101
|
Cornell K, Alam M, Lyden E, Wood L, LeVan TD, Nordgren TM, Bailey K, Hanson C. Saturated Fat Intake Is Associated with Lung Function in Individuals with Airflow Obstruction: Results from NHANES 2007⁻2012. Nutrients 2019; 11:nu11020317. [PMID: 30717299 PMCID: PMC6413158 DOI: 10.3390/nu11020317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/14/2023] Open
Abstract
Nutritional status is a well-recognized prognostic indicator in chronic obstructive pulmonary disease (COPD); however, very little is known about the relationship between lung function and saturated fat intake. We used data from the cross-sectional National Health and Nutrition Examination Surveys (NHANES) to assess the relationship between saturated fatty acid (SFA) intake and lung function in the general US adult population. Adults in NHANES (2007⁻2012) with pre-bronchodilator spirometry measurements and dietary SFA intake were included. Primary outcomes were lung function including forced expiratory volume in one second (FEV₁), FEV₁, forced vital capacity (FVC), FEV₁/FVC ratio, percent predicted FEV₁ and percent predicted FVC. Multivariable regression models in the general population as well as those with spirometry-defined airflow obstruction were used to assess the relationship between lung function measurements and dietary SFA intake after adjustment for confounders. 11,180 eligible participants were included in this study. Univariate analysis revealed a statistically significant positive association between total SFA intake and lung function outcomes; however, these relationships were attenuated after adjustment for covariates. A secondary analysis of individuals with spirometry-defined airflow obstruction (FEV₁/FVC < 0.7) revealed that a lower intake of SFA was associated with reduced FEV1 (β = -126.4, p = 0.04 for quartile 1 vs. quartile 4), FVC (β = -165.8. p = 0.01 for quartile 1 vs. quartile 4), and percent predicted FVC (β = -3.3. p = 0.04 for quartile 1 vs. quartile 4), after adjustment for relevant confounders. No associations were observed for the FEV₁/FVC ratio and percent predicted FEV₁. It is possible that characteristics such as food source and fatty acid chain length may influence associations between saturated fatty acid intake and health outcomes.
Collapse
Affiliation(s)
- Kasey Cornell
- Internal Medicine Pulmonary, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Morshed Alam
- College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Elizabeth Lyden
- College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Lisa Wood
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle NSW 2308, Australia.
| | - Tricia D LeVan
- Internal Medicine Pulmonary, University of Nebraska Medical Center, Omaha, NE 68198, USA.
- College of Public Health Epidemiology, University of Nebraska, Omaha, NE 68198, USA.
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
| | - Tara M Nordgren
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA 92521, USA.
| | - Kristina Bailey
- Internal Medicine Pulmonary, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Corrine Hanson
- Medical Nutrition Education, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
102
|
Reynés B, Palou M, Rodríguez AM, Palou A. Regulation of Adaptive Thermogenesis and Browning by Prebiotics and Postbiotics. Front Physiol 2019; 9:1908. [PMID: 30687123 PMCID: PMC6335971 DOI: 10.3389/fphys.2018.01908] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
Prebiotics are non-digestible food components able to modify host microbiota toward a healthy profile, concomitantly conferring general beneficial health effects. Numerous research works have provided wide evidence regarding the effects of prebiotics on the protection against different detrimental phenotypes related to cancer, immunity, and features of the metabolic syndrome, among others. Nonetheless, one topic less studied so far, but relevant, relates to the connection between prebiotics and energy metabolism regulation (and the prevention or treatment of obesity), especially by means of their impact on adaptive (non-shivering) thermogenesis in brown adipose tissue (BAT) and in the browning of white adipose tissue (WAT). In the present review, a key link between prebiotics and the regulation of adaptive thermogenesis and lipid metabolism (in both BAT and WAT) is proposed, thus connecting prebiotic consumption, microbiota selection (especially gut microbiota), production of microbiota metabolites, and the regulation of energy metabolism in adipose tissue, particularly regarding the effects on browning promotion, or on BAT recruitment. In this sense, various types of prebiotics, from complex carbohydrates to phenolic compounds, have been studied regarding their microbiota-modulating role and their effects on crucial tissues for energy metabolism, including adipose tissue. Other studies have analyzed the effects of the main metabolites produced by selected microbiota on the improvement of metabolism, such as short chain fatty acids and secondary bile acids. Here, we focus on state-of-the-art evidence to demonstrate that different prebiotics can have an impact on energy metabolism and the prevention or treatment of obesity (and its associated disorders) by inducing or regulating adaptive thermogenic capacity in WAT and/or BAT, through modulation of microbiota and their derived metabolites.
Collapse
Affiliation(s)
- Bàrbara Reynés
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Mariona Palou
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Ana M. Rodríguez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Andreu Palou
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
- Laboratory of Molecular Biology, Nutrition and Biotechnology, University of the Balearic Islands, Palma de Mallorca, Spain
| |
Collapse
|
103
|
Li P, Tang T, Chang X, Fan X, Chen X, Wang R, Fan C, Qi K. Abnormality in Maternal Dietary Calcium Intake During Pregnancy and Lactation Promotes Body Weight Gain by Affecting the Gut Microbiota in Mouse Offspring. Mol Nutr Food Res 2019; 63:e1800399. [PMID: 30576063 DOI: 10.1002/mnfr.201800399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/22/2018] [Indexed: 12/11/2022]
Abstract
SCOPE To investigate the effects of calcium status in early life on adult body weight and the underlying mechanisms involved in gut microbiota and related lipid metabolism. METHODS AND RESULTS Three to four-week-old C57BL/6J female mice were fed diets with normal, insufficient, and excessive calcium respectively throughout pregnancy and lactation. The weaning male pups were fed with a high-fat diet for 16 weeks, with a normal-fat diet to the normal calcium group as control. The offspring fecal microbiota was analyzed by 16S rRNA high-throughput sequencing, and mRNA expressions of genes were determined by the real-time RT-PCR. Maternal insufficient or excessive calcium intake exacerbated offspring obesity, with expressional changes in the Fasn, Acc1, LPL, Fiaf, and PPAR-α genes in the liver or fat. The dysbiosis in gut microbiota in obese offspring was exacerbated by maternal imbalanced calcium intake, with increased Firmicutes and decreased Bacteroidetes in calcium insufficiency, and decreased Verrucomicrobia in calcium excess. Several genera, including Bacteroides, were reduced, and Lachnospiraceae and Lactobacillus were increased by maternal insufficient or excessive calcium intake. CONCLUSION Imbalance in maternal calcium intake promotes body weight gain in offspring, which may be mediated by calcium's modulation on the gut microbiota and lipid metabolism.
Collapse
Affiliation(s)
- Ping Li
- Laboratory of Nutrition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Tiantian Tang
- Laboratory of Nutrition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xuelian Chang
- Laboratory of Nutrition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiuqin Fan
- Laboratory of Nutrition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaoyu Chen
- Laboratory of Nutrition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Rui Wang
- Laboratory of Nutrition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Chaonan Fan
- Laboratory of Nutrition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Kemin Qi
- Laboratory of Nutrition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| |
Collapse
|
104
|
Cao Y, Yao G, Sheng Y, Yang L, Wang Z, Yang Z, Zhuang P, Zhang Y. JinQi Jiangtang Tablet Regulates Gut Microbiota and Improve Insulin Sensitivity in Type 2 Diabetes Mice. J Diabetes Res 2019; 2019:1872134. [PMID: 30733971 PMCID: PMC6348821 DOI: 10.1155/2019/1872134] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/27/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gut microbiota modulates the barrier function and host inflammatory state in metabolic disease. JinQi Jiangtang (JQJT) tablets are a traditional Chinese medicine for the treatment of diabetes. However, the low bioavailability of its chemical compositions makes it hard to explain the pharmacological mechanisms. METHOD Diabetic mice were orally treated with JQJT tablets for 5 weeks. Fasting blood glucose and the level of HbA1c were measured, and ITT were conducted to determine the insulin improvement effect of JQJT tablets. The regulation effect on gut microbiota was assessed by 16S rRNA gene sequencing on an Illumina HiSeq platform. The concentration of short-chain fatty acids was measured by HS-GC/MS. D-LA leakage experiment and PAS staining were used to check the function of the gut barrier. The levels of the inflammatory cytokines were determined by using an ELISA kit. RESULTS This study showed that JQJT tablets downregulated fasting blood glucose and HbA1c and regulated gut microbiota. JQJT tablet-treated groups exhibited a more sensitive reaction after a small-dose injection of short-acting insulin. T2DM mice treated with JQJT tablets showed a higher abundance of Akkermansia spp. and lower abundance of Desulfovibrio. JQJT tablets increased the concentration of acetic acid, propionic acid, and butyric acid; in particular, butyric acid was significantly increased with respect to the MOD group. Gut mucosal barrier function experiment showed that the level of D-LA was obviously decreased in JQJT tablet-treated groups compared with the model group and the number of goblet cells was significantly increased by JQJT tablet treatment. JQJT tablets could also reduce the levels of TNF-α, IL-6, and MCP-1, which were related to insulin resistance. CONCLUSION We demonstrated that JQJT tablets could improve T2DM insulin resistance, regulating the gut microbiota and promoting the production of SCFAs. The mechanism was related to increasing the gut barrier function and reducing the host inflammatory reaction.
Collapse
Affiliation(s)
- Ying Cao
- Chinese Materia Medica College, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Guowang Yao
- Tianjin Hospital of ITCWM Nankai Hospital, Tianjin 300100, China
| | - Yuanyuan Sheng
- Chinese Materia Medica College, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Li Yang
- Chinese Materia Medica College, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zixuan Wang
- Chinese Materia Medica College, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhen Yang
- Chinese Materia Medica College, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Pengwei Zhuang
- Chinese Materia Medica College, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yanjun Zhang
- Chinese Materia Medica College, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| |
Collapse
|
105
|
Wang C, Yue S, Hao Z, Ren G, Lu D, Zhang Q, Zhao M. Pubertal exposure to the endocrine disruptor mono-2-ethylhexyl ester at body burden level caused cholesterol imbalance in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:657-666. [PMID: 30384071 DOI: 10.1016/j.envpol.2018.08.091] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Metabolic disturbance is the prerequisite to developing metabolic disease. An increasing number of reports have shown that exposure to environmental endocrine-disrupting chemicals (EDCs) can cause metabolic syndrome and may be related to metabolic disease. However, the potential mechanism of EDC-related lipid metabolism disruption in the endocrine organs (especially gut microbiome) during pubertal exposure remains elusive at the body burden level. We observed that male mice fed with 0.05 mg/kg b.w. MEHP under a high-fat diet caused enhancement in the fat mass, total cholesterol, high- and low-density lipoprotein cholesterol. MEHP intake induced a significant shift in microbiota composition, including the relative abundance of Firmicutes and reduction of Verrucomicrobia. Statistical analysis showed a positive correlation between several bacterial taxa and cholesterol body burden. Also, MEHP intake induced adipocyte hypertrophy and cholesterol overloading, which sense cholesterol synthesis genes such as Srebp2 and Hmgcr. That caused adipocyte dysfunction. Finally, cholesterol deposition and transportation was imbalance in the mice liver. Conclusively, by targeting the endocrine organs, EDCs would increase the risk of cholesterol burden even at a low concentration when coupled with a high-fat diet during pubertal period in male mice.
Collapse
Affiliation(s)
- Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siqing Yue
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhengliang Hao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Guangyan Ren
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dezhao Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Quan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
106
|
Chen M, Hui S, Lang H, Zhou M, Zhang Y, Kang C, Zeng X, Zhang Q, Yi L, Mi M. SIRT3 Deficiency Promotes High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Correlation with Impaired Intestinal Permeability through Gut Microbial Dysbiosis. Mol Nutr Food Res 2018; 63:e1800612. [PMID: 30525304 DOI: 10.1002/mnfr.201800612] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 11/15/2018] [Indexed: 12/11/2022]
Abstract
SCOPE Sirtuin 3 (SIRT3) plays a protective role against nonalcoholic fatty liver disease (NAFLD) by improving hepatic mitochondrial dysfunction. Gut microbiota imbalance contributes to the pathogenesis of NAFLD, yet the underlying mechanism linking SIRT3 with gut microbiota in NAFLD progression remains obscure. METHODS AND RESULTS Wild-type 129 mice and SIRT3 knockout (SIRT3KO) mice are placed under a chow diet or high-fat diet (HFD) treatment for 18 weeks. HFD resulted in a significantly increased hepatic steatosis and inflammation, which are exacerbated in SIRT3KO mice. The gut microbiota by 16s rRNA gene sequencing and phylogenetic reconstruction of unobserved states analysis are characterized. Lack of SIRT3 facilitates gut microbial dysbiosis in mice following HFD, with increased Desulfovibrio, Oscillibacter, and decreased Alloprevotella. SIRT3 deficiency resulted in an impaired intestinal permeability and inflammation in HFD-fed mice, which can be attenuated by sodium butyrate (NaB). SIRT3KO HFD-fed mice is followed by an increased lipopolysaccharide into the circulation and dysregulated expressions of cannabinoid receptor 1 and 2 in colon and liver, which are significantly associated with the alterations of intestinal microbiota. CONCLUSIONS SIRT3 deficiency promotes NAFLD progression in correlation with impaired intestinal permeability through gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Mengting Chen
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Suocheng Hui
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Hedong Lang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Min Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Yong Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Chao Kang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Xianglong Zeng
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Qianyong Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| |
Collapse
|
107
|
Kobayashi M, Fujii N, Narita T, Higami Y. SREBP-1c-Dependent Metabolic Remodeling of White Adipose Tissue by Caloric Restriction. Int J Mol Sci 2018; 19:ijms19113335. [PMID: 30373107 PMCID: PMC6275055 DOI: 10.3390/ijms19113335] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 12/21/2022] Open
Abstract
Caloric restriction (CR) delays the onset of many age-related pathophysiological changes and extends lifespan. White adipose tissue (WAT) is not only a major tissue for energy storage, but also an endocrine tissue that secretes various adipokines. Recent reports have demonstrated that alterations in the characteristics of WAT can impact whole-body metabolism and lifespan. Hence, we hypothesized that functional alterations in WAT may play important roles in the beneficial effects of CR. Previously, using microarray analysis of WAT from CR rats, we found that CR enhances fatty acid (FA) biosynthesis, and identified sterol regulatory element-binding protein 1c (SREBP-1c), a master regulator of FA synthesis, as a mediator of CR. These findings were validated by showing that CR failed to upregulate factors involved in FA biosynthesis and to extend longevity in SREBP-1c knockout mice. Furthermore, we revealed that SREBP-1c is implicated in CR-associated mitochondrial activation through the upregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis. Notably, these CR-associated phenotypes were observed only in WAT. We conclude that CR induces SREBP-1c-dependent metabolic remodeling, including the enhancement of FA biosynthesis and mitochondrial activation, via PGC-1α in WAT, resulting in beneficial effects.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Namiki Fujii
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Takumi Narita
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
- Translational Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
108
|
Yousefi B, Eslami M, Ghasemian A, Kokhaei P, Salek Farrokhi A, Darabi N. Probiotics importance and their immunomodulatory properties. J Cell Physiol 2018; 234:8008-8018. [DOI: 10.1002/jcp.27559] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/13/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Bahman Yousefi
- Department of Immunology Semnan University of Medical Sciences Semnan Iran
| | - Majid Eslami
- Department of Bacteriology and Virology Semnan University of Medical Sciences Semnan Iran
| | | | - Parviz Kokhaei
- Cancer Research Center, and Department of Immunology Semnan University of Medical Sciences Semnan Iran
- Immune and Gene Therapy Lab Cancer Centre Karolinska, Karolinska University Hospital Stockholm Sweden
| | | | - Narges Darabi
- Department of Bacteriology and Virology Semnan University of Medical Sciences Semnan Iran
| |
Collapse
|
109
|
Kuhn P, Kalariya HM, Poulev A, Ribnicky DM, Jaja-Chimedza A, Roopchand DE, Raskin I. Grape polyphenols reduce gut-localized reactive oxygen species associated with the development of metabolic syndrome in mice. PLoS One 2018; 13:e0198716. [PMID: 30308002 PMCID: PMC6181265 DOI: 10.1371/journal.pone.0198716] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023] Open
Abstract
High-fat diet (HFD)-induced leaky gut syndrome combined with low-grade inflammation increase reactive oxygen species (ROS) in the intestine and may contribute to dysbiosis and metabolic syndrome (MetS). Poorly bioavailable and only partially metabolizable dietary polyphenols, such as proanthocyanidins (PACs), may exert their beneficial effects on metabolic health by scavenging intestinal ROS. To test this hypothesis, we developed and validated a novel, noninvasive, in situ method for visualizing intestinal ROS using orally administered ROS-sensitive indocyanine green (ICG) dye. C57BL/6J mice fed HFD for 10 weeks accumulated high levels of intestinal ROS compared to mice fed low-fat diet (LFD). Oral administration of poorly bioavailable grape polyphenol extract (GPE) and β-carotene decreased HFD-induced ROS in the gut to levels comparable to LFD-fed mice, while administration of more bioavailable dietary antioxidants (α-lipoic acid, vitamin C, vitamin E) did not. Forty percent of administered GPE antioxidant activity was measured in feces collected over 24 h, confirming poor bioavailability and persistence in the gut. The bloom of beneficial anaerobic gut bacteria, such as Akkermansia muciniphila, associated with improved metabolic status in rodents and humans may be directly linked to protective antioxidant activity of some dietary components. These findings suggest a possible mechanistic explanation for the beneficial effects of poorly bioavailable polyphenols on metabolic health.
Collapse
Affiliation(s)
- Peter Kuhn
- Rutgers, The State University of New Jersey, Department of Plant Biology, Foran Hall, New Brunswick, NJ, United States of America
| | - Hetalben M. Kalariya
- Rutgers, The State University of New Jersey, Department of Plant Biology, Foran Hall, New Brunswick, NJ, United States of America
| | - Alexander Poulev
- Rutgers, The State University of New Jersey, Department of Plant Biology, Foran Hall, New Brunswick, NJ, United States of America
| | - David M. Ribnicky
- Rutgers, The State University of New Jersey, Department of Plant Biology, Foran Hall, New Brunswick, NJ, United States of America
| | - Asha Jaja-Chimedza
- Rutgers, The State University of New Jersey, Department of Plant Biology, Foran Hall, New Brunswick, NJ, United States of America
| | - Diana E. Roopchand
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health, Center for Digestive Health, New Brunswick, NJ, United States of America
| | - Ilya Raskin
- Rutgers, The State University of New Jersey, Department of Plant Biology, Foran Hall, New Brunswick, NJ, United States of America
| |
Collapse
|
110
|
Bessac A, Cani PD, Meunier E, Dietrich G, Knauf C. Inflammation and Gut-Brain Axis During Type 2 Diabetes: Focus on the Crosstalk Between Intestinal Immune Cells and Enteric Nervous System. Front Neurosci 2018; 12:725. [PMID: 30364179 PMCID: PMC6191495 DOI: 10.3389/fnins.2018.00725] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022] Open
Abstract
The gut-brain axis is now considered as a major actor in the control of glycemia. Recent discoveries show that the enteric nervous system (ENS) informs the hypothalamus of the nutritional state in order to control glucose entry in tissues. During type 2 diabetes (T2D), this way of communication is completely disturbed leading to the establishment of hyperglycemia and insulin-resistance. Indeed, the ENS neurons are largely targeted by nutrients (e.g., lipids, peptides) but also by inflammatory factors from different origin (i.e., host cells and gut microbiota). Inflammation, and more particularly in the intestine, contributes to the development of numerous pathologies such as intestinal bowel diseases, Parkinson diseases and T2D. Therefore, targeting the couple ENS/inflammation could represent an attractive therapeutic solution to treat metabolic diseases. In this review, we focus on the role of the crosstalk between intestinal immune cells and ENS neurons in the control of glycemia. In addition, given the growing evidence showing the key role of the gut microbiota in physiology, we will also briefly discuss its potential contribution and role on the immune and neuronal systems.
Collapse
Affiliation(s)
- Arnaud Bessac
- NeuroMicrobiota, European Associated Laboratory INSERM/UCLouvain, Brussels, Belgium.,Institut National de la Santé et de la Recherche Médicale, U1220, Université Paul Sabatier, Institut de Recherche en Santé Digestive et Nutrition, Toulouse, France
| | - Patrice D Cani
- NeuroMicrobiota, European Associated Laboratory INSERM/UCLouvain, Brussels, Belgium.,Metabolism and Nutrition Research Group, Walloon Excellence in Life Sciences and Biotechnology, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Etienne Meunier
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089, Université Paul Sabatier, Toulouse, France
| | - Gilles Dietrich
- NeuroMicrobiota, European Associated Laboratory INSERM/UCLouvain, Brussels, Belgium.,Institut National de la Santé et de la Recherche Médicale, U1220, Université Paul Sabatier, Institut de Recherche en Santé Digestive et Nutrition, Toulouse, France
| | - Claude Knauf
- NeuroMicrobiota, European Associated Laboratory INSERM/UCLouvain, Brussels, Belgium.,Institut National de la Santé et de la Recherche Médicale, U1220, Université Paul Sabatier, Institut de Recherche en Santé Digestive et Nutrition, Toulouse, France
| |
Collapse
|
111
|
Vitetta L, Vitetta G, Hall S. Immunological Tolerance and Function: Associations Between Intestinal Bacteria, Probiotics, Prebiotics, and Phages. Front Immunol 2018; 9:2240. [PMID: 30356736 PMCID: PMC6189397 DOI: 10.3389/fimmu.2018.02240] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Post-birth there is a bacterial assault on all mucosal surfaces. The intestinal microbiome is an important participant in health and disease. The pattern of composition and concentration of the intestinal microbiome varies greatly. Therefore, achieving immunological tolerance in the first 3-4 years of life is critical for maintaining health throughout a lifetime. Probiotic bacteria are organisms that afford beneficial health effects to the host and in certain instances may protect against the development of disease. The potential benefits of modifying the composition of the intestinal microbial cohort for therapeutic benefit is evident in the use in high risks groups such as premature infants, children receiving antibiotics, rotavirus infections in non-vaccinated children and traveler's diarrhea in adults. Probiotics and prebiotics are postulated to have immunomodulating capabilities by influencing the intestinal microbial cohort and dampening the activity of pathobiont intestinal microbes, such as Klebsiella pneumonia and Clostridia perfringens. Lactobacilli and Bifidobacteria are examples of probiotics found in the large intestine and so far, the benefits afforded to probiotics have varied in efficacy. Most likely the efficacy of probiotic bacteria has a multifactorial dependency, namely on a number of factors that include agents used, the dose, the pattern of dosing, and the characteristics of the host and the underlying luminal microbial environment and the activity of bacteriophages. Bacteriophages, are small viruses that infect and lyse intestinal bacteria. As such it can be posited that these viruses display an effective local protective control mechanism for the intestinal barrier against commensal pathobionts that indirectly may assist the host in controlling bacterial concentrations in the gut. A co-operative activity may be envisaged between the intestinal epithelia, mucosal immunity and the activity of bacteriophages to eliminate pathobiots, highlighting the potential role of bacteriophages in assisting with maintaining intestinal homeostasis. Hence bacteriophage local control of inflammation and immune responses may be an additional immunological defense mechanism that exploits bacteriophage-mucin glycoprotein interactions that controls bacterial diversity and abundance in the mucin layers of the gut. Moreover, and importantly the efficacy of probiotics may be dependent on the symbiotic incorporation of prebiotics, and the abundance and diversity of the intestinal microbiome encountered. The virome may be an important factor that determines the efficacy of some probiotic formulations.
Collapse
Affiliation(s)
- Luis Vitetta
- Discipline of Pharmacology, Faculty of Medicine and Health, School of Medicine, The University of Sydney, Camperdown, NSW, Australia
- Medlab Clinical Ltd., Sydney, NSW, Australia
| | | | - Sean Hall
- Medlab Clinical Ltd., Sydney, NSW, Australia
| |
Collapse
|
112
|
Zhang L, Qin Q, Liu M, Zhang X, He F, Wang G. Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in streptozotocin-induced diabetic rats. Pathog Dis 2018; 76:4972761. [PMID: 29668928 DOI: 10.1093/femspd/fty028] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/24/2018] [Indexed: 02/06/2023] Open
Abstract
This study aimed to investigate how Akkermansia muciniphila can implicate type 2 diabetes mellitus and the mechanisms underlying the effects A. muciniphila on type 2 diabetes mellitus. Normal and streptozotocin-induced diabetic Sprague-Dawley rats were orally administered with A. muciniphila and solvent. After 4 weeks of treatment, diabetic rats orally administered with live or pasteurized A. muciniphila exhibited significant increase in the blood concentration of high-density lipoprotein, and decrease in the hepatic glycogen, serum plasminogen activator inhibitor-1, tumor necrosis factor-α, lipopolysaccharide, malondialdehyde and total glucagon-like peptide-1. Moreover, diabetic rats orally administered with A. muciniphila showed significantly increased species alpha diversity and gene function in gut microbes. These results indicated that A. muciniphila can improve liver function, reduce gluco/lipotoxicity, alleviate oxidative stress, suppress inflammation and normalize intestine microbiota of the host animal, thereby ameliorating type 2 diabetes mellitus. Akkermansia muciniphila might be considered as one of the ideal new probiotics used in the management of type 2 diabetes mellitus in future.
Collapse
Affiliation(s)
- Ling Zhang
- West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qianqian Qin
- West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Manni Liu
- West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiangling Zhang
- West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fang He
- West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guoqing Wang
- West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
113
|
Li T, Gao J, Du M, Mao X. Milk fat globule membrane supplementation modulates the gut microbiota and attenuates metabolic endotoxemia in high-fat diet-fed mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
114
|
Role of prebiotics in regulation of microbiota and prevention of obesity. Food Res Int 2018; 113:183-188. [PMID: 30195512 DOI: 10.1016/j.foodres.2018.07.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023]
Abstract
There is an increasing incidence in non-communicable diseases (NCD) such as obesity, diabetes and metabolic syndrome all over the world, despite of the governmental investments in healthy policies. Some of these diseases represent a high economic burden to individuals and society, demanding urgency in the identification of risk factors and appropriate solutions. Inadequate nutrition habits are an important risk factor for developing these diseases, and the consumption of functional foods such as prebiotics, probiotics, and phenolic compounds may contribute to mitigate them. It has been reported that the consumption of prebiotics can cause positive changes in the intestinal microbiota. The healthy microbiota, consisting mainly of Bifidobacterium and Lactobacillus, ferment prebiotics producing compounds that appear to play a protective role against metabolic diseases. Despite the growing number of publications on the effects of regular consumption of prebiotics in experimental models, additional studies on their effects on humans are needed to bring more subsidies to public health programs. This manuscript aims to review the literature on the possible benefits of ingestion of prebiotics in the control of obesity.
Collapse
|
115
|
Lack of liver steatosis in germ-free mice following hypercaloric diets. Eur J Nutr 2018; 58:1933-1945. [PMID: 29926176 DOI: 10.1007/s00394-018-1748-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/08/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Experimental liver steatosis induced by overfeeding is associated with enhanced gut permeability and endotoxin translocation to the liver. We examined the role of the gut microbiota for steatosis formation by performing the feeding experiments in mice raised under conventional and germ-free (GF) housing. METHODS Adult wild-type and GF mice were fed a Western-style diet (WSD) or a control diet (CD), the latter combined with liquid fructose supplementation (F) or not, for 8 weeks. Markers of liver steatosis and gut permeability were measured after intervention. RESULTS Mice fed a WSD increased body weight compared to those fed a CD (p < 0.01) under conventional, but not under GF conditions. Increased liver weight, liver-to-body-weight ratio and hepatic triglycerides observed in both the WSD and the CD + F groups, when compared with the CD group, were not apparent under GF conditions, whereas elevated plasma triglycerides were visible (p < 0.05). Wild-type mice fed a WSD or a CD + F, respectively, had thinner adherent mucus layer compared to those fed a CD (p < 0.01), whereas GF mice had always a thin mucus layer independently of the diet. GF mice fed a CD showed increased plasma levels of FITC-dextran 4000 (1.9-fold, p < 0.05) and intestinal fatty acid-binding protein-2 (2.4-fold, p < 0.05) compared with wild-type mice. CONCLUSIONS GF housing results in an impaired weight gain and a lack of steatosis following a WSD. Also the fructose-induced steatosis, which is unrelated to body weight changes, is absent in GF mice. Thus, diet-induced experimental liver steatosis depends in multiple ways on intestinal bacteria.
Collapse
|
116
|
Binda C, Lopetuso LR, Rizzatti G, Gibiino G, Cennamo V, Gasbarrini A. Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Dig Liver Dis 2018; 50:421-428. [PMID: 29567414 DOI: 10.1016/j.dld.2018.02.012] [Citation(s) in RCA: 463] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/26/2018] [Accepted: 02/19/2018] [Indexed: 02/06/2023]
Abstract
Actinobacteria are one the four major phyla of the gut microbiota and, although they represent only a small percentage, are pivotal in the maintenance of gut homeostasis. During the last decade many studies focused the attention on Actinobacteria, especially on their role both in gastrointestinal and systemic diseases and on their possible therapeutic use. In fact, classes of this phylum, especially Bifidobacteria, are widely used as probiotic demonstrating beneficial effects in many pathological conditions, even if larger in vivo studies are needed to confirm such encouraging results. This review aims to explore the current knowledge on their physiological functions and to speculate on their possible therapeutic role(s) in gastrointestinal and systemic diseases.
Collapse
Affiliation(s)
- Cecilia Binda
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy
| | - Loris Riccardo Lopetuso
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy
| | - Gianenrico Rizzatti
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy
| | - Giulia Gibiino
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy
| | - Vincenzo Cennamo
- Unit of Gastroenterology and Digestive Endoscopy, AUSL Bologna Bellaria-Maggiore Hospital, Bologna, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine, Gastroenterology and Hepatology, Catholic University of Sacred Heart of Rome, A. Gemelli Hospital, Italy.
| |
Collapse
|
117
|
Eissa N, Hussein H, Hendy GN, Bernstein CN, Ghia JE. Chromogranin-A and its derived peptides and their pharmacological effects during intestinal inflammation. Biochem Pharmacol 2018; 152:315-326. [PMID: 29656116 DOI: 10.1016/j.bcp.2018.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is the largest endocrine organ that produces a broad range of active peptides. Mucosal changes during inflammation alter the distribution and products of enteroendocrine cells (EECs) that play a role in immune activation and regulation of gut homeostasis by mediating communication between the nervous, endocrine and immune systems. Patients with inflammatory bowel disease (IBD) typically have altered expression of chromogranin (CHG)-A (CHGA), a major soluble protein secreted by EECs that functions as a pro-hormone. CHGA gives rise to several bioactive peptides that have direct or indirect effects on intestinal inflammation. In IBD, CHGA and its derived peptides are correlated with the disease activity. In this review we describe the potential immunomodulatory roles of CHGA and its derived peptides and their clinical relevance during the progression of intestinal inflammation. Targeting CHGA and its derived peptides could be of benefit for the diagnosis and clinical management of IBD patients.
Collapse
Affiliation(s)
- Nour Eissa
- Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Hayam Hussein
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Ohio State University, Columbus, OH, USA
| | - Geoffrey N Hendy
- Metabolic Disorders and Complications, McGill University Health Centre-Research Institute, Departments of Medicine, Physiology, and Human Genetics, McGill University, Montréal, QC, Canada
| | - Charles N Bernstein
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada; Section of Gastroenterology, Department of Internal Medicine, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Jean-Eric Ghia
- Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada; Section of Gastroenterology, Department of Internal Medicine, College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
118
|
Insulin resistance in obesity: an overview of fundamental alterations. Eat Weight Disord 2018; 23:149-157. [PMID: 29397563 DOI: 10.1007/s40519-018-0481-6] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
Obesity is a major health risk factor, and obesity-induced morbidity and complications account for huge costs for affected individuals, families, healthcare systems, and society at large. In particular, obesity is strongly associated with the development of insulin resistance, which in turn plays a key role in the pathogenesis of obesity-associated cardiometabolic complications, including metabolic syndrome components, type 2 diabetes, and cardiovascular diseases. Insulin sensitive tissues, including adipose tissue, skeletal muscle, and liver, are profoundly affected by obesity both at biomolecular and functional levels. Altered adipose organ function may play a fundamental pathogenetic role once fat accumulation has ensued. Modulation of insulin sensitivity appears to be, at least in part, related to changes in redox balance and oxidative stress as well as inflammation, with a relevant underlying role for mitochondrial dysfunction that may exacerbate these alterations. Nutrients and substrates as well as systems involved in host-nutrient interactions, including gut microbiota, have been also identified as modulators of metabolic pathways controlling insulin action. This review aims at providing an overview of these concepts and their potential inter-relationships in the development of insulin resistance, with particular regard to changes in adipose organ and skeletal muscle.
Collapse
|
119
|
Liu H, Li J, Guo X, Liang Y, Wang W. Yeast culture dietary supplementation modulates gut microbiota, growth and biochemical parameters of grass carp. Microb Biotechnol 2018; 11:551-565. [PMID: 29578305 PMCID: PMC5902330 DOI: 10.1111/1751-7915.13261] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/04/2018] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota contributes positively to the physiology of their host. Some feed additives have been suggested to improve livestock health and stimulate growth performance by modulating gut bacteria species. Here, we fed grass carp with 0 (control), 8% (Treat1), 10% (Treat2), 12% (Treat3) and 16% (Treat4) of yeast culture (YC) for 10 weeks. The gut microbiota was analysed by 16S rRNA gene V3-4 region via an Illumina MiSeq platform. PCoA test showed that gut bacterial communities in the control and Treat3 formed distinctly separate clusters. Although all the groups shared a large size of OTUs as a core microbiota community, a strong distinction existed at genus level. Treat3 contained the highest proportion of the beneficial bacteria and obviously enhanced the capacity of amino acid, lipid metabolism and digestive system. In addition, Treat3 significantly improved the fish growth and increased the liver and serum T-SOD activities while dramatically decreased the liver GPT and GOT. Collectively, these findings demonstrate the beneficial effects of YC feeding on gut microbiota, growth and biochemical parameters and Treat3 might be the optimal supplementation amount for grass carp, which opens up the possibility that a new feed additive can be developed for healthy aquaculture.
Collapse
Affiliation(s)
- Han Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Juntao Li
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xianwu Guo
- Laboratorio de Biotecnología Genómica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro esquina Elías Piña, Colonia Narciso Mendoza, 88710, Ciudad Reynosa, Tamaulipas, Mexico
| | - Yunxiang Liang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China
| | - Weimin Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, 430070, Wuhan, China.,Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, 41500, Changde, China
| |
Collapse
|
120
|
Yuan S, Yu HJ, Liu MW, Huang Y, Yang XH, Tang BW, Song Y, Cao ZK, Wu HJ, He QQ, Gasevic D. The association of fruit and vegetable consumption with changes in weight and body mass index in Chinese adults: a cohort study. Public Health 2018. [PMID: 29524810 DOI: 10.1016/j.puhe.2018.01.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Findings regarding the benefits of fruit and vegetables (FV) on weight control are inconsistent and little is known among Chinese populations. Therefore, we examined the relationship between change in FV consumption, weight, and change in body mass index (BMI) among Chinese adults, participants of the China Health and Nutrition Survey (CHNS). STUDY DESIGN A prospective cohort study. METHODS Two waves of CHNS conducted in 2006 and 2011 were used. Continuous FV consumption increase was considered as the exposure and changes in weight and BMI as outcomes. Change in FV consumption was categorized into quintiles. Analysis of covariance and multiple linear regression models, after controlling for potential confounders such as energy intake, physical activity, and smoking, were used to describe the relationship between change in FV consumption and change in weight and BMI. RESULTS A total of 4357 participants aged 18-65 years were included in this study. The respective weight and BMI gains in male individuals were 1.81 kg and 0.73 kg/m2 in the fifth quintile of FV change relative to individuals in the first quintile (3.67 kg for weight gain and 1.48 kg/m2 for BMI gain). An increase in FV consumption by 100 g was associated with a 211 g weight loss (B = -2.11; 95% confidence interval [CI], -3.34, -0.89, P < 0.001) and a decrease in BMI by 0.94 kg/m2 (B = -0.94; 95% CI, -1.36, -0.46, P < 0.001) in men; and a 140 g weight loss (B = -0.14; 95% CI, -0.97, 0.69, P = 0.74) and a decrease in BMI by 0.29 kg/m2 BMI (B = -0.29; 95% CI, -0.63, 0.06, P = 0.11) in women. CONCLUSIONS Increase in FV consumption was associated with statistically significant weight loss and decrease in BMI among Chinese men, and, although suggested, weight loss among women was not significant. Considering the protective effect of FV on human health, increasing FV consumption in the Chinese population is recommended.
Collapse
Affiliation(s)
- S Yuan
- School of Health Sciences, Wuhan University, PR China
| | - H J Yu
- School of Health Sciences, Wuhan University, PR China
| | - M W Liu
- School of Health Sciences, Wuhan University, PR China
| | - Y Huang
- School of Health Sciences, Wuhan University, PR China
| | - X H Yang
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK
| | - B W Tang
- School of Health Sciences, Wuhan University, PR China
| | - Y Song
- School of Health Sciences, Wuhan University, PR China
| | - Z K Cao
- School of Health Sciences, Wuhan University, PR China
| | - H J Wu
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK
| | - Q Q He
- School of Health Sciences, Wuhan University, PR China.
| | - D Gasevic
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
121
|
Effects of synbiotic supplementation on metabolic parameters and apelin in women with polycystic ovary syndrome: a randomised double-blind placebo-controlled trial. Br J Nutr 2018; 119:398-406. [DOI: 10.1017/s0007114517003920] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AbstractPolycystic ovary syndrome (PCOS) is one of the most common causes of infertility in women of reproductive age. Insulin resistance is a main pathophysiologic feature in these patients. According to some studies, the intake of probiotic bacteria may improve glucose homoeostasis. The aim of this study was to investigate the effect of synbiotics on metabolic parameters and apelin in PCOS patients. This randomised double-blind placebo-controlled trial was conducted on eighty-eight PCOS women aged 19–37 years old. The participants were randomly assigned to two groups receiving (1) synbiotic supplement (n44), and (2) placebo (n44) for 12 weeks. Fasting blood samples were taken at baseline and after 12 weeks. The two groups showed no difference in fasting blood sugar (adjusted mean difference: 0·60; 95 % CI −3·80, 5·00,P=0·727), plasma glucose fasting 2-h (adjusted mean difference 2·09; 95 % CI −9·96, 14·15,P=0·134), HbA1c (adjusted mean difference 0·06; 95 % CI −0·09, 0·22,P=0·959), homoeostatic model assessment-insulin resistance (HOMA-IR) (adjusted mean difference: 0·02; 95 % CI −0·99, 1·03,P=0·837), quantitative insulin sensitivity check index (QUICKI) (adjusted mean difference: −0·02; 95 % CI −0·33, 0·29,P=0·940) and C-reactive protein (CRP) (adjusted mean difference: 0·24; 95 % CI −1·61, 2·08,P=0·141) by the end of the intervention. A significant difference was observed in the mean apelin 36 before and after the intervention between synbiotic and placebo groups (adjusted mean difference: −4·05; 95 % CI −7·15, −0·96,P=0·004). A 12-week synbiotic supplementation has no significant beneficial effects on HOMA-IR and CRP in PCOS patients, whereas the level of apelin 36 significantly decreased.
Collapse
|
122
|
Zhang L, Carmody RN, Kalariya HM, Duran RM, Moskal K, Poulev A, Kuhn P, Tveter KM, Turnbaugh PJ, Raskin I, Roopchand DE. Grape proanthocyanidin-induced intestinal bloom of Akkermansia muciniphila is dependent on its baseline abundance and precedes activation of host genes related to metabolic health. J Nutr Biochem 2018; 56:142-151. [PMID: 29571008 DOI: 10.1016/j.jnutbio.2018.02.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 12/12/2022]
Abstract
We previously showed that C57BL/6J mice fed high-fat diet (HFD) supplemented with 1% grape polyphenols (GP) for 12 weeks developed a bloom of Akkermansia muciniphila with attenuated metabolic syndrome symptoms. Here we investigated early timing of GP-induced effects and the responsible class of grape polyphenols. Mice were fed HFD, low-fat diet (LFD) or formulations supplemented with GP (HFD-GP, LFD-GP) for 14 days. Mice fed HFD-GP, but not LFD-GP, showed improved oral glucose tolerance compared to controls. A. muciniphila bloom occurred earlier in mice fed LFD-GP than HFD-GP; however, timing was dependent on baseline A. muciniphila levels rather than dietary fat. Mice gavaged for 10 days with GP extract (GPE) or grape proanthocyanidins (PACs), each delivering 360 mg PACs/kg body weight, induced a bloom of fecal and cecal A. muciniphila, the rate of which depended on initial A. muciniphila abundance. Grape PACs were sufficient to induce a bloom of A. muciniphila independent of specific intestinal gene expression changes. Gut microbial community analysis and in vitro inhibition of A. muciniphila by GPE or PACs suggest that the A. muciniphila bloom in vivo occurs via indirect mechanisms.
Collapse
Affiliation(s)
- Li Zhang
- Rutgers, The State University of New Jersey, Department of Plant Biology, Foran Hall, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Rachel N Carmody
- Harvard University, Department of Human Evolutionary Biology, 11 Divinity Avenue, Cambridge, MA 02138
| | - Hetal M Kalariya
- Rutgers, The State University of New Jersey, Department of Plant Biology, Foran Hall, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Rocio M Duran
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health, Center for Digestive Health, 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Kristin Moskal
- Rutgers, The State University of New Jersey, Department of Plant Biology, Foran Hall, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Alexander Poulev
- Rutgers, The State University of New Jersey, Department of Plant Biology, Foran Hall, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Peter Kuhn
- Rutgers, The State University of New Jersey, Department of Plant Biology, Foran Hall, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Kevin M Tveter
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health, Center for Digestive Health, 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Peter J Turnbaugh
- University of California San Francisco, Department of Microbiology & Immunology, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Ilya Raskin
- Rutgers, The State University of New Jersey, Department of Plant Biology, Foran Hall, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health, Center for Digestive Health, 61 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
123
|
RETRACTED CHAPTER: Changing Paradigm of Probiotics from Functional Foods to Biotherapeutic Agents. Microb Biotechnol 2018. [DOI: 10.1007/978-981-10-7140-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
124
|
Requena T, Martínez-Cuesta MC, Peláez C. Diet and microbiota linked in health and disease. Food Funct 2018; 9:688-704. [DOI: 10.1039/c7fo01820g] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diet has shaped microbiota profiles through human evolution.
Collapse
Affiliation(s)
- T. Requena
- Department of Food Biotechnology and Microbiology
- Institute of Food Science Research
- 28049 Madrid
- Spain
| | - M. C. Martínez-Cuesta
- Department of Food Biotechnology and Microbiology
- Institute of Food Science Research
- 28049 Madrid
- Spain
| | - C. Peláez
- Department of Food Biotechnology and Microbiology
- Institute of Food Science Research
- 28049 Madrid
- Spain
| |
Collapse
|
125
|
Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Demchenko OA, Nechypurenko OV, Spivak MY. Comparative study of probiotic effects of Lactobacillus and Bifidobacteria strains on cholesterol levels, liver morphology and the gut microbiota in obese mice. EPMA J 2017; 8:357-376. [PMID: 29209439 PMCID: PMC5700021 DOI: 10.1007/s13167-017-0117-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/18/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Microbiome-modulating interventions are promising for treatment and prevention of metabolic syndrome. The number of probiotic strains demonstrated ability to decrease cholesterol level in vivo, however, it was poorly confirmed in a clinical setting. The aim was to study the effects of L. acidophilus IMV B-7279, L. casei IMV B-7280, B. animalіs VKL and B. animalіs VKB separately and in various compositions on the level of serum cholesterol, gut microbiota contents and liver morphology on a high-calorie-induced obesity model in BALB/c mice. MATERIALS AND METHODS We used for the study female BALB/c mice 6-8 weeks old (18-24 g). Experimental animals were fed by a fat-enriched diet (FED), and 8 experimental groups were formed (12 mice in each group) to test strains of probiotic bacteria L. delbrueckii subsp. bulgaricus IMV B-7281, L. casei IMV B-7280, B. animalіs VKL and B. animalіs VKB and compositions. We used ultrasound for in vivo assessment of the liver and visceral (mesenteric) fat size. In the blood serum of the obese mice, the level of cholesterol was estimated. The liver morphology and gut microbiota of obese mice were studied. RESULTS We revealed that after treatment with all of the studied probiotic bacteria and compositions of B. animalis VKL/B. animalis VKB/L. casei IMV B-7280, the weight of obese mice decreased, and cholesterol and its fraction levels in serum were reduced. The size of the liver slightly decreased after treatment with L. delbrueckii subsp. bulgaricus IMV B-7281, B. аnimalis VKB or probiotic compositions; we observed reduction of the mesenteric fat size after injection of all these probiotic bacteria (separately) and probiotic compositions. We defined the strain-dependent effects on serum lipid profiles, liver morphology and the gut microbiota. The B. animalis VKL/B. animalis VKB/L. casei IMV B-7280 composition effectively recovered the liver morphological structure of obese mice. The number of Lactobacillus spp., Bifidobacterium spp. and coliform bacteria increased, the number of staphylococci and streptococci reduced, and the number of microscopic fungi significantly decreased in the gut of obese mice after treatment with L. casei IMV B-7280, L. delbrueckii subsp. bulgaricus IMV B-7281, B. animalis (separately) or their compositions. CONCLUSION L. casei IMV B-7280 (separately) and a composition of B. animalis VKL/B. animalis VKB/L. casei IMV B-7280 are effective at decreasing the weight of obese mice, decreasing cholesterol level, restoring the liver morphology and beneficially modulating the gut microbiome in high-calorie-induced obesity.
Collapse
Affiliation(s)
- Rostyslav V. Bubnov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
- Clinical Hospital ‘Pheophania’ of State Affairs Department, Zabolotny str., 21, Kyiv, 03143 Ukraine
| | - Lidiia P. Babenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Liudmyla M. Lazarenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Viktoria V. Mokrozub
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Oleksandr A. Demchenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Oleksiy V. Nechypurenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Mykola Ya. Spivak
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
- LCL ‘DIAPROF’, Svitlycky Str., 35, Kyiv, 04123 Ukraine
| |
Collapse
|
126
|
Hashemi Z, Fouhse J, Im HS, Chan CB, Willing BP. Dietary Pea Fiber Supplementation Improves Glycemia and Induces Changes in the Composition of Gut Microbiota, Serum Short Chain Fatty Acid Profile and Expression of Mucins in Glucose Intolerant Rats. Nutrients 2017; 9:E1236. [PMID: 29137145 PMCID: PMC5707708 DOI: 10.3390/nu9111236] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/01/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated the beneficial impact of dried peas and their components on glucose tolerance; however, the role of gut microbiota as a potential mediator is not fully examined. In this study, we investigated the effect of dietary supplementation with raw and cooked pea seed coats (PSC) on glucose tolerance, microbial composition of the gut, select markers of intestinal barrier function, and short chain fatty acid profile in glucose intolerant rats. Male Sprague Dawley rats were fed high fat diet (HFD) for six weeks to induce glucose intolerance, followed by four weeks of feeding PSC-supplemented diets. Cooked PSC improved glucose tolerance by approximately 30% (p < 0.05), and raw and cooked PSC diets reduced insulin response by 53% and 56% respectively (p < 0.05 and p < 0.01), compared to HFD (containing cellulose as the source of dietary fiber). 16S rRNA gene sequencing on fecal samples showed a significant shift in the overall microbial composition of PSC groups when compared to HFD and low fat diet (LFD) controls. At the family level, PSC increased the abundance of Lachnospiraceae and Prevotellaceae (p < 0.001), and decreased Porphyromonadaceae (p < 0.01) compared with HFD. This was accompanied by increased mRNA expression of mucin genes Muc1, Muc2, and Muc4 in ileal epithelium (p < 0.05). Serum levels of acetate and propionate increased with raw PSC diet (p < 0.01). These results indicate that supplementation of HFD with PSC fractions can improve glycemia and may have a protective role against HFD-induced alterations in gut microbiota and mucus layer.
Collapse
Affiliation(s)
- Zohre Hashemi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - Janelle Fouhse
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - Hyun Seun Im
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - Catherine B Chan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Benjamin P Willing
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
127
|
Cremonini E, Wang Z, Bettaieb A, Adamo AM, Daveri E, Mills DA, Kalanetra KM, Haj FG, Karakas S, Oteiza PI. (-)-Epicatechin protects the intestinal barrier from high fat diet-induced permeabilization: Implications for steatosis and insulin resistance. Redox Biol 2017; 14:588-599. [PMID: 29154190 PMCID: PMC5691220 DOI: 10.1016/j.redox.2017.11.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 02/09/2023] Open
Abstract
Increased permeability of the intestinal barrier is proposed as an underlying factor for obesity-associated pathologies. Consumption of high fat diets (HFD) is associated with increased intestinal permeabilization and increased paracellular transport of endotoxins which can promote steatosis and insulin resistance. This study investigated whether dietary (-)-epicatechin (EC) supplementation can protect the intestinal barrier against HFD-induced permeabilization and endotoxemia, and mitigate liver damage and insulin resistance. Mechanisms leading to loss of integrity and function of the tight junction (TJ) were characterized. Consumption of a HFD for 15 weeks caused obesity, steatosis, and insulin resistance in male C57BL/6J mice. This was associated with increased intestinal permeability, decreased expression of ileal TJ proteins, and endotoxemia. Supplementation with EC (2-20mg/kg body weight) mitigated all these adverse effects. EC acted modulating cell signals and the gut hormone GLP-2, which are central to the regulation of intestinal permeability. Thus, EC prevented HFD-induced ileum NOX1/NOX4 upregulation, protein oxidation, and the activation of the redox-sensitive NF-κB and ERK1/2 pathways. Supporting NADPH oxidase as a target of EC actions, in Caco-2 cells EC and apocynin inhibited tumor necrosis alpha (TNFα)-induced NOX1/NOX4 overexpression, protein oxidation and monolayer permeabilization. Together, our findings demonstrate protective effects of EC against HFD-induced increased intestinal permeability and endotoxemia. This can in part underlie EC capacity to prevent steatosis and insulin resistance occurring as a consequence of HFD consumption.
Collapse
Affiliation(s)
- Eleonora Cremonini
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Ziwei Wang
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Ana M Adamo
- Department of Biological Chemistry and IQUIFIB (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Elena Daveri
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - David A Mills
- Department of Food Science and Technology, University of California, Davis, USA; Department of Viticulture and Enology, University of California, Davis, USA
| | - Karen M Kalanetra
- Department of Food Science and Technology, University of California, Davis, USA; Department of Viticulture and Enology, University of California, Davis, USA
| | - Fawaz G Haj
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Sidika Karakas
- Department of Internal Medicine, University of California, Davis, USA
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA.
| |
Collapse
|
128
|
Pendharkar SA, Walia M, Drury M, Petrov MS. Calcitonin gene-related peptide: neuroendocrine communication between the pancreas, gut, and brain in regulation of blood glucose. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:419. [PMID: 29201871 DOI: 10.21037/atm.2017.08.27] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Calcitonin gene-related peptide (CGRP), a ubiquitous neuropeptide, plays a diverse and intricate role in chronic low-grade inflammation, including conditions such as obesity, type 2 diabetes, and diabetes of the exocrine pancreas. Diabetes of exocrine pancreas is characterised by chronic hyperglycemia and is associated with persistent low-grade inflammation and altered secretion of certain pancreatic and gut hormones. While CGRP may regulate glucose homeostasis and the secretion of pancreatic and gut hormones, its role in chronic hyperglycemia after acute pancreatitis (CHAP) is not known. The aim of this study was to investigate the association between CGRP and CHAP. Methods Fasting blood samples were collected to measure insulin, HbA1c, CGRP, amylin, C-peptide, glucagon, pancreatic polypeptide (PP), somatostatin, gastric inhibitory peptide, glicentin, glucagon-like peptide-1 and 2, and oxyntomodulin. Modified Poisson regression analysis and linear regression analyses were conducted. Five statistical models were used to adjust for demographic, metabolic, and pancreatitis-related risk factors. Results A total of 83 patients were recruited. CGRP was significantly associated with CHAP in all five models (P-trend <0.005). Further, it was significantly associated with oxyntomodulin (P<0.005) and glucagon (P<0.030). Oxyntomodulin and glucagon independently contributed 9.7% and 7%, respectively, to circulating CGRP variance. Other pancreatic and gut hormones were not significantly associated with CGRP. Conclusions CGRP is involved in regulation of blood glucose in individuals after acute pancreatitis. This may have translational implications in prevention and treatment of diabetes of the exocrine pancreas.
Collapse
Affiliation(s)
| | - Monika Walia
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Marie Drury
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
129
|
Consumption of kiwifruit capsules increases Faecalibacterium prausnitzii abundance in functionally constipated individuals: a randomised controlled human trial. J Nutr Sci 2017; 6:e52. [PMID: 29152256 PMCID: PMC5672330 DOI: 10.1017/jns.2017.52] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022] Open
Abstract
This study investigated the impact of ACTAZIN™ green (2400 and 600 mg) and Livaux™ (2400 mg) gold kiwifruit supplements on faecal microbial composition and metabolites in healthy and functionally constipated (FC) participants. The participants were recruited into the healthy group (n 20; one of whom did not complete the study) and the FC group (n 9), each of whom consumed all the treatments and a placebo (isomalt) for 4 weeks in a randomised cross-over design interspersed with 2-week washout periods. Modification of faecal microbiota composition and metabolism was determined by 16S rRNA gene sequencing and GC, and colonic pH was calculated using SmartPill® wireless motility capsules. A total of thirty-two taxa were measured at greater than 1 % abundance in at least one sample, ten of which differed significantly between the baseline healthy and FC groups. Specifically, Bacteroidales and Roseburia spp. were significantly more abundant (P < 0·05) in the healthy group and taxa including Ruminococcaceae, Dorea spp. and Akkermansia spp. were significantly more abundant (P < 0·05) in the FC group. In the FC group, Faecalibacterium prausnitzii abundance significantly increased (P = 0·024) from 3·4 to 7·0 % following Livaux™ supplementation, with eight of the nine participants showing a net increase. Lower proportions of F. prausnitzii are often associated with gastrointestinal disorders. The discovery that Livaux™ supplementation increased F. prausnitzii abundance offers a potential strategy for improving gut microbiota composition, as F. prausnitzii is a butyrate producer and has also been shown to exert anti-inflammatory effects in many studies.
Collapse
|
130
|
Dose-dependent S-allyl cysteine ameliorates multiple sclerosis disease-related pathology by reducing oxidative stress and biomarkers of dysbiosis in experimental autoimmune encephalomyelitis. Eur J Pharmacol 2017; 815:266-273. [PMID: 28939293 DOI: 10.1016/j.ejphar.2017.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 01/15/2023]
Abstract
Garlic is a component of the Mediterranean diet. S-allyl cysteine (SAC), the most common organosulphur present in garlic, possesses neuroprotective properties. This investigation was performed to evaluate the dose-dependent protective action of SAC on oxidative damage, inflammation and gut microbiota alterations biomarkers. Experimental autoimmune encephalomyelitis (EAE) as a model of multiple sclerosis (MS) was induced by the myelin oligodendrocyte glycoprotein (MOG), whose effects were quantified by examining the changes in: clinical score, lipid peroxidation products, carbonylated proteins, glutathione system, tumor necrosis factor alpha (TNFα), and lipopolysaccharide membrane bacteria (LPS). Our results reveal that MOG induces paralysis, oxidative damage and increases in LPS binding protein (LBP) and LPS levels. In this work, two doses of SAC were compared with two dose of N-acetyl cysteine (NAC). SAC was more effective than NAC and it prevented the harmful effects induced by MOG more effectively at the dose of 50mg/kg than that of 18mg/kg. Surprisingly, NAC increases LBP levels while SAC had not such negative effect. In conclusion the data show the ability of SAC to modify EAE evolution.
Collapse
|
131
|
Jayachandran M, Xiao J, Xu B. A Critical Review on Health Promoting Benefits of Edible Mushrooms through Gut Microbiota. Int J Mol Sci 2017; 18:1934. [PMID: 28885559 PMCID: PMC5618583 DOI: 10.3390/ijms18091934] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 02/05/2023] Open
Abstract
Mushrooms have long been used for medicinal and food purposes for over a thousand years, but a complete elucidation of the health-promoting properties of mushrooms through regulating gut microbiota has not yet been fully exploited. Mushrooms comprise a vast, and yet largely untapped, source of powerful new pharmaceutical substances. Mushrooms have been used in health care for treating simple and common diseases, like skin diseases and pandemic diseases like AIDS. This review is aimed at accumulating the health-promoting benefits of edible mushrooms through gut microbiota. Mushrooms are proven to possess anti-allergic, anti-cholesterol, anti-tumor, and anti-cancer properties. Mushrooms are rich in carbohydrates, like chitin, hemicellulose, β and α-glucans, mannans, xylans, and galactans, which make them the right choice for prebiotics. Mushrooms act as a prebiotics to stimulate the growth of gut microbiota, conferring health benefits to the host. In the present review, we have summarized the beneficial activities of various mushrooms on gut microbiota via the inhibition of exogenous pathogens and, thus, improving the host health.
Collapse
Affiliation(s)
- Muthukumaran Jayachandran
- Programme of Food Science and Technology, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, No. 28 Jinfeng Road, Tangjiawan, Zhuhai 519085, Guangdong, China.
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Baojun Xu
- Programme of Food Science and Technology, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, No. 28 Jinfeng Road, Tangjiawan, Zhuhai 519085, Guangdong, China.
| |
Collapse
|
132
|
Preveden T, Scarpellini E, Milić N, Luzza F, Abenavoli L. Gut microbiota changes and chronic hepatitis C virus infection. Expert Rev Gastroenterol Hepatol 2017. [PMID: 28621554 DOI: 10.1080/17474124.2017.1343663] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection is a global health problem with 150 million infected people worldwide. Liver can be greatly affected by changes in gut microbiota due to increased intestinal permeability with passage of microbial antigens into the liver through the portal circulation. The concept of 'gut-liver' axis is important to understand the pathophysiology of several liver diseases. Several recent studies also revealed that an altered gut microbiota can be implicated in the pathogenesis of HCV-induced chronic liver disease (CHC). Areas covered: An overview of intestinal microflora composition, host reaction during CHC, and a description of relevant clinical trials on the use of probiotics in this field. Expert commentary: HCV patients gut microbiota composition is stable over liver disease stages. This is a unique example of gut disbiosis stability vs. NAFLD, HBV, HIV, and HCV co-infected patients. The impact of HCV infection on intestinal permeability allows gut disbiosis starting, maintenance and its proinflammatory effect until liver cirrhosis and HCC development. HCV eradication has unraveled the strong impact of gut microbiota unbalance on liver disease development with possible future implications for probiotics use to change the natural history of cirrhosis progression.
Collapse
Affiliation(s)
- Tomislav Preveden
- a Faculty of Medicine, Clinic for Infectious Diseases , University of Novi Sad , Novi Sad , Serbia
| | - Emidio Scarpellini
- b Division of Gastroenterology , La Sapienza University, Umberto I University Hospital , Rome , Italy
| | - Natasa Milić
- c Faculty of Medicine, Department of Pharmacy , University of Novi Sad , Novi Sad , Serbia
| | - Francesco Luzza
- d Department of Health Sciences , University Magna Graecia , Catanzaro , Italy
| | - Ludovico Abenavoli
- a Faculty of Medicine, Clinic for Infectious Diseases , University of Novi Sad , Novi Sad , Serbia.,d Department of Health Sciences , University Magna Graecia , Catanzaro , Italy
| |
Collapse
|
133
|
Bischoff SC, Boirie Y, Cederholm T, Chourdakis M, Cuerda C, Delzenne NM, Deutz NE, Fouque D, Genton L, Gil C, Koletzko B, Leon-Sanz M, Shamir R, Singer J, Singer P, Stroebele-Benschop N, Thorell A, Weimann A, Barazzoni R. Towards a multidisciplinary approach to understand and manage obesity and related diseases. Clin Nutr 2017; 36:917-938. [DOI: 10.1016/j.clnu.2016.11.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
|
134
|
Suriano F, Bindels LB, Verspreet J, Courtin CM, Verbeke K, Cani PD, Neyrinck AM, Delzenne NM. Fat binding capacity and modulation of the gut microbiota both determine the effect of wheat bran fractions on adiposity. Sci Rep 2017; 7:5621. [PMID: 28717237 PMCID: PMC5514075 DOI: 10.1038/s41598-017-05698-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/02/2017] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to determine the impact of different wheat bran fractions on the gut microbiota and fat binding capacity to explain their differential effects on metabolic and inflammatory disorders induced by a western diet (WD) in mice. Wheat bran derived arabinoxylan oligosaccharides (AXOS), a crude fraction of wheat bran (WB), or the same wheat bran with reduced particle size (WBs) were added to the WD of mice for 8 weeks. AXOS shifted the gut microbiota composition, blunted Clostridium and Turicibacter genera and strongly promoted Bifidobacterium and Butyricicoccus genera, independently of changes in gut antimicrobial peptide expression. AXOS was the most efficient to reduce adiposity. Only WB fraction promoted fat excretion and differed from the other fractions by the capacity to increase the Akkermansia genus and to counteract gut interleukin 1 beta (IL1β) overexpression. Strikingly, WBs promoted steatosis and adipose tissue inflammation, despite its ability -like WB- to increase bacterial diversity. In conclusion, wheat bran fractions differently affect metabolic and inflammatory disorders associated with WD feeding, depending on their particle size, their fat binding capacity and their influence on the gut microbiota. Those results might be useful to take into account in nutritional advices to control obesity.
Collapse
Affiliation(s)
- Francesco Suriano
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, B-1200, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, B-1200, Brussels, Belgium
| | - Joran Verspreet
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition, Research Center (LFoRCe). KU Leuven, B-3001, Leuven, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition, Research Center (LFoRCe). KU Leuven, B-3001, Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center for Gastrointestinal Disorders and Leuven Food Science and Nutrition Center, KU Leuven, B-3000, Leuven, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, B-1200, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, UCL, B-1200, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, B-1200, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, B-1200, Brussels, Belgium.
| |
Collapse
|
135
|
Sánchez-Tapia M, Aguilar-López M, Pérez-Cruz C, Pichardo-Ontiveros E, Wang M, Donovan SM, Tovar AR, Torres N. Nopal (Opuntia ficus indica) protects from metabolic endotoxemia by modifying gut microbiota in obese rats fed high fat/sucrose diet. Sci Rep 2017; 7:4716. [PMID: 28680065 PMCID: PMC5498631 DOI: 10.1038/s41598-017-05096-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/26/2017] [Indexed: 01/22/2023] Open
Abstract
Current efforts are directed to reducing the gut dysbiosis and inflammation produced by obesity. The purpose of this study was to investigate whether consuming nopal, a vegetable rich in dietary fibre, vitamin C, and polyphenols can reduce the metabolic consequences of obesity by modifying the gut microbiota and preventing metabolic endotoxemia in rats fed a high fat and sucrose diet. With this aim, rats were fed a high fat diet with 5% sucrose in the drinking water (HFS) for 7 months and then were fed for 1 month with HFS + 5% nopal (HFS + N). The composition of gut microbiota was assessed by sequencing the 16S rRNA gene. Nopal modified gut microbiota and increased intestinal occludin-1 in the HFS + N group. This was associated with a decrease in metabolic endotoxemia, glucose insulinotropic peptide, glucose intolerance, lipogenesis, and metabolic inflexibility. These changes were accompanied by reduced hepatic steatosis and oxidative stress in adipose tissue and brain, and improved cognitive function, associated with an increase in B. fragilis. This study supports the use of nopal as a functional food and prebiotic for its ability to modify gut microbiota and to reduce metabolic endotoxemia and other obesity-related biochemical abnormalities.
Collapse
Affiliation(s)
- Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No 15, Ciudad de Mexico, 14080, Mexico City, Mexico
| | - Miriam Aguilar-López
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No 15, Ciudad de Mexico, 14080, Mexico City, Mexico
| | - Claudia Pérez-Cruz
- Departamento de Farmacología, Laboratorio de Neuroplasticidad y Neurodegeneración, CINVESTAV, Ciudad de Mexico, 07360, Mexico City, Mexico
| | - Edgar Pichardo-Ontiveros
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No 15, Ciudad de Mexico, 14080, Mexico City, Mexico
| | - Mei Wang
- Department of Food Science and Human Nutrition, University of Illinois, Illinois, IL, 61801, USA
| | - Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Illinois, IL, 61801, USA
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No 15, Ciudad de Mexico, 14080, Mexico City, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No 15, Ciudad de Mexico, 14080, Mexico City, Mexico.
| |
Collapse
|
136
|
Behrouz V, Jazayeri S, Aryaeian N, Zahedi MJ, Hosseini F. Effects of Probiotic and Prebiotic Supplementation on Leptin, Adiponectin, and Glycemic Parameters in Non-alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Middle East J Dig Dis 2017; 9:150-157. [PMID: 28894517 PMCID: PMC5585907 DOI: 10.15171/mejdd.2017.66] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND
According to previous studies, probiotic and prebiotic supplementation have desirable effects
on glycemic parameters. Thus far, the effect of supplementation on the glycemic parameters and
adipokines in non-alcoholic fatty liver disease (NAFLD) has not been assessed. Therefore, the
aim of this study was to determine the effects of supplementation with probiotic and prebiotic on
adiokines and glycemic parameters in the patients with NAFLD.
METHODS
In the present randomized, double-blind, placebo-controlled trial, 89 patients with NAFLD
were randomly divided into three groups to receive one probiotic capsule + 16 g/d maltodextrin
(probiotic group) or 16 g/d oligofructose powder + one placebo capsule (prebiotic group), and
one placebo capsule + 16 g/d maltodextrin (control group) for 12 weeks. All the subjects in the
study were advised to follow the weight loss diet and physical activity recommendations during
the intervention. Fasting blood samples were taken at baseline and after the intervention to measure
leptin, adiponectin, insulin, and fasting blood sugar.
RESULTS
At the end of the study, serum concentrations of leptin, insulin, and HOMA-IR decreased
significantly in the probiotic and prebiotic groups compared with the control group. Despite the
changes within the groups, serum concentrations of adiponectin did not change significantly between
the three groups. Also, fasting blood sugar did not change between the groups, but decreased in the
prebiotic group. Quantitative insulin-sensitivity check index (QUICKI) increased significantly in
probiotic and prebiotic groups compared with the control group.
CONCLUSION
Probiotic and prebiotic supplementation along with lifestyle intervention has a favorable impact
on glycemic parameters and leptin levels compared with lifestyle intervention alone.
Collapse
Affiliation(s)
- Vahideh Behrouz
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Jazayeri
- Research Center for Prevention of Cardiovascular Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Naheed Aryaeian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
137
|
Gut Microbiota Mediates the Protective Effects of Dietary Capsaicin against Chronic Low-Grade Inflammation and Associated Obesity Induced by High-Fat Diet. mBio 2017; 8:mBio.00470-17. [PMID: 28536285 PMCID: PMC5442453 DOI: 10.1128/mbio.00470-17] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Metabolic endotoxemia originating from dysbiotic gut microbiota has been identified as a primary mediator for triggering the chronic low-grade inflammation (CLGI) responsible for the development of obesity. Capsaicin (CAP) is the major pungent bioactivator in chili peppers and has potent anti-obesity functions, yet the mechanisms linking this effect to gut microbiota remain obscure. Here we show that mice fed a high-fat diet (HFD) supplemented with CAP exhibit lower levels of metabolic endotoxemia and CLGI associated with lower body weight gain. High-resolution responses of the microbiota were examined by 16S rRNA sequencing, short-chain fatty acid (SCFA) measurements, and phylogenetic reconstruction of unobserved states (PICRUSt) analysis. The results showed, among others, that dietary CAP induced increased levels of butyrate-producing Ruminococcaceae and Lachnospiraceae, while it caused lower levels of members of the lipopolysaccharide (LPS)-producing family S24_7. Predicted function analysis (PICRUSt) showed depletion of genes involved in bacterial LPS synthesis in response to CAP. We further identified that inhibition of cannabinoid receptor type 1 (CB1) by CAP also contributes to prevention of HFD-induced gut barrier dysfunction. Importantly, fecal microbiota transplantation experiments conducted in germfree mice demonstrated that dietary CAP-induced protection against HFD-induced obesity is transferrable. Moreover, microbiota depletion by a cocktail of antibiotics was sufficient to block the CAP-induced protective phenotype against obesity, further suggesting the role of microbiota in this context. Together, our findings uncover an interaction between dietary CAP and gut microbiota as a novel mechanism for the anti-obesity effect of CAP acting through prevention of microbial dysbiosis, gut barrier dysfunction, and chronic low-grade inflammation. Metabolic endotoxemia due to gut microbial dysbiosis is a major contributor to the pathogenesis of chronic low-grade inflammation (CLGI), which primarily mediates the development of obesity. A dietary strategy to reduce endotoxemia appears to be an effective approach for addressing the issue of obesity. Capsaicin (CAP) is the major pungent component in red chili (genus Capsicum). Little is known about the role of gut microbiota in the anti-obesity effect of CAP. High-throughput 16S rRNA gene sequencing revealed that CAP significantly increased butyragenic bacteria and decreased LPS-producing bacteria (e.g., members of the S24-7 family) and LPS biosynthesis. By using antibiotics and microbiota transplantation, we prove that gut microbiota plays a causal role in dietary CAP-induced protective phenotype against high-fat-diet-induced CLGI and obesity. Moreover, CB1 inhibition was partially involved in the beneficial effect of CAP. Together, these data suggest that the gut microbiome is a critical factor for the anti-obesity effects of CAP.
Collapse
|
138
|
Gu C, Zhou W, Wang W, Xiang H, Xu H, Liang L, Sui H, Zhan L, Lu X. ZiBuPiYin recipe improves cognitive decline by regulating gut microbiota in Zucker diabetic fatty rats. Oncotarget 2017; 8:27693-27703. [PMID: 28099913 PMCID: PMC5438601 DOI: 10.18632/oncotarget.14611] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022] Open
Abstract
Numerous researches supported that microbiota can influence behavior and modulate cognitive function through "microbiota-gut-brain" axis. Our previous study has demonstrated that ZiBuPiYin recipe (ZBPYR) possesses excellent pharmacological effects against diabetes-associated cognitive decline. To elucidate the role of ZBPYR in regulating the balance of gut microbiota to improve psychological-stress-induced diabetes-associated cognitive decline (PSDACD), we compared blood glucose, behavioral and cognitive functions and diversity of the bacterial community among experimental groups. The Zucker diabetic fatty (ZDF) rats with PSDACD exhibited behavioral and cognitive anomalies showing as increased anxiety- and depression-like behaviors and decreased learning and memory abilities. High-throughput sequencing of the bacterial 16S rRNA gene revealed that Roseburia and Coprococcus were decreased in ZDF rats with PSDACD compared with control group. Notably, these changes were reversed by ZBPYR treatment. Our findings indicate that ZBPYR might prevent PSDACD by maintaining the compositions of gut microbiota, which could be developed as a new therapy for T2D with PSDACD.
Collapse
MESH Headings
- Animals
- Bacteria/drug effects
- Bacteria/genetics
- Bacteria/isolation & purification
- Blood Glucose/analysis
- Cognition/drug effects
- Cognitive Dysfunction/blood
- Cognitive Dysfunction/drug therapy
- Cognitive Dysfunction/etiology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Gastrointestinal Microbiome/drug effects
- High-Throughput Nucleotide Sequencing
- Humans
- Intestinal Mucosa/microbiology
- Male
- Maze Learning/drug effects
- Medicine, Chinese Traditional
- Mutation
- RNA, Ribosomal, 16S/isolation & purification
- Rats
- Rats, Zucker
- Receptors, Leptin/genetics
- Sequence Analysis, RNA
- Spatial Memory/drug effects
- Stress, Psychological/complications
Collapse
Affiliation(s)
- Chunyan Gu
- School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wen Zhou
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wang Wang
- School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hong Xiang
- The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Huiying Xu
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lina Liang
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Hua Sui
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Libin Zhan
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoguang Lu
- Department of Emergency Medicine, Zhongshan Hospital, Dalian University, Dalian, Liaoning, China
| |
Collapse
|
139
|
Brimelow RE, West NP, Williams LT, Cripps AW, Cox AJ. A role for whey-derived lactoferrin and immunoglobulins in the attenuation of obesity-related inflammation and disease. Crit Rev Food Sci Nutr 2017; 57:1593-1602. [PMID: 26068582 DOI: 10.1080/10408398.2014.995264] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Obesity is a strong predictive factor in the development of chronic disease and has now superseded undernutrition as a major public health issue. Chronic inflammation is one mechanism thought to link excess body weight with disease. Increasingly, the gut and its extensive population of commensal microflora are recognized as playing an important role in the development of obesity-related chronic inflammation. Obesity and a high fat diet are associated with altered commensal microbial communities and increased intestinal permeability which contributes to systemic inflammation as a result of the translocation of lipopolysaccharide into the circulation and metabolic endotoxemia. Various milk proteins are showing promise in the prevention and treatment of obesity and chronic low-grade inflammation via reductions in visceral fat, neutralization of bacteria at the mucosa and reduced intestinal permeability. In this review, we focus on evidence supporting the potential antiobesogenic and anti-inflammatory effects of bovine whey-derived lactoferrin and immunoglobulins.
Collapse
Affiliation(s)
- Rachel E Brimelow
- a School of Medical Science, Griffith University , Southport , Queensland , Australia
| | - Nicholas P West
- a School of Medical Science, Griffith University , Southport , Queensland , Australia.,b Menzies Health Institute Queensland , Southport , Queensland , Australia
| | - Lauren T Williams
- b Menzies Health Institute Queensland , Southport , Queensland , Australia.,c School of Allied Health Sciences, Griffith University , Southport , Queensland Australia
| | - Allan W Cripps
- b Menzies Health Institute Queensland , Southport , Queensland , Australia.,d School of Medicine, Griffith University , Southport , Queensland , Australia
| | - Amanda J Cox
- a School of Medical Science, Griffith University , Southport , Queensland , Australia.,b Menzies Health Institute Queensland , Southport , Queensland , Australia
| |
Collapse
|
140
|
Gil-Cardoso K, Ginés I, Pinent M, Ardévol A, Arola L, Blay M, Terra X. Chronic supplementation with dietary proanthocyanidins protects from diet-induced intestinal alterations in obese rats. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201601039] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Katherine Gil-Cardoso
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Iris Ginés
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Montserrat Pinent
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Anna Ardévol
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Lluís Arola
- Nutrigenomics Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Mayte Blay
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| | - Ximena Terra
- MoBioFood Research Group; Departament de Bioquímica i Biotecnologia; Universitat Rovira i Virgili; Tarragona Spain
| |
Collapse
|
141
|
Remote Sensing between Liver and Intestine: Importance of Microbial Metabolites. ACTA ACUST UNITED AC 2017; 3:101-113. [PMID: 28983453 DOI: 10.1007/s40495-017-0087-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent technological advancements including metagenomics sequencing and metabolomics have allowed the discovery of critical functions of gut microbiota in obesity, malnutrition, neurological disorders, asthma, and xenobiotic metabolism. Classification of the human gut microbiome into distinct "enterotypes" has been proposed to serve as a new paradigm for understanding the interplay between microbial variation and human disease phenotypes, as many organs are affected by gut microbiota modifications during the pathogenesis of diseases. Gut microbiota remotely interacts with liver and other metabolic organs of the host through various microbial metabolites that are absorbed into the systemic circulation. PURPOSE OF REVIEW The present review summarizes recent literature regarding the importance of gut microbiota in modulating the physiological and pathological responses of various host organs, and describes the functions of the known microbial metabolites that are involved in this remote sensing process, with a primary focus on the gut microbiota-liver axis. RECENT FINDINGS Under physiological conditions, gut microbiota modulates the hepatic transcriptome, proteome, and metabolome, most notably down-regulating cytochrome P450 3a mediated xenobiotic metabolism. Gut microbiome also modulates the rhythmicity in liver gene expression, likely through microbial metabolites, such as butyrate and propionate that serve as epigenetic modifiers. Additionally, the production of host hormones such as primary bile acids and glucagon like peptide 1 is altered by gut microbiota to modify intermediary metabolism of the host. SUMMARY Dysregulation of gut microbiota is implicated in various liver diseases such as alcoholic liver disease, non-alcoholic steatohepatitis, liver cirrhosis, cholangitis, and liver cancer. Gut microbiota modifiers such as probiotics and prebiotics are increasingly recognized as novel therapeutic modalities for liver and other types of human diseases.
Collapse
|
142
|
Stahel P, Kim JJ, Xiao C, Cant JP. Of the milk sugars, galactose, but not prebiotic galacto-oligosaccharide, improves insulin sensitivity in male Sprague-Dawley rats. PLoS One 2017; 12:e0172260. [PMID: 28207812 PMCID: PMC5313224 DOI: 10.1371/journal.pone.0172260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/02/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Consumption of dairy products reduces risk of type 2 diabetes. Milk proteins and fats exhibit anti-diabetic properties but milk sugars have been studied little in this context. Galactose from milk lactose is readily converted to glycogen in the liver but its effects on insulin sensitivity have not been assessed. Prebiotic oligosaccharides from milk alter gut microbiota and can thereby influence host metabolism. Our objective was to assess the effect on insulin sensitivity of dietary galactose compared to glucose and fructose, and fermentable galacto-oligosaccharides compared to non-fermentable methylcellulose. METHODS Diets containing 15% of dry matter from glucose, fructose, galactose, galacto-oligosaccharides, or methylcellulose were fed to 36 rats per diet for 9 weeks. Hyperinsulinemic-euglycemic clamps with [3-3H]glucose infusion and a steady-state 2-[1-14C]deoxyglucose bolus injection were used to assess insulin sensitivity and glucose uptake indices. Tissue was collected in fed, fasted and fasted, insulin-stimulated states. RESULTS Galactose increased glucose infusion rate during the clamp by 53% and decreased endogenous glucose production by 57% compared to glucose and fructose. Fed-state hepatic glycogen content was greater with galactose compared to glucose and fructose, consistent with a potentiation of the insulin effect on glycogen synthase by dephosphorylation. Galactose decreased the fecal Firmicutes:Bacteroidetes ratio while galacto-oligosaccharides increased abundance of fecal Bifidobacterium spp. 481-fold compared to methylcellulose, and also increased abundance of Lactobacillus spp. and Bacteroidetes. Galacto-oligosaccharides did not affect glucose infusion rate or endogenous glucose production during basal or clamp periods compared to methylcellulose. CONCLUSIONS Galactose at 15% of daily intake improved hepatic insulin sensitivity in rats compared to glucose and fructose. Galactose caused an increase in fed-state hepatic glycogen content and a favourable shift in gut microbial populations. Intake of galacto-oligosaccharides improved the gut microbial profile but did not improve insulin sensitivity.
Collapse
Affiliation(s)
- Priska Stahel
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - Julie J. Kim
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - Changting Xiao
- Departments of Medicine and Physiology, University of Toronto, Toronto, Canada
| | - John P. Cant
- Department of Animal Biosciences, University of Guelph, Guelph, Canada
- * E-mail:
| |
Collapse
|
143
|
|
144
|
Chakraborty S, Bhattacharyya R, Banerjee D. Infections: A Possible Risk Factor for Type 2 Diabetes. Adv Clin Chem 2017; 80:227-251. [PMID: 28431641 DOI: 10.1016/bs.acc.2016.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus is one of the biggest challenges to human health globally, with an estimated 95% of the global diabetic population having type 2 diabetes. Classical causes for type 2 diabetes, such as genetics and obesity, do not account for the high incidence of the disease. Recent data suggest that infections may precipitate insulin resistance via multiple mechanisms, such as the proinflammatory cytokine response, the acute-phase response, and the alteration of the nutrient status. Even pathogen products, such as lipopolysaccharide and peptidoglycans, can be diabetogenic. Therefore, we argue that infections that are known to contribute to insulin resistance should be considered as risk factors for type 2 diabetes.
Collapse
Affiliation(s)
- Surajit Chakraborty
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | - Dibyajyoti Banerjee
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
145
|
Arora HC, Eng C, Shoskes DA. Gut microbiome and chronic prostatitis/chronic pelvic pain syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:30. [PMID: 28217695 DOI: 10.21037/atm.2016.12.32] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Analysis of the human microbiome continues to reveal new and previously unrealized associations between microbial dysbiosis and disease. Novel approaches to bacterial identification using culture-independent methods allow practitioners to discern the presence of alterations in the taxa and diversity of the microbiome and identify correlations with disease processes. While some of these diseases that have been extensively studied are well-defined in their etiology and treatment methods (colorectal cancer), others have provided much more significant challenges in both diagnosis and treatment. One such condition, chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), has several etiological and potentiating contributions from infection, inflammation, central nervous system (CNS) changes, stress, and central sensitization-all factors that play important roles in the crosstalk between the human body and its microbiome. No singular cause of CP/CPPS has been identified and it is most likely a syndrome with multifactorial causes. This heterogeneity and ambiguity are sources of significant frustration for patients and providers alike. Despite multiple attempts, treatment of chronic prostatitis with monotherapy has seen limited success, which is thought to be due to its heterogeneous nature. Phenotypic approaches to both classify the disease and direct treatment for CP/CPPS have proven beneficial in these patients, but questions still remain regarding etiology. Newer microbiome research has found correlations between symptom scores and disease severity and the degree of dysbiosis in urine and gut (stool) microbiomes in these patients as compared to un-afflicted controls. These findings present potential new diagnostic and therapeutic targets in CP/CPPS patients.
Collapse
Affiliation(s)
- Hans C Arora
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Daniel A Shoskes
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
146
|
Mackert JD, McIntosh MK. Combination of the anthocyanidins malvidin and peonidin attenuates lipopolysaccharide-mediated inflammatory gene expression in primary human adipocytes. Nutr Res 2016; 36:1353-1360. [DOI: 10.1016/j.nutres.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 02/04/2023]
|
147
|
Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by Regulating G Protein-coupled Receptors and Gut Microbiota. Sci Rep 2016; 6:37589. [PMID: 27892486 PMCID: PMC5124860 DOI: 10.1038/srep37589] [Citation(s) in RCA: 438] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023] Open
Abstract
Elucidating the mechanisms by which short chain fatty acids (SCFA) reduce body weight may assist in the development of an effective weight control strategy. Dietary supplementation of acetate, propionate, butyrate or their admixture was shown to significantly inhibit the body weight gain induced by high-fat diet feeding. Supplementation of SCFAs caused significant changes in the expressions of G-protein coupled receptor 43 (GPR43) and GPR41 characterized by increases in the adipose tissue and reductions in the colon. Additionally, they influenced the bacterial community structure in feces, with a reduction in the proportion of Firmicutes and an increase in the proportion of Bacteroidetes. The effects of dietary SCFAs on the GPR expression and gut microbiota composition may further result in body weight reduction by enhancing triglyceride hydrolysis and FFA oxidation in the adipose tissue, promoting beige adipogenesis and mitochondrial biogenesis, and inhibiting chronic inflammation.
Collapse
|
148
|
Chan C, Hyslop CM, Shrivastava V, Ochoa A, Reimer RA, Huang C. Oligofructose as an adjunct in treatment of diabetes in NOD mice. Sci Rep 2016; 6:37627. [PMID: 27874076 PMCID: PMC5118692 DOI: 10.1038/srep37627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/27/2016] [Indexed: 12/15/2022] Open
Abstract
In type 1 diabetes, restoration of normoglycemia can be achieved if the autoimmune attack on beta cells ceases and insulin requirement is met by the residual beta cells. We hypothesize that an adjunctive therapy that reduces insulin demand by increasing insulin sensitivity will improve the efficacy of an immunotherapy in reversing diabetes. We tested the gut microbiota-modulating prebiotic, oligofructose (OFS), as the adjunctive therapy. We treated non-obese diabetic mice with an immunotherapy, monoclonal anti-CD3 antibody (aCD3), with or without concurrent dietary supplement of OFS. After 8 weeks of OFS supplement, the group that received both aCD3 and OFS (aCD3 + OFS) had a higher diabetes remission rate than the group that received aCD3 alone. The aCD3 + OFS group had higher insulin sensitivity accompanied by reduced lymphocytic infiltrate into the pancreatic islets, higher beta-cell proliferation rate, higher pancreatic insulin content, and secreted more insulin in response to glucose. The addition of OFS also caused a change in gut microbiota, with a higher level of Bifidobacterium and lower Clostridium leptum. Hence, our results suggest that OFS can potentially be an effective therapeutic adjunct in the treatment of type 1 diabetes by improving insulin sensitivity and beta-cell function, leading to improved glycemic control.
Collapse
Affiliation(s)
- Clement Chan
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colin M Hyslop
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vipul Shrivastava
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrea Ochoa
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raylene A Reimer
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Carol Huang
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
149
|
Keller M, Hopp L, Liu X, Wohland T, Rohde K, Cancello R, Klös M, Bacos K, Kern M, Eichelmann F, Dietrich A, Schön MR, Gärtner D, Lohmann T, Dreßler M, Stumvoll M, Kovacs P, DiBlasio AM, Ling C, Binder H, Blüher M, Böttcher Y. Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity. Mol Metab 2016; 6:86-100. [PMID: 28123940 PMCID: PMC5220399 DOI: 10.1016/j.molmet.2016.11.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/03/2016] [Accepted: 11/10/2016] [Indexed: 02/04/2023] Open
Abstract
Objective/methods DNA methylation plays an important role in obesity and related metabolic complications. We examined genome-wide DNA promoter methylation along with mRNA profiles in paired samples of human subcutaneous adipose tissue (SAT) and omental visceral adipose tissue (OVAT) from non-obese vs. obese individuals. Results We identified negatively correlated methylation and expression of several obesity-associated genes in our discovery dataset and in silico replicated ETV6 in two independent cohorts. Further, we identified six adipose tissue depot-specific genes (HAND2, HOXC6, PPARG, SORBS2, CD36, and CLDN1). The effects were further supported in additional independent cohorts. Our top hits might play a role in adipogenesis and differentiation, obesity, lipid metabolism, and adipose tissue expandability. Finally, we show that in vitro methylation of SORBS2 directly represses gene expression. Conclusions Taken together, our data show distinct tissue specific epigenetic alterations which associate with obesity. Obesity-associated differences in DNA promoter methylation and transcriptome in human adipose tissue (ETV6). Depot-specific analyses revealed novel/known genes (HAND2, HOXC6, PPARG, SORBS2, CD36, CLDN1). EWAS revealed SSPN and CCDC125 associated to BMI in SAT or OVAT, respectively. Differentially methylated genes overlap in part with GWAS hits for obesity and fat distribution.
Collapse
Affiliation(s)
- Maria Keller
- IFB Adiposity Diseases, University of Leipzig, Leipzig, 04103, Germany
| | - Lydia Hopp
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, 04103, Germany
| | - Xuanshi Liu
- IFB Adiposity Diseases, University of Leipzig, Leipzig, 04103, Germany; Bioinformatics Group, Department of Computer Science, University of Leipzig, 04107, Leipzig, Germany
| | - Tobias Wohland
- IFB Adiposity Diseases, University of Leipzig, Leipzig, 04103, Germany
| | - Kerstin Rohde
- IFB Adiposity Diseases, University of Leipzig, Leipzig, 04103, Germany
| | - Raffaella Cancello
- Molecular Biology Laboratory, Istituto Auxologico Italiano IRCCS, Milan, 20149, Italy
| | - Matthias Klös
- IFB Adiposity Diseases, University of Leipzig, Leipzig, 04103, Germany
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, 205 02, Malmoe, Sweden
| | - Matthias Kern
- Department of Medicine, University of Leipzig, Leipzig, 04103, Germany
| | - Fabian Eichelmann
- IFB Adiposity Diseases, University of Leipzig, Leipzig, 04103, Germany
| | - Arne Dietrich
- IFB Adiposity Diseases, University of Leipzig, Leipzig, 04103, Germany; Department of Surgery, University of Leipzig, Leipzig, 04103, Germany
| | - Michael R Schön
- Städtisches Klinikum Karlsruhe, Clinic of Visceral Surgery, Karlsruhe, 76133, Germany
| | - Daniel Gärtner
- Städtisches Klinikum Karlsruhe, Clinic of Visceral Surgery, Karlsruhe, 76133, Germany
| | - Tobias Lohmann
- Municipal Clinic Dresden-Neustadt, Dresden, 01129, Germany
| | - Miriam Dreßler
- Municipal Clinic Dresden-Neustadt, Dresden, 01129, Germany
| | - Michael Stumvoll
- IFB Adiposity Diseases, University of Leipzig, Leipzig, 04103, Germany; Department of Medicine, University of Leipzig, Leipzig, 04103, Germany
| | - Peter Kovacs
- IFB Adiposity Diseases, University of Leipzig, Leipzig, 04103, Germany
| | - Anna-Maria DiBlasio
- Molecular Biology Laboratory, Istituto Auxologico Italiano IRCCS, Milan, 20149, Italy
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, 205 02, Malmoe, Sweden
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, Leipzig, 04103, Germany
| | - Matthias Blüher
- IFB Adiposity Diseases, University of Leipzig, Leipzig, 04103, Germany; Department of Medicine, University of Leipzig, Leipzig, 04103, Germany.
| | - Yvonne Böttcher
- IFB Adiposity Diseases, University of Leipzig, Leipzig, 04103, Germany.
| |
Collapse
|
150
|
Metformin Is Associated With Higher Relative Abundance of Mucin-Degrading Akkermansia muciniphila and Several Short-Chain Fatty Acid-Producing Microbiota in the Gut. Int J Chronic Dis 2016; 2016:7030795. [PMID: 28004036 PMCID: PMC5143720 DOI: 10.1155/2016/7030795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/10/2016] [Accepted: 10/25/2016] [Indexed: 12/20/2022] Open
Abstract
The global obesity epidemic, dubbed “globesity” by the World Health Organisation, is a pressing public health issue. The aetiology of obesity is multifactorial incorporating both genetic and environmental factors. Recently, epidemiological studies have observed an association between microbes and obesity. Obesity-promoting microbiome and resultant gut barrier disintegration have been implicated as key factors facilitating metabolic endotoxaemia. This is an influx of bacterial endotoxins into the systemic circulation, believed to underpin obesity pathogenesis. Adipocyte dysfunction and subsequent adipokine secretion characterised by low grade inflammation, were conventionally attributed to persistent hyperlipidaemia. They were thought of as pivotal in perpetuating obesity. It is now debated whether infection and endotoxaemia are also implicated in initiating and perpetuating low grade inflammation. The fact that obesity has a prevalence of over 600 million and serves as a risk factor for chronic diseases including cardiovascular disease and type 2 diabetes mellitus is testament to the importance of exploring the role of microbes in obesity pathobiology. It is on this basis that Massachusetts General Hospital is sponsoring the Faecal Microbiota Transplant for Obesity and Metabolism clinical trial, to study the impact of microbiome composition on weight. The association of microbes with obesity, namely, adenovirus infection and metabolic endotoxaemia, is reviewed.
Collapse
|