101
|
Ayhan S, Nemutlu E, Uçkan Çetinkaya D, Kır S, Özgül RK. Characterization of human bone marrow niches with metabolome and transcriptome profiling. J Cell Sci 2021; 134:jcs.250720. [PMID: 33526717 DOI: 10.1242/jcs.250720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/13/2021] [Indexed: 12/28/2022] Open
Abstract
Bone marrow (BM) niches are special microenvironments that work in harmony with each other for the regulation and maintenance of hematopoiesis. Niche investigations have thus far been limited to various model organisms and animal studies; therefore, little is known about different niches in healthy humans. In this study, a special harvesting method for the collection of BM from two different anatomical regions in the iliac crest of humans was used to investigate the presence of different niches in BM. Additionally, metabolomic and transcriptomic profiles were compiled using comparative 'omics' technologies, and the main cellular pathways and corresponding transcripts and metabolites were identified. As a result, we found that the energy metabolism between the regions was different. This study provides basic broad data for regenerative medicine in terms of the design of the appropriate microenvironment for in vitro hematopoietic niche modeling, and identifies the normal reference values that can be compared in hematological disease.
Collapse
Affiliation(s)
- Selda Ayhan
- Center for Stem Cell Research and Development/PEDI-STEM and Department of Stem Cell Sciences, Health Sciences Institute, Hacettepe University, Sıhhıye, Ankara 06100, Turkey.,Department of Pediatric Metabolism, Institute of Child Health, Hacettepe University, Sıhhıye, Ankara 06100, Turkey
| | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Sıhhıye, Ankara 06100, Turkey
| | - Duygu Uçkan Çetinkaya
- Center for Stem Cell Research and Development/PEDI-STEM and Department of Stem Cell Sciences, Health Sciences Institute, Hacettepe University, Sıhhıye, Ankara 06100, Turkey.,Department of Pediatrics, Division of Hematology, Hacettepe University, Sıhhıye, Ankara 06100, Turkey
| | - Sedef Kır
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Sıhhıye, Ankara 06100, Turkey
| | - Rıza Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Hacettepe University, Sıhhıye, Ankara 06100, Turkey
| |
Collapse
|
102
|
Abstract
Mesenchymal stem cells have the ability to differentiate into several cell types when exposed to determined substances, including oxysterols. Oxysterols are cholesterol products derived from its auto-oxidation by reactive species or from enzymatic action. They are present in the body in low quantities under physiological conditions and exhibit several physiological and pharmacological actions according to both the types of oxysterol and tissue. Some of them are cytotoxic while others have been shown to promote cell differentiation through the action on several different receptors, such as nuclear LXR receptors and Smoothened receptor ligands. Here, we review the main pathways by which oxysterols have been associated with cell differentiation and death of mesenchymal stem cells.
Collapse
|
103
|
Girard D, Torossian F, Oberlin E, Alexander KA, Gueguen J, Tseng HW, Genêt F, Lataillade JJ, Salga M, Levesque JP, Le Bousse-Kerdilès MC, Banzet S. Neurogenic Heterotopic Ossifications Recapitulate Hematopoietic Stem Cell Niche Development Within an Adult Osteogenic Muscle Environment. Front Cell Dev Biol 2021; 9:611842. [PMID: 33748104 PMCID: PMC7973025 DOI: 10.3389/fcell.2021.611842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Hematopoiesis and bone interact in various developmental and pathological processes. Neurogenic heterotopic ossifications (NHO) are the formation of ectopic hematopoietic bones in peri-articular muscles that develop following severe lesions of the central nervous system such as traumatic cerebral or spinal injuries or strokes. This review will focus on the hematopoietic facet of NHO. The characterization of NHO demonstrates the presence of hematopoietic marrow in which quiescent hematopoietic stem cells (HSC) are maintained by a functional stromal microenvironment, thus documenting that NHOs are neo-formed ectopic HSC niches. Similarly to adult bone marrow, the NHO permissive environment supports HSC maintenance, proliferation and differentiation through bidirectional signaling with mesenchymal stromal cells and endothelial cells, involving cell adhesion molecules, membrane-bound growth factors, hormones, and secreted matrix proteins. The participation of the nervous system, macrophages and inflammatory cytokines including oncostatin M and transforming growth factor (TGF)-β in this process, reveals how neural circuitry fine-tunes the inflammatory response to generate hematopoietic bones in injured muscles. The localization of NHOs in the peri-articular muscle environment also suggests a role of muscle mesenchymal cells and bone metabolism in development of hematopoiesis in adults. Little is known about the establishment of bone marrow niches and the regulation of HSC cycling during fetal development. Similarities between NHO and development of fetal bones make NHOs an interesting model to study the establishment of bone marrow hematopoiesis during development. Conversely, identification of stage-specific factors that specify HSC developmental state during fetal bone development will give more mechanistic insights into NHO.
Collapse
Affiliation(s)
- Dorothée Girard
- INSERM UMRS-MD 1197, Institut de Recherche Biomédicale des Armées (IRBA), Clamart, France
| | - Frédéric Torossian
- INSERM UMRS-MD 1197, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif, France
| | - Estelle Oberlin
- INSERM UMRS-MD 1197, Université Paris-Saclay, Hôpital Paul Brousse, Villejuif, France
| | - Kylie A. Alexander
- Mater Research Institute—The University of Queensland, Woolloongabba, QLD, Australia
| | - Jules Gueguen
- INSERM UMRS-MD 1197, Institut de Recherche Biomédicale des Armées (IRBA), Clamart, France
| | - Hsu-Wen Tseng
- Mater Research Institute—The University of Queensland, Woolloongabba, QLD, Australia
| | - François Genêt
- INSERM U1179, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, France
| | | | - Marjorie Salga
- INSERM U1179, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, France
| | - Jean-Pierre Levesque
- Mater Research Institute—The University of Queensland, Woolloongabba, QLD, Australia
| | | | - Sébastien Banzet
- INSERM UMRS-MD 1197, Institut de Recherche Biomédicale des Armées (IRBA), Clamart, France
| |
Collapse
|
104
|
Pecoraro AR, Hosfield BD, Li H, Shelley WC, Markel TA. Angiogenesis: A Cellular Response to Traumatic Injury. Shock 2021; 55:301-310. [PMID: 32826807 DOI: 10.1097/shk.0000000000001643] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
ABSTRACT The development of new vasculature plays a significant role in a number of chronic disease states, including neoplasm growth, peripheral arterial disease, and coronary artery disease, among many others. Traumatic injury and hemorrhage, however, is an immediate, often dramatic pathophysiologic insult that can also necessitate neovascularization to promote healing. Traditional understanding of angiogenesis involved resident endothelial cells branching outward from localized niches in the periphery. Additionally, there are a small number of circulating endothelial progenitor cells that participate directly in the process of neovessel formation. The bone marrow stores a relatively small number of so-called pro-angiogenic hematopoietic progenitor cells-that is, progenitor cells of a hematopoietic potential that differentiate into key structural cells and stimulate or otherwise support local cell growth/differentiation at the site of angiogenesis. Following injury, a number of cytokines and intercellular processes are activated or modulated to promote development of new vasculature. These processes initiate and maintain a robust response to vascular insult, allowing new vessels to canalize and anastomose and provide timely oxygen delivering to healing tissue. Ultimately as we better understand the key players in the process of angiogenesis we can look to develop novel techniques to promote healing following injury.
Collapse
Affiliation(s)
- Anthony R Pecoraro
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | |
Collapse
|
105
|
Horton PD, Dumbali SP, Bhanu KR, Diaz MF, Wenzel PL. Biomechanical Regulation of Hematopoietic Stem Cells in the Developing Embryo. CURRENT TISSUE MICROENVIRONMENT REPORTS 2021; 2:1-15. [PMID: 33937868 PMCID: PMC8087251 DOI: 10.1007/s43152-020-00027-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The contribution of biomechanical forces to hematopoietic stem cell (HSC) development in the embryo is a relatively nascent area of research. Herein, we address the biomechanics of the endothelial-to-hematopoietic transition (EHT), impact of force on organelles, and signaling triggered by extrinsic forces within the aorta-gonad-mesonephros (AGM), the primary site of HSC emergence. RECENT FINDINGS Hemogenic endothelial cells undergo carefully orchestrated morphological adaptations during EHT. Moreover, expansion of the stem cell pool during embryogenesis requires HSC extravasation into the circulatory system and transit to the fetal liver, which is regulated by forces generated by blood flow. Findings from other cell types also suggest that forces external to the cell are sensed by the nucleus and mitochondria. Interactions between these organelles and the actin cytoskeleton dictate processes such as cell polarization, extrusion, division, survival, and differentiation. SUMMARY Despite challenges of measuring and modeling biophysical cues in the embryonic HSC niche, the past decade has revealed critical roles for mechanotransduction in governing HSC fate decisions. Lessons learned from the study of the embryonic hematopoietic niche promise to provide critical insights that could be leveraged for improvement in HSC generation and expansion ex vivo.
Collapse
Affiliation(s)
- Paulina D. Horton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Immunology Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Sandeep P. Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Krithikaa Rajkumar Bhanu
- Immunology Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Miguel F. Diaz
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Pamela L. Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.130, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Immunology Program, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
106
|
Ghebes CA, Morhayim J, Kleijer M, Koroglu M, Erkeland SJ, Hoogenboezem R, Bindels E, van Alphen FPJ, van den Biggelaar M, Nolte MA, van der Eerden BCJ, Braakman E, Voermans C, van de Peppel J. Extracellular Vesicles Derived From Adult and Fetal Bone Marrow Mesenchymal Stromal Cells Differentially Promote ex vivo Expansion of Hematopoietic Stem and Progenitor Cells. Front Bioeng Biotechnol 2021; 9:640419. [PMID: 33718342 PMCID: PMC7947881 DOI: 10.3389/fbioe.2021.640419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/02/2021] [Indexed: 01/05/2023] Open
Abstract
Recently, we and others have illustrated that extracellular vesicles (EVs) have the potential to support hematopoietic stem and progenitor cell (HSPC) expansion; however, the mechanism and processes responsible for the intercellular communication by EVs are still unknown. In the current study, we investigate whether primary human bone marrow derived mesenchymal stromal cells (BMSC) EVs isolated from two different origins, fetal (fEV) and adult (aEV) tissue, can increase the relative low number of HSPCs found in umbilical cord blood (UCB) and which EV-derived components are responsible for ex vivo HSPC expansion. Interestingly, aEVs and to a lesser extent fEVs, showed supportive ex vivo expansion capacity of UCB-HSPCs. Taking advantage of the two BMSC sources with different supportive effects, we analyzed the EV cargo and investigated how gene expression is modulated in HSPCs after incubation with aEVs and fEVs. Proteomics analyses of the protein cargo composition of the supportive aEV vs. the less-supportive fEV identified 90% of the Top100 exosome proteins present in the ExoCarta database. Gene Ontology (GO) analyses illustrated that the proteins overrepresented in aEVs were annotated to oxidation-reduction process, mitochondrial ATP synthesis coupled proton transport, or protein folding. In contrast, the proteins overrepresented in fEVs were annotated to extracellular matrix organization positive regulation of cell migration or transforming growth factor beta receptor (TGFBR) signaling pathway. Small RNA sequencing identified different molecular signatures between aEVs and fEVs. Interestingly, the microRNA cluster miR-99b/let-7e/miR-125a, previously identified to increase the number of HSPCs by targeting multiple pro-apoptotic genes, was highly and significantly enriched in aEVs. Although we identified significant differences in the supportive effects of aEVs and fEVs, RNAseq analyses of the 24 h treated HSPCs indicated that a limited set of genes was differentially regulated when compared to cells that were treated with cytokines only. Together, our study provides novel insights into the complex biological role of EVs and illustrates that aEVs and fEVs differentially support ex vivo expansion capacity of UCB-HSPCs. Together opening new means for the application of EVs in the discovery of therapeutics for more efficient ex vivo HSPC expansion.
Collapse
Affiliation(s)
- Corina A Ghebes
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands
| | - Jess Morhayim
- Department of Hematology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Marion Kleijer
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands
| | - Merve Koroglu
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands
| | - Stefan J Erkeland
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Remco Hoogenboezem
- Department of Hematology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Eric Bindels
- Department of Hematology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | | | - Martijn A Nolte
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Department of Molecular Hematology, Sanquin Research, Amsterdam, Netherlands
| | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Eric Braakman
- Department of Hematology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Carlijn Voermans
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
107
|
Miyoshi H, Abo K, Hosoya D, Matsuo K, Utsumi Y. Effects of mouse fetal liver cell culture density on hematopoietic cell expansion in three-dimensional cocultures with stromal cells. Int J Artif Organs 2021; 45:103-112. [PMID: 33611956 DOI: 10.1177/0391398821996377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE An effective ex vivo expansion system of primitive hematopoietic cells (HCs) is required for wider application of hematopoietic stem cell transplantation. In this study, we examined effects of culture density on mouse fetal liver cells (FLCs) used as an HC source for the expansion of primitive HCs in three-dimensional (3D) cocultures with two kinds of mouse stromal cell lines (OP9 or C3H10T1/2). MATERIALS AND METHODS FLCs were seeded at different densities (1, 2, and 10 × 107 cells/cm3) into porous polymer scaffolds with or without stromal cell layers and HCs were expanded in the cultures for 2 weeks without exogenous cytokines. RESULTS Differential effects of culture density on HC expansion were observed between cocultures and solitary FLC controls. In stromal cell cocultures, high expansion of HCs was achieved when FLCs were seeded at low densities. In contrast, the expansion in the controls was enhanced with increasing culture densities. With respect to expansion of primitive HCs existing in the FLCs, cocultures with C3H10T1/2 cells were superior to those with OP9 cells with a 29.3-fold expansion for c-kit+ hematopoietic progenitor cells and 8.3-fold expansion for CD34+ hematopoietic stem cells. In the controls, HC expansion was lower than in any cocultures, demonstrating the advantages of coculturing for HC expansion. CONCLUSION Stromal cell lines are useful in expanding primitive HCs derived from FLCs in 3D cocultures. Culture density is a pivotal factor for the effective expansion of primitive HCs and this effect differs by culture condition.
Collapse
Affiliation(s)
- Hirotoshi Miyoshi
- Department of Biomedical Engineering, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kenji Abo
- Department of Biomedical Engineering, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daiki Hosoya
- Department of Biomedical Engineering, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuyuki Matsuo
- Department of Biomedical Engineering, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshio Utsumi
- Department of Biomedical Engineering, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
108
|
Distinct Waves from the Hemogenic Endothelium Give Rise to Layered Lymphoid Tissue Inducer Cell Ontogeny. Cell Rep 2021; 32:108004. [PMID: 32783932 DOI: 10.1016/j.celrep.2020.108004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 01/28/2023] Open
Abstract
During embryogenesis, lymphoid tissue inducer (LTi) cells are essential for lymph node organogenesis. These cells are part of the innate lymphoid cell (ILC) family. Although their earliest embryonic hematopoietic origin is unclear, other innate immune cells have been shown to be derived from early hemogenic endothelium in the yolk sac as well as the aorta-gonad-mesonephros. A proper model to discriminate between these locations was unavailable. In this study, using a Cxcr4-CreERT2 lineage tracing model, we identify a major contribution from embryonic hemogenic endothelium, but not the yolk sac, toward LTi progenitors. Conversely, embryonic LTi cells are replaced by hematopoietic stem cell-derived cells in adults. We further show that, in the fetal liver, common lymphoid progenitors differentiate into highly dynamic alpha-lymphoid precursor cells that, at this embryonic stage, preferentially mature into LTi precursors and establish their functional LTi cell identity only after reaching the periphery.
Collapse
|
109
|
Abstract
Obesity and obesity-related diseases like type 2 diabetes (T2D) are prominent global health issues; therefore, there is a need to better understand the mechanisms underlying these conditions. The onset of obesity is characterized by accumulation of proinflammatory cells, including Ly6chi monocytes (which differentiate into proinflammatory macrophages) and neutrophils, in metabolic tissues. This shift toward chronic, low-grade inflammation is an obese-state hallmark and highly linked to metabolic disorders and other obesity comorbidities. The mechanisms that induce and maintain increased inflammatory myelopoiesis are of great interest, with a recent focus on how obesity affects more primitive hematopoietic cells. The hematopoietic system is constantly replenished by proper regulation of hematopoietic stem and progenitor (HSPC) pools in the BM. While early research suggests that chronic obesity promotes expansion of myeloid-skewed HSPCs, the involvement of the hematopoietic stem cell (HSC) niche in regulating obesity-induced myelopoiesis remains undefined. In this review, we explore the role of the multicellular HSC niche in hematopoiesis and inflammation, and the potential contribution of this niche to the hematopoietic response to obesity. This review further aims to summarize the potential HSC niche involvement as a target of obesity-induced inflammation and a driver of obesity-induced myelopoiesis.
Collapse
|
110
|
Gao X, Zhang D, Xu C, Li H, Caron KM, Frenette PS. Nociceptive nerves regulate haematopoietic stem cell mobilization. Nature 2021; 589:591-596. [PMID: 33361809 PMCID: PMC7856173 DOI: 10.1038/s41586-020-03057-y] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
Abstract
Haematopoietic stem cells (HSCs) reside in specialized microenvironments in the bone marrow-often referred to as 'niches'-that represent complex regulatory milieux influenced by multiple cellular constituents, including nerves1,2. Although sympathetic nerves are known to regulate the HSC niche3-6, the contribution of nociceptive neurons in the bone marrow remains unclear. Here we show that nociceptive nerves are required for enforced HSC mobilization and that they collaborate with sympathetic nerves to maintain HSCs in the bone marrow. Nociceptor neurons drive granulocyte colony-stimulating factor (G-CSF)-induced HSC mobilization via the secretion of calcitonin gene-related peptide (CGRP). Unlike sympathetic nerves, which regulate HSCs indirectly via the niche3,4,6, CGRP acts directly on HSCs via receptor activity modifying protein 1 (RAMP1) and the calcitonin receptor-like receptor (CALCRL) to promote egress by activating the Gαs/adenylyl cyclase/cAMP pathway. The ingestion of food containing capsaicin-a natural component of chili peppers that can trigger the activation of nociceptive neurons-significantly enhanced HSC mobilization in mice. Targeting the nociceptive nervous system could therefore represent a strategy to improve the yield of HSCs for stem cell-based therapeutic agents.
Collapse
Affiliation(s)
- Xin Gao
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Dachuan Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,These authors contributed equally
| | - Chunliang Xu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,These authors contributed equally
| | - Huihui Li
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Paul S. Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
111
|
Molecular Modulation of Fetal Liver Hematopoietic Stem Cell Mobilization into Fetal Bone Marrow in Mice. Stem Cells Int 2020; 2020:8885154. [PMID: 33381191 PMCID: PMC7755487 DOI: 10.1155/2020/8885154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/03/2020] [Accepted: 12/04/2020] [Indexed: 11/24/2022] Open
Abstract
Development of hematopoietic stem cells is a complex process, which has been extensively investigated. Hematopoietic stem cells (HSCs) in mouse fetal liver are highly expanded to prepare for mobilization of HSCs into the fetal bone marrow. It is not completely known how the fetal liver niche regulates HSC expansion without loss of self-renewal ability. We reviewed current progress about the effects of fetal liver niche, chemokine, cytokine, and signaling pathways on HSC self-renewal, proliferation, and expansion. We discussed the molecular regulations of fetal HSC expansion in mouse and zebrafish. It is also unknown how HSCs from the fetal liver mobilize, circulate, and reside into the fetal bone marrow niche. We reviewed how extrinsic and intrinsic factors regulate mobilization of fetal liver HSCs into the fetal bone marrow, which provides tools to improve HSC engraftment efficiency during HSC transplantation. Understanding the regulation of fetal liver HSC mobilization into the fetal bone marrow will help us to design proper clinical therapeutic protocol for disease treatment like leukemia during pregnancy. We prospect that fetal cells, including hepatocytes and endothelial and hematopoietic cells, might regulate fetal liver HSC expansion. Components from vascular endothelial cells and bones might also modulate the lodging of fetal liver HSCs into the bone marrow. The current review holds great potential to deeply understand the molecular regulations of HSCs in the fetal liver and bone marrow in mammals, which will be helpful to efficiently expand HSCs in vitro.
Collapse
|
112
|
Belitsky G, Fetisov T, Kirsanov K, Lesovaya E, Vlasova O, Yakubovskaya M. Therapy-related acute myeloid leukemia and its prevention. AMERICAN JOURNAL OF BLOOD RESEARCH 2020; 10:416-433. [PMID: 33489451 PMCID: PMC7811901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Secondary tumors, including therapy-related acute myeloid leukemia (t-AML), represent one of the most undesirable side effects of chemotherapy, which arise several years after primary cancer treatment. This review aims to analyze the current data on molecular pathogenesis of t-AML revealing potential criteria for predicting predisposition to the disease. Another objective is to analyze the information on promising approaches for t-AML prevention. METHODS We analyzed studies regarding t-AML and possible approaches for cancer prevention of drug-induced tumors. Publications in the databases, such as SciVerse Scopus (948), PubMed (1837) and Web of Science (935) were used. Among 92 the most important publications cited in the review, 79 were published during the last decade. RESULTS The review provides the information concerning t-AML pathogenesis, molecular markers of primary cancer patients with high risk of t-AML. The role of the bone marrow niche in clonal hematopoiesis and t-AML pathogenesis is discussed. Current approaches for t-AML prevention both at the stage of therapy and at the latent period are described. Inhibition effects of polyphenols on cell proliferation and on the appearance of hemopoetic clones of indeterminate potential are proposed for t-AML prevention. CONCLUSION The problem of the t-AML, a cancer induced by genotoxic chemotherapeutic drugs, is considered from the point of view of the fundamental mechanisms of chemical carcinogenesis, highlighting initiation and promotion stages. It enables to reveal the possible markers for the group of patients with high risk for t-AML and to demonstrate perspectives for the use of plant polyphenols for t-AML prevention.
Collapse
Affiliation(s)
- Gennady Belitsky
- Department of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian FederationMoscow 115478, Russia
| | - Timur Fetisov
- Department of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian FederationMoscow 115478, Russia
| | - Kirill Kirsanov
- Department of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian FederationMoscow 115478, Russia
- Faculty of Basic Therapy, Peoples’ Friendship University of RussiaMoscow 117198, Russia
| | - Ekaterina Lesovaya
- Department of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian FederationMoscow 115478, Russia
- Division of Oncology, Pavlov Ryazan State Medical UniversityRyazan 390026, Russia
| | - Olga Vlasova
- Department of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian FederationMoscow 115478, Russia
| | - Marianna Yakubovskaya
- Department of Chemical Carcinogenesis, Blokhin National Medical Research Center of Oncology, Ministry of Health of Russian FederationMoscow 115478, Russia
| |
Collapse
|
113
|
Moskalev A, Stambler I, Caruso C. Innate and Adaptive Immunity in Aging and Longevity: The Foundation of Resilience. Aging Dis 2020; 11:1363-1373. [PMID: 33269094 PMCID: PMC7673842 DOI: 10.14336/ad.2020.0603] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
The interrelation of the processes of immunity and senescence now receives an unprecedented emphasis during the COVID-19 pandemic, which brings to the fore the critical need to combat immunosenescence and improve the immune function and resilience of older persons. Here we review the historical origins and the current state of the science of innate and adaptive immunity in aging and longevity. From the modern point of view, innate and adaptive immunity are not only affected by aging but also are important parts of its underlying mechanisms. Excessive levels or activity of antimicrobial peptides, C-reactive protein, complement system, TLR/NF-κB, cGAS/STING/IFN 1,3 and AGEs/RAGE pathways, myeloid cells and NLRP3 inflammasome, declined levels of NK cells in innate immunity, thymus involution and decreased amount of naive T-cells in adaptive immunity, are biomarkers of aging and predisposition factors for cellular senescence and aging-related pathologies. Long-living species, human centenarians, and women are characterized by less inflamm-aging and decelerated immunosenescence. Despite recent progress in understanding, the harmonious theory of immunosenescence is still developing. Geroprotectors targeting these mechanisms are just emerging and are comprehensively discussed in this article.
Collapse
Affiliation(s)
- Alexey Moskalev
- Institute of Biology of FRC of Komi Scientific Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, 167982, Russia.
| | - Ilia Stambler
- Vetek (Seniority), The Movement for Longevity and Quality of Life, Israel.
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
114
|
Gao Z, Daquinag AC, Fussell C, Zhao Z, Dai Y, Rivera A, Snyder BE, Eckel-Mahan KL, Kolonin MG. Age-associated telomere attrition in adipocyte progenitors predisposes to metabolic disease. Nat Metab 2020; 2:1482-1497. [PMID: 33324010 DOI: 10.1038/s42255-020-00320-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/04/2020] [Indexed: 01/11/2023]
Abstract
White and beige adipocytes in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) are maintained by proliferation and differentiation of adipose progenitor cells (APCs). Here we use mice with tissue-specific telomerase reverse transcriptase (TERT) gene knockout (KO), which undergo premature telomere shortening and proliferative senescence in APCs, to investigate the effect of over-nutrition on APC exhaustion and metabolic dysfunction. We find that TERT KO in the Pdgfra+ cell lineage results in adipocyte hypertrophy, inflammation and fibrosis in SAT, while TERT KO in the Pdgfrb+ lineage leads to adipocyte hypertrophy in both SAT and VAT. Systemic insulin resistance is observed in both KO models and is aggravated by a high-fat diet. Analysis of human biopsies demonstrates that telomere shortening in SAT is associated with metabolic disease progression after bariatric surgery. Our data indicate that over-nutrition can promote APC senescence and provide a mechanistic link between ageing, obesity and diabetes.
Collapse
Affiliation(s)
- Zhanguo Gao
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA
| | - Alexes C Daquinag
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA
| | - Cale Fussell
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Brad E Snyder
- Memorial Hermann Texas Medical Center, Houston, TX, USA
| | - Kristin L Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA
| | - Mikhail G Kolonin
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
115
|
Demirci S, Haro-Mora JJ, Leonard A, Drysdale C, Malide D, Keyvanfar K, Essawi K, Vizcardo R, Tamaoki N, Restifo NP, Tisdale JF, Uchida N. Definitive hematopoietic stem/progenitor cells from human embryonic stem cells through serum/feeder-free organoid-induced differentiation. Stem Cell Res Ther 2020; 11:493. [PMID: 33234163 PMCID: PMC7688003 DOI: 10.1186/s13287-020-02019-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Background Ex vivo production of hematopoietic stem/precursor cells (HSPCs) represents a promising versatile approach for blood disorders. Methods To derive definitive HSPCs from human embryonic stem cells (ESCs), we differentiated mesodermally specified embryoid bodies (EBs) on gelatin-coated plates in serum/feeder-free conditions. Results Seven-day EB maturation followed by an 8-day differentiation period on OP9 cells provided the highest number of definitive (CD34+ CD235a−, 69%, p < 0.01) and lowest number of primitive (CD34− CD235a+, 1.55%, p < 0.01) precursor cells along with the highest colony-forming units (149.8 ± 11.6, p < 0.01) in feeder-free conditions. Maximal HSPC fraction (CD34+ CD38− CD45RA− CD49f+ CD90+) was 7.6–8.9% after 10 days of hematopoietic differentiation with 14.5% adult β-globin expression following RBC differentiation. Myeloid and erythroid colonies were restricted strictly to the CD34+ CD43+ fraction (370.5 ± 65.7, p < 0.001), while the CD34− CD43+ fraction produced only a small number of colonies (21.6 ± 11.9). In addition, we differentiated the CD34+ CD43+ cells towards T-lymphocytes using the OP9/DLL1 co-culture system demonstrating double-positive T cells (CD4+ CD8+) with CD3+ expression displaying a broad T cell receptor (TCR) repertoire. Confocal imaging of organoid-like structures revealed a close association of CD31+ cells with CD34+ and CD43+ cells, suggesting a potential emergence of HSPCs through endothelial to hematopoietic transition. Furthermore, fluorescently labeled organoids exhibited the emergence of spherical non-attached cells from rare progenitors at the border of the organoid center. Conclusions In summary, definitive HSPCs can be derived from ESCs through a dynamic cellular process from an organoid-like structure, where erythroid progeny are capable of producing adult hemoglobin and lymphoid progeny shows a diverse TCR repertoire.
Collapse
Affiliation(s)
- Selami Demirci
- Sickle Cell Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bldg. 10, 9N112, Bethesda, MD, 20892, USA
| | - Juan J Haro-Mora
- Sickle Cell Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bldg. 10, 9N112, Bethesda, MD, 20892, USA
| | - Alexis Leonard
- Sickle Cell Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bldg. 10, 9N112, Bethesda, MD, 20892, USA
| | - Claire Drysdale
- Sickle Cell Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bldg. 10, 9N112, Bethesda, MD, 20892, USA
| | - Daniela Malide
- Light Microscopy Core Facility, NHLBI, NIH, Bethesda, MD, USA
| | | | - Khaled Essawi
- Sickle Cell Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bldg. 10, 9N112, Bethesda, MD, 20892, USA
| | - Raul Vizcardo
- National Cancer Institute, Center for Cancer Research, NIH, Bethesda, MD, USA
| | - Naritaka Tamaoki
- National Cancer Institute, Center for Cancer Research, NIH, Bethesda, MD, USA
| | - Nicholas P Restifo
- National Cancer Institute, Center for Cancer Research, NIH, Bethesda, MD, USA
| | - John F Tisdale
- Sickle Cell Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bldg. 10, 9N112, Bethesda, MD, 20892, USA.
| | - Naoya Uchida
- Sickle Cell Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), 9000 Rockville Pike, Bldg. 10, 9N112, Bethesda, MD, 20892, USA
| |
Collapse
|
116
|
Oh S, Boo K, Kim J, Baek SA, Jeon Y, You J, Lee H, Choi HJ, Park D, Lee JM, Baek SH. The chromatin-binding protein PHF6 functions as an E3 ubiquitin ligase of H2BK120 via H2BK12Ac recognition for activation of trophectodermal genes. Nucleic Acids Res 2020; 48:9037-9052. [PMID: 32735658 PMCID: PMC7498345 DOI: 10.1093/nar/gkaa626] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Epigenetic regulation is important for establishing lineage-specific gene expression during early development. Although signaling pathways have been well-studied for regulation of trophectoderm reprogramming, epigenetic regulation of trophectodermal genes with histone modification dynamics have been poorly understood. Here, we identify that plant homeodomain finger protein 6 (PHF6) is a key epigenetic regulator for activation of trophectodermal genes using RNA-sequencing and ChIP assays. PHF6 acts as an E3 ubiquitin ligase for ubiquitination of H2BK120 (H2BK120ub) via its extended plant homeodomain 1 (PHD1), while the extended PHD2 of PHF6 recognizes acetylation of H2BK12 (H2BK12Ac). Intriguingly, the recognition of H2BK12Ac by PHF6 is important for exerting its E3 ubiquitin ligase activity for H2BK120ub. Together, our data provide evidence that PHF6 is crucial for epigenetic regulation of trophectodermal gene expression by linking H2BK12Ac to H2BK120ub modification.
Collapse
Affiliation(s)
- Sungryong Oh
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Kyungjin Boo
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jaebeom Kim
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Seon Ah Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Yoon Jeon
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang 10408, South Korea
| | - Junghyun You
- Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang 10408, South Korea
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Daechan Park
- Department of Biological Sciences, College of Natural Sciences, Ajou University, Suwon 16499, South Korea
| | - Ji Min Lee
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, South Korea
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
117
|
Wurmser M, Chaverot N, Madani R, Sakai H, Negroni E, Demignon J, Saint-Pierre B, Mouly V, Amthor H, Tapscott S, Birchmeier C, Tajbakhsh S, Le Grand F, Sotiropoulos A, Maire P. SIX1 and SIX4 homeoproteins regulate PAX7+ progenitor cell properties during fetal epaxial myogenesis. Development 2020; 147:dev.185975. [PMID: 32591430 DOI: 10.1242/dev.185975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/18/2020] [Indexed: 01/09/2023]
Abstract
Pax7 expression marks stem cells in developing skeletal muscles and adult satellite cells during homeostasis and muscle regeneration. The genetic determinants that control the entrance into the myogenic program and the appearance of PAX7+ cells during embryogenesis are poorly understood. SIX homeoproteins are encoded by the sine oculis-related homeobox Six1-Six6 genes in vertebrates. Six1, Six2, Six4 and Six5 are expressed in the muscle lineage. Here, we tested the hypothesis that Six1 and Six4 could participate in the genesis of myogenic stem cells. We show that fewer PAX7+ cells occupy a satellite cell position between the myofiber and its associated basal lamina in Six1 and Six4 knockout mice (s1s4KO) at E18. However, PAX7+ cells are detected in remaining muscle masses present in the epaxial region of the double mutant embryos and are able to divide and contribute to muscle growth. To further characterize the properties of s1s4KO PAX7+ cells, we analyzed their transcriptome and tested their properties after transplantation in adult regenerating tibialis anterior muscle. Mutant stem cells contribute to hypotrophic myofibers that are not innervated but retain the ability to self-renew.
Collapse
Affiliation(s)
- Maud Wurmser
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Nathalie Chaverot
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Rouba Madani
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Hiroshi Sakai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan.,Stem Cells and Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015, Paris, France.,CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| | - Elisa Negroni
- Sorbonne Université, Institut de Myologie, INSERM, 75013 Paris, France
| | - Josiane Demignon
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Benjamin Saint-Pierre
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Vincent Mouly
- Sorbonne Université, Institut de Myologie, INSERM, 75013 Paris, France
| | - Helge Amthor
- INSERM U1179, LIA BAHN CSM, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | | | | | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015, Paris, France.,CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| | - Fabien Le Grand
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France.,Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS, INSERM, 69008 Lyon, France
| | - Athanassia Sotiropoulos
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| |
Collapse
|
118
|
Csordás G, Grawe F, Uhlirova M. Eater cooperates with Multiplexin to drive the formation of hematopoietic compartments. eLife 2020; 9:57297. [PMID: 33026342 PMCID: PMC7541089 DOI: 10.7554/elife.57297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Blood development in multicellular organisms relies on specific tissue microenvironments that nurture hematopoietic precursors and promote their self-renewal, proliferation, and differentiation. The mechanisms driving blood cell homing and their interactions with hematopoietic microenvironments remain poorly understood. Here, we use the Drosophila melanogaster model to reveal a pivotal role for basement membrane composition in the formation of hematopoietic compartments. We demonstrate that by modulating extracellular matrix components, the fly blood cells known as hemocytes can be relocated to tissue surfaces where they function similarly to their natural hematopoietic environment. We establish that the Collagen XV/XVIII ortholog Multiplexin in the tissue-basement membranes and the phagocytosis receptor Eater on the hemocytes physically interact and are necessary and sufficient to induce immune cell-tissue association. These results highlight the cooperation of Multiplexin and Eater as an integral part of a homing mechanism that specifies and maintains hematopoietic sites in Drosophila.
Collapse
Affiliation(s)
- Gábor Csordás
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ferdinand Grawe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
119
|
Magri S, Masetto E, Solito S, Francescato S, Belluzzi E, Pozzuoli A, Berizzi A, Ruggieri P, Mandruzzato S. Human MDSCs derived from the bone marrow maintain their functional ability but have a reduced frequency of induction in the elderly compared to pediatric donors. IMMUNITY & AGEING 2020; 17:27. [PMID: 32944054 PMCID: PMC7488050 DOI: 10.1186/s12979-020-00199-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immunosuppressive cells developing from myeloid progenitors, which are enriched in pathological conditions such as cancer, and are known to inhibit the functions of effector T cells. During aging, several changes occur both at the adaptive and innate immune system level, in a process defined as immunoscenescence. In particular, the low-grade inflammation state observed in the elderly appears to affect hematopoiesis. We previously demonstrated that the combination of GM-CSF and G-CSF drives the in vitro generation of bone marrow-derived MDSCs (BM-MDSCs) from precursors present in human bone marrow aspirates of healthy donors, and that these cells are endowed with a strong immune suppressive ability, resembling that of cancer-associated MDSCs. In the present work we investigated BM-MDSCs induction and functional ability in a cohort of pediatric versus elderly donors. To this aim, we analyzed the differences in maturation stages and ability to suppress T cell proliferation. We found that the ex vivo distribution of myeloid progenitors is similar between pediatric and elderly individuals, whereas after cytokine treatment a significant reduction in the more immature compartment is observed in the elderly. Despite the decreased frequency, BM-MDSCs maintain their suppressive capacity in aged donors. Taken together, these results indicate that in vitro induction of MDSCs from the BM is reduced with aging and opens new hypotheses on the role of age-related processes in myelopoiesis.
Collapse
Affiliation(s)
- Sara Magri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64, 35128 Padova, Italy
| | | | - Samantha Solito
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64, 35128 Padova, Italy.,Present address: University of Verona, Verona, Italy
| | - Samuela Francescato
- Pediatric Onco-Hematology Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Elisa Belluzzi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64, 35128 Padova, Italy
| | - Assunta Pozzuoli
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64, 35128 Padova, Italy
| | - Antonio Berizzi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64, 35128 Padova, Italy.,Orthopedic and Traumatologic Clinic, Azienda Ospedaliera di Padova, Padova, Italy
| | - Pietro Ruggieri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64, 35128 Padova, Italy.,Orthopedic and Traumatologic Clinic, Azienda Ospedaliera di Padova, Padova, Italy
| | - Susanna Mandruzzato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64, 35128 Padova, Italy.,IOV-IRCCS, Padova, Italy
| |
Collapse
|
120
|
Garcia-Abrego C, Zaunz S, Toprakhisar B, Subramani R, Deschaume O, Jooken S, Bajaj M, Ramon H, Verfaillie C, Bartic C, Patterson J. Towards Mimicking the Fetal Liver Niche: The Influence of Elasticity and Oxygen Tension on Hematopoietic Stem/Progenitor Cells Cultured in 3D Fibrin Hydrogels. Int J Mol Sci 2020; 21:ijms21176367. [PMID: 32887387 PMCID: PMC7504340 DOI: 10.3390/ijms21176367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic stem/progenitor cells (HSPCs) are responsible for the generation of blood cells throughout life. It is believed that, in addition to soluble cytokines and niche cells, biophysical cues like elasticity and oxygen tension are responsible for the orchestration of stem cell fate. Although several studies have examined the effects of bone marrow (BM) niche elasticity on HSPC behavior, no study has yet investigated the effects of the elasticity of other niche sites like the fetal liver (FL), where HSPCs expand more extensively. In this study, we evaluated the effect of matrix stiffness values similar to those of the FL on BM-derived HSPC expansion. We first characterized the elastic modulus of murine FL tissue at embryonic day E14.5. Fibrin hydrogels with similar stiffness values as the FL (soft hydrogels) were compared with stiffer fibrin hydrogels (hard hydrogels) and with suspension culture. We evaluated the expansion of total nucleated cells (TNCs), Lin−/cKit+ cells, HSPCs (Lin−/Sca+/cKit+ (LSK) cells), and hematopoietic stem cells (HSCs: LSK- Signaling Lymphocyte Activated Molecule (LSK-SLAM) cells) when cultured in 5% O2 (hypoxia) or in normoxia. After 10 days, there was a significant expansion of TNCs and LSK cells in all culture conditions at both levels of oxygen tension. LSK cells expanded more in suspension culture than in both fibrin hydrogels, whereas TNCs expanded more in suspension culture and in soft hydrogels than in hard hydrogels, particularly in normoxia. The number of LSK-SLAM cells was maintained in suspension culture and in the soft hydrogels but not in the hard hydrogels. Our results indicate that both suspension culture and fibrin hydrogels allow for the expansion of HSPCs and more differentiated progeny whereas stiff environments may compromise LSK-SLAM cell expansion. This suggests that further research using softer hydrogels with stiffness values closer to the FL niche is warranted.
Collapse
Affiliation(s)
- Christian Garcia-Abrego
- Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium; (C.G.-A.); (B.T.)
- Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium; (O.D.); (S.J.); (C.B.)
| | - Samantha Zaunz
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; (S.Z.); (M.B.); (C.V.)
| | - Burak Toprakhisar
- Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium; (C.G.-A.); (B.T.)
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; (S.Z.); (M.B.); (C.V.)
| | - Ramesh Subramani
- Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; (R.S.); (H.R.)
- Department of Food Processing Technology and Management, PSGR Krishnammal College for Women, Coimbatore 641004, India
| | - Olivier Deschaume
- Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium; (O.D.); (S.J.); (C.B.)
| | - Stijn Jooken
- Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium; (O.D.); (S.J.); (C.B.)
| | - Manmohan Bajaj
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; (S.Z.); (M.B.); (C.V.)
| | - Herman Ramon
- Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; (R.S.); (H.R.)
| | | | - Carmen Bartic
- Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium; (O.D.); (S.J.); (C.B.)
| | - Jennifer Patterson
- Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium; (C.G.-A.); (B.T.)
- IMDEA Materials Institute, 28906 Madrid, Spain
- Correspondence:
| |
Collapse
|
121
|
Horton PD, Dumbali S, Wenzel PL. Mechanoregulation in hematopoiesis and hematologic disorders. CURRENT STEM CELL REPORTS 2020; 6:86-95. [PMID: 33094091 PMCID: PMC7577202 DOI: 10.1007/s40778-020-00172-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) are reliant on intrinsic and extrinsic factors for tight control of self-renewal, quiescence, differentiation, and homing. Given the intimate relationship between HSCs and their niche, increasing numbers of studies are examining how biophysical cues in the hematopoietic microenvironment impact HSC functions. RECENT FINDINGS Numerous mechanosensors are present on hematopoietic cells, including integrins, mechanosensitive ion channels, and primary cilia. Integrin-ligand adhesion, in particular, has been found to be critical for homing and anchoring of HSCs and progenitors in the bone marrow. Integrin-mediated interactions with ligands present on extracellular matrix and endothelial cells are key to establishing long-term engraftment and quiescence of HSCs. Importantly, disruption in the architecture and cellular composition of the bone marrow associated with conditioning regimens and primary myelofibrosis exposes HSCs to a profoundly distinct mechanical environment, with potential implications for progression of hematologic dysfunction and pathologies. SUMMARY Study of the mechanobiological signals that govern hematopoiesis represents an important future step toward understanding HSC biology in homeostasis, aging, and cancer.
Collapse
Affiliation(s)
- Paulina D. Horton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX, 77030, USA
| | - Sandeep Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX, 77030, USA
| | - Pamela L. Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX, 77030, USA
| |
Collapse
|
122
|
Cheng Y, Sun F, D'Souza A, Dhakal B, Pisano M, Chhabra S, Stolley M, Hari P, Janz S. Autonomic nervous system control of multiple myeloma. Blood Rev 2020; 46:100741. [PMID: 32807576 DOI: 10.1016/j.blre.2020.100741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/10/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
The autonomic nervous system (ANS), which consists of antagonistic sympathetic (adrenergic) and parasympathetic (cholinergic) arms, has emerged as an important regulator of neoplastic development, yet little is known about its role in multiple myeloma (MM). Clinical findings that anti-adrenergic β-blocker intake reduces risk of disease-specific death and overall mortality in patients with MM have indicated that adrenergic input may worsen myeloma outcome. However, preclinical studies using β-adrenergic receptor agonists or antagonists produced controversial results as to whether sympathetic pathways promote or inhibit myeloma. Retrospective outcome data demonstrating that high message levels of cholinergic receptor genes predict inferior survival in the Multiple Myeloma Research Foundation CoMMpass trial suggest that parasympathetic input may drive myeloma progression in a subset of patients. Here we review the ill-defined role of the ANS in MM, put myeloma in the context of other cancers, and discuss knowledge gaps that may afford exciting research opportunities going forward.
Collapse
Affiliation(s)
- Yan Cheng
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Fumou Sun
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Anita D'Souza
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Binod Dhakal
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Michael Pisano
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Saurabh Chhabra
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Melinda Stolley
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Parameswaran Hari
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Siegfried Janz
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee 53226, WI, USA.
| |
Collapse
|
123
|
Okeke C, Silas U, Okeke C, Chikwendu C. Current Trends on Hemopoietic Stem Cells. Curr Stem Cell Res Ther 2020; 16:199-208. [PMID: 32729427 DOI: 10.2174/1574888x15999200729162021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/29/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
Advances in single-cell technology and genetic mouse models have resulted in the identification of new types of hemopoietic stem cells (HSC), resulting in baffling observations, suggesting a reconsideration of the long-held notion that all hematopoietic cells in the adult are derived from HSCs. The existence of long-lived HSC-independent hematopoiesis has led to the conclusion that despite the single hierarchical differentiation route that generates functional blood types, other differentiation routes exist in-vivo. Heterogeneity in the HSC population and the evolving knowledge around HSC has translated to it's improved application as a therapeutic tool for various blood disorders. The reprogramming of non-hematopoietic somatic and mature blood cells to pluripotency with their subsequent differentiation into hematopoietic stem cells/progenitor cells and the introduction of new generation sequencing holds the potential for the resolution of ambiguities involved in HSC bone marrow transplantation. There is a change in the paradigm for HSC transplantation donor selection. Donor choice favors haploidentical HCT than cord blood. This review provides a general overview of the current events around hemopoietic stem cells, with emphasis on the rising trend of HSC transplantation, especially haploidentical stem cell transplantation.
Collapse
Affiliation(s)
- Chinwe Okeke
- Medical Laboratory Science Department, Faculty of Health Science and Tech. University of Nigeria, Nsukka, Nigeria
| | - Ufele Silas
- Medical Laboratory Science Department, Faculty of Health Science and Tech. University of Nigeria, Nsukka, Nigeria
| | - Chinedu Okeke
- Haematology Department, College of Medicine,University of Abuja, Abuja, Nigeria
| | - Chiedozie Chikwendu
- Medical Laboratory Science Department, Faculty of Health Science and Tech. University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
124
|
Biswas A, Roy IM, Babu PC, Manesia J, Schouteden S, Vijayakurup V, Anto RJ, Huelsken J, Lacy-Hulbert A, Verfaillie CM, Khurana S. The Periostin/Integrin-αv Axis Regulates the Size of Hematopoietic Stem Cell Pool in the Fetal Liver. Stem Cell Reports 2020; 15:340-357. [PMID: 32735820 PMCID: PMC7419718 DOI: 10.1016/j.stemcr.2020.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
We earlier showed that outside-in integrin signaling through POSTN-ITGAV interaction plays an important role in regulating adult hematopoietic stem cell (HSC) quiescence. Here, we show that Itgav deletion results in increased frequency of phenotypic HSCs in fetal liver (FL) due to faster proliferation. Systemic deletion of Postn led to increased proliferation of FL HSCs, albeit without any loss of stemness, unlike Vav-Itgav−/− HSCs. Based on RNA sequencing analysis of FL and bone marrow HSCs, we predicted the involvement of DNA damage response pathways in this dichotomy. Indeed, proliferative HSCs from Postn-deficient FL tissues showed increased levels of DNA repair, resulting in lesser double-strand breaks. Thus POSTN, with its expression majorly localized in the vascular endothelium of FL tissue, acts as a regulator of stem cell pool size during development. Overall, we demonstrate that the duality of response to proliferation in HSCs is developmental stage dependent and can be correlated with DNA damage responses. Interruption of POSTN-ITGAV interaction leads to HSC expansion in fetal liver HSC from fetal liver in comparison with adult BM excel in their DNA damage responses POSTN is a potential component of the vascular niche for HSCs in the fetal liver
Collapse
Affiliation(s)
- Atreyi Biswas
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Irene M Roy
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Prathibha C Babu
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Javed Manesia
- Inter-Departmental Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sarah Schouteden
- Inter-Departmental Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium
| | - Vinod Vijayakurup
- Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, India
| | - Ruby John Anto
- Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, India
| | - Joerg Huelsken
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Adam Lacy-Hulbert
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | | | - Satish Khurana
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India.
| |
Collapse
|
125
|
Xue Y, Liu D, Cui G, Ding Y, Ai D, Gao S, Zhang Y, Suo S, Wang X, Lv P, Zhou C, Li Y, Chen X, Peng G, Jing N, Han JDJ, Liu F. A 3D Atlas of Hematopoietic Stem and Progenitor Cell Expansion by Multi-dimensional RNA-Seq Analysis. Cell Rep 2020; 27:1567-1578.e5. [PMID: 31042481 DOI: 10.1016/j.celrep.2019.04.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/30/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
In vertebrates, hematopoiesis occurring in different niches is orchestrated by intrinsic and extrinsic regulators. Previous studies have revealed numerous linear and planar regulatory mechanisms. However, a multi-dimensional transcriptomic atlas of any given hematopoietic organ has not yet been established. Here, we use multiple RNA sequencing (RNA-seq) approaches, including cell type-specific, temporal bulk RNA-seq, in vivo GEO-seq, and single-cell RNA-seq (scRNA-seq), to characterize the detailed spatiotemporal transcriptome during hematopoietic stem and progenitor cell (HSPC) expansion in the caudal hematopoietic tissue (CHT) of zebrafish. Combinatorial expression profiling reveals that, in the CHT niche, HSPCs and their neighboring supporting cells are co-regulated by shared signaling pathways and intrinsic factors, such as integrin signaling and Smchd1. Moreover, scRNA-seq analysis unveils the strong association between cell cycle status and HSPC differentiation. Taken together, we report a global transcriptome landscape that provides valuable insights and a rich resource to understand HSPC expansion in an intact vertebrate hematopoietic organ.
Collapse
Affiliation(s)
- Yuanyuan Xue
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Denghui Liu
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guizhong Cui
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Ding
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daosheng Ai
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Suwei Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yifan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengbao Suo
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Lv
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyu Zhou
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhou Li
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xingwei Chen
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangdun Peng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
126
|
Sampaio-Pinto V, Ruiz-Villalba A, Nascimento DS, Pérez-Pomares JM. Bone marrow contribution to the heart from development to adulthood. Semin Cell Dev Biol 2020; 112:16-26. [PMID: 32591270 DOI: 10.1016/j.semcdb.2020.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
Cardiac chamber walls contain large numbers of non-contractile interstitial cells, including fibroblasts, endothelial cells, pericytes and significant populations of blood lineage-derived cells. Blood cells first colonize heart tissues a few days before birth, although their recruitment from the bloodstream to the cardiac interstitium is continuous and extends throughout adult life. The bone marrow, as the major hematopoietic site of adult individuals, is in charge of renewing all circulating cell types, and it therefore plays a pivotal role in the incorporation of blood cells to the heart. Bone marrow-derived cells are instrumental to tissue homeostasis in the steady-state heart, and are major effectors in cardiac disease progression. This review will provide a comprehensive approach to bone marrow-derived blood cell functions in the heart, and discuss aspects related to hot topics in the cardiovascular field like cell-based heart regeneration strategies.
Collapse
Affiliation(s)
- Vasco Sampaio-Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain; Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.
| | - José M Pérez-Pomares
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain; Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain.
| |
Collapse
|
127
|
Bowling S, Sritharan D, Osorio FG, Nguyen M, Cheung P, Rodriguez-Fraticelli A, Patel S, Yuan WC, Fujiwara Y, Li BE, Orkin SH, Hormoz S, Camargo FD. An Engineered CRISPR-Cas9 Mouse Line for Simultaneous Readout of Lineage Histories and Gene Expression Profiles in Single Cells. Cell 2020; 181:1410-1422.e27. [PMID: 32413320 PMCID: PMC7529102 DOI: 10.1016/j.cell.2020.04.048] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/20/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022]
Abstract
Tracing the lineage history of cells is key to answering diverse and fundamental questions in biology. Coupling of cell ancestry information with other molecular readouts represents an important goal in the field. Here, we describe the CRISPR array repair lineage tracing (CARLIN) mouse line and corresponding analysis tools that can be used to simultaneously interrogate the lineage and transcriptomic information of single cells in vivo. This model exploits CRISPR technology to generate up to 44,000 transcribed barcodes in an inducible fashion at any point during development or adulthood, is compatible with sequential barcoding, and is fully genetically defined. We have used CARLIN to identify intrinsic biases in the activity of fetal liver hematopoietic stem cell (HSC) clones and to uncover a previously unappreciated clonal bottleneck in the response of HSCs to injury. CARLIN also allows the unbiased identification of transcriptional signatures associated with HSC activity without cell sorting.
Collapse
Affiliation(s)
- Sarah Bowling
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Duluxan Sritharan
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA; Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fernando G Osorio
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Maximilian Nguyen
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Priscilla Cheung
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Alejo Rodriguez-Fraticelli
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Sachin Patel
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Wei-Chien Yuan
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Yuko Fujiwara
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bin E Li
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA
| | - Sahand Hormoz
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Fernando D Camargo
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
128
|
Herlihy N, Harrison CN, McLornan DP. Exploitation of the neural-hematopoietic stem cell niche axis to treat myeloproliferative neoplasms. Haematologica 2020; 104:639-641. [PMID: 30930333 DOI: 10.3324/haematol.2018.211896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Naoimh Herlihy
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Claire N Harrison
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Donal P McLornan
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
129
|
Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol 2020; 20:303-320. [PMID: 30745579 DOI: 10.1038/s41580-019-0103-9] [Citation(s) in RCA: 658] [Impact Index Per Article: 131.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The haematopoietic stem cell (HSC) microenvironment in the bone marrow, termed the niche, ensures haematopoietic homeostasis by controlling the proliferation, self-renewal, differentiation and migration of HSCs and progenitor cells at steady state and in response to emergencies and injury. Improved methods for HSC isolation, driven by advances in single-cell and molecular technologies, have led to a better understanding of their behaviour, heterogeneity and lineage fate and of the niche cells and signals that regulate their function. Niche regulatory signals can be in the form of cell-bound or secreted factors and other local physical cues. A combination of technological advances in bone marrow imaging and genetic manipulation of crucial regulatory factors has enabled the identification of several candidate cell types regulating the niche, including both non-haematopoietic (for example, perivascular mesenchymal stem and endothelial cells) and HSC-derived (for example, megakaryocytes, macrophages and regulatory T cells), with better topographical understanding of HSC localization in the bone marrow. Here, we review advances in our understanding of HSC regulation by niches during homeostasis, ageing and cancer, and we discuss their implications for the development of therapies to rejuvenate aged HSCs or niches or to disrupt self-reinforcing malignant niches.
Collapse
Affiliation(s)
- Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA. .,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY, USA. .,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY, USA.
| |
Collapse
|
130
|
Mangolini M, Ringshausen I. Bone Marrow Stromal Cells Drive Key Hallmarks of B Cell Malignancies. Int J Mol Sci 2020; 21:E1466. [PMID: 32098106 PMCID: PMC7073037 DOI: 10.3390/ijms21041466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
All B cell leukaemias and a substantial fraction of lymphomas display a natural niche residency in the bone marrow. While the bone marrow compartment may only be one of several sites of disease manifestations, the strong clinical significance of minimal residual disease (MRD) in the bone marrow strongly suggests that privileged niches exist in this anatomical site favouring central elements of malignant transformation. Here, the co-existence of two hierarchical systems, originating from haematopoietic and mesenchymal stem cells, has extensively been characterised with regard to regulation of the former (blood production) by the latter. How these two systems cooperate under pathological conditions is far less understood and is the focus of many current investigations. More recent single-cell sequencing techniques have now identified an unappreciated cellular heterogeneity of the bone marrow microenvironment. How each of these cell subtypes interact with each other and regulate normal and malignant haematopoiesis remains to be investigated. Here we review the evidences of how bone marrow stroma cells and malignant B cells reciprocally interact. Evidently from published data, these cell-cell interactions induce profound changes in signalling, gene expression and metabolic adaptations. While the past research has largely focussed on understanding changes imposed by stroma- on tumour cells, it is now clear that tumour-cell contact also has fundamental ramifications for the biology of stroma cells. Their careful characterisations are not only interesting from a scientific biological viewpoint but also relevant to clinical practice: Since tumour cells heavily depend on stroma cells for cell survival, proliferation and dissemination, interference with bone marrow stroma-tumour interactions bear therapeutic potential. The molecular characterisation of tumour-stroma interactions can identify new vulnerabilities, which could be therapeutically exploited.
Collapse
Affiliation(s)
- Maurizio Mangolini
- Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AH, UK;
| | - Ingo Ringshausen
- Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AH, UK;
- Department of Haematology, Addenbrooke’s Hospital, Cambridge University hospital, Cambridge CB2 0AH, UK
| |
Collapse
|
131
|
Prospective isolation of nonhematopoietic cells of the niche and their differential molecular interactions with HSCs. Blood 2020; 134:1214-1226. [PMID: 31366622 DOI: 10.1182/blood.2019000176] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022] Open
Abstract
A major limitation preventing in vivo modulation of hematopoietic stem cells (HSCs) is the incomplete understanding of the cellular and molecular support of the microenvironment in regulating HSC fate decisions. Consequently, murine HSCs cannot be generated, maintained, or expanded in culture over extended periods of time. A significantly improved understanding of the bone marrow niche environment and its molecular interactions with HSCs is pivotal to overcoming this challenge. We here prospectively isolated all major nonhematopoietic cellular niche components and cross-correlate them in detail with niche cells defined by lineage marking or tracing. Compiling an extensive database of soluble and membrane-bound ligand-receptor interactions, we developed a computational method to infer potential cell-to-cell interactions based on transcriptome data of sorter-purified niche cells and hematopoietic stem and progenitor cell subpopulations. Thus, we establish a compendium of the molecular communication between defined niche components and HSCs. Our analysis suggests an important role for cytokine antagonists in the regulation of HSC functions.
Collapse
|
132
|
He S, Tian Y, Feng S, Wu Y, Shen X, Chen K, He Y, Sun Q, Li X, Xu J, Wen Z, Qu JY. In vivo single-cell lineage tracing in zebrafish using high-resolution infrared laser-mediated gene induction microscopy. eLife 2020; 9:e52024. [PMID: 31904340 PMCID: PMC7018510 DOI: 10.7554/elife.52024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/04/2020] [Indexed: 12/15/2022] Open
Abstract
Heterogeneity broadly exists in various cell types both during development and at homeostasis. Investigating heterogeneity is crucial for comprehensively understanding the complexity of ontogeny, dynamics, and function of specific cell types. Traditional bulk-labeling techniques are incompetent to dissect heterogeneity within cell population, while the new single-cell lineage tracing methodologies invented in the last decade can hardly achieve high-fidelity single-cell labeling and long-term in-vivo observation simultaneously. In this work, we developed a high-precision infrared laser-evoked gene operator heat-shock system, which uses laser-induced CreERT2 combined with loxP-DsRedx-loxP-GFP reporter to achieve precise single-cell labeling and tracing. In vivo study indicated that this system can precisely label single cell in brain, muscle and hematopoietic system in zebrafish embryo. Using this system, we traced the hematopoietic potential of hemogenic endothelium (HE) in the posterior blood island (PBI) of zebrafish embryo and found that HEs in the PBI are heterogeneous, which contains at least myeloid unipotent and myeloid-lymphoid bipotent subtypes.
Collapse
Affiliation(s)
- Sicong He
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| | - Ye Tian
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
- Division of Life ScienceThe Hong Kong University of Science and TechnologyKowloonChina
| | - Shachuan Feng
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
- Division of Life ScienceThe Hong Kong University of Science and TechnologyKowloonChina
| | - Yi Wu
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
- Division of Life ScienceThe Hong Kong University of Science and TechnologyKowloonChina
| | - Xinwei Shen
- Department of MathematicsThe Hong Kong University of Science and TechnologyKowloonChina
| | - Kani Chen
- Department of MathematicsThe Hong Kong University of Science and TechnologyKowloonChina
| | - Yingzhu He
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| | - Qiqi Sun
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| | - Xuesong Li
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Zilong Wen
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
- Division of Life ScienceThe Hong Kong University of Science and TechnologyKowloonChina
| | - Jianan Y Qu
- Department of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyKowloonChina
- State Key Laboratory of Molecular NeuroscienceThe Hong Kong University of Science and TechnologyKowloonChina
- Center of Systems Biology and Human HealthThe Hong Kong University of Science and TechnologyKowloonChina
| |
Collapse
|
133
|
Lee D, Kim DW, Cho JY. Role of growth factors in hematopoietic stem cell niche. Cell Biol Toxicol 2020; 36:131-144. [PMID: 31897822 DOI: 10.1007/s10565-019-09510-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) produce new blood cells everyday throughout life, which is maintained by the self-renewal and differentiation ability of HSCs. This is not controlled by the HSCs alone, but rather by the complex and exquisite microenvironment surrounding the HSCs, which is called the bone marrow niche and consists of various bone marrow cells, growth factors, and cytokines. It is essential to understand the characteristic role of the stem cell niche and the growth factors in the niche formation. In this review, we describe the role of the bone marrow niche and factors for niche homeostasis, and also summarize the latest research related to stem cell niche.
Collapse
Affiliation(s)
- Dabin Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea
| | - Dong Wook Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea.
| |
Collapse
|
134
|
Daniel MG, Rapp K, Schaniel C, Moore KA. Induction of developmental hematopoiesis mediated by transcription factors and the hematopoietic microenvironment. Ann N Y Acad Sci 2019; 1466:59-72. [PMID: 31621095 DOI: 10.1111/nyas.14246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
The induction of hematopoiesis in various cell types via transcription factor (TF) reprogramming has been demonstrated by several strategies. The eventual goal of these approaches is to generate a product for unmet needs in hematopoietic cell transplantation therapies. The most successful strategies hew closely to clues provided from developmental hematopoiesis in terms of factor expression and environmental cues. In this review, we aim to summarize the TFs that play important roles in developmental hematopoiesis primarily and to also touch on adult hematopoiesis. Several aspects of cellular and molecular biology coalesce in this process, with TFs and surrounding cellular signals playing a major role in the overall development of the hematopoietic lineage. We attempt to put these elements into the context of reprogramming and highlight their roles.
Collapse
Affiliation(s)
- Michael G Daniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York.,The Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Katrina Rapp
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Christoph Schaniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York.,Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Kateri A Moore
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| |
Collapse
|
135
|
Li KN, Jain P, He CH, Eun FC, Kang S, Tumbar T. Skin vasculature and hair follicle cross-talking associated with stem cell activation and tissue homeostasis. eLife 2019; 8:e45977. [PMID: 31343406 PMCID: PMC6684267 DOI: 10.7554/elife.45977] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022] Open
Abstract
Skin vasculature cross-talking with hair follicle stem cells (HFSCs) is poorly understood. Skin vasculature undergoes dramatic remodeling during adult mouse hair cycle. Specifically, a horizontal plexus under the secondary hair germ (HPuHG) transiently neighbors the HFSC activation zone during the quiescence phase (telogen). Increased density of HPuHG can be induced by reciprocal mutations in the epithelium (Runx1) and endothelium (Alk1) in adult mice, and is accompanied by prolonged HFSC quiescence and by delayed entry and progression into the hair growth phase (anagen). Suggestively, skin vasculature produces BMP4, a well-established HFSC quiescence-inducing factor, thus contributing to a proliferation-inhibitory environment near the HFSC. Conversely, the HFSC activator Runx1 regulates secreted proteins with previously demonstrated roles in vasculature remodeling. We suggest a working model in which coordinated remodeling and molecular cross-talking of the adult epithelial and endothelial skin compartments modulate timing of HFSC activation from quiescence for proper tissue homeostasis of adult skin.
Collapse
Affiliation(s)
- Kefei Nina Li
- Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Prachi Jain
- Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Catherine Hua He
- Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Flora Chae Eun
- Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Sangjo Kang
- Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| | - Tudorita Tumbar
- Molecular Biology and GeneticsCornell UniversityIthacaUnited States
| |
Collapse
|
136
|
Conserva MR, Anelli L, Zagaria A, Specchia G, Albano F. The Pleiotropic Role of Retinoic Acid/Retinoic Acid Receptors Signaling: From Vitamin A Metabolism to Gene Rearrangements in Acute Promyelocytic Leukemia. Int J Mol Sci 2019; 20:ijms20122921. [PMID: 31207999 PMCID: PMC6627493 DOI: 10.3390/ijms20122921] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
The family of retinoic acid receptors (RARs: RARα, -β, and -γ) has remarkable pleiotropy characteristics, since the retinoic acid/RARs pathway is involved in numerous biological processes not only during embryonic development, but also in the postnatal phase and during adulthood. In this review, we trace the roles of RA/RARs signaling in the immune system (where this pathway has both an immunosuppressive role or is involved in the inflammatory response), in hematopoiesis (enhancing hematopoietic stem cell self-renewal, progenitor cells differentiation or maintaining the bone marrow microenvironment homeostasis), and in bone remodeling (where this pathway seems to have controversial effects on bone formation or osteoclast activation). Moreover, in this review is shown the involvement of RAR genes in multiple chromosomal rearrangements generating different fusion genes in hematological neoplasms, with a particular focus on acute promyelocytic leukemia and its variant subtypes. The effect of different RARs fusion proteins on leukemic transformation, on patients’ outcome, and on therapy response is also discussed.
Collapse
Affiliation(s)
- Maria Rosa Conserva
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| |
Collapse
|
137
|
Cossío I, Lucas D, Hidalgo A. Neutrophils as regulators of the hematopoietic niche. Blood 2019; 133:2140-2148. [PMID: 30898859 PMCID: PMC6524561 DOI: 10.1182/blood-2018-10-844571] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022] Open
Abstract
The niche that supports hematopoietic stem and progenitor cells (HSPCs) in the bone marrow is a highly dynamic structure. It maintains core properties of HSPCs in the steady state, and modulates their proliferation and differentiation in response to changing physiological demands or pathological insults. The dynamic and environment-sensing properties of the niche are shared by the innate immune system. Thus, it is not surprising that innate immune cells, including macrophages and neutrophils, are now recognized as important regulators of the hematopoietic niche and, ultimately, of the stem cells from which they derive. This review synthesizes emerging concepts on niche regulation by immune cells, with a particular emphasis on neutrophils. We argue that the unique developmental, circadian, and migratory properties of neutrophils underlie their critical contributions as regulators of the hematopoietic niche.
Collapse
Affiliation(s)
- Itziar Cossío
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität, Munich, Germany
| |
Collapse
|
138
|
Karpova D, Rettig MP, Ritchey J, Cancilla D, Christ S, Gehrs L, Chendamarai E, Evbuomwan MO, Holt M, Zhang J, Abou-Ezzi G, Celik H, Wiercinska E, Yang W, Gao F, Eissenberg LG, Heier RF, Arnett SD, Meyers MJ, Prinsen MJ, Griggs DW, Trumpp A, Ruminski PG, Morrow DM, Bonig HB, Link DC, DiPersio JF. Targeting VLA4 integrin and CXCR2 mobilizes serially repopulating hematopoietic stem cells. J Clin Invest 2019; 129:2745-2759. [PMID: 31085833 DOI: 10.1172/jci124738] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mobilized peripheral blood has become the primary source of hematopoietic stem and progenitor cells (HSPCs) for stem cell transplantation, with a five-day course of granulocyte colony stimulating factor (G-CSF) as the most common regimen used for HSPC mobilization. The CXCR4 inhibitor, plerixafor, is a more rapid mobilizer, yet not potent enough when used as a single agent, thus emphasizing the need for faster acting agents with more predictable mobilization responses and fewer side effects. We sought to improve hematopoietic stem cell transplantation by developing a new mobilization strategy in mice through combined targeting of the chemokine receptor CXCR2 and the very late antigen 4 (VLA4) integrin. Rapid and synergistic mobilization of HSPCs along with an enhanced recruitment of true HSCs was achieved when a CXCR2 agonist was co-administered in conjunction with a VLA4 inhibitor. Mechanistic studies revealed involvement of CXCR2 expressed on BM stroma in addition to stimulation of the receptor on granulocytes in the regulation of HSPC localization and egress. Given the rapid kinetics and potency of HSPC mobilization provided by the VLA4 inhibitor and CXCR2 agonist combination in mice compared to currently approved HSPC mobilization methods, it represents an exciting potential strategy for clinical development in the future.
Collapse
Affiliation(s)
- Darja Karpova
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Michael P Rettig
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julie Ritchey
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel Cancilla
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephanie Christ
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Leah Gehrs
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ezhilarasi Chendamarai
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Moses O Evbuomwan
- Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Matthew Holt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jingzhu Zhang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Grazia Abou-Ezzi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hamza Celik
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eliza Wiercinska
- German Red Cross Blood Service and Institute for Transfusion Medicine and Immunohematology of the Goethe University, Frankfurt, Germany
| | - Wei Yang
- Genome Technology Access Center, Washington University, St. Louis, Missouri, USA
| | - Feng Gao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Linda G Eissenberg
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard F Heier
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Stacy D Arnett
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Marvin J Meyers
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Michael J Prinsen
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - David W Griggs
- Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Peter G Ruminski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Center for World Health and Medicine, Saint Louis University, St. Louis, Missouri, USA
| | | | - Halvard B Bonig
- German Red Cross Blood Service and Institute for Transfusion Medicine and Immunohematology of the Goethe University, Frankfurt, Germany.,University of Washington, Department of Medicine/Hematology, Seattle, Washington, USA
| | - Daniel C Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John F DiPersio
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
139
|
Takagaki S, Yamashita R, Hashimoto N, Sugihara K, Kanari K, Tabata K, Nishie T, Oka S, Miyanishi M, Naruse C, Asano M. Galactosyl carbohydrate residues on hematopoietic stem/progenitor cells are essential for homing and engraftment to the bone marrow. Sci Rep 2019; 9:7133. [PMID: 31073169 PMCID: PMC6509332 DOI: 10.1038/s41598-019-43551-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
The role of carbohydrate chains in leukocyte migration to inflamed sites during inflammation and trafficking to the lymph nodes under physiological conditions has been extensively characterized. Here, we report that carbohydrate chains also mediate the homing and engraftment of hematopoietic stem/progenitor cells (HSPCs) to the bone marrow (BM). In particular, we found that transplanted BM cells deficient in β-1,4-galactosyltransferase-1 (β4GalT-1) could not support survival in mice exposed to a lethal dose of irradiation. BM cells obtained from mice deficient in β4GalT-1 showed normal colony-forming activity and hematopoietic stem cell numbers. However, colony-forming cells were markedly rare in the BM of recipient mice 24 h after transplantation of β4GalT-1-deficient BM cells, suggesting that β4GalT-1 deficiency severely impairs homing. Similarly, BM cells with a point mutation in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene, encoding a key enzyme in sialic acid biosynthesis, showed mildly impaired homing and engraftment abilities. These results imply that the galactosyl, but not sialyl residues in glycoproteins, are essential for the homing and engraftment of HSPCs to the BM. These findings suggest the possibility of modifying carbohydrate structures on the surface of HSPCs to improve their homing and engraftment to the BM in clinical application.
Collapse
Affiliation(s)
- Soichiro Takagaki
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Rieko Yamashita
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Noriyoshi Hashimoto
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Kazushi Sugihara
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, 920-8640, Japan.,Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kanako Kanari
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Keisuke Tabata
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Toshikazu Nishie
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masanori Miyanishi
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Chie Naruse
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, 920-8640, Japan.,Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Masahide Asano
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, 920-8640, Japan. .,Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
140
|
Affiliation(s)
- Haixia Niu
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati.,Hoxworth Blood Center, University of Cincinnati Academic Health Center, OH, USA
| |
Collapse
|
141
|
Excessive Reactive Iron Impairs Hematopoiesis by Affecting Both Immature Hematopoietic Cells and Stromal Cells. Cells 2019; 8:cells8030226. [PMID: 30857202 PMCID: PMC6468739 DOI: 10.3390/cells8030226] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Iron overload is the accumulation of excess iron in the body that may occur as a result of various genetic disorders or as a consequence of repeated blood transfusions. The surplus iron is then stored in the liver, pancreas, heart and other organs, which may lead to chronic liver disease or cirrhosis, diabetes and heart disease, respectively. In addition, excessive iron may impair hematopoiesis, although the mechanisms of this deleterious effect is not entirely known. In this study, we found that ferrous ammonium sulfate (FeAS), induced growth arrest and apoptosis in immature hematopoietic cells, which was mediated via reactive oxygen species (ROS) activation of p38MAPK and JNK pathways. In in vitro hematopoiesis derived from embryonic stem cells (ES cells), FeAS enhanced the development of dysplastic erythroblasts but inhibited their terminal differentiation; in contrast, it had little effect on the development of granulocytes, megakaryocytes, and B lymphocytes. In addition to its directs effects on hematopoietic cells, iron overload altered the expression of several adhesion molecules on stromal cells and impaired the cytokine production profile of these cells. Therefore, excessive iron would affect whole hematopoiesis by inflicting vicious effects on both immature hematopoietic cells and stromal cells.
Collapse
|
142
|
Windisch R, Pirschtat N, Kellner C, Chen-Wichmann L, Lausen J, Humpe A, Krause DS, Wichmann C. Oncogenic Deregulation of Cell Adhesion Molecules in Leukemia. Cancers (Basel) 2019; 11:E311. [PMID: 30841639 PMCID: PMC6468598 DOI: 10.3390/cancers11030311] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023] Open
Abstract
Numerous cell⁻cell and cell⁻matrix interactions within the bone marrow microenvironment enable the controlled lifelong self-renewal and progeny of hematopoietic stem and progenitor cells (HSPCs). On the cellular level, this highly mutual interaction is granted by cell adhesion molecules (CAMs) integrating differentiation, proliferation, and pro-survival signals from the surrounding microenvironment to the inner cell. However, cell⁻cell and cell⁻matrix interactions are also critically involved during malignant transformation of hematopoietic stem/progenitor cells. It has become increasingly apparent that leukemia-associated gene products, such as activated tyrosine kinases and fusion proteins resulting from chromosomal translocations, directly regulate the activation status of adhesion molecules, thereby directing the leukemic phenotype. These observations imply that interference with adhesion molecule function represents a promising treatment strategy to target pre-leukemic and leukemic lesions within the bone marrow niche. Focusing on myeloid leukemia, we provide a current overview of the mechanisms by which leukemogenic gene products hijack control of cellular adhesion to subsequently disturb normal hematopoiesis and promote leukemia development.
Collapse
Affiliation(s)
- Roland Windisch
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Nina Pirschtat
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Christian Kellner
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Linping Chen-Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Jörn Lausen
- Institute for Transfusion Medicine and Immunohematology, Johann-Wolfgang-Goethe University and German Red Cross Blood Service, 60528 Frankfurt am Main, Germany.
| | - Andreas Humpe
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Daniela S Krause
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany.
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
143
|
Zhang Z, Huang Z, Ong B, Sahu C, Zeng H, Ruan HB. Bone marrow adipose tissue-derived stem cell factor mediates metabolic regulation of hematopoiesis. Haematologica 2019; 104:1731-1743. [PMID: 30792196 PMCID: PMC6717592 DOI: 10.3324/haematol.2018.205856] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Hematopoiesis is dynamically regulated by metabolic cues in homeostatic and stressed conditions; however, the cellular and molecular mechanisms mediating the metabolic sensing and regulation remain largely obscure. Bone marrow adipose tissue remodels in various metabolic conditions and has been recently proposed as a niche for hematopoietic stem cells after irradiation. Here, we investigated the role of marrow adipose tissue-derived hematopoietic cytokine stem cell factor in unperturbed hematopoiesis by selectively ablating the Kitl gene from adipocytes and bone marrow stroma cells using Adipoq-Cre and Osx1-Cre, respectively. We found that both Adipoq-Kitl knockout (KO) and Osx1-Kitl KO mice diminished hematopoietic stem and progenitor cells and myeloid progenitors in the bone marrow and developed macrocytic anemia at the steady-state. The composition and differentiation of hematopoietic progenitor cells in the bone marrow dynamically responded to metabolic challenges including high fat diet, β3-adrenergic activation, thermoneutrality, and aging. However, such responses, particularly within the myeloid compartment, were largely impaired in Adipoq-Kitl KO mice. Our data demonstrate that marrow adipose tissue provides stem cell factor essentially for hematopoiesis both at the steady state and upon metabolic stresses.
Collapse
Affiliation(s)
- Zengdi Zhang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Zan Huang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA.,Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, Jiangsu, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agriculture University, Nanjing, Jiangsu, China
| | - Brianna Ong
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Chinmayi Sahu
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA .,Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
144
|
Hoffman CM, Han J, Calvi LM. Impact of aging on bone, marrow and their interactions. Bone 2019; 119:1-7. [PMID: 30010082 DOI: 10.1016/j.bone.2018.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 12/24/2022]
Abstract
Hematopoiesis in land dwelling vertebrates and marine mammals occurs within the bone marrow, continually providing mature progeny over the course of an organism's lifetime. This conserved dependency highlights the critical relationship between these two organs, yet the skeletal and hematopoietic systems are often thought of as separate. In fact, data are beginning to show that skeletal disease pathogenesis influences hematopoiesis and viceversa, offering novel opportunities to approach disease affecting bone and blood. With a growing global population of aged individuals, interest has focused on cell autonomous changes in hematopoietic and skeletal systems that result in dysfunction. The purpose of this review is to summarize the literature on aging effects in both fields, and provide critical examples of organ cross-talk in the aging process.
Collapse
Affiliation(s)
- Corey M Hoffman
- University of Rochester Medical Center, Rochester, NY, United States of America
| | - Jimin Han
- University of Rochester Medical Center, Rochester, NY, United States of America
| | - Laura M Calvi
- University of Rochester Medical Center, Rochester, NY, United States of America.
| |
Collapse
|
145
|
Tjin G, Flores-Figueroa E, Duarte D, Straszkowski L, Scott M, Khorshed RA, Purton LE, Lo Celso C. Imaging methods used to study mouse and human HSC niches: Current and emerging technologies. Bone 2019; 119:19-35. [PMID: 29704697 DOI: 10.1016/j.bone.2018.04.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
Abstract
Bone marrow contains numerous different cell types arising from hematopoietic stem cells (HSCs) and non-hematopoietic mesenchymal/skeletal stem cells, in addition to other cell types such as endothelial cells- these non-hematopoietic cells are commonly referred to as stromal cells or microenvironment cells. HSC function is intimately linked to complex signals integrated by their niches, formed by combinations of hematopoietic and stromal cells. Studies of hematopoietic cells have been significantly advanced by flow cytometry methods, enabling the quantitation of each cell type in normal and perturbed situations, in addition to the isolation of these cells for molecular and functional studies. Less is known, however, about the specific niches for distinct developing hematopoietic lineages, or the changes occurring in the niche size and function in these distinct anatomical sites in the bone marrow under stress situations and ageing. Significant advances in imaging technology during the last decade have permitted studies of HSC niches in mice. Additional imaging technologies are emerging that will facilitate the study of human HSC niches in trephine BM biopsies. Here we provide an overview of imaging technologies used to study HSC niches, in addition to highlighting emerging technology that will help us to more precisely identify and characterize HSC niches in normal and diseased states.
Collapse
Affiliation(s)
- Gavin Tjin
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Eugenia Flores-Figueroa
- Oncology Research Unit, Oncology Hospital, National Medical Center Century XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Delfim Duarte
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, UK; The Sir Francis Crick Institute, London, UK
| | - Lenny Straszkowski
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Mark Scott
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, UK; Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Reema A Khorshed
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, UK
| | - Louise E Purton
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; The University of Melbourne, Department of Medicine at St Vincent's Hospital, Fitzroy, Victoria, Australia.
| | - Cristina Lo Celso
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, UK; The Sir Francis Crick Institute, London, UK.
| |
Collapse
|
146
|
Lee GY, Jeong SY, Lee HR, Oh IH. Age-related differences in the bone marrow stem cell niche generate specialized microenvironments for the distinct regulation of normal hematopoietic and leukemia stem cells. Sci Rep 2019; 9:1007. [PMID: 30700727 PMCID: PMC6353913 DOI: 10.1038/s41598-018-36999-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
The bone marrow (BM) microenvironment serves as a stem cell niche regulating the in vivo cell fate of normal hematopoietic stem cells (HSC) as well as leukemia stem cells (LSCs). Accumulating studies have indicated that the regeneration of normal HSCs and the process of leukemogenesis change with advancing age. However, the role of microenvironmental factors in these age-related effects are unclear. Here, we compared the stem cell niche in neonatal and adult BM to investigate potential differences in their microenvironmental regulation of both normal and leukemic stem cells. We found that the mesenchymal niche in neonatal BM, compared to adult BM, was characterized by a higher frequency of primitive subsets of mesenchymal stroma expressing both platelet-derived growth factor receptor and Sca-1, and higher expression levels of the niche cross-talk molecules, Jagged-1 and CXCL-12. Accordingly, normal HSCs transplanted into neonatal mice exhibited higher levels of regeneration in BM, with no difference in homing efficiency or splenic engraftment compared to adult BM. In contrast, in vivo self-renewal of LSCs was higher in adult BM than in neonatal BM, with increased frequencies of leukemia-initiating cells as well as higher lympho-myeloid differentiation potential towards biphenotypic leukemic cells. These differences in LSC self-renewal capacity between neonates and adults was abrogated by switching of recipients, confirming their microenvironmental origin. Our study provides insight into the differences in leukemic diseases observed in childhood and adults, and is important for interpretation of many transplantation studies involving neonatal animal models.
Collapse
Affiliation(s)
- Ga-Young Lee
- Catholic High-Performance Cell Therapy Center and Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul, 137-701, Korea
| | - Seon-Yeong Jeong
- Catholic High-Performance Cell Therapy Center and Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul, 137-701, Korea
| | - Hae-Ri Lee
- Catholic High-Performance Cell Therapy Center and Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul, 137-701, Korea
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center and Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul, 137-701, Korea. .,Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul, 137-701, Korea.
| |
Collapse
|
147
|
Abstract
Two-photon intravital microscopy (2P-IVM) is an advanced imaging technique that allows the visualization of dynamic cellular behavior deeply inside tissues and organs of living animals. Due to the deep tissue penetration, imaging of highly light-scattering tissue as the bone becomes feasible at subcellular resolution.To better understand the influence of blood flow on hematopoietic stem and progenitor cell (HSPC) homing to the bone marrow (BM) microvasculature of the calvarial bone, we analyzed blood flow dynamics and the influence of flow on the early homing behavior of HSPCs during their passage through BM microvessels. Here, we describe a 2P-IVM approach for direct measurements of red blood cell (RBC) velocities in the BM microvasculature using repetitive centerline scans at the level of individual arterial vessels and sinusoidal capillaries to obtain a detailed flow profile map. Furthermore, we explain the isolation and enrichment of HSPCs from long bones and the transplantation of these cells to study the early homing behavior of HSPCs in BM sinusoids at cellular resolution. This is achieved by high-resolution spatiotemporal imaging through a chronic cranial window using transgenic reporter mice.
Collapse
Affiliation(s)
- Jonas Stewen
- Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Maria Gabriele Bixel
- Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| |
Collapse
|
148
|
Bujko K, Kucia M, Ratajczak J, Ratajczak MZ. Hematopoietic Stem and Progenitor Cells (HSPCs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:49-77. [PMID: 31898781 DOI: 10.1007/978-3-030-31206-0_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) isolated from bone marrow have been successfully employed for 50 years in hematological transplantations. Currently, these cells are more frequently isolated from mobilized peripheral blood or umbilical cord blood. In this chapter, we overview several topics related to these cells including their phenotype, methods for isolation, and in vitro and in vivo assays to evaluate their proliferative potential. The successful clinical application of HSPCs is widely understood to have helped establish the rationale for the development of stem cell therapies and regenerative medicine.
Collapse
Affiliation(s)
- Kamila Bujko
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland.
| |
Collapse
|
149
|
Argentati C, Morena F, Bazzucchi M, Armentano I, Emiliani C, Martino S. Adipose Stem Cell Translational Applications: From Bench-to-Bedside. Int J Mol Sci 2018; 19:E3475. [PMID: 30400641 PMCID: PMC6275042 DOI: 10.3390/ijms19113475] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/22/2018] [Accepted: 11/01/2018] [Indexed: 02/08/2023] Open
Abstract
During the last five years, there has been a significantly increasing interest in adult adipose stem cells (ASCs) as a suitable tool for translational medicine applications. The abundant and renewable source of ASCs and the relatively simple procedure for cell isolation are only some of the reasons for this success. Here, we document the advances in the biology and in the innovative biotechnological applications of ASCs. We discuss how the multipotential property boosts ASCs toward mesenchymal and non-mesenchymal differentiation cell lineages and how their character is maintained even if they are combined with gene delivery systems and/or biomaterials, both in vitro and in vivo.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Ilaria Armentano
- Department of Ecological and Biological Sciences, Tuscia University Largo dell'Università, snc, 01100 Viterbo, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy.
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy.
| |
Collapse
|
150
|
Identity Noise and Adipogenic Traits Characterize Dermal Fibroblast Aging. Cell 2018; 175:1575-1590.e22. [DOI: 10.1016/j.cell.2018.10.012] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/01/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023]
|