101
|
Marwick JA, Chung KF, Adcock IM. Phosphatidylinositol 3-kinase isoforms as targets in respiratory disease. Ther Adv Respir Dis 2010; 4:19-34. [PMID: 20051446 DOI: 10.1177/1753465809352792] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Respiratory diseases such as chronic obstructive pulmonary disease [COPD], severe asthma, cystic fibrosis [CF] and idiopathic pulmonary fibrosis [IPF] are inadequately controlled by current therapies. The underlying molecular mechanisms and pathogenesis of these diseases remain unclear, making identification and validation of potential new therapeutic targets difficult. However, recent studies have identified the central signalling mediator PI3K as playing an integral role in the immune system including initiation and maintenance of inflammatory responses. Specifically, the relatively leukocyte-specific PI3Kgamma and PI3Kdelta isoforms are central to leukocyte function and can be targeted pharmacologically. Early to man studies using selective PI3K isoform inhibitors are required to determine whether they have a future in treating respiratory disease, particularly in controlling both innate and adaptive inflammatory responses as well as restoring glucocorticoid function and reducing tumorigenesis.
Collapse
Affiliation(s)
- John A Marwick
- Section of Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK.
| | | | | |
Collapse
|
102
|
Abstract
PI3Ks play important roles in the signaling pathways used by a wide variety of cell surface receptors on neutrophils. Class IB PI3K plays a major role in the initial generation of PtdIns(3,4,5)P₃ by Gi-coupled G-protein coupled receptors (GPCRs) (e.g., receptors for fMLP, C5a, LTB₄). Class IA PI3Ks generate PtdIns(3,4,5)P₃ downstream of receptors which directly or indirectly couple to protein tyrosine kinases such as integrins, FcγRs, cytokine receptors, and GPCRs. The PtdIns(3,4,5)P₃ made by Class I PI3Ks regulates the activity of several different effector proteins, many of which are plasma membrane GEFs or GAPs for small GTPases. Class III PI3K generates PtdIns(3)P in the phagosome membrane and plays an important role in efficient assembly of the NADPH oxidase at this location. Much still remains to be discovered about the molecular details that govern activation of PI3Ks and the mechanisms by which these enzymes regulate complex cellular processes, such as neutrophil spreading, chemotaxis, phagocytosis, and killing of pathogens. However, it is clear from recent use of transgenic mouse models and isoform-selective PI3K inhibitors that these pathways are important in regulating neutrophil recruitment to sites of infection and damage in vivo. Thus, PI3K pathways may present novel opportunities for selective inhibition in some inflammatory pathologies.
Collapse
Affiliation(s)
- Phillip T Hawkins
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | | | | | | |
Collapse
|
103
|
Basu S, Broxmeyer HE. CCR5 ligands modulate CXCL12-induced chemotaxis, adhesion, and Akt phosphorylation of human cord blood CD34+ cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:7478-88. [PMID: 19917679 DOI: 10.4049/jimmunol.0900542] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CXCL12 and its receptor CXCR4 play an important role in hematopoietic stem/progenitor cell (HSPC) migration from and retention within the bone marrow. HSPCs are very selective in their chemotactic response and undergo chemotaxis only in response to CXCL12. In addition to CXCR4, HSPCs express receptors for various other chemokines; however, the role of these receptors is not well understood. Freshly isolated CD34(+) cells (highly enriched for HSPCs) from cord blood (CB) express low levels of CCR5; however, if the cells were washed with acidic buffer before Ab staining to remove any ligand bound to CCR5, then nearly 80% of CD34(+) CB cells were found to express CCR5 on the cell surface. Although none of the CCR5 ligands investigated in this study (CCL3, CCL4, and CCL5) induced chemotaxis, at relatively high concentrations they transiently enhanced CXCL12-mediated chemotaxis of CD34(+) CB cells. In contrast, CXCL12-mediated adhesion of cells to VCAM-1-coated surfaces was reduced if CD34(+) CB cells were pretreated with these CCR5 ligands for 15 min. The effect of these chemokines on CXCL12-mediated responses was not at the level of CXCR4 expression, but on downstream signaling pathways elicited by CXCL12. Pretreatment with CCR5 chemokines enhanced CXCL12-mediated Akt phosphorylation, but down-modulated calcium flux in CD34(+) CB cells. Modulation of CXCL12-mediated responses of CD34(+) cells by CCR5 chemokines provides a possible mechanism that underlies movement of HSPCs during inflammation.
Collapse
Affiliation(s)
- Sunanda Basu
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, Research Institute No. 2 Building, Room 302, 950 West Walnut Street, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
104
|
Yagi M, Kantarci A, Iwata T, Omori K, Ayilavarapu S, Ito K, Hasturk H, Van Dyke TE. PDK1 regulates chemotaxis in human neutrophils. J Dent Res 2009; 88:1119-24. [PMID: 19892919 DOI: 10.1177/0022034509349402] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Phosphoinositide-dependent kinase (PDK1) plays a central role in signal transduction mediated by phosphatidylinositol 3-kinases (PI3K) and regulates cellular functions in neutrophils. Neutrophils from individuals diagnosed with localized aggressive periodontitis (LAP) present an in vivo phenotype with depressed chemotaxis. The aim of this study was to test the hypothesis that PDK1 regulates chemotaxis in neutrophils and is responsible for the abnormal neutrophil chemotaxis LAP. Neutrophil chemotaxis was significantly suppressed by the PDK1 inhibitor staurosporine. When cells were transfected with PDK1 siRNA, there was a significant reduction in chemotaxis, while superoxide generation was not significantly affected. In primary neutrophils from persons with LAP, PDK1 expression and activation levels were significantly reduced, and this reduction was associated with the reduced phosphorylation of Akt (Thr308) and chemotaxis. Analysis of these data demonstrates that PDK1 is essential for the chemotactic migration of neutrophils, and in the absence of PDK1, neutrophil chemotaxis is impaired.
Collapse
Affiliation(s)
- M Yagi
- Department of Periodontology and Oral Biology, Goldman School of Dental Medicine, Boston University, 100 East Newton Street, Suite 107, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
105
|
King JS, Insall RH. Chemotaxis: finding the way forward with Dictyostelium. Trends Cell Biol 2009; 19:523-30. [PMID: 19733079 DOI: 10.1016/j.tcb.2009.07.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/03/2009] [Accepted: 07/08/2009] [Indexed: 12/22/2022]
Abstract
Understanding cell migration is centrally important to modern cell biology. However, despite years of study, progress has been hindered by experimental limitations and the complexity of the process. This has led to the popularity of Dictyostelium discoideum, with its experimentally-friendly lifestyle and small, haploid genome, as a tool to dissect the pathways involved in migration. This humble amoeba is now established at the centre of dramatic changes in our understanding of cell movement. In this review we describe the recent reinterpretation of the role of phosphatidylinositol trisphosphate (PIP(3)) and other intracellular messengers that connect signalling and migration, and the transition to models of chemotaxis driven by multiple, intertwined signalling pathways. In shallow gradients, pseudopods are generated with random directions, and we discuss how chemotaxis can operate by biasing this process. Overall we describe how Dictyostelium has the potential to unlock many fundamental questions in the cell motility field.
Collapse
|
106
|
Postischemic vascular permeability requires both TLR-2 and TLR-4, but only TLR-2 mediates the transendothelial migration of leukocytes. Shock 2009; 31:592-8. [PMID: 19008784 DOI: 10.1097/shk.0b013e318193c859] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ischemia-reperfusion (I/R) activates innate immunity involving Toll-like receptor (TLR) 2 and TLR-4 signaling. Leukocyte migration and vascular permeability contribute to postischemic tissue damage. We hypothesized that TLR-2 and TLR-4 directly mediate leukocyte migration and vascular permeability during I/R. We used in vivo microscopy on postischemic murine cremaster muscle to quantify leukocyte adhesion as well as transendothelial and interstitial migration in sham-operated wild-type mice and in wild-type, TLR-2(-/-), and TLR-4-mutant mice 30 and 120 min after I/R. Alterations in fluorescein isothiocyanate-dextran leakage across cremasteric venules were determined as a measure of endothelial permeability. I/R-induced leukocyte adhesion in TLR-2(-/-) and TLR-4-mutant mice was comparable to that in wild-type mice. The number of transmigrated leukocytes was increased upon I/R in wild-type mice as compared with the sham-operated group. In contrast, leukocyte transmigration was significantly attenuated in TLR-2(-/-) but not in TLR-4-mutant mice. Motility and polarization of interstitially migrating leukocytes did not significantly differ in TLR-2(-/-) and TLR-4-mutant mice from wild-type mice. Postischemic vascular leakage was significantly lower in both TLR-2(-/-) and TLR-4-mutant than in wild-type mice. We conclude that both TLR-2 signaling and TLR-4 signaling enhance postischemic vascular permeability and that TLR-2 has additional effects on the transendothelial migration of leukocytes at the postischemic vascular wall.
Collapse
|
107
|
Zhang H, Sun C, Glogauer M, Bokoch GM. Human neutrophils coordinate chemotaxis by differential activation of Rac1 and Rac2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:2718-28. [PMID: 19625648 PMCID: PMC3056163 DOI: 10.4049/jimmunol.0900849] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rac1 and Rac2, members of the small Rho GTPase family, play essential roles in coordinating directional migration and superoxide production during neutrophil responses to chemoattractants. Although earlier studies in Rac1 and Rac2 knockout mice have demonstrated unique roles for each Rac isoform in chemotaxis and NADPH oxidase activation, it is still unclear how human neutrophils use Rac1 and Rac2 to achieve their immunological responses to foreign agent stimulation. In the current study, we used TAT dominant-negative Rac1-T17N and Rac2-T17N fusion proteins to acutely alter the activity of Rac1 and Rac2 individually in human neutrophils. We demonstrate distinct activation kinetics and different roles for Rac1 and Rac2 in response to low vs high concentrations of fMLP. These observations were verified using neutrophils from mice in which Rac1 or Rac2 was genetically absent. Based on these results, we propose a model to explain how human neutrophils kill invading microbes while limiting oxidative damage to the adjacent surrounding healthy tissue through the differential activation of Rac1 and Rac2 in response to different concentrations of chemoattractant.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037-1092, USA
| | | | | | | |
Collapse
|
108
|
Abstract
To reach sites of inflammation, neutrophils execute a series of adhesion and migration events that include transmigration through the vascular endothelium and chemotaxis through the vicinal extracellular matrix until contact is made with the point of injury or infection. These in vivo microenvironments differ in their mechanical properties. Using polyacrylamide gels of physiologically relevant elasticity in the range of 5 to 100 kPa and coated with fibronectin, we tested how neutrophil adhesion, spreading, and migration were affected by substrate stiffness. Neutrophils on the softest gels showed only small changes in spread area, whereas on the stiffest gels they showed a 3-fold increase. During adhesion and migration, the magnitudes of the distortions induced in the gel substrate were independent of substrate stiffness, corresponding to the generation of significantly larger traction stresses on the stiffer gels. Cells migrated more slowly but more persistently on stiffer substrates, which resulted in neutrophils moving greater distances over time despite their slower speeds. The largest tractions were localized to the posterior of migrating neutrophils and were independent of substrate stiffness. Finally, the phosphatidylinositol 3-kinase inhibitor LY294002 obviated the ability to sense substrate stiffness, suggesting that phosphatidylinositol 3-kinase plays a mechanistic role in neutrophil mechanosensing.
Collapse
|
109
|
García-García E, García-García PL, Rosales C. An fMLP receptor is involved in activation of phagocytosis by hemocytes from specific insect species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:728-739. [PMID: 19166874 DOI: 10.1016/j.dci.2008.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 12/14/2008] [Accepted: 12/16/2008] [Indexed: 05/27/2023]
Abstract
In mammalian phagocytes, the bacterial formylated peptide fMLP functions both as a potent enhancer of phagocytosis and chemoattractant. fMLP has been reported to be chemotactic for hemocytes of two marine invertebrates, and of the insect Manduca sexta (Lepidoptera). Whether fMLP is also able to activate phagocytosis has not been explored in hemocytes of any invertebrate. To determine the effect of fMLP on insect hemocyte phagocytosis, in vitro phagocytosis assays were performed with hemocytes from the insects: Gromphadorhina portentosa (Blattodea), Acheta domesticus (Orthoptera), Zophobas morio (Coleoptera), and Galleria mellonella (Lepidoptera). Phagocytosis of latex, zymosan (yeast), Gram-positive and Gram-negative bacteria was measured by flow cytometry, in the presence of increasing fMLP concentrations. G. portentosa hemocytes showed no enhancement of phagocytosis by fMLP. A. domesticus hemocytes had increased phagocytosis of latex and Gram-negative bacteria in the presence of fMLP. Z. morio hemocytes increased phagocytosis of latex, yeast, and Gram-negative bacteria after fMLP stimulation. Galleria mellonella hemocytes increased phagocytosis of latex after fMLP stimulation. Treating hemocytes with Pertussis toxin, a known inhibitor of the signaling pathway initiated by the mammalian fMLP receptor, returned phagocytosis to basal levels. Also, hemocytes from all insect species tested presented a similar chemotactic response to fMLP. These data suggest that, whereas the ability of hemocytes to chemotactically-respond to fMLP is conserved in insects ranging from Blattodea to Lepidoptera, the ability to respond to fMLP by activating phagocytosis is restricted to specific insect species.
Collapse
Affiliation(s)
- Erick García-García
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | |
Collapse
|
110
|
Sarraj B, Massberg S, Li Y, Kasorn A, Subramanian K, Loison F, Silberstein LE, von Andrian U, Luo HR. Myeloid-specific deletion of tumor suppressor PTEN augments neutrophil transendothelial migration during inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:7190-200. [PMID: 19454716 PMCID: PMC3236096 DOI: 10.4049/jimmunol.0802562] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) is a second messenger that is involved in a number of cell activities including cell growth, proliferation, and motility. PIP(3) is produced by PI3K and regulated by PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SHIP lipid phosphatases. Evidence from our experiments shows that enhanced PIP(3) production results in elevated neutrophil recruitment under inflammatory conditions. However, the mechanism of this elevation is not well understood. We used intravital video microscopy to investigate neutrophil recruitment in the cremaster venules of wild-type and PTEN knockout (KO) mice. Neutrophil transmigration was augmented in PTEN KO mice 4 h after TNF-alpha intrascrotal injection. PTEN KO neutrophils also showed significantly enhanced transmigration 2 h after MIP-2 intrascrotal injection, an effect that dramatically decreased when PI3K or Src kinase inhibitor treatments preceded MIP-2 stimulation. Similarly, fMLP superfusion of the cremaster muscle lead to enhanced emigration in PTEN KO mice. The observed elevation in neutrophil emigration was likely caused by increased speed of crawling, crossing the venular wall, and migrating through the muscular tissue in PTEN KO mice because the effect of PTEN depletion on neutrophil rolling or adhesion was minimal. Interestingly, chemoattractant-induced release of gelatinase and elastase was also elevated in PTEN null neutrophils, providing a potential mechanism for the enhanced neutrophil migration in the PTEN KO mice. Collectively, these results demonstrate that PTEN deletion in neutrophils enhances their invasivity and recruitment to inflamed sites more likely by raising the cell physical capability to cross the vascular and tissue barriers.
Collapse
Affiliation(s)
- Bara Sarraj
- Department of Lab Medicine, Children’s Hospital, Boston, MA 02115
| | - Steffen Massberg
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Yitang Li
- Department of Lab Medicine, Children’s Hospital, Boston, MA 02115
| | - Anongnard Kasorn
- Department of Lab Medicine, Children’s Hospital, Boston, MA 02115
| | | | - Fabien Loison
- Department of Lab Medicine, Children’s Hospital, Boston, MA 02115
| | - Leslie E. Silberstein
- Department of Lab Medicine, Children’s Hospital, Boston, MA 02115
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | | | - Hongbo R. Luo
- Department of Lab Medicine, Children’s Hospital, Boston, MA 02115
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
111
|
Khandoga AG, Khandoga A, Reichel CA, Bihari P, Rehberg M, Krombach F. In vivo imaging and quantitative analysis of leukocyte directional migration and polarization in inflamed tissue. PLoS One 2009; 4:e4693. [PMID: 19259262 PMCID: PMC2649502 DOI: 10.1371/journal.pone.0004693] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 01/23/2009] [Indexed: 02/08/2023] Open
Abstract
Directional migration of transmigrated leukocytes to the site of injury is a central event in the inflammatory response. Here, we present an in vivo chemotaxis assay enabling the visualization and quantitative analysis of subtype-specific directional motility and polarization of leukocytes in their natural 3D microenvironment. Our technique comprises the combination of i) semi-automated in situ microinjection of chemoattractants or bacteria as local chemotactic stimulus, ii) in vivo near-infrared reflected-light oblique transillumination (RLOT) microscopy for the visualization of leukocyte motility and morphology, and iii) in vivo fluorescence microscopy for the visualization of different leukocyte subpopulations or fluorescence-labeled bacteria. Leukocyte motility parameters are quantified off-line in digitized video sequences using computer-assisted single cell tracking. Here, we show that perivenular microinjection of chemoattractants [macrophage inflammatory protein-1alpha (MIP-1alpha/Ccl3), platelet-activating factor (PAF)] or E. coli into the murine cremaster muscle induces target-oriented intravascular adhesion and transmigration as well as polarization and directional interstitial migration of leukocytes towards the locally administered stimuli. Moreover, we describe a crucial role of Rho kinase for the regulation of directional motility and polarization of transmigrated leukocytes in vivo. Finally, combining in vivo RLOT and fluorescence microscopy in Cx3CR1(gfp/gfp) mice (mice exhibiting green fluorescent protein-labeled monocytes), we are able to demonstrate differences in the migratory behavior of monocytes and neutrophils.Taken together, we propose a novel approach for investigating the mechanisms and spatiotemporal dynamics of subtype-specific motility and polarization of leukocytes during their directional interstitial migration in vivo.
Collapse
Affiliation(s)
- Alexander Georg Khandoga
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail:
| | - Andrej Khandoga
- Department of Surgery-Grosshadern, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christoph Andreas Reichel
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter Bihari
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Rehberg
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
112
|
Cohen G, Ilic D, Raupachova J, Hörl WH. Resistin inhibits essential functions of polymorphonuclear leukocytes. THE JOURNAL OF IMMUNOLOGY 2008; 181:3761-8. [PMID: 18768828 DOI: 10.4049/jimmunol.181.6.3761] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The serum levels of resistin, a 12-kDa protein primarily expressed in inflammatory cells in humans, are increased in patients with chronic kidney disease and in those with diabetes mellitus. Both groups of patients have an increased risk of infections mainly as a result of disturbed polymorphonuclear leukocyte (PMNL) functions. Therefore, we investigated the influence of resistin on human PMNLs. Serum resistin concentrations were determined with a sandwich enzyme immunoassay. Using PMNLs from healthy subjects, chemotaxis was tested by the under-agarose method. Flow cytometric assays to measure oxidative burst and phagocytosis were conducted in whole blood. The uptake of deoxyglucose was determined as measure of the PMNL activation state. The activity of intracellular kinases was assessed by Western blotting and by in vitro kinase assays. Resistin inhibited PMNL chemotaxis and decreased the oxidative burst stimulated by Escherichia coli and by PMA, but did not influence PMNL phagocytosis of opsonized E. coli and PMNL glucose uptake. The inhibition of PMNLs by resistin was observed at concentrations found in serum samples of uremic patients, but not in concentrations measured in healthy subjects. Experiments with specific signal transduction inhibitors and measurements of intracellular kinases suggest that PI3K is a major target of resistin. In conclusion, resistin interferes with the chemotactic movement and the stimulation of the oxidative burst of PMNL, and therefore may contribute to the disturbed immune response in patients with increased resistin serum levels such as uremic and diabetic subjects.
Collapse
Affiliation(s)
- Gerald Cohen
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
113
|
Abstract
A prominent activity of the chemokine system is the regulation of leukocyte trafficking. Here we summarize recent findings on the initial steps in chemokine receptor-induced signal transduction in leukocytes. In particular, we discuss the potential influences of the formation of oligomers of ligand and receptor and of coupling between chemokine signals and regulators of the cytoskeleton, such as small GTPases.
Collapse
|
114
|
Sai J, Raman D, Liu Y, Wikswo J, Richmond A. Parallel phosphatidylinositol 3-kinase (PI3K)-dependent and Src-dependent pathways lead to CXCL8-mediated Rac2 activation and chemotaxis. J Biol Chem 2008; 283:26538-47. [PMID: 18662984 PMCID: PMC2546539 DOI: 10.1074/jbc.m805611200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Indexed: 11/06/2022] Open
Abstract
The requirement for phosphatidylinositol 3-kinase (PI3K) in the establishment of cell polarity and motility in a number of cell types has recently come into question. In this study, we demonstrate that inhibition of PI3K by wortmannin in neutrophil-like differentiated HL60 cells expressing CXCR2 resulted in reduced cell motility but normal chemotaxis in response to a gradient of CXCL8. However, wortmannin inhibition of PI3K did impair the ability of cells to re-orient their polarity and respond quickly to a change in the direction of the CXCL8 gradient. We hypothesized that Src-regulated ELMO-Dock2-Rac2 activation mediates chemotaxis in the absence of PI3K activity. Inhibition of Src with the small molecule inhibitor, PP2, or inhibition of Dock2 by shRNA knockdown confirmed the functional role of Src and Dock2 in regulating chemotaxis when PI3K was inhibited. Moreover, neutrophils isolated from bone marrow of hck(-/-)fgr(-/-)lyn(-/-) mice exhibited much more severe inhibition of chemotaxis when PI3K was blocked with wortmannin as compared with neutrophils isolated from bone marrow of wild-type mice. Thus, PI3K and Src-ELMO-Dock2 pathways work in parallel to activate Rac2 and modulate chemotaxis in response to a CXCL8 gradient in neutrophils.
Collapse
Affiliation(s)
- Jiqing Sai
- Department of Veterans Affairs and
Department of Cancer Biology, School of
Medicine, Vanderbilt University, Nashville, Tennessee 37232 and the
VIIBRE and Biomedical Engineering, School of
Engineering, Vanderbilt University, Nashville, Tennessee 37212
| | - Dayanidhi Raman
- Department of Veterans Affairs and
Department of Cancer Biology, School of
Medicine, Vanderbilt University, Nashville, Tennessee 37232 and the
VIIBRE and Biomedical Engineering, School of
Engineering, Vanderbilt University, Nashville, Tennessee 37212
| | - Yuxin Liu
- Department of Veterans Affairs and
Department of Cancer Biology, School of
Medicine, Vanderbilt University, Nashville, Tennessee 37232 and the
VIIBRE and Biomedical Engineering, School of
Engineering, Vanderbilt University, Nashville, Tennessee 37212
| | - John Wikswo
- Department of Veterans Affairs and
Department of Cancer Biology, School of
Medicine, Vanderbilt University, Nashville, Tennessee 37232 and the
VIIBRE and Biomedical Engineering, School of
Engineering, Vanderbilt University, Nashville, Tennessee 37212
| | - Ann Richmond
- Department of Veterans Affairs and
Department of Cancer Biology, School of
Medicine, Vanderbilt University, Nashville, Tennessee 37232 and the
VIIBRE and Biomedical Engineering, School of
Engineering, Vanderbilt University, Nashville, Tennessee 37212
| |
Collapse
|
115
|
|
116
|
Janetopoulos C, Firtel RA. Directional sensing during chemotaxis. FEBS Lett 2008; 582:2075-85. [PMID: 18452713 PMCID: PMC2519798 DOI: 10.1016/j.febslet.2008.04.035] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 04/16/2008] [Accepted: 04/21/2008] [Indexed: 12/21/2022]
Abstract
Cells have the innate ability to sense and move towards a variety of chemoattractants. We investigate the pathways by which cells sense and respond to chemoattractant gradients. We focus on the model system Dictyostelium and compare our understanding of chemotaxis in this system with recent advances made using neutrophils and other mammalian cell types, which share many molecular components and signaling pathways with Dictyostelium. This review also examines models that have been proposed to explain how cells are able to respond to small differences in ligand concentrations between the anterior leading edge and posterior of the cell. In addition, we highlight the overlapping functions of many signaling components in diverse processes beyond chemotaxis, including random cell motility and cell division.
Collapse
Affiliation(s)
| | - Richard A. Firtel
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center of Molecular Genetics, University of California San Diego, La Jolla, CA 92093-0380 USA
| |
Collapse
|
117
|
Kay RR, Langridge P, Traynor D, Hoeller O. Changing directions in the study of chemotaxis. Nat Rev Mol Cell Biol 2008; 9:455-63. [PMID: 18500256 DOI: 10.1038/nrm2419] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chemotaxis--the guided movement of cells in chemical gradients--probably first emerged in our single-celled ancestors and even today is recognizably similar in neutrophils and amoebae. Chemotaxis enables immune cells to reach sites of infection, allows wounds to heal and is crucial for forming embryonic patterns. Furthermore, the manipulation of chemotaxis may help to alleviate disease states, including the metastasis of cancer cells. This review discusses recent results concerning how cells orientate in chemotactic gradients and the role of phosphatidylinositol-3,4,5-trisphosphate, what produces the force for projecting pseudopodia and a new role for the endocytic cycle in movement.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Hill Road, Cambridge CB2 0QH, UK.
| | | | | | | |
Collapse
|
118
|
PTEN functions to 'prioritize' chemotactic cues and prevent 'distraction' in migrating neutrophils. Nat Immunol 2008; 9:743-52. [PMID: 18536720 DOI: 10.1038/ni.1623] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 05/15/2008] [Indexed: 01/24/2023]
Abstract
Neutrophils encounter and 'prioritize' many chemoattractants in their pursuit of bacteria. Here we tested the possibility that the phosphatase PTEN is responsible for the prioritization of chemoattractants. Neutrophils induced chemotaxis by two separate pathways, the phosphatidylinositol-3-OH kinase (PI(3)K) phosphatase and tensin homolog (PTEN) pathway, and the p38 mitogen-activated protein kinase pathway, with the p38 pathway dominating over the PI(3)K pathway. Pten(-/-) neutrophils could not prioritize chemoattractants and were 'distracted' by chemokines when moving toward bacterial chemoattractants. In opposing gradients, PTEN became distributed throughout the cell circumference, which inhibited all PI(3)K activity, thus permitting 'preferential' migration toward bacterial products via phospholipase A(2) and p38. Such prioritization was defective in Pten(-/-) neutrophils, which resulted in defective bacterial clearance in vivo. Our data identify a PTEN-dependent mechanism in neutrophils to prioritize, 'triage' and integrate responses to multiple chemotactic cues.
Collapse
|