of growth. Each spicule is formed by specialized cells (sclerocytes) that supply mineral ions or particles associated by organic macromolecules to extracellular cavities, where assembly and crystallization in alignment with an initial seed crystal (nucleus) takes place. As a result of discontinuous mineral deposition, cross-sections of larger spicules display concentric layering that mantles a central calcitic rod. On a smaller scale, the entire spicule displays a 'nano-cluster' structure with crystallographically aligned and putatively semicoherent crystal domains as well as a dispersed organic matrix intercalated between domain boundaries. This ultrastructure dissipates mechanical stress and deflects propagating fractures. Additionally, this nano-cluster construction, probably induced by intercalated organic substances, enables the formation of complex crystal morphologies independent of crystal faces. In this review, the current knowledge about the structure, composition, and formation of calcareous sponge spicules is summarised and discussed. Comparisons of calcareous sponge spicules with the amorphous silica spicules of sponges of the classes Hexactinellida and Demospongiae, as well as with calcitic skeletal elements of echinoderms are drawn. Despite the variety of poriferan spicule mineralogy and the distant phylogenetic relationship between sponges and echinoderms, all of these biominerals share similarities regarding their nano-scale construction. Furthermore, echinoderm skeletal elements resemble calcareous sponge spicules in that they represent magnesium-bearing calcite single-crystals with extremely complex morphologies.
Collapse
Affiliation(s)
- Ingo Sethmann
- Institut für Mineralogie, Universität Münster, Corrensstr. 24, D-48149 Münster, Germany.
| | | |
Collapse
|
116
|
Röttinger E, Saudemont A, Duboc V, Besnardeau L, McClay D, Lepage T. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis and regulate gastrulation during sea urchin development. Development 2008; 135:353-65. [DOI: 10.1242/dev.014282] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sea urchin embryo is emerging as an attractive model to study morphogenetic processes such as directed migration of mesenchyme cells and cell sheet invagination, but surprisingly, few of the genes regulating these processes have yet been characterized. We present evidence that FGFA, the first FGF family member characterized in the sea urchin, regulates directed migration of mesenchyme cells, morphogenesis of the skeleton and gastrulation during early development. We found that at blastula stages, FGFA and a novel putative FGF receptor are expressed in a pattern that prefigures morphogenesis of the skeletogenic mesoderm and that suggests that FGFA is one of the elusive signals that guide migration of primary mesenchyme cells (PMCs). We first show that fgfA expression is correlated with abnormal migration and patterning of the PMCs following treatments that perturb specification of the ectoderm along the oral-aboral and animal-vegetal axes. Specification of the ectoderm initiated by Nodal is required to restrict fgfA to the lateral ectoderm, and in the absence of Nodal, fgfA is expressed ectopically throughout most of the ectoderm. Inhibition of either FGFA, FGFR1 or FGFR2 function severely affects morphogenesis of the skeleton. Furthermore,inhibition of FGFA and FGFR1 signaling dramatically delays invagination of the archenteron, prevents regionalization of the gut and abrogates formation of the stomodeum. We identified several genes acting downstream of fgfAin these processes, including the transcription factors pea3 and pax2/5/8 and the signaling molecule sprouty in the lateral ectoderm and SM30 and SM50 in the primary mesenchyme cells. This study identifies the FGF signaling pathway as an essential regulator of gastrulation and directed cell migration in the sea urchin embryo and as a key player in the gene regulatory network directing morphogenesis of the skeleton.
Collapse
Affiliation(s)
- Eric Röttinger
- UMR 7009 CNRS, Université Pierre et Marie Curie (Paris 6) Observatoire Océanologique, 06230 Villefranche sur mer, France
| | - Alexandra Saudemont
- UMR 7009 CNRS, Université Pierre et Marie Curie (Paris 6) Observatoire Océanologique, 06230 Villefranche sur mer, France
| | - Véronique Duboc
- UMR 7009 CNRS, Université Pierre et Marie Curie (Paris 6) Observatoire Océanologique, 06230 Villefranche sur mer, France
| | - Lydia Besnardeau
- UMR 7009 CNRS, Université Pierre et Marie Curie (Paris 6) Observatoire Océanologique, 06230 Villefranche sur mer, France
| | - David McClay
- Department of Biology, French Family Science Center, Duke University Durham,NC 27708, USA
| | - Thierry Lepage
- UMR 7009 CNRS, Université Pierre et Marie Curie (Paris 6) Observatoire Océanologique, 06230 Villefranche sur mer, France
| |
Collapse
|
117
|
Abstract
Mesenchymal cells of the sea urchin embryo provide a valuable experimental model for the analysis of cell-cell fusion in vivo. The unsurpassed optical transparency of the sea urchin embryo facilitates analysis of cell fusion in vivo using fluorescent markers and time-lapse three-dimensional imaging. Two populations of mesodermal cells engage in homotypic cell-cell fusion during gastrulation: primary mesenchyme cells and blastocoelar cells. In this chapter, we describe methods for studying the dynamics of cell fusion in living embryos. These methods have been used to analyze the fusion of primary mesenchyme cells and are also applicable to blastocoelar cell fusion. Although the molecular basis of cell fusion in the sea urchin has not been investigated, tools have recently become available that highlight the potential of this experimental model for integrating dynamic morphogenetic behaviors with underlying molecular mechanisms.
Collapse
Affiliation(s)
- Paul G Hodor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | | |
Collapse
|
118
|
Wu SY, Ferkowicz M, McClay DR. Ingression of primary mesenchyme cells of the sea urchin embryo: A precisely timed epithelial mesenchymal transition. ACTA ACUST UNITED AC 2008; 81:241-52. [DOI: 10.1002/bdrc.20113] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
119
|
Ochiai H, Sakamoto N, Momiyama A, Akasaka K, Yamamoto T. Analysis of cis-regulatory elements controlling spatio-temporal expression of T-brain gene in sea urchin, Hemicentrotus pulcherrimus. Mech Dev 2007; 125:2-17. [PMID: 18065210 DOI: 10.1016/j.mod.2007.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 09/19/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
Abstract
In sea urchin development, micromere descendants play important roles in skeletogenesis and induction of gastrulation. We previously reported that the T-brain homolog of sea urchin Hemicentrotus pulcherrimus, HpTb expresses specifically in micromere descendants and is required for induction of gastrulation and skeletogenesis. Thus, HpTb is thought to play important roles in the function of micromere-lineage cells. To identify cis-regulatory regions responsible for spatio-temporal gene expression of HpTb, we isolated approximately 7kb genomic region of HpTb gene and showed that GFP expression driven by this region exhibits the spatio-temporal pattern corresponding substantially to that of endogenous HpTb expression. Deletion of interspecifically conserved C2 and C4 regions resulted in an increase of ectopic expression. Mutations in Hairy family and Snail family consensus sequences in C1 and C2 regions also increased ectopic expression. Furthermore, we demonstrated that C4 region functions as enhancer, and that three Ets family consensus sequences are involved in this activity but not in spatial regulation. Therefore, we concluded that expression of HpTb gene is regulated by multiple cis-regulatory elements.
Collapse
Affiliation(s)
- Hiroshi Ochiai
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Japan
| | | | | | | | | |
Collapse
|
120
|
Ettensohn CA, Kitazawa C, Cheers MS, Leonard JD, Sharma T. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network. Development 2007; 134:3077-87. [PMID: 17670786 DOI: 10.1242/dev.009092] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell fates in the sea urchin embryo are remarkably labile, despite the fact that maternal polarity and zygotic programs of differential gene expression pattern the embryo from the earliest stages. Recent work has focused on transcriptional gene regulatory networks (GRNs) deployed in specific embryonic territories during early development. The micromere-primary mesenchyme cell(PMC) GRN drives the development of the embryonic skeleton. Although normally deployed only by presumptive PMCs, every lineage of the early embryo has the potential to activate this pathway. Here, we focus on one striking example of regulative activation of the skeletogenic GRN; the transfating of non-skeletogenic mesoderm (NSM) cells to a PMC fate during gastrulation. We show that transfating is accompanied by the de novo expression of terminal,biomineralization-related genes in the PMC GRN, as well as genes encoding two upstream transcription factors, Lvalx1 and Lvtbr. We report that Lvalx1, a key component of the skeletogenic GRN in the PMC lineage, plays an essential role in the regulative pathway both in NSM cells and in animal blastomeres. MAPK signaling is required for the expression of Lvalx1 and downstream skeletogenic genes in NSM cells, mirroring its role in the PMC lineage. We also demonstrate that Lvalx1 regulates the signal from PMCs that normally suppresses NSM transfating. Significantly,misexpression of Lvalx1 in macromeres (the progenitors of NSM cells)is sufficient to activate the skeletogenic GRN. We suggest that NSM cells normally deploy a basal mesodermal pathway and require only an Lvalx1-mediated sub-program to express a PMC fate. Finally, we provide evidence that, in contrast to the normal pathway, activation of the skeletogenic GRN in NSM cells is independent of Lvpmar1. Our studies reveal that, although most features of the micromere-PMC GRN are recapitulated in transfating NSM cells, different inputs activate this GRN during normal and regulative development.
Collapse
Affiliation(s)
- Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
121
|
Meulemans D, Bronner-Fraser M. Insights from amphioxus into the evolution of vertebrate cartilage. PLoS One 2007; 2:e787. [PMID: 17726517 PMCID: PMC1950077 DOI: 10.1371/journal.pone.0000787] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 08/01/2007] [Indexed: 12/02/2022] Open
Abstract
Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm.
Collapse
Affiliation(s)
- Daniel Meulemans
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America.
| | | |
Collapse
|
122
|
Revilla-i-Domingo R, Oliveri P, Davidson EH. A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres. Proc Natl Acad Sci U S A 2007; 104:12383-8. [PMID: 17636127 PMCID: PMC1941478 DOI: 10.1073/pnas.0705324104] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Specification of sea urchin embryo micromeres occurs early in cleavage, with the establishment of a well defined regulatory state. The architecture of the gene regulatory network controlling the specification process indicates that transcription of the initial tier of control genes depends on a double-negative gate. A gene encoding a transcriptional repressor, pmar1, is activated specifically in micromeres, where it represses transcription of a second repressor that is otherwise active globally. Thus, the micromere-specific control genes, which are the target of the second repressor, are expressed exclusively in this lineage. The double-negative specification gate was logically required from the results of numerous prior experiments, but the identity of the gene encoding the second repressor remained elusive. Here we show that hesC is this gene, and we demonstrate experimentally all of its predicted functions, including global repression of micromere-specific regulatory genes. As logically required, blockade of hesC mRNA translation and global overexpression of pmar1 mRNA have the same effect, which is to cause all of the cells of the embryo to express micromere-specific genes.
Collapse
Affiliation(s)
| | - Paola Oliveri
- Division of Biology 156–29, California Institute of Technology, Pasadena, CA 91125
| | - Eric H. Davidson
- Division of Biology 156–29, California Institute of Technology, Pasadena, CA 91125
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
123
|
Abstract
In metazoans, the epithelial-mesenchymal transition (EMT) is a crucial process for placing the mesoderm beneath the ectoderm. Primary mesenchyme cells (PMCs) at the vegetal pole of the sea urchin embryo ingress into the floor of the blastocoele from the blastula epithelium and later become the skeletogenic mesenchyme. This ingression movement is a classic EMT during which the PMCs penetrate the basal lamina, lose adherens junctions and migrate into the blastocoele. Later, secondary mesenchyme cells (SMCs) also enter the blastocoele via an EMT, but they accompany the invagination of the archenteron initially, in much the same way vertebrate mesenchyme enters the embryo along with endoderm. Here we identify a sea urchin ortholog of the Snail transcription factor, and focus on its roles regulating EMT during PMC ingression. Functional knockdown analyses of Snail in whole embryos and chimeras demonstrate that Snail is required in micromeres for PMC ingression. Snail represses the transcription of cadherin, a repression that appears evolutionarily conserved throughout the animal kingdom. Furthermore, Snail expression is required for endocytosis of cadherin, a cellular activity that accompanies PMC ingression. Perturbation studies position Snail in the sea urchin micromere-PMC gene regulatory network (GRN), downstream of Pmar1 and Alx1, and upstream of several PMC-expressed proteins. Taken together, our findings indicate that Snail plays an essential role in PMCs to control the EMT process, in part through its repression of cadherin expression during PMC ingression, and in part through its role in the endocytosis that helps convert an epithelial cell to a mesenchyme cell.
Collapse
Affiliation(s)
- Shu-Yu Wu
- DCMB group, Biology Department, Duke University, Durham, NC 27708, USA
| | - David R. McClay
- DCMB group, Biology Department, Duke University, Durham, NC 27708, USA
| |
Collapse
|
124
|
Love AC, Andrews ME, Raff RA. Gene expression patterns in a novel animal appendage: the sea urchin pluteus arm. Evol Dev 2007; 9:51-68. [PMID: 17227366 DOI: 10.1111/j.1525-142x.2006.00137.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The larval arms of echinoid plutei are used for locomotion and feeding. They are composed of internal calcite skeletal rods covered by an ectoderm layer bearing a ciliary band. Skeletogenesis includes an autonomous molecular differentiation program in primary mesenchyme cells (PMCs), initiated when PMCs leave the vegetal plate for the blastocoel, and a patterning of the differentiated skeletal units that requires molecular cues from the overlaying ectoderm. The arms represent a larval feature that arose in the echinoid lineage during the Paleozoic and offers a subject for the study of gene co-option in the evolution of novel larval features. We isolated new molecular markers in two closely related but differently developing species, Heliocidaris tuberculata and Heliocidaris erythrogramma. We report the expression of a larval arm-associated ectoderm gene tetraspanin, as well as two new PMC markers, advillin and carbonic anhydrase. Tetraspanin localizes to the animal half of blastula stage H. tuberculata and then undergoes a restriction into the putative oral ectoderm and future location of the postoral arms, where it continues to be expressed at the leading edge of both the postoral and anterolateral arms. In H. erythrogramma, its expression initiates in the animal half of blastulae and expands over the entire ectoderm from gastrulation onward. Advillin and carbonic anhydrase are upregulated in the PMCs postgastrulation and localized to the leading edge of the growing larval arms of H. tuberculata but do not exhibit coordinated expression in H. erythrogramma larvae. The tight spatiotemporal regulation of these genes in H. tuberculata along with other ontogenetic and phylogenetic evidence suggest that pluteus arms are novel larval organs, distinguishable from the processes of skeletogenesis per se. The dissociation of expression control in H. erythrogramma suggest that coordinate gene expression in H. tuberculata evolved as part of the evolution of pluteus arms, and is not required for larval or adult development.
Collapse
Affiliation(s)
- Alan C Love
- Department of Biology, Indiana Molecular Biology Institute, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
125
|
Howard-Ashby M, Materna SC, Brown CT, Chen L, Cameron RA, Davidson EH. Identification and characterization of homeobox transcription factor genes in Strongylocentrotus purpuratus, and their expression in embryonic development. Dev Biol 2006; 300:74-89. [PMID: 17055477 DOI: 10.1016/j.ydbio.2006.08.039] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 08/04/2006] [Accepted: 08/16/2006] [Indexed: 10/24/2022]
Abstract
A set of 96 homeobox transcription factors was identified in the Strongylocentrotus purpuratus genome using permissive blast searches with a large collection of authentic homeodomain sequences from mouse, human and fly. A phylogenetic tree was constructed to compare the sea urchin homeobox gene family to those of vertebrates, with the result that with the only a few exceptions, orthologs of all vertebrate homeodomain genes were uncovered by our search. QPCR time course measurements revealed that 65% of these genes are expressed within the first 48 h of development (late gastrula). For genes displaying sufficiently high levels of transcript during the first 24 h of development (late blastula), whole mount in situ hybridization was carried out up to 48 h to determine spatial patterns of expression. The results demonstrate that homeodomain transcription factors participate in multiple and diverse developmental functions, in that they are used at a range of time points and in every territory of the developing embryo.
Collapse
|
126
|
Livingston BT, Killian CE, Wilt F, Cameron A, Landrum MJ, Ermolaeva O, Sapojnikov V, Maglott DR, Buchanan AM, Ettensohn CA. A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Dev Biol 2006; 300:335-48. [PMID: 16987510 DOI: 10.1016/j.ydbio.2006.07.047] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 07/26/2006] [Accepted: 07/31/2006] [Indexed: 11/17/2022]
Abstract
Biomineralization, the biologically controlled formation of mineral deposits, is of widespread importance in biology, medicine, and engineering. Mineralized structures are found in most metazoan phyla and often have supportive, protective, or feeding functions. Among deuterostomes, only echinoderms and vertebrates produce extensive biomineralized structures. Although skeletons appeared independently in these two groups, ancestors of the vertebrates and echinoderms may have utilized similar components of a shared genetic "toolkit" to carry out biomineralization. The present study had two goals. First, we sought to expand our understanding of the proteins involved in biomineralization in the sea urchin, a powerful model system for analyzing the basic cellular and molecular mechanisms that underlie this process. Second, we sought to shed light on the possible evolutionary relationships between biomineralization in echinoderms and vertebrates. We used several computational methods to survey the genome of the purple sea urchin Strongylocentrotus purpuratus for gene products involved in biomineralization. Our analysis has greatly expanded the collection of biomineralization-related proteins. We have found that these proteins are often members of small families encoded by genes that are clustered in the genome. Most of the proteins are sea urchin-specific; that is, they have no apparent homologues in other invertebrate deuterostomes or vertebrates. Similarly, many of the vertebrate proteins that mediate mineral deposition do not have counterparts in the S. purpuratus genome. Our findings therefore reveal substantial differences in the primary sequences of proteins that mediate biomineral formation in echinoderms and vertebrates, possibly reflecting loose constraints on the primary structures of the proteins involved. On the other hand, certain cellular and molecular processes associated with earlier events in skeletogenesis appear similar in echinoderms and vertebrates, leaving open the possibility of deeper evolutionary relationships.
Collapse
Affiliation(s)
- B T Livingston
- Department of Biology, University of South Florida, Tampa, FL 33620, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Cheers MS, Ettensohn CA. P16 is an essential regulator of skeletogenesis in the sea urchin embryo. Dev Biol 2005; 283:384-96. [PMID: 15935341 DOI: 10.1016/j.ydbio.2005.02.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 02/16/2005] [Accepted: 02/23/2005] [Indexed: 11/27/2022]
Abstract
The primary mesenchyme cells (PMCs) of the sea urchin embryo undergo a dramatic sequence of morphogenetic behaviors that culminates in the formation of the larval endoskeleton. Recent studies have identified components of a gene regulatory network that underlies PMC specification and differentiation. In previous work, we identified novel gene products expressed specifically by PMCs (Illies, M.R., Peeler, M.T., Dechtiaruk, A.M., Ettensohn, C.A., 2002. Identification and developmental expression of new biomineralization proteins in the sea urchin, Strongylocentrotus purpuratus. Dev. Genes Evol. 212, 419-431). Here, we show that one of these gene products, P16, plays an essential role in skeletogenesis. P16 is not required for PMC specification, ingression, migration, or fusion, but is essential for skeletal rod elongation. We have compared the predicted sequences of P16 from two species and show that this small, acidic protein is highly conserved in both structure and function. The predicted amino acid sequence of P16 and the subcellular localization of a GFP-tagged form of the protein suggest that P16 is enriched in the plasma membrane. It may function to receive signals required for skeletogenesis or may play a more direct role in the deposition of biomineral. Finally, we place P16 downstream of Alx1 in the PMC gene network, thereby linking the network to a specific "effector" protein involved in biomineralization.
Collapse
Affiliation(s)
- Melani S Cheers
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
128
|
Yamazaki A, Kawabata R, Shiomi K, Amemiya S, Sawaguchi M, Mitsunaga-Nakatsubo K, Yamaguchi M. The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo. Dev Genes Evol 2005; 215:450-59. [PMID: 16078091 DOI: 10.1007/s00427-005-0006-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 05/18/2005] [Indexed: 10/25/2022]
Abstract
In the sea urchin embryo, micromeres have two distinct functions: they differentiate cell autonomously into the skeletogenic mesenchyme cells and act as an organizing center that induces endomesoderm formation. We demonstrated that micro1 controls micromere specification as a transcriptional repressor. Because micro1 is a multicopy gene with at least six polymorphic loci, it has been difficult to consistently block micro1 function by morpholino-mediated knockdown. Here, to block micro1 function, we used an active activator of micro1 consisting of a fusion protein of the VP16 activation domain and the micro1 homeodomain. Embryos injected with mRNA encoding the fusion protein exhibited a phenotype similar to that of micromere-less embryos. To evaluate micro1 function in the micromere, we constructed chimeric embryos composed of animal cap mesomeres and a micromere quartet from embryos injected with the fusion protein mRNA. The chimeras developed into dauerblastulae with no vegetal structures, in which the micromere progeny constituted the blastula wall. We also analyzed the phenotype of chimeras composed of an animal cap and a mesomere expressing micro1. These chimeras developed into pluteus larvae, in which the mesomere descendants ingressed as primary mesenchyme cells and formed a complete set of skeletal rods. The hindgut and a part of the midgut were also generated from host mesomeres. However, the foregut and nonskeletogenic mesoderm were not formed in the larvae. From these observations, we conclude that micro1 is necessary and sufficient for both micromere differentiation and mid/hindgut-inducing activity, and we also suggest that micro1 may not fulfill all micromere functions.
Collapse
Affiliation(s)
- Atsuko Yamazaki
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
129
|
Wilt FH. Developmental biology meets materials science: Morphogenesis of biomineralized structures. Dev Biol 2005; 280:15-25. [PMID: 15766744 DOI: 10.1016/j.ydbio.2005.01.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 01/03/2005] [Accepted: 01/13/2005] [Indexed: 11/16/2022]
Abstract
Biomineralization is the process by which metazoa form hard minerals for support, defense, and feeding. The minerals so formed, e.g., teeth, bones, shells, carapaces, and spicules, are of considerable interest to chemists and materials scientists. The cell biology underlying biomineralization is not well understood. The study of the formation of mineralized structures in developing organisms offers opportunities for understanding some intriguing aspects of cell and developmental biology. Five examples of biomineralization are presented: (1) the formation of siliceous spicules and frustules in sponges and diatoms, respectively; (2) the structure of skeletal spicules composed of amorphous calcium carbonate in some tunicates; (3) the secretion of the prism and nacre of some molluscan shells; (4) the development of skeletal spicules of sea urchin embryos; and (5) the formation of enamel of vertebrate teeth. Some speculations on the cellular and molecular mechanisms that support biomineralization, and their evolutionary origins, are discussed.
Collapse
Affiliation(s)
- Fred H Wilt
- Department of Molecular Cell Biology, University of California, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
130
|
Oliveri P, Davidson EH. Gene regulatory network controlling embryonic specification in the sea urchin. Curr Opin Genet Dev 2005; 14:351-60. [PMID: 15261650 DOI: 10.1016/j.gde.2004.06.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current state of the gene regulatory network for endomesoderm specification in sea urchin embryos is reviewed. The network was experimentally defined, and is presented as a predictive map of cis-regulatory inputs and functional regulatory gene interconnections (updated versions of the network and most of the underlying data are at ). The network illuminates the 'whys' of many aspects of zygotic control in early sea urchin development, both spatial and temporal. The network includes almost 50 genes, and these are organized in subcircuits, each of which executes a particular regulatory function.
Collapse
Affiliation(s)
- Paola Oliveri
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
131
|
Wikramanayake AH, Peterson R, Chen J, Huang L, Bince JM, McClay DR, Klein WH. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages. Genesis 2005; 39:194-205. [PMID: 15282746 DOI: 10.1002/gene.20045] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The entry of beta-catenin into vegetal cell nuclei beginning at the 16-cell stage is one of the earliest known molecular asymmetries seen along the animal-vegetal axis in the sea urchin embryo. Nuclear beta-catenin activates a vegetal signaling cascade that mediates micromere specification and specification of the endomesoderm in the remaining cells of the vegetal half of the embryo. Only a few potential target genes of nuclear beta-catenin have been functionally analyzed in the sea urchin embryo. Here, we show that SpWnt8, a Wnt8 homolog from Strongylocentrotus purpuratus, is zygotically activated specifically in 16-cell-stage micromeres in a nuclear beta-catenin-dependent manner, and its expression remains restricted to the micromeres until the 60-cell stage. At the late 60-cell stage nuclear beta-catenin-dependent SpWnt8 expression expands to the veg2 cell tier. SpWnt8 is the only signaling molecule thus far identified with expression localized to the 16-60-cell stage micromeres and the veg2 tier. Overexpression of SpWnt8 by mRNA microinjection produced embryos with multiple invagination sites and showed that, consistent with its localization, SpWnt8 is a strong inducer of endoderm. Blocking SpWnt8 function using SpWnt8 morpholino antisense oligonucleotides produced embryos that formed micromeres that could transmit the early endomesoderm-inducing signal, but these cells failed to differentiate as primary mesenchyme cells. SpWnt8-morpholino embryos also did not form endoderm, or secondary mesenchyme-derived pigment and muscle cells, indicating a role for SpWnt8 in gastrulation and in the differentiation of endomesodermal lineages. These results establish SpWnt8 as a critical component of the endomesoderm regulatory network in the sea urchin embryo.
Collapse
|
132
|
Revilla-i-Domingo R, Minokawa T, Davidson EH. R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres. Dev Biol 2004; 274:438-51. [PMID: 15385170 DOI: 10.1016/j.ydbio.2004.07.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 07/09/2004] [Indexed: 11/19/2022]
Abstract
A gene regulatory network (GRN) controls the process by which the endomesoderm of the sea urchin embryo is specified. In this GRN, the program of gene expression unique to the skeletogenic micromere lineage is set in train by activation of the pmar1 gene. Through a double repression system, this gene is responsible for localization of expression of downstream regulatory and signaling genes to cells of this lineage. One of these genes, delta, encodes a Notch ligand, and its expression in the right place and time is crucial to the specification of the endomesoderm. Here we report a cis-regulatory element R11 that is responsible for localizing the expression of delta by means of its response to the pmar1 repression system. R11 was identified as an evolutionarily conserved genomic sequence located about 13 kb downstream of the last exon of the delta gene. We demonstrate here that this cis-regulatory element is able to drive the expression of a reporter gene in the same cells and at the same time that the endogenous delta gene is expressed, and that temporally, spatially, and quantitatively it responds to the pmar1 repression system just as predicted for the delta gene in the endomesoderm GRN. This work illustrates the application of cis-regulatory analysis to the validation of predictions of the GRN model. In addition, we introduce new methodological tools for quantitative measurement of the output of expression constructs that promise to be of general value for cis-regulatory analysis in sea urchin embryos.
Collapse
|
133
|
Otim O, Amore G, Minokawa T, McClay DR, Davidson EH. SpHnf6, a transcription factor that executes multiple functions in sea urchin embryogenesis. Dev Biol 2004; 273:226-43. [PMID: 15328009 DOI: 10.1016/j.ydbio.2004.05.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 05/21/2004] [Accepted: 05/21/2004] [Indexed: 10/26/2022]
Abstract
The Strongylocentrotus purpuratus hnf6 (Sphnf6) gene encodes a new member of the ONECUT family of transcription factors. The expression of hnf6 in the developing embryo is triphasic, and loss-of-function analysis shows that the Hnf6 protein is a transcription factor that has multiple distinct roles in sea urchin development. hnf6 is expressed maternally, and before gastrulation its transcripts are distributed globally. Early in development, its expression is required for the activation of PMC differentiation genes such as sm50, pm27, and msp130, but not for the activation of any known PMC regulatory genes, for example, alx, ets1, pmar1, or tbrain. Micromere transplantation experiments show that the gene is not involved in early micromere signaling. Early hnf6 expression is also required for expression of the mesodermal regulator gatac. The second known role of hnf6 is its participation after gastrulation in the oral ectoderm gene regulatory network (GRN), in which its expression is essential for the maintenance of the state of oral ectoderm specification. The third role is in the neurogenic ciliated band, which is foreshadowed exactly by a trapezoidal band of hnf6 expression at the border of the oral ectoderm and where it continues to be expressed through the end of embryogenesis. Neither oral ectoderm regulatory functions nor ciliated band formation occur normally in the absence of hnf6 expression.
Collapse
Affiliation(s)
- Ochan Otim
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
134
|
Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 2004; 120:1351-83. [PMID: 14623443 DOI: 10.1016/j.mod.2003.06.005] [Citation(s) in RCA: 419] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial-mesenchymal transitions (EMTs) are an important mechanism for reorganizing germ layers and tissues during embryonic development. They have both a morphogenic function in shaping the embryo and a patterning function in bringing about new juxtapositions of tissues, which allow further inductive patterning events to occur [Genesis 28 (2000) 23]. Whereas the mechanics of EMT in cultured cells is relatively well understood [reviewed in Biochem. Pharmacol. 60 (2000) 1091; Cell 105 (2001) 425; Bioessays 23 (2001) 912], surprisingly little is known about EMTs during embryonic development [reviewed in Acta Anat. 154 (1995) 8], and nowhere is the entire process well characterized within a single species. Embryonic (developmental) EMTs have properties that are not seen or are not obvious in culture systems or cancer cells. Developmental EMTs are part of a specific differentiative path and occur at a particular time and place. In some types of embryos, a relatively intact epithelium must be maintained while some of its cells de-epithelialize during EMT. In most cases de-epithelialization (loss of apical junctions) must occur in an orderly, patterned fashion in order that the proper morphogenesis results. Interestingly, we find that de-epithelialization is not always necessarily tightly coupled to the expression of mesenchymal phenotypes.Developmental EMTs are multi-step processes, though the interdependence and obligate order of the steps is not clear. The particulars of the process vary between tissues, species, and specific embryonic context. We will focus on 'primary' developmental EMTs, which are those occurring in the initial epiblast or embryonic epithelium. 'Secondary' developmental EMT events are those occurring in epithelial tissues that have reassembled within the embryo from mesenchymal cells. We will review and compare a number of primary EMT events from across the metazoans, and point out some of the many open questions that remain in this field.
Collapse
Affiliation(s)
- David Shook
- Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904-4328, USA.
| | | |
Collapse
|
135
|
Weitzel HE, Illies MR, Byrum CA, Xu R, Wikramanayake AH, Ettensohn CA. Differential stability of β-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled. Development 2004; 131:2947-56. [PMID: 15151983 DOI: 10.1242/dev.01152] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
β-Catenin has a central role in the early axial patterning of metazoan embryos. In the sea urchin, β-catenin accumulates in the nuclei of vegetal blastomeres and controls endomesoderm specification. Here, we use in-vivo measurements of the half-life of fluorescently tagged β-catenin in specific blastomeres to demonstrate a gradient in β-catenin stability along the animal-vegetal axis during early cleavage. This gradient is dependent on GSK3β-mediated phosphorylation of β-catenin. Calculations show that the difference in β-catenin half-life at the animal and vegetal poles of the early embryo is sufficient to produce a difference of more than 100-fold in levels of the protein in less than 2 hours. We show that dishevelled (Dsh), a key signaling protein, is required for the stabilization of β-catenin in vegetal cells and provide evidence that Dsh undergoes a local activation in the vegetal region of the embryo. Finally, we report that GFP-tagged Dsh is targeted specifically to the vegetal cortex of the fertilized egg. During cleavage, Dsh-GFP is partitioned predominantly into vegetal blastomeres. An extensive mutational analysis of Dsh identifies several regions of the protein that are required for vegetal cortical targeting, including a phospholipid-binding motif near the N-terminus.
Collapse
Affiliation(s)
- Heather E Weitzel
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
136
|
Fernandez-Serra M, Consales C, Livigni A, Arnone MI. Role of the ERK-mediated signaling pathway in mesenchyme formation and differentiation in the sea urchin embryo. Dev Biol 2004; 268:384-402. [PMID: 15063175 DOI: 10.1016/j.ydbio.2003.12.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 12/12/2003] [Accepted: 12/22/2003] [Indexed: 12/25/2022]
Abstract
Mesoderm and mesodermal structures in the sea urchin embryo are entirely generated by two embryologically distinct populations of mesenchyme cells: the primary (PMC) and the secondary (SMC) mesenchyme cells. We have identified the extracellular signal-regulated kinase (ERK) as a key component of the regulatory machinery that controls the formation of both these cell types. ERK is activated in a spatial-temporal manner, which coincides with the epithelial-mesenchyme transition (EMT) of the prospective PMCs and SMCs. Here, we show that ERK controls EMT of both primary and secondary mesenchyme cells. Loss and gain of function experiments demonstrate that ERK signaling is not required for the early specification of either PMCs or SMCs, but controls the maintenance and/or the enhancement of expression levels of regulatory genes which participate in the process of specification of these cell types. In addition, ERK-mediated signaling is essential for the transcription of terminal differentiation genes encoding proteins that define the final structures generated by PMCs and SMCs. Our findings suggest that ERK has a central pan-mesodermal role in coupling EMT and terminal differentiation of all mesenchymal cell types in the sea urchin embryo.
Collapse
|
137
|
Röttinger E, Besnardeau L, Lepage T. A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets. Development 2004; 131:1075-87. [PMID: 14973284 DOI: 10.1242/dev.01000] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the sea urchin embryo, the skeleton of the larva is built from a population of mesenchymal cells known as the primary mesenchyme cells (PMCs). These derive from the large micromeres that originate from the vegetal pole at fourth cleavage. At the blastula stage, the 32 cells of this lineage detach from the epithelium and ingress into the blastocoel by a process of epithelial-mesenchymal transition. We report that shortly before ingression,there is a transient and highly localized activation of the MAP-kinase ERK in the micromere lineage. We show that ingression of the PMCs requires the activity of ERK, MEK and Raf, and depends on the maternal Wnt/β-catenin pathway. Dissociation experiments and injection of mRNA encoding a dominant-negative form of Ras indicated that this activation is probably cell autonomous. We identified the transcription factors Ets1 and Alx1 as putative targets of the phosphorylation by ERK. Both proteins contain a single consensus site for phosphorylation by the MAP kinase ERK. In addition, the Ets1 protein sequence contains a putative ERK docking site. Overexpression of ets1 by injection of synthetic mRNA in the egg caused a dramatic increase in the number of cells becoming mesenchymal at the blastula stage. This effect could be largely inhibited by treating embryos with the MEK inhibitor U0126. Moreover, mutations in the consensus phosphorylation motif substituting threonine 107 by an aspartic or an alanine residue resulted respectively in a constitutively active form of Ets1 that could not be inhibited by U0126 or in an inactive form of Ets1. These results show that the MAP kinase pathway, working through phosphorylation of Ets1, is required for full specification of the PMCs and their subsequent transition from epithelial to mesenchymal state.
Collapse
Affiliation(s)
- Eric Röttinger
- UMR 7009 CNRS, Université de Paris VI, Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | | | | |
Collapse
|
138
|
Abstract
It may safely be predicted that GRN analysis will become increasingly important. It will come to underlie the causal study of development, the major effort underway to understand the regulatory code built into animal genomes and also the evolution of these genomes. Partly by serendipity, sea urchin embryos turn out to be a superb experimental material for GRN analysis. Their natural properties have, in turn, influenced the predilections of those who work on them, and between them and us, so to speak, this is now a developmental system of which we are rapidly gaining an unusually complete understanding. The causal linkages that control development of the whole embryo will be revealed, leading all the way from the heritable genomic regulatory code to the events of embryology. The fundamental experimental operation is the perturbation analysis: Here is where causality permeates the exploration. We have in this chapter summarized in some detail the requirements for perturbation GRN analysis in sea urchin embryos. But that is not all, nor is it enough to enable the assembly of a GRN: What is required is the combined application of elegant computational methods, of gene regulation molecular biology, of genomic sequence data, and of experimental embryology. As the results crystallize together, we can begin to see how far this powerful combination of methods and ideas is going to carry us.
Collapse
Affiliation(s)
- Paola Oliveri
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
139
|
Lepage T, Gache C. Expression of exogenous mRNAs to study gene function in the sea urchin embryo. Methods Cell Biol 2004; 74:677-97. [PMID: 15575626 DOI: 10.1016/s0091-679x(04)74027-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Expression of exogenous mRNAs has become part of the standard approach to studying gene function during development of the sea urchin. The method is simple and reliable, protocols for the preparation of synthetic mRNAs are well described, and the technique to transfer them into eggs is efficient. The protein encoded by these mRNAs can be designed to address a variety of biological questions and their DNA matrices are easily constructed by standard molecular biology techniques. The method aims to simulate gain or loss of gene function, and the phenotypes obtained are characterized using an increasing number of molecular markers. With the completion of the S. purpuratus genome project, the complete set of genes from the sea urchin will become available. Expression of mRNA will be an invaluable tool to study the function of newly identified genes and their protein products and to determine their positions within the networks of gene and protein interactions that control development.
Collapse
Affiliation(s)
- Thierry Lepage
- Laboratory of Developmental Biology, CNRS-Université Pierre et Marie Curie (Paris VI), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | | |
Collapse
|
140
|
Kauffman JS, Raff RA. Patterning mechanisms in the evolution of derived developmental life histories: the role of Wnt signaling in axis formation of the direct-developing sea urchin Heliocidaris erythrogramma. Dev Genes Evol 2003; 213:612-24. [PMID: 14618401 DOI: 10.1007/s00427-003-0365-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Accepted: 10/17/2003] [Indexed: 11/27/2022]
Abstract
A number of echinoderm species have replaced indirect development with highly modified direct-developmental modes, and provide models for the study of the evolution of early embryonic development. These divergent early ontogenies may differ significantly in life history, oogenesis, cleavage pattern, cell lineage, and timing of cell fate specification compared with those of indirect-developing species. No direct-developing echinoderm species has been studied at the level of molecular specification of embryonic axes. Here we report the first functional analysis of Wnt pathway components in Heliocidaris erythrogramma, a direct-developing sea urchin. We show by misexpression and dominant negative knockout construct expression that Wnt8 and TCF are functionally conserved in the generation of the primary (animal/vegetal) axis in two independently evolved direct-developing sea urchins. Thus, Wnt pathway signaling is an overall deeply conserved mechanism for axis formation that transcends radical changes to early developmental ontogenies. However, the timing of expression and linkages between Wnt8, TCF, and components of the PMC-specification pathway have changed. These changes correlate with the transition from an indirect- to a direct-developing larval life history.
Collapse
Affiliation(s)
- Jeffrey S Kauffman
- Department of Biology, Indiana University, Myers Hall 102, Bloomington, IN 47405, USA
| | | |
Collapse
|
141
|
Abstract
The epithelial-mesenchymal transition (EMT) is a fundamental process governing morphogenesis in multicellular organisms. This process is also reactivated in a variety of diseases including fibrosis and in the progression of carcinoma. The molecular mechanisms of EMT were primarily studied in epithelial cell lines, leading to the discovery of transduction pathways involved in the loss of epithelial cell polarity and the acquisition of a variety of mesenchymal phenotypic traits. Similar mechanisms have also been uncovered in vivo in different species, showing that EMT is controlled by remarkably well-conserved mechanisms. Current studies further emphasise the critical importance of EMT and provide a better molecular and functional definition of mesenchymal cells and how they emerged >500 million years ago as a key event in evolution.
Collapse
Affiliation(s)
- Jean Paul Thiery
- Unite Mixte de Recherche 144, Centre National Recherche Scientifique, Institut Curie, 26 rue d'Ulm, 75248 Paris cedex 05, France.
| |
Collapse
|
142
|
Abstract
Most metazoans require skeletal support systems. While the formation of bones and teeth in vertebrates has been well studied, endo- and exoskeleton development of non-vertebrates, especially calcification during terminal differentiation, has been neglected. Biomineralization of skeletons in invertebrates presents interesting research opportunities. We undertake here to survey some of the better understood examples of skeletal development in selected invertebrates. The differentiation of the skeletal spicules of euechinoid larvae and other non-vertebrate deuterostomes, the shells of molluscs, and the calcification of crustacean carapaces are surveyed. The diversity of these different kinds of animals and our present limited understanding make it difficult to identify unifying themes, but there certainly are unifying questions: How is the mineral precursor secreted? What is the nature of the interaction of mineral with the matrix proteins of the skeleton? Is there any conservation of protein domains in matrix proteins found in skeletal elements from different phyla? Are there common strategies in the development of organs that form mineralized structures?
Collapse
Affiliation(s)
- Fred H Wilt
- Department of Molecular and Cell Biology, University of California, Berkeley, 142 Life Sciences Addition, Berkeley, California 94720-3200, USA.
| | | | | |
Collapse
|