101
|
Allen-Taylor D, Boro G, Cabato P, Mai C, Nguyen K, Rijal G. Staphylococcus epidermidis biofilm in inflammatory breast cancer and its treatment strategies. Biofilm 2024; 8:100220. [PMID: 39318870 PMCID: PMC11420492 DOI: 10.1016/j.bioflm.2024.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Bacterial biofilms represent a significant challenge in both clinical and industrial settings because of their robust nature and resistance to antimicrobials. Biofilms are formed by microorganisms that produce an exopolysaccharide matrix, protecting function and supporting for nutrients. Among the various bacterial species capable of forming biofilms, Staphylococcus epidermidis, a commensal organism found on human skin and mucous membranes, has emerged as a prominent opportunistic pathogen, when introduced into the body via medical devices, such as catheters, prosthetic joints, and heart valves. The formation of biofilms by S. epidermidis on these surfaces facilitates colonization and provides protection against host immune responses and antibiotic therapies, leading to persistent and difficult-to-treat infections. The possible involvement of biofilms for breast oncogenesis has recently created the curiosity. This paper therefore delves into S. epidermidis biofilm involvement in breast cancer. S. epidermidis biofilms can create a sustained inflammatory environment through their metabolites and can break DNA in breast tissue, promoting cellular proliferation, angiogenesis, and genetic instability. Preventing biofilm formation primarily involves preventing bacterial proliferation using prophylactic measures and sterilization of medical devices and equipment. In cancer treatment, common modalities include chemotherapy, surgery, immunotherapy, alkylating agents, and various anticancer drugs. Understanding the relationship between anticancer drugs and bacterial biofilms is crucial, especially for those undergoing cancer treatment who may be at increased risk of bacterial infections, for improving patient outcomes. By elucidating these interactions, strategies to prevent or disrupt biofilm formation, thereby reducing the incidence of infections associated with medical devices and implants, can be identified.
Collapse
Affiliation(s)
- D. Allen-Taylor
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - G. Boro
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - P.M. Cabato
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - C. Mai
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - K. Nguyen
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - G. Rijal
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| |
Collapse
|
102
|
Baek H, Yang SW, Kim MK, Kim D, Lee C, Kim S, Lee Y, Park M, Hwang HS, Paik HJ, Kang YS. Activation of Immune Responses Through the RIG-I Pathway Using TRITC-Dextran Encapsulated Nanoparticles. Immune Netw 2024; 24:e44. [PMID: 39801741 PMCID: PMC11711124 DOI: 10.4110/in.2024.24.e44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Pathogen-associated molecular patterns (PAMPs) are highly conserved motifs originating from microorganisms that act as ligands for pattern recognition receptors (PRRs), which are crucial for defense against pathogens. Thus, PAMP-mimicking vaccines may induce potent immune activation and provide broad-spectrum protection against microbes. Dextran encapsulation can regulate the surface characteristics of nanoparticles (NPs) and induces their surface modification. To determine whether dextran-encapsulated NPs can be used to develop antiviral vaccines by mimicking viral PAMPs, we synthesized NPs in a cyclohexane inverse miniemulsion (Basic-NPs) and further encapsulated them with dextran or tetramethylrhodamine isothiocyanate (TRITC)-dextran (Dex-NPs or TDex-NPs). We hypothesized that these dextran encapsulated NPs could activate innate immunity through cell surface or cytosolic PRRs. In vitro and in vivo experiments were performed using RAW 264.7 and C57BL/6 mice to test different concentrations and routes of administration. Only TDex-NPs rapidly increased retinoic acid-inducible gene I (RIG-I) at 8 h and directly bound to it, producing 120-300 pg/ml of IFN-α via the ERK/NF-κB signaling pathway in both in vitro and in vivo models. The effect of TDex-NPs in mice was observed exclusively with footpad injections. Our findings suggest that TRITC-dextran encapsulated NPs exhibit surface properties for RIG-I binding, offering potential development as a novel antiviral and anticancer RIG-I agonist.
Collapse
Affiliation(s)
- Hayeon Baek
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea
| | - Seung-Woo Yang
- Sanford Consortium for Regenerative Medicine, School of Medicine, University of California, San Diego, CA 92521, USA
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Min-Kyung Kim
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea
| | - Dongwoo Kim
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Chaeyeon Lee
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Seulki Kim
- Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Yunseok Lee
- Department of Animal Science and Technology, College of Sang-Huh Life Science, Konkuk University, Seoul 05029, Korea
| | - Min Park
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea
| | - Han-Sung Hwang
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Hyun-jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Young-Sun Kang
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea
- Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
103
|
Thiruvengadam R, Dareowolabi BO, Moon EY, Kim JH. Nanotherapeutic strategy against glioblastoma using enzyme inhibitors. Biomed Pharmacother 2024; 181:117713. [PMID: 39615164 DOI: 10.1016/j.biopha.2024.117713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Glioblastoma is the most aggressive brain cancer and thus patients with glioblastoma have a severely low 5-year survival rate (<5 %). Glioblastoma damages neural centers, causing severe depression, anxiety, and cognitive disorders. Glioblastoma is highly resistant to most of available anti-tumor medications, due to heterogeneity of glioblastoma as well as the presence of stem-like cells. To overcome the challenges in the current medications against glioblastoma, novel medications that are effective in treating the aggressive and heterogenous glioblastoma should be developed. Enzyme inhibitor and nanomedicine have been getting attention because of effective anticancer efficacies of enzyme inhibitors and a role of nanomedicine as effective carrier of chemotherapeutic drugs by targeting specific tumor areas. Furthermore, a tumor-initiating neuroinflammatory microenvironment, which is crucial for glioblastoma progression, was linked with several carcinogenesis pathways. Therefore, in this review, first we summarize neuroinflammation and glioblastoma-related neuropathways. Second, we discuss the importance of enzyme inhibitors targeting specific proteins in relation with neuroinflammation and glioblastoma-related molecular mechanisms. Third, we summarize recent findings on the significance of nanotherapeutic anticancer drugs developed using natural or synthetic enzyme inhibitors against glioblastoma as well as currently available Food and Drug Administration (FDA)-approved drugs against glioblastoma.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | | | - Eun-Yi Moon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
104
|
Liu L, Yang M, Chen Z. Surface functionalized nanomaterial systems for targeted therapy of endocrine related tumors: a review of recent advancements. Drug Deliv 2024; 31:2390022. [PMID: 39138394 PMCID: PMC11328606 DOI: 10.1080/10717544.2024.2390022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
The application of multidisciplinary techniques in the management of endocrine-related cancers is crucial for harnessing the advantages of multiple disciplines and their coordinated efforts in eliminating tumors. Due to the malignant characteristics of cancer cells, they possess the capacity to develop resistance to traditional treatments such as chemotherapy and radiotherapy. Nevertheless, despite diligent endeavors to enhance the prediction of outcomes, the overall survival rate for individuals afflicted with endocrine-related malignancy remains quite miserable. Hence, it is imperative to investigate innovative therapy strategies. The latest advancements in therapeutic tactics have offered novel approaches for the therapy of various endocrine tumors. This paper examines the advancements in nano-drug delivery techniques and the utilization of nanomaterials for precise cancer cures through targeted therapy. This review provides a thorough analysis of the potential of combined drug delivery strategies in the treatment of thyroid cancer, adrenal gland tumors, and pancreatic cancer. The objective of this study is to gain a deeper understanding of current therapeutic approaches, stimulate the development of new drug DDS, and improve the effectiveness of treatment for patients with these diseases. The intracellular uptake of pharmaceuticals into cancer cells can be significantly improved through the implantation of synthetic or natural substances into nanoparticles, resulting in a substantial reduction in the development of endocrine malignancies.
Collapse
Affiliation(s)
- Limei Liu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Miao Yang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziyang Chen
- Department of Gastroenterology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
105
|
Samal S, Meher RK, Das PK, Swain SK, Dubey D, Khan MS, Jali BR. Exploring the anticancer and antioxidant potential of gold nanoparticles synthesized from Pterocarpus marsupium bark extract against oral squamous cell carcinoma. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:512-528. [PMID: 39449641 DOI: 10.1080/21691401.2024.2416951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a disease of significant concern with higher mortality rates. Conventional treatment approaches have several drawbacks, leading to the opening of new research avenues in the field of nanoparticle-based cancer therapeutics. The study aimed at the synthesis of gold nanoparticles (Pm-AuNPs) from the aqueous bark extract of Pterocarpus marsupium, followed by its characterization and in vitro anticancer evaluation against OSCC. The synthesized Pm-AuNPs were characterized using UV-visible spectroscopy, particle size analyser, zeta potential, FTIR and SEM techniques. The anticancer potential of the Pm-AuNPs was evaluated against OSCC cell lines (SCC29b, SSC154 and OECM-1) through in vitro assays. The IC50 value was found to be 25 ± 1.2, 45 ± 1.5 and 75 ± 2.1 µg/mL for the three OSCC cell lines, elucidating Pm-AuNPs cytotoxic effects and mechanism of action. Intracellular ROS and SOX detection, mitochondrial transmembrane potential analysis and apoptosis detection were used to confirm the activity of Pm-AuNPs against OSCC. Acute toxicity studies on Wistar rats confirmed the non-toxic nature of the Pm-AuNPs at a higher dose concentration up to 2000 mg/kg body weight. The findings underscore Pm-AuNPs as promising candidates for future anticancer therapeutics, providing insights into their mechanism of action and therapeutic efficacy against OSCC.
Collapse
Affiliation(s)
- Smrutipragnya Samal
- Department of Otorhinolaryngology and Head and Neck Surgery, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Rajesh Kumar Meher
- Department of Biotechnology and Bioinformatics, Sambalpur University, Burla, India
| | - Pratyush Kumar Das
- Department of Phytopharmaceuticals, School of Agricultural and Bio-Engineering (SoABE), Centurion University of Technology and Management, Paralakhemundi, India
| | - Santosh Kumar Swain
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Debasmita Dubey
- Medical Research Laboratory, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, India
| |
Collapse
|
106
|
Datkhile KD, Durgawale PP, Jagdale NJ, More AL, Patil SR. Biogenic silver nanoparticles synthesized using bracken fern inhibits cell proliferation in HCT-15 cells through induction of apoptosis pathway and overexpression of heat shock proteins. J Genet Eng Biotechnol 2024; 22:100428. [PMID: 39674645 PMCID: PMC11532905 DOI: 10.1016/j.jgeb.2024.100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND In recent years, biosynthesized nanoparticles has shown a promise as alternative avenue for improving the effectiveness of conventional chemotherapy. Despite, there is a significant gap in existing literature concerning the comprehensive study of biogenic silver nanoparticles derived from terrestrial fern species and their potential effects on cancer cells. This study is aiming to investigate effects of biogenic silver nanoparticles synthesized using aqueous extract of bracken fern Pteridium revolutum on inhibiting cell proliferation and inducing apoptosis in HCT-15 cells. METHODS Biogenic silver nanoparticles synthesized using aqueous extract of Pteridum revolutum followed by their characterization (UV-Visible spectroscopy, TEM, XRD and FTIR). The impact on cell proliferation of HCT-15 cells was assessed by MTT assay while induction of apoptosis was demonstrated via DNA fragmentation, caspase-3 assay, cell cycle arrest, FITC V- Annexin assay and evaluation of expression of apoptotic genes using real time PCR and western blotting techniques. RESULTS Results of UV-Vis spectrum of colloidal solution of CW-AgNPs showed surface plasmon resonance peak at 430 nm. TEM and XRD results confirmed synthesis of spherical shaped, 20-40 nm sized nanoparticles. The results elucidate cytotoxic effect of PR-AgNPs against HCT-15 cells in time and dose dependent manner with IC50 observed at 5.79 ± 0.58 µg /mL after 24 h of exposure. Furthermore, PR-AgNPs induce significant alterations in cellular morphology, elevate DNA DNA fragmentation and enhance expression of p53 and caspase-3 in HCT10 cells. CONCLUSION The findings from this study address the noteworthy antiproliferative effects of PR-AgNPs in cancer cells primarily mediated through activation of intrinsic apoptosis pathway by inducing p53 and caspase-3 genes.
Collapse
Affiliation(s)
- Kailas D Datkhile
- Department of Molecular Biology and Genetics, Krishna Vishwa Vidyapeeth "Deemed to be University", Taluka-Karad, Dist-Satara, Pin-415 539, Maharashtra, India; Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth "Deemed to be University", Taluka-Karad, Dist-Satara, Pin-415 539, Maharashtra, India.
| | - Pratik P Durgawale
- Department of Molecular Biology and Genetics, Krishna Vishwa Vidyapeeth "Deemed to be University", Taluka-Karad, Dist-Satara, Pin-415 539, Maharashtra, India
| | - Nilam J Jagdale
- Department of Molecular Biology and Genetics, Krishna Vishwa Vidyapeeth "Deemed to be University", Taluka-Karad, Dist-Satara, Pin-415 539, Maharashtra, India
| | - Ashwini L More
- Department of Molecular Biology and Genetics, Krishna Vishwa Vidyapeeth "Deemed to be University", Taluka-Karad, Dist-Satara, Pin-415 539, Maharashtra, India
| | - Satish R Patil
- Department of Molecular Biology and Genetics, Krishna Vishwa Vidyapeeth "Deemed to be University", Taluka-Karad, Dist-Satara, Pin-415 539, Maharashtra, India
| |
Collapse
|
107
|
Ali A, Alamri A, Hajar A. NK/DC crosstalk-modulating antitumor activity via Sema3E/PlexinD1 axis for enhanced cancer immunotherapy. Immunol Res 2024; 72:1217-1228. [PMID: 39235526 DOI: 10.1007/s12026-024-09536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
The complex relationship between natural killer (NK) cells and dendritic cells (DCs) within the tumor microenvironment significantly impacts the success of cancer immunotherapy. Recent advancements in cancer treatment have sought to bolster innate and adaptive immune responses through diverse modalities, aiming to tilt the immune equilibrium toward tumor elimination. Optimal antitumor immunity entails a multifaceted interplay involving NK cells, T cells and DCs, orchestrating immune effector functions. Although DC-based vaccines and NK cells' cytotoxic capabilities hold substantial therapeutic potential, their interaction is frequently hindered by immunosuppressive elements such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells. Chemokines and cytokines, such as CXCL12, CCL2, interferons, and interleukins, play crucial roles in modulating NK/DC interactions and enhancing immune responses. This review elucidates the mechanisms underlying NK/DC interaction, emphasizing their pivotal roles in augmenting antitumor immune responses and the impediments posed by tumor-induced immunosuppression. Furthermore, it explores the therapeutic prospects of restoring NK/DC crosstalk, highlighting the significance of molecules like Sema3E/PlexinD1 in this context, offering potential avenues for enhancing the effectiveness of current immunotherapeutic strategies and advancing cancer treatment paradigms. Harnessing the dynamic interplay between NK and DC cells, including the modulation of Sema3E/PlexinD1 signaling, holds promise for developing more potent therapies that harness the immune system's full potential in combating cancer.
Collapse
Affiliation(s)
- Awais Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23200, Pakistan.
| | - Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Azraida Hajar
- Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
108
|
Salmani-Zarchi H, Mousavi-Sagharchi SMA, Sepahdoost N, Ranjbar-Jamalabadi M, Gross JD, Jooya H, Samadi A. Antimicrobial Feature of Nanoparticles in the Antibiotic Resistance Era: From Mechanism to Application. Adv Biomed Res 2024; 13:113. [PMID: 39717242 PMCID: PMC11665187 DOI: 10.4103/abr.abr_92_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 12/25/2024] Open
Abstract
The growth of nanoscale sciences enables us to define and design new methods and materials for a better life. Health and disease prevention are the main issues in the human lifespan. Some nanoparticles (NPs) have antimicrobial properties that make them useful in many applications. In recent years, NPs have been used as antibiotics to overcome drug resistance or as drug carriers with antimicrobial features. They can also serve as antimicrobial coatings for implants in different body areas. The antimicrobial feature of NPs is based on different mechanisms. For example, the oxidative functions of NPs can inhibit nucleic acid replication and destroy the microbial cell membrane as well as interfere with their cellular functions and biochemical cycles. On the other hand, NPs can disrupt the pathogens' lifecycle by interrupting vital points of their life, such as virus uncoating and entry into human cells. Many types of NPs have been tested by different scientists for these purposes. Silver, gold, copper, and titanium have shown the most ability to inhibit and remove pathogens inside and outside the body. In this review, the authors endeavor to comprehensively describe the antimicrobial features of NPs and their applications for different biomedical goals.
Collapse
Affiliation(s)
- Hamed Salmani-Zarchi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Nafise Sepahdoost
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdieh Ranjbar-Jamalabadi
- Department of Polymer Engineering, Faculty of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Jeffrey D. Gross
- ReCELLebrate Regenerative Medicine Clinic, Henderson, Nevada, USA
| | - Hossein Jooya
- Biochemistry Group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Samadi
- Department of Basic Sciences, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
109
|
SV S, Augustine D, Hosmani J, Pagnoni F, Reda R, Testarelli L, Patil S. Nanoparticle-based biomolecules in cancer diagnosis, therapy, drug delivery and prognosis. FRONTIERS IN DENTAL MEDICINE 2024; 5:1482166. [PMID: 39917652 PMCID: PMC11797830 DOI: 10.3389/fdmed.2024.1482166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/31/2024] [Indexed: 02/09/2025] Open
Abstract
Introduction Nanoparticles have orchestrated a paradigm shift in the landscape of cancer diagnosis and therapy, presenting a multifaceted approach to tackle the intricacies of malignancies. This comprehensive exposition delves deep into the forefront of nanomedicine, elucidating pivotal strategies and innovations primed to metamorphose the domain of cancer management. Methodology Nanoparticles transcend traditional boundaries, enabling meticulous, site-specific drug release while minimizing systemic toxicity. Intricately designed activation mechanisms, encompassing pH and enzymatic responsivity, along with concentration-dependent strategies, exploit the distinctive attributes of cancer cells, heralding an era characterized by unprecedented therapeutic precision. The pervasive influence of nanotechnology extends to diagnostics, unlocking the realm of early disease detection and personalized treatment. These versatile agents bestow empowering capabilities upon sensitive imaging modalities, affording real-time monitoring and theranostic potential. Results This exposition showcases the evolution of cutting-edge nanoplatforms, bridging the chasm between diagnosis and therapy, thereby redefining the confines of cancer care. This review elucidates strategies to combat drug resistance, a perennial challenge within cancer management. By targeting efflux transporters, modulating apoptotic pathways, and countering hypoxia-induced resistance, nanoparticles stand at the vanguard of therapeutic innovation, poised to reinvigorate treatment efficacy. Discussion & Conclusion Moreover, this exposé underscores the imminent clinical translation of nanoparticle-based drugs, accentuating their potential to metamorphose the landscape of cancer management. Liposomal vaccines, nano-pharmaceuticals, and nanochemodrugs, currently navigating the crucible of clinical trials, bear immense promise in advancing the realm of precision medicine. In this epoch of precision medicine, nanoparticle-fueled innovations stand poised to propel cancer diagnosis and therapy to unprecedented peaks.
Collapse
Affiliation(s)
- Sowmya SV
- Department of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru, India
| | - Dominic Augustine
- Department of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru, India
| | - Jagdish Hosmani
- Department of Diagnostic Dental Sciences, Oral Pathology Section, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Francesco Pagnoni
- Department of Oral and Maxillofacial Sciences, Sapienza University, University of Rome, Rome, Italy
| | - Rodolfo Reda
- Department of Oral and Maxillofacial Sciences, Sapienza University, University of Rome, Rome, Italy
| | - Luca Testarelli
- Department of Oral and Maxillofacial Sciences, Sapienza University, University of Rome, Rome, Italy
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
- College of Graduate Studies, Roseman University of Health Science, South Jordan, UT, United States
| |
Collapse
|
110
|
Ma X, Tian Y, Yang R, Wang H, Allahou LW, Chang J, Williams G, Knowles JC, Poma A. Nanotechnology in healthcare, and its safety and environmental risks. J Nanobiotechnology 2024; 22:715. [PMID: 39548502 PMCID: PMC11566612 DOI: 10.1186/s12951-024-02901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 11/18/2024] Open
Abstract
Nanotechnology holds immense promise in revolutionising healthcare, offering unprecedented opportunities in diagnostics, drug delivery, cancer therapy, and combating infectious diseases. This review explores the multifaceted landscape of nanotechnology in healthcare while addressing the critical aspects of safety and environmental risks associated with its widespread application. Beginning with an introduction to the integration of nanotechnology in healthcare, we first delved into its categorisation and various materials employed, setting the stage for a comprehensive understanding of its potential. We then proceeded to elucidate the diverse healthcare applications of nanotechnology, spanning medical diagnostics, tissue engineering, targeted drug delivery, gene delivery, cancer therapy, and the development of antimicrobial agents. The discussion extended to the current situation surrounding the clinical translation and commercialisation of these cutting-edge technologies, focusing on the nanotechnology-based healthcare products that have been approved globally to date. We also discussed the safety considerations of nanomaterials, both in terms of human health and environmental impact. We presented the in vivo health risks associated with nanomaterial exposure, in relation with transport mechanisms, oxidative stress, and physical interactions. Moreover, we highlighted the environmental risks, acknowledging the potential implications on ecosystems and biodiversity. Lastly, we strived to offer insights into the current regulatory landscape governing nanotechnology in healthcare across different regions globally. By synthesising these diverse perspectives, we underscore the imperative of balancing innovation with safety and environmental stewardship, while charting a path forward for the responsible integration of nanotechnology in healthcare.
Collapse
Affiliation(s)
- Xiaohan Ma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| | - Yaxin Tian
- United InnoMed (Shanghai) Limited, F/2, E-1, No.299, Kangwei Rd, Pudong District, Shanghai, China
| | - Ren Yang
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Haowei Wang
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London, WC1E 6JF, UK
| | - Latifa W Allahou
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jinke Chang
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK
| | - Gareth Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Med-Icine, Dankook University, Cheonan, 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
111
|
Shah K, Patel J, Kumar S, Pandey R, Maity G, Dubey S. Perspectives on sustainable and efficient routes of nanoparticle synthesis: an exhaustive review on conventional and microplasma-assisted techniques. NANOSCALE 2024; 16:20374-20404. [PMID: 39431309 DOI: 10.1039/d4nr02478h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Nanotechnology has found widespread applications in our everyday lives, including areas such as water purification, sensor technology, advanced materials, biomedicine, drug delivery, and bioimaging. Conventional methods to synthesize nanoparticles (NPs) often involve expensive equipment, high temperatures and pressures, and hazardous chemicals, leading to environmentally harmful waste. Lately, plasma-assisted methods have emerged as possible replacements for the conventional schemes because of being straightforward and environment friendly. In particular, microplasma (plasma characterized by its small dimensions on the microscale and its high electron energy density) has been the most active domain for research in NP synthesis. Utilizing microplasma under atmospheric pressure opens avenues to enhance the production of functional materials, especially those sensitive to temperature. This review examines the importance and potential future developments of microplasma-based nanomaterial production technology. The discussion highlights the distinctive features of microplasma-based synthesis compared with conventional methods, emphasizing its potential to revolutionize the field of synthesis of NPs of different sizes, shapes and compositions and also the opportunities for advancing the production of functional materials for various applications.
Collapse
Affiliation(s)
- Khushboo Shah
- Department of Physics, School of Advanced Engineering, UPES Dehradun, 248007, India.
| | - Jenish Patel
- Department of Physics, Sir P T Sarvajanik College of Science, Surat 395001, Gujarat, India
| | - Sanjeev Kumar
- Department of Chemistry, School of Advanced Engineering UPES Dehradun, 248007, India
| | - Ratnesh Pandey
- Department of Physics, School of Advanced Engineering, UPES Dehradun, 248007, India.
| | - Gurupada Maity
- Department of Physics, School of Basic and Applied Science, Galgotias University, Gautam Buddha Nagar-203201, India
| | - Santosh Dubey
- Department of Physics, School of Advanced Engineering, UPES Dehradun, 248007, India.
| |
Collapse
|
112
|
Díaz E, Quezada V, Cifuentes J, Arias Morales NY, Reyes LH, Muñoz-Camargo C, Cruz JC. Enhanced Delivery and Potency of Chemotherapeutics in Melanoma Treatment via Magnetite Nanobioconjugates. ACS OMEGA 2024; 9:45402-45420. [PMID: 39554413 PMCID: PMC11561594 DOI: 10.1021/acsomega.4c07415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 11/19/2024]
Abstract
Melanoma, known for its aggressive metastatic potential, poses significant treatment challenges. Despite the potent antiproliferative effects of anticancer drugs, systemic toxicity and low water solubility limit their efficacy. This study addresses these challenges by employing magnetite (Fe3O4) nanobioconjugates as a drug delivery system, aimed at enhancing drug solubility and reducing off-target effects in melanoma therapy. Magnetite nanoparticles (MNPs) were engineered with functional molecules and loaded with the anticancer agents Temozolomide (TMZ) or paclitaxel (PTX). The nanobioconjugates were characterized via Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The results validated the efficacious synthesis and drug loading, attaining efficiencies ranging from 32 to 72% for TMZ and 32 to 60% for PTX. Biocompatibility assessments demonstrated excellent tolerance, with minimal hemolysis rates and platelet aggregation. In vitro studies revealed enhanced cytotoxicity against A-375 human melanoma cells compared to free drugs, with cellular uptake facilitated primarily through macropinocytosis, caveolin-, and clathrin-mediated endocytosis. Furthermore, the nanobioconjugates exhibited significant efficacy in targeting A-375 melanoma spheroids, underlining their potential in melanoma therapy. This research underscores magnetite nanobioconjugates as a promising avenue for targeted melanoma treatment, offering enhanced drug delivery specificity and reduced systemic toxicity in oncological drug delivery systems.
Collapse
Affiliation(s)
- Erika Díaz
- Department
of Biomedical Engineering, Universidad de
Los Andes, Bogotá 111711, Colombia
| | - Valentina Quezada
- Department
of Biomedical Engineering, Universidad de
Los Andes, Bogotá 111711, Colombia
| | - Javier Cifuentes
- Department
of Biomedical Engineering, Universidad de
Los Andes, Bogotá 111711, Colombia
| | - Nydia Yadira Arias Morales
- Center
for Microscopy (MicroCore), Vice Presidency for Research and Creation, Universidad de Los Andes, Bogotá 111711, Colombia
| | - Luis H. Reyes
- Product
and Process Design Group (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 111711, Colombia
| | | | - Juan C. Cruz
- Department
of Biomedical Engineering, Universidad de
Los Andes, Bogotá 111711, Colombia
| |
Collapse
|
113
|
Canè C, Tammaro L, Duilio A, Di Somma A. Investigation of the Mechanism of Action of AMPs from Amphibians to Identify Bacterial Protein Targets for Therapeutic Applications. Antibiotics (Basel) 2024; 13:1076. [PMID: 39596769 PMCID: PMC11591259 DOI: 10.3390/antibiotics13111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial peptides (AMPs) from amphibians represent a promising source of novel antibacterial agents due to their potent and broad-spectrum antimicrobial activity, which positions them as valid alternatives to conventional antibiotics. This review provides a comprehensive analysis of the mechanisms through which amphibian-derived AMPs exert their effects against bacterial pathogens. We focus on the identification of bacterial protein targets implicated in the action of these peptides and on biological processes altered by the effect of AMPs. By examining recent advances in countering multidrug-resistant bacteria through multi-omics approaches, we elucidate how AMPs interact with bacterial membranes, enter bacterial cells, and target a specific protein. We discuss the implications of these interactions in developing targeted therapies and overcoming antibiotic resistance (ABR). This review aims to integrate the current knowledge on AMPs' mechanisms, identify gaps in our understanding, and propose future directions for research to harness amphibian AMPs in clinical applications.
Collapse
Affiliation(s)
- Carolina Canè
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy; (C.C.); (L.T.)
| | - Lidia Tammaro
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy; (C.C.); (L.T.)
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia 4, 80126 Napoli, Italy;
- National Institute of Biostructures and Biosystems (INBB), Via dei Carpegna 19, 00165 Roma, Italy
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia 4, 80126 Napoli, Italy;
| |
Collapse
|
114
|
Gupta P, Bansal A, Kaur H, Anees M, Singh N, Singh H. Folic acid-targeted redox responsive polylactic acid-based nanoparticles co-delivering pirarubicin and salinomycin suppress breast cancer tumor growth in vivo. NANOSCALE 2024; 16:20131-20146. [PMID: 39420738 DOI: 10.1039/d4nr02365j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Targeted cancer therapy using nanocarriers has emerged as a promising solution to the majority of drawbacks associated with conventional chemotherapy. The present research work describes the development of folic acid (FA)-targeted redox responsive [S-(PLA-b-PEG-CONH)]2 polymeric nanoparticles for the co-delivery of pirarubicin (Pira) and salinomycin (Sal). The nanoparticles' redox responsiveness arises from embedded disulfide bonds within the polymer, which gradually break in response to high GSH levels in tumors, enabling sustained drug release. The nanoparticles exhibited a hydrodynamic size of ∼104 nm and a surface charge density of -15.5 mV with low PDI values. Blank nanoparticles (w/o drug) showed negligible toxicity towards both non-malignant human and murine cells and exhibited excellent stability under different environmental conditions for up to 3 weeks. A cellular internalization study conducted using Rho B/C6 dual-dye-encapsulated nanoparticles showed efficient uptake of the nanoparticles after just 1 hour of incubation with SUM-149 2D adherent cells and 3D spheroids. The release of Pira and Sal from Pira/Sal dual-loaded nanoparticles increased significantly in a reducing environment. The % cumulative release of Pira increased from 20.5% ± 1.0 in PBS (pH 7.4) to 40.1% ± 0.4 in dithiothreitol (DTT) after 20 days; similarly, the % cumulative release of Sal increased from 36.2% ± 1.7 in PBS (pH 7.4) to 51.5% ± 1.7 in DTT. The cytotoxicity studies of FA-targeted Pira/Sal dual-loaded nanoparticles with varying Pira : Sal ratios (1 : 1, 3 : 1 and 1 : 3) revealed that the nanoparticles displayed 8-10 fold lower IC50 values than the respective free drug formulations across multiple breast cancer cell lines including SUM-149, MDA-MB-231 and EAC as well as in 3D mammospheres. Balb/c syngeneic mice bearing EAC tumors experienced ∼100% tumor regression upon treatment with FA-targeted Pira/Sal (3 : 1) dual-loaded nanoparticles, indicating synergistic anti-tumor potency. In vivo survival and histopathological studies indicated no significant toxicity in vital organs of the body as compared to free drugs. Based on the performance, the currently investigated FA-targeted Pira/Sal dual-loaded nano-formulation is recommended to be further explored in other cancer types as well as in higher animals for cancer therapy.
Collapse
Affiliation(s)
- Priya Gupta
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| | - Ankushi Bansal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| | - Harshdeep Kaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| | - Mohd Anees
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| | - Harpal Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
115
|
Wilar G, Suhandi C, Wathoni N, Fukunaga K, Kawahata I. Nanoparticle-Based Drug Delivery Systems Enhance Treatment of Cognitive Defects. Int J Nanomedicine 2024; 19:11357-11378. [PMID: 39524925 PMCID: PMC11550695 DOI: 10.2147/ijn.s484838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Nanoparticle-based drug delivery presents a promising solution in enhancing therapies for neurological diseases, particularly cognitive impairment. These nanoparticles address challenges related to the physicochemical profiles of drugs that hinder their delivery to the central nervous system (CNS). Benefits include improved solubility due to particle size reduction, enhanced drug penetration across the blood-brain barrier (BBB), and sustained release mechanisms suitable for long-term therapy. Successful application of nanoparticle delivery systems requires careful consideration of their characteristics tailored for CNS delivery, encompassing particle size and distribution, surface charge and morphology, loading capacity, and drug release kinetics. Literature review reveals three main types of nanoparticles developed for cognitive function enhancement: polymeric nanoparticles, lipid-based nanoparticles, and metallic or inorganic nanoparticles. Each type and its production methods possess distinct advantages and limitations. Further modifications such as coating agents or ligand conjugation have been explored to enhance their brain cell uptake. Evidence supporting their development shows improved efficacy outcomes, evidenced by enhanced cognitive function assessments, modulation of pro-oxidant markers, and anti-inflammatory activities. Despite these advancements, clinical trials validating the efficacy of nanoparticle systems in treating cognitive defects are lacking. Therefore, these findings underscore the need for researchers to expedite clinical testing to provide robust evidence of the potential of nanoparticle-based drug delivery systems.
Collapse
Affiliation(s)
- Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
116
|
Malik MMUD, Alqahtani MM, Hadadi I, Kanbayti I, Alawaji Z, Aloufi BA. Molecular Imaging Biomarkers for Early Cancer Detection: A Systematic Review of Emerging Technologies and Clinical Applications. Diagnostics (Basel) 2024; 14:2459. [PMID: 39518426 PMCID: PMC11545511 DOI: 10.3390/diagnostics14212459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Early cancer detection is crucial for improving patient outcomes. Molecular imaging biomarkers offer the potential for non-invasive, early-stage cancer diagnosis. OBJECTIVES To evaluate the effectiveness and accuracy of molecular imaging biomarkers for early cancer detection across various imaging modalities and cancer types. METHODS A comprehensive search of PubMed/MEDLINE, Embase, Web of Science, Cochrane Library, and Scopus was performed, covering the period from January 2010 to December 2023. Eligibility criteria included original research articles published in English on molecular imaging biomarkers for early cancer detection in humans. The risk of bias for included studies was evaluated using the QUADAS-2 tool. The findings were synthesized through narrative synthesis, with quantitative analysis conducted where applicable. RESULTS In total, 50 studies were included. Positron emission tomography (PET)-based biomarkers showed the highest sensitivity (mean: 89.5%, range: 82-96%) and specificity (mean: 91.2%, range: 85-100%). Novel tracers such as [68Ga]-PSMA for prostate cancer and [18F]-FES for breast cancer demonstrated promising outcomes. Optical imaging techniques showed high specificity in intraoperative settings. CONCLUSIONS Molecular imaging biomarkers show significant potential for improving early cancer detection. Integration into clinical practice could lead to earlier interventions and improved outcomes. Further research is needed to address standardization and cost-effectiveness.
Collapse
Affiliation(s)
- Maajid Mohi Ud Din Malik
- Dr. D.Y. Patil School of Allied Health Sciences, Dr. D.Y. Patil Vidyapeeth, (Deemed to be University) Sant Tukaram Nagar, Pune 411018, MH, India;
| | - Mansour M. Alqahtani
- Department of Radiological Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Ibrahim Hadadi
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Asir, Abha 62529, Saudi Arabia
| | - Ibrahem Kanbayti
- Radiologic Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Zeyad Alawaji
- Department of Radiologic Technology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Bader A. Aloufi
- Department of Diagnostic Radiology, College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia;
| |
Collapse
|
117
|
Rajan SS, Chandran R, Abrahamse H. Advancing Photodynamic Therapy with Nano-Conjugated Hypocrellin: Mechanisms and Clinical Applications. Int J Nanomedicine 2024; 19:11023-11038. [PMID: 39502636 PMCID: PMC11537162 DOI: 10.2147/ijn.s486014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
Hypocrellin-based photodynamic therapy (PDT) is developing as a viable cancer therapeutic option, especially when enhanced by nanoconjugation. This review investigates the methods by which nano-conjugated hypocrellin enhances therapeutic efficacy and precision when targeting cancer cells. These nanoconjugates encapsulate or covalently bind hypocrellin photosensitizers (PSs), allowing them to accumulate preferentially in malignancies. When activated by light, the nanoconjugates produce singlet oxygen and other reactive oxygen species (ROS), resulting in oxidative stress that selectively destroys cancer cells while protecting healthy tissues. We look at how they can be used to treat a variety of cancers. Clinical and preclinical studies show that they have advantages such as increased water solubility, improved tumor penetration, longer circulation times, and tailored delivery, all of which contribute to fewer off-target effects and overall toxicity. Ongoing research focuses on improving these nanoconjugates for better tumor targeting, drug release kinetics, and overcoming biological obstacles. Furthermore, the incorporation of developing technologies such as stimuli-responsive nanocarriers and combination therapies opens exciting opportunities for enhancing hypocrellin-based PDT. In conclusion, the combination of hypocrellin and nanotechnology constitutes a significant approach to cancer treatment, increasing the efficacy and safety of PDT. Future research will seek to create conjugates including hypocrellin, herceptin, and gold nanoparticles to induce apoptosis in human breast cancer cells in vitro, opening possibilities for therapeutic applications.
Collapse
Affiliation(s)
- Sheeja S Rajan
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
118
|
Hussein NI, Molina AH, Sunga GM, Amit M, Lei YL, Zhao X, Hartgerink JD, Sikora AG, Young S. Localized intratumoral delivery of immunomodulators for oral cancer and oral potentially malignant disorders. Oral Oncol 2024; 158:106986. [PMID: 39137489 DOI: 10.1016/j.oraloncology.2024.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Immunotherapy has developed into an important modality of modern cancer treatment. Unfortunately, checkpoint inhibitor immunotherapies are currently delivered systemically and require frequent administration, which can result in toxicity and severe, sometimes fatal, adverse events. Localized delivery of immunomodulators for oral cancer and oral potentially malignant disorders offers the promise of maximum therapeutic potential and reduced systemic adverse effects. This review will discuss the limitations of current standard-of-care systemic therapies and highlight research advances in localized, intratumoral delivery platforms for immunotherapy for oral cancer and oral potentially malignant disorders.
Collapse
Affiliation(s)
- Nourhan I Hussein
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, 7500 Cambridge St, SOD-6510, Houston, TX 77054, USA
| | - Andrea H Molina
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, 7500 Cambridge St, SOD-6510, Houston, TX 77054, USA
| | - Gemalene M Sunga
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, 7500 Cambridge St, SOD-6510, Houston, TX 77054, USA; Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Yu Leo Lei
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Xiao Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Jeffrey D Hartgerink
- Department of Chemistry and Department of Bioengineering, Rice University, 6500 Main St, BRC-319, Houston, TX 77030, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Pickens-1550, Houston, TX 77030, USA
| | - Simon Young
- Katz Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, 7500 Cambridge St, SOD-6510, Houston, TX 77054, USA.
| |
Collapse
|
119
|
Abtahi MS, Fotouhi A, Rezaei N, Akalin H, Ozkul Y, Hossein-Khannazer N, Vosough M. Nano-based drug delivery systems in hepatocellular carcinoma. J Drug Target 2024; 32:977-995. [PMID: 38847573 DOI: 10.1080/1061186x.2024.2365937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/19/2024]
Abstract
The high recurrence rate of hepatocellular carcinoma (HCC) and poor prognosis after medical treatment reflects the necessity to improve the current chemotherapy protocols, particularly drug delivery methods. Development of targeted and efficient drug delivery systems (DDSs), in all active, passive and stimuli-responsive forms for selective delivery of therapeutic drugs to the tumour site has been extended to improve efficacy and reduce the severe side effects. Recent advances in nanotechnology offer promising breakthroughs in the diagnosis, treatment and monitoring of cancer cells. In this review, the specific design of DDSs based on the different nano-particles and their surface engineering is discussed. In addition, the innovative clinical studies in which nano-based DDS was used in the treatment of HCC were highlighted.
Collapse
Affiliation(s)
- Maryam Sadat Abtahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Fotouhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nikoo Hossein-Khannazer
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
120
|
Abdellatif AAH, Mostafa MAH, Konno H, Younis MA. Exploring the green synthesis of silver nanoparticles using natural extracts and their potential for cancer treatment. 3 Biotech 2024; 14:274. [PMID: 39450421 PMCID: PMC11496425 DOI: 10.1007/s13205-024-04118-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Silver nanoparticles (AgNPs) have attracted increasing attention in nanomedicine, with versatile applications in drug delivery, antimicrobial treatments, and cancer therapies. While chemical synthesis remains a common approach for AgNP production, ensuring environmental sustainability requires a shift toward eco-friendly, "green" synthesis techniques. This article underscores the promising role of plant extracts in the green synthesis of AgNPs, highlighting the importance of their natural sources and diverse bioactive compounds. Various characterization methods for these nanomaterials are also reviewed. Furthermore, the anticancer potential of green AgNPs (Gr-AgNPs) is examined, focusing on their mechanisms of action and the challenges to their clinical implementation. Finally, future directions in the field are discussed.
Collapse
Affiliation(s)
- Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, 51452 Al Qassim, Saudi Arabia
| | - Mahmoud A. H. Mostafa
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, 41477 Al Madinah, Al Munawarah Saudi Arabia
- Departmentof Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524 Egypt
| | - Hiroyuki Konno
- Department of Chemistry and Biological Engineering, Yamagata University, Yonezawa, Yamagata 982-8510 Japan
| | - Mahmoud A. Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526 Egypt
| |
Collapse
|
121
|
Kamel AG, Sabet S, El-Shibiny A. Potential mitochondrial ROS-mediated damage induced by chitosan nanoparticles bee venom-loaded on cancer cell lines. Int J Biol Macromol 2024; 279:135362. [PMID: 39245116 DOI: 10.1016/j.ijbiomac.2024.135362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Recently, numerous studies have confirmed the importance of chitosan nanoparticles (CNP) as a viable drug delivery carrier for increasing the efficacy of anticancer drugs in cancer treatment. It is a macromolecule and natural biopolymer compound, more stable and safer in use than metal nanoparticles. Bee venom (BV), a form of defense venom, has been shown to have anti-tumor, neuroprotective, anti-inflammatory, analgesic, and anti-infectivity properties. Moreover, the regulation of cell death has been linked to reactive oxygen species (ROS)-mediated cell apoptosis, which induces mitochondrial damage and ER stress through oxidative stress events. Therefore, this study aimed to illustrate the ROS-mediated effect on the cancer cells treatment with CNP-loaded BV (CNP-BV) and explained the adverse effects of ROS generation on Mitochondria and ER. We have found that the targeted CNP-BV were high in cytotoxicity against MCF-7 (IC50 437.2 μg/mL) and HepG2 (IC50 109.5 μg/mL) through the induction of massive generation of ROS, which in turn results in activating the mitochondrial cascade and ER stress. These results highlighted the role of ROS generation in inducing apoptosis in cancer cells.
Collapse
Affiliation(s)
- Azza G Kamel
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Salwa Sabet
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt.
| |
Collapse
|
122
|
Kesharwani P, Halwai K, Jha SK, Al Mughram MH, Almujri SS, Almalki WH, Sahebkar A. Folate-engineered chitosan nanoparticles: next-generation anticancer nanocarriers. Mol Cancer 2024; 23:244. [PMID: 39482651 PMCID: PMC11526716 DOI: 10.1186/s12943-024-02163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
Chitosan nanoparticles (NPs) are well-recognized as promising vehicles for delivering anticancer drugs due to their distinctive characteristics. They have the potential to enclose hydrophobic anticancer molecules, thereby enhancing their solubilities, permeabilities, and bioavailabilities; without the use of surfactant, i.e., through surfactant-free solubilization. This allows for higher drug concentrations at the tumor sites, prevents excessive toxicity imparted by surfactants, and could circumvent drug resistance. Moreover, biomedical engineers and formulation scientists can also fabricate chitosan NPs to slowly release anticancer agents. This keeps the drugs at the tumor site longer, makes therapy more effective, and lowers the frequency of dosing. Notably, some types of cancer cells (fallopian tube, epithelial tumors of the ovary, and primary peritoneum; lung, kidney, ependymal brain, uterus, breast, colon, and malignant pleural mesothelioma) have overexpression of folate receptors (FRs) on their outer surface, which lets folate-drug conjugate-incorporated NPs to target and kill them more effectively. Strikingly, there is evidence suggesting that the excessively produced FR&αgr (isoforms of the FR) stays consistent throughout treatment in ovarian and endometrial cancer, indicating resistance to conventional treatment; and in this regard, folate-anchored chitosan NPs can overcome it and improve the therapeutic outcomes. Interestingly, overly expressed FRs are present only in certain tumor types, which makes them a promising biomarker for predicting the effectiveness of FR-targeted therapy. On the other hand, the folate-modified chitosan NPs can also enhance the oral absorption of medicines, especially anticancer drugs, and pave the way for effective and long-term low-dose oral metronomic scheduling of poorly soluble and permeable drugs. In this review, we talked briefly about the techniques used to create, characterize, and tailor chitosan-based NPs; and delved deeper into the potential applications of folate-engineered chitosan NPs in treating various cancer types.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Kratika Halwai
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Uttar Pradesh, Kanpur, 208016, India
| | - Mohammed H Al Mughram
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
123
|
Javid H, Oryani MA, Rezagholinejad N, Hashemzadeh A, Karimi-Shahri M. Unlocking the potential of RGD-conjugated gold nanoparticles: a new frontier in targeted cancer therapy, imaging, and metastasis inhibition. J Mater Chem B 2024; 12:10786-10817. [PMID: 39351647 DOI: 10.1039/d4tb00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
In the rapidly evolving field of cancer therapeutics, the potential of gold nanoparticles (AuNPs) conjugated with RGD peptides has emerged as a promising avenue for targeted therapy and imaging. Despite numerous studies demonstrating the effectiveness of RGD-conjugated AuNPs in specifically targeting tumor cells and enhancing radiation therapy (RT), a comprehensive review of these advancements is currently lacking. This review aims to fill this critical gap in the literature. Our analysis reveals that RGD-conjugated AuNPs have shown significant promise in improving the diagnosis and treatment of various types of cancer, including breast cancer. However, the full potential of this technology is yet to be realized. The development of multifunctional nanoplatforms incorporating AuNPs has opened new horizons for targeted therapy, dual-mode imaging, and inhibition of tumor growth and metastasis. This review is of paramount importance as it provides a comprehensive overview of the current state of research in this area, and highlights the areas where further research is needed. It is hoped that this review will inspire further investigations into this promising nanotechnology, ultimately leading to improved cancer diagnosis and therapy. Therefore, the findings presented in this review underscore the potential of AuNPs conjugated with RGD peptides as a revolutionary approach in cancer therapeutics. It is our fervent hope that this review will serve as a catalyst for further research in this exciting field.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
124
|
Weissberger D, Stenzel MH, Hunter L. Precious Cargo: The Role of Polymeric Nanoparticles in the Delivery of Covalent Drugs. Molecules 2024; 29:4949. [PMID: 39459317 PMCID: PMC11510600 DOI: 10.3390/molecules29204949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Covalent drugs can offer significant advantages over non-covalent drugs in terms of pharmacodynamics (i.e., target-binding properties). However, the development of covalent drugs is sometimes hampered by pharmacokinetic limitations (e.g., low bioavailability, rapid metabolism and toxicity due to off-target binding). Polymeric nanoparticles offer a potential solution to these limitations. Delivering covalent drugs via polymeric nanoparticles provides myriad benefits in terms of drug solubility, permeability, lifetime, selectivity, controlled release and the opportunity for synergistic administration alongside other drugs. In this short review, we examine each of these benefits in turn, illustrated through multiple case studies.
Collapse
Affiliation(s)
| | - Martina H. Stenzel
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
125
|
Fawaz W, Hanano A, Murad H, Yousfan A, Alghoraibi I, Hasian J. Polymeric nanoparticles loaded with vincristine and carbon dots for hepatocellular carcinoma therapy and imaging. Sci Rep 2024; 14:24520. [PMID: 39424827 PMCID: PMC11489775 DOI: 10.1038/s41598-024-75332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
Chemotherapy for hepatoblastoma is limited by organ toxicity and poor outcomes, prompting the search for new, more effective treatments with minimal side effects. Vincristine sulfate, a potent chemotherapeutic, faces challenges due to P-glycoprotein-mediated resistance and its systemic toxicity. Nanoparticles offer a promising solution by improving pharmacokinetics, targeting tumor cells, thus reducing side effects. Moreover, the use of fluorescent nanomaterials is emerging in biomedical applications such as bioimaging, detection and therapies. This study describes a promising delivery system utilizing carbon dots encapsulated with vincristine in biodegradable polycaprolactone nanoparticles via a double emulsion technique. The fine characterization of these nanoparticles showed that they are spherical, uniformly sized with around 200 nm and exhibit excellent colloidal stability. Moreover, the release profile showed prolonged release for both vincristine and carbon dots. In vitro cell viability studies revealed enhanced cancer cell inhibition for the encapsulated drug compared to the vincristine solution. The uptake study indicated clear fluorescence for carbon dots solution and vincristine and carbon dots loaded nanoparticles upon excitation. Additionally, studies on primary mouse hepatocytes demonstrated higher fluorescence intensity in treatment groups. These results suggest that vincristine and carbon dots loaded nanoparticles are effective, target-specific carriers for liver cancer treatment. Furthermore, the carbon dots were not cytotoxic, highlighting their potential in bioimaging and cancer cell studies.
Collapse
Affiliation(s)
- Walaa Fawaz
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Damascus, Syria.
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Hossam Murad
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Amal Yousfan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Damascus, Syria
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al Andalus University for Medical Sciences, Tartus, Syria
| | - Ibrahim Alghoraibi
- Department of Physics, Faculty of Science, Damascus University, Damascus, Syria
| | - Jameela Hasian
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Damascus, Syria
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk Private University, Damascus, Syria
| |
Collapse
|
126
|
Debnath SK, Debnath M, Ghosh A, Srivastava R, Omri A. Targeting Tumor Hypoxia with Nanoparticle-Based Therapies: Challenges, Opportunities, and Clinical Implications. Pharmaceuticals (Basel) 2024; 17:1389. [PMID: 39459028 PMCID: PMC11510357 DOI: 10.3390/ph17101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Hypoxia is a crucial factor in tumor biology, affecting various solid tumors to different extents. Its influence spans both early and advanced stages of cancer, altering cellular functions and promoting resistance to therapy. Hypoxia reduces the effectiveness of radiotherapy, chemotherapy, and immunotherapy, making it a target for improving therapeutic outcomes. Despite extensive research, gaps persist, necessitating the exploration of new chemical and pharmacological interventions to modulate hypoxia-related pathways. This review discusses the complex pathways involved in hypoxia and the associated pharmacotherapies, highlighting the limitations of current treatments. It emphasizes the potential of nanoparticle-based platforms for delivering anti-hypoxic agents, particularly oxygen (O2), to the tumor microenvironment. Combining anti-hypoxic drugs with conventional cancer therapies shows promise in enhancing remission rates. The intricate relationship between hypoxia and tumor progression necessitates novel therapeutic strategies. Nanoparticle-based delivery systems can significantly improve cancer treatment efficacy by targeting hypoxia-associated pathways. The synergistic effects of combined therapies underscore the importance of multimodal approaches in overcoming hypoxia-mediated resistance. Continued research and innovation in this area hold great potential for advancing cancer therapy and improving patient outcomes.
Collapse
Affiliation(s)
- Sujit Kumar Debnath
- NanoBios Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India; (S.K.D.); (M.D.)
| | - Monalisha Debnath
- NanoBios Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India; (S.K.D.); (M.D.)
| | - Arnab Ghosh
- NanoBios Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India; (S.K.D.); (M.D.)
| | - Rohit Srivastava
- NanoBios Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India; (S.K.D.); (M.D.)
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry, The Novel Drug and Vaccine Delivery Systems Facility, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
127
|
Wang X, Wang X, Su J, Wang D, Feng W, Wang X, Lu H, Wang A, Liu M, Xia G. A Dual-Function LipoAraN-E5 Coloaded with N4-Myristyloxycarbonyl-1-β-d-arabinofuranosylcytosine (AraN) and a CXCR4 Antagonistic Peptide (E5) for Blocking the Dissemination of Acute Myeloid Leukemia. ACS NANO 2024; 18:27917-27932. [PMID: 39364559 DOI: 10.1021/acsnano.4c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with a high recurrence rate. The interaction of chemokine receptor 4/chemokine ligand 12 (CXCR4/CXCL12) mediates homing and adhesion of AML cells in bone marrow, leading to minimal residual disease in patients, which brings a hidden danger for future AML recurrence. Ara-C is a nonselective chemotherapeutic agent against AML. Due to its short half-life and severe side effects, a lipid-like Ara-C derivative (AraN) was synthesized and a dual-function LipoAraN-E5 (135 nm, encapsulation efficiency 99%) was developed, which coloaded AraN and E5, a peptide of the CXCR4 antagonist. LipoAraN-E5 effectively improved the uptake, enhanced the inhibition of leukemia cell proliferation, migration, and adhesion to stromal cells in bone marrow, and mobilized the leukemia cells from bone marrow to peripheral blood via interfering with the CXCR4/CXCL12 axis. LipoAraN-E5 prolonged the plasma half-life of AraN (8.31 vs 0.56 h) and was highly enriched in peripheral blood (3.67 vs 0.05 μmol/g at 8 h) and bone marrow (379 vs 148 μmol/g at 24 h). LipoAraN-E5 effectively prevented the infiltration of leukemia cells in peripheral blood, bone marrow, spleen, and liver, prolonged the mice survival, and showed outstanding antineoplastic efficacy with negligible toxicity, which were attributed to the ingenious design of AraN, the use of a liposomal delivery carrier, and the introduction of E5. Our work revealed that LipoAraN-E5 may be a promising nanocandidate against AML.
Collapse
Affiliation(s)
- Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Jiayi Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Wenkai Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiaobo Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Hongwei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| |
Collapse
|
128
|
Bhattacharjee M, Ghosh A, Das S, Sarker S, Bhattacharya S, Das A, Ghosh S, Chattopadhyay S, Ghosh S, Adhikary A. Systemic Codelivery of Thymoquinone and Doxorubicin by Targeted Mesoporous Silica Nanoparticle Sensitizes Doxorubicin-Resistant Breast Cancer by Interfering between the MDR1/P-gp and miR 298 Crosstalk. ACS Biomater Sci Eng 2024; 10:6314-6331. [PMID: 39285678 DOI: 10.1021/acsbiomaterials.4c01081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Multi drug resistance (MDR) in breast carcinoma still poses a significant impairment to successful chemotherapy. As the arsenal of anticancer agents increases with improved preclinical methods, the growth of therapeutic drug combinations is now unprecedented. The malignancies addressed by mono drugs often fail to limit cancer progression, resulting in resistant cancer, thereby offering combinatorial therapies a terrific edge over monodrug regimes. However, the selection of drug combinations required enough preliminary evidence for their synergistic effect. The fundamental mechanisms of MDR to chemotherapeutics are associated with the overexpression of membrane efflux pumps, alternations in drug targets, and increased drug metabolism. Unfortunately, it is very difficult for drugs to overcome resistance produced on their own or by another different drug action. In this context, herein, we report a simple delivery system for coencapsulation and intracellular codelivery of dual-drug thymoquinone (TQ) and doxorubicin (DOX) to resensitize DOX-resistant MDA MB231 cell line (231 R). The 231 R cell line developed in our lab showed an enhanced expression of the ATP-binding cassette (ABC) transporters P-gp1/MDR-1 and a declined miR-298 expression. The present delivery system is based on amine-functionalized mesoporous silica nanoparticles (MSNs), in which the side chain amine functional group was used to react with the carbonyl group of TQ, which acts as a pro-drug system (TQ-MSN) to release TQ and DOX simultaneously. DOX was encapsulated later into the above TQ-MSN by a simple diffusion method. The drugs containing MSNs were further coated with a hyaluronic acid-conjugated PEG-PLGA polymer (HA@TQ-DOX-MSN). This simple nanostrategy interferes with the MDR-1/miR-298 cross-talk, thereby allowing a significant reduction in drug efflux from the cell and highlighting a promising nanotechnology-based combinatorial delivery approach in managing breast cancer chemoresistance.
Collapse
Affiliation(s)
- Mousumi Bhattacharjee
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Avijit Ghosh
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Shaswati Das
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Sushmita Sarker
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Saurav Bhattacharya
- Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Ankur Das
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata, West Bengal 700009, India
| | - Subhajit Ghosh
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, India
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata, West Bengal 700009, India
| | - Swatilekha Ghosh
- Amity Institute of Biotechnology, Amity University, Rajarhat, New Town, Kolkata, West Bengal 700135, India
| | - Arghya Adhikary
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, India
| |
Collapse
|
129
|
Adetunji TL, Olisah C, Acho MA, Oyetunde-Joshua F, Amoo SO. Global Research Trends and Recent Advances in Medicinal Plant-Synthesized Nanoparticles for Cancer Treatment. PLANTS (BASEL, SWITZERLAND) 2024; 13:2836. [PMID: 39458783 PMCID: PMC11511196 DOI: 10.3390/plants13202836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Worldwide, cancer ranks among the foremost contributors to mortality despite recent medical progress. Alternative approaches in controlling various forms of cancer are being highly explored by researchers. This study provides the global research trends in the utilization of medicinal plant-synthesized nanoparticles for cancer treatment over the span of 18 years using scientometric analysis. Recent research advances on medicinal plant-derived nanoparticles for cancer treatment and their possible mechanisms of action were described. Relevant articles published between 2005 and 2023 were retrieved from Scopus and Web of Science and analyzed using RStudio and VOSViewer. Scientometric indicators were employed to analyze the results. The initial search returned 5695 articles, with a publication growth rate of 3.71% annually. Countries from Asia contributed the most (61.37%) to the total number of publications. The therapeutic effects of nanoparticles derived from medicinal plants can be attributed to various mechanistic pathways, including induced apoptosis from reactive oxygen species generation, as well as mitochondrial and cell membrane disruption, amongst others. Although some reported studies demonstrated promising safety and efficacy against certain cancer cells in vivo and in vitro, the little to no clinical data on medicinal plant-synthesized nanoparticles hinder the ability to make informed decisions about their clinical potential in cancer treatment.
Collapse
Affiliation(s)
- Tomi Lois Adetunji
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plants, Private Bag X293, Pretoria 0001, South Africa;
- Unit for Environmental Sciences and Management (UESM), Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha 6031, South Africa;
| | | | - Funsho Oyetunde-Joshua
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa;
| | - Stephen O. Amoo
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plants, Private Bag X293, Pretoria 0001, South Africa;
- Unit for Environmental Sciences and Management (UESM), Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
130
|
Singh P, Semwal P, Gargi B, Painuli S, Aschner M, Alsharif KF, Khan H, Bachheti RK, Worku LA. Global research and current trends on nanotherapy in lung cancer research: a bibliometric analysis of 20 years. Discov Oncol 2024; 15:539. [PMID: 39384612 PMCID: PMC11465009 DOI: 10.1007/s12672-024-01332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Lung cancer ranks as one of the most rapidly growing malignancies. Which is characterized by its poor prognosis and a low survival rate due to late diagnosis and limited efficacy of conventional treatments. In recent years nanotechnology has emerged as a promising frontier in the management of lung cancer, presenting novel strategies to enhance drug administration, improve therapeutic efficiency, and mitigate side effects. This research comprehensively evaluates the current state and research trends concerning the application of nanomaterials in lung cancer through bibliometric analysis. MATERIALS AND METHODS We employed a systematic approach by retrieving studies from the Scopus database that focused on nanomaterials and lung cancer between 2003 and 2023. Subsequently, we carefully selected relevant articles based on predetermined inclusion criteria. The selected publications were then subjected to bibliometric and visual analysis using softwares such as VOSviewer and Biblioshiny. RESULTS A total of 3523 studies that meet inclusion criteria were selected for bibliometric analysis. We observed a progressive increase in the number of annual publications from 2003 to 2023, indicating the growing interest in this field. According to our analysis, China is the primary contributor to publication output among the countries. The "Ministry of Education of the People's Republic of China" was the most influential institution. Among the authors, "Dr. Jack A. Roth" and "Dr. Huang Leaf" had the highest number of publications and cited publications, respectively. The "International Journal of Nanomedicine" was found to be the most prolific journal in this field. Additionally, "Biomaterials" emerged as the most cited journal. Through keyword analysis, we identified five main research themes and future research directions; nono-immunotherapy and green synthesis are the hot topics in this research field. CONCLUSION Our study summarized the key characteristics of publications in this field and identified the most influential countries, institutions, authors, journals, hot topics, and trends related to the application of nanomaterials in lung cancer. These findings contribute to the existing body of knowledge and serve as a foundation for future research endeavors in this area. More effective efforts are needed in this field to reduce the burden of lung cancer and help achieve the United Nation's Sustainable Development Goals.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Biotechnology, Graphic Era (Deemed to be University), 566/6 Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era (Deemed to be University), 566/6 Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India.
- Research and Development Cell, Graphic Era Hill University, Society Area, Dehradun, 248002, Uttarakhand, India.
| | - Baby Gargi
- Department of Biotechnology, Graphic Era (Deemed to be University), 566/6 Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Sakshi Painuli
- Uttarakhand Council for Biotechnology (UCB), Premnagar, Dehradun, 248006, Uttarakhand, India
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10463, USA
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P. O. Box 11099, 21944, Taif, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Nardan, 23200, Pakistan
| | - Rakesh Kumar Bachheti
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Sciences and Technology University, P. O. Box-16417, Addis Ababa, Ethiopia
- Department of Allied Sciences, Graphic Era Hill University, Society Area, Clement Town, Dehradun, 248002, Uttarakhand, India
- University Centre for Research and Development, Chandigarh University, Gharuan 140413, Punjab, India
| | - Limenew Abate Worku
- College of Natural and Computational Science, Department of Chemistry, Debre Tabor University, Debre Tabor, Ethiopia.
| |
Collapse
|
131
|
Pérez-Lloret M, Reidy E, Lozano-Pérez AA, Marchal JA, Lens PNL, Ryan AE, Erxleben A. Auranofin loaded silk fibroin nanoparticles for colorectal cancer treatment. Drug Deliv Transl Res 2024:10.1007/s13346-024-01719-2. [PMID: 39382824 DOI: 10.1007/s13346-024-01719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/10/2024]
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer related deaths worldwide and the prevalence in young people especially is increasing annually. In the search for innovative approaches to treat the disease, drug delivery systems (DDS) are promising owing to their unique properties, which allow improved therapeutic results with lower drug concentrations, overcoming drug resistance and at the same time potentially reducing side effects. Silk fibroin is a biopolymer that can be processed to obtain biocompatible and biodegradable nanoparticles that can be efficiently loaded by surface adsorption with small-molecule therapeutics and allow their transport and sustained release by modulating their pharmacokinetics. Auranofin (AF) has recently been repurposed for its strong anticancer activity and is currently in clinical trials. Its mechanism of action is through the inhibition of thioredoxin reductase enzymes, which play an essential role in several intracellular processes and are overexpressed in some tumours. Taking into account that AF has a low solubility in water, we propose silk fibroin nanoparticles (SFN) as AF carrier in order to improve its bioavailability, increasing cellular absorption and preventing its degradation or avoiding some resistance mechanisms. Here we report the preparation and characterization of a new formulation of AF-loaded silk fibroin nanoparticles (SFN-AF), its functionalization with FITC for the analysis of cellular uptake, as well as its cytotoxic activity against cell lines of human colorectal cancer (HT29 and HCT116) in both 2D and 3D cell cultures. 3D spheroid models provide a 3D environment which mimics the 3D aspects of CRC observed in vivo and represents an effective 3D environment to screen therapeutics for the treatment of CRC. The loaded nanoparticles showed a spherical morphology with a hydrodynamic diameter of ~ 160 nm and good stability in aqueous solution due to their negative surface charges. FESEM-EDX analysis revealed a homogeneous distribution of Au clusters with high electron density on the surface of the nanoparticles. SFN-AF incubated in phosphate buffer at 37 °C released 77% of the loaded AF over 10 days, showing an initial burst and then sustained release. Flow cytometry analysis showed that FITC-SFN-AF was efficiently internalized by both cell lines, which was confirmed by confocal microscopy imaging. SFN enhanced the cytotoxicity of AF in 2D cultures in both CRC lines. Promising results were also obtained in 3D culture paving the way for future application of this strategy as a therapy for CRC.
Collapse
Affiliation(s)
- Marta Pérez-Lloret
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Eileen Reidy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine Nursing and health Sciences, University of Galway, University Road, Galway, H91TK33, Ireland
- CÚRAM Centre for Medical Devices, University of Galway, Galway, Ireland
- Lambe Institute for Translational Research, School of Medicine, College of Medicine Nursing and health Sciences, University of Galway, Galway, Ireland
| | - Antonio Abel Lozano-Pérez
- Departamento de Biotecnología Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental, Murcia, 30150, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, 30120, Spain
| | - Juan A Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18016, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, 18012, Spain
- Excellence Research Unit Modelling Nature (MNat), University of Granada, Granada, 18016, Spain
- BioFab i3D-Biofabrication and 3D (Bio)Printing Laboratory, University of Granada, Granada, 18100, Spain
| | - Piet N L Lens
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine Nursing and health Sciences, University of Galway, University Road, Galway, H91TK33, Ireland.
- CÚRAM Centre for Medical Devices, University of Galway, Galway, Ireland.
| | - Andrea Erxleben
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91TK33, Ireland.
| |
Collapse
|
132
|
Martín‐Morales C, Caspani S, Desco M, Tavares de Sousa C, Gómez‐Gaviro MV. Controlled Drug Release Systems for Cerebrovascular Diseases. ADVANCED THERAPEUTICS 2024. [DOI: 10.1002/adtp.202400239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Indexed: 01/06/2025]
Abstract
AbstractThis review offers a comprehensive exploration of optimized drug delivery systems tailored for controlled release and their crucial role in addressing cerebrovascular diseases. Through an in‐depth analysis, various controlled release methods, including nanoparticles, liposomes, hydrogels, and other emerging technologies are examined. Highlighting the importance of precise drug targeting, it is delved into the underlying mechanisms of these delivery systems and their potential to improve therapeutic outcomes while minimizing adverse effects. Additionally, the specific applications of these optimized drug delivery systems in treating cerebrovascular disorders such as ischemic stroke, cerebral aneurysms, and intracranial hemorrhage are discussed. By shedding light on the advancements in drug delivery techniques and their implications in cerebrovascular medicine, this review offers valuable insights into the future of therapeutic interventions in neurology.
Collapse
Affiliation(s)
- Celia Martín‐Morales
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Doctor Esquerdo 46 Madrid 28007 Spain
| | - Sofia Caspani
- IFIMUP – Institute of Physics for Advanced Materials Departamento de Física e Astronomia, Nanotechnology and Photonics of University of Porto Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre s/n Porto 4169‐007 Portugal
| | - Manuel Desco
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Doctor Esquerdo 46 Madrid 28007 Spain
- Departamento de Bioingeniería Universidad Carlos III de Madrid Leganés 28911 Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) Madrid 28029 Spain
- Centro de Investigaciones Cardiovasculares (CNIC) Melchor Fernández Almagro Madrid 28029 Spain
| | - Célia Tavares de Sousa
- Departamento de Física Aplicada and IAdChem Facultad de Ciencias Universidad Autonoma de Madrid (UAM) Campus de Cantoblanco, C/ Francisco Tomas y Valiente, 7 Madrid 28049 Spain
| | - María Victoria Gómez‐Gaviro
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Doctor Esquerdo 46 Madrid 28007 Spain
- Departamento de Bioingeniería Universidad Carlos III de Madrid Leganés 28911 Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) Madrid 28029 Spain
| |
Collapse
|
133
|
Jiang Y, Wang C, Zu C, Rong X, Yu Q, Jiang J. Synergistic Potential of Nanomedicine in Prostate Cancer Immunotherapy: Breakthroughs and Prospects. Int J Nanomedicine 2024; 19:9459-9486. [PMID: 39371481 PMCID: PMC11456300 DOI: 10.2147/ijn.s466396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Given the global prevalence of prostate cancer in men, it is crucial to explore more effective treatment strategies. Recently, immunotherapy has emerged as a promising cancer treatment due to its unique mechanism of action and potential long-term effectiveness. However, its limited efficacy in prostate cancer has prompted renewed interest in developing strategies to improve immunotherapy outcomes. Nanomedicine offers a novel perspective on cancer treatment with its unique size effects and surface properties. By employing targeted delivery, controlled release, and enhanced immunogenicity, nanoparticles can be synergized with nanomedicine platforms to amplify the effectiveness of immunotherapy in treating prostate cancer. Simultaneously, nanotechnology can address the limitations of immunotherapy and the challenges of immune escape and tumor microenvironment regulation. Additionally, the synergistic effects of combining nanomedicine with other therapies offer promising clinical outcomes. Innovative applications of nanomedicine include smart nanocarriers, stimulus-responsive systems, and precision medicine approaches to overcome translational obstacles in prostate cancer immunotherapy. This review highlights the transformative potential of nanomedicine in enhancing prostate cancer immunotherapy and emphasizes the need for interdisciplinary collaboration to drive research and clinical applications forward.
Collapse
Affiliation(s)
- Yueyao Jiang
- Department of Pharmacy, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Chengran Wang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Chuancheng Zu
- China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Xin’ao Rong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Qian Yu
- Department of Pharmacy, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Jinlan Jiang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| |
Collapse
|
134
|
Yonk MG, Lim MA, Thompson CM, Tora MS, Lakhina Y, Du Y, Hoang KB, Molinaro AM, Boulis NM, Hassaneen W, Lei K. Improving glioma drug delivery: A multifaceted approach for glioma drug development. Pharmacol Res 2024; 208:107390. [PMID: 39233056 PMCID: PMC11440560 DOI: 10.1016/j.phrs.2024.107390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Glioma is one of the most common central nervous system (CNS) cancers that can be found within the brain and the spinal cord. One of the pressing issues plaguing the development of therapeutics for glioma originates from the selective and semipermeable CNS membranes: the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB). It is difficult to bypass these membranes and target the desired cancerous tissue because the purpose of the BBB and BSCB is to filter toxins and foreign material from invading CNS spaces. There are currently four varieties of Food and Drug Administration (FDA)-approved drug treatment for glioma; yet these therapies have limitations including, but not limited to, relatively low transmission through the BBB/BSCB, despite pharmacokinetic characteristics that allow them to cross the barriers. Steps must be taken to improve the development of novel and repurposed glioma treatments through the consideration of pharmacological profiles and innovative drug delivery techniques. This review addresses current FDA-approved glioma treatments' gaps, shortcomings, and challenges. We then outline how incorporating computational BBB/BSCB models and innovative drug delivery mechanisms will help motivate clinical advancements in glioma drug delivery. Ultimately, considering these attributes will improve the process of novel and repurposed drug development in glioma and the efficacy of glioma treatment.
Collapse
Affiliation(s)
- Marybeth G Yonk
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; College of Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Megan A Lim
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, USA; Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, USA
| | - Charee M Thompson
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, USA; College of Liberal Arts & Sciences, University of Illinois Urbana Champaign, Champaign, IL, USA
| | - Muhibullah S Tora
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yuliya Lakhina
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Kimberly B Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wael Hassaneen
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, USA; Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, USA.
| | - Kecheng Lei
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
135
|
Salimi M, Adibifar A, Rostamkhani N, Karami Z, Agh-Atabay AH, Abdi Z, Rostamizadeh K. Bovine serum albumin-coated ZIF-8 nanoparticles to enhance antitumor and antimetastatic activity of methotrexate: in vitro and in vivo study. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2294-2314. [PMID: 39037940 DOI: 10.1080/09205063.2024.2379652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
In this study, a bovine serum albumin-decorated zeolitic imidazolate framework (ZIF-8@BSA) was used to enhance the anticancer and antimetastatic properties of methotrexate. SEM, DLS, FT-IR, and XRD confirmed the physicochemical suitability of the developed nanoparticles. According to the SEM analysis, the mean size of ZIF-8 nanoparticles was 68.5 ± 13.31 nm. The loading capacity and encapsulation efficiency of MTX@ZIF-8@BSA were 28.77 ± 2.54% and 96.3 ± 0.67%, respectively. According to the in vitro hemolysis test, MTX@ZIF-8@BSA showed excellent blood compatibility. MTX@ZIF-8@BSA exhibited pH sensitivity, releasing more MTX at pH 5.4 (1.73 times) than at pH 7.4. The IC50 value of MTX@ZIF-8@BSA on 4T1 cells was 32.7 ± 7.3 µg/mL after 48 h of treatment, outperforming compared to free MTX with an IC50 value of 53.3 ± 3.7 µg/mL. Treatment with MTX@ZIF-8@BSA resulted in superior tumor growth suppression in tumor-bearing mice than free MTX. Furthermore, based on histopathology tests, MTX@ZIF-8@BSA reduced the metastasis in lung and liver tissues. While there was not any noticeable toxicity in the vital organs of MTX@ZIF-8@BSA-receiving mice, free methotrexate resulted in severe toxicity in the kidneys and liver. According to the preliminary in vitro and in vivo findings, MTX@ZIF-8@BSA presents an attractive drug delivery system candidate for breast cancer due to its enhanced antitumor efficacy and lower toxicity.
Collapse
Affiliation(s)
- Maryam Salimi
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arghavan Adibifar
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Neda Rostamkhani
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Karami
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Zahra Abdi
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kobra Rostamizadeh
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Psychiatry and Behavioral Sciences, Department of Pharmacology, School of Medicine, University of WA, Seattle, WA, USA
| |
Collapse
|
136
|
Kamal R, Awasthi A, Paul P, Mir MS, Singh SK, Dua K. Novel drug delivery systems in colorectal cancer: Advances and future prospects. Pathol Res Pract 2024; 262:155546. [PMID: 39191194 DOI: 10.1016/j.prp.2024.155546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Colorectal cancer (CRC) is an abnormal proliferation of cells within the colon and rectum, leading to the formation of polyps and disruption of mucosal functions. The disease development is influenced by a combination of factors, including inflammation, exposure to environmental mutagens, genetic alterations, and impairment in signaling pathways. Traditional treatments such as surgery, radiation, and chemotherapy are often used but have limitations, including poor solubility and permeability, treatment resistance, side effects, and post-surgery issues. Novel Drug Delivery Systems (NDDS) have emerged as a superior alternative, offering enhanced drug solubility, precision in targeting cancer cells, and regulated drug release. Thereby addressing the shortcomings of conventional therapies and showing promise for more effective CRC management. The present review sheds light on the pathogenesis, signaling pathways, biomarkers, conventional treatments, need for NDDS, and application of NDDS against CRC. Additionally, clinical trials, ongoing clinical trials, marketed formulations, and patents on CRC are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab 142001, India; School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Priyanka Paul
- Department of Pharmaceutical Science, PCTE Group of Institute, Ludhiana, Punjab, India
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
137
|
Paul V, Pandhi S, Mahato DK, Agarwal A, Tripathi AD. Polyhydroxyalkanoates (PHAs) and its copolymer nanocarrier application in cancer treatment: An overview and challenges. Int J Biol Macromol 2024; 277:134201. [PMID: 39069052 DOI: 10.1016/j.ijbiomac.2024.134201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/13/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
In the modern era, nanomedicine has developed novel drug-delivery strategies to improve chemotherapy. Nanotechnological-based treatment approaches for cancer through targeted tumour drug delivery and stimulus-responsive tumour microenvironment have gained tremendous success in oncology. The application of building block materials of these nanomedicines plays a vital role in cancer remediation. Despite successful application in various medical treatments, nanocarriers' lack of biodegradability and biocompatibility makes their use in a clinical context difficult. In addition, the preparation of current drug delivery systems is a major constraint. The current cancer treatment methods aim to destroy diseased tissue, frequently with the use of radiation and chemotherapy. These treatment options are accompanied by a significant level of toxicity, which has excellent potential to further medical issues in the afflicted patient. Polyhydroxyalkanoate (PHA) polymers are biodegradable and biocompatible polyesters that can potentially be used as nanoparticular delivery systems for cancer treatment. Previously, PHA has shown tremendous application as a packaging material in the food and pharma industry. PHA-based nanocarriers are an effective drug delivery system because of their non-immunogenicity, regulated drug release, high drug loading capacity, and targeted drug delivery. This review focuses on creating and using PHA-based nanocarriers in cancer treatment. Despite its many benefits, PHA-based nanocarriers have yet to progress to clinical trials for drug delivery applications due to several issues, including the polymers' hydrophobic nature and high production costs. This review examines these challenges along with existing alternatives.
Collapse
Affiliation(s)
- Veena Paul
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India; Department of Food Processing Technology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia.
| | - Aparna Agarwal
- Department of Food & Nutrition and Food Technology, Lady Irwin College, University of Delhi, New Delhi, India.
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
138
|
Verma VS, Pandey A, Jha AK, Badwaik HKR, Alexander A, Ajazuddin. Polyethylene Glycol-Based Polymer-Drug Conjugates: Novel Design and Synthesis Strategies for Enhanced Therapeutic Efficacy and Targeted Drug Delivery. Appl Biochem Biotechnol 2024; 196:7325-7361. [PMID: 38519751 DOI: 10.1007/s12010-024-04895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
Due to their potential to enhance therapeutic results and enable targeted drug administration, polymer-drug conjugates that use polyethylene glycol (PEG) as both the polymer and the linker for drug conjugation have attracted much research. This study seeks to investigate recent developments in the design and synthesis of PEG-based polymer-drug conjugates, emphasizing fresh ideas that fill in existing knowledge gaps and satisfy the increasing need for more potent drug delivery methods. Through an extensive review of the existing literature, this study identifies key challenges and proposes innovative strategies for future investigations. The paper presents a comprehensive framework for designing and synthesizing PEG-based polymer-drug conjugates, including rational molecular design, linker selection, conjugation methods, and characterization techniques. To further emphasize the importance and adaptability of PEG-based polymer-drug conjugates, prospective applications are highlighted, including cancer treatment, infectious disorders, and chronic ailments.
Collapse
Affiliation(s)
- Vinay Sagar Verma
- Faculty of Pharmaceutical Sciences, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai, Durg, Chhattisgarh, 490023, India
| | - Aakansha Pandey
- Faculty of Pharmaceutical Sciences, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India
| | - Arvind Kumar Jha
- Shri Shankaracharya Professional University, Junwani, Bhilai, 490020, Chhattisgarh, India
| | - Hemant Kumar Ramchandra Badwaik
- Shri Shankaracharya College of Pharmaceutical Sciences, Junwani, Bhilai, 490020, Chhattisgarh, India.
- Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India.
| | - Amit Alexander
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research, Ministry of Chemical and Fertilizers, Guwahati, 781101, Assam, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai, Durg, Chhattisgarh, 490023, India.
| |
Collapse
|
139
|
Bezze A, Mattioda C, Ciardelli G, Mattu C. Harnessing cells to improve transport of nanomedicines. Eur J Pharm Biopharm 2024; 203:114446. [PMID: 39122052 DOI: 10.1016/j.ejpb.2024.114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Efficient tumour treatment is hampered by the poor selectivity of anticancer drugs, resulting in scarce tumour accumulation and undesired off-target effects. Nano-sized drug-delivery systems in the form of nanoparticles (NPs) have been proposed to improve drug distribution to solid tumours, by virtue of their ability of passive and active tumour targeting. Despite these advantages, literature studies indicated that less than 1% of the administered NPs can successfully reach the tumour mass, highlighting the necessity for more efficient drug transporters in cancer treatment. Living cells, such as blood cells, circulating immune cells, platelets, and stem cells, are often found as an infiltrating component in most solid tumours, because of their ability to naturally circumvent immune recognition, bypass biological barriers, and reach inaccessible tissues through innate tropism and active motility. Therefore, the tumour-homing ability of these cells can be harnessed to design living cell carriers able to improve the transport of drugs and NPs to tumours. Albeit promising, this approach is still in its beginnings and suffers from difficult scalability, high cost, and poor reproducibility. In this review, we present an overview of the most common cell transporters of drugs and NPs, and we discuss how different cell types interact with biological barriers to deliver cargoes of various natures to tumours. Finally, we analyse the different techniques used to load drugs or NPs in living cells and discuss their advantages and disadvantages.
Collapse
Affiliation(s)
- Andrea Bezze
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Carlotta Mattioda
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Gianluca Ciardelli
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Clara Mattu
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
140
|
Naser SS, Gupta A, Choudhury A, Yadav A, Sinha A, Kirti A, Singh D, Kujawska M, Kaushik NK, Ghosh A, De S, Verma SK. Biophysical translational paradigm of polymeric nanoparticle: Embarked advancement to brain tumor therapy. Biomed Pharmacother 2024; 179:117372. [PMID: 39208668 DOI: 10.1016/j.biopha.2024.117372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Polymeric nanoparticles have emerged as promising contenders for addressing the intricate challenges encountered in brain tumor therapy due to their distinctive attributes, including adjustable size, biocompatibility, and controlled drug release kinetics. This review comprehensively delves into the latest developments in synthesizing, characterizing, and applying polymeric nanoparticles explicitly tailored for brain tumor therapy. Various synthesis methodologies, such as emulsion polymerization, nanoprecipitation, and template-assisted fabrication, are scrutinized within the context of brain tumor targeting, elucidating their advantages and limitations concerning traversing the blood-brain barrier. Furthermore, strategies pertaining to surface modification and functionalization are expounded upon to augment the stability, biocompatibility, and targeting prowess of polymeric nanoparticles amidst the intricate milieu of the brain microenvironment. Characterization techniques encompassing dynamic light scattering, transmission electron microscopy, and spectroscopic methods are scrutinized to evaluate the physicochemical attributes of polymeric nanoparticles engineered for brain tumor therapy. Moreover, a comprehensive exploration of the manifold applications of polymeric nanoparticles encompassing drug delivery, gene therapy, imaging, and combination therapies for brain tumours is undertaken. Special emphasis is placed on the encapsulation of diverse therapeutics within polymeric nanoparticles, thereby shielding them from degradation and enabling precise targeting within the brain. Additionally, recent advancements in stimuli-responsive and multifunctional polymeric nanoparticles are probed for their potential in personalized medicine and theranostics tailored for brain tumours. In essence, this review furnishes an all-encompassing overview of the recent strides made in tailoring polymeric nanoparticles for brain tumor therapy, illuminating their synthesis, characterization, and multifaceted application.
Collapse
Affiliation(s)
- Shaikh Sheeran Naser
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Abha Gupta
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Anu Yadav
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Deobrat Singh
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden
| | | | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, South Korea.
| | - Aishee Ghosh
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-751 20, Sweden.
| | - Sriparna De
- Department of Allied Health Sciences, Brainware University, 398, Ramkrishnapur Road, Kolkata 700125, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
141
|
Korzun T, Moses AS, Diba P, Sattler AL, Olson B, Taratula OR, Pejovic T, Marks DL, Taratula O. Development and Perspectives: Multifunctional Nucleic Acid Nanomedicines for Treatment of Gynecological Cancers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301776. [PMID: 37518857 PMCID: PMC10827528 DOI: 10.1002/smll.202301776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Gynecological malignancies are a significant cause of morbidity and mortality across the globe. Due to delayed presentation, gynecological cancer patients are often referred late in the disease's course, resulting in poor outcomes. A considerable number of patients ultimately succumb to chemotherapy-resistant disease, which reoccurs at advanced stages despite treatment interventions. Although efforts have been devoted to developing therapies that demonstrate reduced resistance to chemotherapy and enhanced toxicity profiles, current clinical outcomes remain unsatisfactory due to treatment resistance and unfavorable off-target effects. Consequently, innovative biological and nanotherapeutic approaches are imperative to strengthen and optimize the therapeutic arsenal for gynecological cancers. Advancements in nanotechnology-based therapies for gynecological malignancies offer significant advantages, including reduced toxicity, expanded drug circulation, and optimized therapeutic dosing, ultimately leading to enhanced treatment effectiveness. Recent advances in nucleic acid therapeutics using microRNA, small interfering RNA, and messenger RNA provide novel approaches for cancer therapeutics. Effective single-agent and combinatorial nucleic acid therapeutics for gynecological malignancies have the potential to transform cancer treatment by giving safer, more tailored approaches than conventional therapies. This review highlights current preclinical studies that effectively exploit these approaches for the treatment of gynecological malignant tumors and malignant ascites.
Collapse
Affiliation(s)
- Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue Portland, Portland, OR, 97239, USA
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
| | - Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Parham Diba
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
| | - Ariana L Sattler
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, Oregon, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Brennan Olson
- Mayo Clinic Department of Otolaryngology-Head and Neck Surgery, 200 First St. SW, Rochester, MN, 55905, USA
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Tanja Pejovic
- Departments of Obstetrics and Gynecology and Pathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, Oregon, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue Portland, Portland, OR, 97239, USA
| |
Collapse
|
142
|
Golestani P, Homayouni Tabrizi M, Karimi E, Soltani M. The antioxidant and selective apoptotic activities of modified auraptene-loaded graphene quantum dot nanoparticles (M-AGQD-NP). Discov Oncol 2024; 15:471. [PMID: 39331254 PMCID: PMC11436512 DOI: 10.1007/s12672-024-01345-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Pancreatic and Gastric cancers are very aggressive and deadly types of cancer that require effective treatment strategies to stop their progression. Nano-drug delivery systems, like those using Auraptene-loaded GQD nanoparticles, play a crucial role in addressing this need by delivering targeted and controlled treatments to cancer cells, making treatment more effective, and reducing side effects. The study focused on investigating the effects of Auraptene, an efficient anticancer compound when loaded into Graphene Quantum Dots (GQDs) on types of human cancer cells. METHODS To create auraptene-loaded graphene quantum dot nanoparticles (AGQD-NP) (Unmodified and modified types) a combination of hydrothermal and high-energy homogenization methods was used. The nanoparticles were characterized by conducting DLS (Dynamic light scattering), FTIR (Fourier-transform infrared spectroscopy), FESEM (Field Emission Scanning Electron microscopy), and zeta potential analysis. bioactivity of AGQD-NP was assessed through tests, including antioxidant capacity measured by ABTS and DPPH scavenging abilities well as cytotoxicity tested using MTT assay on both human cancer cell lines and normal human vascular endothelial cells. RESULTS The modified AGQD-NP (M-AGQD-NP) demonstrated antioxidant properties by neutralizing free radicals. They also displayed selective toxicity, towards human gastric adenocarcinoma cell-line (AGS) and human pancreatic adenocarcinoma (PANC) cancer cells with IC50 values recorded at 78.8 µg/mL and 89.72 µg/mL respectively. The specific targeting of gastric cancer cells was evident from the differing IC50 values compared to the Human breast adenocarcinoma cell line (MCF-7), Human hepatocellular carcinoma cell line (Hella), and normal vascular endothelial cells (Huvec). Additionally, the induced apoptotic death, in the human pancreatic adenocarcinoma (PANC) cancer cells was confirmed through AO/PI staining and Annexin-based flow cytometry revealing increased expression levels of P53, Caspase3, BAX, and Caspase8. CONCLUSION In summary, the M-AGQD-NP have shown encouraging effects displaying antioxidant capabilities and a specific focus, on pancreatic and gastric cancer cells. These findings indicate uses for AGQD-NP as an efficient apoptosis inducer in cancer treatment. Additional In-vivo researches are required to validate their effectiveness, in living organisms.
Collapse
Affiliation(s)
- Parisa Golestani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mozhgan Soltani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
143
|
Cheung H, Kang H, Lee HJ, Chung Y, Shin H, Lee S, Kim JH. Homologous Targeting Effect of Cancer Cell-Derived Liposomes (Memposomes) Mediated by Cell Adhesion Molecules: Role of E-cadherin. Biomolecules 2024; 14:1212. [PMID: 39456144 PMCID: PMC11506462 DOI: 10.3390/biom14101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Cell membrane-derived liposomes, termed Memposomes, serve as promising carriers for drug delivery due to their ability to closely mimic cells and efficiently target specific cells. Liposomes derived from cancer cell membranes, in particular, exhibit homologous targeting capabilities, making them potential candidates for cancer-specific drug delivery. However, the underlying mechanisms and specific proteins responsible for this homologous targeting phenomenon remain debated. This study focuses on the role of E-cadherin, a cell adhesion molecule implicated in homophilic adhesion, in influencing the homologous targeting ability of Memposomes derived from cancer cell membranes. E-cadherin expression patterns were assessed in various cell lines, categorizing them into E-cadherin-positive and -negative groups. Memposomes were produced for each group, and their targeting tendencies were evaluated. This study confirmed that E-cadherin expression significantly influenced the homologous targeting ability of the Memposomes. The cell lines with higher E-cadherin expression levels exhibited a more pronounced homologous targeting effect. This research demonstrates that cell adhesion molecules, particularly E-cadherin involved in homophilic adhesion, play a pivotal role in influencing the cell targeting ability of Memposomes. This study further validates the stability, safety, and purity of Memposomes, emphasizing their potential as effective drug delivery vehicles for the development of cell-specific therapies.
Collapse
Affiliation(s)
- Hyein Cheung
- College of Pharmacy and Bionanocomosite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Haewon Kang
- College of Pharmacy and Bionanocomosite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyo Jung Lee
- Department of Regulatory Science, Institute of Regulatory Innovation through Science, Graduated School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea (H.S.)
| | - Yunjae Chung
- Department of Regulatory Science, Institute of Regulatory Innovation through Science, Graduated School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea (H.S.)
| | - Hanbo Shin
- Department of Regulatory Science, Institute of Regulatory Innovation through Science, Graduated School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea (H.S.)
| | - Sangmin Lee
- College of Pharmacy and Bionanocomosite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Regulatory Science, Institute of Regulatory Innovation through Science, Graduated School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea (H.S.)
| | - Jong-Ho Kim
- College of Pharmacy and Bionanocomosite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Regulatory Science, Institute of Regulatory Innovation through Science, Graduated School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea (H.S.)
| |
Collapse
|
144
|
Winnicka A, Brzeszczyńska J, Saluk J, Wigner-Jeziorska P. Nanomedicine in Bladder Cancer Therapy. Int J Mol Sci 2024; 25:10388. [PMID: 39408718 PMCID: PMC11476791 DOI: 10.3390/ijms251910388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Bladder cancer (BC) is one of the most common malignant neoplasms of the genitourinary system. Traditional BC therapies include chemotherapy, targeted therapy, and immunotherapy. However, limitations such as lack of specificity, cytotoxicity, and multidrug resistance pose serious challenges to the benefits of BC therapies. Consequently, current studies focus on the search for new therapeutic solutions. In recent years, there has been a growing interest in using nanotechnology in the treatment of both non-invasive (NMIBC) and invasive bladder cancer (MIBC). Nanotechnology is based on the use of both organic molecules (chitosan, liposomes) and inorganic molecules (superparamagnetic iron oxide nanoparticles) as carriers of active substances. The main aim of such molecules is the targeted transport and prolonged retention of the drug in the target tissue, which increases the therapeutic efficacy of the active substance. This review discusses the numerous types of nanoparticles (including chitosan, polymeric nanoparticles, liposomes, and protein nanoparticles), targeting mechanisms, and approved nanotherapeutics with oncological implications in cancer treatment. We also present nanoformulation applications in phototherapy, gene therapy, and immunotherapy. Moreover, we summarise the current perspectives, advantages, and challenges in clinical translation.
Collapse
Affiliation(s)
- Adrianna Winnicka
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.W.); (J.B.); (J.S.)
| | - Joanna Brzeszczyńska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.W.); (J.B.); (J.S.)
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland; (A.W.); (J.B.); (J.S.)
| | - Paulina Wigner-Jeziorska
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland
| |
Collapse
|
145
|
Fawzy MP, Hassan HAFM, Sedky NK, Nafie MS, Youness RA, Fahmy SA. Revolutionizing cancer therapy: nanoformulation of miRNA-34 - enhancing delivery and efficacy for various cancer immunotherapies: a review. NANOSCALE ADVANCES 2024:d4na00488d. [PMID: 39309515 PMCID: PMC11414826 DOI: 10.1039/d4na00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Despite recent advancements in cancer therapies, challenges such as severe toxic effects, non-selective targeting, resistance to chemotherapy and radiotherapy, and recurrence of metastatic tumors persist. Consequently, there has been considerable effort to explore innovative anticancer compounds, particularly in immunotherapy, which offer the potential for enhanced biosafety and efficacy in cancer prevention and treatment. One such avenue of exploration involves the miRNA-34 (miR-34) family, known for its ability to inhibit tumorigenesis across various cancers. Dysregulation of miR-34 has been observed in several human cancers, and it is recognized as a tumor suppressor microRNA due to its synergistic interaction with the well-established tumor suppressor p53. However, challenges have arisen with the therapeutic application of miR-34a. These include its susceptibility to degradation by RNase in serum, limiting its ability to penetrate capillary endothelium and reach target cells, as well as reports of immunoreactive adverse reactions. Furthermore, unexpected side effects may occur, such as the accumulation of therapeutic miRNAs in healthy tissues due to interactions with serum proteins on nano-vector surfaces, nanoparticle breakdown in the bloodstream due to shearing stress, and unsuccessful extravasation of nanocarriers to target cells owing to interstitial fluid pressure. Despite these challenges, miR-34a remains a promising candidate for cancer therapy, and other members of the miR-34 family have also shown potential in inhibiting tumor cell proliferation. While the in vivo applications of miR-34b/c are limited, they warrant further exploration for oncotherapy. Recently, procedures utilizing nanoparticles have been developed to address the challenges associated with the clinical use of miR-34, demonstrating efficacy both in vitro and in vivo. This review highlights emerging trends in nanodelivery systems for miR-34 targeting cancer cells, offering insights into novel nanoformulations designed to enhance the anticancer therapeutic activity and targeting precision of miR-34. As far as current knowledge extends, no similar recent review comprehensively addresses the diverse nanoformulations aimed at optimizing the therapeutic potential of miR-34 in anticancer strategies.
Collapse
Affiliation(s)
- Marola Paula Fawzy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt
| | - Hatem A F M Hassan
- Medway School of Pharmacy, University of Kent Central Avenue, Chatham Maritime Canterbury ME44TB UK
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo 11835 Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah (P.O. 27272) Sharjah United Arab Emirates (UAE)
- Chemistry Department, Faculty of Science, Suez Canal University (P.O. 41522) Ismailia Egypt
| | - Rana A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg Robert-Koch-Str. 4 35037 Marburg Germany
| |
Collapse
|
146
|
Ubanako P, Mirza S, Ruff P, Penny C. Exosome-mediated delivery of siRNA molecules in cancer therapy: triumphs and challenges. Front Mol Biosci 2024; 11:1447953. [PMID: 39355533 PMCID: PMC11442288 DOI: 10.3389/fmolb.2024.1447953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
The discovery of novel and innovative therapeutic strategies for cancer treatment and management remains a major global challenge. Exosomes are endogenous nanoscale extracellular vesicles that have garnered increasing attention as innovative vehicles for advanced drug delivery and targeted therapy. The attractive physicochemical and biological properties of exosomes, including increased permeability, biocompatibility, extended half-life in circulation, reduced toxicity and immunogenicity, and multiple functionalization strategies, have made them preferred drug delivery vehicles in cancer and other diseases. Small interfering RNAs (siRNAs) are remarkably able to target any known gene: an attribute harnessed to knock down cancer-associated genes as a viable strategy in cancer management. Extensive research on exosome-mediated delivery of siRNAs for targeting diverse types of cancer has yielded promising results for anticancer therapy, with some formulations progressing through clinical trials. This review catalogs recent advances in exosome-mediated siRNA delivery in several types of cancer, including the manifold benefits and minimal drawbacks of such innovative delivery systems. Additionally, we have highlighted the potential of plant-derived exosomes as innovative drug delivery systems for cancer treatment, offering numerous advantages such as biocompatibility, scalability, and reduced toxicity compared to traditional methods. These exosomes, with their unique characteristics and potential for effective siRNA delivery, represent a significant advancement in nanomedicine and cancer therapeutics. Further exploration of their manufacturing processes and biological mechanisms could significantly advance natural medicine and enhance the efficacy of exosome-based therapies.
Collapse
Affiliation(s)
- Philemon Ubanako
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Paul Ruff
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
147
|
Hoshi R, Gorospe KA, Labouta HI, Azad T, Lee WL, Thu KL. Alternative Strategies for Delivering Immunotherapeutics Targeting the PD-1/PD-L1 Immune Checkpoint in Cancer. Pharmaceutics 2024; 16:1181. [PMID: 39339217 PMCID: PMC11434872 DOI: 10.3390/pharmaceutics16091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
The programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) immune checkpoint constitutes an inhibitory pathway best known for its regulation of cluster of differentiation 8 (CD8)+ T cell-mediated immune responses. Engagement of PD-L1 with PD-1 expressed on CD8+ T cells activates downstream signaling pathways that culminate in T cell exhaustion and/or apoptosis. Physiologically, these immunosuppressive effects exist to prevent autoimmunity, but cancer cells exploit this pathway by overexpressing PD-L1 to facilitate immune escape. Intravenously (IV) administered immune checkpoint inhibitors (ICIs) that block the interaction between PD-1/PD-L1 have achieved great success in reversing T cell exhaustion and promoting tumor regression in various malignancies. However, these ICIs can cause immune-related adverse events (irAEs) due to off-tumor toxicities which limits their therapeutic potential. Therefore, considerable effort has been channeled into exploring alternative delivery strategies that enhance tumor-directed delivery of PD-1/PD-L1 ICIs and reduce irAEs. Here, we briefly describe PD-1/PD-L1-targeted cancer immunotherapy and associated irAEs. We then provide a detailed review of alternative delivery approaches, including locoregional (LDD)-, oncolytic virus (OV)-, nanoparticle (NP)-, and ultrasound and microbubble (USMB)-mediated delivery that are currently under investigation for enhancing tumor-specific delivery to minimize toxic off-tumor effects. We conclude with a commentary on key challenges associated with these delivery methods and potential strategies to mitigate them.
Collapse
Affiliation(s)
- Ryunosuke Hoshi
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Kristyna A. Gorospe
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| | - Hagar I. Labouta
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Leslie Dan Faculty of Pharmacy, University of Toronto, St. George Campus, Toronto, ON M5S 3M2, Canada
- Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, St. George Campus, Toronto, ON M5S 3E2, Canada
| | - Taha Azad
- Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Health Campus, Sherbrooke, QC J1K 2R1, Canada;
- Research Center, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC J1J 3H5, Canada
| | - Warren L. Lee
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
- Biochemistry, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada
- Medicine and the Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, St. George Campus, Toronto, ON M5S 1A8, Canada; (R.H.); (K.A.G.); (W.L.L.)
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| |
Collapse
|
148
|
Singh P, Mahar R. Cyclodextrin in drug delivery: Exploring scaffolds, properties, and cutting-edge applications. Int J Pharm 2024; 662:124485. [PMID: 39029633 DOI: 10.1016/j.ijpharm.2024.124485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Cyclodextrins (CDs) are unique cyclic compounds that can form inclusion complexes via host-guest complexation with a wide range of molecules, thereby altering their physicochemical properties. These molecules offer the formation of inclusion complexes without the formation of covalent bonds, making them suitable for a variety of applications in pharmaceutical and biomedical fields. Due to their supramolecular host-guest properties, CDs are being utilized in the fabrication of biomaterials, metal-organic frameworks, and nano-drug carriers. Additionally, CDs in combination with biomolecules are biocompatible and can deliver nano to macromolecules at the site of drug actions. However, the availability of free hydroxyl groups and a simple crosslinking process for supramolecular fabrication show immense opportunities for researchers in the field of tissue engineering and biomedical applications. In this review article, we have covered the historical development, various types of chemical frameworks, unique chemical and physical properties, and important applications of CDs in drug delivery and biomedical sciences.
Collapse
Affiliation(s)
- Parbeen Singh
- Department of Mechanical Engineering, University of Connecticut, Connecticut, United States.
| | - Rohit Mahar
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Garhwal, Uttarakhand, India.
| |
Collapse
|
149
|
Kim JH, Dareowolabi BO, Thiruvengadam R, Moon EY. Application of Nanotechnology and Phytochemicals in Anticancer Therapy. Pharmaceutics 2024; 16:1169. [PMID: 39339205 PMCID: PMC11435124 DOI: 10.3390/pharmaceutics16091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer is well recognized as a leading cause of mortality. Although surgery tends to be the primary treatment option for many solid cancers, cancer surgery is still a risk factor for metastatic diseases and recurrence. For this reason, a variety of medications has been adopted for the postsurgical care of patients with cancer. However, conventional medicines have shown major challenges such as drug resistance, a high level of drug toxicity, and different drug responses, due to tumor heterogeneity. Nanotechnology-based therapeutic formulations could effectively overcome the challenges faced by conventional treatment methods. In particular, the combined use of nanomedicine with natural phytochemicals can enhance tumor targeting and increase the efficacy of anticancer agents with better solubility and bioavailability and reduced side effects. However, there is limited evidence in relation to the application of phytochemicals in cancer treatment, particularly focusing on nanotechnology. Therefore, in this review, first, we introduce the drug carriers used in advanced nanotechnology and their strengths and limitations. Second, we provide an update on well-studied nanotechnology-based anticancer therapies related to the carcinogenesis process, including signaling pathways related to transforming growth factor-β (TGF-β), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3 kinase (PI3K), Wnt, poly(ADP-ribose) polymerase (PARP), Notch, and Hedgehog (HH). Third, we introduce approved nanomedicines currently available for anticancer therapy. Fourth, we discuss the potential roles of natural phytochemicals as anticancer drugs. Fifth, we also discuss the synergistic effect of nanocarriers and phytochemicals in anticancer therapy.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (B.O.D.); (E.-Y.M.)
| | - Boluwatife Olamide Dareowolabi
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (B.O.D.); (E.-Y.M.)
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Medical College, Saveetha University, Chennai 600077, India;
| | - Eun-Yi Moon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea; (B.O.D.); (E.-Y.M.)
| |
Collapse
|
150
|
Rakshit S, Roy T, Jana PC, Gupta K. A Comprehensive Review on the Importance of Sustainable Synthesized Coinage Metal Nanomaterials and Their Diverse Biomedical Applications. Biol Trace Elem Res 2024:10.1007/s12011-024-04361-8. [PMID: 39222235 DOI: 10.1007/s12011-024-04361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
From a historical perspective, coinage metals (CMNMs) are most renowned for their monetary, ornamental, and metallurgical merits; nevertheless, as nanotechnology's potential has only just come to light, their metal nanostructures and uses may be viewed as products of modern science. Notable characteristics of CMNMs include visual, electrical, chemical, and catalytic qualities that depend on shape and size. Due diligence on the creation and synthesis of CMNMs and their possible uses has been greatly promoted by these characteristics. This review focuses on solution-based methods and provides an overview of the latest developments in CMNMs and their bimetallic nanostructures. It discusses a range of synthetic techniques, including conventional procedures and more modern approaches used to enhance functionality by successfully manipulating the CMNMs nanostructure's size, shape, and composition. To help with the design of new nanostructures with improved capabilities in the future, this study offers a brief assessment of the difficulties and potential future directions of these intriguing metal nanostructures. This review focuses on mechanisms and factors influencing the synthesis process, green synthesis, and sustainable synthesis methods. It also discusses the wide range of biological domains in which CMNMs are applied, including antibacterial, antifungal, and anticancer. Researchers will therefore find the appropriateness of both synthesizing and using CMNMS keeping in mind the different levels of environmental effects.
Collapse
Affiliation(s)
- Soumen Rakshit
- Department of Physics, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| | - Tamanna Roy
- Department of Microbiology, Bankura Sammilani Medical College and Hospital, Bankura, 722102, West Bengal, India
| | - Paresh Chandra Jana
- Department of Physics, Vidyasagar University, Paschim Medinipur, 721102, West Bengal, India
| | - Kajal Gupta
- Department of Chemistry, Nistarini College, Purulia, 723101, West Bengal, India.
| |
Collapse
|