101
|
CpG Island Methylation Correlates with the Use of Alternative Promoters for USP44 Gene Expression in Human Pluripotent Stem Cells and Testes. Stem Cells Dev 2017; 26:1100-1110. [DOI: 10.1089/scd.2017.0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
102
|
McKee C, Chaudhry GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces 2017; 159:62-77. [PMID: 28780462 DOI: 10.1016/j.colsurfb.2017.07.051] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/04/2017] [Accepted: 07/22/2017] [Indexed: 12/12/2022]
Abstract
Stem cells (SCs) hold great promise for cell therapy, tissue engineering, and regenerative medicine as well as pharmaceutical and biotechnological applications. They have the capacity to self-renew and the ability to differentiate into specialized cell types depending upon their source of isolation. However, use of SCs for clinical applications requires a high quality and quantity of cells. This necessitates large-scale expansion of SCs followed by efficient and homogeneous differentiation into functional derivatives. Traditional methods for maintenance and expansion of cells rely on two-dimensional (2-D) culturing techniques using plastic culture plates and xenogenic media. These methods provide limited expansion and cells tend to lose clonal and differentiation capacity upon long-term passaging. Recently, new approaches for the expansion of SCs have emphasized three-dimensional (3-D) cell growth to mimic the in vivo environment. This review provides a comprehensive compendium of recent advancements in culturing SCs using 2-D and 3-D techniques involving spheroids, biomaterials, and bioreactors. In addition, potential challenges to achieve billion-fold expansion of cells are discussed.
Collapse
Affiliation(s)
- Christina McKee
- Department of Biological Sciences , Oakland University, Rochester, MI, 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences , Oakland University, Rochester, MI, 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
103
|
Rawat N, Singh MK. Induced pluripotent stem cell: A headway in reprogramming with promising approach in regenerative biology. Vet World 2017; 10:640-649. [PMID: 28717316 PMCID: PMC5499081 DOI: 10.14202/vetworld.2017.640-649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/26/2017] [Indexed: 12/17/2022] Open
Abstract
Since the embryonic stem cells have knocked the doorsteps, they have proved themselves in the field of science, research, and medicines, but the hovered restrictions confine their application in human welfare. Alternate approaches used to reprogram the cells to the pluripotent state were not up to par, but the innovation of induced pluripotent stem cells (iPSCs) paved a new hope for the researchers. Soon after the discovery, iPSCs technology is undergoing renaissance day by day, i.e., from the use of genetic material to recombinant proteins and now only chemicals are employed to convert somatic cells to iPSCs. Thus, this technique is moving straightforward and productive at an astonishing pace. Here, we provide a brief introduction to iPSCs, the mechanism and methods for their generation, their prevailing and prospective applications and the future opportunities that can be expected from them.
Collapse
Affiliation(s)
- N Rawat
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR - National Dairy Research Institute, Karnal - 132 001, Haryana, India
| | - M K Singh
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR - National Dairy Research Institute, Karnal - 132 001, Haryana, India
| |
Collapse
|
104
|
Delayed Mesoderm and Erythroid Differentiation of Murine Embryonic Stem Cells in the Absence of the Transcriptional Regulator FUBP1. Stem Cells Int 2017; 2017:5762301. [PMID: 28588622 PMCID: PMC5447289 DOI: 10.1155/2017/5762301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/02/2017] [Accepted: 03/19/2017] [Indexed: 11/18/2022] Open
Abstract
The transcriptional regulator far upstream binding protein 1 (FUBP1) is essential for fetal and adult hematopoietic stem cell (HSC) self-renewal, and the constitutive absence of FUBP1 activity during early development leads to embryonic lethality in homozygous mutant mice. To investigate the role of FUBP1 in murine embryonic stem cells (ESCs) and in particular during differentiation into hematopoietic lineages, we generated Fubp1 knockout (KO) ESC clones using CRISPR/Cas9 technology. Although FUBP1 is expressed in undifferentiated ESCs and during spontaneous differentiation following aggregation into embryoid bodies (EBs), absence of FUBP1 did not affect ESC maintenance. Interestingly, we observed a delayed differentiation of FUBP1-deficient ESCs into the mesoderm germ layer, as indicated by impaired expression of several mesoderm markers including Brachyury at an early time point of ESC differentiation upon aggregation to EBs. Coculture experiments with OP9 cells in the presence of erythropoietin revealed a diminished differentiation capacity of Fubp1 KO ESCs into the erythroid lineage. Our data showed that FUBP1 is important for the onset of mesoderm differentiation and maturation of hematopoietic progenitor cells into the erythroid lineage, a finding that is supported by the phenotype of FUBP1-deficient mice.
Collapse
|
105
|
Yamawaki K, Ishiguro T, Mori Y, Yoshihara K, Suda K, Tamura R, Yamaguchi M, Sekine M, Kashima K, Higuchi M, Fujii M, Okamoto K, Enomoto T. Sox2-dependent inhibition of p21 is associated with poor prognosis of endometrial cancer. Cancer Sci 2017; 108:632-640. [PMID: 28188685 PMCID: PMC5406528 DOI: 10.1111/cas.13196] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/12/2017] [Accepted: 01/24/2017] [Indexed: 12/11/2022] Open
Abstract
Sex‐determining region Y‐box 2 (SOX2) is an essential factor involved in the self‐renewal and pluripotency of embryonic stem cells and has functions in cell survival and progression in many types of cancers. Here, we found that several endometrial cancer cell lines expressed SOX2, which was required for cell growth. Additionally, SOX2 overexpression regulated the expression of cyclin‐dependent kinase inhibitor 1A (CDKN1A), and SOX2 specifically bound to p21 promoter DNA in endometrial cancer cell lines expressing SOX2. Expressions of SOX2 in endometrial cancer patients were significantly correlated with histological grade and poor prognosis. Moreover, low p21 together with high SOX2 expressions in advanced endometrial cancer patients were associated with the most unfavorable outcomes of patients. These results indicated that simultaneous measurement of SOX2 and p21 expression in endometrial cancer patients may be a useful biomarker for patient prognosis.
Collapse
Affiliation(s)
- Kaoru Yamawaki
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuya Ishiguro
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaro Mori
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuaki Suda
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryo Tamura
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masayuki Yamaguchi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masayuki Sekine
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Katsunori Kashima
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaya Higuchi
- Department of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiro Fujii
- Department of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Research Institute, Tokyo, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
106
|
Sundaram V, Choudhary MNK, Pehrsson E, Xing X, Fiore C, Pandey M, Maricque B, Udawatta M, Ngo D, Chen Y, Paguntalan A, Ray T, Hughes A, Cohen BA, Wang T. Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus. Nat Commun 2017; 8:14550. [PMID: 28348391 PMCID: PMC5379053 DOI: 10.1038/ncomms14550] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/11/2017] [Indexed: 01/30/2023] Open
Abstract
Cis-regulatory modules contain multiple transcription factor (TF)-binding sites and integrate the effects of each TF to control gene expression in specific cellular contexts. Transposable elements (TEs) are uniquely equipped to deposit their regulatory sequences across a genome, which could also contain cis-regulatory modules that coordinate the control of multiple genes with the same regulatory logic. We provide the first evidence of mouse-specific TEs that encode a module of TF-binding sites in mouse embryonic stem cells (ESCs). The majority (77%) of the individual TEs tested exhibited enhancer activity in mouse ESCs. By mutating individual TF-binding sites within the TE, we identified a module of TF-binding motifs that cooperatively enhanced gene expression. Interestingly, we also observed the same motif module in the in silico constructed ancestral TE that also acted cooperatively to enhance gene expression. Our results suggest that ancestral TE insertions might have brought in cis-regulatory modules into the mouse genome.
Collapse
Affiliation(s)
- Vasavi Sundaram
- Division of Biological and Biomedical Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Mayank N. K. Choudhary
- Division of Biological and Biomedical Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Erica Pehrsson
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Christopher Fiore
- Division of Biological and Biomedical Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Manishi Pandey
- Division of Biological and Biomedical Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Brett Maricque
- Division of Biological and Biomedical Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Methma Udawatta
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Duc Ngo
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Yujie Chen
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Asia Paguntalan
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Tammy Ray
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Ava Hughes
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Barak A. Cohen
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| | - Ting Wang
- Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, Missouri 63110, USA
| |
Collapse
|
107
|
Kelly GM, Gatie MI. Mechanisms Regulating Stemness and Differentiation in Embryonal Carcinoma Cells. Stem Cells Int 2017; 2017:3684178. [PMID: 28373885 PMCID: PMC5360977 DOI: 10.1155/2017/3684178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/10/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Just over ten years have passed since the seminal Takahashi-Yamanaka paper, and while most attention nowadays is on induced, embryonic, and cancer stem cells, much of the pioneering work arose from studies with embryonal carcinoma cells (ECCs) derived from teratocarcinomas. This original work was broad in scope, but eventually led the way for us to focus on the components involved in the gene regulation of stemness and differentiation. As the name implies, ECCs are malignant in nature, yet maintain the ability to differentiate into the 3 germ layers and extraembryonic tissues, as well as behave normally when reintroduced into a healthy blastocyst. Retinoic acid signaling has been thoroughly interrogated in ECCs, especially in the F9 and P19 murine cell models, and while we have touched on this aspect, this review purposely highlights how some key transcription factors regulate pluripotency and cell stemness prior to this signaling. Another major focus is on the epigenetic regulation of ECCs and stem cells, and, towards that end, this review closes on what we see as a new frontier in combating aging and human disease, namely, how cellular metabolism shapes the epigenetic landscape and hence the pluripotency of all stem cells.
Collapse
Affiliation(s)
- Gregory M. Kelly
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
- Department of Paediatrics and Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Child Health Research Institute, London, ON, Canada
- Ontario Institute for Regenerative Medicine, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Mohamed I. Gatie
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
| |
Collapse
|
108
|
Gao J, Wang X, Zhang Q. Evolutionary Conservation of pou5f3 Genomic Organization and Its Dynamic Distribution during Embryogenesis and in Adult Gonads in Japanese Flounder Paralichthys olivaceus. Int J Mol Sci 2017; 18:ijms18010231. [PMID: 28124980 PMCID: PMC5297860 DOI: 10.3390/ijms18010231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 01/06/2023] Open
Abstract
Octamer-binding transcription factor 4 (Oct4) is a member of POU (Pit-Oct-Unc) transcription factor family Class V that plays a crucial role in maintaining the pluripotency and self-renewal of stem cells. Though it has been deeply investigated in mammals, its lower vertebrate homologue, especially in the marine fish, is poorly studied. In this study, we isolated the full-length sequence of Paralichthys olivaceus pou5f3 (Popou5f3), and we found that it is homologous to mammalian Oct4. We identified two transcript variants with different lengths of 3′-untranslated regions (UTRs) generated by alternative polyadenylation (APA). Quantitative real-time RT-PCR (qRT-PCR), in situ hybridization (ISH) and immunohistochemistry (IHC) were implemented to characterize the spatial and temporal expression pattern of Popou5f3 during early development and in adult tissues. Our results show that Popou5f3 is maternally inherited, abundantly expressed at the blastula and early gastrula stages, then greatly diminishes at the end of gastrulation. It is hardly detectable from the heart-beating stage onward. We found that Popou5f3 expression is restricted to the adult gonads, and continuously expresses during oogenesis while its dynamics are downregulated during spermatogenesis. Additionally, numerous cis-regulatory elements (CRE) on both sides of the flanking regions show potential roles in regulating the expression of Popou5f3. Taken together, these findings could further our understanding of the functions and evolution of pou5f3 in lower vertebrates, and also provides fundamental information for stem cell tracing and genetic manipulation in Paralichthys olivaceus.
Collapse
Affiliation(s)
- Jinning Gao
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, China.
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Xubo Wang
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, China.
| | - Quanqi Zhang
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, China.
| |
Collapse
|
109
|
Festuccia N, Gonzalez I, Navarro P. The Epigenetic Paradox of Pluripotent ES Cells. J Mol Biol 2016; 429:1476-1503. [PMID: 27988225 DOI: 10.1016/j.jmb.2016.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
Abstract
The propagation and maintenance of gene expression programs are at the foundation of the preservation of cell identity. A large and complex set of epigenetic mechanisms enables the long-term stability and inheritance of transcription states. A key property of authentic epigenetic regulation is being independent from the instructive signals used for its establishment. This makes epigenetic regulation, particularly epigenetic silencing, extremely robust and powerful to lock regulatory states and stabilise cell identity. In line with this, the establishment of epigenetic silencing during development restricts cell potency and maintains the cell fate choices made by transcription factors (TFs). However, how more immature cells that have not yet established their definitive fate maintain their transitory identity without compromising their responsiveness to signalling cues remains unclear. A paradigmatic example is provided by pluripotent embryonic stem (ES) cells derived from a transient population of cells of the blastocyst. Here, we argue that ES cells represent an interesting "epigenetic paradox": even though they are captured in a self-renewing state characterised by extremely efficient maintenance of their identity, which is a typical manifestation of robust epigenetic regulation, they seem not to heavily rely on classical epigenetic mechanisms. Indeed, self-renewal strictly depends on the TFs that previously instructed their undifferentiated identity and relies on a particular signalling-dependent chromatin state where repressive chromatin marks play minor roles. Although this "epigenetic paradox" may underlie their exquisite responsiveness to developmental cues, it suggests that alternative mechanisms to faithfully propagate gene regulatory states might be prevalent in ES cells.
Collapse
Affiliation(s)
- Nicola Festuccia
- Epigenetics of Stem Cells, Department of Stem Cell and Developmental Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France
| | - Inma Gonzalez
- Epigenetics of Stem Cells, Department of Stem Cell and Developmental Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France
| | - Pablo Navarro
- Epigenetics of Stem Cells, Department of Stem Cell and Developmental Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
110
|
Onichtchouk DV, Voronina AS. Regulation of Zygotic Genome and Cellular Pluripotency. BIOCHEMISTRY (MOSCOW) 2016; 80:1723-33. [PMID: 26878577 DOI: 10.1134/s0006297915130088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Events, manifesting transition from maternal to zygotic period of development are studied for more than 100 years, but underlying mechanisms are not yet clear. We provide a brief historical overview of development of concepts and explain the specific terminology used in the field. We further discuss differences and similarities between the zygotic genome activation and in vitro reprogramming process. Finally, we envision the future research directions within the field, where biochemical methods will play increasingly important role.
Collapse
Affiliation(s)
- D V Onichtchouk
- University of Freiburg, Developmental Biology Unit, Biologie 1, Freiburg, 79194, Germany.
| | | |
Collapse
|
111
|
Roth Z. Effect of Heat Stress on Reproduction in Dairy Cows: Insights into the Cellular and Molecular Responses of the Oocyte. Annu Rev Anim Biosci 2016; 5:151-170. [PMID: 27732786 DOI: 10.1146/annurev-animal-022516-022849] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Among the components of the female reproductive tract, the ovarian pool of follicles and their enclosed oocytes are highly sensitive to hyperthermia. Heat-induced alterations in small antral follicles can be expressed later as compromised maturation and developmental capacity of the ovulating oocyte. This review summarizes the most up-to-date information on the effects of heat stress on the oocyte with an emphasis on unclear points and open questions, some of which might involve new research directions, for instance, whether preantral follicles are heat resistant. The review focuses on the follicle-enclosed oocytes, provides new insights into the cellular and molecular responses of the oocyte to elevated temperature, points out the role of the follicle microenvironment, and discusses some mechanisms that might underlie oocyte impairment. Mechanisms include nuclear and cytoplasmic maturation, mitochondrial function, apoptotic pathways, and oxidative stress. Understanding the mechanism by which heat stress compromises fertility might enable development of new strategies to mitigate its effects.
Collapse
Affiliation(s)
- Zvi Roth
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel;
| |
Collapse
|
112
|
CRISPR/Cas9-mediated gene knockout of NANOG and NANOGP8 decreases the malignant potential of prostate cancer cells. Oncotarget 2016; 6:22361-74. [PMID: 26087476 PMCID: PMC4673169 DOI: 10.18632/oncotarget.4293] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/03/2015] [Indexed: 01/03/2023] Open
Abstract
NANOG expression in prostate cancer is highly correlated with cancer stem cell characteristics and resistance to androgen deprivation. However, it is not clear whether NANOG or its pseudogenes contribute to the malignant potential of cancer. We established NANOG- and NANOGP8-knockout DU145 prostate cancer cell lines using the CRISPR/Cas9 system. Knockouts of NANOG and NANOGP8 significantly attenuated malignant potential, including sphere formation, anchorage-independent growth, migration capability, and drug resistance, compared to parental DU145 cells. NANOG and NANOGP8 knockout did not inhibit in vitro cell proliferation, but in vivo tumorigenic potential decreased significantly. These phenotypes were recovered in NANOG- and NANOGP8-rescued cell lines. These results indicate that NANOG and NANOGP8 proteins are expressed in prostate cancer cell lines, and NANOG and NANOGP8 equally contribute to the high malignant potential of prostate cancer.
Collapse
|
113
|
Halder D, Chang GE, De D, Cheong E, Kim KK, Shin I. Combining Suppression of Stemness with Lineage-Specific Induction Leads to Conversion of Pluripotent Cells into Functional Neurons. ACTA ACUST UNITED AC 2016; 22:1512-1520. [PMID: 26590637 DOI: 10.1016/j.chembiol.2015.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/05/2015] [Accepted: 10/09/2015] [Indexed: 01/16/2023]
Abstract
Sox2 is a key player in the maintenance of pluripotency and stemness, and thus inhibition of its function would abrogate the stemness of pluripotent cells and induce differentiation into several types of cells. Herein we describe a strategy that relies on a combination of Sox2 inhibition with lineage-specific induction to promote efficient and selective differentiation of pluripotent P19 cells into neurons. When P19 cells transduced with Skp protein, an inhibitor of Sox2, are incubated with a neurogenesis inducer, the cells are selectively converted into neurons that generate depolarization-induced sodium currents and action potentials. This finding indicates that the differentiated neurons are electrophysiologically active. Signaling pathway studies lead us to conclude that a combination of Skp with the neurogenesis inducer enhances neurogenesis in P19 cells by activating Wnt and Notch pathways. The present differentiation protocol could be valuable to selectively generate functionally active neurons from pluripotent cells.
Collapse
Affiliation(s)
- Debasish Halder
- Department of Chemistry, National Creative Research Initiative Center for Biofunctional Molecules, Yonsei University, Seoul 120-749, Korea
| | - Gyeong-Eon Chang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Debojyoti De
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea.
| | - Injae Shin
- Department of Chemistry, National Creative Research Initiative Center for Biofunctional Molecules, Yonsei University, Seoul 120-749, Korea.
| |
Collapse
|
114
|
Esposito S, Russo MV, Airoldi I, Tupone MG, Sorrentino C, Barbarito G, Di Meo S, Di Carlo E. SNAI2/Slug gene is silenced in prostate cancer and regulates neuroendocrine differentiation, metastasis-suppressor and pluripotency gene expression. Oncotarget 2016; 6:17121-34. [PMID: 25686823 PMCID: PMC4627296 DOI: 10.18632/oncotarget.2736] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/11/2014] [Indexed: 12/25/2022] Open
Abstract
Prostate Cancer (PCa)-related deaths are mostly due to metastasization of poorly differentiated adenocarcinomas often endowed with neuroendocrine differentiation (NED) areas. The SNAI2/Slug gene is a major regulator of cell migration and tumor metastasization. We here assessed its biological significance in NED, and metastatic potential of PCa. SNAI2 expression was down-regulated in most PCa epithelia, in association with gene promoter methylation, except for cell clusters forming: a. the expansion/invasion front of high-grade PCa, b. NED areas, or c. lymph node metastasis. Knockdown of SNAI2 in PC3 cells down-regulated the expression of neural-tissue-associated adhesion molecules, Neural-Cadherin, Neural-Cadherin-2, Neuronal-Cell-Adhesion-Molecule, and of the NED marker Neuron-Specific Enolase, whereas it abolished Chromogranin-A expression. The metastasis-suppressor genes, Nm23-H1 and KISS1, were up-regulated, while the pluripotency genes SOX2, NOTCH1, CD44v6, WWTR1/TAZ and YAP1 were dramatically down-regulated. Over-expression of SNAI2 in DU145 cells substantiated its ability to regulate metastasis-suppressor, NED and pluripotency genes. In PCa and lymph node metastasis, expression of SOX2 and NOTCH1 was highly related to that of SNAI2. In conclusion, I. SNAI2 silencing in PCa may turn-off the expression of NED markers and pluripotency genes, while turning-on that of specific metastasis-suppressors, II. SNAI2 expression in selected PCa cells, by regulating their self-renewal, NED and metastatic potential, endows them with highly malignant properties. SNAI2 may thus constitute a key target for modern approaches to PCa progression.
Collapse
Affiliation(s)
- Silvia Esposito
- Department of Medicine and Sciences of Aging, Section of Anatomic Pathology and Molecular Medicine, "G. d'Annunzio" University, Chieti, Italy.,Ce.S.I. Aging Research Center, "G. d'Annunzio" University Foundation, Chieti, Italy
| | - Marco V Russo
- Department of Medicine and Sciences of Aging, Section of Anatomic Pathology and Molecular Medicine, "G. d'Annunzio" University, Chieti, Italy.,Ce.S.I. Aging Research Center, "G. d'Annunzio" University Foundation, Chieti, Italy
| | - Irma Airoldi
- Laboratory of Oncology, Istituto Giannina Gaslini, Genova, Italy
| | - Maria Grazia Tupone
- Department of Medicine and Sciences of Aging, Section of Anatomic Pathology and Molecular Medicine, "G. d'Annunzio" University, Chieti, Italy.,Ce.S.I. Aging Research Center, "G. d'Annunzio" University Foundation, Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, Section of Anatomic Pathology and Molecular Medicine, "G. d'Annunzio" University, Chieti, Italy.,Ce.S.I. Aging Research Center, "G. d'Annunzio" University Foundation, Chieti, Italy.,Specialisation School in Clinical Biochemistry, "G. d'Annunzio" University, Chieti, Italy
| | - Giulia Barbarito
- Laboratory of Oncology, Istituto Giannina Gaslini, Genova, Italy
| | - Serena Di Meo
- Department of Medicine and Sciences of Aging, Section of Anatomic Pathology and Molecular Medicine, "G. d'Annunzio" University, Chieti, Italy.,Ce.S.I. Aging Research Center, "G. d'Annunzio" University Foundation, Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, Section of Anatomic Pathology and Molecular Medicine, "G. d'Annunzio" University, Chieti, Italy.,Ce.S.I. Aging Research Center, "G. d'Annunzio" University Foundation, Chieti, Italy
| |
Collapse
|
115
|
Lim KL, Teoh HK, Choong PF, Teh HX, Cheong SK, Kamarul T. Reprogramming cancer cells: overview & current progress. Expert Opin Biol Ther 2016; 16:941-51. [PMID: 27070264 DOI: 10.1517/14712598.2016.1174211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Cancer is a disease with genetic and epigenetic origins, and the possible effects of reprogramming cancer cells using the defined sets of transcription factors remain largely uninvestigated. In the handful of publications available so far, findings have shown that reprogramming cancer cells changed the characteristics of the cells to differ from the parental cancer cells. These findings indicated the possibility of utilizing reprogramming technology to create a disease model in the laboratory to be used in studying the molecular pathogenesis or for drug screening of a particular cancer model. AREAS COVERED Despite numerous methods employed in generating induced pluripotent stem cells (iPSCs) from cancer cells only a few studies have successfully reprogrammed malignant human cells. In this review we will provide an overview on i) methods to reprogram cancer cells, ii) characterization of the reprogrammed cancer cells, and iii) the differential effects of reprogramming on malignancy, epigenetics and response of the cancer cells to chemotherapeutic agents. EXPERT OPINION Continued technical progress in cancer cell reprogramming technology will be instrumental for more refined in vitro disease models and ultimately for the development of directed and personalized therapy for cancer patients in the future.
Collapse
Affiliation(s)
- Kian Lam Lim
- a Faculty of Medicine and Health Sciences , Universiti Tunku Abdul Rahman , Sungai Long , Selangor 43000 , Malaysia
| | - Hoon Koon Teoh
- a Faculty of Medicine and Health Sciences , Universiti Tunku Abdul Rahman , Sungai Long , Selangor 43000 , Malaysia.,b PPUKM-MAKNA Cancer Centre , Universiti Kebangsaan Malaysia Medical Centre , Cheras , Malaysia
| | - Pei Feng Choong
- a Faculty of Medicine and Health Sciences , Universiti Tunku Abdul Rahman , Sungai Long , Selangor 43000 , Malaysia.,b PPUKM-MAKNA Cancer Centre , Universiti Kebangsaan Malaysia Medical Centre , Cheras , Malaysia
| | - Hui Xin Teh
- a Faculty of Medicine and Health Sciences , Universiti Tunku Abdul Rahman , Sungai Long , Selangor 43000 , Malaysia
| | - Soon Keng Cheong
- a Faculty of Medicine and Health Sciences , Universiti Tunku Abdul Rahman , Sungai Long , Selangor 43000 , Malaysia
| | - Tunku Kamarul
- c Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning, Department of Orthopaedic Surgery, Faculty of Medicine , University of Malaya , 50603 Kuala Lumpur , Malaysia
| |
Collapse
|
116
|
Zhang T, Lin Y, Liu J, Zhang ZG, Fu W, Guo LY, Pan L, Kong X, Zhang MK, Lu YH, Huang ZR, Xie Q, Li WH, Xu XQ. Rbm24 Regulates Alternative Splicing Switch in Embryonic Stem Cell Cardiac Lineage Differentiation. Stem Cells 2016; 34:1776-89. [PMID: 26990106 DOI: 10.1002/stem.2366] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/23/2016] [Indexed: 11/06/2022]
Abstract
The transition of embryonic stem cell (ESC) pluripotency to differentiation is accompanied by an expansion of mRNA and proteomic diversity. Post-transcriptional regulation of ESCs is critically governed by cell type-specific splicing. However, little is known about the splicing factors and the molecular mechanisms directing ESC early lineage differentiation. Our study identifies RNA binding motif protein 24 (Rbm24) as a key splicing regulator that plays an essential role in controlling post-transcriptional networks during ESC transition into cardiac differentiation. Using an inducible mouse ESC line in which gene expression could be temporally regulated, we demonstrated that forced expression of Rbm24 in ESCs dramatically induced a switch to cardiac specification. Genome-wide RNA sequencing analysis identified more than 200 Rbm24-regulated alternative splicing events (AS) which occurred in genes essential for the ESC pluripotency or differentiation. Remarkably, AS genes regulated by Rbm24 composed of transcriptional factors, cytoskeleton proteins, and ATPase gene family members which are critical components required for cardiac development and functionality. Furthermore, we show that Rbm24 regulates ESC differentiation by promoting alternative splicing of pluripotency genes. Among the Rbm24-regulated events, Tpm1, an actin filament family gene, was identified to possess ESC/tissue specific isoforms. We demonstrated that these isoforms were functionally distinct and that their exon AS switch was essential for ESC differentiation. Our results suggest that ESC's switching into the differentiation state can be initiated by a tissue-specific splicing regulator, Rbm24. This finding offers a global view on how an RNA binding protein influences ESC lineage differentiation by a splicing-mediated regulatory mechanism. Stem Cells 2016;34:1776-1789.
Collapse
Affiliation(s)
- Tao Zhang
- Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yu Lin
- Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Jing Liu
- Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China.,ShenZhen Research Institute, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zi Guan Zhang
- Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China.,Department of Cardiology, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Wei Fu
- Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Li Yan Guo
- Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Lei Pan
- Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Xu Kong
- Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Meng Kai Zhang
- Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Ying Hua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zheng Rong Huang
- Department of Cardiology, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Qiang Xie
- Department of Cardiology, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Wei Hua Li
- Department of Cardiology, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Xiu Qin Xu
- Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Xiamen, Fujian, People's Republic of China
| |
Collapse
|
117
|
Reyes-Bermudez A, Villar-Briones A, Ramirez-Portilla C, Hidaka M, Mikheyev AS. Developmental Progression in the Coral Acropora digitifera Is Controlled by Differential Expression of Distinct Regulatory Gene Networks. Genome Biol Evol 2016; 8:851-70. [PMID: 26941230 PMCID: PMC4824149 DOI: 10.1093/gbe/evw042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2016] [Indexed: 12/20/2022] Open
Abstract
Corals belong to the most basal class of the Phylum Cnidaria, which is considered the sister group of bilaterian animals, and thus have become an emerging model to study the evolution of developmental mechanisms. Although cell renewal, differentiation, and maintenance of pluripotency are cellular events shared by multicellular animals, the cellular basis of these fundamental biological processes are still poorly understood. To understand how changes in gene expression regulate morphogenetic transitions at the base of the eumetazoa, we performed quantitative RNA-seq analysis duringAcropora digitifera's development. We collected embryonic, larval, and adult samples to characterize stage-specific transcription profiles, as well as broad expression patterns. Transcription profiles reconstructed development revealing two main expression clusters. The first cluster grouped blastula and gastrula and the second grouped subsequent developmental time points. Consistently, we observed clear differences in gene expression between early and late developmental transitions, with higher numbers of differentially expressed genes and fold changes around gastrulation. Furthermore, we identified three coexpression clusters that represented discrete gene expression patterns. During early transitions, transcriptional networks seemed to regulate cellular fate and morphogenesis of the larval body. In late transitions, these networks seemed to play important roles preparing planulae for switch in lifestyle and regulation of adult processes. Although developmental progression inA. digitiferais regulated to some extent by differential coexpression of well-defined gene networks, stage-specific transcription profiles appear to be independent entities. While negative regulation of transcription is predominant in early development, cell differentiation was upregulated in larval and adult stages.
Collapse
Affiliation(s)
- Alejandro Reyes-Bermudez
- Okinawa Institute of Science and Technology, Okinawa, Japan School of Natural Sciences, Ryukyus University, Okinawa, Japan
| | | | | | - Michio Hidaka
- School of Natural Sciences, Ryukyus University, Okinawa, Japan
| | | |
Collapse
|
118
|
Vedrenne N, Sarrazy V, Battu S, Bordeau N, Richard L, Billet F, Coronas V, Desmoulière A. Neural Stem Cell Properties of an Astrocyte Subpopulation Sorted by Sedimentation Field-Flow Fractionation. Rejuvenation Res 2016; 19:362-372. [PMID: 26650259 DOI: 10.1089/rej.2015.1776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Astrocytes encompass a heterogeneous cell population. Using sedimentation field-flow fractionation (SdFFF) method, different, almost pure, astrocyte subpopulations were isolated. Cells were collected from cortex of newborn rats and sorted by SdFFF to obtain different fractions, which were subjected to protein analysis and characterized by immunocytofluorescence. The behavior of the cells was analyzed in vitro, under culture conditions used for neural stem cells. These culture conditions were also applied to cells derived from an adult cortical tissue after traumatic brain injury (TBI). Finally, the astrocytic neural stem-like cells were transplanted in damaged sciatic nerve. Protein analysis indicated a high expression of glial fibrillary acidic protein (GFAP) and vimentin in fraction F3-derived cells. These cells formed neurospheres when cultured with epidermal growth factor and large colonies in a collagen-containing semi-solid matrix. Neurospheres expressed GFAP and nestin and were able in addition to generate neurons expressing MAP2 and oligodendrocytes expressing Olig2. When transplanted in a damaged nerve, cells of F3-derived neurospheres colonized the damaged area. Finally, after TBI in adult rats, cells able to form neurospheres containing a subpopulation of astrocytes expressing vimentin were obtained. Using the SdFFF method, an astrocyte subpopulation presenting stem cell properties was isolated from a newborn rat cortex and from an injured adult rat cortex. The specific activation of this astrocyte subpopulation may provide a potential therapeutic approach to restore lost neuronal function in injured or diseased brain.
Collapse
Affiliation(s)
- Nicolas Vedrenne
- 1 EA 6309 "Myelin maintenance and peripheral neuropathies," University of Limoges , Limoges, France
| | - Vincent Sarrazy
- 1 EA 6309 "Myelin maintenance and peripheral neuropathies," University of Limoges , Limoges, France
| | - Serge Battu
- 2 EA 3842 "Cell homeostasis and pathologies," University of Limoges , Limoges, France
| | - Nelly Bordeau
- 1 EA 6309 "Myelin maintenance and peripheral neuropathies," University of Limoges , Limoges, France
| | - Laurence Richard
- 1 EA 6309 "Myelin maintenance and peripheral neuropathies," University of Limoges , Limoges, France .,3 Department of Neurology, CHU of Limoges , Limoges, France
| | - Fabrice Billet
- 1 EA 6309 "Myelin maintenance and peripheral neuropathies," University of Limoges , Limoges, France
| | - Valérie Coronas
- 4 CNRS ERL 7368, "Signalisation et transports ioniques membranaires," University of Poitiers , Poitiers, France
| | - Alexis Desmoulière
- 1 EA 6309 "Myelin maintenance and peripheral neuropathies," University of Limoges , Limoges, France
| |
Collapse
|
119
|
Boward B, Wu T, Dalton S. Concise Review: Control of Cell Fate Through Cell Cycle and Pluripotency Networks. Stem Cells 2016; 34:1427-36. [PMID: 26889666 DOI: 10.1002/stem.2345] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/20/2016] [Accepted: 01/29/2016] [Indexed: 01/04/2023]
Abstract
Pluripotent stem cells (PSCs) proliferate rapidly with a characteristic cell cycle structure consisting of short G1- and G2-gap phases. This applies broadly to PSCs of peri-implantation stage embryos, cultures of embryonic stem cells, induced pluripotent stem cells, and embryonal carcinoma cells. During the early stages of PSC differentiation however, cell division times increase as a consequence of cell cycle remodeling. Most notably, this is indicated by elongation of the G1-phase. Observations linking changes in the cell cycle with exit from pluripotency have raised questions about the role of cell cycle control in maintenance of the pluripotent state. Until recently however, this has been a difficult question to address because of limitations associated with experimental tools. Recent studies now show that pluripotency and cell cycle regulatory networks are intertwined and that cell cycle control mechanisms are an integral, mechanistic part of the PSC state. Studies in embryonal carcinoma, some 30 years ago, first suggested that pluripotent cells initiate differentiation when in the G1-phase. More recently, a molecular "priming" mechanism has been proposed to explain these observations in human embryonic stem cells. Complexity in this area has been increased by the realization that pluripotent cells exist in multiple developmental states and that in addition to each having their own characteristic gene expression and epigenetic signatures, they potentially have alternate modes of cell cycle regulation. This review will summarize current knowledge in these areas and will highlight important aspects of interconnections between the cell cycle, self-renewal, pluripotency, and cell fate decisions. Stem Cells 2016;34:1427-1436.
Collapse
Affiliation(s)
- Ben Boward
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, Athens, Georgia, USA
| | - Tianming Wu
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, Athens, Georgia, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
120
|
Tsurumachi N, Akita D, Kano K, Matsumoto T, Toriumi T, Kazama T, Oki Y, Tamura Y, Tonogi M, Isokawa K, Shimizu N, Honda M. Small Buccal Fat Pad Cells Have High Osteogenic Differentiation Potential. Tissue Eng Part C Methods 2016; 22:250-9. [DOI: 10.1089/ten.tec.2015.0420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Niina Tsurumachi
- Nihon University Graduate School of Dentistry, Chiyoda-ku, Japan
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Taku Toriumi
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Tomohiko Kazama
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yoko Tamura
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Morio Tonogi
- Department of Oral Surgery, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Keitaro Isokawa
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Noriyoshi Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Masaki Honda
- Department of Oral Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| |
Collapse
|
121
|
Carrett-Dias M, Almeida LK, Pereira JL, Almeida DV, Filgueira DMVB, Marins LF, Votto APDS, Trindade GS. Cell differentiation and the multiple drug resistance phenotype in human erythroleukemic cells. Leuk Res 2016; 42:13-20. [DOI: 10.1016/j.leukres.2016.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 12/16/2022]
|
122
|
Morales-Hernández A, González-Rico FJ, Román AC, Rico-Leo E, Alvarez-Barrientos A, Sánchez L, Macia Á, Heras SR, García-Pérez JL, Merino JM, Fernández-Salguero PM. Alu retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor. Nucleic Acids Res 2016; 44:4665-83. [PMID: 26883630 PMCID: PMC4889919 DOI: 10.1093/nar/gkw095] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/09/2016] [Indexed: 12/18/2022] Open
Abstract
Cell differentiation is a central process in development and in cancer growth and dissemination. OCT4 (POU5F1) and NANOG are essential for cell stemness and pluripotency; yet, the mechanisms that regulate their expression remain largely unknown. Repetitive elements account for almost half of the Human Genome; still, their role in gene regulation is poorly understood. Here, we show that the dioxin receptor (AHR) leads to differentiation of human carcinoma cells through the transcriptional upregulation of Alu retrotransposons, whose RNA transcripts can repress pluripotency genes. Despite the genome-wide presence of Alu elements, we provide evidences that those located at the NANOG and OCT4 promoters bind AHR, are transcribed by RNA polymerase-III and repress NANOG and OCT4 in differentiated cells. OCT4 and NANOG repression likely involves processing of Alu-derived transcripts through the miRNA machinery involving the Microprocessor and RISC. Consistently, stable AHR knockdown led to basal undifferentiation, impaired Alus transcription and blockade of OCT4 and NANOG repression. We suggest that transcripts produced from AHR-regulated Alu retrotransposons may control the expression of stemness genes OCT4 and NANOG during differentiation of carcinoma cells. The control of discrete Alu elements by specific transcription factors may have a dynamic role in genome regulation under physiological and diseased conditions.
Collapse
Affiliation(s)
- Antonio Morales-Hernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071-Badajoz, Spain
| | - Francisco J González-Rico
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071-Badajoz, Spain
| | - Angel C Román
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenida Doctor Arce 37, 28002-Madrid, Spain
| | - Eva Rico-Leo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071-Badajoz, Spain
| | - Alberto Alvarez-Barrientos
- Servicio de Técnicas Aplicadas a las Biociencias, Universidad de Extremadura, Avenida de Elvas s/n 06071-Badajoz, Spain
| | - Laura Sánchez
- GENYO. Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, Avda. de la Ilustración 114, PTS Granada, 18016-Granada, Spain
| | - Ángela Macia
- GENYO. Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, Avda. de la Ilustración 114, PTS Granada, 18016-Granada, Spain
| | - Sara R Heras
- GENYO. Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, Avda. de la Ilustración 114, PTS Granada, 18016-Granada, Spain
| | - José L García-Pérez
- GENYO. Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, Avda. de la Ilustración 114, PTS Granada, 18016-Granada, Spain
| | - Jaime M Merino
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071-Badajoz, Spain
| | - Pedro M Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071-Badajoz, Spain
| |
Collapse
|
123
|
Wong QWL, Vaz C, Lee QY, Zhao TY, Luo R, Archer SK, Preiss T, Tanavde V, Vardy LA. Embryonic Stem Cells Exhibit mRNA Isoform Specific Translational Regulation. PLoS One 2016; 11:e0143235. [PMID: 26799392 PMCID: PMC4723142 DOI: 10.1371/journal.pone.0143235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/02/2015] [Indexed: 01/08/2023] Open
Abstract
The presence of multiple variants for many mRNAs is a major contributor to protein diversity. The processing of these variants is tightly controlled in a cell-type specific manner and has a significant impact on gene expression control. Here we investigate the differential translation rates of individual mRNA variants in embryonic stem cells (ESCs) and in ESC derived Neural Precursor Cells (NPCs) using polysome profiling coupled to RNA sequencing. We show that there are a significant number of detectable mRNA variants in ESCs and NPCs and that many of them show variant specific translation rates. This is correlated with differences in the UTRs of the variants with the 5'UTR playing a predominant role. We suggest that mRNA variants that contain alternate UTRs are under different post-transcriptional controls. This is likely due to the presence or absence of miRNA and protein binding sites that regulate translation rate. This highlights the importance of addressing translation rate when using mRNA levels as a read out of protein abundance. Additional analysis shows that many annotated non-coding mRNAs are present on the polysome fractions in ESCs and NPCs. We believe that the use of polysome fractionation coupled to RNA sequencing is a useful method for analysis of the translation state of many different RNAs in the cell.
Collapse
Affiliation(s)
- Queenie Wing-Lei Wong
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Immunos, 138648, Singapore, Singapore
| | - Candida Vaz
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, 138671, Singapore, Singapore
| | - Qian Yi Lee
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, 138671, Singapore, Singapore
| | - Tian Yun Zhao
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Immunos, 138648, Singapore, Singapore
| | - Raymond Luo
- Life Technologies, 10 Biopolis Road, 138670, Singapore, Singapore
| | - Stuart K. Archer
- Monash Bioinformatics Platform, Monash University, Clayton, Victoria, Australia
| | - Thomas Preiss
- EMBL–Australia Collaborating Group, Department of Genome Science, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton (Canberra), Australian Capital Territory, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst (Sydney), New South Wales, Australia
| | - Vivek Tanavde
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Immunos, 138648, Singapore, Singapore
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, 138671, Singapore, Singapore
| | - Leah A. Vardy
- Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Immunos, 138648, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
- * E-mail:
| |
Collapse
|
124
|
Münst B, Thier MC, Winnemöller D, Helfen M, Thummer RP, Edenhofer F. Nanog induces suppression of senescence through downregulation of p27KIP1 expression. J Cell Sci 2016; 129:912-20. [PMID: 26795560 PMCID: PMC4813312 DOI: 10.1242/jcs.167932] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/04/2016] [Indexed: 02/05/2023] Open
Abstract
A comprehensive analysis of the molecular network of cellular factors establishing and maintaining pluripotency as well as self renewal of pluripotent stem cells is key for further progress in understanding basic stem cell biology. Nanog is necessary for the natural induction of pluripotency in early mammalian development but dispensable for both its maintenance and its artificial induction. To gain further insight into the molecular activity of Nanog, we analyzed the outcomes of Nanog gain-of-function in various cell models employing a recently developed biologically active recombinant cell-permeant protein, Nanog-TAT. We found that Nanog enhances the proliferation of both NIH 3T3 and primary fibroblast cells. Nanog transduction into primary fibroblasts results in suppression of senescence-associated β-galactosidase activity. Investigation of cell cycle factors revealed that transient activation of Nanog correlates with consistent downregulation of the cell cycle inhibitor p27KIP1 (also known as CDKN1B). By performing chromatin immunoprecipitation analysis, we confirmed bona fide Nanog-binding sites upstream of the p27KIP1 gene, establishing a direct link between physical occupancy and functional regulation. Our data demonstrates that Nanog enhances proliferation of fibroblasts through transcriptional regulation of cell cycle inhibitor p27 gene. Summary: Nanog blocks cellular senescence of fibroblasts through transcriptional regulation of cell cycle inhibitor p27KIP1.
Collapse
Affiliation(s)
- Bernhard Münst
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn - Life & Brain Center and Hertie Foundation, Sigmund-Freud Str. 25, Bonn 53127, Germany
| | - Marc Christian Thier
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn - Life & Brain Center and Hertie Foundation, Sigmund-Freud Str. 25, Bonn 53127, Germany
| | - Dirk Winnemöller
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn - Life & Brain Center and Hertie Foundation, Sigmund-Freud Str. 25, Bonn 53127, Germany
| | - Martina Helfen
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn - Life & Brain Center and Hertie Foundation, Sigmund-Freud Str. 25, Bonn 53127, Germany
| | - Rajkumar P Thummer
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn - Life & Brain Center and Hertie Foundation, Sigmund-Freud Str. 25, Bonn 53127, Germany Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Frank Edenhofer
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn - Life & Brain Center and Hertie Foundation, Sigmund-Freud Str. 25, Bonn 53127, Germany Stem Cell and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Koellikerstrasse 6, Würzburg 97070, Germany Department of Genomics, Stem Cell Biology & Regenerative Medicine, Institute of Molecular Biology, Leopold-Franzens-University Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| |
Collapse
|
125
|
Fang L, Zhang J, Zhang H, Yang X, Jin X, Zhang L, Skalnik DG, Jin Y, Zhang Y, Huang X, Li J, Wong J. H3K4 Methyltransferase Set1a Is A Key Oct4 Coactivator Essential for Generation of Oct4 Positive Inner Cell Mass. Stem Cells 2016; 34:565-80. [PMID: 26785054 DOI: 10.1002/stem.2250] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/01/2015] [Indexed: 11/09/2022]
Abstract
Limited core transcription factors and transcriptional cofactors have been shown to govern embryonic stem cell (ESC) transcriptional circuitry and pluripotency, but the molecular interactions between the core transcription factors and cofactors remains ill defined. Here, we analyzed the protein-protein interactions between Oct4, Sox2, Klf4, and Myc (abbreviated as OSKM) and a large panel of cofactors. The data reveal both specific and common interactions between OSKM and cofactors. We found that among the SET1/MLL family H3K4 methyltransferases, Set1a specifically interacts with Oct4 and this interaction is independent of Wdr5. Set1a is recruited to and required for H3K4 methylation at the Oct4 target gene promoters and transcriptional activation of Oct4 target genes in ESCs, and consistently Set1a is required for ESC maintenance and induced pluripotent stem cell generation. Gene expression profiling and chromatin immunoprecipitation-seq analyses demonstrate the broad involvement of Set1a in Oct4 transcription circuitry and strong enrichment at TSS sites. Gene knockout study demonstrates that Set1a is not only required for mouse early embryonic development but also for the generation of Oct4-positive inner cell mass. Together our study provides valuable information on the molecular interactions between OSKM and cofactors and molecular mechanisms for the functional importance of Set1a in ESCs and early development.
Collapse
Affiliation(s)
- Lan Fang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jun Zhang
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University and National Resource Center for Mutant Mice, Nanjing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hui Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaoqin Yang
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xueling Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ling Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - David G Skalnik
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Ying Jin
- Department of Molecular Development, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yong Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xingxu Huang
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University and National Resource Center for Mutant Mice, Nanjing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
126
|
Matic I, Antunovic M, Brkic S, Josipovic P, Mihalic KC, Karlak I, Ivkovic A, Marijanovic I. Expression of OCT-4 and SOX-2 in Bone Marrow-Derived Human Mesenchymal Stem Cells during Osteogenic Differentiation. Open Access Maced J Med Sci 2016; 4:9-16. [PMID: 27275321 PMCID: PMC4884261 DOI: 10.3889/oamjms.2016.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 11/17/2022] Open
Abstract
AIM: Determine the levels of expression of pluripotency genes OCT-4 and SOX-2 before and after osteogenic differentiation of human mesenchymal stem cells (hMSCs). METHODS: Human MSCs were derived from the bone marrow and differentiated into osteoblasts. The analyses were performed on days 0 and 14 of the cell culture. In vitro differentiation was evaluated due to bone markers – alkaline phosphatase (AP) activity and the messenger RNA (mRNA) expression of AP and bone sialoprotein (BSP). The OCT-4 and SOX-2 expression was evaluated at mRNA level by real-time qPCR and at protein level by immunocytochemistry. RESULTS: In vitro cultures on day 14 showed an increase in AP activity and upregulation of AP and BSP gene expression. OCT-4 and SOX-2 in undifferentiated hMSCs on day 0 is detectable and very low compared to tumor cell lines as a positive control. Immunocytochemistry detected OCT-4 in the cell nuclei prior (day 0) and post differentiation (day 14). On the same time points, cultures were negative for SOX-2 protein. CONCLUSION: Messenger RNA for pluripotency markers OCT-4 and SOX-2 isolated from hMSCs was less present, while OCT-4 protein was detected in cell nuclei prior and post differentiation into osteoblast lineage.
Collapse
Affiliation(s)
- Igor Matic
- Division of Biology, Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Maja Antunovic
- Division of Biology, Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Sime Brkic
- Division of Biology, Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Pavle Josipovic
- Division of Biology, Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Katarina Caput Mihalic
- Division of Biology, Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Ivan Karlak
- Department of Traumatology, University Hospital Sestre Milosrdnice, Zagreb, Croatia
| | | | - Inga Marijanovic
- Division of Biology, Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
127
|
Interleukin-27 re-educates intratumoral myeloid cells and down-regulates stemness genes in non-small cell lung cancer. Oncotarget 2016; 6:3694-708. [PMID: 25638163 PMCID: PMC4414147 DOI: 10.18632/oncotarget.2797] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/20/2014] [Indexed: 01/12/2023] Open
Abstract
Current therapies for Non-Small Cell Lung Cancer (NSCLC) still fail to significantly increase its survival rate. Here we asked whether Interleukin(IL)-27, which has revealed powerful antitumor activity and is toxicity-free in humans, is a promising therapeutic choice for NSCLC patients. IL-27's effects were tested on Adenocarcinoma (AC) and Squamous Cell Carcinoma (SCC) cell lines and xenograft models. IL-27Receptor(R) expression was assessed in lung tissues from 78 NSCLC patients. In vitro, IL-27 was ineffective on cancer cell proliferation or apoptosis, but fostered CXCL3/GROγ/MIP2β expression. In vitro and in vivo, IL-27 down-regulated stemness-related genes, namely SONIC HEDGEHOG in AC cells, and OCT4A, SOX2, NOTCH1, KLF4 along with Nestin, SNAI1/SNAIL, SNAI2/SLUG and ZEB1, in SCC cells. In vivo, IL-27 hampered both AC and SCC tumor growth in association with a prominent granulocyte- and macrophage-driven colliquative necrosis, CXCL3 production, and a reduced pluripotency- and EMT-related gene expression. Myeloablation of tumor-bearing hosts mostly abolished IL-27's antitumor effects. In clinical samples, IL-27R expression was found in AC, SCC, pre-cancerous lesions and tumor infiltrating myeloid cells, and correlated with advanced stages of disease. Our data suggest that even immunocompromised or advancer NSCLC patients may benefit from IL-27's antitumor properties based on its ability to drive myeloid cells towards antitumor activities, and down-regulate stemness- and EMT-related genes in cancer cells.
Collapse
|
128
|
Voutsadakis IA. Pluripotency transcription factors in the pathogenesis of colorectal cancer and implications for prognosis. Biomark Med 2016; 9:349-61. [PMID: 25808439 DOI: 10.2217/bmm.15.4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cancer stem cell hypothesis argues that cancers depend on a specific type of cells, representing usually a small percentage of the total cancer cell population, termed cancer stem cells (or tumor-initiating cells) for their development and propagation. In colorectal cancer these cells express specific surface proteins such as CD133 and CD44 and can recapitulate the whole tumor. Besides expression of these surface markers, stem cells are associated with a network of pluripotency transcription factors, such as Oct4 and Sox2, which is present in them. Pluripotency factors are normally active in early development and characterize primitive cells, able to give rise to all different cell and tissue types of the three embryonic layers. In this review I will discuss the relationship of these factors with pathogenic lesions in colorectal cancer and their prognostic implications.
Collapse
|
129
|
Christoforou A, Mulvey CM, Breckels LM, Geladaki A, Hurrell T, Hayward PC, Naake T, Gatto L, Viner R, Martinez Arias A, Lilley KS. A draft map of the mouse pluripotent stem cell spatial proteome. Nat Commun 2016; 7:8992. [PMID: 26754106 PMCID: PMC4729960 DOI: 10.1038/ncomms9992] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 10/22/2015] [Indexed: 12/18/2022] Open
Abstract
Knowledge of the subcellular distribution of proteins is vital for understanding cellular mechanisms. Capturing the subcellular proteome in a single experiment has proven challenging, with studies focusing on specific compartments or assigning proteins to subcellular niches with low resolution and/or accuracy. Here we introduce hyperLOPIT, a method that couples extensive fractionation, quantitative high-resolution accurate mass spectrometry with multivariate data analysis. We apply hyperLOPIT to a pluripotent stem cell population whose subcellular proteome has not been extensively studied. We provide localization data on over 5,000 proteins with unprecedented spatial resolution to reveal the organization of organelles, sub-organellar compartments, protein complexes, functional networks and steady-state dynamics of proteins and unexpected subcellular locations. The method paves the way for characterizing the impact of post-transcriptional and post-translational modification on protein location and studies involving proteome-level locational changes on cellular perturbation. An interactive open-source resource is presented that enables exploration of these data.
Collapse
Affiliation(s)
- Andy Christoforou
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Claire M Mulvey
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Lisa M Breckels
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Aikaterini Geladaki
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Tracey Hurrell
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Department of Pharmacology, University of Pretoria, Arcadia 0007, Republic of South Africa
| | - Penelope C Hayward
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Thomas Naake
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Laurent Gatto
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Rosa Viner
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95314, USA
| | | | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
130
|
Yoshihama R, Yamaguchi K, Imajyo I, Mine M, Hiyake N, Akimoto N, Kobayashi Y, Chigita S, Kumamaru W, Kiyoshima T, Mori Y, Sugiura T. Expression levels of SOX2, KLF4 and brachyury transcription factors are associated with metastasis and poor prognosis in oral squamous cell carcinoma. Oncol Lett 2015; 11:1435-1446. [PMID: 26893757 DOI: 10.3892/ol.2015.4047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 11/06/2015] [Indexed: 02/05/2023] Open
Abstract
The prognosis of oral squamous cell carcinoma (OSCC) patients is affected by tumor recurrence and metastasis, and cancer stem cells are hypothesized to be involved in these processes. Thus, the aim of the present study was to determine whether the expression levels of five stem cell-related transcription factors, sex determining region Y-box 2 (SOX2), octamer-binding transcription factor 4 (Oct4), avian myelocytomatosis viral oncogene homolog (c-Myc), Krüppel-like factor 4 (KLF4) and brachyury, are associated with metastasis and survival in OSCC. Immunohistochemistry was performed to analyze the expression of these proteins in biopsy specimens obtained from 108 OSCC patients. The results revealed that the expression of SOX2, Oct4, KLF4 and brachyury were significantly associated with lymph node metastasis (P=0.002, P=0.031, P=0.003 and P=0.007, respectively). In addition, the expression of KLF4 and brachyury were significantly associated with distant metastasis (P=0.014 and P=0.012, respectively). Furthermore, multivariate analysis revealed that SOX2 and KLF4 are predictive factors for lymph node metastasis [odds ratios (ORs), 4.526 and 4.851, respectively], and KLF4 is also a predictive factor for distant metastasis (OR, 9.607). In addition, OSCC patients with low co-expression of SOX2, KLF4 and brachyury exhibited a significantly lower disease-specific survival rate (78.6 vs. 100%; P=0.025; χ2=5.033) and disease-free survival rate (60.7 vs. 90.9%; P=0.015; χ2=5.897) when compared with OSCC patients with high co-expression of these factors. The results indicate that SOX2, KLF4 and brachyury serve important roles in tumor progression, and these transcription factors may thus represent clinically useful prognostic markers for OSCC.
Collapse
Affiliation(s)
- Rumi Yoshihama
- Department of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Koujiro Yamaguchi
- Department of Maxillofacial Diagnostic and Surgical Science, Graduate School of Dental Science, Kagoshima University, Kagoshima 890-8544, Japan
| | - Ikumi Imajyo
- Department of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Mariko Mine
- Department of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Naomi Hiyake
- Department of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Naonari Akimoto
- Department of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Yosuke Kobayashi
- Department of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Satomi Chigita
- Department of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Wataru Kumamaru
- Department of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Tamotsu Kiyoshima
- Department of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshihide Mori
- Department of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Tsuyoshi Sugiura
- Department of Maxillofacial Diagnostic and Surgical Science, Graduate School of Dental Science, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
131
|
Production of human pluripotent stem cell therapeutics under defined xeno-free conditions: progress and challenges. Stem Cell Rev Rep 2015; 11:96-109. [PMID: 25077810 DOI: 10.1007/s12015-014-9544-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent advances on human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have brought us closer to the realization of their clinical potential. Nonetheless, tissue engineering and regenerative medicine applications will require the generation of hPSC products well beyond the laboratory scale. This also mandates the production of hPSC therapeutics in fully-defined, xeno-free systems and in a reproducible manner. Toward this goal, we summarize current developments in defined media free of animal-derived components for hPSC culture. Bioinspired and synthetic extracellular matrices for the attachment, growth and differentiation of hPSCs are also reviewed. Given that most progress in xeno-free medium and substrate development has been demonstrated in two-dimensional rather than three dimensional culture systems, translation from the former to the latter poses unique difficulties. These challenges are discussed in the context of cultivation platforms of hPSCs as aggregates, on microcarriers or after encapsulation in biocompatible scaffolds.
Collapse
|
132
|
Zdzieblo D, Li X, Lin Q, Zenke M, Illich DJ, Becker M, Müller AM. Pcgf6, a polycomb group protein, regulates mesodermal lineage differentiation in murine ESCs and functions in iPS reprogramming. Stem Cells 2015; 32:3112-25. [PMID: 25187489 DOI: 10.1002/stem.1826] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/23/2014] [Indexed: 01/04/2023]
Abstract
Polycomb group (PcG) proteins comprise evolutionary conserved factors with essential functions for embryonic development and adult stem cells. PcG proteins constitute two main multiprotein polycomb repressive complexes (PRC1 and PRC2) that operate in a hierarchical manner to silence gene transcription. Functionally distinct PRC1 complexes are defined by Polycomb group RING finger protein (Pcgf) paralogs. So far, six Pcgf paralogs (Pcgf1-6) have been identified as defining components of different PCR1-type complexes. Paralog-specific functions are not well understood. Here, we show that Pcgf6 is the only Pcgf paralog with high expression in undifferentiated embryonic stem cells (ESCs). Upon differentiation Pcgf6 expression declines. Following Pcgf6 kockdown (KD) in ESCs, the expression of pluripotency genes decreased, while mesodermal- and spermatogenesis-specific genes were derepressed. Concomitantly with the elevated expression of mesodermal lineage markers, Pcgf6 KD ESCs showed increased hemangioblastic and hematopoietic activities upon differentiation suggesting a function of Pcgf6 in repressing mesodermal-specific lineage genes. Consistant with a role in pluripotency, Pcgf6 replaced Sox2 in the generation of germline-competent induced pluripotent stem (iPS) cells. Furthermore, Pcgf6 KD in mouse embryonic fibroblasts reduced the formation of ESC-like colonies in OSKM-driven reprogramming. Together, these analyses indicate that Pcgf6 is nonredundantly involved in maintaining the pluripotent nature of ESCs and it functions in iPS reprogramming.
Collapse
Affiliation(s)
- D Zdzieblo
- Institute for Medical Radiation and Cell Research (MSZ) in the Center of Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
133
|
Porro V, Pagotto R, Harreguy MB, Ramírez S, Crispo M, Santamaría C, Luque EH, Rodríguez HA, Bollati-Fogolín M. Characterization of Oct4-GFP transgenic mice as a model to study the effect of environmental estrogens on the maturation of male germ cells by using flow cytometry. J Steroid Biochem Mol Biol 2015; 154:53-61. [PMID: 26151743 DOI: 10.1016/j.jsbmb.2015.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/01/2015] [Accepted: 06/17/2015] [Indexed: 12/24/2022]
Abstract
Oct4 is involved in regulation of pluripotency during normal development and is down-regulated during formation of postnatal reservoir of germ cells. We propose thatOct4/GFP transgenic mouse, which mimics the endogenous expression pattern of Oct4, could be used as a mammalian model to study the effects of environmental estrogens on the development of male germ cells. Oct4/GFP maturation profile was assessed during postnatal days -PND- 3, 5, 7, 10, 14 and 80, using flow cytometry. Then, we exposed pregnant mothers to 17α-ethinylestradiol (EE2) from day post coitum (dpc) 5 to PND7. Percentage of Oct4/GFP-expressing cells and levels of expression of Oct4/GPF were increased in PND7 after EE2 exposure. These observations were confirmed by analysis of GFP and endogenous Oct4 protein in the seminiferous tubules and by a reduction in epididymal sperm count in adult mice. We introduced Oct4/GFP mouse together with flow cytometry as a tool to evaluate changes in male germ cells development.
Collapse
Affiliation(s)
- Valentina Porro
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Romina Pagotto
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - María Belén Harreguy
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Sofía Ramírez
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Martina Crispo
- Transgenic and Experimental Animal Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Clarisa Santamaría
- Instituto de Salud y Ambiente del Litoral (ISAL), Ciudad Universitaria, Paraje El Pozo, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Ciudad Universitaria, Paraje El Pozo, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina
| | - Horacio A Rodríguez
- Instituto de Salud y Ambiente del Litoral (ISAL), Ciudad Universitaria, Paraje El Pozo, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CP3000 Santa Fe, Argentina.
| | - Mariela Bollati-Fogolín
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| |
Collapse
|
134
|
Meng F, Forrester-Gauntlett B, Turner P, Henderson H, Oback B. Signal Inhibition Reveals JAK/STAT3 Pathway as Critical for Bovine Inner Cell Mass Development. Biol Reprod 2015; 93:132. [PMID: 26510863 DOI: 10.1095/biolreprod.115.134254] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022] Open
Abstract
The inner cell mass (ICM) of mammalian blastocysts consists of pluripotent epiblast and hypoblast lineages, which develop into embryonic and extraembryonic tissues, respectively. We conducted a chemical screen for regulators of epiblast identity in bovine Day 8 blastocysts. From the morula stage onward, in vitro fertilized embryos were cultured in the presence of cell-permeable small molecules targeting nine principal signaling pathway components, including TGFbeta1, BMP, EGF, VEGF, PDGF, FGF, cAMP, PI3K, and JAK signals. Using 1) blastocyst quality (by morphological grading), 2) cell numbers (by differential stain), and 3) epiblast (FGF4, NANOG) and hypoblast (PDGFRa, SOX17) marker gene expression (by quantitative PCR), we identified positive and negative regulators of ICM development and pluripotency. TGFbeta1, BMP, and cAMP and combined VEGF/PDGF/FGF signals did not affect blastocyst development while PI3K was important for ICM growth but did not alter lineage-specific gene expression. Stimulating cAMP specifically increased NANOG expression, while combined VEGF/PDGF/FGF inhibition up-regulated epiblast and hypoblast markers. The strongest effects were observed by suppressing JAK1/2 signaling with AZD1480. This treatment interfered with ICM formation, but trophectoderm cell numbers and markers (CDX2, KTR8) were not altered. JAK inhibition repressed both epiblast and hypoblast transcripts as well as naive pluripotency-related genes (KLF4, TFCP2L1) and the JAK substrate STAT3. We found that tyrosine (Y) 705-phosphorylated STAT3 (pSTAT3(Y705)) was restricted to ICM nuclei, where it colocalized with SOX2 and NANOG. JAK inhibition abolished this ICM-exclusive pSTAT3(Y705) signal and strongly reduced the number of SOX2-positive nuclei. In conclusion, JAK/STAT3 activation is required for bovine ICM formation and acquisition of naive pluripotency markers.
Collapse
Affiliation(s)
- Fanli Meng
- AgResearch Ltd., Ruakura Research Centre, Reproductive Technologies, Hamilton, New Zealand
| | | | - Pavla Turner
- AgResearch Ltd., Ruakura Research Centre, Reproductive Technologies, Hamilton, New Zealand
| | - Harold Henderson
- AgResearch Ltd., Ruakura Research Centre, Reproductive Technologies, Hamilton, New Zealand
| | - Björn Oback
- AgResearch Ltd., Ruakura Research Centre, Reproductive Technologies, Hamilton, New Zealand
| |
Collapse
|
135
|
Economou C, Tsakiridis A, Wymeersch FJ, Gordon-Keylock S, Dewhurst RE, Fisher D, Medvinsky A, Smith AJH, Wilson V. Intrinsic factors and the embryonic environment influence the formation of extragonadal teratomas during gestation. BMC DEVELOPMENTAL BIOLOGY 2015; 15:35. [PMID: 26453549 PMCID: PMC4599726 DOI: 10.1186/s12861-015-0084-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/18/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Pluripotent cells are present in early embryos until the levels of the pluripotency regulator Oct4 drop at the beginning of somitogenesis. Elevating Oct4 levels in explanted post-pluripotent cells in vitro restores their pluripotency. Cultured pluripotent cells can participate in normal development when introduced into host embryos up to the end of gastrulation. In contrast, pluripotent cells efficiently seed malignant teratocarcinomas in adult animals. In humans, extragonadal teratomas and teratocarcinomas are most frequently found in the sacrococcygeal region of neonates, suggesting that these tumours originate from cells in the posterior of the embryo that either reactivate or fail to switch off their pluripotent status. However, experimental models for the persistence or reactivation of pluripotency during embryonic development are lacking. METHODS We manually injected embryonic stem cells into conceptuses at E9.5 to test whether the presence of pluripotent cells at this stage correlates with teratocarcinoma formation. We then examined the effects of reactivating embryonic Oct4 expression ubiquitously or in combination with Nanog within the primitive streak (PS)/tail bud (TB) using a transgenic mouse line and embryo chimeras carrying a PS/TB-specific heterologous gene expression cassette respectively. RESULTS Here, we show that pluripotent cells seed teratomas in post-gastrulation embryos. However, at these stages, induced ubiquitous expression of Oct4 does not lead to restoration of pluripotency (indicated by Nanog expression) and tumour formation in utero, but instead causes a severe phenotype in the extending anteroposterior axis. Use of a more restricted T(Bra) promoter transgenic system enabling inducible ectopic expression of Oct4 and Nanog specifically in the posteriorly-located primitive streak (PS) and tail bud (TB) led to similar axial malformations to those induced by Oct4 alone. These cells underwent induction of pluripotency marker expression in Epiblast Stem Cell (EpiSC) explants derived from somitogenesis-stage embryos, but no teratocarcinoma formation was observed in vivo. CONCLUSIONS Our findings show that although pluripotent cells with teratocarcinogenic potential can be produced in vitro by the overexpression of pluripotency regulators in explanted somitogenesis-stage somatic cells, the in vivo induction of these genes does not yield tumours. This suggests a restrictive regulatory role of the embryonic microenvironment in the induction of pluripotency.
Collapse
Affiliation(s)
- Constantinos Economou
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Anestis Tsakiridis
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Filip J Wymeersch
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sabrina Gordon-Keylock
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Robert E Dewhurst
- Drug Discovery Unit, Telethon Kids Institute, PO Box 855, West Perth, WA, 6872, Australia
| | - Dawn Fisher
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Alexander Medvinsky
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Andrew J H Smith
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, School of Biological Sciences, SCRM Building, The University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
136
|
Filipczyk A, Marr C, Hastreiter S, Feigelman J, Schwarzfischer M, Hoppe PS, Loeffler D, Kokkaliaris KD, Endele M, Schauberger B, Hilsenbeck O, Skylaki S, Hasenauer J, Anastassiadis K, Theis FJ, Schroeder T. Network plasticity of pluripotency transcription factors in embryonic stem cells. Nat Cell Biol 2015; 17:1235-46. [PMID: 26389663 DOI: 10.1038/ncb3237] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/12/2015] [Indexed: 02/07/2023]
Abstract
Transcription factor (TF) networks are thought to regulate embryonic stem cell (ESC) pluripotency. However, TF expression dynamics and regulatory mechanisms are poorly understood. We use reporter mouse ESC lines allowing non-invasive quantification of Nanog or Oct4 protein levels and continuous long-term single-cell tracking and quantification over many generations to reveal diverse TF protein expression dynamics. For cells with low Nanog expression, we identified two distinct colony types: one re-expressed Nanog in a mosaic pattern, and the other did not re-express Nanog over many generations. Although both expressed pluripotency markers, they exhibited differences in their TF protein correlation networks and differentiation propensities. Sister cell analysis revealed that differences in Nanog levels are not necessarily accompanied by differences in the expression of other pluripotency factors. Thus, regulatory interactions of pluripotency TFs are less stringently implemented in individual self-renewing ESCs than assumed at present.
Collapse
Affiliation(s)
- Adam Filipczyk
- Research Unit Stem Cell Dynamics, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Carsten Marr
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Simon Hastreiter
- Research Unit Stem Cell Dynamics, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Justin Feigelman
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Michael Schwarzfischer
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Philipp S Hoppe
- Research Unit Stem Cell Dynamics, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Dirk Loeffler
- Research Unit Stem Cell Dynamics, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Konstantinos D Kokkaliaris
- Research Unit Stem Cell Dynamics, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Max Endele
- Research Unit Stem Cell Dynamics, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Bernhard Schauberger
- Research Unit Stem Cell Dynamics, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Oliver Hilsenbeck
- Research Unit Stem Cell Dynamics, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Stavroula Skylaki
- Research Unit Stem Cell Dynamics, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Jan Hasenauer
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Technische Universität München, Center for Mathematics, Chair of Mathematical Modelling of Biological Systems, Boltzmannstraße 3, 85748 Garching, Germany
| | | | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Technische Universität München, Center for Mathematics, Chair of Mathematical Modelling of Biological Systems, Boltzmannstraße 3, 85748 Garching, Germany
| | - Timm Schroeder
- Research Unit Stem Cell Dynamics, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| |
Collapse
|
137
|
Murtha M, Strino F, Tokcaer-Keskin Z, Sumru Bayin N, Shalabi D, Xi X, Kluger Y, Dailey L. Comparative FAIRE-seq analysis reveals distinguishing features of the chromatin structure of ground state- and primed-pluripotent cells. Stem Cells 2015; 33:378-91. [PMID: 25335464 DOI: 10.1002/stem.1871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/02/2014] [Accepted: 09/27/2014] [Indexed: 11/10/2022]
Abstract
Both pluripotent embryonic stem cells (ESCs), established from preimplantation murine blastocysts, and epiblast stem cells (EpiSCs), established from postimplantation embryos, can self-renew in culture or differentiate into each of the primary germ layers. While the core transcription factors (TFs) OCT4, SOX2, and NANOG are expressed in both cell types, the gene expression profiles and other features suggest that ESCs and EpiSCs reflect distinct developmental maturation stages of the epiblast in vivo. Accordingly, "naïve" or "ground state" ESCs resemble cells of the inner cell mass, whereas "primed" EpiSCs resemble cells of the postimplantation egg cylinder. To gain insight into the relationship between naïve and primed pluripotent cells, and of each of these pluripotent states to that of nonpluripotent cells, we have used FAIRE-seq to generate a comparative atlas of the accessible chromatin regions within ESCs, EpiSCs, multipotent neural stem cells, and mouse embryonic fibroblasts. We find a distinction between the accessible chromatin patterns of pluripotent and somatic cells that is consistent with the highly related phenotype of ESCs and EpiSCs. However, by defining cell-specific and shared regions of open chromatin, and integrating these data with published gene expression and ChIP analyses, we also illustrate unique features of the chromatin of naïve and primed cells. Functional studies suggest that multiple stage-specific enhancers regulate ESC- or EpiSC-specific gene expression, and implicate auxiliary TFs as important modulators for stage-specific activation by the core TFs. Together these observations provide insights into the chromatin structure dynamics accompanying transitions between these pluripotent states.
Collapse
Affiliation(s)
- Matthew Murtha
- Department of Microbiology, New York University School of Medicine, New York, New York, USA; Department of Microbiology Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
138
|
McKee C, Perez-Cruet M, Chavez F, Chaudhry GR. Simplified three-dimensional culture system for long-term expansion of embryonic stem cells. World J Stem Cells 2015; 7:1064-1077. [PMID: 26328022 PMCID: PMC4550630 DOI: 10.4252/wjsc.v7.i7.1064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/21/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To devise a simplified and efficient method for long-term culture and maintenance of embryonic stem cells requiring less frequent passaging.
METHODS: Mouse embryonic stem cells (ESCs) labeled with enhanced yellow fluorescent protein were cultured in three-dimensional (3-D) self-assembling scaffolds and compared with traditional two-dimentional (2-D) culture techniques requiring mouse embryonic fibroblast feeder layers or leukemia inhibitory factor. 3-D scaffolds encapsulating ESCs were prepared by mixing ESCs with polyethylene glycol tetra-acrylate (PEG-4-Acr) and thiol-functionalized dextran (Dex-SH). Distribution of ESCs in 3-D was monitored by confocal microscopy. Viability and proliferation of encapsulated cells during long-term culture were determined by propidium iodide as well as direct cell counts and PrestoBlue (PB) assays. Genetic expression of pluripotency markers (Oct4, Nanog, Klf4, and Sox2) in ESCs grown under 2-D and 3-D culture conditions was examined by quantitative real-time polymerase chain reaction. Protein expression of selected stemness markers was determined by two different methods, immunofluorescence staining (Oct4 and Nanog) and western blot analysis (Oct4, Nanog, and Klf4). Pluripotency of 3-D scaffold grown ESCs was analyzed by in vivo teratoma assay and in vitro differentiation via embryoid bodies into cells of all three germ layers.
RESULTS: Self-assembling scaffolds encapsulating ESCs for 3-D culture without the loss of cell viability were prepared by mixing PEG-4-Acr and Dex-SH (1:1 v/v) to a final concentration of 5% (w/v). Scaffold integrity was dependent on the degree of thiol substitution of Dex-SH and cell concentration. Scaffolds prepared using Dex-SH with 7.5% and 33% thiol substitution and incubated in culture medium maintained their integrity for 11 and 13 d without cells and 22 ± 5 d and 37 ± 5 d with cells, respectively. ESCs formed compact colonies, which progressively increased in size over time due to cell proliferation as determined by confocal microscopy and PB staining. 3-D scaffold cultured ESCs expressed significantly higher levels (P < 0.01) of Oct4, Nanog, and Kl4, showing a 2.8, 3.0 and 1.8 fold increase, respectively, in comparison to 2-D grown cells. A similar increase in the protein expression levels of Oct4, Nanog, and Klf4 was observed in 3-D grown ESCs. However, when 3-D cultured ESCs were subsequently passaged in 2-D culture conditions, the level of these pluripotent markers was reduced to normal levels. 3-D grown ESCs produced teratomas and yielded cells of all three germ layers, expressing brachyury (mesoderm), NCAM (ectoderm), and GATA4 (endoderm) markers. Furthermore, these cells differentiated into osteogenic, chondrogenic, myogenic, and neural lineages expressing Col1, Col2, Myog, and Nestin, respectively.
CONCLUSION: This novel 3-D culture system demonstrated long-term maintenance of mouse ESCs without the routine passaging and manipulation necessary for traditional 2-D cell propagation.
Collapse
|
139
|
Interplay of proliferation and differentiation factors is revealed in the early human eye development. Graefes Arch Clin Exp Ophthalmol 2015; 253:2187-201. [PMID: 26255818 DOI: 10.1007/s00417-015-3128-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 07/20/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Eye development is a consequence of numerous epithelial-to-mesenchymal interactions between the prospective lens ectoderm, outpocketings of the forebrain forming optic vesicles, and surrounding mesenchyme. How different cell types forming eye structures differentiate from their precursors, and which factors coordinate complex human eye development remains largely unknown. Proper differentiation of photoreceptors is of special interest because of their involvement in the appearance of degenerative retinal diseases. METHODS Here we analyze the spatiotemporal expression of neuronal markers nestin, protein gene product 9.5 (PGP9.5), and calcium binding protein (S100), proliferation marker (Ki-67), markers for cilia (alpha-tubulin), and cell stemness marker octamer-binding transcription factor 4 (Oct-4) in histological sections of 5-12 -week human eyes using immunohistochemical and immunofluorescence methods. RESULTS While during the investigated developmental period nestin shows strong expression in all mesenchymal derivatives, lens, optic stalk and inner neuroblastic layer, PGP9.5 and S100 expression characterizes only neural derivatives (optic nerve and neural retina). PGP9.5 is co-localized with nestin and S100 in the differentiating cells of the inner neuroblastic layer. Initially strong proliferation in all parts of the developing eye gradually ceases, especially in the outer neuroblastic layer. Proliferating Ki-67 positive cells co-localize with nestin in the retina, lens, and choroid. Strong Oct-4 and alpha-tubulin immunoreactivity in the retina and optic nerve gradually decreases, while they co-localize in outer neuroblastic and nerve fiber layers. CONCLUSIONS The described expression of investigated markers indicates their importance in eye growth and morphogenesis, while their spatially and temporally restricted pattern coincides with differentiation of initially immature cells into specific retinal cell lineages. Alterations in their spatiotemporal interplay might lead to disturbances of visual function.
Collapse
|
140
|
Herberg M, Roeder I. Computational modelling of embryonic stem-cell fate control. Development 2015; 142:2250-60. [DOI: 10.1242/dev.116343] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The maintenance of pluripotency in embryonic stem cells (ESCs), its loss during lineage specification or its re-induction to generate induced pluripotent stem cells are central topics in stem cell biology. To uncover the molecular basis and the design principles of pluripotency control, a multitude of experimental, but also an increasing number of computational, studies have been published. Here, we consider recent reports that apply computational or mathematical modelling approaches to describe the regulatory processes that underlie cell fate decisions in mouse ESCs. We summarise the principles, the strengths and potentials but also the limitations of different computational strategies.
Collapse
Affiliation(s)
- Maria Herberg
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden D-01307, Germany
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden D-01307, Germany
| |
Collapse
|
141
|
Kim BR, Oh SC, Lee DH, Kim JL, Lee SY, Kang MH, Lee SI, Kang S, Joung SY, Min BW. BMP-2 induces motility and invasiveness by promoting colon cancer stemness through STAT3 activation. Tumour Biol 2015; 36:9475-86. [PMID: 26124007 DOI: 10.1007/s13277-015-3681-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/16/2015] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) have been involved in metastatic progression and tumorigenesis of many cancer types. However, it remains unclear how BMP-2 contributes to the initiation and development of these cancers. Here, we investigated the role of BMP-2 in colon cancer stem cell (CSC) development from colon cancer cells. We also determined the effects of BMP-2 on CSC development and epithelial-mesenchymal transition (EMT) in human colon cancer cell lines HCT-116 and SW620. We found that BMP-2 enhanced sphere formation of colon cancer cells without serum. Also, BMP-2-induced spheres displayed up-regulation of stemness markers (CD133+ and EpCAM+) and increased drug resistance, hallmarks of CSCs. Importantly, expression of EMT activators p-Smad1/5 and Snail and N-cadherin was increased in the spheres' cells, indicating that BMP-2 signaling might result in CSC self-renewal and EMT. Furthermore, siRNA-mediated knockdown of signal transducer and activator of transcription 3 (STAT3) in HCT-116 cells reversed BMP-2-induced EMT and stem cell formation. Taken together, our results suggest that the BMP-2 induced STAT3-mediated induction of colon cancer cell metastasis requires an EMT and/or changes in CSC markers.
Collapse
Affiliation(s)
- Bo Ram Kim
- Graduate School of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang Cheul Oh
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dae-Hee Lee
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung Lim Kim
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Suk Young Lee
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Myoung Hee Kang
- University of Ulsan College of Medicine, Asan Institute for Life Science, Seoul, Republic of Korea
| | - Sun Il Lee
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-gil, Guro-gu, Seoul, 152-703, Republic of Korea
| | - Sanghee Kang
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-gil, Guro-gu, Seoul, 152-703, Republic of Korea
| | - Sung Yup Joung
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-gil, Guro-gu, Seoul, 152-703, Republic of Korea
| | - Byung Wook Min
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-gil, Guro-gu, Seoul, 152-703, Republic of Korea.
| |
Collapse
|
142
|
Constitutive activities of estrogen-related receptors: Transcriptional regulation of metabolism by the ERR pathways in health and disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1912-27. [PMID: 26115970 DOI: 10.1016/j.bbadis.2015.06.016] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
The estrogen-related receptors (ERRs) comprise a small group of orphan nuclear receptor transcription factors. The ERRα and ERRγ isoforms play a central role in the regulation of metabolic genes and cellular energy metabolism. Although less is known about ERRβ, recent studies have revealed the importance of this isoform in the maintenance of embryonic stem cell pluripotency. Thus, ERRs are essential to many biological processes. The development of several ERR knockout and overexpression models and the application of advanced functional genomics have allowed rapid advancement of our understanding of the physiology regulated by ERR pathways. Moreover, it has enabled us to begin to delineate the distinct programs regulated by ERRα and ERRγ that have overlapping effects on metabolism and growth. The current review primarily focuses on the physiologic roles of ERR isoforms related to their metabolic regulation; therefore, the ERRα and ERRγ are discussed in the greatest detail. We emphasize findings from gain- and loss-of-function models developed to characterize ERR control of skeletal muscle, heart and musculoskeletal physiology. These models have revealed that coordinating metabolic capacity with energy demand is essential for seemingly disparate processes such as muscle differentiation and hypertrophy, innate immune function, thermogenesis, and bone remodeling. Furthermore, the models have revealed that ERRα- and ERRγ-deficiency in mice accelerates progression of pathologic processes and implicates ERRs as etiologic factors in disease. We highlight the human diseases in which ERRs and their downstream metabolic pathways are perturbed, including heart failure and diabetes. While no natural ligand has been identified for any of the ERR isoforms, the potential for using synthetic small molecules to modulate their activity has been demonstrated. Based on our current understanding of their transcriptional mechanisms and physiologic relevance, the ERRs have emerged as potential therapeutic targets for treatment of osteoporosis, muscle atrophy, insulin resistance and heart failure in humans.
Collapse
|
143
|
Murakami S, Ninomiya W, Sakamoto E, Shibata T, Akiyama H, Tashiro F. SRY and OCT4 Are Required for the Acquisition of Cancer Stem Cell-Like Properties and Are Potential Differentiation Therapy Targets. Stem Cells 2015; 33:2652-63. [PMID: 26013162 DOI: 10.1002/stem.2059] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 04/20/2015] [Indexed: 02/07/2023]
Abstract
The acquisition of stemness is a hallmark of aggressive human hepatocellular carcinoma (hHCC). The stem cell marker OCT4 is frequently expressed in HCCs, and its expression correlates with those of putative cancer stem cell (CSC) markers and CSC properties. Here, we describe a novel mechanism of CSC maintenance by SRY through OCT4. We previously reported that Sry is involved in tumor malignancy in rodent HCCs. However, the oncogenic function of SRY in hHCCs is poorly understood. Ectopic expression of SRY increased multiple stem cell factors, including OCT4 and CD13. The OCT4 promoter contained SRY-binding sites that were directly activated by SRY. In HCC-derived cells, SRY knockdown decreased OCT4 expression and cancer stem-like phenotypes such as self-renewal, chemoresistance, and tumorigenicity. Conversely, OCT4 and SRY overexpression promoted cancer stem-like phenotypes. OCT4 knockdown in SRY clones downregulated the self-renewal capacity and chemoresistance. These data suggest that SRY is involved in the maintenance of cancer stem-like characteristics through OCT4. Moreover, CSCs of HCC-derived cells differentiated into Tuj1-positive neuron-like cells by retinoic acid. Noteworthily, SRY was highly expressed in some hHCC patients. Taken together, our findings imply a novel therapeutic strategy against CSCs of hHCCs.
Collapse
Affiliation(s)
- Shigekazu Murakami
- Department of Biological Sciences and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Wataru Ninomiya
- Department of Biological Sciences and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Erina Sakamoto
- Department of Biological Sciences and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo Japan
| | - Hirotada Akiyama
- Department of Biological Sciences and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Fumio Tashiro
- Department of Biological Sciences and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| |
Collapse
|
144
|
Abstract
Pluripotency is the remarkable capacity of a single cell to engender all the specialized cell types of an adult organism. This property can be captured indefinitely through derivation of self-renewing embryonic stem cells (ESCs), which represent an invaluable platform to investigate cell fate decisions and disease. Recent advances have revealed that manipulation of distinct signaling cues can render ESCs in a uniform "ground state" of pluripotency, which more closely recapitulates the pluripotent naive epiblast. Here we discuss the extrinsic and intrinsic regulatory principles that underpin the nature of pluripotency and consider the emerging spectrum of pluripotent states.
Collapse
Affiliation(s)
- Jamie A Hackett
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 1QN, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 1QN, UK.
| |
Collapse
|
145
|
Buitrago-Delgado E, Nordin K, Rao A, Geary L, LaBonne C. NEURODEVELOPMENT. Shared regulatory programs suggest retention of blastula-stage potential in neural crest cells. Science 2015; 348:1332-5. [PMID: 25931449 PMCID: PMC4652794 DOI: 10.1126/science.aaa3655] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/26/2015] [Indexed: 12/18/2022]
Abstract
Neural crest cells, which are specific to vertebrates, arise in the ectoderm but can generate cell types that are typically categorized as mesodermal. This broad developmental potential persists past the time when most ectoderm-derived cells become lineage-restricted. The ability of neural crest to contribute mesodermal derivatives to the bauplan has raised questions about how this apparent gain in potential is achieved. Here, we describe shared molecular underpinnings of potency in neural crest and blastula cells. We show that in Xenopus, key neural crest regulatory factors are also expressed in blastula animal pole cells and promote pluripotency in both cell types. We suggest that neural crest cells may have evolved as a consequence of a subset of blastula cells retaining activity of the regulatory network underlying pluripotency.
Collapse
Affiliation(s)
- Elsy Buitrago-Delgado
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Kara Nordin
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Anjali Rao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Lauren Geary
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA. Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
146
|
Abstract
Mouse embryonic stem (ES) cells perpetuate in vitro the broad developmental potential of naïve founder cells in the preimplantation embryo. ES cells self-renew relentlessly in culture but can reenter embryonic development seamlessly, differentiating on schedule to form all elements of the fetus. Here we review the properties of these remarkable cells. Arising from the stability, homogeneity, and equipotency of ES cells, we consider the concept of a pluripotent ground state. We evaluate the authenticity of ES cells in relation to cells in the embryo and examine their utility for dissecting mechanisms that confer pluripotency and that execute fate choice. We summarize current knowledge of the transcription factor circuitry that governs the ES cell state and discuss the opportunity to expose molecular logic further through iterative computational modeling and experimentation. Finally, we present a perspective on unresolved questions, including the challenge of deriving ground state pluripotent stem cells from non-rodent species.
Collapse
|
147
|
Notas G, Pelekanou V, Kampa M, Alexakis K, Sfakianakis S, Laliotis A, Askoxilakis J, Tsentelierou E, Tzardi M, Tsapis A, Castanas E. Tamoxifen induces a pluripotency signature in breast cancer cells and human tumors. Mol Oncol 2015; 9:1744-59. [PMID: 26115764 DOI: 10.1016/j.molonc.2015.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/20/2015] [Indexed: 01/01/2023] Open
Abstract
Tamoxifen is the treatment of choice in estrogen receptor alpha breast cancer patients that are eligible for adjuvant endocrine therapy. However, ∼50% of ERα-positive tumors exhibit intrinsic or rapidly acquire resistance to endocrine treatment. Unfortunately, prediction of de novo resistance to endocrine therapy and/or assessment of relapse likelihood remain difficult. While several mechanisms regulating the acquisition and the maintenance of endocrine resistance have been reported, there are several aspects of this phenomenon that need to be further elucidated. Altered metabolic fate of tamoxifen within patients and emergence of tamoxifen-resistant clones, driven by evolution of the disease phenotype during treatment, appear as the most compelling hypotheses so far. In addition, tamoxifen was reported to induce pluripotency in breast cancer cell lines, in vitro. In this context, we have performed a whole transcriptome analysis of an ERα-positive (T47D) and a triple-negative breast cancer cell line (MDA-MB-231), exposed to tamoxifen for a short time frame (hours), in order to identify how early pluripotency-related effects of tamoxifen may occur. Our ultimate goal was to identify whether the transcriptional actions of tamoxifen related to induction of pluripotency are mediated through specific ER-dependent or independent mechanisms. We report that even as early as 3 hours after the exposure of breast cancer cells to tamoxifen, a subset of ERα-dependent genes associated with developmental processes and pluripotency are induced and this is accompanied by specific phenotypic changes (expression of pluripotency-related proteins). Furthermore we report an association between the increased expression of pluripotency-related genes in ERα-positive breast cancer tissues samples and disease relapse after tamoxifen therapy. Finally we describe that in a small group of ERα-positive breast cancer patients, with disease relapse after surgery and tamoxifen treatment, ALDH1A1 (a marker of pluripotency in epithelial cancers which is absent in normal breast tissue) is increased in relapsing tumors, with a concurrent modification of its intra-cellular localization. Our data could be of value in the discrimination of patients susceptible to develop tamoxifen resistance and in the selection of optimized patient-tailored therapies.
Collapse
Affiliation(s)
- George Notas
- Laboratories of Experimental Endocrinology, University of Crete School of Medicine, Heraklion, Greece; Institute of Applied Computational Mathematics, Foundation of Research and Technology (FORTH), Heraklion, Greece.
| | - Vassiliki Pelekanou
- Laboratories of Experimental Endocrinology, University of Crete School of Medicine, Heraklion, Greece; Laboratories of Pathology, University of Crete School of Medicine, Heraklion, Greece
| | - Marilena Kampa
- Laboratories of Experimental Endocrinology, University of Crete School of Medicine, Heraklion, Greece
| | - Konstantinos Alexakis
- Laboratories of Experimental Endocrinology, University of Crete School of Medicine, Heraklion, Greece
| | - Stelios Sfakianakis
- Institute of Computer Science, Foundation of Research and Technology (FORTH), Heraklion, Greece
| | - Aggelos Laliotis
- Department of Surgical Oncology, University Hospital, Heraklion, Greece
| | - John Askoxilakis
- Department of Surgical Oncology, University Hospital, Heraklion, Greece
| | | | - Maria Tzardi
- Laboratories of Pathology, University of Crete School of Medicine, Heraklion, Greece
| | - Andreas Tsapis
- Laboratories of Experimental Endocrinology, University of Crete School of Medicine, Heraklion, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; University Paris Diderot, Paris, France
| | - Elias Castanas
- Laboratories of Experimental Endocrinology, University of Crete School of Medicine, Heraklion, Greece.
| |
Collapse
|
148
|
Sharifi-Zarchi A, Totonchi M, Khaloughi K, Karamzadeh R, Araúzo-Bravo MJ, Baharvand H, Tusserkani R, Pezeshk H, Chitsaz H, Sadeghi M. Increased robustness of early embryogenesis through collective decision-making by key transcription factors. BMC SYSTEMS BIOLOGY 2015; 9:23. [PMID: 26033487 PMCID: PMC4450992 DOI: 10.1186/s12918-015-0169-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 05/15/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Understanding the mechanisms by which hundreds of diverse cell types develop from a single mammalian zygote has been a central challenge of developmental biology. Conrad H. Waddington, in his metaphoric "epigenetic landscape" visualized the early embryogenesis as a hierarchy of lineage bifurcations. In each bifurcation, a single progenitor cell type produces two different cell lineages. The tristable dynamical systems are used to model the lineage bifurcations. It is also shown that a genetic circuit consisting of two auto-activating transcription factors (TFs) with cross inhibitions can form a tristable dynamical system. RESULTS We used gene expression profiles of pre-implantation mouse embryos at the single cell resolution to visualize the Waddington landscape of the early embryogenesis. For each lineage bifurcation we identified two clusters of TFs - rather than two single TFs as previously proposed - that had opposite expression patterns between the pair of bifurcated cell types. The regulatory circuitry among each pair of TF clusters resembled a genetic circuit of a pair of single TFs; it consisted of positive feedbacks among the TFs of the same cluster, and negative interactions among the members of the opposite clusters. Our analyses indicated that the tristable dynamical system of the two-cluster regulatory circuitry is more robust than the genetic circuit of two single TFs. CONCLUSIONS We propose that a modular hierarchy of regulatory circuits, each consisting of two mutually inhibiting and auto-activating TF clusters, can form hierarchical lineage bifurcations with improved safeguarding of critical early embryogenesis against biological perturbations. Furthermore, our computationally fast framework for modeling and visualizing the epigenetic landscape can be used to obtain insights from experimental data of development at the single cell resolution.
Collapse
Affiliation(s)
- Ali Sharifi-Zarchi
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Computer Science Department, Colorado State University, Fort Collins, Colorado, 80523, USA.
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Keynoush Khaloughi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Razieh Karamzadeh
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Marcos J Araúzo-Bravo
- Computational Biology and Bioinformatics Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Ruzbeh Tusserkani
- School of Computer Science, Institute for Research in Fundamental Sciences, Tehran, Iran.
| | - Hamid Pezeshk
- School of Mathematics, Statistics and Computer Sciences, Center of Excellence in Biomathematics, College of Science, University of Tehran, Tehran, Iran.
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Hamidreza Chitsaz
- Computer Science Department, Colorado State University, Fort Collins, Colorado, 80523, USA.
| | - Mehdi Sadeghi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
149
|
Wang L, Park P, La Marca F, Than KD, Lin CY. BMP-2 inhibits tumor-initiating ability in human renal cancer stem cells and induces bone formation. J Cancer Res Clin Oncol 2015; 141:1013-24. [PMID: 25431339 DOI: 10.1007/s00432-014-1883-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/22/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE We have previously shown that BMP-2 induces bone formation and inhibits tumorigenicity of cancer stem cells (CSCs) in a human osteosarcoma OS99-1 cell line. In this study, we sought to determine whether BMP-2 can similarly induce bone formation and inhibit the tumorigenicity of renal CSCs identified based on aldehyde dehydrogenase (ALDH) activity in renal cell carcinoma (RCC) cell lines and primary tumors. METHODS Using a xenograft model in which cells from human RCC cell lines ACHN, Caki-2, and primary tumors were grown in NOD/SCID mice, renal CSCs were identified as a subset of ALDH(br) cells. The ALDH(br) cells possessed a greater colony-forming efficiency, higher proliferative output, increased expression of stem cell marker genes Oct3/4A, Nanog, renal embryonic marker Pax-2, and greater tumorigenicity compared to cells with low ALDH activity (ALDH(lo) cells), generating new tumors with as few as 25 cells in mice. RESULTS In vitro, BMP-2 was found to inhibit the ALDH(br) cell growth, down-regulate the expression of embryonic stem cell markers, and up-regulate the transcription of osteogenic markers. In vivo, all animals receiving a low number of ALDH(br) cells (5 × 10(3)) from ACHN, Caki-2, and primary tumor xenografts treated with 30 µg BMP-2 per animal showed limited tumor growth with significant bone formation, while untreated cells developed large tumor masses without bone formation. CONCLUSIONS These results suggest that BMP-2 inhibits the tumor-initiating ability of renal CSCs and induces osseous bone formation. BMP-2 may therefore provide a beneficial strategy for human RCC treatment by targeting the CSC-enriched population.
Collapse
Affiliation(s)
- Lin Wang
- Spine Research Laboratory, Department of Neurosurgery, University of Michigan Medical School, 1500 E. Medical Center Drive, Room 3552 TC, Ann Arbor, MI, 48109-5338, USA
| | | | | | | | | |
Collapse
|
150
|
Abstract
Pluripotent stem cells have the potential to differentiate into 200 odd cell types present in adult body. Pluripotent stem cells available for regenerative medicine include embryonic stem (ES) cells, induced pluripotent stem (iPS) cells and very small ES-like stem (VSELs) cells. Nuclear OCT-4 is one of the crucial factors that dictate pluripotent state. Compared to ES/iPS cells grown in Petri dish, VSELs exist in adult body organs and results are emerging to suggest that they may have better potential to regenerate adult organs. This is because of their distinct epigenetic status as they are closer to the primordial germ cells from the epiblast-stage embryo compared to inner cell mass from which ES cells are obtained in vitro. We need to make special efforts to study them as they are very small in size and tend to get lost during processing. VSELs exist in adult organs, get mobilized in response to stress, undergo asymmetric cell divisions to give rise to tissue specific progenitors which further differentiate into various cell types and are possibly better candidates for regenerative medicine because they have no associated risk of tumor formation or immunological rejection. They are possibly also the ‘embryonic remnants’ in adult organs responsible for initiating cancer. Thus, rather than not accepting VSELs because they neither form teratoma nor divide in vitro like ES cells, it is time that scientific community should think of revising the definition of the term ‘pluripotency’.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (ICMR), Mumbai 400 012, INDIA
| |
Collapse
|