101
|
Song DH, Garcia G, Situ K, Chua BA, Hong MLO, Do EA, Ramirez CM, Harui A, Arumugaswami V, Morizono K. Development of a blocker of the universal phosphatidylserine- and phosphatidylethanolamine-dependent viral entry pathways. Virology 2021; 560:17-33. [PMID: 34020328 DOI: 10.1016/j.virol.2021.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022]
Abstract
Envelope phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtr) have been shown to mediate binding of enveloped viruses. However, commonly used PtdSer binding molecules such as Annexin V cannot block PtdSer-mediated viral infection. Lack of reagents that can conceal envelope PtdSer and PtdEtr and subsequently inhibit infection hinders elucidation of the roles of the envelope phospholipids in viral infection. Here, we developed sTIM1dMLDR801, a reagent capable of blocking PtdSer- and PtdEtr-dependent infection of enveloped viruses. Using sTIM1dMLDR801, we found that envelope PtdSer and/or PtdEtr can support ZIKV infection of not only human but also mosquito cells. In a mouse model for ZIKV infection, sTIM1dMLDR801 reduced ZIKV load in serum and the spleen, indicating envelope PtdSer and/or PtdEtr support in viral infection in vivo. sTIM1dMLDR801 will enable elucidation of the roles of envelope PtdSer and PtdEtr in infection of various virus species, thereby facilitating identification of their receptors and transmission mechanisms.
Collapse
Affiliation(s)
- Da-Hoon Song
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Kathy Situ
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Bernadette A Chua
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Madeline Lauren O Hong
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Elyza A Do
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Christina M Ramirez
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
| | - Airi Harui
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
| | - Kouki Morizono
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
102
|
Identification of Novel Antiviral Compounds Targeting Entry of Hantaviruses. Viruses 2021; 13:v13040685. [PMID: 33923413 PMCID: PMC8074185 DOI: 10.3390/v13040685] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Hemorrhagic fever viruses, among them orthohantaviruses, arenaviruses and filoviruses, are responsible for some of the most severe human diseases and represent a serious challenge for public health. The current limited therapeutic options and available vaccines make the development of novel efficacious antiviral agents an urgent need. Inhibiting viral attachment and entry is a promising strategy for the development of new treatments and to prevent all subsequent steps in virus infection. Here, we developed a fluorescence-based screening assay for the identification of new antivirals against hemorrhagic fever virus entry. We screened a phytochemical library containing 320 natural compounds using a validated VSV pseudotype platform bearing the glycoprotein of the virus of interest and encoding enhanced green fluorescent protein (EGFP). EGFP expression allows the quantitative detection of infection and the identification of compounds affecting viral entry. We identified several hits against four pseudoviruses for the orthohantaviruses Hantaan (HTNV) and Andes (ANDV), the filovirus Ebola (EBOV) and the arenavirus Lassa (LASV). Two selected inhibitors, emetine dihydrochloride and tetrandrine, were validated with infectious pathogenic HTNV in a BSL-3 laboratory. This study provides potential therapeutics against emerging virus infection, and highlights the importance of drug repurposing.
Collapse
|
103
|
Wichit S, Gumpangseth N, Hamel R, Yainoy S, Arikit S, Punsawad C, Missé D. Chikungunya and Zika Viruses: Co-Circulation and the Interplay between Viral Proteins and Host Factors. Pathogens 2021; 10:448. [PMID: 33918691 PMCID: PMC8068860 DOI: 10.3390/pathogens10040448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Chikungunya and Zika viruses, both transmitted by mosquito vectors, have globally re-emerged over for the last 60 years and resulted in crucial social and economic concerns. Presently, there is no specific antiviral agent or vaccine against these debilitating viruses. Understanding viral-host interactions is needed to develop targeted therapeutics. However, there is presently limited information in this area. In this review, we start with the updated virology and replication cycle of each virus. Transmission by similar mosquito vectors, frequent co-circulation, and occurrence of co-infection are summarized. Finally, the targeted host proteins/factors used by the viruses are discussed. There is an urgent need to better understand the virus-host interactions that will facilitate antiviral drug development and thus reduce the global burden of infections caused by arboviruses.
Collapse
Affiliation(s)
- Sineewanlaya Wichit
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (N.G.); (S.Y.)
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Nuttamonpat Gumpangseth
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (N.G.); (S.Y.)
| | - Rodolphe Hamel
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; (R.H.); (D.M.)
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (N.G.); (S.Y.)
| | - Siwaret Arikit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; (R.H.); (D.M.)
| |
Collapse
|
104
|
Rutten L, Gilman MSA, Blokland S, Juraszek J, McLellan JS, Langedijk JPM. Structure-Based Design of Prefusion-Stabilized Filovirus Glycoprotein Trimers. Cell Rep 2021; 30:4540-4550.e3. [PMID: 32234486 PMCID: PMC7118701 DOI: 10.1016/j.celrep.2020.03.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Ebola virus causes severe hemorrhagic fever, often leading to death in humans. The trimeric fusion glycoprotein (GP) is the sole target for neutralizing antibodies and is the major focus of vaccine development. Soluble GP ectodomains are unstable and mostly monomeric when not fused to a heterologous trimerization domain. Here, we report structure-based designs of Ebola and Marburg GP trimers based on a stabilizing mutation in the hinge loop in refolding region 1 and substitution of a partially buried charge at the interface of the GP1 and GP2 subunits. The combined substitutions (T577P and K588F) substantially increased trimer expression for Ebola GP proteins. We determined the crystal structure of stabilized GP from the Makona Zaire ebolavirus strain without a trimerization domain or complexed ligand. The structure reveals that the stabilized GP adopts the same trimeric prefusion conformation, provides insight into triggering of GP conformational changes, and should inform future filovirus vaccine development. Filovirus GP expression increases by stabilizing mutations in hinge loop and base helix Charged lysine in base helix and GP1 N terminus are trapped in metastable conformation Crystal structure of stabilized Makona Δmucin GP confirms successful stabilization These findings may be useful for understanding fusion mechanisms and vaccine design
Collapse
Affiliation(s)
- Lucy Rutten
- Janssen Vaccines & Prevention, Archimedesweg 4-6, Leiden 2333 CN, the Netherlands
| | - Morgan S A Gilman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sven Blokland
- Janssen Vaccines & Prevention, Archimedesweg 4-6, Leiden 2333 CN, the Netherlands
| | - Jarek Juraszek
- Janssen Vaccines & Prevention, Archimedesweg 4-6, Leiden 2333 CN, the Netherlands
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
105
|
Xie S, Zhang H, Liang Z, Yang X, Cao R. AXL, an Important Host Factor for DENV and ZIKV Replication. Front Cell Infect Microbiol 2021; 11:575346. [PMID: 33954117 PMCID: PMC8092360 DOI: 10.3389/fcimb.2021.575346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Flaviviruses, as critically important pathogens, are still major public health problems all over the world. For instance, the evolution of ZIKV led to large-scale outbreaks in the Yap island in 2007. DENV was considered by the World Health Organization (WHO) as one of the 10 threats to global health in 2019. Enveloped viruses hijack a variety of host factors to complete its replication cycle. Phosphatidylserine (PS) receptor, AXL, is considered to be a candidate receptor for flavivirus invasion. In this review, we discuss the molecular structure of ZIKV and DENV, and how they interact with AXL to successfully invade host cells. A more comprehensive understanding of the molecular mechanisms of flavivirus-AXL interaction will provide crucial insights into the virus infection process and the development of anti-flavivirus therapeutics.
Collapse
Affiliation(s)
- Shengda Xie
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huiru Zhang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenjie Liang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xingmiao Yang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruibing Cao
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
106
|
Misasi J, Sullivan NJ. Immunotherapeutic strategies to target vulnerabilities in the Ebolavirus glycoprotein. Immunity 2021; 54:412-436. [PMID: 33691133 DOI: 10.1016/j.immuni.2021.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The 2014 Ebola virus disease (EVD) outbreak in West Africa and the subsequent outbreaks of 2018-2020 in Equator and North Kivu provinces of the Democratic Republic of the Congo illustrate the public health challenges of emerging and reemerging viruses. EVD has a high case fatality rate with a rapidly progressing syndrome of fever, rash, vomiting, diarrhea, and bleeding diathesis. Recently, two monoclonal-antibody-based therapies received United States Food and Drug Administration (FDA) approval, and there are several other passive immunotherapies that hold promise as therapeutics against other species of Ebolavirus. Here, we review concepts needed to understand mechanisms of action, present an expanded schema to define additional sites of vulnerability on the viral glycoprotein, and review current antibody-based therapeutics. The concepts described are used to gain insights into the key characteristics that represent functional targets for immunotherapies against Zaire Ebolavirus and other emerging viruses within the Ebolavirus genus.
Collapse
Affiliation(s)
- John Misasi
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Vaccine Research Center, 40 Convent Drive, Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Vaccine Research Center, 40 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
107
|
Gurunathan S, Kang MH, Kim JH. A Comprehensive Review on Factors Influences Biogenesis, Functions, Therapeutic and Clinical Implications of Exosomes. Int J Nanomedicine 2021; 16:1281-1312. [PMID: 33628021 PMCID: PMC7898217 DOI: 10.2147/ijn.s291956] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanoscale-sized membrane vesicles secreted by almost all cell types into the extracellular environment upon fusion of multivesicular bodies and plasma membrane. Biogenesis of exosomes is a protein quality control mechanism, and once released, exosomes transmit signals to other cells. The applications of exosomes have increased immensely in biomedical fields owing to their cell-specific cargos that facilitate intercellular communications with neighboring cells through the transfer of biologically active compounds. The diverse constituents of exosomes reflect their cell of origin and their detection in biological fluids represents a diagnostic marker for various diseases. Exosome research is expanding rapidly due to the potential for clinical application to therapeutics and diagnosis. However, several aspects of exosome biology remain elusive. To discover the use of exosomes in the biomedical applications, we must better understand the basic molecular mechanisms underlying their biogenesis and function. In this comprehensive review, we describe factors involved in exosomes biogenesis and the role of exosomes in intercellular signaling and cell-cell communications, immune responses, cellular homeostasis, autophagy, and infectious diseases. In addition, we discuss the role of exosomes as diagnostic markers, and their therapeutic and clinical implications. Furthermore, we addressed the challenges and outstanding developments in exosome research, and discuss future perspectives.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
108
|
Upasani V, Vo HTM, Auerswald H, Laurent D, Heng S, Duong V, Rodenhuis-Zybert IA, Dussart P, Cantaert T. Direct Infection of B Cells by Dengue Virus Modulates B Cell Responses in a Cambodian Pediatric Cohort. Front Immunol 2021; 11:594813. [PMID: 33643283 PMCID: PMC7907177 DOI: 10.3389/fimmu.2020.594813] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Dengue is an acute viral disease caused by dengue virus (DENV), which is transmitted by Aedes mosquitoes. Symptoms of DENV infection range from inapparent to severe and can be life-threatening. DENV replicates in primary immune cells such as dendritic cells and macrophages, which contribute to the dissemination of the virus. Susceptibility of other immune cells such as B cells to direct infection by DENV and their subsequent response to infection is not well defined. In a cohort of 60 Cambodian children, we showed that B cells are susceptible to DENV infection. Moreover, we show that B cells can support viral replication of laboratory adapted and patient-derived DENV strains. B cells were permissive to DENV infection albeit low titers of infectious virions were released in cell supernatants CD300a, a phosphatidylserine receptor, was identified as a potential attachment factor or receptor for entry of DENV into B cells. In spite of expressing Fcγ-receptors, antibody-mediated enhancement of DENV infection was not observed in B cells in an in vitro model. Direct infection by DENV induced proliferation of B cells in dengue patients in vivo and plasmablast/plasma cell formation in vitro. To summarize, our results show that B cells are susceptible to direct infection by DENV via CD300a and the subsequent B cell responses could contribute to dengue pathogenesis.
Collapse
Affiliation(s)
- Vinit Upasani
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia.,Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Hoa Thi My Vo
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Heidi Auerswald
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Denis Laurent
- Kantha Bopha Children Hospital, Phnom Penh, Cambodia
| | - Sothy Heng
- Kantha Bopha Children Hospital, Phnom Penh, Cambodia
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Izabela A Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| |
Collapse
|
109
|
Length of mucin-like domains enhances cell-Ebola virus adhesion by increasing binding probability. Biophys J 2021; 120:781-790. [PMID: 33539790 DOI: 10.1016/j.bpj.2021.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/20/2022] Open
Abstract
The Ebola virus (EBOV) hijacks normal physiological processes by apoptotic mimicry to be taken up by the cell it infects. The initial adhesion of the virus to the cell is based on the interaction between T cell immunoglobulin and mucin domain protein, TIM, on the cell surface and phosphatidylserine (PS) on the viral outer surface. Therefore, it is important to understand the interaction between EBOV and PS and TIM, with selective blocking of the interaction as a potential therapy. Recent experimental studies have shown that for TIM-dependent EBOV entry, a mucin-like domain with a length of at least 120 amino acids is required, possibly because of the increase of area of the PS-coated surface sampled. We examine this hypothesis by modeling the process of TIM-PS adhesion using a coarse-grained molecular model. We find that the strength of individual bound PS-TIM pairs is essentially independent of TIM length. TIMs with longer mucin-like domains collectively have higher average binding strengths because of an increase in the probability of binding between EBOV and TIM proteins. Similarly, we find that for larger persistence length (less flexible), the average binding force decreases, again because of a reduction in the probability of binding.
Collapse
|
110
|
Wang S, Qiu Z, Hou Y, Deng X, Xu W, Zheng T, Wu P, Xie S, Bian W, Zhang C, Sun Z, Liu K, Shan C, Lin A, Jiang S, Xie Y, Zhou Q, Lu L, Huang J, Li X. AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Res 2021; 31:126-140. [PMID: 33420426 PMCID: PMC7791157 DOI: 10.1038/s41422-020-00460-y] [Citation(s) in RCA: 356] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic presents a global public health challenge. The viral pathogen responsible, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), binds to the host receptor ACE2 through its spike (S) glycoprotein, which mediates membrane fusion and viral entry. Although the role of ACE2 as a receptor for SARS-CoV-2 is clear, studies have shown that ACE2 expression is extremely low in various human tissues, especially in the respiratory tract. Thus, other host receptors and/or co-receptors that promote the entry of SARS-CoV-2 into cells of the respiratory system may exist. In this study, we found that the tyrosine-protein kinase receptor UFO (AXL) specifically interacts with the N-terminal domain of SARS-CoV-2 S. Using both a SARS-CoV-2 virus pseudotype and authentic SARS-CoV-2, we found that overexpression of AXL in HEK293T cells promotes SARS-CoV-2 entry as efficiently as overexpression of ACE2, while knocking out AXL significantly reduces SARS-CoV-2 infection in H1299 pulmonary cells and in human primary lung epithelial cells. Soluble human recombinant AXL blocks SARS-CoV-2 infection in cells expressing high levels of AXL. The AXL expression level is well correlated with SARS-CoV-2 S level in bronchoalveolar lavage fluid cells from COVID-19 patients. Taken together, our findings suggest that AXL is a novel candidate receptor for SARS-CoV-2 which may play an important role in promoting viral infection of the human respiratory system and indicate that it is a potential target for future clinical intervention strategies.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Zongyang Qiu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yingnan Hou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Xiya Deng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China
| | - Tingting Zheng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Peihan Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Shaofang Xie
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Weixiang Bian
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Chong Zhang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Zewei Sun
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Kunpeng Liu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Chao Shan
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, State Key Laboratory of Virology, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Aifu Lin
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China
| | - Qiang Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Biosafety Level 3 Laboratory, Fudan University, Shanghai, 200032, China.
| | - Jing Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| | - Xu Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
111
|
Stewart CM, Phan A, Bo Y, LeBlond ND, Smith TKT, Laroche G, Giguère PM, Fullerton MD, Pelchat M, Kobasa D, Côté M. Ebola virus triggers receptor tyrosine kinase-dependent signaling to promote the delivery of viral particles to entry-conducive intracellular compartments. PLoS Pathog 2021; 17:e1009275. [PMID: 33513206 PMCID: PMC7875390 DOI: 10.1371/journal.ppat.1009275] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/10/2021] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
Filoviruses, such as the Ebola virus (EBOV) and Marburg virus (MARV), are causative agents of sporadic outbreaks of hemorrhagic fevers in humans. To infect cells, filoviruses are internalized via macropinocytosis and traffic through the endosomal pathway where host cathepsin-dependent cleavage of the viral glycoproteins occurs. Subsequently, the cleaved viral glycoprotein interacts with the late endosome/lysosome resident host protein, Niemann-Pick C1 (NPC1). This interaction is hypothesized to trigger viral and host membrane fusion, which results in the delivery of the viral genome into the cytoplasm and subsequent initiation of replication. Some studies suggest that EBOV viral particles activate signaling cascades and host-trafficking factors to promote their localization with host factors that are essential for entry. However, the mechanism through which these activating signals are initiated remains unknown. By screening a kinase inhibitor library, we found that receptor tyrosine kinase inhibitors potently block EBOV and MARV GP-dependent viral entry. Inhibitors of epidermal growth factor receptor (EGFR), tyrosine protein kinase Met (c-Met), and the insulin receptor (InsR)/insulin like growth factor 1 receptor (IGF1R) blocked filoviral GP-mediated entry and prevented growth of replicative EBOV in Vero cells. Furthermore, inhibitors of c-Met and InsR/IGF1R also blocked viral entry in macrophages, the primary targets of EBOV infection. Interestingly, while the c-Met and InsR/IGF1R inhibitors interfered with EBOV trafficking to NPC1, virus delivery to the receptor was not impaired in the presence of the EGFR inhibitor. Instead, we observed that the NPC1 positive compartments were phenotypically altered and rendered incompetent to permit viral entry. Despite their different mechanisms of action, all three RTK inhibitors tested inhibited virus-induced Akt activation, providing a possible explanation for how EBOV may activate signaling pathways during entry. In sum, these studies strongly suggest that receptor tyrosine kinases initiate signaling cascades essential for efficient post-internalization entry steps. Ebola virus (EBOV) and Marburg virus (MARV) are zoonotic pathogens that can cause severe hemorrhagic fevers in humans and non-human primates. They are members of the growing Filoviridae family that also includes three other species of Ebolaviruses known to be highly pathogenic in humans. While vaccines for EBOV are being deployed and showed high efficacy, pan-filoviral treatment is still lacking. To infect cells, EBOV requires the endosomal/lysosomal resident protein Niemann-Pick C1 (NPC1). Accordingly, viral particles require extensive trafficking within endosomal pathways for entry and delivery of the viral genome into the host cell cytoplasm. Here, we used chemical biology to reveal that EBOV triggers receptor tyrosine kinase (RTK)-dependent signaling to traffic to intracellular vesicles that contain the receptor and are conducive to entry. The characterization of host trafficking factors and signaling pathways that are potentially triggered by the virus are important as these could be targeted for antiviral therapies. In our study, we identified several RTK inhibitors, some of which are FDA-approved drugs, that potently block EBOV infection. Since all filoviruses known to date, even Měnglà virus that was recently discovered in bats in China, use NPC1 as their entry receptor, these inhibitors have the potential to be effective pan-filovirus antivirals.
Collapse
Affiliation(s)
- Corina M. Stewart
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Alexandra Phan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Nicholas D. LeBlond
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Tyler K. T. Smith
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Patrick M. Giguère
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Morgan D. Fullerton
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
- Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, Canada
- Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Canada
- * E-mail:
| |
Collapse
|
112
|
Muthuraj PG, Sahoo PK, Kraus M, Bruett T, Annamalai AS, Pattnaik A, Pattnaik AK, Byrareddy SN, Natarajan SK. Zika virus infection induces endoplasmic reticulum stress and apoptosis in placental trophoblasts. Cell Death Discov 2021; 7:24. [PMID: 33500388 PMCID: PMC7838309 DOI: 10.1038/s41420-020-00379-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/13/2020] [Indexed: 01/30/2023] Open
Abstract
Zika virus (ZIKV) infection to a pregnant woman can be vertically transmitted to the fetus via the placenta leading to Congenital Zika syndrome. This is characterized by microcephaly, retinal defects, and intrauterine growth retardation. ZIKV induces placental trophoblast apoptosis leading to severe abnormalities in the growth and development of the fetus. However, the molecular mechanism behind ZIKV-induced apoptosis in placental trophoblasts remains unclear. We hypothesize that ZIKV infection induces endoplasmic reticulum (ER) stress in the trophoblasts, and sustained ER stress results in apoptosis. HTR-8 (HTR-8/SVneo), a human normal immortalized trophoblast cell and human choriocarcinoma-derived cell lines (JEG-3 and JAR) were infected with ZIKV. Biochemical and structural markers of apoptosis like caspase 3/7 activity and percent apoptotic nuclear morphological changes, respectively were assessed. ZIKV infection in placental trophoblasts showed an increase in the levels of CHOP mRNA and protein expression, which is an inducer of apoptosis. Next, we also observed increased levels of ER stress markers such as phosphorylated forms of inositol-requiring transmembrane kinase/endoribonuclease 1α (P-IRE1α), and its downstream target, the spliced form of XBP1 mRNA, phosphorylated eukaryotic initiation factor 2α (P-eIF2α), and activation of cJun N-terminal Kinase (JNK) and p38 mitogen activated protein kinase (MAPK) after 16-24 h of ZIKV infection in trophoblasts. Inhibition of JNK or pan-caspases using small molecule inhibitors significantly prevented ZIKV-induced apoptosis in trophoblasts. Further, JNK inhibition also reduced XBP1 mRNA splicing and viral E protein staining in ZIKV infected cells. In conclusion, the mechanism of ZIKV-induced placental trophoblast apoptosis involves the activation of ER stress and JNK activation, and the inhibition of JNK dramatically prevents ZIKV-induced trophoblast apoptosis.
Collapse
Affiliation(s)
- Philma Glora Muthuraj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, 68583-0806, NE, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Prakash K Sahoo
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, 68583-0806, NE, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Madison Kraus
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, 68583-0806, NE, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Taylor Bruett
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, 68583-0806, NE, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Arun S Annamalai
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Omaha, NE, USA
| | - Aryamav Pattnaik
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Omaha, NE, USA
| | - Asit K Pattnaik
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Omaha, NE, USA
| | - Siddappa N Byrareddy
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Pharmacology and Experimental Therapeutics, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, 68583-0806, NE, USA.
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
113
|
Argañaraz GA, Palmeira JDF, Argañaraz ER. Phosphatidylserine inside out: a possible underlying mechanism in the inflammation and coagulation abnormalities of COVID-19. Cell Commun Signal 2020; 18:190. [PMID: 33357215 PMCID: PMC7765775 DOI: 10.1186/s12964-020-00687-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
The rapid ability of SARS-CoV-2 to spread among humans, along with the clinical complications of coronavirus disease 2019-COVID-19, have represented a significant challenge to the health management systems worldwide. The acute inflammation and coagulation abnormalities appear as the main causes for thousands of deaths worldwide. The intense inflammatory response could be involved with the formation of thrombi. For instance, the presence of uncleaved large multimers of von Willebrand (vWF), due to low ADAMTS13 activity in plasma could be explained by the inhibitory action of pro-inflammatory molecules such as IL-1β and C reactive protein. In addition, the damage to endothelial cells after viral infection and/or activation of endothelium by pro-inflammatory cytokines, such as IL-1β, IL-6, IFN-γ, IL-8, and TNF-α induces platelets and monocyte aggregation in the vascular wall and expression of tissue factor (TF). The TF expression may culminate in the formation of thrombi, and activation of cascade by the extrinsic pathway by association with factor VII. In this scenario, the phosphatidylserine-PtdSer exposure on the outer leaflet of the cell membrane as consequence of viral infection emerges as another possible underlying mechanism to acute immune inflammatory response and activation of coagulation cascade. The PtdSer exposure may be an important mechanism related to ADAM17-mediated ACE2, TNF-α, EGFR and IL-6R shedding, and the activation of TF on the surface of infected endothelial cells. In this review, we address the underlying mechanisms involved in the pathophysiology of inflammation and coagulation abnormalities. Moreover, we introduce key biochemical and pathophysiological concepts that support the possible participation of PtdSer exposure on the outer side of the SARS-CoV-2 infected cells membrane, in the pathophysiology of COVID-19. Video Abstract.
Collapse
Affiliation(s)
- Gustavo A. Argañaraz
- Laboratory of Molecular Neurovirology, Faculty of Health Science, University of Brasília, Brasília, 70910-900 Brazil
| | - Julys da Fonseca Palmeira
- Laboratory of Molecular Neurovirology, Faculty of Health Science, University of Brasília, Brasília, 70910-900 Brazil
| | - Enrique R. Argañaraz
- Laboratory of Molecular Neurovirology, Faculty of Health Science, University of Brasília, Brasília, 70910-900 Brazil
| |
Collapse
|
114
|
Zhang L, Richard AS, Jackson CB, Ojha A, Choe H. Phosphatidylethanolamine and Phosphatidylserine Synergize To Enhance GAS6/AXL-Mediated Virus Infection and Efferocytosis. J Virol 2020; 95:e02079-20. [PMID: 33115868 PMCID: PMC7944455 DOI: 10.1128/jvi.02079-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Phosphatidylserine (PS) receptors mediate clearance of apoptotic cells-efferocytosis-by recognizing the PS exposed on those cells. They also mediate the entry of enveloped viruses by binding PS in the virion membrane. Here, we show that phosphatidylethanolamine (PE) synergizes with PS to enhance PS receptor-mediated efferocytosis and virus entry. The presence of PE on the same surface as PS dramatically enhances recognition of PS by PS-binding proteins such as GAS6, PROS, and TIM1. Liposomes containing both PE and PS bound to GAS6 and were engulfed by AXL-expressing cells much more efficiently than those containing PS alone. Further, infection of AXL-expressing cells by infectious Zika virus or Ebola, Chikungunya, or eastern equine encephalitis pseudoviruses was inhibited with greater efficiency by the liposomes containing both PS and PE compared to a mixture of liposomes separately composed of PS and PE. These data demonstrate that simultaneous recognition of PE and PS maximizes PS receptor-mediated virus entry and efferocytosis and underscore the important contribution of PE in these major biological processes.IMPORTANCE Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are usually sequestered to the inner leaflet of the plasma membrane of the healthy eukaryotic cells. During apoptosis, these phospholipids move to the cell's outer leaflet where they are recognized by so-called PS receptors on surveilling phagocytes. Several pathogenic families of enveloped viruses hijack these PS receptors to gain entry into their target cells. Here, we show that efficiency of these processes is enhanced, namely, PE synergizes with PS to promote PS receptor-mediated virus infection and clearance of apoptotic cells. These findings deepen our understanding of how these fundamental biological processes are executed.
Collapse
Affiliation(s)
- Lizhou Zhang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Audrey S Richard
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Cody B Jackson
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Amrita Ojha
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Hyeryun Choe
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
115
|
Evans DeWald L, Starr C, Butters T, Treston A, Warfield KL. Iminosugars: A host-targeted approach to combat Flaviviridae infections. Antiviral Res 2020; 184:104881. [PMID: 32768411 PMCID: PMC7405907 DOI: 10.1016/j.antiviral.2020.104881] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
N-linked glycosylation is the most common form of protein glycosylation and is required for the proper folding, trafficking, and/or receptor binding of some host and viral proteins. As viruses lack their own glycosylation machinery, they are dependent on the host's machinery for these processes. Certain iminosugars are known to interfere with the N-linked glycosylation pathway by targeting and inhibiting α-glucosidases I and II in the endoplasmic reticulum (ER). Perturbing ER α-glucosidase function can prevent these enzymes from removing terminal glucose residues on N-linked glycans, interrupting the interaction between viral glycoproteins and host chaperone proteins that is necessary for proper folding of the viral protein. Iminosugars have demonstrated broad-spectrum antiviral activity in vitro and in vivo against multiple viruses. This review discusses the broad activity of iminosugars against Flaviviridae. Iminosugars have shown favorable activity against multiple members of the Flaviviridae family in vitro and in murine models of disease, although the activity and mechanism of inhibition can be virus-specfic. While iminosugars are not currently approved for the treatment of viral infections, their potential use as future host-targeted antiviral (HTAV) therapies continues to be investigated.
Collapse
Affiliation(s)
| | - Chloe Starr
- Emergent BioSolutions, Gaithersburg, MD, 20879, USA
| | | | | | - Kelly L. Warfield
- Emergent BioSolutions, Gaithersburg, MD, 20879, USA,Corresponding author. 400 Professional Drive, Gaithersburg, MD, 20879, USA
| |
Collapse
|
116
|
Role of Phosphatidylethanolamine Biosynthesis in Herpes Simplex Virus 1-Infected Cells in Progeny Virus Morphogenesis in the Cytoplasm and in Viral Pathogenicity In Vivo. J Virol 2020; 94:JVI.01572-20. [PMID: 32999028 DOI: 10.1128/jvi.01572-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
Glycerophospholipids are major components of cell membranes. Phosphatidylethanolamine (PE) is a glycerophospholipid that is involved in multiple cellular processes, such as membrane fusion, the cell cycle, autophagy, and apoptosis. In this study, we investigated the role of PE biosynthesis in herpes simplex virus 1 (HSV-1) infection by knocking out the host cell gene encoding phosphate cytidylyltransferase 2, ethanolamine (Pcyt2), which is a key rate-limiting enzyme in one of the two major pathways for PE biosynthesis. Pcyt2 knockout reduced HSV-1 replication and caused an accumulation of unenveloped and partially enveloped nucleocapsids in the cytoplasm of an HSV-1-infected cell culture. A similar phenotype was observed when infected cells were treated with meclizine, which is an inhibitor of Pcyt2. In addition, treatment of HSV-1-infected mice with meclizine significantly reduced HSV-1 replication in the mouse brains and improved their survival rates. These results indicated that PE biosynthesis mediated by Pcyt2 was required for efficient HSV-1 envelopment in the cytoplasm of infected cells and for viral replication and pathogenicity in vivo The results also identified the PE biosynthetic pathway as a possible novel target for antiviral therapy of HSV-associated diseases and raised an interesting possibility for meclizine repositioning for treatment of these diseases, since it is an over-the-counter drug that has been used for decades against nausea and vertigo in motion sickness.IMPORTANCE Glycerophospholipids in cell membranes and virus envelopes often affect viral entry and budding. However, the role of glycerophospholipids in membrane-associated events in viral replication in herpesvirus-infected cells has not been reported to date. In this study, we have presented data showing that cellular PE biosynthesis mediated by Pcyt2 is important for HSV-1 envelopment in the cytoplasm, as well as for viral replication and pathogenicity in vivo This is the first report showing the importance of PE biosynthesis in herpesvirus infections. Our results showed that inhibition of Pcyt2, a key cell enzyme for PE synthesis, significantly inhibited HSV-1 replication and pathogenicity in mice. This suggested that the PE biosynthetic pathway, as well as the HSV-1 virion maturation pathway, can be a target for the development of novel anti-HSV drugs.
Collapse
|
117
|
De Caluwé L, Ariën KK, Bartholomeeusen K. Host Factors and Pathways Involved in the Entry of Mosquito-Borne Alphaviruses. Trends Microbiol 2020; 29:634-647. [PMID: 33208275 DOI: 10.1016/j.tim.2020.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022]
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus that has re-emerged recently and has spread to previously unaffected regions, resulting in millions of infections worldwide. The genus Alphavirus, in the family Togaviridae, contains several members with a similar potential for epidemic emergence. In order for CHIKV to replicate in targeted cell types it is essential for the virus to enter these cells. In this review, we summarize our current understanding of the versatile and promiscuous steps in CHIKV binding and entry into human and mosquito host cells. We describe the different entry pathways, receptors, and attachment factors so far described for CHIKV and other mosquito-borne alphaviruses and discuss them in the context of tissue tropism and potential therapeutic targeting.
Collapse
Affiliation(s)
- Lien De Caluwé
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Kevin K Ariën
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Koen Bartholomeeusen
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
| |
Collapse
|
118
|
O'Neal AJ, Butler LR, Rolandelli A, Gilk SD, Pedra JH. Lipid hijacking: a unifying theme in vector-borne diseases. eLife 2020; 9:61675. [PMID: 33118933 PMCID: PMC7595734 DOI: 10.7554/elife.61675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Vector-borne illnesses comprise a significant portion of human maladies, representing 17% of global infections. Transmission of vector-borne pathogens to mammals primarily occurs by hematophagous arthropods. It is speculated that blood may provide a unique environment that aids in the replication and pathogenesis of these microbes. Lipids and their derivatives are one component enriched in blood and are essential for microbial survival. For instance, the malarial parasite Plasmodium falciparum and the Lyme disease spirochete Borrelia burgdorferi, among others, have been shown to scavenge and manipulate host lipids for structural support, metabolism, replication, immune evasion, and disease severity. In this Review, we will explore the importance of lipid hijacking for the growth and persistence of these microbes in both mammalian hosts and arthropod vectors.
Collapse
Affiliation(s)
- Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Stacey D Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
| | - Joao Hf Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
119
|
Abstract
Alphaviruses cause severe human illnesses including persistent arthritis and fatal encephalitis. As alphavirus entry into target cells is the first step in infection, intensive research efforts have focused on elucidating aspects of this pathway, including attachment, internalization, and fusion. Herein, we review recent developments in the molecular understanding of alphavirus entry both in vitro and in vivo and how these advances might enable the design of therapeutics targeting this critical step in the alphavirus life cycle.
Collapse
|
120
|
Holzerland J, Fénéant L, Banadyga L, Hölper JE, Knittler MR, Groseth A. BH3-only sensors Bad, Noxa and Puma are Key Regulators of Tacaribe virus-induced Apoptosis. PLoS Pathog 2020; 16:e1008948. [PMID: 33045019 PMCID: PMC7598930 DOI: 10.1371/journal.ppat.1008948] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/30/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Pathogenicity often differs dramatically among even closely related arenavirus species. For instance, Junín virus (JUNV), the causative agent of Argentine hemorrhagic fever (AHF), is closely related to Tacaribe virus (TCRV), which is normally avirulent in humans. While little is known about how host cell pathways are regulated in response to arenavirus infection, or how this contributes to virulence, these two viruses have been found to differ markedly in their ability to induce apoptosis. However, details of the mechanism(s) governing the apoptotic response to arenavirus infections are unknown. Here we confirm that TCRV-induced apoptosis is mitochondria-regulated, with associated canonical hallmarks of the intrinsic apoptotic pathway, and go on to identify the pro- and anti-apoptotic Bcl-2 factors responsible for regulating this process. In particular, levels of the pro-apoptotic BH3-only proteins Noxa and Puma, as well as their canonical transcription factor p53, were strongly increased. Interestingly, TCRV infection also led to the accumulation of the inactive phosphorylated form of another pro-apoptotic BH3-only protein, Bad (i.e. as phospho-Bad). Knockout of Noxa or Puma suppressed apoptosis in response to TCRV infection, whereas silencing of Bad increased apoptosis, confirming that these factors are key regulators of apoptosis induction in response to TCRV infection. Further, we found that while the highly pathogenic JUNV does not induce caspase activation, it still activated upstream pro-apoptotic factors, consistent with current models suggesting that JUNV evades apoptosis by interfering with caspase activation through a nucleoprotein-mediated decoy function. This new mechanistic insight into the role that individual BH3-only proteins and their regulation play in controlling apoptotic fate in arenavirus-infected cells provides an important experimental framework for future studies aimed at dissecting differences in the apoptotic responses between arenaviruses, their connection to other cell signaling events and ultimately the relationship of these processes to pathogenesis. Arenaviruses are important zoonotic pathogens that present a serious threat to human health. While some virus species cause severe disease, resulting in hemorrhagic fever and/or neurological symptoms, other closely related species exhibit little or no pathogenicity. The basis for these dramatically different outcomes is insufficiently understood, but investigations of host cell responses have suggested that apoptosis, i.e. non-inflammatory programmed cell death, is regulated differently between pathogenic and apathogenic arenaviruses. However, many questions remain regarding how these viruses interact with cell death pathways upon infection. Here we demonstrate that apoptosis induced by the avirulent Tacaribe virus (TCRV), proceeds via the mitochondria (i.e. the intrinsic apoptotic signaling pathway), and is regulated by a combination of factors that appear to balance activation (i.e. Noxa and Puma) and inactivation (i.e. Bad-P) of this cascade. During TCRV infection, the balance of these pro- and anti-apoptotic signals shifts the equilibrium late in the infection towards cell death. Importantly, we also found that the highly pathogenic Junín virus (JUNV), which does not trigger caspase activation or apoptotic cell death, nonetheless induces pro-apoptotic factors, thus supporting the existence of a specific mechanism by which this virus is able to evade apoptosis at late stages in this process.
Collapse
Affiliation(s)
- Julia Holzerland
- Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald—Isle of Riems, Germany
| | - Lucie Fénéant
- Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald—Isle of Riems, Germany
| | - Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Julia E. Hölper
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald—Isle of Riems, Germany
| | - Michael R. Knittler
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald—Isle of Riems, Germany
| | - Allison Groseth
- Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald—Isle of Riems, Germany
- * E-mail:
| |
Collapse
|
121
|
Zhang R, Earnest JT, Kim AS, Winkler ES, Desai P, Adams LJ, Hu G, Bullock C, Gold B, Cherry S, Diamond MS. Expression of the Mxra8 Receptor Promotes Alphavirus Infection and Pathogenesis in Mice and Drosophila. Cell Rep 2020; 28:2647-2658.e5. [PMID: 31484075 PMCID: PMC6745702 DOI: 10.1016/j.celrep.2019.07.105] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
Mxra8 is a recently described receptor for multiple alphaviruses, including Chikungunya (CHIKV), Mayaro (MAYV), Ross River (RRV), and O'nyong nyong (ONNV) viruses. To determine its role in pathogenesis, we generated mice with mutant Mxra8 alleles: an 8-nucleotide deletion that produces a truncated, soluble form (Mxra8Δ8/Δ8) and a 97-nucleotide deletion that abolishes Mxra8 expression (Mxra8Δ97/Δ97). Mxra8Δ8/Δ8 and Mxra8Δ97/Δ97 fibroblasts show reduced CHIKV infection in culture, and Mxra8Δ8/Δ8 and Mxra8Δ97/Δ97 mice have decreased infection of musculoskeletal tissues with CHIKV, MAYV, RRV, or ONNV. Less foot swelling is observed in CHIKV-infected Mxra8 mutant mice, which correlated with fewer infiltrating neutrophils and cytokines. A recombinant E2-D71A CHIKV with diminished binding to Mxra8 is attenuated in vivo in wild-type mice. Ectopic Mxra8 expression is sufficient to enhance CHIKV infection and lethality in transgenic flies. These studies establish a role for Mxra8 in the pathogenesis of multiple alphaviruses and suggest that targeting this protein may mitigate disease in humans.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - James T Earnest
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arthur S Kim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lucas J Adams
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gaowei Hu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Christopher Bullock
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Beth Gold
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
122
|
Balgoma D, Gil-de-Gómez L, Montero O. Lipidomics Issues on Human Positive ssRNA Virus Infection: An Update. Metabolites 2020; 10:E356. [PMID: 32878290 PMCID: PMC7569815 DOI: 10.3390/metabo10090356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022] Open
Abstract
The pathogenic mechanisms underlying the Biology and Biochemistry of viral infections are known to depend on the lipid metabolism of infected cells. From a lipidomics viewpoint, there are a variety of mechanisms involving virus infection that encompass virus entry, the disturbance of host cell lipid metabolism, and the role played by diverse lipids in regard to the infection effectiveness. All these aspects have currently been tackled separately as independent issues and focused on the function of proteins. Here, we review the role of cholesterol and other lipids in ssRNA+ infection.
Collapse
Affiliation(s)
- David Balgoma
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, Husarg. 3, 75123 Uppsala, Sweden;
| | - Luis Gil-de-Gómez
- Center of Childhood Cancer Center, Children’s Hospital of Philadelphia, Colket Translational Research Center, 3501 Civic Center Blvd, Philadelphia, PA 19104, USA;
| | - Olimpio Montero
- Spanish National Research Council (CSIC), Boecillo’s Technological Park Bureau, Av. Francisco Vallés 8, 47151 Boecillo, Spain
| |
Collapse
|
123
|
Virus-Host Cell Interplay during Hepatitis E Virus Infection. Trends Microbiol 2020; 29:309-319. [PMID: 32828646 PMCID: PMC7437515 DOI: 10.1016/j.tim.2020.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
The molecular interplay between cellular host factors and viral proteins is a continuous process throughout the viral life cycle determining virus host range and pathogenesis. The hepatitis E virus (HEV) is a long-neglected RNA virus and the major causative agent of acute viral hepatitis in humans worldwide. However, the mechanisms of liver pathology and clinical disease remain poorly understood for HEV infection. This review summarizes our current understanding of HEV-host cell interactions and highlights experimental strategies and techniques to identify novel host components required for the viral life cycle as well as restriction factors. Understanding these interactions will provide insight into the viral life cycle of HEV and might further help to devise novel therapeutic strategies and antiviral targets.
Collapse
|
124
|
Gold AS, Feitosa-Suntheimer F, Asad S, Adeoye B, Connor JH, Colpitts TM. Examining the Role of Niemann-Pick C1 Protein in the Permissiveness of Aedes Mosquitoes to Filoviruses. ACS Infect Dis 2020; 6:2023-2028. [PMID: 32609483 DOI: 10.1021/acsinfecdis.0c00018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aedes mosquitoes vector many viruses with divergent characteristics, yet the criteria needed for a virus to be vectored by an arthropod remain unknown. The intracellular cholesterol transporter protein Niemann-Pick C1 (NPC1) has been identified as the necessary entry receptor for filoviruses such as Ebola and Marburg viruses. While homologues of NPC1 are observed in mosquitoes, currently no filovirus has been identified as circulating in mosquitoes. This work aimed at increasing the understanding of the mosquito vector by examining the capability of a virus to gain the ability to enter mosquito cells. We developed a model system of Aedes cells expressing human NPC1 (hNPC1) and attempted to infect these cells with recombinant vesicular stomatitis virus expressing the Ebola virus glycoprotein. As compared to the control cells, no significant increase in infection was observed in cells expressing hNPC1, demonstrating that the expression of human NPC1 alone is not sufficient to support filovirus infection, and that host factors other than NPC1 determine filovirus susceptibility of mosquito cells.
Collapse
Affiliation(s)
- Alexander S. Gold
- Department of Microbiology, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories, 620 Albany Street, Boston, Massachusetts 02118, United States
| | - Fabiana Feitosa-Suntheimer
- Department of Microbiology, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories, 620 Albany Street, Boston, Massachusetts 02118, United States
| | - Sultan Asad
- Department of Microbiology, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories, 620 Albany Street, Boston, Massachusetts 02118, United States
| | - Bukola Adeoye
- Department of Microbiology, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories, 620 Albany Street, Boston, Massachusetts 02118, United States
| | - John H. Connor
- Department of Microbiology, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories, 620 Albany Street, Boston, Massachusetts 02118, United States
| | - Tonya M. Colpitts
- Department of Microbiology, Boston University School of Medicine, National Emerging Infectious Diseases Laboratories, 620 Albany Street, Boston, Massachusetts 02118, United States
| |
Collapse
|
125
|
The Role of Receptor Tyrosine Kinases in Lassa Virus Cell Entry. Viruses 2020; 12:v12080857. [PMID: 32781509 PMCID: PMC7472032 DOI: 10.3390/v12080857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
The zoonotic Old World mammarenavirus Lassa (LASV) causes severe hemorrhagic fever with high mortality and morbidity in humans in endemic regions. The development of effective strategies to combat LASV infections is of high priority, given the lack of a licensed vaccine and restriction on available treatment to off-label use of ribavirin. A better understanding of the fundamental aspects of the virus's life cycle would help to improve the development of novel therapeutic approaches. Host cell entry and restriction factors represent major barriers for emerging viruses and are promising targets for therapeutic intervention. In addition to the LASV main receptor, the extracellular matrix molecule dystroglycan (DG), the phosphatidylserine-binding receptors of the Tyro3/Axl/Mer (TAM), and T cell immunoglobulin and mucin receptor (TIM) families are potential alternative receptors of LASV infection. Therefore, the relative contributions of candidate receptors to LASV entry into a particular human cell type are a complex function of receptor expression and functional DG availability. Here, we describe the role of two receptor tyrosine kinases (RTKs), Axl and hepatocyte growth factor receptor (HGFR), in the presence and absence of glycosylated DG for LASV entry. We found that both RTKs participated in the macropinocytosis-related LASV entry and, regardless of the presence or absence of functional DG, their inhibition resulted in a significant antiviral effect.
Collapse
|
126
|
CACNA1S haploinsufficiency confers resistance to New World arenavirus infection. Proc Natl Acad Sci U S A 2020; 117:19497-19506. [PMID: 32719120 DOI: 10.1073/pnas.1920551117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the genetics of susceptibility to infectious agents is of great importance to our ability to combat disease. Here, we show that voltage-gated calcium channels (VGCCs) are critical for cellular binding and entry of the New World arenaviruses Junín and Tacaribe virus, suggesting that zoonosis via these receptors could occur. Moreover, we demonstrate that α1s haploinsufficiency renders cells and mice more resistant to infection by these viruses. In addition to being more resistant to infection, haploinsufficient cells and mice required a lower dosage of VGCC antagonists to block infection. These studies underscore the importance of genetic variation in susceptibility to both viruses and pharmaceutics.
Collapse
|
127
|
Tim-4 functions as a scavenger receptor for phagocytosis of exogenous particles. Cell Death Dis 2020; 11:561. [PMID: 32703939 PMCID: PMC7378189 DOI: 10.1038/s41419-020-02773-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022]
Abstract
The phosphatidylserine (PS) receptor Tim-4 mediates phagocytosis of apoptotic cells by binding to PS exposed on the surface of these cells, and thus functions as a PS receptor for apoptotic cells. Some of PS receptors are capable of recognizing other molecules, such as LPS on bacteria, besides PS on apoptotic cells. However, it is unclear whether Tim-4 perceives other molecules like the PS receptors. Here, we report that Tim-4 facilitates the phagocytosis of exogenous particles as well as apoptotic cells. Similar to the process that occurs during Tim-4-mediated efferocytosis, the uptake of exogenous E. coli and S. aureus bioparticles was promoted by overexpression of Tim-4 on phagocytes, whereas phagocytosis of the bioparticles was reduced in Tim-4-deficient cells. A truncation mutant of Tim-4 lacking the cytoplasmic tail promoted phagocytosis of the particles, but a mutant lacking the IgV or the mucin domain failed to enhance phagocytosis. However, expression of Tim-4AAA (a mutant form of Tim-4 that does not bind phosphatidylserine and does not promote efferocytosis) still promoted phagocytosis. Tim-4-mediated phagocytosis was not blocked by expression of the phosphatidylserine-binding protein Anxa5. Furthermore, binding of lipopolysaccharide (LPS), which is found in the outer membrane of Gram-negative bacteria, was higher in Tim-4-overexpressing cells than in Tim-4-deficient cells. In summary, our study suggests that Tim-4 acts as a scavenger receptor and mediates phagocytosis of exogenous particles in a phosphatidylserine-independent manner.
Collapse
|
128
|
Kim D, Lee SA, Moon H, Kim K, Park D. The Tim gene family in efferocytosis. Genes Genomics 2020; 42:979-986. [PMID: 32648232 DOI: 10.1007/s13258-020-00969-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022]
Abstract
One of the key features of the plasma membrane is the asymmetrical distribution of phospholipids across it. Especially, phosphatidylserine (PS) exclusively locates on its inner leaflet. Thus, the exposure of PS on the surface of cells could function as a signal initiating various cellular processes such as phagocytosis of apoptotic cells called efferocytosis, blood clotting, muscle formation, and viral entry. Indeed, PS on apoptotic cells stimulates phagocytes to engulf them and functions as an essential ligand for efferocytosis. Due to the importance of PS in efferocytosis, the existence of the PS receptor had been conceived. However, the PS receptor had not been revealed for a long time. Thus, the first identification of the PS receptor was significant excitement. Tim-4, a member of the T cell immunoglobulin and mucin domain containing family of genes, was one of PS receptors which first identified and received the greatest attention due to its expression in macrophages and relevance to autoimmune and allergic diseases. This review will serve to provide a comprehensive overview of Tim proteins as PS receptors.
Collapse
Affiliation(s)
- Deokhwan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Center for Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Sang-Ah Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Center for Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Hyunji Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Center for Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Kwanhyeong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Daeho Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea. .,Center for Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| |
Collapse
|
129
|
Cunha MS, Costa PAG, Correa IA, de Souza MRM, Calil PT, da Silva GPD, Costa SM, Fonseca VWP, da Costa LJ. Chikungunya Virus: An Emergent Arbovirus to the South American Continent and a Continuous Threat to the World. Front Microbiol 2020; 11:1297. [PMID: 32670231 PMCID: PMC7332961 DOI: 10.3389/fmicb.2020.01297] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/20/2020] [Indexed: 01/23/2023] Open
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus (arbovirus) of epidemic concern, transmitted by Aedes ssp. mosquitoes, and is the etiologic agent of a febrile and incapacitating arthritogenic illness responsible for millions of human cases worldwide. After major outbreaks starting in 2004, CHIKV spread to subtropical areas and western hemisphere coming from sub-Saharan Africa, South East Asia, and the Indian subcontinent. Even though CHIKV disease is self-limiting and non-lethal, more than 30% of the infected individuals will develop chronic disease with persistent severe joint pain, tenosynovitis, and incapacitating polyarthralgia that can last for months to years, negatively impacting an individual's quality of life and socioeconomic productivity. The lack of specific drugs or licensed vaccines to treat or prevent CHIKV disease associated with the global presence of the mosquito vector in tropical and temperate areas, representing a possibility for CHIKV to continually spread to different territories, make this virus an agent of public health burden. In South America, where Dengue virus is endemic and Zika virus was recently introduced, the impact of the expansion of CHIKV infections, and co-infection with other arboviruses, still needs to be estimated. In Brazil, the recent spread of the East/Central/South Africa (ECSA) and Asian genotypes of CHIKV was accompanied by a high morbidity rate and acute cases of abnormal disease presentation and severe neuropathies, which is an atypical outcome for this infection. In this review, we will discuss what is currently known about CHIKV epidemics, clinical manifestations of the human disease, the basic concepts and recent findings in the mechanisms underlying virus-host interaction, and CHIKV-induced chronic disease for both in vitro and in vivo models of infection. We aim to stimulate scientific debate on how the characterization of replication, host-cell interactions, and the pathogenic potential of the new epidemic viral strains can contribute as potential developments in the virology field and shed light on strategies for disease control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luciana J. da Costa
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
130
|
Pathogenesis of Uveitis in Ebola Virus Disease Survivors: Evolving Understanding from Outbreaks to Animal Models. Microorganisms 2020; 8:microorganisms8040594. [PMID: 32325950 PMCID: PMC7232169 DOI: 10.3390/microorganisms8040594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/05/2020] [Accepted: 04/13/2020] [Indexed: 01/24/2023] Open
Abstract
Ebola virus disease (EVD) and emerging infectious disease threats continue to threaten life, prosperity and global health security. To properly counteract EVD, an improved understanding of the long-term impact of recent EVD outbreaks in West Africa and the Democratic Republic of Congo are needed. In the wake of recent outbreaks, numerous health sequelae were identified in EVD survivors. These findings include joint pains, headaches, myalgias, and uveitis, a vision-threatening inflammatory condition of the eye. Retrospective and more recent prospective studies of EVD survivors from West Africa have demonstrated that uveitis may occur in 13–34% of patients with an increase in prevalence from baseline to 12-month follow-up. The clinical spectrum of disease ranges from mild, anterior uveitis to severe, sight-threatening panuveitis. Untreated inflammation may ultimately lead to secondary complications of cataract and posterior synechiae, with resultant vision impairment. The identification of Ebola virus persistence in immune privileged organs, such as the eye, with subsequent tissue inflammation and edema may lead to vision loss. Non-human primate models of EVD have demonstrated tissue localization to the eye including macrophage reservoirs within the vitreous matter. Moreover, in vitro models of Ebola virus have shown permissiveness in retinal pigment epithelial cells, potentially contributing to viral persistence. Broad perspectives from epidemiologic studies of the outbreak, animal modeling, and immunologic studies of EVD survivors have demonstrated the spectrum of the eye disease, tissue specificity of Ebola virus infection, and antigen-specific immunologic response. Further studies in these areas will elucidate the mechanisms of this highly prevalent disease with the potential for improved therapeutics for Ebola virus in immune-privileged sites.
Collapse
|
131
|
Liu W, Xu L, Liang X, Liu X, Zhao Y, Ma C, Gao L. Tim-4 in Health and Disease: Friend or Foe? Front Immunol 2020; 11:537. [PMID: 32300343 PMCID: PMC7142236 DOI: 10.3389/fimmu.2020.00537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
T-cell immunoglobulin and mucin domain containing 4 (Tim-4) is a phosphatidylserine receptor and is selectively expressed on antigen presenting cells. Recently, Tim-4 was reported to be expressed on iNKT cells, B1 cells, and tumor cells, suggesting it has multiple biological functions. In this review, we mainly summarize the expression and regulation of Tim-4 in immune cells including T cells, macrophages, dendritic cells, NKT cells, B cells, and mast cells. The expression of Tim-4 in these cells implies that Tim-4 might participate in immune related diseases. Emerging evidence emphasizes a substantial role for Tim-4 in maintaining homeostasis by regulating various immune responses, including viral infection, allergy, autoimmunity, and tumor immunity. Here, we collectively evaluated the role of Tim-4 in health and diseases. This summary will be extremely useful to fully understand the function of Tim-4 in the pathogenesis of immune related diseases, which would provide novel clues for the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Wen Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Liyun Xu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China.,Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaojun Liu
- Center for Cellular Immunotherapies, University of Pennsylvania Cancer Center, Philadelphia, PA, United States
| | - Yangbing Zhao
- Center for Cellular Immunotherapies, University of Pennsylvania Cancer Center, Philadelphia, PA, United States.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
132
|
Different Expression Pattern of TIM-3 and Galectin-9 Molecules by Peripheral and Peritoneal Lymphocytes in Women with and without Endometriosis. Int J Mol Sci 2020; 21:ijms21072343. [PMID: 32231038 PMCID: PMC7177301 DOI: 10.3390/ijms21072343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a gynecological condition that is associated with chronic pelvic inflammation, pain, and infertility. Although substantial evidence supports that immunological alterations contribute to its pathogenesis and we previously posed a pivotal role of Galectin-9 (Gal-9) in this disorder, the involvement of the TIM-3/Gal-9 pathway in the development of endometriosis-associated immunological abnormalities is not yet known. In the present study, multicolor flow cytometry was used to compare the immunophenotype and cell surface expression of TIM-3 and Gal-9 molecules on peripheral blood (PB) and peritoneal fluid (PF) lymphocytes of women with and without endometriosis. We found an altered distribution of different lymphocyte subpopulations, a markedly decreased TIM-3 labeling on all T and NK subsets and a significantly increased Gal-9 positivity on peripheral CD4+ T and Treg cells of the affected cohort. Furthermore, a significantly increased TIM-3 expression on CD4+T-cells and elevated Gal-9 labeling on all T and NK subsets was also revealed in the PF of the examined patients. In conclusion, our results suggest a persistent activation and disturbed TIM-3/Gal-9-dependent regulatory function in endometriosis, which may be involved in the impaired immune surveillance mechanisms, promotes the survival of ectopic lesions, and aids the evolution of reproductive failures in endometriosis.
Collapse
|
133
|
Shen H, Nibona E, Xu G, Al Hafiz MA, Ke X, Liang X, Yao Q, Zhong X, Zhou Q, Zhao H. Identification, expression pattern, and immune response of Tim-1 and Tim-4 in embryos and adult medaka (Oryzias latipes). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:235-244. [PMID: 32150339 DOI: 10.1002/jez.b.22939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 11/09/2022]
Abstract
T-cell immunoglobulin (Ig) and mucin domain-containing 1 (Tim-1) and Tim-4 are two members of the Tim family. In mammals, Tim-1 and Tim-4 are proteins mainly expressed in immune cells and are associated with immune response. In the present study, medaka Oryzias latipes' Tim-1 (OlTim-1) and OlTim-4 were identified and characterized using bioinformatics analyses. With the use of reverse-transcription polymerase chain reaction, the expression profiles of OlTim-1 and OlTim-4 were examined in embryos and adult fish and in immune tissues following the intraperitoneal injection of stimulants. The results revealed that OlTim-1 possesses a cytoplasmic region, a transmembrane region, a mucin domain, and an Ig-like domain, while OlTim-4 is composed of two Ig-like domains and a mucin domain, but without the transmembrane region and cytoplasmic region. OlTim-1 and OlTim-4 expressions are detectable from the gastrula stage on, indicating that they are zygotic genes. Furthermore, OlTim-1 and OlTim-4 are expressed ubiquitously in the adult. Administration of immune stimulants, namely lipopolysaccharides and polyinosinic:polycytidylic acid, significantly increased the expression levels of OlTim-1 and OlTim-4 in the liver and intestine within 1 day and in the head, kidney, and spleen within 3 to 4 days postinjection. These results suggest that OlTim-1 and OlTim-4 are possibly involved in both innate and adaptive immunities.
Collapse
Affiliation(s)
- Hao Shen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Emile Nibona
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Gongyu Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Md Abdullah Al Hafiz
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Xiaomei Ke
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Xiaoting Liang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Qiting Yao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Xueping Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Qingchun Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Haobin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
134
|
Jin C, Che B, Guo Z, Li C, Liu Y, Wu W, Wang S, Li D, Cui Z, Liang M. Single virus tracking of Ebola virus entry through lipid rafts in living host cells. BIOSAFETY AND HEALTH 2020; 2:25-31. [PMID: 32835208 PMCID: PMC7347359 DOI: 10.1016/j.bsheal.2019.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/20/2022] Open
Abstract
Ebola virus (EBOV) is one of the most pathogenic viruses in humans which can cause a lethal hemorrhagic fever. Understanding the cellular entry mechanisms of EBOV can promote the development of new therapeutic strategies to control virus replication and spread. It has been known that EBOV virions bind to factors expressed at the host cell surface. Subsequently, the virions are internalized by a macropinocytosis-like process, followed by being trafficked through early and late endosomes. Recent researches indicate that the entry of EBOV into cells requires integrated and functional lipid rafts. Whilst lipid rafts have been hypothesized to play a role in virus entry, there is a current lack of supporting data. One major technical hurdle is the lack of effective approaches for observing viral entry. To provide evidence on the involvement of lipid rafts in the entry process of EBOV, we generated the fluorescently labeled Ebola virus like particles (VLPs), and utilized single-particle tracking (SPT) to visualize the entry of fluorescent Ebola VLPs in live cells and the interaction of Ebola VLPs with lipid rafts. In this study, we demonstrate the compartmentalization of Ebola VLPs in lipid rafts during entry process, and inform the essential function of lipid rafts for the entry of Ebola virus. As such, our study provides evidence to show that the raft integrity is critical for Ebola virus pathogenesis and that lipid rafts can serve as potential targets for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Cong Jin
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention (IVDC), Chinese Center for Disease control and Prevention (China CDC), Beijing 102206, China
- National Center for AIDS/STD Control and Prevention, China CDC, Beijing 102206, China
| | - Bin Che
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention (IVDC), Chinese Center for Disease control and Prevention (China CDC), Beijing 102206, China
| | - Zhengyuan Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan Li
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention (IVDC), Chinese Center for Disease control and Prevention (China CDC), Beijing 102206, China
| | - Yang Liu
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention (IVDC), Chinese Center for Disease control and Prevention (China CDC), Beijing 102206, China
| | - Wei Wu
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention (IVDC), Chinese Center for Disease control and Prevention (China CDC), Beijing 102206, China
| | - Shiwen Wang
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention (IVDC), Chinese Center for Disease control and Prevention (China CDC), Beijing 102206, China
| | - Dexin Li
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention (IVDC), Chinese Center for Disease control and Prevention (China CDC), Beijing 102206, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mifang Liang
- Key Laboratory of Medical Virology and Viral Diseases, Ministry of Health of People's Republic of China, National Institute for Viral Disease Control and Prevention (IVDC), Chinese Center for Disease control and Prevention (China CDC), Beijing 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
135
|
Galle JN, Hegemann JH. Exofacial phospholipids at the plasma membrane: ill-defined targets for early infection processes. Biol Chem 2020; 400:1323-1334. [PMID: 31408428 DOI: 10.1515/hsz-2019-0187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/06/2019] [Indexed: 02/04/2023]
Abstract
The eukaryotic plasma membrane (PM) consists largely of phospholipids and proteins, and separates the intracellular compartments from the extracellular space. It also serves as a signaling platform for cell-to-cell communication and an interaction platform for the molecular crosstalk between pathogens and their target cells. Much research has been done to elucidate the interactions between pathogens and host membrane proteins. However, little is known about the interactions between pathogens and membrane phospholipids, although reports have described a contribution of phospholipids to cell recognition and/or invasion during early infection by diverse pathogens. Thus, during adhesion to the host cell, the obligate intracellular bacterial pathogens Chlamydia spp., the facultative intracellular pathogen Helicobacter pylori and the facultative aerobic pathogen Vibrio parahaemolyticus, interact with exofacial phospholipids. This review focuses on several prominent instances of pathogen interaction with host-cell phospholipids.
Collapse
Affiliation(s)
- Jan N Galle
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Johannes H Hegemann
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
136
|
Mayor J, Torriani G, Rothenberger S, Engler O. T-cell immunoglobulin and mucin (TIM) contributes to the infection of human airway epithelial cells by pseudotype viruses containing Hantaan virus glycoproteins. Virology 2020; 543:54-62. [PMID: 32056847 DOI: 10.1016/j.virol.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/24/2022]
Abstract
Hantaviruses are rodent-borne hemorrhagic fever viruses leading to serious diseases. Viral attachment and entry represent the first steps in virus transmission and are promising targets for antiviral therapeutic intervention. Here we investigated receptor use in human airway epithelium of the Old and New World hantaviruses Hantaan virus (HTNV) and Andes virus (ANDV). Using a biocontained recombinant vesicular stomatitis virus pseudotype platform, we provide first evidence for a role of the cellular phosphatidylserine (PS) receptors of the T-cell immunoglobulin and mucin (TIM) protein family in HTNV and ANDV infection. In line with previous studies, HTNV, but not ANDV, was able to use glycosaminoglycan heparan sulfate and αvβ3 integrin as co-receptors. In sum, our studies demonstrate for the first time that hantaviruses make use of apoptotic mimicry for infection of human airway epithelium, which may explain why these viruses can easily break the species barrier.
Collapse
Affiliation(s)
- Jennifer Mayor
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011, Lausanne, Switzerland; Spiez Laboratory, CH-3700, Spiez, Switzerland
| | - Giulia Torriani
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011, Lausanne, Switzerland
| | - Sylvia Rothenberger
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011, Lausanne, Switzerland; Spiez Laboratory, CH-3700, Spiez, Switzerland.
| | | |
Collapse
|
137
|
[Molecular mechanisms of highly pathogenic viruses' replication and their applications for a novel drug discovery]. Uirusu 2020; 70:69-82. [PMID: 33967116 DOI: 10.2222/jsv.70.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Productive (lytic) replication of DNA viruses elicits host cell DNA damage responses, which cause both beneficial and detrimental effects on viral replication. Viruses utilize them and selectively cancel the 'noisy' downstream signaling pathways, leading to maintain high S-phase CDK activities required for viral replication. To achieve this fine tuning of cellular environment, herpesviruses encode many (>70) genes in their genome, which are expressed in a strictly regulated temporal cascade (immediate-early, early, and late). Here, I introduce and discuss how Epstein-Barr virus, an oncogenic herpesvirus, hijacks the cellular environment and adapt it for the progeny production.
Collapse
|
138
|
Cryo-EM Structures of Eastern Equine Encephalitis Virus Reveal Mechanisms of Virus Disassembly and Antibody Neutralization. Cell Rep 2019; 25:3136-3147.e5. [PMID: 30540945 PMCID: PMC6302666 DOI: 10.1016/j.celrep.2018.11.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023] Open
Abstract
Alphaviruses are enveloped pathogens that cause arthritis and encephalitis. Here, we report a 4.4-Å cryoelectron microscopy (cryo-EM) structure of eastern equine encephalitis virus (EEEV), an alphavirus that causes fatal encephalitis in humans. Our analysis provides insights into viral entry into host cells. The envelope protein E2 showed a binding site for the cellular attachment factor heparan sulfate. The presence of a cryptic E2 glycan suggests how EEEV escapes surveillance by lectin-expressing myeloid lineage cells, which are sentinels of the immune system. A mechanism for nucleocapsid core release and disassembly upon viral entry was inferred based on pH changes and capsid dissociation from envelope proteins. The EEEV capsid structure showed a viral RNA genome binding site adjacent to a ribosome binding site for viral genome translation following genome release. Using five Fab-EEEV complexes derived from neutralizing antibodies, our investigation provides insights into EEEV host cell interactions and protective epitopes relevant to vaccine design. EEEV cryo-EM structure shows the basis of receptor binding and pH-triggered disassembly Cryptic envelope protein glycosylation interferes with immune detection EEEV RNA genome binding site on capsid protein has an extended conformation Antibody inhibition of EEEV entry involves cross-linking of viral envelope proteins
Collapse
|
139
|
Rieder CA, Rieder J, Sannajust S, Goode D, Geguchadze R, Relich RF, Molliver DC, King TE, Vaughn J, May M. A Novel Mechanism for Zika Virus Host-Cell Binding. Viruses 2019; 11:v11121101. [PMID: 31795144 PMCID: PMC6949893 DOI: 10.3390/v11121101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
Zika virus (ZIKV) recently emerged in the Western Hemisphere with previously unrecognized or unreported clinical presentations. Here, we identify two putative binding mechanisms of ancestral and emergent ZIKV strains featuring the envelope (E) protein residue asparagine 154 (ASN154) and viral phosphatidylserine (PS). Synthetic peptides representing the region containing ASN154 from strains PRVABC59 (Puerto Rico 2015) and MR_766 (Uganda 1947) were exposed to neuronal cells and fibroblasts to model ZIKV E protein/cell interactions and bound MDCK or Vero cells and primary neurons significantly. Peptides significantly inhibited Vero cell infectivity by ZIKV strains MR_766 and PRVABC59, indicating that this region represents a putative binding mechanism of ancestral African ZIKV strains and emergent Western Hemisphere strains. Pretreatment of ZIKV strains MR_766 and PRVABC59 with the PS-binding protein annexin V significantly inhibited replication of PRVABC59 but not MR_766, suggesting that Western hemisphere strains may additionally be capable of utilizing PS-mediated entry to infect host cells. These data indicate that the region surrounding E protein ASN154 is capable of binding fibroblasts and primary neuronal cells and that PS-mediated entry may be a secondary mechanism for infectivity utilized by Western Hemisphere strains.
Collapse
Affiliation(s)
- Courtney A. Rieder
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA; (C.A.R.); (J.R.); (S.S.); (D.G.); (R.G.); (D.C.M.); (T.E.K.); (J.V.)
| | - Jonathan Rieder
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA; (C.A.R.); (J.R.); (S.S.); (D.G.); (R.G.); (D.C.M.); (T.E.K.); (J.V.)
| | - Sebastién Sannajust
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA; (C.A.R.); (J.R.); (S.S.); (D.G.); (R.G.); (D.C.M.); (T.E.K.); (J.V.)
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME 04005, USA
| | - Diana Goode
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA; (C.A.R.); (J.R.); (S.S.); (D.G.); (R.G.); (D.C.M.); (T.E.K.); (J.V.)
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME 04005, USA
| | - Ramaz Geguchadze
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA; (C.A.R.); (J.R.); (S.S.); (D.G.); (R.G.); (D.C.M.); (T.E.K.); (J.V.)
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME 04005, USA
| | - Ryan F. Relich
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Derek C. Molliver
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA; (C.A.R.); (J.R.); (S.S.); (D.G.); (R.G.); (D.C.M.); (T.E.K.); (J.V.)
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME 04005, USA
| | - Tamara E. King
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA; (C.A.R.); (J.R.); (S.S.); (D.G.); (R.G.); (D.C.M.); (T.E.K.); (J.V.)
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME 04005, USA
| | - James Vaughn
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA; (C.A.R.); (J.R.); (S.S.); (D.G.); (R.G.); (D.C.M.); (T.E.K.); (J.V.)
| | - Meghan May
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA; (C.A.R.); (J.R.); (S.S.); (D.G.); (R.G.); (D.C.M.); (T.E.K.); (J.V.)
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME 04005, USA
- Correspondence:
| |
Collapse
|
140
|
Schnierle BS. Cellular Attachment and Entry Factors for Chikungunya Virus. Viruses 2019; 11:v11111078. [PMID: 31752346 PMCID: PMC6893641 DOI: 10.3390/v11111078] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
Chikungunya virus (CHIKV) is clinically the most relevant member of the Alphavirus genus. Like alphaviruses in general, CHIKV has the capacity to infect a large variety of cells, tissues, and species. This broad host tropism of CHIKV indicates that the virus uses a ubiquitously expressed receptor to infect cells. This review summarizes the current knowledge available on cellular CHIKV receptors and the attachment factors used by CHIKV.
Collapse
|
141
|
Evans JP, Liu SL. Multifaceted Roles of TIM-Family Proteins in Virus-Host Interactions. Trends Microbiol 2019; 28:224-235. [PMID: 31732320 DOI: 10.1016/j.tim.2019.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 01/16/2023]
Abstract
To enhance infection, enveloped viruses exploit adhesion molecules expressed on the surface of host cells. Specifically, phosphatidylserine (PS) receptors - including members of the human T cell immunoglobulin and mucin domain (TIM)-family - have gained attention for their ability to mediate the entry of many enveloped viruses. However, recent evidence that TIM-1 can restrict viral release reveals a new role for these PS receptors. Additionally, viral factors such as the HIV-1 accessory protein Nef can antagonize this antiviral activity of TIM-1 while host restriction factors such as SERINC5 can enhance it. In this review, we examine the various roles of PS receptors, specifically TIM-family proteins, and the intricate relationship between host and viral factors. Elucidating the multifunctional roles of PS receptors in virus-host interaction is important for understanding viral pathogenesis and developing novel antiviral therapeutics.
Collapse
Affiliation(s)
- John P Evans
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA; Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
142
|
Chua BA, Ngo JA, Situ K, Morizono K. Roles of phosphatidylserine exposed on the viral envelope and cell membrane in HIV-1 replication. Cell Commun Signal 2019; 17:132. [PMID: 31638994 PMCID: PMC6805584 DOI: 10.1186/s12964-019-0452-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylserine (PtdSer) is usually present only in the inner leaf of the lipid bilayers of the cell membrane, but is exposed on the outer leaf when cells are activated and/or die. Exposure of PtdSer has physiological functions. For example, the PtdSer exposed on dead cells can serve as “eat-me signals” for phagocytes to clear dead cells by phagocytosis, which prevents autoimmune reactions and inflammation. HIV-1 induces PtdSer exposure on infected and target cells and it also exposes PtdSer on its envelope. Recent studies showed that PtdSer exposed on the HIV-1 envelope and infected and target cells can facilitate or inhibit multiple steps of HIV-1 replication. At the virus binding and entry steps, interaction of the envelope PtdSer and the host’s PtdSer-binding molecules can enhance HIV-1 infection of cells by facilitating virus attachment. At the virus budding step, HIV-1 can be trapped on the cell surface by one family of PtdSer-binding receptors, T-cell immunoglobulin mucin domain proteins (TIM)-1, 3, and 4 expressed on virus producer cells. Although this trapping can inhibit release of HIV-1, one of the HIV-1 accessory gene products, Negative Factor (Nef), can counteract virus trapping by TIM family receptors (TIMs) by inducing the internalization of these receptors. HIV-1 infection can induce exposure of PtdSer on infected cells by inducing cell death. A soluble PtdSer-binding protein in serum, protein S, bridges PtdSer exposed on HIV-1-infected cells and a receptor tyrosine kinase, Mer, expressed on macrophages and mediate phagocytic clearance of HIV-1 infected cells. HIV-1 can also induce exposure of PtdSer on target cells at the virus binding step. Binding of HIV-1 envelope proteins to its receptor (CD4) and co-receptors (CXCR4 or CCR5) elicit signals that induce PtdSer exposure on target cells by activating TMEM16F, a phospholipid scramblase. PtdSer exposed on target cells enhances HIV-1 infection by facilitating fusion between the viral envelope and target cell membrane. Because various other phospholipid channels mediating PtdSer exposure have recently been identified, it will be of interest to examine how HIV-1 actively interacts with these molecules to manipulate PtdSer exposure levels on cells and viral envelope to support its replication.
Collapse
|
143
|
Bernatchez JA, Tran LT, Li J, Luan Y, Siqueira-Neto JL, Li R. Drugs for the Treatment of Zika Virus Infection. J Med Chem 2019; 63:470-489. [PMID: 31549836 DOI: 10.1021/acs.jmedchem.9b00775] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Zika virus is an emerging flavivirus that causes the neurodevelopmental congenital Zika syndrome and that has been linked to the neuroinflammatory Guillain-Barré syndrome. The absence of a vaccine or a clinically approved drug to treat the disease combined with the likelihood that another outbreak will occur in the future defines an unmet medical need. Several promising drug candidate molecules have been reported via repurposing studies, high-throughput compound library screening, and de novo design in the short span of a few years. Intense research activity in this area has occurred in response to the World Health Organization declaration of a Public Health Emergency of International Concern on February 1, 2016. In this Perspective, the authors review the emergence of Zika virus, the biology of its replication, targets for therapeutic intervention, target product profile, and current drug development initiatives.
Collapse
Affiliation(s)
| | - Lana T Tran
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | | | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266071 , Shandong , China
| | | | - Rongshi Li
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266071 , Shandong , China.,UNMC Center for Drug Discovery, Department of Pharmaceutical Sciences, College of Pharmacy, Fred and Pamela Buffett Cancer Center, and Center for Staphylococcal Research , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| |
Collapse
|
144
|
TIM-1 As a Signal Receptor Triggers Dengue Virus-Induced Autophagy. Int J Mol Sci 2019; 20:ijms20194893. [PMID: 31581681 PMCID: PMC6801812 DOI: 10.3390/ijms20194893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 12/22/2022] Open
Abstract
Dengue virus (DENV) infection triggers the activation of autophagy to facilitate the viral replication cycle from various aspects. Although a number of stimulators are proposed to activate autophagy, none of them appears prior to the uncoating process. Given that T-cell immunoglobulin and mucin domain 1 (TIM-1) receptor is a putative DENV receptor and promotes apoptotic body clearance by autophagy induction, it raises the possibility that TIM-1 may participate in the activation of DENV-induced autophagy. In this study, confocal images first revealed the co-localization of TIM-1 with autophagosomes in DENV-induced autophagy rather than rapamycin-induced autophagy, suggesting the co-transportation of TIM-1 with DENV during infection. The treatment of siRNA to knockdown TIM-1 expression in DENV-infected GFP-microtubule-associated protein light chain 3 (LC3)-Huh7.5 cells revealed that TIM-1 is required not only for DENV cellular internalization but also for autophagy activation. Furthermore, knockdown p85, a subunit of phosphoinositide 3-kinases (PI3Ks), which is co-localized with TIM-1 at rab5-positive endosomes caused the reduction of autophagy, indicating that TIM-1-mediated DENV-induced autophagy requires p85. Taken together, the current study uncovered TIM-1 as a novel factor for triggering autophagy in DENV infection through TIM-1-p85 axis, in addition to serving as a DENV receptor.
Collapse
|
145
|
Abstract
Hepatitis E virus (HEV) infection is a major cause of acute hepatitis worldwide. It is transmitted enterically but replicates in the liver. Recent studies indicate that HEV exists in two forms: naked, nonenveloped virions that are shed into feces to mediate inter-host transmission, and membrane-cloaked, quasienveloped virions that circulate in the bloodstream to mediate virus spread within a host. Both virion types are infectious, but differ in the way they infect cells. Elucidating the entry mechanism for both virion types is essential to understand HEV biology and pathogenesis, and is relevant to the development of treatments and preventions for HEV. This review summarizes the current understanding of the cell entry mechanism for these two HEV virion types.
Collapse
Affiliation(s)
- Xin Yin
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| |
Collapse
|
146
|
Comparison of the Innate Immune Responses to Pathogenic and Nonpathogenic Clade B New World Arenaviruses. J Virol 2019; 93:JVI.00148-19. [PMID: 31270228 DOI: 10.1128/jvi.00148-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/28/2019] [Indexed: 12/25/2022] Open
Abstract
The New World (NW) arenaviruses are a diverse group of zoonotic viruses, including several causative agents of severe hemorrhagic fevers in humans. All known human-pathogenic NW arenaviruses belong to clade B, where they group into sublineages with phylogenetically closely related nonpathogenic viruses, e.g., the highly pathogenic Junin (JUNV) and Machupo viruses with the nonpathogenic Tacaribe virus (TCRV). Considering the close genetic relationship of nonpathogenic and pathogenic NW arenaviruses, the identification of molecular determinants of virulence is of great importance. The host cell's innate antiviral defense represents a major barrier for zoonotic infection. Here, we performed a side-by-side comparison of the innate immune responses against JUNV and TCRV in human cells. Despite similar levels of viral replication, infection with TCRV consistently induced a stronger type I interferon (IFN-I) response than JUNV infection did. Transcriptome profiling revealed upregulation of a largely overlapping set of interferon-stimulated genes in cells infected with TCRV and JUNV. Both viruses were relatively insensitive to IFN-I treatment of human cells and induced similar levels of apoptosis in the presence or absence of an IFN-I response. However, in comparison to JUNV, TCRV induced stronger activation of the innate sensor double-strand RNA-dependent protein kinase R (PKR), resulting in phosphorylation of eukaryotic translation initiation factor eIF2α. Confocal microscopy studies revealed similar subcellular colocalizations of the JUNV and TCRV viral replication-transcription complexes with PKR. However, deletion of PKR by CRISPR/Cas9 hardly affected JUNV but promoted TCRV multiplication, providing the first evidence for differential innate recognition and control of pathogenic and nonpathogenic NW arenaviruses by PKR.IMPORTANCE New World (NW) arenaviruses are a diverse family of emerging zoonotic viruses that merit significant attention as important public health problems. The close genetic relationship of nonpathogenic NW arenaviruses with their highly pathogenic cousins suggests that few mutations may be sufficient to enhance virulence. The identification of molecular determinants of virulence of NW arenaviruses is therefore of great importance. Here we undertook a side-by-side comparison of the innate immune responses against the highly pathogenic Junin virus (JUNV) and the related nonpathogenic Tacaribe virus (TCRV) in human cells. We consistently found that TCRV induces a stronger type I interferon (IFN-I) response than JUNV. Transcriptome profiling revealed an overlapping pattern of IFN-induced gene expression and similar low sensitivities to IFN-I treatment. However, the double-stranded RNA (dsRNA)-dependent protein kinase R (PKR) contributed to the control of TCRV, but not JUNV, providing the first evidence for differential innate recognition and control of JUNV and TCRV.
Collapse
|
147
|
Fujino N, Brand OJ, Morgan DJ, Fujimori T, Grabiec AM, Jagger CP, Maciewicz RA, Yamada M, Itakura K, Sugiura H, Ichinose M, Hussell T. Sensing of apoptotic cells through Axl causes lung basal cell proliferation in inflammatory diseases. J Exp Med 2019; 216:2184-2201. [PMID: 31289116 PMCID: PMC6719415 DOI: 10.1084/jem.20171978] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/18/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022] Open
Abstract
Epithelial cell proliferation, division, and differentiation are critical for barrier repair following inflammation, but the initial trigger for this process is unknown. Here we define that sensing of apoptotic cells by the TAM receptor tyrosine kinase Axl is a critical indicator for tracheal basal cell expansion, cell cycle reentry, and symmetrical cell division. Furthermore, once the pool of tracheal basal cells has expanded, silencing of Axl is required for their differentiation. Genetic depletion of Axl triggers asymmetrical cell division, leading to epithelial differentiation and ciliated cell regeneration. This discovery has implications for conditions associated with epithelial barrier dysfunction, basal cell hyperplasia, and continued turnover of dying cells in patients with chronic inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Naoya Fujino
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Oliver J Brand
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, the University of Manchester, Manchester, UK
| | - David J Morgan
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, the University of Manchester, Manchester, UK
| | - Toshifumi Fujimori
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
| | - Aleksander M Grabiec
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Christopher P Jagger
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, the University of Manchester, Manchester, UK
| | - Rose A Maciewicz
- Respiratory, Inflammation, and Autoimmunity Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Itakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, the University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, the University of Manchester, Manchester, UK
| |
Collapse
|
148
|
Huang Q, Kahn CR, Altindis E. Viral Hormones: Expanding Dimensions in Endocrinology. Endocrinology 2019; 160:2165-2179. [PMID: 31310273 PMCID: PMC6736053 DOI: 10.1210/en.2019-00271] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
Abstract
Viruses have developed different mechanisms to manipulate their hosts, including the process of viral mimicry in which viruses express important host proteins. Until recently, examples of viral mimicry were limited to mimics of growth factors and immunomodulatory proteins. Using a comprehensive bioinformatics approach, we have shown that viruses possess the DNA/RNA with potential to encode 16 different peptides with high sequence similarity to human peptide hormones and metabolically important regulatory proteins. We have characterized one of these families, the viral insulin/IGF-1-like peptides (VILPs), which we identified in four members of the Iridoviridae family. VILPs can bind to human insulin and IGF-1 receptors and stimulate classic postreceptor signaling pathways. Moreover, VILPs can stimulate glucose uptake in vitro and in vivo and stimulate DNA synthesis. DNA sequences of some VILP-carrying viruses have been identified in the human enteric virome. In addition to VILPs, sequences with homology to 15 other peptide hormones or cytokines can be identified in viral DNA/RNA sequences, some with a very high identity to hormones. Recent data by others has identified a peptide that resembles and mimics α-melanocyte-stimulating hormone's anti-inflammatory effects in in vitro and in vivo models. Taken together, these studies reveal novel mechanisms of viral and bacterial pathogenesis in which the microbe can directly target or mimic the host endocrine system. These findings also introduce the concept of a system of microbial hormones that provides new insights into the evolution of peptide hormones, as well as potential new roles of microbial hormones in health and disease.
Collapse
Affiliation(s)
- Qian Huang
- Boston College Biology Department, Chestnut Hill, Massachusetts
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Emrah Altindis
- Boston College Biology Department, Chestnut Hill, Massachusetts
- Correspondence: Emrah Altindis, PhD, Boston College Biology Department, Higgins Hall 515, 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467. E-mail:
| |
Collapse
|
149
|
A Hyperstabilizing Mutation in the Base of the Ebola Virus Glycoprotein Acts at Multiple Steps To Abrogate Viral Entry. mBio 2019; 10:mBio.01408-19. [PMID: 31289183 PMCID: PMC6747718 DOI: 10.1128/mbio.01408-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ebola virus (EBOV) causes highly lethal disease outbreaks against which no FDA-approved countermeasures are available. Although many host factors exploited by EBOV for cell entry have been identified, including host cell surface phosphatidylserine receptors, endosomal cysteine proteases, and the lysosomal cholesterol trafficking protein NPC1, key questions remain. Specifically, late entry steps culminating in viral membrane fusion remain enigmatic. Here, we investigated a set of glycoprotein (GP) mutants previously hypothesized to be entry defective and identified one mutation, R64A, that abolished infection with no apparent impact on GP expression, folding, or viral incorporation. R64A profoundly thermostabilized EBOV GP and rendered it highly resistant to proteolysis in vitro Forward-genetics and cell entry studies strongly suggested that R64A's effects on GP thermostability and proteolysis arrest viral entry at least at two distinct steps: the first upstream of NPC1 binding and the second at a late entry step downstream of fusion activation. Concordantly, toremifene, a small-molecule entry inhibitor previously shown to bind and destabilize GP, may selectively enhance the infectivity of viral particles bearing GP(R64A) at subinhibitory concentrations. R64A provides a valuable tool to further define the interplay between GP stability, proteolysis, and viral membrane fusion; to explore the rational design of stability-modulating antivirals; and to spur the development of next-generation Ebola virus vaccines with improved stability.IMPORTANCE Ebola virus is a medically relevant virus responsible for outbreaks of severe disease in western and central Africa, with mortality rates reaching as high as 90%. Despite considerable effort, there are currently no FDA-approved therapeutics or targeted interventions available, highlighting the need of development in this area. Host-cell invasion represents an attractive target for antivirals, and several drug candidates have been identified; however, our limited understanding of the complex viral entry process challenges the development of such entry-targeting drugs. Here, we report on a glycoprotein mutation that abrogates viral entry and provides insights into the final steps of this process. In addition, the hyperstabilized phenotype of this mutant makes it useful as a tool in the discovery and design of stability-modulating antivirals and next-generation vaccines against Ebola virus.
Collapse
|
150
|
Brunton B, Rogers K, Phillips EK, Brouillette RB, Bouls R, Butler NS, Maury W. TIM-1 serves as a receptor for Ebola virus in vivo, enhancing viremia and pathogenesis. PLoS Negl Trop Dis 2019; 13:e0006983. [PMID: 31242184 PMCID: PMC6615641 DOI: 10.1371/journal.pntd.0006983] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 07/09/2019] [Accepted: 05/17/2019] [Indexed: 01/11/2023] Open
Abstract
Background T cell immunoglobulin mucin domain-1 (TIM-1) is a phosphatidylserine (PS) receptor, mediating filovirus entry into cells through interactions with PS on virions. TIM-1 expression has been implicated in Ebola virus (EBOV) pathogenesis; however, it remains unclear whether this is due to TIM-1 serving as a filovirus receptor in vivo or, as others have suggested, TIM-1 induces a cytokine storm elicited by T cell/virion interactions. Here, we use a BSL2 model virus that expresses EBOV glycoprotein to demonstrate the importance of TIM-1 as a virus receptor late during in vivo infection. Methodology/Principal findings Infectious, GFP-expressing recombinant vesicular stomatitis virus encoding either full length EBOV glycoprotein (EBOV GP/rVSV) or mucin domain deleted EBOV glycoprotein (EBOV GPΔO/rVSV) was used to assess the role of TIM-1 during in vivo infection. GFP-expressing rVSV encoding its native glycoprotein G (G/rVSV) served as a control. TIM-1-sufficient or TIM-1-deficient BALB/c interferon α/β receptor-/- mice were challenged with these viruses. While G/rVSV caused profound morbidity and mortality in both mouse strains, TIM-1-deficient mice had significantly better survival than TIM-1-expressing mice following EBOV GP/rVSV or EBOV GPΔO/rVSV challenge. EBOV GP/rVSV or EBOV GPΔO/rVSV in spleen of infected animals was high and unaffected by expression of TIM-1. However, infectious virus in serum, liver, kidney and adrenal gland was reduced late in infection in the TIM-1-deficient mice, suggesting that virus entry via this receptor contributes to virus load. Consistent with higher virus loads, proinflammatory chemokines trended higher in organs from infected TIM-1-sufficient mice compared to the TIM-1-deficient mice, but proinflammatory cytokines were more modestly affected. To assess the role of T cells in EBOV GP/rVSV pathogenesis, T cells were depleted in TIM-1-sufficient and -deficient mice and the mice were challenged with virus. Depletion of T cells did not alter the pathogenic consequences of virus infection. Conclusions Our studies provide evidence that at late times during EBOV GP/rVSV infection, TIM-1 increased virus load and associated mortality, consistent with an important role of this receptor in virus entry. This work suggests that inhibitors which block TIM-1/virus interaction may serve as effective antivirals, reducing virus load at late times during EBOV infection. T cell immunoglobulin mucin domain-1 (TIM-1) is one of a number of phosphatidylserine (PS) receptors that mediate clearance of apoptotic bodies by binding PS on the surface of dead or dying cells. Enveloped viruses mimic apoptotic bodies by exposing PS on the outer leaflet of the viral membrane. While TIM-1 has been shown to serve as an adherence factor/receptor for filoviruses in tissue culture, limited studies have investigated the role of TIM-1 as a receptor in vivo. Here, we sought to determine if TIM-1 was critical for Ebola virus glycoprotein-mediated infection using a BSL2 model virus. We demonstrate that loss of TIM-1 expression results in decreased virus load late during infection and significantly reduced virus-elicited mortality. These findings provide evidence that TIM-1 serves as an important receptor for Ebola virus in vivo. Blocking TIM-1/EBOV interactions may be effective antiviral strategy to reduce viral load and pathogenicity at late times of EBOV infection.
Collapse
Affiliation(s)
- Bethany Brunton
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Kai Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Elisabeth K. Phillips
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Rachel B. Brouillette
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ruayda Bouls
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Noah S. Butler
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|