101
|
Saul L, Ilieva KM, Bax HJ, Karagiannis P, Correa I, Rodriguez-Hernandez I, Josephs DH, Tosi I, Egbuniwe IU, Lombardi S, Crescioli S, Hobbs C, Villanova F, Cheung A, Geh JLC, Healy C, Harries M, Sanz-Moreno V, Fear DJ, Spicer JF, Lacy KE, Nestle FO, Karagiannis SN. IgG subclass switching and clonal expansion in cutaneous melanoma and normal skin. Sci Rep 2016; 6:29736. [PMID: 27411958 PMCID: PMC4944184 DOI: 10.1038/srep29736] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/22/2016] [Indexed: 12/19/2022] Open
Abstract
B cells participate in immune surveillance in human circulation and tissues, including tumors such as melanoma. By contrast, the role of humoral responses in cutaneous immunity is underappreciated. We report circulating skin-homing CD22+CLA+B cells in healthy volunteers and melanoma patients (n = 73) and CD22+ cells in melanoma and normal skin samples (n = 189). Normal and malignant skin featured mature IgG and CD22 mRNA, alongside mRNA for the transiently-expressed enzyme Activation-induced cytidine Deaminase (AID). Gene expression analyses of publically-available data (n = 234 GEO, n = 384 TCGA) confirmed heightened humoral responses (CD20, CD22, AID) in melanoma. Analyses of 51 melanoma-associated and 29 normal skin-derived IgG sequence repertoires revealed lower IgG1/IgGtotal representation compared with antibodies from circulating B cells. Consistent with AID, comparable somatic hypermutation frequencies and class-switching indicated affinity-matured antibodies in normal and malignant skin. A melanoma-associated antibody subset featured shorter complementarity-determining (CDR3) regions relative to those from circulating B cells. Clonal amplification in melanoma-associated antibodies and homology modeling indicated differential potential antigen recognition profiles between normal skin and melanoma sequences, suggesting distinct antibody repertoires. Evidence for IgG-expressing B cells, class switching and antibody maturation in normal and malignant skin and clonally-expanded antibodies in melanoma, support the involvement of mature B cells in cutaneous immunity.
Collapse
Affiliation(s)
- Louise Saul
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London &NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London SE1 9RT, United Kingdom.,Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, 3rd Floor Bermondsey Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Kristina M Ilieva
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London &NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London SE1 9RT, United Kingdom.,Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, 3rd Floor Bermondsey Wing, Guy's Hospital, London, United Kingdom
| | - Heather J Bax
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London &NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London SE1 9RT, United Kingdom.,Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, 3rd Floor Bermondsey Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Panagiotis Karagiannis
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London &NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London SE1 9RT, United Kingdom
| | - Isabel Correa
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London &NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London SE1 9RT, United Kingdom
| | - Irene Rodriguez-Hernandez
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, United Kingdom
| | - Debra H Josephs
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London &NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London SE1 9RT, United Kingdom.,Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, 3rd Floor Bermondsey Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Isabella Tosi
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London &NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London SE1 9RT, United Kingdom
| | - Isioma U Egbuniwe
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London &NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London SE1 9RT, United Kingdom
| | - Sara Lombardi
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London &NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London SE1 9RT, United Kingdom.,Skin Tumor Unit, St. John's Institute of Dermatology, Guy's Hospital, King's College London and Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Silvia Crescioli
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London &NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London SE1 9RT, United Kingdom
| | - Carl Hobbs
- Wolfson Center for Age-Related Diseases; King's College London, London, UK
| | - Federica Villanova
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London &NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London SE1 9RT, United Kingdom
| | - Anthony Cheung
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London &NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London SE1 9RT, United Kingdom.,Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, 3rd Floor Bermondsey Wing, Guy's Hospital, London, United Kingdom
| | - Jenny L C Geh
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Ciaran Healy
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Mark Harries
- Clinical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Victoria Sanz-Moreno
- Tumour Plasticity Laboratory, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, United Kingdom
| | - David J Fear
- Division of Asthma, Allergy and Lung Biology, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London, United Kingdom
| | - James F Spicer
- Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, 3rd Floor Bermondsey Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Katie E Lacy
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London &NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London SE1 9RT, United Kingdom.,Skin Tumor Unit, St. John's Institute of Dermatology, Guy's Hospital, King's College London and Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Frank O Nestle
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London &NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London SE1 9RT, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London &NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London SE1 9RT, United Kingdom
| |
Collapse
|
102
|
Garg B, Pathria G, Wagner C, Maurer M, Wagner SN. Signal Sequence Receptor 2 is required for survival of human melanoma cells as part of an unfolded protein response to endoplasmic reticulum stress. Mutagenesis 2016; 31:573-82. [PMID: 27180333 DOI: 10.1093/mutage/gew023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Current therapy approaches in melanoma targeting have met with the development of resistance and tumour recurrence with a more aggressive phenotype. In a quest for alternative therapy targets, we had previously identified Signal Sequence Receptor 2 (SSR2) as a gene with high expression in a subgroup of human primary melanomas. Now we show that SSR2 exerts a prosurvival functionality in human melanoma cells and that high expression levels of SSR2 are associated with an unfavourable disease outcome in primary melanoma patients. Consistent with SSR's role in translocation of proteins from the ribosome across the endoplasmic reticulum (ER) membrane, our data supports induction of SSR2 as a part of the ER stress response. This response included SSR2 upregulation upon development of therapy resistance to BRAF inhibitors, as well as the dependency of cell survival of BRAF inhibitor-resistant melanoma cells on SSR2. Complementary gain and loss of function data showed the Unfolded Protein Response (UPR) to ER stress as an inducer of SSR2 via transcriptional regulation through X-Box Binding Protein 1s (XBP1s) and support an ER stress-UPR-Transcription Factor XBP1s-SSR2 response axis in human melanocytic cells. Together with its dispensability for survival in normal human cells, these data propose SSR2 as a potential therapeutic target in (therapy-resistant) human melanoma.
Collapse
Affiliation(s)
- Bhavuk Garg
- Division of Immunology Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna A-1090, Austria
| | - Gaurav Pathria
- Division of Immunology Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna A-1090, Austria, Present address: Biochemical-Pharmacological Center, University of Marburg, Karl-von-Frisch-Straße, Marburg 35032, Germany
| | - Christine Wagner
- Division of Immunology Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna A-1090, Austria
| | - Margarita Maurer
- Division of Immunology Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna A-1090, Austria
| | - Stephan N Wagner
- Division of Immunology Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna A-1090, Austria,
| |
Collapse
|
103
|
Hu ZY, Liu YP, Xie LY, Wang XY, Yang F, Chen SY, Li ZG. AKAP-9 promotes colorectal cancer development by regulating Cdc42 interacting protein 4. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1172-81. [PMID: 27039663 DOI: 10.1016/j.bbadis.2016.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/29/2016] [Accepted: 03/25/2016] [Indexed: 02/07/2023]
Abstract
Our previous studies have shown that PRKA kinase anchor protein 9 (AKAP-9) is involved in colorectal cancer (CRC) cell proliferation and migration in vitro. However, whether or not AKAP-9 is important for CRC development or metastasis in vivo remains unknown. In the present study, we found that AKAP-9 expression was significantly higher in human colorectal cancer tissues than the paired normal tissues. In fact, AKAP-9 level correlated with the CRC infiltrating depth and metastasis. Moreover, the higher AKAP-9 expression was associated with the lower survival rate in patients. In cultured CRC cells, knockdown of AKAP-9 inhibited cell proliferation, invasion, and migration. AKAP-9 deficiency also attenuated CRC tumor growth and metastasis in vivo. Mechanistically, AKAP-9 interacted with cdc42 interacting protein 4 (CIP4) and regulated its expression. CIP4 levels were interrelated to the AKAP-9 level in CRC cells. Functionally, AKAP-9 was essential for TGF-β1-induced epithelial-mesenchymal transition of CRC cells, and CIP4 played a critical role in mediating the function of AKAP-9. Importantly, CIP4 expression was significantly up-regulated in human CRC tissues. Taken together, our results demonstrated that AKAP-9 facilitates CRC development and metastasis via regulating CIP4-mediated epithelial-mesenchymal transition of CRC cells.
Collapse
Affiliation(s)
- Zhi-Yan Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou 510515, China
| | - Yan-Ping Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou 510515, China
| | - Lin-Ying Xie
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou 510515, China
| | - Xiao-Yan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou 510515, China
| | - Fang Yang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou 510515, China
| | - Shi-You Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, United States.
| | - Zu-Guo Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumour Pathology, Guangzhou 510515, China.
| |
Collapse
|
104
|
Zhang G, Frederick DT, Wu L, Wei Z, Krepler C, Srinivasan S, Chae YC, Xu X, Choi H, Dimwamwa E, Ope O, Shannan B, Basu D, Zhang D, Guha M, Xiao M, Randell S, Sproesser K, Xu W, Liu J, Karakousis GC, Schuchter LM, Gangadhar TC, Amaravadi RK, Gu M, Xu C, Ghosh A, Xu W, Tian T, Zhang J, Zha S, Liu Q, Brafford P, Weeraratna A, Davies MA, Wargo JA, Avadhani NG, Lu Y, Mills GB, Altieri DC, Flaherty KT, Herlyn M. Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors. J Clin Invest 2016; 126:1834-56. [PMID: 27043285 DOI: 10.1172/jci82661] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 02/18/2016] [Indexed: 12/22/2022] Open
Abstract
Targeting multiple components of the MAPK pathway can prolong the survival of patients with BRAFV600E melanoma. This approach is not curative, as some BRAF-mutated melanoma cells are intrinsically resistant to MAPK inhibitors (MAPKi). At the systemic level, our knowledge of how signaling pathways underlie drug resistance needs to be further expanded. Here, we have shown that intrinsically resistant BRAF-mutated melanoma cells with a low basal level of mitochondrial biogenesis depend on this process to survive MAPKi. Intrinsically resistant cells exploited an integrated stress response, exhibited an increase in mitochondrial DNA content, and required oxidative phosphorylation to meet their bioenergetic needs. We determined that intrinsically resistant cells rely on the genes encoding TFAM, which controls mitochondrial genome replication and transcription, and TRAP1, which regulates mitochondrial protein folding. Therefore, we targeted mitochondrial biogenesis with a mitochondrium-targeted, small-molecule HSP90 inhibitor (Gamitrinib), which eradicated intrinsically resistant cells and augmented the efficacy of MAPKi by inducing mitochondrial dysfunction and inhibiting tumor bioenergetics. A subset of tumor biopsies from patients with disease progression despite MAPKi treatment showed increased mitochondrial biogenesis and tumor bioenergetics. A subset of acquired drug-resistant melanoma cell lines was sensitive to Gamitrinib. Our study establishes mitochondrial biogenesis, coupled with aberrant tumor bioenergetics, as a potential therapy escape mechanism and paves the way for a rationale-based combinatorial strategy to improve the efficacy of MAPKi.
Collapse
|
105
|
Overcoming MITF-conferred drug resistance through dual AURKA/MAPK targeting in human melanoma cells. Cell Death Dis 2016; 7:e2135. [PMID: 26962685 PMCID: PMC4823922 DOI: 10.1038/cddis.2015.369] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/04/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
Abstract
MITF (microphthalmia-associated transcription factor) is a frequently amplified lineage-specific oncogene in human melanoma, whose role in intrinsic drug resistance has not been systematically investigated. Utilizing chemical inhibitors for major signaling pathways/cellular processes, we witness MITF as an elicitor of intrinsic drug resistance. To search kinase(s) targets able to bypass MITF-conferred drug resistance, we employed a multi-kinase inhibitor-directed chemical proteomics-based differential affinity screen in human melanocytes carrying ectopic MITF overexpression. A subsequent methodical interrogation informed mitotic Ser/Thr kinase Aurora Kinase A (AURKA) as a crucial regulator of melanoma cell proliferation and migration, independent of the underlying molecular alterations, including TP53 functional status and MITF levels. Crucially, assessing the efficacy of investigational AURKA inhibitor MLN8237, we pre-emptively witness the procurement of a molecular program consistent with acquired drug resistance. This involved induction of multiple MAPK (mitogen-activated protein kinase) signaling pathway components and their downstream proliferation effectors (Cyclin D1 and c-JUN) and apoptotic regulators (MITF and Bcl-2). A concomitant AURKA/BRAF and AURKA/MEK targeting overcame MAPK signaling activation-associated resistance signature in BRAF- and NRAS-mutated melanomas, respectively, and elicited heightened anti-proliferative activity and apoptotic cell death. These findings reveal a previously unreported MAPK signaling-mediated mechanism of immediate resistance to AURKA inhibitors. These findings could bear significant implications for the application and the success of anti-AURKA approaches that have already entered phase-II clinical trials for human melanoma.
Collapse
|
106
|
Prediction of the engendering mechanism and specific genes of primary melanoma by bioinformatics analysis. DERMATOL SIN 2016. [DOI: 10.1016/j.dsi.2015.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
107
|
Dugo M, Nicolini G, Tragni G, Bersani I, Tomassetti A, Colonna V, Del Vecchio M, De Braud F, Canevari S, Anichini A, Sensi M. A melanoma subtype with intrinsic resistance to BRAF inhibition identified by receptor tyrosine kinases gene-driven classification. Oncotarget 2016; 6:5118-33. [PMID: 25742786 PMCID: PMC4467137 DOI: 10.18632/oncotarget.3007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/21/2014] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of receptor tyrosine kinases (RTKs) contributes to several aspects of oncogenesis including drug resistance. In melanoma, distinct RTKs have been involved in BRAF inhibitors (BRAFi) resistance, yet the utility of RTKs expression pattern to identify intrinsically resistant tumors has not been assessed. Transcriptional profiling of RTKs and integration with a previous classification, reveals three robust subtypes in two independent datasets of melanoma cell lines and one cohort of melanoma samples. This classification was validated by Western blot in a panel of patient-derived melanoma cell lines. One of the subtypes identified here for the first time displayed the highest and lowest expression of EGFR and ERBB3, respectively, and included BRAF-mutant tumors all intrinsically resistant to BRAFi PLX4720, as assessed by analysis of the Cancer Cell Line Encyclopedia pharmacogenomic study and by in vitro growth inhibition assays. High levels of EGFR were detected, even before therapy, in tumor cells of one of three melanoma patients unresponsive to BRAFi. Use of different pharmacological inhibitors highlighted the relevance of PI3K/mTOR signaling for growth of this PLX4720-resistant subtype. Our results identify a specific molecular profile of melanomas intrinsically resistant to BRAFi and suggest the PI3K/mTOR pathway as a potential therapeutic target for these tumors.
Collapse
Affiliation(s)
- Matteo Dugo
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gabriella Nicolini
- Unit of Immunobiology of Human Tumors, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gabrina Tragni
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ilaria Bersani
- Unit of Immunobiology of Human Tumors, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonella Tomassetti
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valentina Colonna
- Department of Clinical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Del Vecchio
- Department of Clinical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo De Braud
- Department of Clinical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvana Canevari
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Anichini
- Unit of Immunobiology of Human Tumors, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marialuisa Sensi
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Unit of Immunobiology of Human Tumors, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
108
|
Nagamani SCS, Erez A. A metabolic link between the urea cycle and cancer cell proliferation. Mol Cell Oncol 2016; 3:e1127314. [PMID: 27308634 DOI: 10.1080/23723556.2015.1127314] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 11/27/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022]
Abstract
Clinical observations in citrullinemia type I, an inborn error of metabolism, led us to explore the benefits of somatic ASS1 silencing in cancer. We found that downregulation of ASS1 results in preferential utilization of its substrate, aspartate, for pyrimidine synthesis to support cell proliferation. Reducing aspartate availability for pyrimidine synthesis restricted cancerous proliferation.
Collapse
Affiliation(s)
- Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science , Rehovot, Israel
| |
Collapse
|
109
|
Microarray Analysis of Differentially-Expressed Genes Encoding CYP450 and Phase II Drug Metabolizing Enzymes in Psoriasis and Melanoma. Pharmaceutics 2016; 8:pharmaceutics8010004. [PMID: 26901218 PMCID: PMC4810080 DOI: 10.3390/pharmaceutics8010004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/21/2016] [Accepted: 01/29/2016] [Indexed: 12/22/2022] Open
Abstract
Cytochrome P450 drug metabolizing enzymes are implicated in personalized medicine for two main reasons. First, inter-individual variability in CYP3A4 expression is a confounding factor during cancer treatment. Second, inhibition or induction of CYP3A4 can trigger adverse drug–drug interactions. However, inflammation can downregulate CYP3A4 and other drug metabolizing enzymes and lead to altered metabolism of drugs and essential vitamins and lipids. Little is known about effects of inflammation on expression of CYP450 genes controlling drug metabolism in the skin. Therefore, we analyzed seven published microarray datasets, and identified differentially-expressed genes in two inflammatory skin diseases (melanoma and psoriasis). We observed opposite patterns of expression of genes regulating metabolism of specific vitamins and lipids in psoriasis and melanoma samples. Thus, genes controlling the turnover of vitamin D (CYP27B1, CYP24A1), vitamin A (ALDH1A3, AKR1B10), and cholesterol (CYP7B1), were up-regulated in psoriasis, whereas melanomas showed downregulation of genes regulating turnover of vitamin A (AKR1C3), and cholesterol (CYP39A1). Genes controlling abnormal keratinocyte differentiation and epidermal barrier function (CYP4F22, SULT2B1) were up-regulated in psoriasis. The up-regulated CYP24A1, CYP4F22, SULT2B1, and CYP7B1 genes are potential drug targets in psoriatic skin. Both disease samples showed diminished drug metabolizing capacity due to downregulation of the CYP1B1 and CYP3A5 genes. However, melanomas showed greater loss of drug metabolizing capacity due to downregulation of the CYP3A4 gene.
Collapse
|
110
|
Bi R, Shen X, Zhang W, Cheng Y, Feng Z, Cai X, Yang W. Clear cell carcinomas of the ovary: a mono-institutional study of 73 cases in China with an analysis of the prognostic significance of clinicopathological parameters and IMP3 expression. Diagn Pathol 2016; 11:17. [PMID: 26837693 PMCID: PMC4736169 DOI: 10.1186/s13000-016-0467-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/14/2016] [Indexed: 01/07/2023] Open
Abstract
Background Ovarian clear cell carcinoma (CCC) is an uncommon subtype of ovarian epithelial tumor. The prognostic significance of its clinicopathological parameters is discordant, with the exception of stage as the adverse prognostic factor. The present study aimed to evaluate the prognostic significance of its clinicopathological characteristics and the expression of IMP3 (Insulin-like growth factor-II mRNA-binding protein 3, IMP3 or IGF2BP3) in Chinese patients with primary pure CCC. Methods We collected clinicopathological data from 73 cases with a minimum of 5 years of follow-up and evaluated the expression of IMP3 by immunohistochemistry. Results In total, 49.3 % of the patients were in stage I. Advanced stages were closely related to poor prognosis of disease-free survival (DFS) and overall survival (OS) (P < 0.005). Patients with CCC coexisting with endometriosis tended to be younger and to have unilateral involvement but did not exhibit differences in prognosis compared with patients with CCC without endometriosis. Other histological features such as growth pattern, mitosis, and necrosis did not have prognostic significance. IMP3 was positive in 63 % of patients (46 of 73 cases); Thus, positive expression of IMP3 is an adverse prognostic marker in terms of OS (P = 0.012), even in stage I patients (P = 0.038). Conclusions The present study demonstrates that IMP3 expression is a prognostic marker, with the exception of stage. IMP3 represents a biomarker of unfavorable prognosis even in stage I patients.
Collapse
Affiliation(s)
- Rui Bi
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xuxia Shen
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Weiwei Zhang
- Psycho-Oncology Research & Training (CePORT), School of Public Health, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Yufan Cheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zheng Feng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Xu Cai
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Wentao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
111
|
Gandolfi G, Longo C, Moscarella E, Zalaudek I, Sancisi V, Raucci M, Manzotti G, Gugnoni M, Piana S, Argenziano G, Ciarrocchi A. The extent of whole-genome copy number alterations predicts aggressive features in primary melanomas. Pigment Cell Melanoma Res 2016; 29:163-75. [DOI: 10.1111/pcmr.12436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Greta Gandolfi
- Laboratory of Translational Research; Arcispedale S. Maria Nuova-IRCCS; Reggio Emilia Italy
| | - Caterina Longo
- Skin Cancer Unit; Arcispedale Santa Maria Nuova-IRCCS; Reggio Emilia Italy
| | - Elvira Moscarella
- Skin Cancer Unit; Arcispedale Santa Maria Nuova-IRCCS; Reggio Emilia Italy
| | - Iris Zalaudek
- Department of Dermatology and Venerology; Non-Melanoma Skin Cancer Unit; Medical University of Graz; Graz Austria
| | - Valentina Sancisi
- Laboratory of Translational Research; Arcispedale S. Maria Nuova-IRCCS; Reggio Emilia Italy
| | - Margherita Raucci
- Skin Cancer Unit; Arcispedale Santa Maria Nuova-IRCCS; Reggio Emilia Italy
| | - Gloria Manzotti
- Laboratory of Translational Research; Arcispedale S. Maria Nuova-IRCCS; Reggio Emilia Italy
| | - Mila Gugnoni
- Laboratory of Translational Research; Arcispedale S. Maria Nuova-IRCCS; Reggio Emilia Italy
| | - Simonetta Piana
- Pathology Unit; Arcispedale S. Maria Nuova-IRCCS; Reggio Emilia Italy
| | - Giuseppe Argenziano
- Skin Cancer Unit; Arcispedale Santa Maria Nuova-IRCCS; Reggio Emilia Italy
- Dermatology Unit; Second University of Naples; Naples Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research; Arcispedale S. Maria Nuova-IRCCS; Reggio Emilia Italy
| |
Collapse
|
112
|
Ferretti R, Bhutkar A, McNamara MC, Lees JA. BMI1 induces an invasive signature in melanoma that promotes metastasis and chemoresistance. Genes Dev 2016; 30:18-33. [PMID: 26679841 PMCID: PMC4701976 DOI: 10.1101/gad.267757.115] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/18/2015] [Indexed: 01/17/2023]
Abstract
Melanoma can switch between proliferative and invasive states, which have identifying gene expression signatures that correlate with good and poor prognosis, respectively. However, the mechanisms controlling these signatures are poorly understood. In this study, we identify BMI1 as a key determinant of melanoma metastasis by which its overexpression enhanced and its deletion impaired dissemination. Remarkably, in this tumor type, BMI1 had no effect on proliferation or primary tumor growth but enhanced every step of the metastatic cascade. Consistent with the broad spectrum of effects, BMI1 activated widespread gene expression changes, which are characteristic of melanoma progression and also chemoresistance. Accordingly, we showed that up-regulation or down-regulation of BMI1 induced resistance or sensitivity to BRAF inhibitor treatment and that induction of noncanonical Wnt by BMI1 is required for this resistance. Finally, we showed that our BMI1-induced gene signature encompasses all of the hallmarks of the previously described melanoma invasive signature. Moreover, our signature is predictive of poor prognosis in human melanoma and is able to identify primary tumors that are likely to become metastatic. These data yield key insights into melanoma biology and establish BMI1 as a compelling drug target whose inhibition would suppress both metastasis and chemoresistance of melanoma.
Collapse
Affiliation(s)
- Roberta Ferretti
- David H. Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts 02139, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts 02139, USA
| | - Molly C McNamara
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jacqueline A Lees
- David H. Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
113
|
Abstract
In the context of breast cancer, the importance of the skeleton in the regulation of primary tumour development and as a site for subsequent metastasis is well characterized. Our understanding of the contributions made by the host bone and bone marrow cells increasingly demonstrates the extent of the interaction between tumour cells and normal host cells. As a result, the need to develop and utilize therapies that can impede the growth and/or function of tumour cells while sparing normal host bone and bone marrow cells is immense and expanding. The need for these new treatments is, however, superimposed on the orthopaedic management of patients' quality of life, where pain control and continued locomotion are paramount. Indeed, the majority of the anticancer therapies used to date often result in direct or indirect damage to bone. Thus, although the bone microenvironment regulates tumour cell growth in bone, cells within the bone marrow niche also mediate many of the orthopaedic consequences of tumour progression as well as resistance to the antitumour effects of existing therapies. In this Review, we highlight the effects of existing cancer treatments on bone and the bone marrow microenvironment as well as the mechanisms mediating these effects and the current utility of modern orthopaedic interventions.
Collapse
Affiliation(s)
- Issam Makhoul
- Department of Medicine, Division of Haematology/Oncology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Corey O Montgomery
- Department of Orthopaedic Surgery, Centre for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Dana Gaddy
- Department of Physiology and Biophysics, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Larry J Suva
- Department of Orthopaedic Surgery, Centre for Orthopaedic Research, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| |
Collapse
|
114
|
Rabinovich S, Adler L, Yizhak K, Sarver A, Silberman A, Agron S, Stettner N, Sun Q, Brandis A, Helbling D, Korman S, Itzkovitz S, Dimmock D, Ulitsky I, Nagamani SCS, Ruppin E, Erez A. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature 2015; 527:379-383. [PMID: 26560030 PMCID: PMC4655447 DOI: 10.1038/nature15529] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 08/27/2015] [Indexed: 12/19/2022]
Abstract
Cancer cells hijack and remodel existing metabolic pathways for their benefit. Argininosuccinate synthase (ASS1) is a urea cycle enzyme that is essential in the conversion of nitrogen from ammonia and aspartate to urea. A decrease in nitrogen flux through ASS1 in the liver causes the urea cycle disorder citrullinaemia. In contrast to the well-studied consequences of loss of ASS1 activity on ureagenesis, the purpose of its somatic silencing in multiple cancers is largely unknown. Here we show that decreased activity of ASS1 in cancers supports proliferation by facilitating pyrimidine synthesis via CAD (carbamoyl-phosphate synthase 2, aspartate transcarbamylase, and dihydroorotase complex) activation. Our studies were initiated by delineating the consequences of loss of ASS1 activity in humans with two types of citrullinaemia. We find that in citrullinaemia type I (CTLN I), which is caused by deficiency of ASS1, there is increased pyrimidine synthesis and proliferation compared with citrullinaemia type II (CTLN II), in which there is decreased substrate availability for ASS1 caused by deficiency of the aspartate transporter citrin. Building on these results, we demonstrate that ASS1 deficiency in cancer increases cytosolic aspartate levels, which increases CAD activation by upregulating its substrate availability and by increasing its phosphorylation by S6K1 through the mammalian target of rapamycin (mTOR) pathway. Decreasing CAD activity by blocking citrin, the mTOR signalling, or pyrimidine synthesis decreases proliferation and thus may serve as a therapeutic strategy in multiple cancers where ASS1 is downregulated. Our results demonstrate that ASS1 downregulation is a novel mechanism supporting cancerous proliferation, and they provide a metabolic link between the urea cycle enzymes and pyrimidine synthesis.
Collapse
Affiliation(s)
- Shiran Rabinovich
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Lital Adler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Yizhak
- The Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv
| | - Alona Sarver
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Silberman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shani Agron
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Stettner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Qin Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Daniel Helbling
- Human and Molecular Genetic and Biochemistry center, Medical College Wisconsin, Milwaukee, Wisconsin
| | - Stanley Korman
- Genetic and Metabolic Center, Hadassah Medical Center, Jerusalem, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Dimmock
- Human and Molecular Genetic and Biochemistry center, Medical College Wisconsin, Milwaukee, Wisconsin
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sandesh CS Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, TX, USA
| | - Eytan Ruppin
- The Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv
- Center for Bioinformatics and Computational Biology & Dept. of Computer Science, University of Maryland, College Park, MD
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
115
|
Zhang G, Cheng Y, Chen G, Tang Y, Ardekani G, Rotte A, Martinka M, McElwee K, Xu X, Wang Q, Zhou Y. Loss of tumor suppressors KAI1 and p27 identifies a unique subgroup of primary melanoma patients with poor prognosis. Oncotarget 2015; 6:23026-35. [PMID: 26246476 PMCID: PMC4673219 DOI: 10.18632/oncotarget.4854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/10/2015] [Indexed: 02/05/2023] Open
Abstract
Primary melanoma, a highly aggressive malignancy, exhibits heterogeneity in biologic behaviors, clinical characteristics, metastasis potential and mortality. The present study sought to identify the molecular signatures that define a subgroup of primary melanomas with high risks of metastasis and mortality. First, we identified the markers that best differentiated metastatic melanomas from primary melanomas by examining the expression of seven previously reported biomarkers (BRAF, Dicer, Fbw7, KAI1, MMP2, p27 and Tip60) in a training cohort consisting of 145 primary melanomas and 105 metastatic melanomas. KAI1 and p27, both tumor suppressors, emerged as best candidates. Loss of both tumor suppressors occurred in the majority (74.29%) of metastatic melanomas. Further, a subset (metastatic like, or "ML", 33.10%) of primary melanomas also lost these two tumor suppressors. Kaplan-Meier analysis indicated that ML subgroup of primary melanoma patients had much worse 5 year survival compared with other primary melanoma patients (P = 0.002). The result was confirmed in an independent validation cohort with 92 primary melanomas (P = 0.030) and in the combined cohort with 237 melanoma patients (P = 3.00E-4). Additionally, compared to KAI1 and p27 as an individual prognostic marker, the combined signature is more closely associated with melanoma patient survival (P = 0.025, 0.264 and 0.009, respectively). In conclusion, loss of both KAI1 and p27 defines a subgroup of primary melanoma patients with poor prognosis. This molecular signature may help in metastatic melanoma diagnosis and may provide information useful in identifying high-risk primary melanoma patients for more intensive clinical surveillance in the future.
Collapse
Affiliation(s)
- Guohong Zhang
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yabin Cheng
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun Tang
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gholamreza Ardekani
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anand Rotte
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Magdalena Martinka
- Department of Pathology, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin McElwee
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xuezhu Xu
- Department of Dermatology, 2nd Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qi Wang
- Department of Dermatology, 2nd Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Youwen Zhou
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Dermatology, 2nd Affiliated Hospital, Dalian Medical University, Dalian, China
- Dermatologic Oncology Program, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| |
Collapse
|
116
|
Abstract
It is proposed that most papillary thyroid cancers originate in infancy and childhood, based on the early rise in sporadic thyroid carcinoma incidence, the pattern of radiation-induced risk (highest in those exposed as infants), and the high prevalence of sporadic papillary thyroid cancers in children and adolescents (ultrasound screening after the Fukushima accident). The early origin can be linked to the growth pattern of follicular cells, with a high mitotic rate in infancy falling to very low replacement levels in adult life. The cell of origin of thyroid cancers, the differentiated follicular cell, has a limited growth potential. Unlike cancers originating in stem cells, loss of the usually tight link between differentiation and replicative senescence is required for immortalisation. It is suggested that this loss distinguishes larger clinically significant papillary thyroid cancers from micro-papillary thyroid cancers of little clinical significance. Papillary carcinogenesis can then be divided into 3 stages: (1) initiation, the first mutation in the carcinogenic cascade, for radiation-induced papillary thyroid cancers usually a RET rearrangement, (2) progression, acquisition of the additional mutations needed for low-grade malignancy, and (3) escape, further mutations giving immortality and a higher net growth rate. Most papillary thyroid cancers will not have achieved full immortality by adulthood, and remain as so-called micro-carcinomas with a very low growth rate. The use of the term 'cancer' to describe micro-papillary thyroid cancers in older patients encourages overtreatment and alarms patients. Invasive papillary thyroid tumours show a spectrum of malignancy, which at its lowest poses no threat to life. The treatment protocols and nomenclature for small papillary carcinomas need to be reconsidered in the light of the new evidence available, the continuing discovery of smaller lesions, and the model of thyroid carcinogenesis proposed.
Collapse
Affiliation(s)
- Dillwyn Williams
- Department of Public Health, University of Cambridge, Cambridge, UK
| |
Collapse
|
117
|
Vange P, Bruland T, Beisvag V, Erlandsen SE, Flatberg A, Doseth B, Sandvik AK, Bakke I. Genome-wide analysis of the oxyntic proliferative isthmus zone reveals ASPM as a possible gastric stem/progenitor cell marker over-expressed in cancer. J Pathol 2015; 237:447-59. [PMID: 26178168 PMCID: PMC5049620 DOI: 10.1002/path.4591] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/22/2015] [Accepted: 07/13/2015] [Indexed: 12/20/2022]
Abstract
The oxyntic proliferative isthmus zone contains the main stem/progenitor cells that provide for physiological renewal of the distinct mature cell lineages in the oxyntic epithelium of the stomach. These cells are also proposed to be the potential cells-of-origin of gastric cancer, although little is known about their molecular characteristics and specific biological markers are lacking. In this study, we developed a method for serial section-navigated laser microdissection to isolate cells from the proliferative isthmus zone of rat gastric oxyntic mucosa for genome-wide microarray gene expression analysis. Enrichment analysis showed a distinct gene expression profile for the isthmus zone, with genes regulating intracellular processes such as the cell cycle and ribosomal activity. The profile was also related to stem cell transcriptional networks and stomach neoplasia. Genes expressed uniquely in the isthmus zone were associated with E2F transcription factor 1 (E2F1), which participates in the self-renewal of stem cells and in gastric carcinogenesis. One of the unique genes was Aspm [Asp (abnormal spindle) homologue, microcephaly-associated (Drosophila)]. Here we show ASPM in single scattered epithelial cells located in the proliferative isthmus zone of rat, mouse and human oxyntic mucosa, which do not seem to be actively dividing. The ASPM-expressing cells are mainly mature cell marker-deficient, except for a limited overlap with cells with neuroendocrine and tuft cell features. Further, both ASPM and E2F1 were expressed in human gastric cancer cell lines and increased and correlated in human gastric adenocarcinomas compared to non-tumour mucosa, as shown by expression profile analyses and immunohistochemistry. The association between ASPM and the transcription factor E2F1 in gastric tissue is relevant, due to their common involvement in crucial cell fate-regulatory mechanisms. Our results thus introduce ASPM as a novel possible oxyntic stem/progenitor cell marker that may be involved in both normal gastric physiology and gastric carcinogenesis.
Collapse
Affiliation(s)
- Pål Vange
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Central Norway Regional Health Authority (RHA), Stjørdal, Norway
| | - Torunn Bruland
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Central Norway Regional Health Authority (RHA), Stjørdal, Norway
| | - Vidar Beisvag
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sten Even Erlandsen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Arnar Flatberg
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Berit Doseth
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Central Norway Regional Health Authority (RHA), Stjørdal, Norway
| | - Arne K Sandvik
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Central Norway Regional Health Authority (RHA), Stjørdal, Norway.,Department of Gastroenterology and Hepatology, St. Olav's University Hospital, Trondheim, Norway.,Centre of Molecular Inflammation Research (CEMIR), NTNU, Trondheim, Norway
| | - Ingunn Bakke
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Central Norway Regional Health Authority (RHA), Stjørdal, Norway
| |
Collapse
|
118
|
Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc Natl Acad Sci U S A 2015; 112:10995-1000. [PMID: 26286987 DOI: 10.1073/pnas.1508074112] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Melanoma is difficult to treat once it becomes metastatic. However, the precise ancestral relationship between primary tumors and their metastases is not well understood. We performed whole-exome sequencing of primary melanomas and multiple matched metastases from eight patients to elucidate their phylogenetic relationships. In six of eight patients, we found that genetically distinct cell populations in the primary tumor metastasized in parallel to different anatomic sites, rather than sequentially from one site to the next. In five of these six patients, the metastasizing cells had themselves arisen from a common parental subpopulation in the primary, indicating that the ability to establish metastases is a late-evolving trait. Interestingly, we discovered that individual metastases were sometimes founded by multiple cell populations of the primary that were genetically distinct. Such establishment of metastases by multiple tumor subpopulations could help explain why identical resistance variants are identified in different sites after initial response to systemic therapy. One primary tumor harbored two subclones with different oncogenic mutations in CTNNB1, which were both propagated to the same metastasis, raising the possibility that activation of wingless-type mouse mammary tumor virus integration site (WNT) signaling may be involved, as has been suggested by experimental models.
Collapse
|
119
|
Tonucci FM, Hidalgo F, Ferretti A, Almada E, Favre C, Goldenring JR, Kaverina I, Kierbel A, Larocca MC. Centrosomal AKAP350 and CIP4 act in concert to define the polarized localization of the centrosome and Golgi in migratory cells. J Cell Sci 2015. [PMID: 26208639 DOI: 10.1242/jcs.170878] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The acquisition of a migratory phenotype is central in processes as diverse as embryo differentiation and tumor metastasis. An early event in this phenomenon is the generation of a nucleus-centrosome-Golgi back-to-front axis. AKAP350 (also known as AKAP9) is a Golgi and centrosome scaffold protein that is involved in microtubule nucleation. AKAP350 interacts with CIP4 (also known as TRIP10), a cdc42 effector that regulates actin dynamics. The present study aimed to characterize the participation of centrosomal AKAP350 in the acquisition of migratory polarity, and the involvement of CIP4 in the pathway. The decrease in total or in centrosomal AKAP350 led to decreased formation of the nucleus-centrosome-Golgi axis and defective cell migration. CIP4 localized at the centrosome, which was enhanced in migratory cells, but inhibited in cells with decreased centrosomal AKAP350. A decrease in the CIP4 expression or inhibition of the CIP4-AKAP350 interaction also led to defective cell polarization. Centrosome positioning, but not nuclear movement, was affected by loss of CIP4 or AKAP350 function. Our results support a model in which AKAP350 recruits CIP4 to the centrosome, providing a centrosomal scaffold to integrate microtubule and actin dynamics, thus enabling centrosome polarization and ensuring cell migration directionality.
Collapse
Affiliation(s)
- Facundo M Tonucci
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Florencia Hidalgo
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anabela Ferretti
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Evangelina Almada
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Cristián Favre
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - James R Goldenring
- Department of Surgery, Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center and the Nashville VA Medical Center, Nashville, TN 37232, USA Department of Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center and the Nashville VA Medical Center, Nashville, TN 37232, USA
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center and the Nashville VA Medical Center, Nashville, TN 37232, USA
| | - Arlinet Kierbel
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín 1650, Buenos Aires, Argentina
| | - M Cecilia Larocca
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| |
Collapse
|
120
|
HEDGEHOG/GLI-E2F1 axis modulates iASPP expression and function and regulates melanoma cell growth. Cell Death Differ 2015; 22:2006-19. [PMID: 26024388 PMCID: PMC4816112 DOI: 10.1038/cdd.2015.56] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/26/2015] [Accepted: 04/08/2015] [Indexed: 02/01/2023] Open
Abstract
HEDGEHOG (HH) signaling is a key regulator of tissue development and its aberrant activation is involved in several cancer types, including melanoma. We and others have shown a reciprocal cross talk between HH signaling and p53, whose function is often impaired in melanoma. Here we present evidence that both GLI1 and GLI2, the final effectors of HH signaling, regulate the transcription factor E2F1 in melanoma cells, by binding to a functional non-canonical GLI consensus sequence. Consistently, we find a significant correlation between E2F1 and PATCHED1 (PTCH1), GLI1 and GLI2 expression in human melanomas. Functionally, we find that E2F1 is a crucial mediator of HH signaling and it is required for melanoma cell proliferation and xenograft growth induced by activation of the HH pathway. Interestingly, we present evidence that the HH/GLI-E2F1 axis positively modulates the inhibitor of apoptosis-stimulating protein of p53 (iASPP) at multiple levels. HH activation induces iASPP expression through E2F1, which directly binds to iASPP promoter. HH pathway also contributes to iASPP function, by the induction of Cyclin B1 and by the E2F1-dependent regulation of CDK1, which are both involved in iASPP activation. Our data show that activation of HH signaling enhances proliferation in presence of E2F1 and promotes apoptosis in its absence or upon CDK1 inhibition, suggesting that E2F1/iASPP dictates the outcome of HH signaling in melanoma. Together, these findings identify a novel HH/GLI-E2F1-iASPP axis that regulates melanoma cell growth and survival, providing an additional mechanism through which HH signaling restrains p53 proapoptotic function.
Collapse
|
121
|
Liu XS, Genet MD, Haines JE, Mehanna EK, Wu S, Chen HIH, Chen Y, Qureshi AA, Han J, Chen X, Fisher DE, Pandolfi PP, Yuan ZM. ZBTB7A Suppresses Melanoma Metastasis by Transcriptionally Repressing MCAM. Mol Cancer Res 2015; 13:1206-17. [PMID: 25995384 DOI: 10.1158/1541-7786.mcr-15-0169] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/22/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED The excessive metastatic propensity of melanoma makes it the most deadly form of skin cancer, yet the underlying mechanism of metastasis remains elusive. Here, mining of cancer genome datasets discovered a frequent loss of chromosome 19p13.3 and associated downregulation of the zinc finger transcription factor ZBTB7A in metastatic melanoma. Functional assessment of ZBTB7A-regulated genes identified MCAM, which encodes an adhesion protein key to melanoma metastasis. Using an integrated approach, it is demonstrated that ZBTB7A directly binds to the promoter and transcriptionally represses the expression of MCAM, establishing ZBTB7A as a bona fide transcriptional repressor of MCAM. Consistently, downregulation of ZBTB7A results in marked upregulation of MCAM and enhanced melanoma cell invasion and metastasis. An inverse correlation of ZBTB7A and MCAM expression in association with melanoma metastasis is further validated with data from analysis of human melanoma specimens. IMPLICATIONS Together, these results uncover a previously unrecognized role of ZBTB7A in negative regulation of melanoma metastasis and have important clinical implications.
Collapse
Affiliation(s)
- Xue-Song Liu
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Matthew D Genet
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Jenna E Haines
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Elie K Mehanna
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Shaowei Wu
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hung-I Harry Chen
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Yidong Chen
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Abrar A Qureshi
- Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Jiali Han
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xiang Chen
- Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pier Paolo Pandolfi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Zhi-Min Yuan
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts.
| |
Collapse
|
122
|
Novak M, Leonard MK, Yang XH, Kowluru A, Belkin AM, Kaetzel DM. Metastasis suppressor NME1 regulates melanoma cell morphology, self-adhesion and motility via induction of fibronectin expression. Exp Dermatol 2015; 24:455-61. [PMID: 25808322 PMCID: PMC4437809 DOI: 10.1111/exd.12697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 12/14/2022]
Abstract
Expression of the metastasis suppressor NME1 in melanoma is associated with reduced cellular motility and invasion in vitro and metastasis in vivo, but the underlying molecular mechanisms are not completely understood. Herein, we report a novel mechanism through which NME1 controls melanoma cell morphology via upregulation of the extracellular matrix (ECM) protein fibronectin. Expression of NME1 strongly suppressed cell motility in melanoma cell lines 1205LU and M14. The resulting sedentary phenotype was associated with a more flattened appearance and marked increases in actin stress fibre and focal adhesion formation. NME1-induced focal adhesions were colocalized with dense deposits of fibronectin, which were absent or minimal in the corresponding NME1-deficient parental lines. NME1 was a strong inducer of fibronectin mRNA and protein expression, shown with reciprocal approaches of forced NME1 expression and shRNA-mediated knock-down. Increased synthesis and ECM deposition of fibronectin was necessary for NME1-induced cell spreading, as knock-down of fibronectin opposed the effects of NME1 on cell morphology. Fibronectin knock-down also reversed the ability of NME1 to promote aggregation when cells were plated on a non-adherent substratum. Similarly, inhibiting activation of the fibronectin receptor integrin α4β1 with an anti-α4 antibody reversed the motility-suppressing effect of NME1. A positive correlation was observed between NME1 and fibronectin mRNA in clinical biopsies of normal skin, benign nevi and primary melanomas, but not in metastatic forms, suggesting the NME1/fibronectin axis represents a barrier to melanoma progression. In summary, these findings indicate fibronectin is an important effector of the motility-suppressing function of NME1 in melanoma cells.
Collapse
Affiliation(s)
- Marián Novak
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, School of Medicine, University of Maryland-Baltimore, Baltimore, MD, USA
| | - Mary Kathryn Leonard
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, School of Medicine, University of Maryland-Baltimore, Baltimore, MD, USA
| | - Xiuwei H Yang
- Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Anjan Kowluru
- Department of Pharmaceutical Sciences, John D. Dingell VA Medical Center, Wayne State University, Detroit, MI, USA
| | - Alexey M Belkin
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, School of Medicine, University of Maryland-Baltimore, Baltimore, MD, USA.,Center for Vascular and Inflammatory Disease, School of Medicine, University of Maryland-Baltimore, Baltimore, MD, USA
| | - David M Kaetzel
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, School of Medicine, University of Maryland-Baltimore, Baltimore, MD, USA
| |
Collapse
|
123
|
Sheen YS, Liao YH, Lin MH, Chu CY, Ho BY, Hsieh MC, Chen PC, Cha ST, Jeng YM, Chang CC, Chiu HC, Jee SH, Kuo ML, Chu CY. IMP-3 promotes migration and invasion of melanoma cells by modulating the expression of HMGA2 and predicts poor prognosis in melanoma. J Invest Dermatol 2015; 135:1065-1073. [PMID: 25380351 DOI: 10.1038/jid.2014.480] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/10/2014] [Accepted: 10/05/2014] [Indexed: 02/01/2023]
Abstract
IGF II mRNA-binding protein 3 (IMP-3) has been reported to be a marker of melanoma progression. However, the mechanisms by which it impacts melanoma are incompletely understood. In this study, we investigate the clinical significance of IMP-3 in melanoma progression and also its underlying mechanisms. We found that IMP-3 expression was much higher in advanced-stage/metastatic melanomas and that it was associated with a poor prognosis (P=0.001). Univariate analysis showed that IMP-3 expression was associated with stage III/IV melanomas (odds ratio=5.40, P=0.031) and the acral lentiginous subtype (odds ratio=3.93, P=0.0034). MeWo cells with overexpression of IMP-3 showed enhanced proliferation and migration and significantly increased tumorigenesis and metastatic ability in nude mice. We further demonstrated that IMP-3 could bind and enhance the stability of the mRNA of high mobility group AT-hook 2 (HMGA2). It was also confirmed that IMP-3 had an important role in melanoma invasion and metastasis through regulating HMGA2 mRNA expression. IMP-3 expression was positively correlated with HMGA2 expression in melanoma cells and also in melanoma tissues. Our results show that IMP-3 expression is a strong prognostic factor for melanoma, especially acral lentiginous melanoma.
Collapse
Affiliation(s)
- Yi-Shuan Sheen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Hsien Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hisn-Chu, Taiwan
| | - Chia-Ying Chu
- Department of Life Science, Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Bing-Ying Ho
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Meng-Chen Hsieh
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pin-Chun Chen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Ting Cha
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Chi Chang
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Hsien-Ching Chiu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shiou-Hwa Jee
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Min-Liang Kuo
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
124
|
Kourtis N, Moubarak RS, Aranda-Orgilles B, Lui K, Aydin IT, Trimarchi T, Darvishian F, Salvaggio C, Zhong J, Bhatt K, Chen EI, Celebi JT, Lazaris C, Tsirigos A, Osman I, Hernando E, Aifantis I. FBXW7 modulates cellular stress response and metastatic potential through HSF1 post-translational modification. Nat Cell Biol 2015; 17:322-332. [PMID: 25720964 PMCID: PMC4401662 DOI: 10.1038/ncb3121] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/20/2015] [Indexed: 12/30/2022]
Abstract
Heat-shock factor 1 (HSF1) orchestrates the heat-shock response in eukaryotes. Although this pathway has evolved to help cells adapt in the presence of challenging conditions, it is co-opted in cancer to support malignancy. However, the mechanisms that regulate HSF1 and thus cellular stress response are poorly understood. Here we show that the ubiquitin ligase FBXW7α interacts with HSF1 through a conserved motif phosphorylated by GSK3β and ERK1. FBXW7α ubiquitylates HSF1 and loss of FBXW7α results in impaired degradation of nuclear HSF1 and defective heat-shock response attenuation. FBXW7α is either mutated or transcriptionally downregulated in melanoma and HSF1 nuclear stabilization correlates with increased metastatic potential and disease progression. FBXW7α deficiency and subsequent HSF1 accumulation activates an invasion-supportive transcriptional program and enhances the metastatic potential of human melanoma cells. These findings identify a post-translational mechanism of regulation of the HSF1 transcriptional program both in the presence of exogenous stress and in cancer.
Collapse
Affiliation(s)
- Nikos Kourtis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Rana S. Moubarak
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Beatriz Aranda-Orgilles
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Kevin Lui
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
- Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, New York, NY 10016, USA
| | - Iraz T. Aydin
- Departments of Pathology and Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Trimarchi
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Farbod Darvishian
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Christine Salvaggio
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
- Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, New York, NY 10016, USA
| | - Judy Zhong
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
- Department of Population Health, New York University School of Medicine, New York, New York
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Kamala Bhatt
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Emily I. Chen
- The Herbert Irving Comprehensive Cancer Center, Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, USA
| | - Julide T. Celebi
- Departments of Pathology and Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Charalampos Lazaris
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
- Center for Health Informatics and Bioinformatics, NYU School of Medicine, NY 10016, USA
| | - Aristotelis Tsirigos
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Center for Health Informatics and Bioinformatics, NYU School of Medicine, NY 10016, USA
| | - Iman Osman
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
- Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, New York, NY 10016, USA
| | - Eva Hernando
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Iannis Aifantis
- Howard Hughes Medical Institute and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- NYU Cancer Institute and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
125
|
Forés-Martos J, Cervera-Vidal R, Chirivella E, Ramos-Jarero A, Climent J. A genomic approach to study down syndrome and cancer inverse comorbidity: untangling the chromosome 21. Front Physiol 2015; 6:10. [PMID: 25698970 PMCID: PMC4316712 DOI: 10.3389/fphys.2015.00010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 01/08/2015] [Indexed: 12/19/2022] Open
Abstract
Down syndrome (DS), one of the most common birth defects and the most widespread genetic cause of intellectual disabilities, is caused by extra genetic material on chromosome 21 (HSA21). The increased genomic dosage of trisomy 21 is thought to be responsible for the distinct DS phenotypes, including an increased risk of developing some types of childhood leukemia and germ cell tumors. Patients with DS, however, have a strikingly lower incidence of many other solid tumors. We hypothesized that the third copy of genes located in HSA21 may have an important role on the protective effect that DS patients show against most types of solid tumors. Focusing on Copy Number Variation (CNV) array data, we have generated frequencies of deleted regions in HSA21 in four different tumor types from which DS patients have been reported to be protected. We describe three different regions of deletion pointing to a set of candidate genes that could explain the inverse comorbidity phenomenon between DS and solid tumors. In particular we found RCAN1 gene in Wilms tumors and a miRNA cluster containing miR-99A, miR-125B2 and miR-LET7C in lung, breast, and melanoma tumors as the main candidates for explaining the inverse comorbidity observed between solid tumors and DS.
Collapse
Affiliation(s)
- Jaume Forés-Martos
- Genomics and Systems Biology (InGSB) Lab, Oncology and Hematology Department, Biomedical Research Institute INCLIVA Valencia, Spain
| | - Raimundo Cervera-Vidal
- Genomics and Systems Biology (InGSB) Lab, Oncology and Hematology Department, Biomedical Research Institute INCLIVA Valencia, Spain
| | - Enrique Chirivella
- Genomics and Systems Biology (InGSB) Lab, Oncology and Hematology Department, Biomedical Research Institute INCLIVA Valencia, Spain
| | - Alberto Ramos-Jarero
- Genomics and Systems Biology (InGSB) Lab, Oncology and Hematology Department, Biomedical Research Institute INCLIVA Valencia, Spain
| | - Joan Climent
- Genomics and Systems Biology (InGSB) Lab, Oncology and Hematology Department, Biomedical Research Institute INCLIVA Valencia, Spain
| |
Collapse
|
126
|
Ohanna M, Bonet C, Bille K, Allegra M, Davidson I, Bahadoran P, Lacour JP, Ballotti R, Bertolotto C. SIRT1 promotes proliferation and inhibits the senescence-like phenotype in human melanoma cells. Oncotarget 2015; 5:2085-95. [PMID: 24742694 PMCID: PMC4039147 DOI: 10.18632/oncotarget.1791] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SIRT1 operates as both a tumor suppressor and oncogenic factor depending on the cell context. Whether SIRT1 plays a role in melanoma biology remained poorly elucidated. Here, we demonstrate that SIRT1 is a critical regulator of melanoma cell proliferation. SIRT1 suppression by genetic or pharmacological approaches induces cell cycle arrest and a senescence-like phenotype. Gain and loss of function experiments show that M-MITF regulates SIRT1 expression, thereby revealing a melanocyte-specific control of SIRT1. SIRT1 over-expression relieves the senescence-like phenotype and the proliferation arrest caused by MITF suppression, demonstrating that SIRT1 is an effector of MITF-induced proliferation in melanoma cells. Interestingly, SIRT1 level and activity are enhanced in the PLX4032-resistant BRAFV600E-mutated melanoma cells compared with their sensitive counterpart. SIRT1 inhibition decreases melanoma cell growth and rescues the sensibility to PLX4032 of PLX4032-resistant BRAFV600E-mutated melanoma cells. In conclusion, we provide the first evidence that inhibition of SIRT1 warrants consideration as an anti-melanoma therapeutic option.
Collapse
Affiliation(s)
- Mickaël Ohanna
- INSERM, U1065 (équipe 1), Equipe labélisée Ligue Contre le Cancer, C3M, Nice, France
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Yang MH, Hu ZY, Xu C, Xie LY, Wang XY, Chen SY, Li ZG. MALAT1 promotes colorectal cancer cell proliferation/migration/invasion via PRKA kinase anchor protein 9. Biochim Biophys Acta Mol Basis Dis 2014; 1852:166-74. [PMID: 25446987 DOI: 10.1016/j.bbadis.2014.11.013] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/24/2014] [Accepted: 11/12/2014] [Indexed: 02/08/2023]
Abstract
Our previous studies have shown that the 3' end of metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is involved in colorectal cancer (CRC) cell proliferation and migration/invasion in vitro. The role and mechanism of MALAT1 in CRC metastasis in vivo, however, remain largely unknown. In the present study, we found that MALAT1 was up-regulated in human primary CRC tissues with lymph node metastasis. Overexpression of MALAT1 via RNA activation promoted CRC cell proliferation, invasion and migration in vitro, and stimulated tumor growth and metastasis in mice in vivo. Conversely, knockdown of MALAT1 inhibited CRC tumor growth and metastasis. MALAT1 regulated at least 243 genes in CRC cells in a genome-wide expression profiling. Among these genes, PRKA kinase anchor protein 9 (AKAP-9) was significantly up-regulated at both mRNA and protein levels. AKAP-9 was highly expressed in CRC cells with metastatic potential and human primary CRC tissues with lymph node metastasis, but not in normal cells or tissues. Importantly, knockdown of AKAP-9 blocked MALAT1-mediated CRC cell proliferation, migration and invasion. These data indicate that MALAT1 may promote CRC tumor development via its target protein AKAP-9.
Collapse
Affiliation(s)
- Min-Hui Yang
- Department of Pathology, Nanfang Hospital, Southern Medical University, China; Key Laboratory of Transcriptome and Proteome for Human Major Diseases of the Ministry of Education and Guangdong Province, Guangzhou 510515, Guangdong Province, China
| | - Zhi-Yan Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, China; Key Laboratory of Transcriptome and Proteome for Human Major Diseases of the Ministry of Education and Guangdong Province, Guangzhou 510515, Guangdong Province, China
| | - Chuan Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, China; Key Laboratory of Transcriptome and Proteome for Human Major Diseases of the Ministry of Education and Guangdong Province, Guangzhou 510515, Guangdong Province, China
| | - Lin-Ying Xie
- Department of Pathology, Nanfang Hospital, Southern Medical University, China; Key Laboratory of Transcriptome and Proteome for Human Major Diseases of the Ministry of Education and Guangdong Province, Guangzhou 510515, Guangdong Province, China
| | - Xiao-Yan Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, China; Key Laboratory of Transcriptome and Proteome for Human Major Diseases of the Ministry of Education and Guangdong Province, Guangzhou 510515, Guangdong Province, China
| | - Shi-You Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, USA.
| | - Zu-Guo Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, China; Key Laboratory of Transcriptome and Proteome for Human Major Diseases of the Ministry of Education and Guangdong Province, Guangzhou 510515, Guangdong Province, China.
| |
Collapse
|
128
|
Lederer M, Bley N, Schleifer C, Hüttelmaier S. The role of the oncofetal IGF2 mRNA-binding protein 3 (IGF2BP3) in cancer. Semin Cancer Biol 2014; 29:3-12. [PMID: 25068994 DOI: 10.1016/j.semcancer.2014.07.006] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/17/2014] [Indexed: 12/20/2022]
Abstract
The post-transcriptional control of gene expression mediated by RNA-binding proteins (RBPs), long non-coding RNAs (lncRNAs) as well as miRNAs is essential to determine tumor cell fate and thus is a major determinant in cancerogenesis. The IGF2 mRNA binding protein family (IGF2BPs) comprises three RBPs. Two members of the family, IGF2BP1 and IGF2BP3, are bona fide oncofetal proteins, which are de novo synthesized in various human cancers. In vitro studies revealed that IGF2BPs serve as post-transcriptional fine-tuners modulating the expression of genes implicated in the control of tumor cell proliferation, survival, chemo-resistance and metastasis. Consistently, the expression of both IGF2BP family members was reported to correlate with an overall poor prognosis and metastasis in various human cancers. Due to the fact that most reports used a pan-IGF2BP antibody for studying IGF2BP expression in cancer, paralogue-specific functions can barely be evaluated at present. Nonetheless, the accordance of IGF2BPs' role in promoting an aggressive phenotype of tumor-derived cells in vitro and their upregulated expression in aggressive malignancies provides strong evidence that IGF2BPs are powerful post-transcriptional oncogenes enhancing tumor growth, drug-resistance and metastasis. This suggests IGF2BPs as powerful biomarkers and candidate targets for cancer therapy.
Collapse
Affiliation(s)
- Marcell Lederer
- Division of Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 1, 06120 Halle, Germany
| | - Nadine Bley
- Division of Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 1, 06120 Halle, Germany; Core Facility Imaging (CFI) of the Medical Faculty, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 1, 06120 Halle, Germany
| | - Christian Schleifer
- Division of Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 1, 06120 Halle, Germany
| | - Stefan Hüttelmaier
- Division of Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 1, 06120 Halle, Germany; Core Facility Imaging (CFI) of the Medical Faculty, Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 1, 06120 Halle, Germany.
| |
Collapse
|
129
|
McCorkle JR, Leonard MK, Kraner SD, Blalock EM, Ma D, Zimmer SG, Kaetzel DM. The metastasis suppressor NME1 regulates expression of genes linked to metastasis and patient outcome in melanoma and breast carcinoma. Cancer Genomics Proteomics 2014; 11:175-194. [PMID: 25048347 PMCID: PMC4409327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
NME1 is a well-documented metastasis suppressor gene, with suppressor activity demonstrated across a wide spectrum of human cancers including melanoma and carcinomas of the breast, stomach and thyroid. A primary aim of the current study was to identify profiles of genes whose expression is regulated by NME1 in cell lines of melanoma and thyroid carcinoma origin. Impact of NME1 was determined by forcing its expression transiently in cell lines using a novel Ad5-based adenoviral vector (Ad5-NME1), followed 48 h later by analysis of RNA expression profiles using the U133A microarray chip. Robust NME1 expression was achieved following infection with the Ad5-NME1 adenovirus in the human metastasis-derived cell lines WM1158 (melanoma) and WRO82 (follicular thyroid carcinoma), resulting in wide-ranging effects on gene expression in both settings. A substantial proportion of the NME1-regulated genes identified in the analyses were of clear potential relevance to metastasis, such as matrix metalloproteinase-1 (MMP1), angiopoietin-2 (ANGPT2), SERPINB9 and colony stimulating factor receptor-2B (CSFR2B). Nine genes were identified (false discovery rate <0.1) that were regulated by NME1 in both the WM1158 and WRO82 cell lines, each possessing one or more such metastasis-relevant activities as stress fiber formation and focal adhesion (PPM1E, ZYX, PFN1), chemotaxis (CCR1) epithelial-mesenchymal signaling (WNT6), differentiation and morphogenesis (TBX4, ZFP36L2), and G protein modulation (GPR52 and PFN1). In addition, a number of the NME1-regulated genes were shown to be of prognostic value for distant disease-free survival and overall survival in melanoma and breast cancer. The combined expression of three NME1-regulated genes CSFR2B, MSF4A1 and SERPINB9 provided a strongly synergistic correlation with distant disease-free survival in the basal subtype of breast cancer (p<3.5e(-5), hazard ratio=0.33). Our study demonstrates that analysis of NME1-dependent gene expression is a powerful approach for identifying potential modulators of metastatic potential in multiple cancer types, which in turn may represent useful therapeutic targets. The study also highlights NME1-dependent genes as potential prognostic/diagnostic indices, which are profoundly lacking at present in melanoma.
Collapse
Affiliation(s)
- Joseph R McCorkle
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, U.S.A
| | - Mary K Leonard
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD U.S.A
| | - Susan D Kraner
- Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
| | - Eric M Blalock
- Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
| | - Deqin Ma
- Department of Pathology, University of Iowa Hospitals and Clinics, University of Iowa Carver College of Medicine, Iowa City, IA, U.S.A
| | - Stephen G Zimmer
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, U.S.A. Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD U.S.A. Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, MD U.S.A. Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A. Department of Pathology, University of Iowa Hospitals and Clinics, University of Iowa Carver College of Medicine, Iowa City, IA, U.S.A
| | - David M Kaetzel
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD U.S.A. Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, MD U.S.A.
| |
Collapse
|
130
|
Boi S, Tebaldi T, Re A, Cantaloni C, Adami V, Barbareschi M, Cristofolini M, Pasini L, Quattrone A. Increased frequency of minimal homozygous deletions is associated with poor prognosis in primary malignant melanoma patients. Genes Chromosomes Cancer 2014; 53:487-96. [PMID: 24615732 DOI: 10.1002/gcc.22160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/09/2014] [Indexed: 12/30/2022] Open
Abstract
Identification of prognostic melanoma-associated copy number alterations (CNAs) is still an area of active research. Here, we investigated by high-resolution array comparative genomic hybridization (aCGH) a cohort of 31 paraffin-preserved primary malignant melanomas (MMs), whose prognosis was not predictable on the basis of conventional histopathological parameters. Although we identified a variety of highly recurrent sites of genomic lesions, the total number of CNAs per patient was not a discriminator of MM outcome. Furthermore, validation of aCGH by quantitative PCR on an extended population of 65 MM samples confirmed the absence of predictive value for the most recurrent CNA loci. Instead, our analysis revealed specific prognostic potential of the frequency of homozygous deletions (representing less than 3% of the total CNAs on average per sample), which was strongly associated with sentinel lymph node (SLN) invasion (P = 0.003), and distant metastasis (P = 0.003). Increased number of homozygous deletions was also indicative of poor patient survival (P = 0.01), both in our samples and in an independent validation of public dataset of primary and metastatic MMs. Moreover, we identified 77 hotspots of minimal common homozygous deletions, enriched in genes involved in cell adhesion processes and cell-communication functions, which preferentially accumulated in primary MMs showing the most severe outcome. Therefore, specific loss of gene loci in regions of minimal homozygous deletion may represent a pivotal type of genomic alteration accumulating during MM progression with potential prognostic implication.
Collapse
Affiliation(s)
- Sebastiana Boi
- Department of Pathology, Santa Chiara Hospital, Trento, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Chen G, Chakravarti N, Aardalen K, Lazar AJ, Tetzlaff MT, Wubbenhorst B, Kim SB, Kopetz S, Ledoux AA, Gopal YNV, Pereira CG, Deng W, Lee JS, Nathanson KL, Aldape KD, Prieto VG, Stuart D, Davies MA. Molecular profiling of patient-matched brain and extracranial melanoma metastases implicates the PI3K pathway as a therapeutic target. Clin Cancer Res 2014; 20:5537-46. [PMID: 24803579 DOI: 10.1158/1078-0432.ccr-13-3003] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE An improved understanding of the molecular pathogenesis of brain metastases, one of the most common and devastating complications of advanced melanoma, may identify and prioritize rational therapeutic approaches for this disease. In particular, the identification of molecular differences between brain and extracranial metastases would support the need for the development of organ-specific therapeutic approaches. EXPERIMENTAL DESIGN Hotspot mutations, copy number variations (CNV), global mRNA expression patterns, and quantitative analysis of protein expression and activation by reverse-phase protein array (RPPA) analysis were evaluated in pairs of melanoma brain metastases and extracranial metastases from patients who had undergone surgical resection for both types of tumors. RESULTS The status of 154 previously reported hotspot mutations, including driver mutations in BRAF and NRAS, were concordant in all evaluable patient-matched pairs of tumors. Overall patterns of CNV, mRNA expression, and protein expression were largely similar between the paired samples for individual patients. However, brain metastases demonstrated increased expression of several activation-specific protein markers in the PI3K/AKT pathway compared with the extracranial metastases. CONCLUSIONS These results add to the understanding of the molecular characteristics of melanoma brain metastases and support the rationale for additional testing of the PI3K/AKT pathway as a therapeutic target in these highly aggressive tumors.
Collapse
Affiliation(s)
- Guo Chen
- Departments of Melanoma Medical Oncology,
| | | | - Kimberly Aardalen
- Novartis Institutes for Biomedical Research, Emeryville, California; and
| | | | | | - Bradley Wubbenhorst
- Division of Medical Genetics, Department of Medicine, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | | | - Scott Kopetz
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | - Katherine L Nathanson
- Division of Medical Genetics, Department of Medicine, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | | | | | - Darrin Stuart
- Novartis Institutes for Biomedical Research, Emeryville, California; and
| | | |
Collapse
|
132
|
Mertz KD, Pathria G, Wagner C, Saarikangas J, Sboner A, Romanov J, Gschaider M, Lenz F, Neumann F, Schreiner W, Nemethova M, Glassmann A, Lappalainen P, Stingl G, Small JV, Fink D, Chin L, Wagner SN. MTSS1 is a metastasis driver in a subset of human melanomas. Nat Commun 2014; 5:3465. [PMID: 24632752 DOI: 10.1038/ncomms4465] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/18/2014] [Indexed: 12/21/2022] Open
Abstract
In cancers with a highly altered genome, distinct genetic alterations drive subsets rather than the majority of individual tumours. Here we use a sequential search across human tumour samples for transcript outlier data points with associated gene copy number variations that correlate with patient's survival to identify genes with pro-invasive functionality. Employing loss and gain of function approaches in vitro and in vivo, we show that one such gene, MTSS1, promotes the ability of melanocytic cells to metastasize and engages actin dynamics via Rho-GTPases and cofilin in this process. Indeed, high MTSS1 expression defines a subgroup of primary melanomas with unfavourable prognosis. These data underscore the biological, clinical and potential therapeutic implications of molecular subsets within genetically complex cancers.
Collapse
Affiliation(s)
- Kirsten D Mertz
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2] [3]
| | - Gaurav Pathria
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2]
| | - Christine Wagner
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2]
| | - Juha Saarikangas
- 1] Institute of Biotechnology, University of Helsinki, 00100 Helsinki, Finland [2]
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York 10021, USA
| | - Julia Romanov
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Melanie Gschaider
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Lenz
- Section for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria
| | - Friederike Neumann
- Section for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Schreiner
- Section for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria
| | - Maria Nemethova
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | | | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, 00100 Helsinki, Finland
| | - Georg Stingl
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - J Victor Small
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Dieter Fink
- Institute for Laboratory Animal Sciences, Department of Biomedical Sciences, University for Veterinary Medicine, 1210 Vienna, Austria
| | - Lynda Chin
- Department of Genomic Medicine and Institute for Applied Cancer Science, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Stephan N Wagner
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2] Center for Molecular Medicine (CeMM), Austrian Academy of Sciences, 1090 Vienna, Austria
| |
Collapse
|
133
|
Abstract
Although many DNA aberrations in melanoma have been well characterized, including focal amplification and deletions of oncogenes and tumor suppressors, broad regions of chromosomal gain and loss are less well understood. One possibility is that these broad events are a consequence of collateral damage from targeting single loci. Another possibility is that the loss of large regions permits the simultaneous repression of multiple tumor suppressors by broadly decreasing the resident gene dosage and expression. Here, we test this hypothesis in a targeted fashion using RNA interference to suppress multiple candidate residents in broad regions of loss. We find that loss of chromosome regions 6q, 10, and 11q21-ter is correlated with broadly decreased expression of most resident genes and that multiple resident genes impacted by broad regional loss of chromosome 10 are tumor suppressors capable of affecting tumor growth and/or invasion. We also provide additional functional support for Ablim1 as a novel tumor suppressor. Our results support the hypothesis that multiple cancer genes are targeted by regional chromosome copy number aberrations.
Collapse
Affiliation(s)
- Lawrence N Kwong
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, 77054, USA
| | - Lynda Chin
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, 77054, USA
| |
Collapse
|
134
|
Identification of candidate driver genes in common focal chromosomal aberrations of microsatellite stable colorectal cancer. PLoS One 2013; 8:e83859. [PMID: 24367615 PMCID: PMC3867468 DOI: 10.1371/journal.pone.0083859] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/08/2013] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Chromosomal instability (CIN) is a major driving force of microsatellite stable (MSS) sporadic CRC. CIN tumours are characterised by a large number of somatic chromosomal copy number aberrations (SCNA) that frequently affect oncogenes and tumour suppressor genes. The main aim of this work was to identify novel candidate CRC driver genes affected by recurrent and focal SCNA. High resolution genome-wide comparative genome hybridisation (CGH) arrays were used to compare tumour and normal DNA for 53 sporadic CRC cases. Context corrected common aberration (COCA) analysis and custom algorithms identified 64 deletions and 32 gains of focal minimal common regions (FMCR) at high frequency (>10%). Comparison of these FMCR with published genomic profiles from CRC revealed common overlap (42.2% of deletions and 34.4% of copy gains). Pathway analysis showed that apoptosis and p53 signalling pathways were commonly affected by deleted FMCR, and MAPK and potassium channel pathways by gains of FMCR. Candidate tumour suppressor genes in deleted FMCR included RASSF3, IFNAR1, IFNAR2 and NFKBIA and candidate oncogenes in gained FMCR included PRDM16, TNS1, RPA3 and KCNMA1. In conclusion, this study confirms some previously identified aberrations in MSS CRC and provides in silico evidence for some novel candidate driver genes.
Collapse
|
135
|
Chen J, Chi M, Chen C, Zhang XD. Obesity and melanoma: exploring molecular links. J Cell Biochem 2013; 114:1955-61. [PMID: 23554059 DOI: 10.1002/jcb.24549] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/13/2013] [Indexed: 12/11/2022]
Abstract
Obesity is now a major health problem due to its rapidly increasing incidence worldwide and severe consequences. Among many conditions associated with obesity are some cancers including melanoma. Both genetic defects and environmental risk factors are involved in the carcinogenesis of melanoma. Activation of multiple signal pathways such as the PI3K/Akt and MAPK pathways are necessary for the initiation of melanoma. Activation of the MAPK pathway as a result of activating mutations in BRAF is commonly seen in melanoma though it alone is not sufficient to cause malignant transformation of melanocytes. Obesity can result in the activation of many signal pathways including PI3K/Akt, MAPK, and STAT3. The activation of these pathways may have a synergistic effect with the genetic defects thereby increasing the incidence of melanoma.
Collapse
Affiliation(s)
- Jiezhong Chen
- School of Biomedical Sciences, University of Queensland, Sir William MacGregor Building 64, St Lucia Campus, Brisbane, QLD, 4072, Australia
| | | | | | | |
Collapse
|
136
|
Quintana E, Piskounova E, Shackleton M, Weinberg D, Eskiocak U, Fullen DR, Johnson TM, Morrison SJ. Human melanoma metastasis in NSG mice correlates with clinical outcome in patients. Sci Transl Med 2013; 4:159ra149. [PMID: 23136044 PMCID: PMC4501487 DOI: 10.1126/scitranslmed.3004599] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Studies of human cancer metastasis have been limited by a lack of experimental assays in which cancer cells from patients metastasize in vivo in a way that correlates with clinical outcome. This makes it impossible to study intrinsic differences in the metastatic properties of cancers from different patients. We recently developed an assay in which human melanomas readily engraft in nonobese diabetic/severe combined immunodeficient interleukin-2 receptor-γ chain null (NSG) mice. We show that melanomas from 25 patients exhibited reproducible differences in the rate of spontaneous metastasis after transplantation into NSG mice and that these differences correlated with clinical outcome in the patients. Stage IIIB/C melanomas that formed distant metastases within 22 months in patients also formed tumors that metastasized widely in NSG mice, whereas stage IIIB/C melanomas that did not form distant metastases within 22 to 50 months in patients metastasized more slowly in NSG mice. These differences in the efficiency of metastasis correlated with the presence of circulating melanoma cells in the blood of NSG mice, suggesting that the rate of entry into the blood is one factor that limits the rate of metastasis. The study of NSG mice can therefore yield information about the metastasis of human melanomas in vivo, in this case revealing intrinsic differences among stage III melanomas in their ability to circulate/survive in the blood and to metastasize.
Collapse
Affiliation(s)
- Elsa Quintana
- Howard Hughes Medical Institute, Life Sciences Institute, Department of Internal Medicine, and Center for Stem Cell Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Abstract
Metastasis is responsible for most cancer mortality. The process of metastasis is complex, requiring the coordinated expression and fine regulation of many genes in multiple pathways in both the tumor and host tissues. Identification and characterization of the genetic programs that regulate metastasis is critical to understanding the metastatic process and discovering molecular targets for the prevention and treatment of metastasis. Genomic approaches and functional genomic analyses can systemically discover metastasis genes. In this review, we summarize the genetic tools and methods that have been used to identify and characterize the genes that play critical roles in metastasis.
Collapse
Affiliation(s)
- Jinchun Yan
- University of Washington Medical Center, 1959 N. E. Pacific Street, Seattle, WA 98195, USA.
| | | |
Collapse
|
138
|
Damsky WE, Theodosakis N, Bosenberg M. Melanoma metastasis: new concepts and evolving paradigms. Oncogene 2013; 33:2413-22. [PMID: 23728340 DOI: 10.1038/onc.2013.194] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/22/2013] [Accepted: 04/22/2013] [Indexed: 12/25/2022]
Abstract
Melanoma progression is typically depicted as a linear and stepwise process in which metastasis occurs relatively late in disease progression. Significant evidence suggests that in a subset of melanomas, progression is much more complex and less linear in nature. Epidemiologic and experimental observations in melanoma metastasis are reviewed here and are incorporated into a comprehensive model for melanoma metastasis, which takes into account the varied natural history of melanoma formation and progression.
Collapse
Affiliation(s)
- W E Damsky
- 1] Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA [2] Department of Pathology, University of Vermont College of Medicine, Burlington, VT, USA
| | - N Theodosakis
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - M Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
139
|
Fadare O, Liang SX, Crispens MA, Jones HW, Khabele D, Gwin K, Zheng W, Mohammed K, Parkash V, Hecht JL, Desouki MM. Expression of the oncofetal protein IGF2BP3 in endometrial clear cell carcinoma: assessment of frequency and significance. Hum Pathol 2013; 44:1508-15. [PMID: 23465280 DOI: 10.1016/j.humpath.2012.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 01/05/2023]
Abstract
Insulin-like growth factor-II messenger RNA-binding protein 3 (IGF2BP3 or IMP3) is a biomarker whose expression has been found to be a negative prognostic factor in several neoplasms including ovarian clear cell carcinoma (CCC). In this study, we analyzed the frequency and clinicopathologic significance of IMP3 expression, as assessed by immunohistochemistry and as scored using a modified H-score system, in a cohort of 50 endometrial CCCs. Cases with scores of 0 to 100, 101 to 200, and 201 to 300 were classified as negative/mildly positive (n = 17), moderately positive (n = 20), and strongly positive (n = 13), respectively. A distinctive pattern of increased staining at the myoinvasive front (relative to the main tumor) was evident in 46% of the cases with evaluable foci of myometrial invasion. Moderate/strong IMP3 staining was associated with a tumor architectural pattern that has been reported to be of poor prognostic significance: at least 10% of the tumor composed of solid architecture or individual infiltrating tumor cells (P = .01). Increasing levels of IMP3 expression showed a trend toward decreasing relapse-free survival (RFS; median survival, 75.6, 81.3, and 48.4 months for the negative/mildly, moderately, and strongly positive groups, respectively [P = .09]). However, IMP3 expression was not significantly associated with reduced overall survival or RFS in a multivariate analytic model. The finding in a subset of our cases of increased IMP3 expression at the tumoral myoinvasive front is consistent with a role for IMP3 in invasiveness, as is the trend toward reduced RFS in cases expressing IMP3 at high levels. These preliminary findings suggest that IMP3 expression may be involved in the pathogenesis of CCC and is worthy of further exploration.
Collapse
Affiliation(s)
- Oluwole Fadare
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Rakosy Z, Ecsedi S, Toth R, Vizkeleti L, Herandez-Vargas H, Lazar V, Emri G, Szatmari I, Herceg Z, Adany R, Balazs M. Integrative genomics identifies gene signature associated with melanoma ulceration. PLoS One 2013; 8:e54958. [PMID: 23383013 PMCID: PMC3559846 DOI: 10.1371/journal.pone.0054958] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/18/2012] [Indexed: 12/31/2022] Open
Abstract
Background Despite the extensive research approaches applied to characterise malignant melanoma, no specific molecular markers are available that are clearly related to the progression of this disease. In this study, our aims were to define a gene expression signature associated with the clinical outcome of melanoma patients and to provide an integrative interpretation of the gene expression -, copy number alterations -, and promoter methylation patterns that contribute to clinically relevant molecular functional alterations. Methods Gene expression profiles were determined using the Affymetrix U133 Plus2.0 array. The NimbleGen Human CGH Whole-Genome Tiling array was used to define CNAs, and the Illumina GoldenGate Methylation platform was applied to characterise the methylation patterns of overlapping genes. Results We identified two subclasses of primary melanoma: one representing patients with better prognoses and the other being characteristic of patients with unfavourable outcomes. We assigned 1,080 genes as being significantly correlated with ulceration, 987 genes were downregulated and significantly enriched in the p53, Nf-kappaB, and WNT/beta-catenin pathways. Through integrated genome analysis, we defined 150 downregulated genes whose expression correlated with copy number losses in ulcerated samples. These genes were significantly enriched on chromosome 6q and 10q, which contained a total of 36 genes. Ten of these genes were downregulated and involved in cell-cell and cell-matrix adhesion or apoptosis. The expression and methylation patterns of additional genes exhibited an inverse correlation, suggesting that transcriptional silencing of these genes is driven by epigenetic events. Conclusion Using an integrative genomic approach, we were able to identify functionally relevant molecular hotspots characterised by copy number losses and promoter hypermethylation in distinct molecular subtypes of melanoma that contribute to specific transcriptomic silencing and might indicate a poor clinical outcome of melanoma.
Collapse
Affiliation(s)
- Zsuzsa Rakosy
- Department of Preventive Medicine, Faculty of Public Health, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
- Public Health Research Group of the Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary
| | - Szilvia Ecsedi
- Department of Preventive Medicine, Faculty of Public Health, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
- Public Health Research Group of the Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary
| | - Reka Toth
- Department of Preventive Medicine, Faculty of Public Health, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Laura Vizkeleti
- Department of Preventive Medicine, Faculty of Public Health, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
- Public Health Research Group of the Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary
| | - Hector Herandez-Vargas
- World Health Organization International Agency for Research on Cancer, Epigenetics Group, Lyon, France
| | - Viktoria Lazar
- Department of Preventive Medicine, Faculty of Public Health, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Istvan Szatmari
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Zdenko Herceg
- World Health Organization International Agency for Research on Cancer, Epigenetics Group, Lyon, France
| | - Roza Adany
- Department of Preventive Medicine, Faculty of Public Health, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
- Public Health Research Group of the Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary
| | - Margit Balazs
- Department of Preventive Medicine, Faculty of Public Health, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
- Public Health Research Group of the Hungarian Academy of Sciences, University of Debrecen, Debrecen, Hungary
- * E-mail:
| |
Collapse
|
141
|
Ueki A, Shimizu T, Masuda K, Yamaguchi SI, Ishikawa T, Sugihara E, Onishi N, Kuninaka S, Miyoshi K, Muto A, Toyama Y, Banno K, Aoki D, Saya H. Up-regulation of Imp3 confers in vivo tumorigenicity on murine osteosarcoma cells. PLoS One 2012; 7:e50621. [PMID: 23226335 PMCID: PMC3511546 DOI: 10.1371/journal.pone.0050621] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/22/2012] [Indexed: 11/19/2022] Open
Abstract
Osteosarcoma is a high-grade malignant bone tumor that manifests ingravescent clinical behavior. The intrinsic events that confer malignant properties on osteosarcoma cells have remained unclear, however. We previously established two lines of mouse osteosarcoma cells: AX cells, which are able to form tumors in syngeneic mice, and AXT cells, which were derived from such tumors and acquired an increased tumorigenic capacity during tumor development. We have now identified Igf2 mRNA-binding protein3 (Imp3) as a key molecule responsible for this increased tumorigenicity of AXT cells in vivo. Imp3 is consistently up-regulated in tumors formed by AX cells, and its expression in these cells was found to confer malignant properties such as anchorage-independent growth, loss of contact inhibition, and escape from anoikis in vitro. The expression level of Imp3 also appeared directly related to tumorigenic ability in vivo which is the critical determination for tumor-initiating cells. The effect of Imp3 on tumorigenicity of osteosarcoma cells did not appear to be mediated through Igf2-dependent mechanism. Our results implicate Imp3 as a key regulator of stem-like tumorigenic characteristics in osteosarcoma cells and as a potential therapeutic target for this malignancy.
Collapse
Affiliation(s)
- Arisa Ueki
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Takatsune Shimizu
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
- Department of Pathophysiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
- * E-mail:
| | - Kenta Masuda
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Sayaka I. Yamaguchi
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Tomoki Ishikawa
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
- Kasai R&D Center, Daiichi Sankyo Co. Ltd., Tokyo, Japan
| | - Eiji Sugihara
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| | - Nobuyuki Onishi
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Shinji Kuninaka
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Keita Miyoshi
- Department of Molecular Biology, School of Medicine, Keio University, Tokyo, Japan
| | - Akihiro Muto
- Department of Pathophysiology, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Yoshiaki Toyama
- Department of Orthopedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| |
Collapse
|
142
|
Lian CG, Xu Y, Ceol C, Wu F, Larson A, Dresser K, Xu W, Tan L, Hu Y, Zhan Q, Lee CW, Hu D, Lian BQ, Kleffel S, Yang Y, Neiswender J, Khorasani AJ, Fang R, Lezcano C, Duncan LM, Scolyer RA, Thompson JF, Kakavand H, Houvras Y, Zon LI, Mihm MC, Kaiser UB, Schatton T, Woda BA, Murphy GF, Shi YG. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 2012; 150:1135-46. [PMID: 22980977 DOI: 10.1016/j.cell.2012.07.033] [Citation(s) in RCA: 612] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 05/09/2012] [Accepted: 07/03/2012] [Indexed: 12/13/2022]
Abstract
DNA methylation at the 5 position of cytosine (5-mC) is a key epigenetic mark that is critical for various biological and pathological processes. 5-mC can be converted to 5-hydroxymethylcytosine (5-hmC) by the ten-eleven translocation (TET) family of DNA hydroxylases. Here, we report that "loss of 5-hmC" is an epigenetic hallmark of melanoma, with diagnostic and prognostic implications. Genome-wide mapping of 5-hmC reveals loss of the 5-hmC landscape in the melanoma epigenome. We show that downregulation of isocitrate dehydrogenase 2 (IDH2) and TET family enzymes is likely one of the mechanisms underlying 5-hmC loss in melanoma. Rebuilding the 5-hmC landscape in melanoma cells by reintroducing active TET2 or IDH2 suppresses melanoma growth and increases tumor-free survival in animal models. Thus, our study reveals a critical function of 5-hmC in melanoma development and directly links the IDH and TET activity-dependent epigenetic pathway to 5-hmC-mediated suppression of melanoma progression, suggesting a new strategy for epigenetic cancer therapy.
Collapse
Affiliation(s)
- Christine Guo Lian
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
An attempt at a molecular prediction of metastasis in patients with primary cutaneous melanoma. PLoS One 2012; 7:e49865. [PMID: 23166783 PMCID: PMC3498185 DOI: 10.1371/journal.pone.0049865] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 10/15/2012] [Indexed: 12/31/2022] Open
Abstract
Background Current prognostic clinical and morphological parameters are insufficient to accurately predict metastasis in individual melanoma patients. Several studies have described gene expression signatures to predict survival or metastasis of primary melanoma patients, however the reproducibility among these studies is disappointingly low. Methodology/Principal Findings We followed extended REMARK/Gould Rothberg criteria to identify gene sets predictive for metastasis in patients with primary cutaneous melanoma. For class comparison, gene expression data from 116 patients with clinical stage I/II (no metastasis) and 72 with III/IV primary melanoma (with metastasis) at time of first diagnosis were used. Significance analysis of microarrays identified the top 50 differentially expressed genes. In an independent data set from a second cohort of 28 primary melanoma patients, these genes were analyzed by multivariate Cox regression analysis and leave-one-out cross validation for association with development of metastatic disease. In a multivariate Cox regression analysis, expression of the genes Ena/vasodilator-stimulated phosphoprotein-like (EVL) and CD24 antigen gave the best predictive value (p = 0.001; p = 0.017, respectively). A multivariate Cox proportional hazards model revealed these genes as a potential independent predictor, which may possibly add (both p = 0.01) to the predictive value of the most important morphological indicator, Breslow depth. Conclusion/Significance Combination of molecular with morphological information may potentially enable an improved prediction of metastasis in primary melanoma patients. A strength of the gene expression set is the small number of genes, which should allow easy reevaluation in independent data sets and adequately designed clinical trials.
Collapse
|
144
|
Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, Dicara D, Ramos AH, Lawrence MS, Cibulskis K, Sivachenko A, Voet D, Saksena G, Stransky N, Onofrio RC, Winckler W, Ardlie K, Wagle N, Wargo J, Chong K, Morton DL, Stemke-Hale K, Chen G, Noble M, Meyerson M, Ladbury JE, Davies MA, Gershenwald JE, Wagner SN, Hoon DSB, Schadendorf D, Lander ES, Gabriel SB, Getz G, Garraway LA, Chin L. A landscape of driver mutations in melanoma. Cell 2012; 150:251-63. [PMID: 22817889 DOI: 10.1016/j.cell.2012.06.024] [Citation(s) in RCA: 1979] [Impact Index Per Article: 152.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/12/2012] [Accepted: 06/25/2012] [Indexed: 12/30/2022]
Abstract
Despite recent insights into melanoma genetics, systematic surveys for driver mutations are challenged by an abundance of passenger mutations caused by carcinogenic UV light exposure. We developed a permutation-based framework to address this challenge, employing mutation data from intronic sequences to control for passenger mutational load on a per gene basis. Analysis of large-scale melanoma exome data by this approach discovered six novel melanoma genes (PPP6C, RAC1, SNX31, TACC1, STK19, and ARID2), three of which-RAC1, PPP6C, and STK19-harbored recurrent and potentially targetable mutations. Integration with chromosomal copy number data contextualized the landscape of driver mutations, providing oncogenic insights in BRAF- and NRAS-driven melanoma as well as those without known NRAS/BRAF mutations. The landscape also clarified a mutational basis for RB and p53 pathway deregulation in this malignancy. Finally, the spectrum of driver mutations provided unequivocal genomic evidence for a direct mutagenic role of UV light in melanoma pathogenesis.
Collapse
Affiliation(s)
- Eran Hodis
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Dyrskjøt L, Reinert T, Novoradovsky A, Zuiverloon TCM, Beukers W, Zwarthoff E, Malats N, Real FX, Segersten U, Malmström PU, Knowles M, Hurst C, Sorge J, Borre M, Orntoft TF. Analysis of molecular intra-patient variation and delineation of a prognostic 12-gene signature in non-muscle invasive bladder cancer; technology transfer from microarrays to PCR. Br J Cancer 2012; 107:1392-8. [PMID: 22976798 PMCID: PMC3494423 DOI: 10.1038/bjc.2012.412] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Multiple clinical risk factors and genetic profiles have been demonstrated to predict progression of non-muscle invasive bladder cancer; however, no easily clinical applicable gene signature has been developed to predict disease progression independent of disease stage and grade. Methods: We measured the intra-patient variation of an 88-gene progression signature using 39 metachronous tumours from 17 patients. For delineation of the optimal quantitative reverse transcriptase PCR panel of markers, we used 115 tumour samples from patients in Denmark, Sweden, UK and Spain. Results: Analysis of intra-patient variation of the molecular markers showed 71% similar classification results. A final panel of 12 genes was selected, showing significant correlation with outcome. In multivariate Cox regression analysis, we found that the 12-gene signature was an independent prognostic factor (hazard ratio=7.4 (95% confidence interval: 3.4–15.9), P<0.001) when adjusting for stage, grade and treatment. Independent validation of the 12-gene panel and the determined cut-off values is needed and ongoing. Conclusion: Intra-patient marker variation in metachronous tumours is present. Therefore, to increase test sensitivity, it may be necessary to test several metachronous tumours from a patient’s disease course. A PCR-based 12-gene signature significantly predicts disease progression in patients with non-muscle invasive bladder cancer.
Collapse
Affiliation(s)
- L Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Skejby, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 2012; 44:1006-14. [PMID: 22842228 PMCID: PMC3432702 DOI: 10.1038/ng.2359] [Citation(s) in RCA: 916] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/28/2012] [Indexed: 02/06/2023]
Abstract
We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequent in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1P29S) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1P29S showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit.
Collapse
|
147
|
Lochhead P, Imamura Y, Morikawa T, Kuchiba A, Yamauchi M, Liao X, Qian ZR, Nishihara R, Wu K, Meyerhardt JA, Fuchs CS, Ogino S. Insulin-like growth factor 2 messenger RNA binding protein 3 (IGF2BP3) is a marker of unfavourable prognosis in colorectal cancer. Eur J Cancer 2012; 48:3405-13. [PMID: 22840368 DOI: 10.1016/j.ejca.2012.06.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/05/2012] [Accepted: 06/23/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND Evidence suggests that insulin-like growth factor 2 messenger RNA binding protein 3 (IGF2BP3, also known as IMP3) represents a promising cancer biomarker. However, the clinical, pathological, molecular and prognostic features of IGF2BP3-positive colorectal cancers remain uncertain. MATERIALS AND METHODS We evaluated IGF2BP3 expression by immunohistochemistry in 671 rectal and colon cancer cases that form part of a molecular pathological epidemiology database. Cox proportional hazards regression models were used to compute mortality hazard ratio (HR), adjusting for clinical, pathological and molecular features, including microsatellite instability, the CpG island methylator phenotype, LINE-1 methylation and KRAS, BRAF and PIK3CA mutations. RESULTS Among 671 colorectal cancers, 234 (35%) tumours were positive for IGF2BP3. In contrast, normal colorectal epithelium was negative for IGF2BP3 in all 403 specimens of normal mucosa adjacent to carcinoma. IGF2BP3 positivity was associated with poor differentiation (p=0.0003), stage III-IV disease (p=0.0081), BRAF mutation (p=0.031), and LINE-1 hypomethylation (p=0.020). IGF2BP3 positivity was significantly associated with shorter colorectal cancer-specific [log-rank p<0.0001; multivariate HR, 1.37; 95% confidence interval (CI), 1.02-1.84] and overall survival (log-rank p=0.0004; multivariate HR, 1.32; 95% CI, 1.05-1.66). CONCLUSIONS IGF2BP3 expression in colorectal cancer is associated with adverse clinical outcome. Our findings support a role for IGF2BP3 as a diagnostic and/or prognostic biomarker in colorectal cancer.
Collapse
Affiliation(s)
- Paul Lochhead
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Superficial spreading and nodular melanoma are distinct biological entities: a challenge to the linear progression model. Melanoma Res 2012; 22:1-8. [PMID: 22108608 DOI: 10.1097/cmr.0b013e32834e6aa0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The classification of melanoma subtypes into prognostically relevant and therapeutically insightful categories has been a challenge since the first description of melanoma in the 1800s. One limitation has been the assumption that the two most common histological subtypes of melanoma, superficial spreading and nodular, evolve according to a linear model of progression, as malignant melanocytes spread radially and then invade vertically. However, recent clinical, pathological, and molecular data indicate that these two histological subtypes might evolve as distinct entities. Here, we review the published data that support distinct molecular characterization of superficial spreading and nodular melanoma, the clinical significance of this distinction including prognostic relevance and the therapeutic implications.
Collapse
|
149
|
Lindsay CR, Lawn S, Campbell AD, Faller WJ, Rambow F, Mort RL, Timpson P, Li A, Cammareri P, Ridgway RA, Morton JP, Doyle B, Hegarty S, Rafferty M, Murphy IG, McDermott EW, Sheahan K, Pedone K, Finn AJ, Groben PA, Thomas NE, Hao H, Carson C, Norman JC, Machesky LM, Gallagher WM, Jackson IJ, Van Kempen L, Beermann F, Der C, Larue L, Welch HC, Ozanne BW, Sansom OJ. P-Rex1 is required for efficient melanoblast migration and melanoma metastasis. Nat Commun 2011; 2:555. [PMID: 22109529 PMCID: PMC3400057 DOI: 10.1038/ncomms1560] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/20/2011] [Indexed: 12/15/2022] Open
Abstract
Metastases are the major cause of death from melanoma, a skin cancer that has the fastest rising incidence of any malignancy in the Western world. Molecular pathways that drive melanoblast migration in development are believed to underpin the movement and ultimately the metastasis of melanoma. Here we show that mice lacking P-Rex1, a Rac-specific Rho GTPase guanine nucleotide exchange factor, have a melanoblast migration defect during development evidenced by a white belly. Moreover, these P-Rex1(-/-) mice are resistant to metastasis when crossed to a murine model of melanoma. Mechanistically, this is associated with P-Rex1 driving invasion in a Rac-dependent manner. P-Rex1 is elevated in the majority of human melanoma cell lines and tumour tissue. We conclude that P-Rex1 has an important role in melanoblast migration and cancer progression to metastasis in mice and humans.
Collapse
Affiliation(s)
| | - Samuel Lawn
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| | | | | | - Florian Rambow
- Centre de Recherche, U1021 INSERM, Institut Curie, Paris, France
| | | | - Paul Timpson
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| | - Ang Li
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| | | | | | | | - Brendan Doyle
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| | - Shauna Hegarty
- School of Medicine Dentistry & Biomedical Science, Queen’s University, Belfast, UK
| | - Mairin Rafferty
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College, Dublin 4, Ireland
| | - Ian G. Murphy
- Department of Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Enda W. McDermott
- Department of Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Kieran Sheahan
- Department of Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Katherine Pedone
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Alexander J. Finn
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Pamela A. Groben
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Nancy E. Thomas
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Honglin Hao
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Craig Carson
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Jim C Norman
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| | | | - William M. Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College, Dublin 4, Ireland
| | | | - Leon Van Kempen
- McGill University/Jewish General Hospital, Dept of Pathology, Montreal, Quebec, Canada, H3A 2B4
| | | | - Channing Der
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Lionel Larue
- Centre de Recherche, U1021 INSERM, Institut Curie, Paris, France
| | | | - Brad W. Ozanne
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| | - Owen J. Sansom
- The Beatson Institute for Cancer Research, Glasgow, UK, G61 1BD
| |
Collapse
|
150
|
McKenzie AJ, Campbell SL, Howe AK. Protein kinase A activity and anchoring are required for ovarian cancer cell migration and invasion. PLoS One 2011; 6:e26552. [PMID: 22028904 PMCID: PMC3197526 DOI: 10.1371/journal.pone.0026552] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/28/2011] [Indexed: 11/19/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest of the gynecological malignancies, due in part to its clinically occult metastasis. Therefore, understanding the mechanisms governing EOC dissemination and invasion may provide new targets for antimetastatic therapies or new methods for detection of metastatic disease. The cAMP-dependent protein kinase (PKA) is often dysregulated in EOC. Furthermore, PKA activity and subcellular localization by A-kinase anchoring proteins (AKAPs) are important regulators of cytoskeletal dynamics and cell migration. Thus, we sought to study the role of PKA and AKAP function in both EOC cell migration and invasion. Using the plasma membrane-directed PKA biosensor, pmAKAR3, and an improved migration/invasion assay, we show that PKA is activated at the leading edge of migrating SKOV-3 EOC cells, and that inhibition of PKA activity blocks SKOV-3 cell migration. Furthermore, we show that while the PKA activity within the leading edge of these cells is mediated by anchoring of type-II regulatory PKA subunits (RII), inhibition of anchoring of either RI or RII PKA subunits blocks cell migration. Importantly, we also show--for the first time--that PKA activity is up-regulated at the leading edge of SKOV-3 cells during invasion of a three-dimensional extracellular matrix and, as seen for migration, inhibition of either PKA activity or AKAP-mediated PKA anchoring blocks matrix invasion. These data are the first to demonstrate that the invasion of extracellular matrix by cancer cells elicits activation of PKA within the invasive leading edge and that both PKA activity and anchoring are required for matrix invasion. These observations suggest a role for PKA and AKAP activity in EOC metastasis.
Collapse
Affiliation(s)
- Andrew J. McKenzie
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- The Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Shirley L. Campbell
- The Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Alan K. Howe
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- The Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|