101
|
Abreu P, Mendes SVD, Ceccatto VM, Hirabara SM. Satellite cell activation induced by aerobic muscle adaptation in response to endurance exercise in humans and rodents. Life Sci 2016; 170:33-40. [PMID: 27888112 DOI: 10.1016/j.lfs.2016.11.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 11/15/2022]
Abstract
Although the requirement of satellite cells activation and expansion following injury, mechanical load or growth stimulus provoked by resistance exercise has been well established, their function in response to aerobic exercise adaptation remains unclear. A clear relationship between satellite cell expansion in fiber-type specific myosin heavy chain and aerobic performance has been related, independent of myonuclear accretion or muscle growth. However, the trigger for this activation process is not fully understood yet and it seems to be a multi-faceted and well-orchestrated process. Emerging in vitro studies suggest a role for metabolic pathways and oxygen availability for satellite cell activation, modulating the self-renewal potential and cell fate control. The goal of this review is to describe and discuss the current knowledge about the satellite cell activation and expansion in response to aerobic exercise adaptation in human and rodent models. Additionally, findings about the in vitro metabolic control, which seems be involved in the satellite cell activation and cell fate control, are presented and discussed.
Collapse
Affiliation(s)
- Phablo Abreu
- Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil; Institute of Biomedical Sciences, State University of Ceará, CE, Brazil.
| | | | | | - Sandro Massao Hirabara
- Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil; Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, SP, Brazil
| |
Collapse
|
102
|
Effect of High-Intensity Training in Normobaric Hypoxia on Thoroughbred Skeletal Muscle. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1535367. [PMID: 27721912 PMCID: PMC5046030 DOI: 10.1155/2016/1535367] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/11/2016] [Accepted: 08/16/2016] [Indexed: 11/17/2022]
Abstract
Hypoxic training is believed to increase endurance capacity in association with hypoxia inducible factor-1α (HIF-1α), a modulator of vascular endothelial growth factor-A (VEGF-A), and to influence activation of satellite cells (SCs). However, the effect of hypoxic training on SC activation and its relation to angiogenesis has not been thoroughly investigated. Eight Thoroughbred horses were subjected to normoxic (FIO2 = 21%) or hypoxic (FIO2 = 15%) training for 3 days/week (100% [Formula: see text]) for 4 weeks. Incremental exercise tests (IET) were conducted on a treadmill under normoxia and the maximal oxygen consumption ([Formula: see text]) and running distance were measured before and after each training session. Muscle biopsy samples were obtained from the gluteus medius muscle at 6 scheduled times before, during, and one week after IET for immunohistochemical analysis and real-time RT-PCR analysis. Running distance and [Formula: see text], measured during IET, increased significantly after hypoxic training compared with normoxic training. Capillary density and mRNA expression related to SC activation (e.g., myogenin and hepatocyte growth factor) and angiogenesis (VEGF-A) increased only after hypoxic training. These results suggest that increases in mRNA expression after training enhance and prolong SC activation and angiogenesis and that nitric oxide plays an important role in these hypoxia-induced training effects.
Collapse
|
103
|
Muir LA, Murry CE, Chamberlain JS. Prosurvival Factors Improve Functional Engraftment of Myogenically Converted Dermal Cells into Dystrophic Skeletal Muscle. Stem Cells Dev 2016; 25:1559-1569. [PMID: 27503462 DOI: 10.1089/scd.2016.0136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD) and other muscle wasting disorders, cell therapies are a promising route for promoting muscle regeneration by supplying a functional copy of the missing dystrophin gene and contributing new muscle fibers. The clinical application of cell-based therapies is resource intensive, and it will therefore be necessary to address key limitations that reduce cell engraftment into muscle tissue. A pressing issue is poor donor cell survival following transplantation, which in preclinical studies limits the ability to effectively test the impact of cell-based therapy on whole muscle function. We, therefore, sought to improve engraftment and the functional impact of in vivo myogenically converted dermal fibroblasts (dFbs) using a prosurvival cocktail (PSC) that includes heat shock followed by treatment with insulin-like growth factor-1, a caspase inhibitor, a Bcl-XL peptide, a KATP channel opener, basic fibroblast growth factor, Matrigel, and cyclosporine A. Advantages of dFbs include compatibility with the autologous setting, ease of isolation, and greater proliferative potential than DMD satellite cells. dFbs expressed tamoxifen-inducible MyoD and carried a mini-dystrophin gene driven by a muscle-specific promoter. After transplantation into muscles of mdx mice, a 70% reduction in donor cells was observed by day 5, and a 94% reduction by day 28. However, treatment with PSC gave a nearly three-fold increase in donor cells in early engraftment, and greatly increased the number of donor-contributed muscle fibers and total engrafted area in transplanted muscles. Furthermore, dystrophic muscles that received dFbs with PSC displayed reduced injury with eccentric contractions and an increase in maximum isometric force. Thus, enhancing survival of myogenic cells increases engraftment and improves structure and function of dystrophic muscle.
Collapse
Affiliation(s)
- Lindsey A Muir
- 1 Department of Neurology, University of Washington , Seattle, Washington
- 2 Molecular and Cellular Biology Program, University of Washington , Seattle, Washington
| | - Charles E Murry
- 3 Center for Cardiovascular Biology, University of Washington , Seattle, Washington
- 4 Institute for Stem Cell and Regenerative Medicine, University of Washington , Seattle, Washington
- 5 Department of Pathology, University of Washington , Seattle, Washington
- 6 Department of Bioengineering, University of Washington , Seattle, Washington
- 7 Department of Medicine/Cardiology, University of Washington , Seattle, Washington
| | - Jeffrey S Chamberlain
- 1 Department of Neurology, University of Washington , Seattle, Washington
- 8 Department of Biochemistry, University of Washington , Seattle, Washington
- 9 Department of Medicine/Medical Genetics, University of Washington , Seattle, Washington
| |
Collapse
|
104
|
Chaillou T, Lanner JT. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. FASEB J 2016; 30:3929-3941. [PMID: 27601440 DOI: 10.1096/fj.201600757r] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022]
Abstract
Reduced oxygen (O2) levels (hypoxia) are present during embryogenesis and exposure to altitude and in pathologic conditions. During embryogenesis, myogenic progenitor cells reside in a hypoxic microenvironment, which may regulate their activity. Satellite cells are myogenic progenitor cells localized in a local environment, suggesting that the O2 level could affect their activity during muscle regeneration. In this review, we present the idea that O2 levels regulate myogenesis and muscle regeneration, we elucidate the molecular mechanisms underlying myogenesis and muscle regeneration in hypoxia and depict therapeutic strategies using changes in O2 levels to promote muscle regeneration. Severe hypoxia (≤1% O2) appears detrimental for myogenic differentiation in vitro, whereas a 3-6% O2 level could promote myogenesis. Hypoxia impairs the regenerative capacity of injured muscles. Although it remains to be explored, hypoxia may contribute to the muscle damage observed in patients with pathologies associated with hypoxia (chronic obstructive pulmonary disease, and peripheral arterial disease). Hypoxia affects satellite cell activity and myogenesis through mechanisms dependent and independent of hypoxia-inducible factor-1α. Finally, hyperbaric oxygen therapy and transplantation of hypoxia-conditioned myoblasts are beneficial procedures to enhance muscle regeneration in animals. These therapies may be clinically relevant to treatment of patients with severe muscle damage.-Chaillou, T. Lanner, J. T. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity.
Collapse
Affiliation(s)
- Thomas Chaillou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
105
|
Sellathurai J, Nielsen J, Hejbøl EK, Jørgensen LH, Dhawan J, Nielsen MFB, Schrøder HD. Low Oxygen Tension Enhances Expression of Myogenic Genes When Human Myoblasts Are Activated from G0 Arrest. PLoS One 2016; 11:e0158860. [PMID: 27442119 PMCID: PMC4956100 DOI: 10.1371/journal.pone.0158860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 06/23/2016] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Most cell culture studies have been performed at atmospheric oxygen tension of 21%, however the physiological oxygen tension is much lower and is a factor that may affect skeletal muscle myoblasts. In this study we have compared activation of G0 arrested myoblasts in 21% O2 and in 1% O2 in order to see how oxygen tension affects activation and proliferation of human myoblasts. MATERIALS AND METHODS Human myoblasts were isolated from skeletal muscle tissue and G0 arrested in vitro followed by reactivation at 21% O2 and 1% O2. The effect was assesses by Real-time RT-PCR, immunocytochemistry and western blot. RESULTS AND CONCLUSIONS We found an increase in proliferation rate of myoblasts when activated at a low oxygen tension (1% O2) compared to 21% O2. In addition, the gene expression studies showed up regulation of the myogenesis related genes PAX3, PAX7, MYOD, MYOG (myogenin), MET, NCAM, DES (desmin), MEF2A, MEF2C and CDH15 (M-cadherin), however, the fraction of DES and MYOD positive cells was not increased by low oxygen tension, indicating that 1% O2 may not have a functional effect on the myogenic response. Furthermore, the expression of genes involved in the TGFβ, Notch and Wnt signaling pathways were also up regulated in low oxygen tension. The differences in gene expression were most pronounced at day one after activation from G0-arrest, thus the initial activation of myoblasts seemed most sensitive to changes in oxygen tension. Protein expression of HES1 and β-catenin indicated that notch signaling may be induced in 21% O2, while the canonical Wnt signaling may be induced in 1% O2 during activation and proliferation of myoblasts.
Collapse
Affiliation(s)
- Jeeva Sellathurai
- Institute of Clinical Research, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
- * E-mail: (JS); (HDS)
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark
| | - Eva Kildall Hejbøl
- Institute of Clinical Research, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Louise Helskov Jørgensen
- Institute of Clinical Research, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Jyotsna Dhawan
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Center for Biological Sciences, Bangalore, India
| | | | - Henrik Daa Schrøder
- Institute of Clinical Research, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense, Denmark
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
- * E-mail: (JS); (HDS)
| |
Collapse
|
106
|
Greco S, Zaccagnini G, Voellenkle C, Martelli F. microRNAs in ischaemic cardiovascular diseases. Eur Heart J Suppl 2016; 18:E31-E36. [PMID: 28533714 DOI: 10.1093/eurheartj/suw012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
microRNAs (miRNAs) are non-coding RNA molecules that modulate the stability and/or the translational efficiency of specific messenger RNAs. They have been shown to play a regulatory role in most biological processes and their expression is disrupted in many cardiovascular diseases. This review describes studies performed at Policlinico San Donato-IRCCS in cell cultures, animal models, and patients, showing a penetrant role of miRNAs in cell response to hypoxia and in ischaemic cardiovascular diseases. These experiments indicate miRNA as an emerging class of therapeutic targets.
Collapse
Affiliation(s)
- Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, via Morandi 30, 20097 San Donato Milanese, Milan, Italy
| | - Germana Zaccagnini
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, via Morandi 30, 20097 San Donato Milanese, Milan, Italy
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, via Morandi 30, 20097 San Donato Milanese, Milan, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, via Morandi 30, 20097 San Donato Milanese, Milan, Italy
| |
Collapse
|
107
|
Shan T, Zhang P, Xiong Y, Wang Y, Kuang S. Lkb1 deletion upregulates Pax7 expression through activating Notch signaling pathway in myoblasts. Int J Biochem Cell Biol 2016; 76:31-8. [PMID: 27131604 DOI: 10.1016/j.biocel.2016.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 03/19/2016] [Accepted: 04/26/2016] [Indexed: 11/28/2022]
Abstract
Satellite cells play crucial roles in mediating the growth, maintenance, and repair of postnatal skeletal muscle. Activated satellite cells (myoblasts) can divide symmetrically or asymmetrically to generate progenies that self-renewal, proliferate or differentiate. Pax7 is a defining marker of quiescent and activated satellite cells, but not differentiated myoblast. We demonstrate here that deletion of Lkb1 upregulates Pax7 expression in myoblasts and inhibits asymmetric divisions that generate differentiating progenies. Furthermore, we find that Lkb1 activates the Notch signaling pathway, which subsequently increases Pax7 expression and promotes self-renewal and proliferation while inhibiting differentiation. Mechanistic studies reveal that Lkb1 regulates Notch activation through AMPK-mTOR pathway in myoblasts. Together, these results establish a key role of Lkb1 in regulating myoblast division and cell fates choices.
Collapse
Affiliation(s)
- Tizhong Shan
- Department of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Pengpeng Zhang
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yan Xiong
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yizhen Wang
- Department of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shihuan Kuang
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA.
| |
Collapse
|
108
|
Polymeric Electrospinning for Musculoskeletal Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2016. [DOI: 10.1007/s40883-016-0013-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
109
|
D'Hulst G, Ferri A, Naslain D, Bertrand L, Horman S, Francaux M, Bishop DJ, Deldicque L. Fifteen days of 3,200 m simulated hypoxia marginally regulates markers for protein synthesis and degradation in human skeletal muscle. HYPOXIA 2016; 4:1-14. [PMID: 27800505 PMCID: PMC5085286 DOI: 10.2147/hp.s101133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chronic hypoxia leads to muscle atrophy. The molecular mechanisms responsible for this phenomenon are not well defined in vivo. We sought to determine how chronic hypoxia regulates molecular markers of protein synthesis and degradation in human skeletal muscle and whether these regulations were related to the regulation of the hypoxia-inducible factor (HIF) pathway. Eight young male subjects lived in a normobaric hypoxic hotel (FiO2 14.1%, 3,200 m) for 15 days in well-controlled conditions for nutrition and physical activity. Skeletal muscle biopsies were obtained in the musculus vastus lateralis before (PRE) and immediately after (POST) hypoxic exposure. Intramuscular hypoxia-inducible factor-1 alpha (HIF-1α) protein expression decreased (-49%, P=0.03), whereas hypoxia-inducible factor-2 alpha (HIF-2α) remained unaffected from PRE to POST hypoxic exposure. Also, downstream HIF-1α target genes VEGF-A (-66%, P=0.006) and BNIP3 (-24%, P=0.002) were downregulated, and a tendency was measured for neural precursor cell expressed, developmentally Nedd4 (-47%, P=0.07), suggesting lowered HIF-1α transcriptional activity after 15 days of exposure to environmental hypoxia. No difference was found on microtubule-associated protein 1 light chain 3 type II/I (LC3b-II/I) ratio, and P62 protein expression tended to increase (+45%, P=0.07) compared to PRE exposure levels, suggesting that autophagy was not modulated after chronic hypoxia. The mammalian target of rapamycin complex 1 pathway was not altered as Akt, mammalian target of rapamycin, S6 kinase 1, and 4E-binding protein 1 phosphorylation did not change between PRE and POST. Finally, myofiber cross-sectional area was unchanged between PRE and POST. In summary, our data indicate that moderate chronic hypoxia differentially regulates HIF-1α and HIF-2α, marginally affects markers of protein degradation, and does not modify markers of protein synthesis or myofiber cross-sectional area in human skeletal muscle.
Collapse
Affiliation(s)
- Gommaar D'Hulst
- Department of Kinesiology, Exercise Physiology Research Group, FaBeR, KU Leuven, Leuven, Belgium
| | - Alessandra Ferri
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Australia; Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - Damien Naslain
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve
| | - Luc Bertrand
- Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardiovasculaire, Université catholique de Louvain, Brussels, Belgium
| | - Sandrine Horman
- Institut de Recherche Expérimentale et Clinique, Pôle de Recherche Cardiovasculaire, Université catholique de Louvain, Brussels, Belgium
| | - Marc Francaux
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve
| | - David J Bishop
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Australia
| | - Louise Deldicque
- Department of Kinesiology, Exercise Physiology Research Group, FaBeR, KU Leuven, Leuven, Belgium; Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve
| |
Collapse
|
110
|
Lala-Tabbert N, Fu D, Wiper-Bergeron N. Induction of CCAAT/Enhancer-Binding Protein β Expression With the Phosphodiesterase Inhibitor Isobutylmethylxanthine Improves Myoblast Engraftment Into Dystrophic Muscle. Stem Cells Transl Med 2016; 5:500-10. [PMID: 26941360 DOI: 10.5966/sctm.2015-0169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is the most common muscular dystrophy. Characterized by rounds of muscle degeneration and regeneration, DMD features progressive muscle wasting and is fatal. One approach for treatment is transplantation of muscle progenitor cells to repair and restore dystrophin expression to damaged muscle. However, the success of this approach has been limited by difficulties in isolating large numbers of myogenic progenitors with strong regenerative potential, poor engraftment, poor survival of donor cells, and limited migration in the diseased muscle. We demonstrate that induction of the transcription factor CCAAT/enhancer-binding protein β (C/EBPβ) using the cyclic adenosine monophosphate phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) results in enhanced myoblast expansion in culture and increased satellite cell marker expression. When equal numbers of IBMX-treated cells were transplanted into dystrophic muscle, they contributed to muscle repair more efficiently than did vehicle-treated cells and engrafted into the satellite cell niche in higher numbers, demonstrating improved cell migration from the site of injury and enhanced survival after transplantation. Thus, pharmacologic stimulation of C/EBPβ expression reprograms myoblasts to a more stem cell-like state, promotes expansion in culture, and improves engraftment such that better transplantation outcomes are achieved. SIGNIFICANCE Duchenne muscular dystrophy is a genetic disorder for which no cure exists. One therapeutic approach is transplantation of myogenic progenitors to restore dystrophin to damaged muscle, but this approach is limited by poor engraftment of cultured myoblasts. Transient upregulation of CCAAT/enhancer-binding protein β in primary myoblasts using the phosphodiesterase isobutylmethylxanthine (IBMX) increases satellite cell marker expression in cultured myoblasts, improves their migration, and increases their survival after transplantation. When transplanted into C57BL/10ScSn-mdx/J mice , IBMX-treated myoblasts restored dystrophin expression and were able to occupy the satellite cell niche more efficiently than controls. A myoblast culture approach that reprograms myoblasts to a more primitive state, resulting in improved transplantation outcomes and reinvigorating research into myoblast transplantation as a viable therapeutic approach, is described.
Collapse
Affiliation(s)
- Neena Lala-Tabbert
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Dechen Fu
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
111
|
Muscle Satellite Cells: Exploring the Basic Biology to Rule Them. Stem Cells Int 2016; 2016:1078686. [PMID: 27042182 PMCID: PMC4794588 DOI: 10.1155/2016/1078686] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/24/2016] [Indexed: 12/12/2022] Open
Abstract
Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.
Collapse
|
112
|
Santos-Zas I, Gurriarán-Rodríguez U, Cid-Díaz T, Figueroa G, González-Sánchez J, Bouzo-Lorenzo M, Mosteiro CS, Señarís J, Casanueva FF, Casabiell X, Gallego R, Pazos Y, Mouly V, Camiña JP. β-Arrestin scaffolds and signaling elements essential for the obestatin/GPR39 system that determine the myogenic program in human myoblast cells. Cell Mol Life Sci 2016; 73:617-35. [PMID: 26211463 PMCID: PMC11108386 DOI: 10.1007/s00018-015-1994-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/08/2015] [Accepted: 07/16/2015] [Indexed: 12/27/2022]
Abstract
Obestatin/GPR39 signaling stimulates skeletal muscle repair by inducing the expansion of satellite stem cells as well as myofiber hypertrophy. Here, we describe that the obestatin/GPR39 system acts as autocrine/paracrine factor on human myogenesis. Obestatin regulated multiple steps of myogenesis: myoblast proliferation, cell cycle exit, differentiation and recruitment to fuse and form multinucleated hypertrophic myotubes. Obestatin-induced mitogenic action was mediated by ERK1/2 and JunD activity, being orchestrated by a G-dependent mechanism. At a later stage of myogenesis, scaffolding proteins β-arrestin 1 and 2 were essential for the activation of cell cycle exit and differentiation through the transactivation of the epidermal growth factor receptor (EGFR). Upon obestatin stimulus, β-arrestins are recruited to the membrane, where they functionally interact with GPR39 leading to Src activation and signalplex formation to EGFR transactivation by matrix metalloproteinases. This signalplex regulated the mitotic arrest by p21 and p57 expression and the mid- to late stages of differentiation through JNK/c-Jun, CAMKII, Akt and p38 pathways. This finding not only provides the first functional activity for β-arrestins in myogenesis but also identify potential targets for therapeutic approaches by triggering specific signaling arms of the GPR39 signaling involved in myogenesis.
Collapse
Affiliation(s)
- Icía Santos-Zas
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Uxía Gurriarán-Rodríguez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Canada
| | - Tania Cid-Díaz
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Gabriela Figueroa
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Jessica González-Sánchez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Mónica Bouzo-Lorenzo
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Carlos S Mosteiro
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - José Señarís
- Servicio de Cirugía Ortopédica y Traumatología, CHUS, SERGAS, Santiago de Compostela, Spain
| | - Felipe F Casanueva
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
- Departamento de Medicina, USC, Santiago de Compostela, Spain
| | - Xesús Casabiell
- Departamento de Fisiología, USC, Santiago de Compostela, Spain
| | - Rosalía Gallego
- Departamento de Ciencias Morfológicas, USC, Santiago de Compostela, Spain
| | - Yolanda Pazos
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain
| | - Vincent Mouly
- Institut de Myologie, INSERM, and Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Jesús P Camiña
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Santiago de Compostela, Spain.
| |
Collapse
|
113
|
Human myoblast transplantation in mice infarcted heart alters the expression profile of cardiac genes associated with left ventricle remodeling. Int J Cardiol 2016; 202:710-21. [DOI: 10.1016/j.ijcard.2015.09.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/24/2015] [Accepted: 09/27/2015] [Indexed: 01/17/2023]
|
114
|
Beaudry M, Hidalgo M, Launay T, Bello V, Darribère T. Regulation of myogenesis by environmental hypoxia. J Cell Sci 2016; 129:2887-96. [DOI: 10.1242/jcs.188904] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
In aerobic organisms, oxygen is a critical factor for tissue and organ morphogenesis from embryonic development throughout the adult life. It regulates various intracellular pathways involved in cellular metabolism, proliferation, cell survival and fate. Organisms or tissues rapidly respond to changes in oxygen availability by activating complex signalling networks, which culminate in the control of mRNA translation and/or gene expression. This Commentary presents the effects of hypoxia during embryonic development, myoblasts and satellite cell proliferation and differentiation in vertebrates. We also outline the relationship between Notch, Wnt and growth factor signalling pathways, as well as the post-transcriptional regulation of myogenesis under conditions of hypoxia.
Collapse
Affiliation(s)
- Michèle Beaudry
- Université Paris13 Sorbonne Paris Cité, EA2363, UFR-SMBH, Laboratoire Hypoxie et poumons, Bobigny 93017, Cedex, France
| | - Magdalena Hidalgo
- Université Paris13 Sorbonne Paris Cité, EA2363, UFR-SMBH, Laboratoire Hypoxie et poumons, Bobigny 93017, Cedex, France
- UPMC Sorbonne Universités (Université Pierre et Marie Curie), UMR CNRS 7622, Laboratoire de Biologie du Développement, Paris 75252, Cedex 05, France
| | - Thierry Launay
- Université Paris-Descartes Sorbonne Paris cité, 75015 Paris, France
- Université d’Evry, Unité de Biologie Intégrative Appliquée à l’Exercice EA 7372, 9100 Evry, France
| | - Valérie Bello
- UPMC Sorbonne Universités (Université Pierre et Marie Curie), UMR CNRS 7622, Laboratoire de Biologie du Développement, Paris 75252, Cedex 05, France
| | - Thierry Darribère
- UPMC Sorbonne Universités (Université Pierre et Marie Curie), UMR CNRS 7622, Laboratoire de Biologie du Développement, Paris 75252, Cedex 05, France
| |
Collapse
|
115
|
Hindi SM, Kumar A. TRAF6 regulates satellite stem cell self-renewal and function during regenerative myogenesis. J Clin Invest 2015; 126:151-68. [PMID: 26619121 DOI: 10.1172/jci81655] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/16/2015] [Indexed: 12/29/2022] Open
Abstract
Satellite cells are a stem cell population within adult muscle and are responsible for myofiber regeneration upon injury. Satellite cell dysfunction has been shown to underlie the loss of skeletal muscle mass in many acquired and genetic muscle disorders. The transcription factor paired box-protein-7 (PAX7) is indispensable for supplementing the reservoir of satellite cells and driving regeneration in normal and diseased muscle. TNF receptor-associated factor 6 (TRAF6) is an adaptor protein and an E3 ubiquitin ligase that mediates the activation of multiple cell signaling pathways in a context-dependent manner. Here, we demonstrated that TRAF6-mediated signaling is critical for homeostasis of satellite cells and their function during regenerative myogenesis. Selective deletion of Traf6 in satellite cells of adult mice led to profound muscle regeneration defects and dramatically reduced levels of PAX7 and late myogenesis markers. TRAF6 was required for the activation of MAPKs ERK1/2 and JNK1/2, which in turn activated the transcription factor c-JUN, which binds the Pax7 promoter and augments Pax7 expression. Moreover, TRAF6/c-JUN signaling repressed the levels of the microRNAs miR-1 and miR-206, which promote differentiation, to maintain PAX7 levels in satellite cells. We also determined that satellite cell-specific deletion of Traf6 exaggerates the dystrophic phenotype in the mdx (a mouse model of Duchenne muscular dystrophy) mouse by blunting the regeneration of injured myofibers. Collectively, our study reveals an essential role for TRAF6 in satellite stem cell function.
Collapse
|
116
|
Wang C, Liu W, Liu Z, Chen L, Liu X, Kuang S. Hypoxia Inhibits Myogenic Differentiation through p53 Protein-dependent Induction of Bhlhe40 Protein. J Biol Chem 2015; 290:29707-16. [PMID: 26468276 DOI: 10.1074/jbc.m115.688671] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 11/06/2022] Open
Abstract
Satellite cells are muscle-resident stem cells capable of self-renewal and differentiation to repair injured muscles. However, muscle injury often leads to an ischemic hypoxia environment that impedes satellite cell differentiation and reduces the efficiency of muscle regeneration. Here we performed microarray analyses and identified the basic helix-loop-helix family transcription factor Bhlhe40 as a candidate mediator of the myogenic inhibitory effect of hypoxia. Bhlhe40 is strongly induced by hypoxia in satellite cell-derived primary myoblasts. Overexpression of Bhlhe40 inhibits Myog expression and mimics the effect of hypoxia on myogenesis. Inhibition of Bhlhe40, conversely, up-regulates Myog expression and promotes myogenic differentiation. Importantly, Bhlhe40 knockdown rescues myogenic differentiation under hypoxia. Mechanistically, Bhlhe40 binds to the proximal E-boxes of the Myog promoter and reduces the binding affinity and transcriptional activity of MyoD on Myog. Interestingly, hypoxia induces Bhlhe40 expression independent of HIF1α but through a novel p53-dependent signaling pathway. Our study establishes a crucial role of Bhlhe40 in mediating the repressive effect of hypoxia on myogenic differentiation and suggests that inhibition of Bhlhe40 or p53 may facilitate muscle regeneration after ischemic injuries.
Collapse
Affiliation(s)
- Chao Wang
- From the Departments of Animal Science and
| | - Weiyi Liu
- From the Departments of Animal Science and
| | - Zuojun Liu
- From the Departments of Animal Science and
| | | | - Xiaoqi Liu
- Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47906
| | - Shihuan Kuang
- From the Departments of Animal Science and Center for Cancer Research, Purdue University, West Lafayette, Indiana 47906
| |
Collapse
|
117
|
Shan T, Zhang P, Liang X, Bi P, Yue F, Kuang S. Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis. Stem Cells 2015; 32:2893-907. [PMID: 25069613 DOI: 10.1002/stem.1788] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/14/2014] [Accepted: 06/19/2014] [Indexed: 12/17/2022]
Abstract
Serine/threonine kinase 11, commonly known as liver kinase b1 (Lkb1), is a tumor suppressor that regulates cellular energy metabolism and stem cell function. Satellite cells are skeletal muscle resident stem cells that maintain postnatal muscle growth and repair. Here, we used MyoD(Cre)/Lkb1(flox/flox) mice (called MyoD-Lkb1) to delete Lkb1 in embryonic myogenic progenitors and their descendant satellite cells and myofibers. The MyoD-Lkb1 mice exhibit a severe myopathy characterized by central nucleated myofibers, reduced mobility, growth retardation, and premature death. Although tamoxifen-induced postnatal deletion of Lkb1 in satellite cells using Pax7(CreER) mice bypasses the developmental defects and early death, Lkb1 null satellite cells lose their regenerative capacity cell-autonomously. Strikingly, Lkb1 null satellite cells fail to maintain quiescence in noninjured resting muscles and exhibit accelerated proliferation but reduced differentiation kinetics. At the molecular level, Lkb1 limits satellite cell proliferation through the canonical AMP-activated protein kinase/mammalian target of rapamycin pathway, but facilitates differentiation through phosphorylation of GSK-3β, a key component of the WNT signaling pathway. Together, these results establish a central role of Lkb1 in muscle stem cell homeostasis, muscle development, and regeneration.
Collapse
Affiliation(s)
- Tizhong Shan
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | |
Collapse
|
118
|
Bustos F, de la Vega E, Cabezas F, Thompson J, Cornelison DDW, Olwin BB, Yates JR, Olguín HC. NEDD4 Regulates PAX7 Levels Promoting Activation of the Differentiation Program in Skeletal Muscle Precursors. Stem Cells 2015; 33:3138-51. [PMID: 26304770 DOI: 10.1002/stem.2125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023]
Abstract
The transcription factor Pax7 regulates skeletal muscle stem cell (satellite cells) specification and maintenance through various mechanisms, including repressing the activity of the muscle regulatory factor MyoD. Hence, Pax7-to-MyoD protein ratios can determine maintenance of the committed-undifferentiated state or activation of the differentiation program. Pax7 expression decreases sharply in differentiating myoblasts but is maintained in cells (re)acquiring quiescence, yet the mechanisms regulating Pax7 levels based on differentiation status are not well understood. Here we show that Pax7 levels are directly regulated by the ubiquitin-ligase Nedd4. Our results indicate that Nedd4 is expressed in quiescent and activated satellite cells, that Nedd4 and Pax7 physically interact during early muscle differentiation-correlating with Pax7 ubiquitination and decline-and that Nedd4 loss of function prevented this effect. Furthermore, even transient nuclear accumulation of Nedd4 induced a drop in Pax7 levels and precocious muscle differentiation. Consequently, we propose that Nedd4 functions as a novel Pax7 regulator, which activity is temporally and spatially controlled to modulate the Pax7 protein levels and therefore satellite cell fate.
Collapse
Affiliation(s)
- Francisco Bustos
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo de la Vega
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Cabezas
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - James Thompson
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - D D W Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Bradley B Olwin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Hugo C Olguín
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
119
|
Majmundar AJ, Lee DSM, Skuli N, Mesquita RC, Kim MN, Yodh AG, Nguyen-McCarty M, Li B, Simon MC. HIF modulation of Wnt signaling regulates skeletal myogenesis in vivo. Development 2015; 142:2405-12. [PMID: 26153230 DOI: 10.1242/dev.123026] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/01/2015] [Indexed: 12/19/2022]
Abstract
Deeper insight into the molecular pathways that orchestrate skeletal myogenesis should enhance our understanding of, and ability to treat, human skeletal muscle disease. It is now widely appreciated that nutrients, such as molecular oxygen (O2), modulate skeletal muscle formation. During early stages of development and regeneration, skeletal muscle progenitors reside in low O2 environments before local blood vessels and differentiated muscle form. Moreover, low O2 availability (hypoxia) impedes progenitor-dependent myogenesis in vitro through multiple mechanisms, including activation of hypoxia inducible factor 1α (HIF1α). However, whether HIF1α regulates skeletal myogenesis in vivo is not known. Here, we explored the role of HIF1α during murine skeletal muscle development and regeneration. Our results demonstrate that HIF1α is dispensable during embryonic and fetal myogenesis. However, HIF1α negatively regulates adult muscle regeneration after ischemic injury, implying that it coordinates adult myogenesis with nutrient availability in vivo. Analyses of Hif1a mutant muscle and Hif1a-depleted muscle progenitors further suggest that HIF1α represses myogenesis through inhibition of canonical Wnt signaling. Our data provide the first evidence that HIF1α regulates skeletal myogenesis in vivo and establish a novel link between HIF and Wnt signaling in this context.
Collapse
Affiliation(s)
- Amar J Majmundar
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David S M Lee
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA Howard Hughes Medical Institute, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Nicolas Skuli
- Institut National de la Santé et de la Recherche Médicale Unité 1037, Institut Claudius Regaud, Toulouse 31052, France
| | - Rickson C Mesquita
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meeri N Kim
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arjun G Yodh
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle Nguyen-McCarty
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bo Li
- Program in Cancer Biology, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA Howard Hughes Medical Institute, 421 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
120
|
Dumont NA, Wang YX, Rudnicki MA. Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 2015; 142:1572-81. [PMID: 25922523 PMCID: PMC4419274 DOI: 10.1242/dev.114223] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Muscle stem cells, termed satellite cells, are crucial for skeletal muscle growth and regeneration. In healthy adult muscle, satellite cells are quiescent but poised for activation. During muscle regeneration, activated satellite cells transiently re-enter the cell cycle to proliferate and subsequently exit the cell cycle to differentiate or self-renew. Recent studies have demonstrated that satellite cells are heterogeneous and that subpopulations of satellite stem cells are able to perform asymmetric divisions to generate myogenic progenitors or symmetric divisions to expand the satellite cell pool. Thus, a complex balance between extrinsic cues and intrinsic regulatory mechanisms is needed to tightly control satellite cell cycle progression and cell fate determination. Defects in satellite cell regulation or in their niche, as observed in degenerative conditions such as aging, can impair muscle regeneration. Here, we review recent discoveries of the intrinsic and extrinsic factors that regulate satellite cell behaviour in regenerating and degenerating muscles. Summary: This Review discusses how satellite stem cell behaviour is regulated during regeneration and degeneration by a complex balance between extrinsic cues and intrinsic regulatory mechanisms.
Collapse
Affiliation(s)
- Nicolas A Dumont
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - Yu Xin Wang
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
121
|
Ravaud C, Esteve D, Villageois P, Bouloumie A, Dani C, Ladoux A. IER3 Promotes Expansion of Adipose Progenitor Cells in Response to Changes in Distinct Microenvironmental Effectors. Stem Cells 2015; 33:2564-73. [PMID: 25827082 DOI: 10.1002/stem.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/19/2015] [Indexed: 12/23/2022]
Abstract
Adipose tissue expansion is well-orchestrated to fulfill the energy demand. It results from adipocyte hypertrophy and hyperplasia due to adipose progenitor cell (APC) expansion and differentiation. Chronic low grade inflammation and hypoxia take place in obese adipose tissue microenvironment. Both of these events were shown to impact the APC pool by promoting increased self-renewal along with a decrease in the APC differentiation potential. However, no common target has been identified so far. Here we show that the immediate early response 3 gene (IER3) is preferentially expressed in APCs and is essential for APC proliferation and self-renewal. Experiments based on RNA interference revealed that impairing IER3 expression altered cell proliferation through ERK1/2 phosphorylation and clonogenicity. IER3 expression was induced by Activin A, which plays a crucial role in adipocyte differentiation as well as by a decrease in oxygen tension through HIF1-induced transcriptional activation. Interestingly, high levels of IER3 were detected in native APCs (CD34+/CD31- cells) isolated from obese patients and conditioned media from obese adipose tissue-macrophages stimulated its expression. Overall, these results indicate that IER3 is a key player in expanding the pool of APC while highlighting the role of distinct effectors found in an obese microenvironment in this process.
Collapse
Affiliation(s)
- Christophe Ravaud
- CNRS UMR 7277, Nice, France.,University of Nice-Sophia Antipolis, Nice, France.,INSERM UMR 1091, iBV, Nice, France
| | - David Esteve
- Team 1, INSERM UMR1048, Institute of Cardiovascular and Metabolic Diseases, University of Toulouse III Paul Sabatier, Toulouse, France
| | - Phi Villageois
- CNRS UMR 7277, Nice, France.,University of Nice-Sophia Antipolis, Nice, France.,INSERM UMR 1091, iBV, Nice, France
| | - Anne Bouloumie
- Team 1, INSERM UMR1048, Institute of Cardiovascular and Metabolic Diseases, University of Toulouse III Paul Sabatier, Toulouse, France
| | - Christian Dani
- CNRS UMR 7277, Nice, France.,University of Nice-Sophia Antipolis, Nice, France.,INSERM UMR 1091, iBV, Nice, France
| | - Annie Ladoux
- CNRS UMR 7277, Nice, France.,University of Nice-Sophia Antipolis, Nice, France.,INSERM UMR 1091, iBV, Nice, France
| |
Collapse
|
122
|
McCullagh KJA, Perlingeiro RCR. Coaxing stem cells for skeletal muscle repair. Adv Drug Deliv Rev 2015; 84:198-207. [PMID: 25049085 PMCID: PMC4295015 DOI: 10.1016/j.addr.2014.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023]
Abstract
Skeletal muscle has a tremendous ability to regenerate, attributed to a well-defined population of muscle stem cells called satellite cells. However, this ability to regenerate diminishes with age and can also be dramatically affected by multiple types of muscle diseases, or injury. Extrinsic and/or intrinsic defects in the regulation of satellite cells are considered to be major determinants for the diminished regenerative capacity. Maintenance and replenishment of the satellite cell pool is one focus for muscle regenerative medicine, which will be discussed. There are other sources of progenitor cells with myogenic capacity, which may also support skeletal muscle repair. However, all of these myogenic cell populations have inherent difficulties and challenges in maintaining or coaxing their derivation for therapeutic purpose. This review will highlight recent reported attributes of these cells and new bioengineering approaches to creating a supply of myogenic stem cells or implants applicable for acute and/or chronic muscle disorders.
Collapse
Affiliation(s)
- Karl J A McCullagh
- Department of Physiology, School of Medicine and Regenerative Medicine Institute, National University of Ireland Galway, Ireland
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
123
|
Effects of Transient Hypoxia versus Prolonged Hypoxia on Satellite Cell Proliferation and Differentiation In Vivo. Stem Cells Int 2015; 2015:961307. [PMID: 25788948 PMCID: PMC4348605 DOI: 10.1155/2015/961307] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/22/2015] [Indexed: 12/17/2022] Open
Abstract
The microenvironment of the injury site can have profound effects on wound healing. Muscle injury results in ischemia leading to short-term local hypoxia, but there are conflicting reports on the role of hypoxia on the myogenic program in vivo and in vitro. In our rat model of mitochondrial restoration (MR), temporary upregulation of mitochondrial activity by a cocktail of organelle-encoded RNAs results in satellite cell proliferation and initiation of myogenesis. We now report that MR leads to a transient hypoxic response in situ. Inhibition of hypoxia by lowering mitochondrial O2 consumption, either by respiratory electron transport inhibitors, or by NO-mediated inhibition of O2 binding to cytochrome c oxidase, resulted in exacerbation of inflammation. Lentivirus-mediated knockdown of hypoxia-inducible factor 1α (HIF1α) or of Notch signaling components had a similar effect, and pharmacologic inhibition of HIF or Notch reduced the number of proliferating Pax7+ cells. In contrast, a prolonged hypoxic response induced either by uncoupling of respiration from oxidative phosphorylation or through HIF stabilization by dimethyloxalylglycine (DMOG) had an immediate anti-inflammatory effect. Although significant satellite cell proliferation occurred in presence of DMOG, expression of differentiation markers was affected. These results emphasize the importance of transient hypoxia as opposed to prolonged hypoxia for myogenesis.
Collapse
|
124
|
Mu X, Tang Y, Lu A, Takayama K, Usas A, Wang B, Weiss K, Huard J. The role of Notch signaling in muscle progenitor cell depletion and the rapid onset of histopathology in muscular dystrophy. Hum Mol Genet 2015; 24:2923-37. [PMID: 25678553 DOI: 10.1093/hmg/ddv055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Although it has been speculated that stem cell depletion plays a role in the rapid progression of the muscle histopathology associated with Duchenne Muscular Dystrophy (DMD), the molecular and cellular mechanisms responsible for stem cell depletion remain poorly understood. The rapid depletion of muscle stem cells has not been observed in the dystrophin-deficient model of DMD (mdx mouse), which may explain the relatively mild dystrophic phenotype observed in this animal model. In contrast, we have observed a rapid occurrence of stem cell depletion in the dystrophin/utrophin double knockout (dKO) mouse model, which exhibits histopathological features that more closely recapitulate the phenotype observed in DMD patients compared with the mdx mouse. Notch signaling has been found to be a key regulator of stem cell self-renewal and myogenesis in normal skeletal muscle; however, little is known about the role that Notch plays in the development of the dystrophic histopathology associated with DMD. Our results revealed an over-activation of Notch in the skeletal muscles of dKO mice, which correlated with sustained inflammation, impaired muscle regeneration and the rapid depletion and senescence of the muscle progenitor cells (MPCs, i.e. Pax7+ cells). Consequently, the repression of Notch in the skeletal muscle of dKO mice delayed/reduced the depletion and senescence of MPCs, and restored the myogenesis capacity while reducing inflammation and fibrosis. We suggest that the down-regulation of Notch could represent a viable approach to reduce the dystrophic histopathologies associated with DMD.
Collapse
Affiliation(s)
- Xiaodong Mu
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ying Tang
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Aiping Lu
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Koji Takayama
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Arvydas Usas
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bing Wang
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Kurt Weiss
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Johnny Huard
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
125
|
Ryall JG, Dell'Orso S, Derfoul A, Juan A, Zare H, Feng X, Clermont D, Koulnis M, Gutierrez-Cruz G, Fulco M, Sartorelli V. The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 2015; 16:171-83. [PMID: 25600643 DOI: 10.1016/j.stem.2014.12.004] [Citation(s) in RCA: 409] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 08/27/2014] [Accepted: 12/16/2014] [Indexed: 01/30/2023]
Abstract
Stem cells undergo a shift in metabolic substrate utilization during specification and/or differentiation, a process that has been termed metabolic reprogramming. Here, we report that during the transition from quiescence to proliferation, skeletal muscle stem cells experience a metabolic switch from fatty acid oxidation to glycolysis. This reprogramming of cellular metabolism decreases intracellular NAD(+) levels and the activity of the histone deacetylase SIRT1, leading to elevated H4K16 acetylation and activation of muscle gene transcription. Selective genetic ablation of the SIRT1 deacetylase domain in skeletal muscle results in increased H4K16 acetylation and deregulated activation of the myogenic program in SCs. Moreover, mice with muscle-specific inactivation of the SIRT1 deacetylase domain display reduced myofiber size, impaired muscle regeneration, and derepression of muscle developmental genes. Overall, these findings reveal how metabolic cues can be mechanistically translated into epigenetic modifications that regulate skeletal muscle stem cell biology.
Collapse
Affiliation(s)
- James G Ryall
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Stefania Dell'Orso
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Assia Derfoul
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Aster Juan
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Hossein Zare
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Xuesong Feng
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Daphney Clermont
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Miroslav Koulnis
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Gustavo Gutierrez-Cruz
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Marcella Fulco
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA.
| |
Collapse
|
126
|
Greco S, Gaetano C, Martelli F. HypoxamiR regulation and function in ischemic cardiovascular diseases. Antioxid Redox Signal 2014; 21:1202-19. [PMID: 24053126 PMCID: PMC4142792 DOI: 10.1089/ars.2013.5403] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE MicroRNAs (miRNAs) are deregulated and play a causal role in numerous cardiovascular diseases, including myocardial infarction, coronary artery disease, hypertension, heart failure, stroke, peripheral artery disease, kidney ischemia-reperfusion. RECENT ADVANCES One crucial component of ischemic cardiovascular diseases is represented by hypoxia. Indeed, hypoxia is a powerful stimulus regulating the expression of a specific subset of miRNAs, named hypoxia-induced miRNAs (hypoxamiR). These miRNAs are fundamental regulators of the cell responses to decreased oxygen tension. Certain hypoxamiRs seem to have a particularly pervasive role, such as miR-210 that is virtually induced in all ischemic diseases tested so far. However, its specific function may change according to the physiopathological context. CRITICAL ISSUES The discovery of HypoxamiR dates back 6 years. Thus, despite a rapid growth in knowledge and attention, a deeper insight of the molecular mechanisms underpinning hypoxamiR regulation and function is needed. FUTURE DIRECTIONS An extended understanding of the function of hypoxamiR in gene regulatory networks associated with cardiovascular diseases will allow the identification of novel molecular mechanisms of disease and indicate the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Simona Greco
- 1 Molecular Cardiology Laboratory , IRCCS-Policlinico San Donato, Milan, Italy
| | | | | |
Collapse
|
127
|
Marg A, Escobar H, Gloy S, Kufeld M, Zacher J, Spuler A, Birchmeier C, Izsvák Z, Spuler S. Human satellite cells have regenerative capacity and are genetically manipulable. J Clin Invest 2014; 124:4257-65. [PMID: 25157816 DOI: 10.1172/jci63992] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/10/2014] [Indexed: 12/15/2022] Open
Abstract
Muscle satellite cells promote regeneration and could potentially improve gene delivery for treating muscular dystrophies. Human satellite cells are scarce; therefore, clinical investigation has been limited. We obtained muscle fiber fragments from skeletal muscle biopsy specimens from adult donors aged 20 to 80 years. Fiber fragments were manually dissected, cultured, and evaluated for expression of myogenesis regulator PAX7. PAX7+ satellite cells were activated and proliferated efficiently in culture. Independent of donor age, as few as 2 to 4 PAX7+ satellite cells gave rise to several thousand myoblasts. Transplantation of human muscle fiber fragments into irradiated muscle of immunodeficient mice resulted in robust engraftment, muscle regeneration, and proper homing of human PAX7+ satellite cells to the stem cell niche. Further, we determined that subjecting the human muscle fiber fragments to hypothermic treatment successfully enriches the cultures for PAX7+ cells and improves the efficacy of the transplantation and muscle regeneration. Finally, we successfully altered gene expression in cultured human PAX7+ satellite cells with Sleeping Beauty transposon-mediated nonviral gene transfer, highlighting the potential of this system for use in gene therapy. Together, these results demonstrate the ability to culture and manipulate a rare population of human tissue-specific stem cells and suggest that these PAX7+ satellite cells have potential to restore gene function in muscular dystrophies.
Collapse
|
128
|
Yennek S, Burute M, Théry M, Tajbakhsh S. Cell adhesion geometry regulates non-random DNA segregation and asymmetric cell fates in mouse skeletal muscle stem cells. Cell Rep 2014; 7:961-70. [PMID: 24836002 DOI: 10.1016/j.celrep.2014.04.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/24/2014] [Accepted: 04/09/2014] [Indexed: 01/11/2023] Open
Abstract
Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole position also promote non-random DNA segregation. To mimic the asymmetric divisions seen in the mouse skeletal stem cell niche, we used micropatterns coated with extracellular matrix in asymmetric and symmetric motifs. We show that the frequency of non-random DNA segregation and transcription factor asymmetry correlates with the shape of the motif and that these events can be uncoupled. Furthermore, regulation of DNA segregation by cell adhesion occurs within a defined time interval. Thus, cell adhesion cues have a major impact on determining both DNA segregation patterns and cell fates.
Collapse
Affiliation(s)
- Siham Yennek
- Institut Pasteur, Stem Cells & Development, Department of Developmental & Stem Cell Biology, CNRS URA 2578, 25 rue du Dr. Roux, Paris F-75015, France; Sorbonne Universités, UPMC, University of Paris 06, IFD-ED 515, 4 Place Jussieu, Paris 75252, France
| | - Mithila Burute
- Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA/UJF/INRA/CNRS, 17 rue des Martyrs, Grenoble 38054, France; CYTOO SA, 7 Parvis Louis Néel, BP50, Grenoble 38040, France; Hôpital Saint Louis, Institut Universitaire d'Hematologie, U1160, INSERM/AP-HP/Université Paris Diderot, 1 Avenue Claude Vellefaux, Paris 75010, France
| | - Manuel Théry
- Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA/UJF/INRA/CNRS, 17 rue des Martyrs, Grenoble 38054, France; Hôpital Saint Louis, Institut Universitaire d'Hematologie, U1160, INSERM/AP-HP/Université Paris Diderot, 1 Avenue Claude Vellefaux, Paris 75010, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells & Development, Department of Developmental & Stem Cell Biology, CNRS URA 2578, 25 rue du Dr. Roux, Paris F-75015, France.
| |
Collapse
|
129
|
Cieśla M, Dulak J, Józkowicz A. MicroRNAs and epigenetic mechanisms of rhabdomyosarcoma development. Int J Biochem Cell Biol 2014; 53:482-92. [PMID: 24831881 DOI: 10.1016/j.biocel.2014.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/04/2014] [Accepted: 05/05/2014] [Indexed: 01/10/2023]
Abstract
Rhabdomyosarcoma is the most common type of soft tissue sarcoma in children. Two main subtypes of rhabdomyosarcoma with different molecular pattern and distinct clinical behaviour may be identified - embryonal and alveolar rhabdomyosarcoma. All types of rhabdomyosarcoma are believed to be of myogenic origin as they express high levels of myogenesis-related factors. They all, however, fail to undergo a terminal differentiation which results in tumour formation. In the aberrant regulation of myogenesis in rhabdomyosarcoma, microRNAs and epigenetic factors are particularly involved. Indeed, these mediators seem to be even more significant for the development of rhabdomyosarcoma than canonical myogenic transcription factors like MyoD, a master regulatory switch for myogenesis. Therefore, in this review we focus on the regulation of rhabdomyosarcoma progression by microRNAs, and especially on microRNAs of the myo-miRNAs family (miR-1, -133a/b and -206), other well-known myogenic regulators like miR-29, and on microRNAs recently recognized to play a role in the differentiation of rhabdomyosarcoma, such as miR-450b-5p or miR-203. We also review changes in epigenetic modifiers associated with rhabdomyosarcoma, namely histone deacetylases and methyltransferases, especially from the Polycomp Group, like Yin Yang1 and Enhancer of Zeste Homolog2. Finally, we summarize how the functioning of these molecules can be affected by oxidative stress and how antioxidative enzymes can influence the development of this tumour. This article is part of a Directed Issue entitled: Rare Cancers.
Collapse
Affiliation(s)
- Maciej Cieśla
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387 Krakow, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
130
|
Benedini-Elias PCO, Morgan MC, Cornachione AS, Martinez EZ, Mattiello-Sverzut AC. Post-immobilization eccentric training promotes greater hypertrophic and angiogenic responses than passive stretching in muscles of weanling rats. Acta Histochem 2014; 116:503-13. [PMID: 24304683 DOI: 10.1016/j.acthis.2013.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
Abstract
This study investigated how different types of remobilization after hind limb immobilization, eccentric exercise and passive static stretching, influenced the adaptive responses of muscles with similar function and fascicle size, but differing in their contractile characteristics. Female Wistar weanling rats (21 days old) were divided into 8 groups: immobilized for 10 days, maintaining the ankle in maximum plantar flexion; immobilized and submitted to eccentric training for 10 or 21 days on a declining treadmill for 40min; immobilized and submitted to passive stretching for 10 or 21 days for 40min by maintaining the ankle in maximum dorsiflexion; control of immobilized; and control of 10 or 21 days. The soleus and plantaris muscles were analyzed using fiber distribution, lesser diameter, capillary/fiber ratio, and morphology. Results showed that the immobilization reduced the diameter of all fiber types, caused changes in fiber distribution and decreased the number of transverse capillaries in both muscles. The recovery period of the soleus muscle is longer than that of the plantaris after detraining. Moreover, eccentric training induced greater hypertrophic and angiogenic responses than passive stretching, especially after 21 days of rehabilitation. Both techniques demonstrated positive effects for muscle rehabilitation with the eccentric exercise being more effective.
Collapse
|
131
|
Yu H, Waddell JN, Kuang S, Bidwell CA. Park7 expression influences myotube size and myosin expression in muscle. PLoS One 2014; 9:e92030. [PMID: 24637782 PMCID: PMC3956870 DOI: 10.1371/journal.pone.0092030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/18/2014] [Indexed: 01/16/2023] Open
Abstract
Callipyge sheep exhibit postnatal muscle hypertrophy due to the up-regulation of DLK1 and/or RTL1. The up-regulation of PARK7 was identified in hypertrophied muscles by microarray analysis and further validated by quantitative PCR. The expression of PARK7 in hypertrophied muscle of callipyge lambs was confirmed to be up-regulated at the protein level. PARK7 was previously identified to positively regulate PI3K/AKT pathway by suppressing the phosphatase activity of PTEN in mouse fibroblasts. The purpose of this study was to investigate the effects of PARK7 in muscle growth and protein accretion in response to IGF1. Primary myoblasts isolated from Park7 (+/+) and Park7 (−/−) mice were used to examine the effect of differential expression of Park7. The Park7 (+/+) myotubes had significantly larger diameters and more total sarcomeric myosin expression than Park7 (−/−) myotubes. IGF1 treatment increased the mRNA abundance of Myh4, Myh7 and Myh8 between 20-40% in Park7 (+/+) myotubes relative to Park7 (−/−). The level of AKT phosphorylation was increased in Park7 (+/+) myotubes at all levels of IGF1 supplementation. After removal of IGF1, the Park7 (+/+) myotubes maintained higher AKT phosphorylation through 3 hours. PARK7 positively regulates the PI3K/AKT pathway by inhibition of PTEN phosphatase activity in skeletal muscle. The increased PARK7 expression can increase protein synthesis and result in myotube hypertrophy. These results support the hypothesis that elevated expression of PARK7 in callipyge muscle would increase levels of AKT activity to cause hypertrophy in response to the normal IGF1 signaling in rapidly growing lambs. Increasing expression of PARK7 could be a novel mechanism to increase protein accretion and muscle growth in livestock or help improve muscle mass with disease or aging.
Collapse
MESH Headings
- Animals
- Cell Size/drug effects
- Enzyme-Linked Immunosorbent Assay
- Genotype
- Hypertrophy
- Insulin-Like Growth Factor I/pharmacology
- Mice
- Mice, Inbred C57BL
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Myosins/genetics
- Myosins/metabolism
- Oncogene Proteins/deficiency
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- PTEN Phosphohydrolase/metabolism
- Peroxiredoxins
- Phosphorylation/drug effects
- Protein Deglycase DJ-1
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Sarcomeres/metabolism
- Sheep
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Hui Yu
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Jolena N. Waddell
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
| | - Christopher A. Bidwell
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
132
|
Bareja A, Holt JA, Luo G, Chang C, Lin J, Hinken AC, Freudenberg JM, Kraus WE, Evans WJ, Billin AN. Human and mouse skeletal muscle stem cells: convergent and divergent mechanisms of myogenesis. PLoS One 2014; 9:e90398. [PMID: 24587351 PMCID: PMC3938718 DOI: 10.1371/journal.pone.0090398] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/29/2014] [Indexed: 12/22/2022] Open
Abstract
Satellite cells are the chief contributor to skeletal muscle growth and regeneration. The study of mouse satellite cells has accelerated in recent years due to technical advancements in the isolation of these cells. The study of human satellite cells has lagged and thus little is known about how the biology of mouse and human satellite cells compare. We developed a flow cytometry-based method to prospectively isolate human skeletal muscle progenitors from the satellite cell pool using positive and negative selection markers. Results show that this pool is enriched in PAX7 expressing cells that possess robust myogenic potential including the ability to give rise to de novo muscle in vivo. We compared mouse and human satellite cells in culture and identify differences in the elaboration of the myogenic genetic program and in the sensitivity of the cells to cytokine stimulation. These results indicate that not all mechanisms regulating mouse satellite cell activation are conserved in human satellite cells and that such differences may impact the clinical translation of therapeutics validated in mouse models. Thus, the findings of this study are relevant to developing therapies to combat muscle disease.
Collapse
Affiliation(s)
- Akshay Bareja
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Jason A. Holt
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Guizhen Luo
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Calvin Chang
- Five Prime Therapeutics, Inc., South San Francisco, California, United States of America
| | - Junyu Lin
- Five Prime Therapeutics, Inc., South San Francisco, California, United States of America
| | - Aaron C. Hinken
- Five Prime Therapeutics, Inc., South San Francisco, California, United States of America
| | - Johannes M. Freudenberg
- Quantitative Sciences, Computational Biology, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - William E. Kraus
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - William J. Evans
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Andrew N. Billin
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
133
|
Abstract
In recent years, our views on how DNA and genes are organised and regulated have evolved significantly. One example is provided by reports that single DNA strands in the double helix could carry distinct forms of information. That chromatids carrying old and nascently replicated DNA strands are recognised by the mitotic machinery, then segregated in a concerted way to distinct daughter cells after cell division is remarkable. Notably, this phenomenon in several cases has been associated with the cell fate choice of resulting daughter cells. Here, we review the evidence for asymmetric or template DNA strand segregation in mammals with a focus on skeletal muscle.
Collapse
Affiliation(s)
- Brendan Evano
- Institut Pasteur, Stem Cells & Development, Department of Developmental & Stem Cell Biology, CNRS URA 2578, 25 rue du Dr. Roux, Paris 75015, France
| | | |
Collapse
|
134
|
Motohashi N, Asakura A. Muscle satellite cell heterogeneity and self-renewal. Front Cell Dev Biol 2014; 2:1. [PMID: 25364710 PMCID: PMC4206996 DOI: 10.3389/fcell.2014.00001] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/14/2014] [Indexed: 01/17/2023] Open
Abstract
Adult skeletal muscle possesses extraordinary regeneration capacities. After muscle injury or exercise, large numbers of newly formed muscle fibers are generated within a week as a result of expansion and differentiation of a self-renewing pool of muscle stem cells termed muscle satellite cells. Normally, satellite cells are mitotically quiescent and reside beneath the basal lamina of muscle fibers. Upon regeneration, satellite cells are activated, and give rise to daughter myogenic precursor cells. After several rounds of proliferation, these myogenic precursor cells contribute to the formation of new muscle fibers. During cell division, a minor population of myogenic precursor cells returns to quiescent satellite cells as a self-renewal process. Currently, accumulating evidence has revealed the essential roles of satellite cells in muscle regeneration and the regulatory mechanisms, while it still remains to be elucidated how satellite cell self-renewal is molecularly regulated and how satellite cells are important in aging and diseased muscle. The number of satellite cells is decreased due to the changing niche during ageing, resulting in attenuation of muscle regeneration capacity. Additionally, in Duchenne muscular dystrophy (DMD) patients, the loss of satellite cell regenerative capacity and decreased satellite cell number due to continuous needs for satellite cells lead to progressive muscle weakness with chronic degeneration. Thus, it is necessary to replenish muscle satellite cells continuously. This review outlines recent findings regarding satellite cell heterogeneity, asymmetric division and molecular mechanisms in satellite cell self-renewal which is crucial for maintenance of satellite cells as a muscle stem cell pool throughout life. In addition, we discuss roles in the stem cell niche for satellite cell maintenance, as well as related cell therapies for approaching treatment of DMD.
Collapse
Affiliation(s)
- Norio Motohashi
- Department of Neurology, Paul and Sheila Wellstone Muscular Dystrophy Center, Stem Cell Institute, University of Minnesota Medical School Minneapolis, MN, USA
| | - Atsushi Asakura
- Department of Neurology, Paul and Sheila Wellstone Muscular Dystrophy Center, Stem Cell Institute, University of Minnesota Medical School Minneapolis, MN, USA
| |
Collapse
|
135
|
Jung DW, Kim WH, Williams DR. Reprogram or reboot: small molecule approaches for the production of induced pluripotent stem cells and direct cell reprogramming. ACS Chem Biol 2014; 9:80-95. [PMID: 24245936 DOI: 10.1021/cb400754f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell transplantation is a potential therapy for regenerative medicine, which aims to restore tissues damaged by trauma, aging, and diseases. Since its conception in the late 1990s, chemical biology has provided powerful and diverse small molecule tools for modulating stem cell function. Embryonic stem cells could be an ideal source for transplantation, but ethical concerns restrict their development for cell therapy. The seminal advance of induced pluripotent stem cell (iPSC) technology provided an attractive alternative to human embryonic stem cells. However, iPSCs are not yet considered an ideal stem cell source, due to limitations associated with the reprogramming process and their potential tumorigenic behavior. This is an area of research where chemical biology has made a significant contribution to facilitate the efficient production of high quality iPSCs and elucidate the biological mechanisms governing their phenotype. In this review, we summarize these advances and discuss the latest progress in developing small molecule modulators. Moreover, we also review a new trend in stem cell research, which is the direct reprogramming of readily accessible cell types into clinically useful cells, such as neurons and cardiac cells. This is a research area where chemical biology is making a pivotal contribution and illustrates the many advantages of using small molecules in stem cell research.
Collapse
Affiliation(s)
- Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712, Republic of Korea
| | - Woong-Hee Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712, Republic of Korea
| | - Darren Reece Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712, Republic of Korea
| |
Collapse
|
136
|
Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta Gen Subj 2014; 1840:2506-19. [PMID: 24418517 PMCID: PMC4081568 DOI: 10.1016/j.bbagen.2014.01.010] [Citation(s) in RCA: 897] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 02/08/2023]
Abstract
Background Extracellular matrix (ECM) is a dynamic and complex environment characterized by biophysical, mechanical and biochemical properties specific for each tissue and able to regulate cell behavior. Stem cells have a key role in the maintenance and regeneration of tissues and they are located in a specific microenvironment, defined as niche. Scope of review We overview the progresses that have been made in elucidating stem cell niches and discuss the mechanisms by which ECM affects stem cell behavior. We also summarize the current tools and experimental models for studying ECM–stem cell interactions. Major conclusions ECM represents an essential player in stem cell niche, since it can directly or indirectly modulate the maintenance, proliferation, self-renewal and differentiation of stem cells. Several ECM molecules play regulatory functions for different types of stem cells, and based on its molecular composition the ECM can be deposited and finely tuned for providing the most appropriate niche for stem cells in the various tissues. Engineered biomaterials able to mimic the in vivo characteristics of stem cell niche provide suitable in vitro tools for dissecting the different roles exerted by the ECM and its molecular components on stem cell behavior. General significance ECM is a key component of stem cell niches and is involved in various aspects of stem cell behavior, thus having a major impact on tissue homeostasis and regeneration under physiological and pathological conditions. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. Stem cells have a key role in the maintenance and regeneration of tissues. The extracellular matrix is a critical regulator of stem cell function. Stem cells reside in a dynamic and specialized microenvironment denoted as niche. The extracellular matrix represents an essential component of stem cell niches. Bioengineered niches can be used for investigating stem cell–matrix interactions.
Collapse
Affiliation(s)
- Francesca Gattazzo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Anna Urciuolo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy.
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
137
|
Ogura Y, Mishra V, Hindi SM, Kuang S, Kumar A. Proinflammatory cytokine tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) suppresses satellite cell self-renewal through inversely modulating Notch and NF-κB signaling pathways. J Biol Chem 2013; 288:35159-69. [PMID: 24151074 PMCID: PMC3853267 DOI: 10.1074/jbc.m113.517300] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/15/2013] [Indexed: 01/06/2023] Open
Abstract
Satellite cell self-renewal is an essential process to maintaining the robustness of skeletal muscle regenerative capacity. However, extrinsic factors that regulate self-renewal of satellite cells are not well understood. Here, we demonstrate that TWEAK cytokine reduces the proportion of Pax7(+)/MyoD(-) cells (an index of self-renewal) on myofiber explants and represses multiple components of Notch signaling in satellite cell cultures. The number of Pax7(+) cells is significantly increased in skeletal muscle of TWEAK knock-out (KO) mice compared with wild-type in response to injury. Furthermore, Notch signaling is significantly elevated in cultured satellite cells and in regenerating myofibers of TWEAK-KO mice. Forced activation of Notch signaling through overexpression of the Notch1 intracellular domain (N1ICD) rescued the TWEAK-mediated inhibition of satellite cell self-renewal. TWEAK also activates the NF-κB transcription factor in satellite cells and inhibition of NF-κB significantly improved the number of Pax7(+) cells in TWEAK-treated cultures. Furthermore, our results demonstrate that a reciprocal interaction between NF-κB and Notch signaling governs the inhibitory effect of TWEAK on satellite cell self-renewal. Collectively, our study demonstrates that TWEAK suppresses satellite cell self-renewal through activating NF-κB and repressing Notch signaling.
Collapse
Affiliation(s)
- Yuji Ogura
- From the Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202 and
| | - Vivek Mishra
- From the Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202 and
| | - Sajedah M. Hindi
- From the Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202 and
| | - Shihuan Kuang
- the Department of Animal Science, Purdue University, West Lafayette, Indiana 47907
| | - Ashok Kumar
- From the Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202 and
| |
Collapse
|
138
|
Briggs D, Morgan JE. Recent progress in satellite cell/myoblast engraftment -- relevance for therapy. FEBS J 2013; 280:4281-93. [PMID: 23560812 PMCID: PMC3795440 DOI: 10.1111/febs.12273] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 12/18/2022]
Abstract
There is currently no cure for muscular dystrophies, although several promising strategies are in basic and clinical research. One such strategy is cell transplantation with satellite cells (or their myoblast progeny) to repair damaged muscle and provide dystrophin protein with the aim of preventing subsequent myofibre degeneration and repopulating the stem cell niche for future use. The present review aims to cover recent advances in satellite cell/myoblast therapy and to discuss the challenges that remain for it to become a realistic therapy.
Collapse
Affiliation(s)
- Deborah Briggs
- The Dubowitz Neuromuscular Centre, UCL Institute of Child HealthLondon, UK
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, UCL Institute of Child HealthLondon, UK
| |
Collapse
|
139
|
ZHANG XJ, YANG Z, WANG ZY, HU N, HUANG XL, ZHENG XL, CAO Y, YANG J. Impact of Temperature Profile on Growth and Proliferation of Myoblasts on ITO Glass Chips. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1016/s1872-2040(13)60671-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
140
|
Montarras D, L'honoré A, Buckingham M. Lying low but ready for action: the quiescent muscle satellite cell. FEBS J 2013; 280:4036-50. [DOI: 10.1111/febs.12372] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/24/2013] [Accepted: 05/28/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Didier Montarras
- Department of Developmental and Stem Cell Biology; CNRS URA 2578; Institut Pasteur; Paris; France
| | - Aurore L'honoré
- Department of Developmental and Stem Cell Biology; CNRS URA 2578; Institut Pasteur; Paris; France
| | - Margaret Buckingham
- Department of Developmental and Stem Cell Biology; CNRS URA 2578; Institut Pasteur; Paris; France
| |
Collapse
|
141
|
Liu W, Bi P, Shan T, Yang X, Yin H, Wang YX, Liu N, Rudnicki MA, Kuang S. miR-133a regulates adipocyte browning in vivo. PLoS Genet 2013; 9:e1003626. [PMID: 23874225 PMCID: PMC3708806 DOI: 10.1371/journal.pgen.1003626] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/30/2013] [Indexed: 01/11/2023] Open
Abstract
Prdm16 determines the bidirectional fate switch of skeletal muscle/brown adipose tissue (BAT) and regulates the thermogenic gene program of subcutaneous white adipose tissue (SAT) in mice. Here we show that miR-133a, a microRNA that is expressed in both BAT and SATs, directly targets the 3′ UTR of Prdm16. The expression of miR-133a dramatically decreases along the commitment and differentiation of brown preadipocytes, accompanied by the upregulation of Prdm16. Overexpression of miR-133a in BAT and SAT cells significantly inhibits, and conversely inhibition of miR-133a upregulates, Prdm16 and brown adipogenesis. More importantly, double knockout of miR-133a1 and miR-133a2 in mice leads to elevations of the brown and thermogenic gene programs in SAT. Even 75% deletion of miR-133a (a1−/−a2+/−) genes results in browning of SAT, manifested by the appearance of numerous multilocular UCP1-expressing adipocytes within SAT. Additionally, compared to wildtype mice, miR-133a1−/−a2+/− mice exhibit increased insulin sensitivity and glucose tolerance, and activate the thermogenic gene program more robustly upon cold exposure. These results together elucidate a crucial role of miR-133a in the regulation of adipocyte browning in vivo. Global obesity and associated health issues have raised the significance of adipocyte biology. Adipose tissues are classified as brown and white adipose. White adipose tissues store lipids, leading to overweight, obesity, insulin resistance and Type2 diabetes. In contrast, brown adipose tissues use lipid storage to generate heat, increase insulin sensitivity, and are negatively correlated with the incidence of Type2 diabetes. Recent studies indicate that white adipose is plastic and contains an intermediate type of adaptive adipocytes (so-called beige/brite adipocytes) that have the energy-dissipating properties of brown adipocytes. Prdm16 is a key molecule that determines the development of both brown and beige adipocytes. Thus, Prdm16 represents a novel molecular switch that expands brown/beige adipocytes and increases energy expenditures. However, how Prdm16 is regulated has been unclear. Here we report that the microRNA miR-133a specifically targets Prdm16 at the posttranscriptional level. Inhibition or knockout of miR-133a significantly increases Prdm16 expression and the thermogenic gene program in white adipose tissues, resulting in dramatically enhanced insulin sensitivity in animals. Our results suggest that miR-133a represents a potential drug target against obesity and Type2 diabetes.
Collapse
Affiliation(s)
- Weiyi Liu
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Pengpeng Bi
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Tizhong Shan
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Xin Yang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Yong-Xu Wang
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michael A. Rudnicki
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
142
|
Liu W, Shan T, Yang X, Liang S, Zhang P, Liu Y, Liu X, Kuang S. A heterogeneous lineage origin underlies the phenotypic and molecular differences of white and beige adipocytes. J Cell Sci 2013; 126:3527-32. [PMID: 23781029 DOI: 10.1242/jcs.124321] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A worldwide epidemic of obesity and its associated metabolic disorders raise the significance of adipocytes, their origins and characteristics. Our previous study has demonstrated that interscapular brown adipose tissue (BAT), but not intramuscular adipose, is derived from the Pax3-expressing cell lineage. Here, we show that various depots of subcutaneous (SAT) and visceral adipose tissue (VAT) are highly heterogeneous in the Pax3 lineage origin. Interestingly, the relative abundance of Pax3 lineage cells in SAT depots is inversely correlated to expression of BAT signature genes including Prdm16, Pgc1a (Ppargc1a) and Ucp1. FACS analysis further demonstrates that adipocytes differentiated from non-Pax3 lineage preadipocytes express higher levels of BAT and beige adipocyte signature genes compared with the Pax3 lineage adipocytes within the same depots. Although both Pax3 and non-Pax3 lineage preadipocytes can give rise to beige adipocytes, the latter contributes more significantly. Consistently, genetic ablation of Pax3 lineage cells in SAT leads to increased expression of beige cell markers. Finally, non-Pax3 lineage beige adipocytes are more responsive to cAMP-agonist-induced Ucp1 expression. Taken together, these results demonstrate widespread heterogeneity in Pax3 lineage origin, and its inverse association with BAT gene expression within and among subcutaneous adipose depots.
Collapse
Affiliation(s)
- Weiyi Liu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Shan T, Liang X, Bi P, Zhang P, Liu W, Kuang S. Distinct populations of adipogenic and myogenic Myf5-lineage progenitors in white adipose tissues. J Lipid Res 2013; 54:2214-2224. [PMID: 23740968 DOI: 10.1194/jlr.m038711] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Brown adipose tissues (BAT) are derived from a myogenic factor 5 (Myf5)-expressing cell lineage and white adipose tissues (WAT) predominantly arise from non-Myf5 lineages, although a subpopulation of adipocytes in some WAT depots can be derived from the Myf5 lineage. However, the functional implication of the Myf5- and non-Myf5-lineage cells in WAT is unclear. We found that the Myf5-lineage constitution in subcutaneous WAT depots is negatively correlated to the expression of classical BAT and newly defined beige/brite adipocyte-specific genes. Consistently, fluorescent-activated cell sorting (FACS)-purified Myf5-lineage adipo-progenitors give rise to adipocytes expressing lower levels of BAT-specific Ucp1, Prdm16, Cidea, and Ppargc1a genes and beige adipocyte-specific CD137, Tmem26, and Tbx1 genes compared with the non-Myf5-lineage adipocytes from the same depots. Ablation of the Myf5-lineage progenitors in WAT stromal vascular cell (SVC) cultures leads to increased expression of BAT and beige cell signature genes. Strikingly, the Myf5-lineage cells in WAT are heterogeneous and contain distinct adipogenic [stem cell antigen 1(Sca1)-positive] and myogenic (Sca1-negative) progenitors. The latter differentiate robustly into myofibers in vitro and in vivo, and they restore dystrophin expression after transplantation into mdx mouse, a model for Duchenne muscular dystrophy. These results demonstrate the heterogeneity and functional differences of the Myf5- and non-Myf5-lineage cells in the white adipose tissue.
Collapse
Affiliation(s)
- Tizhong Shan
- Department of Animal Science and Purdue University, West Lafayette, IN 47907
| | - Xinrong Liang
- Department of Animal Science and Purdue University, West Lafayette, IN 47907
| | - Pengpeng Bi
- Department of Animal Science and Purdue University, West Lafayette, IN 47907
| | - Pengpeng Zhang
- Department of Animal Science and Purdue University, West Lafayette, IN 47907
| | - Weiyi Liu
- Department of Animal Science and Purdue University, West Lafayette, IN 47907
| | - Shihuan Kuang
- Department of Animal Science and Purdue University, West Lafayette, IN 47907; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
144
|
Intrinsic ability of adult stem cell in skeletal muscle: an effective and replenishable resource to the establishment of pluripotent stem cells. Stem Cells Int 2013; 2013:420164. [PMID: 23818907 PMCID: PMC3684130 DOI: 10.1155/2013/420164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/03/2013] [Accepted: 05/07/2013] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells play an essential role in mammalian organ maintenance and repair throughout adulthood since they ensure that organs retain their ability to regenerate. The choice of cell fate by adult stem cells for cellular proliferation, self-renewal, and differentiation into multiple lineages is critically important for the homeostasis and biological function of individual organs. Responses of stem cells to stress, injury, or environmental change are precisely regulated by intercellular and intracellular signaling networks, and these molecular events cooperatively define the ability of stem cell throughout life. Skeletal muscle tissue represents an abundant, accessible, and replenishable source of adult stem cells. Skeletal muscle contains myogenic satellite cells and muscle-derived stem cells that retain multipotent differentiation abilities. These stem cell populations have the capacity for long-term proliferation and high self-renewal. The molecular mechanisms associated with deficits in skeletal muscle and stem cell function have been extensively studied. Muscle-derived stem cells are an obvious, readily available cell resource that offers promise for cell-based therapy and various applications in the field of tissue engineering. This review describes the strategies commonly used to identify and functionally characterize adult stem cells, focusing especially on satellite cells, and discusses their potential applications.
Collapse
|
145
|
Abstract
The semi-conservative nature of DNA replication has suggested that identical DNA molecules within chromatids are inherited by daughter cells after cell division. Numerous reports of non-random DNA segregation in prokaryotes and eukaryotes suggest that this is not always the case, and that epigenetic marks on chromatids, if not the individual DNA strands themselves, could have distinct signatures. Their selective distribution to daughter cells provides a novel mechanism for gene and cell fate regulation by segregating chromatids asymmetrically. Here we highlight some examples and potential mechanisms that can regulate this process. We propose that cellular asymmetry is inherently present during each cell division, and that it provides an opportunity during each cell cycle for moderating cell fates.
Collapse
Affiliation(s)
- Siham Yennek
- Institut Pasteur, Stem Cells & Development, Department of Developmental & Stem Cell Biology, CNRS URA 2578, 25 rue du Dr. Roux, Paris F-75015, France
| | | |
Collapse
|
146
|
Shan T, Liang X, Bi P, Kuang S. Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1α-Fndc5 pathway in muscle. FASEB J 2013; 27:1981-9. [PMID: 23362117 DOI: 10.1096/fj.12-225755] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myostatin (Mstn) is predominantly expressed in skeletal muscles and plays important roles in regulating muscle growth and development, as well as fat deposition. Mstn-knockout (Mstn(-/-)) mice exhibit increased muscle mass due to both hypertrophy and hyperplasia, and leaner body composition due to reduced fat mass. Here, we show that white adipose tissue (WAT) of Mstn(-/-) develops characteristics of brown adipose tissue (BAT) with dramatically increased expression of BAT signature genes, including Ucp1 and Pgc1α, and beige adipocyte markers Tmem26 and CD137. Strikingly, the observed browning phenotype is non-cell autonomous and is instead driven by the newly defined myokine irisin (Fndc5) secreted from Mstn(-/-) skeletal muscle. Within the muscle, Mstn(-/-) leads to increased expression of AMPK and its phosphorylation, which subsequently activates PGC1α and Fndc5. Together, our study defines a paradigm of muscle-fat crosstalk mediated by Fndc5, which is up-regulated and secreted from muscle to induce beige cell markers and the browning of WAT in Mstn(-/-) mice. These results suggest that targeting muscle Mstn and its downstream signaling represents a therapeutic approach to treat obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Tizhong Shan
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
147
|
Wang YX, Bentzinger CF, Rudnicki MA. Molecular regulation of determination in asymmetrically dividing muscle stem cells. Cell Cycle 2012; 12:3-4. [PMID: 23255099 PMCID: PMC3570513 DOI: 10.4161/cc.23068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
148
|
Affiliation(s)
- Norio Motohashi
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, MN, USA
| | - Atsushi Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, MN, USA
| |
Collapse
|