101
|
Sun J, Borowska D, Furniss JJ, Sutton K, Macqueen DJ, Vervelde L. Cellular landscape of avian intestinal organoids revealed by single cell transcriptomics. Sci Rep 2025; 15:11362. [PMID: 40175530 PMCID: PMC11965369 DOI: 10.1038/s41598-025-95721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
Studies of the avian gastrointestinal tract, where nutrient absorption and key host-pathogen interactions occur, have been strongly enabled by the development of intestinal organoid models. Here we report a single cell transcriptomic atlas of intestinal organoid cells derived from embryos of broiler and layer chickens, capturing mesenchymal, epithelial, endothelial, immune and neuronal cell lineages. Eight inferred mesenchymal subpopulations reflect anatomically distinct intestinal layers, including fibroblasts, telocytes, myofibroblasts, smooth myocytes, pericytes, and interstitial cells of Cajal. Identified heterogeneity within the epithelial lineage included enterocytes, goblet cells, Paneth cells, tuft cells, and diverse enteroendocrine cell subtypes. Additionally, we identified candidate macrophages, monocytes, γδ T cells, NK cells and granulocytes. Layer and broiler organoids showed significant differences in cell-specific transcriptome, most pronounced in epithelial cells, pointing to divergent selection on intestinal physiology. Our analysis finally provides a catalogue of novel cell marker genes to enable future research of chicken intestinal organoids.
Collapse
Affiliation(s)
- Jianxuan Sun
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Dominika Borowska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - James J Furniss
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Kate Sutton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK.
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK.
- Royal GD, Deventer, The Netherlands.
| |
Collapse
|
102
|
Roberts LB, Kelly AM, Hepworth MR. There's no place like home: How local tissue microenvironments shape the function of innate lymphoid cells. Mucosal Immunol 2025; 18:279-289. [PMID: 39900201 DOI: 10.1016/j.mucimm.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Innate lymphoid cells (ILC) have emerged as critical immune effectors with key roles in orchestrating the wider immune response. While ILC are relatively rare cells they are found enriched within discrete microenvironments, predominantly within barrier tissues. An emerging body of evidence implicates complex and multi-layered interactions between cell types, tissue structure and the external environment as key determinants of ILC function within these niches. In this review we will discuss the specific components that constitute ILC-associated microenvironments and consider how they act to determine health and disease. The development of holistic, integrated models of ILC function within complex tissue environments will inform new understanding of the contextual cues and mechanisms that determine the protective versus disease-causing roles of this immune cell family.
Collapse
Affiliation(s)
- Luke B Roberts
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Alanna M Kelly
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Matthew R Hepworth
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom.
| |
Collapse
|
103
|
Xu C, Yang L, Cheng T, Wang Z, Liu C, Shao J. Sodium Houttuyfonate Ameliorates DSS-induced Colitis Aggravated by Candida albicans through Dectin-1/NF-κB/miR-32-5p/NFKBIZ Axis Based on Intestinal microRNA Profiling. Inflammation 2025; 48:820-838. [PMID: 38963571 DOI: 10.1007/s10753-024-02091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Our previous research indicated that Sodium houttuyfonate (SH) can effectively ameliorate dextran sulfate sodium (DSS)-induced colitis exacerbated by Candida albicans. However, the underlying protective mechanism of SH remains unclear. Therefore, in this study, a mice colitis model was infected with C. albicans, and the total colonic miRNAs were assessed. Furthermore, the differentially expressed miRNAs were enriched, clustered, and analyzed. Moreover, based on the dual luciferase analysis of NFKBIZ modulation by miR-32-5p, the in vitro and in vivo therapeutic effects of SH on inflammatory response, fungal burden, oxidative stress, and apoptosis were assessed at transcriptional and translational levels in the presence of agonist and antagonist. A total of 1157 miRNAs were identified, 84 of which were differentially expressed. Furthermore, qRT-PCR validated that SH treatment improved 17 differentially expressed miRNAs with > fourfold upregulation or > sixfold downregulation. Similar to most differentially altered miRNA, C. albicans significantly increased Dectin-1, NF-κB, TNF-α, IL-1β, IL-17A, and decreased miR-32-5p which negatively targeted NFKBIZ. In addition, SH treatment reduced inflammatory response and fungal burden in a colitis model with C. albicans infection. Further analyses indicated that in C. albicans infected Caco2 cells, SH inhibited fungal growth, oxidative stress, and apoptosis by increasing Dectin-1, NF-κB, NFKBIZ, TNF-α, IL-1β, IL-17A, and decreasing miR-32-5p. Therefore, SH can ameliorate the severity of colitis aggravated by C. albicans via the Dectin-1/NF-κB/miR-32-5p/NFKBIZ axis.
Collapse
Affiliation(s)
- Chen Xu
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Liu Yang
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Ting Cheng
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Zixu Wang
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Chengcheng Liu
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China
| | - Jing Shao
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 433 Room, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, P. R. China.
| |
Collapse
|
104
|
Feng X, Andersson T, Flüchter P, Gschwend J, Berest I, Muff JL, Lechner A, Gondrand A, Westermann P, Brander N, Carchidi D, De Tenorio JC, Pan T, Boehm U, Klose CSN, Artis D, Messner CB, Leinders-Zufall T, Zufall F, Schneider C. Tuft cell IL-17RB restrains IL-25 bioavailability and reveals context-dependent ILC2 hypoproliferation. Nat Immunol 2025; 26:567-581. [PMID: 40074948 PMCID: PMC11957993 DOI: 10.1038/s41590-025-02104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025]
Abstract
The tuft cell-group 2 innate lymphoid cell (ILC2) circuit orchestrates rapid type 2 responses upon detecting microbially derived succinate and luminal helminths. Our findings delineate key mechanistic steps involving IP3R2 engagement and Ca2+ flux, governing interleukin-25 (IL-25) production by tuft cells triggered by succinate detection. While IL-17RB has a pivotal intrinsic role in ILC2 activation, it exerts a regulatory function in tuft cells. Tuft cells exhibit constitutive Il25 expression, placing them in an anticipatory state that facilitates rapid production of IL-25 protein for ILC2 activation. Tuft cell IL-17RB is crucial for restraining IL-25 bioavailability, preventing excessive tonic ILC2 stimulation due to basal Il25 expression. Supraoptimal ILC2 stimulation by IL-25 resulting from tuft cell Il17rb deficiency or prolonged succinate exposure induces a state of hypoproliferation in ILC2s, also observed in chronic helminth infection. Our study offers critical insights into the regulatory dynamics of IL-25 in this circuit, highlighting the delicate tuning required for responses to diverse luminal states.
Collapse
Grants
- R01 AR070116 NIAMS NIH HHS
- R01 AI095466 NIAID NIH HHS
- SPP1937 - KL 2963/3-1 and KL 2963/2-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- CRC/TRR 241 Project-ID 375876048 Deutsche Forschungsgemeinschaft (German Research Foundation)
- R01 DK132244 NIDDK NIH HHS
- R01 DK126871 NIDDK NIH HHS
- Sonderforschungsbereich-Transregio TRR 152 Deutsche Forschungsgemeinschaft (German Research Foundation)
- TRR 152 Deutsche Forschungsgemeinschaft (German Research Foundation)
- R01 AI151599 NIAID NIH HHS
- 194216 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- U01 AI095608 NIAID NIH HHS
- R01 AI172027 NIAID NIH HHS
- FOR2599 Project-ID 22359157 Deutsche Forschungsgemeinschaft (German Research Foundation)
- Peter Hans Hofschneider Professorship for Molecular Medicine; Foundation for Research in Science and the Humanities at the University of Zurich; Olga Mayenfisch Foundation
- UZH Candoc Grant
- «Personenfoerderung» Program of the Department of Surgery at the University Hospital Basel
- Leopoldina Postdoctoral Fellowship (LPDS 2022-07)
- Jill Roberts Institute for Research in IBD, Kenneth Rainin Foundation, the Sanders Family Foundation, Rosanne H. Silbermann Foundation, CURE for IBD, the Allen Discovery Center program, a Paul G. Allen Frontiers Group advised program of the Paul G. Allen Family Foundation, and the US National Institutes of Health (DK126871, AI151599, AI095466, AI095608, AR070116, AI172027, DK132244)
- Swiss canton of Grisons, The LOOP Zurich, and the Uniscientia Stiftung
Collapse
Affiliation(s)
- Xiaogang Feng
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Tilde Andersson
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Pascal Flüchter
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Julia Gschwend
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Ivan Berest
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Julian L Muff
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Department of Pediatric Surgery, University Children's Hospital of Basel, Basel, Switzerland
| | - Antonie Lechner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Aurelia Gondrand
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Patrick Westermann
- Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Nina Brander
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Daniele Carchidi
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Tianlang Pan
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS) and Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
| | - Christoph S N Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christoph B Messner
- Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | | |
Collapse
|
105
|
Chen D, Xu S, Li S, Wang Q, Li H, He D, Chen Y, Xu H. The multi-organ landscape of B cells highlights dysregulated memory B cell responses in Crohn's disease. Natl Sci Rev 2025; 12:nwaf009. [PMID: 40160682 PMCID: PMC11951101 DOI: 10.1093/nsr/nwaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 04/02/2025] Open
Abstract
Crohn's disease (CD) is a prevalent type of inflammatory bowel disease (IBD) with dysregulated antibody responses. However, there is a lack of comprehensive analysis of B cell responses in CD. Here, we collected B cells from the small intestine, colon and blood of CD patients and control subjects. Through the coupled analysis of transcriptome and immunoglobulin (Ig) gene in individual cells, we characterized the cellular composition, transcriptome and Ig clonotype in different B cell subtypes. We observed shared disruptions in plasma cell (PC) responses between different IBD subtypes. We revealed heterogeneity in memory B cells (MBCs) and showed a positive correlation between gut resident-like MBCs and disease severity. Furthermore, our clonotype analysis demonstrated an increased direct differentiation of MBCs into PCs in CD patients. Overall, this study demonstrates significantly altered B cell responses associated with chronic inflammation during CD and highlights the potential role of mucosal MBCs in CD pathogenesis.
Collapse
Affiliation(s)
- Dianyu Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Song Xu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shuyan Li
- Department of Nursing, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qiuying Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Hui Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Danyang He
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yan Chen
- Center for Inflammatory Bowel Diseases, Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Heping Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| |
Collapse
|
106
|
Li Y, Dang X, Chen R, Teng Z, Wang J, Li S, Yue Y, Mitchell BL, Zeng Y, Yao YG, Li M, Liu Z, Yuan Y, Li T, Zhang Z, Luo XJ. Cross-ancestry genome-wide association study and systems-level integrative analyses implicate new risk genes and therapeutic targets for depression. Nat Hum Behav 2025; 9:806-823. [PMID: 39994458 DOI: 10.1038/s41562-024-02073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/23/2024] [Indexed: 02/26/2025]
Abstract
Deciphering the genetic architecture of depression is pivotal for characterizing the associated pathophysiological processes and development of new therapeutics. Here we conducted a cross-ancestry genome-wide meta-analysis on depression (416,437 cases and 1,308,758 controls) and identified 287 risk loci, of which 49 are new. Variant-level fine mapping prioritized potential causal variants and functional genomic analysis identified variants that regulate the binding of transcription factors. We validated that 80% of the identified functional variants are regulatory variants, and expression quantitative trait loci analysis uncovered the potential target genes regulated by the prioritized risk variants. Gene-level analysis, including transcriptome and proteome-wide association studies, colocalization and Mendelian randomization-based analyses, prioritized potential causal genes and drug targets. Gene prioritization analyses highlighted likely causal genes, including TMEM106B, CTNND1, AREL1 and so on. Pathway analysis indicated significant enrichment of depression risk genes in synapse-related pathways. Finally, knockdown of Tmem106b in mice resulted in depression-like behaviours, supporting the involvement of Tmem106b in depression. Our study identified new risk loci, likely causal variants and genes for depression, providing important insights into the genetic architecture of depression and potential therapeutic targets.
Collapse
Affiliation(s)
- Yifan Li
- Department of Psychiatry and Psychosomatics, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Southeast University, Nanjing, China
| | - Xinglun Dang
- Department of Psychiatry and Psychosomatics, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Southeast University, Nanjing, China
| | - Rui Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhaowei Teng
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Yunnan Provincial Department of Education Gut Microbiota Transplantation Engineering Research Center, Kunming, China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yingying Yue
- Department of Psychiatry and Psychosomatics, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Southeast University, Nanjing, China
| | - Brittany L Mitchell
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Yong Zeng
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Yunnan Provincial Department of Education Gut Microbiota Transplantation Engineering Research Center, Kunming, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yonggui Yuan
- Department of Psychiatry and Psychosomatics, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Southeast University, Nanjing, China.
| | - Tao Li
- Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhijun Zhang
- Department of Psychiatry and Psychosomatics, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Southeast University, Nanjing, China.
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Xiong-Jian Luo
- Department of Psychiatry and Psychosomatics, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
107
|
Hu J, Liu F, Zhang J, Yin L, Cao W, Xu W, Chang Y, Wang Y, Wang J, Hou Y, Liu L, Chen S, Zhu G, Jiang J, Wang Z, Wei GH, He HH, Gu D, Chen K, Ren S. Spatially resolved transcriptomic analysis of the adult human prostate. Nat Genet 2025; 57:922-933. [PMID: 40169792 DOI: 10.1038/s41588-025-02139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/21/2025] [Indexed: 04/03/2025]
Abstract
The prostate is an organ characterized by significant spatial heterogeneity. To better understand its intricate structure and cellular composition, we constructed a comprehensive single-cell atlas of the adult human prostate. Our high-resolution mapping effort identified 253,381 single cells and 34,876 nuclei sampled from 11 patients who underwent radical resection of bladder cancer, which were categorized into 126 unique subpopulations. This work revealed various new cell types in the human prostate and their specific spatial localization. Notably, we discovered four distinct acini, two of which were tightly associated with E-twenty-six transcription factor family (ETS)-fusion-negative prostate cancer. Through the integration of spatial, single-cell and bulk-seq analyses, we propose that two specific luminal cell types could serve as the common origins of prostate cancer. Additionally, our findings suggest that zone-specific fibroblasts may contribute to the observed heterogeneity among luminal cells. This atlas will serve as a valuable reference for studying prostate biology and diseases such as prostate cancer.
Collapse
Affiliation(s)
- Junyi Hu
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jing Zhang
- Department of Pathology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Yin
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wanli Cao
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yifan Chang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ye Wang
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jian Wang
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yaxin Hou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lilong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sujun Chen
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Guanghui Zhu
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Junhui Jiang
- Translational Research Laboratory for Urology, Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, China
| | - Zixian Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Gong-Hong Wei
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Di Gu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
108
|
Qin N, Liu H, Wang X, Liu Y, Chang H, Xia X. Sargassum fusiforme polysaccharides protect mice against Citrobacter rodentium infection via intestinal microbiota-driven microRNA-92a-3p-induced Muc2 production. Int J Biol Macromol 2025; 300:140271. [PMID: 39863236 DOI: 10.1016/j.ijbiomac.2025.140271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Sargassum fusiforme, widely consumed in Asian countries, has been proven to have various biological activities. However, the impacts and mechanisms of Sargassum fusiforme polysaccharides (SFPs) on intestinal bacterial infection are not yet fully understood. Our findings indicate that SFPs pretreatment ameliorates intestinal inflammation by reducing C. rodentium colonization, increasing colon length and levels of IL-10 and IL-22, decreasing IL-1β, IL-6, TNF-α, and IL-17 levels, inhibiting colonic crypt elongation and hyperplasia, and enhancing the intestinal mucosal barrier. The protective effects against intestinal bacterial infection are linked to enhanced clearance of C. rodentium and improvements in the intestinal mucosal barrier and C. rodentium-induced intestinal microbiota dysbiosis. Fecal microbiota transplantation experiments were conducted to evaluate the functional impact of microbiota induced by SFPs. The results suggest that intestinal microbiota modified by SFPs effectively countered C. rodentium infection. In addition, our study identified that miRNA-92a-3p is partially complementary to the 3'-UTR of the Notch1 gene, thereby repressing the Notch1-Hes1 signaling pathway and enhancing Muc2 secretion. Taken together, these findings reveal that SFPs protect mice from C. rodentium infection by activating the miR-92a-3p/Notch1-Hes1 regulatory axis driven by the intestinal microbiota, which stimulates Muc2 production to maintain intestinal barrier homeostasis.
Collapse
Affiliation(s)
- Ningbo Qin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Hongxu Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xinru Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hong Chang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaodong Xia
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
109
|
Li W, Yang T, Wang N, Li B, Meng C, Yu K, Zhou X, Cao R, Cui S. Maladaptive Peripheral Ketogenesis in Schwann Cells Mediated by CB 1R Contributes to Diabetic Neuropathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414547. [PMID: 39887953 PMCID: PMC11967812 DOI: 10.1002/advs.202414547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes. Although studies have previously investigated metabolic disruptions in the peripheral nervous system (PNS), the exact metabolic mechanisms underlying DPN remain largely unknown. Herein, a specific form of metabolic remodeling involving aberrant ketogenesis within Schwann cells (SCs) in streptozotocin (STZ)-induced type I diabetes mellitus is identified. The PNS adapts poorly to such aberrant ketogenesis, resulting in disrupted energy metabolism, mitochondrial damage, and homeostatic decompensation, ultimately contributing to DPN. Additionally, the maladaptive peripheral ketogenesis is highly dependent on the cannabinoid type-1 receptor (CB1R)-Hmgcs2 axis. Silencing CB1R reprogrammed the metabolism of SCs by blocking maladaptive ketogenesis, resulting in rebalanced energy metabolism, reduced histopathological changes, and improved neuropathic symptoms. Moreover, this metabolic reprogramming can be induced pharmacologically using JD5037, a peripheral CB1R blocker. These findings revealed a new metabolic mechanism underlying DPN, and promoted CB1R as a promising therapeutic target for DPN.
Collapse
Affiliation(s)
- Weizhen Li
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceChangchun130033China
| | - Tuo Yang
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceChangchun130033China
| | - Ningning Wang
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceChangchun130033China
| | - Baolong Li
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceChangchun130033China
| | - Chuikai Meng
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceChangchun130033China
| | - Kaiming Yu
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceChangchun130033China
| | - Xiongyao Zhou
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceChangchun130033China
| | - Rangjuan Cao
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceChangchun130033China
| | - Shusen Cui
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceChangchun130033China
| |
Collapse
|
110
|
Yan C, Dong T, Shan Y, Zhao B, Yang H, Cai Y, Li S, Liu Q, Chu Y, Hao H, Cheng Z, Liu M, Zhang Y. Mycoplasma ovipnuemoniae impairs the immune response of sheep and suppresses neutrophil function by inhibiting S100A9. Vet Microbiol 2025; 303:110446. [PMID: 40022823 DOI: 10.1016/j.vetmic.2025.110446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Mycoplasma pneumonia is a chronic respiratory disease that seriously affects the health of sheep. To date, little information is available about the damage caused by Mycoplasma ovipneumoniae (MO) pneumonia to host lungs. Here, after sheep were infected with MO for 28 days, severe inflammatory reactions and pathological damage occurred. By using single-cell RNA sequencing (scRNA-seq), all the transcriptome changes in 11 cell types in sheep lung tissue were systematically analyzed, and the key biological processes regulating inflammation and immunity were identified. Moreover, we constructed both intercellular communication models and differential expression maps of key regulatory genes for each cell subgroup. We also specifically focused on the response of T cell subpopulations and neutrophils to MO infection. Long-term infection may affect an organism's immune response, inhibit intercellular communication, and highlight the important role of the cyclophilin A (CypA) and macrophage migration inhibitory factor (MIF) pathways in intercellular communication. Notably, MO infection decreased the toxicity of CD8 effector T cells and depleted regulatory T cells, thus inhibiting normal cell function. Subsequently, emphasis was placed on the important role of the neutrophil marker gene S100A9 in promoting neutrophil clearance of MO through activation of the ERK signaling pathway and reactive oxygen species (ROS) burst in vitro. These results contribute to understanding the progression of MO infection in the lungs and provide a rich database on the molecular basis of the response to different cell types in MO infection.
Collapse
Affiliation(s)
- Chenbo Yan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianning Dong
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiyi Shan
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bingru Zhao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanglai Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiuyue Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Huafang Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Zilong Cheng
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Maojun Liu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
111
|
Lowery FJ, Goff SL, Gasmi B, Parkhurst MR, Ratnam NM, Halas HK, Shelton TE, Langhan MM, Bhasin A, Dinerman AJ, Dulemba V, Goldlust IS, Gustafson AM, Hakim AA, Hitscherich KJ, Kenney LM, Levy L, Rault-Wang JG, Bera A, Ray S, Seavey CD, Hoang CD, Hernandez JM, Gartner JJ, Sindiri S, Prickett TD, McIntyre LS, Krishna S, Robbins PF, Klemen ND, Kwong MLM, Yang JC, Rosenberg SA. Neoantigen-specific tumor-infiltrating lymphocytes in gastrointestinal cancers: a phase 2 trial. Nat Med 2025:10.1038/s41591-025-03627-5. [PMID: 40169866 DOI: 10.1038/s41591-025-03627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025]
Abstract
Adoptive transfer of unselected autologous tumor-infiltrating lymphocytes (TILs) has mediated meaningful clinical responses in patients with metastatic melanoma but not in cancers of gastrointestinal epithelial origin. In an evolving single-arm phase 2 trial design, TILs were derived from and administered to 91 patients with treatment-refractory mismatch repair proficient metastatic gastrointestinal cancers in a schema with lymphodepleting chemotherapy and high-dose interleukin-2 (three cohorts of an ongoing trial). The primary endpoint of this study was the objective response rate as measured using Response Evaluation Criteria in Solid Tumors 1.0; safety was a descriptive secondary endpoint. In the pilot phase, no clinical responses were observed in 18 patients to bulk, unselected TILs; however, when TILs were screened and selected for neoantigen recognition (SEL-TIL), three responses were seen in 39 patients (7.7% (95% confidence interval (CI): 2.7-20.3)). Based on the high levels of programmed cell death protein 1 in the infused TILs, pembrolizumab was added to the regimen (SEL-TIL + P), and eight objective responses were seen in 34 patients (23.5% (95% CI: 12.4-40.0)). All patients experienced transient severe hematologic toxicities from chemotherapy. Seven (10%) patients required critical care support. Exploratory analyses for laboratory and clinical correlates of response were performed for the SEL-TIL and SEL-TIL + P treatment arms. Response was associated with recognition of an increased number of targeted neoantigens and an increased number of administered CD4+ neoantigen-reactive TILs. The current strategy (SEL-TIL + P) exceeded the parameters of the trial design for patients with colorectal cancer, and an expansion phase is accruing. These results could potentially provide a cell-based treatment in a population not traditionally expected to respond to immunotherapy. ClinicalTrials.gov identifier: NCT01174121 .
Collapse
Affiliation(s)
- Frank J Lowery
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Stephanie L Goff
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA.
| | - Billel Gasmi
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Maria R Parkhurst
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Nivedita M Ratnam
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Hyunmi K Halas
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Thomas E Shelton
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Michelle M Langhan
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Aarushi Bhasin
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Aaron J Dinerman
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Victoria Dulemba
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Ian S Goldlust
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Alexandra M Gustafson
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Abraham A Hakim
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Kyle J Hitscherich
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Lisa M Kenney
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Lior Levy
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Juliette G Rault-Wang
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Alakesh Bera
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Satyajit Ray
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Courtney D Seavey
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Chuong D Hoang
- National Cancer Institute, Center for Cancer Research, Thoracic Surgery Branch, Bethesda, MD, USA
| | - Jonathan M Hernandez
- National Cancer Institute, Center for Cancer Research, Surgical Oncology Program, Bethesda, MD, USA
| | - Jared J Gartner
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Sivasish Sindiri
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Todd D Prickett
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Lori S McIntyre
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Sri Krishna
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Paul F Robbins
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Nicholas D Klemen
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Mei Li M Kwong
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - James C Yang
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Steven A Rosenberg
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA.
| |
Collapse
|
112
|
Pepin ME, Schwartzman WE, Fang S, Vellarikkal SK, Atri DS, Reddy A, Xu Q, Hamel AR, Billaud M, Segrè AV, Gupta RM. Integrative analysis of single-cell transcriptomics and genetic associations identify cell states associated with vascular disease. Atherosclerosis 2025; 403:119108. [PMID: 40120433 DOI: 10.1016/j.atherosclerosis.2025.119108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/06/2024] [Accepted: 01/08/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Vascular diseases are accompanied by alterations in cellular phenotypes which underlie disease pathogenesis, with single-cell technologies aiding in the discovery of cellular heterogeneity among endothelial cell (EC) and vascular smooth muscle cell (VSMC) populations. In atherosclerotic disease, VSMCs are hypothesized to transition between contractile and synthetic states; however, the specific vascular subpopulations and intermediate cell states responsible for early vascular dysfunction remain unclear. METHODS We integrated newly generated and published single-nuclear RNA-sequencing (snRNA-seq) datasets to analyze normal (n = 7), aneurysmal (n = 9), and atherosclerotic (n = 2) flash-frozen human ascending thoracic aortas. Cell types and subtypes were defined using both top marker genes and canonical gene markers. Disease enrichment and relevant cell types were identified using newly developed computational tools to integrate GWAS data from multiple vascular disease-relevant studies with the single nuclei aortic expression profiles. RESULTS Nuclear dissociation and snRNA-seq identified ten distinct transcriptomic clusters from the integrated analysis representing all major vascular cell populations. Three distinct VSMC populations emerged that exhibited differential expression of extracellular matrix, contractile and pro-proliferative genes. Aneurysmal specimens were enriched for one fibroblast and one VSMC subpopulation compared to healthy tissue. RNA-trajectory analysis inferred a phenotypic continuum of gene expression between VSMC A and VSMC B or C and between two of the identified fibroblast types. VSMCs and Fibroblast C exhibited the greatest cell type-specific enrichment of genes mapped to GWAS loci for coronary artery disease (CAD), blood pressure, and migraine. Cell type-specific enrichment scores were more robust among the transcriptional profiles from non-diseased vascular tissue. CONCLUSIONS Our use of single-cell isolation and new computational methods prioritizes the cell types that most contribute to vascular disease pathogenesis. Specifically, tissue dissociation and single-nuclear transcriptomics better represent all vascular cell types, from which we demonstrate enrichment of pro-proliferative VSMCs in TAA and further implicate phenotypic switching as a likely pathologic mechanism. Integrated analysis of cell-specific gene expression and vascular disease GWAS data implicate genes and pathways associated with fibroblast and VSMC cell-state transitions.
Collapse
MESH Headings
- Humans
- Single-Cell Analysis
- Transcriptome
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Profiling/methods
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Male
- Aorta, Thoracic/pathology
- Aorta, Thoracic/metabolism
- Female
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/metabolism
- Genome-Wide Association Study
- RNA-Seq
Collapse
Affiliation(s)
- Mark E Pepin
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, MA, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - William E Schwartzman
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, MA, USA
| | - Shi Fang
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, MA, USA
| | - Shamsudheen K Vellarikkal
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, MA, USA
| | - Deepak S Atri
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, MA, USA
| | - Ankith Reddy
- Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, MA, USA
| | - Qiaohan Xu
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
| | - Andrew R Hamel
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Marie Billaud
- Division of Cardiothoracic Surgery, Brigham & Women's Hospital, Boston, MA, USA
| | - Ayellet V Segrè
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rajat M Gupta
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, MA, USA.
| |
Collapse
|
113
|
Diop M, Davidson BR, Fragiadakis GK, Sirota M, Gaudillière B, Combes AJ. Single-cell omics technologies - Fundamentals on how to create single-cell looking glasses for reproductive health. Am J Obstet Gynecol 2025; 232:S1-S20. [PMID: 40253074 DOI: 10.1016/j.ajog.2024.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/18/2024] [Accepted: 08/24/2024] [Indexed: 04/21/2025]
Abstract
Over the last decade, in line with the goals of precision medicine to offer individualized patient care, various single-cell technologies measuring gene and proteomic expression in various tissues have rapidly advanced to study health and disease at the single cell level. Precisely understanding cell composition, position within tissues, signaling pathways, and communication can reveal insights into disease mechanisms and systemic changes during development, pregnancy, and gynecologic disorders across the lifespan. Single-cell technologies dissect the complex cellular compositions of reproductive tract tissues, providing insights into mechanisms behind reproductive tract dysfunction which impact wellness and quality of life. These technologies aim to understand basic tissue and organ functions and, clinically, to develop novel diagnostics, early disease biomarkers, and cell-targeted therapies for currently suboptimally-treated disorders. Increasingly, they are applied to pregnancy and pregnancy disorders, gynecologic malignancies, and uterine and ovarian physiology and aging, which are discussed in more detail in manuscripts in this special issue of AJOG. Here, we review recent applications of single-cell technologies to the study of gynecologic disorders and systemic biological adaptations during fetal development, pregnancy, and across a woman's lifespan. We discuss sequencing- and proteomic-based single-cell methods, as well as spatial transcriptomics and high-dimensional proteomic imaging, describing each technology's mechanism, workflow, quality control, and highlighting specific benefits, drawbacks, and utility in the context of reproductive medicine. We consider analytical methods for the high-dimensional single-cell data generated, highlighting statistical constraints and recent computational techniques for downstream clinical translation. Overall, current and evolving single-cell "looking glasses", or perspectives, have the potential to transform fundamental understanding of women's health and reproductive disorders and alter the trajectory of clinical practice and patient outcomes in the future.
Collapse
Affiliation(s)
- Maïgane Diop
- Program in Immunology, Stanford University School of Medicine, Stanford, CA; Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA
| | | | - Gabriela K Fragiadakis
- UCSF CoLabs, University of California, San Francisco, CA; Bakar ImmunoX Initiative, University of California, San Francisco, CA; Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA.
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA; Department of Pediatrics, University of California, San Francisco, CA.
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA.
| | - Alexis J Combes
- UCSF CoLabs, University of California, San Francisco, CA; Department of Pathology, University of California, San Francisco, CA; Bakar ImmunoX Initiative, University of California, San Francisco, CA; Division of Gastroenterology, Department of Medicine, University of California, San Francisco, CA.
| |
Collapse
|
114
|
Shan Y, Hu H, Chu Y. Cross-ancestry genome-wide association study identifies new susceptibility genes for preeclampsia. BMC Pregnancy Childbirth 2025; 25:379. [PMID: 40170147 PMCID: PMC11959822 DOI: 10.1186/s12884-025-07534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Preeclampsia (PE) is a heterogeneous, multi-organ pregnancy disorder that poses a significant health burden globally, with its pathogenesis remaining unclear. This study aimed to identify novel susceptibility genes for PE through a cross-ancestry genome-wide association study (GWAS). METHODS We performed meta-analysis to summarize the PE GWAS data from the United Kingdom, Finland, and Japan. Subsequently, the multi-ancestry sum of the single-effects model was used to perform cross-ancestry fine-mapping. The functional mapping and annotation (FUMA)-expression quantitative trait loci (eQTL) mapping method, transcriptome-wide association study (TWAS)- functional summary-based imputation (FUSION) method, genome-wide complex trait analysis (GCTA)-multivariate set-based association test (mBAT)-combo method, and polygenic priority score (PoPS) method were employed to screen for candidate genes. We utilized biomarker expression level imputation using summary-level statistics (BLISS), based on summary-level protein quantitative trait loci (pQTL) data, to conduct a multi-ancestry proteome-wide association study (PWAS) analysis, followed by candidate drug prediction. RESULTS Six novel susceptibility genes associated with PE risk were identified: NPPA, SWAP70, NPR3, FGF5, REPIN1, and ACAA1. High expression of the NPPA and SWAP70 and low expression of the remaining genes were associated with a reduced risk of PE. Furthermore, we identified drugs that target NPPA, NPR3, and REPIN1. CONCLUSIONS Our study identified NPPA, SWAP70, NPR3, FGF5, REPIN1, and ACAA1 as novel genes whose predicted expression was linked to the risk of PE, offering new insights into the genetic framework of this condition.
Collapse
Affiliation(s)
- Yuping Shan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Hu
- Clinical Medicine, Nantong University, Nantong, China
| | - Yijing Chu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
115
|
Wei X, Wu J, Li G, Liu J, Wu X, He C. scPEDSSC: proximity enhanced deep sparse subspace clustering method for scRNA-seq data. PLoS Comput Biol 2025; 21:e1012924. [PMID: 40294099 PMCID: PMC12036905 DOI: 10.1371/journal.pcbi.1012924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 03/03/2025] [Indexed: 04/30/2025] Open
Abstract
It is a significant step for single cell analysis to identify cell types through clustering single-cell RNA sequencing (scRNA-seq) data. However, great challenges still remain due to the inherent high-dimensionality, noise, and sparsity of scRNA-seq data. In this study, scPEDSSC, a deep sparse subspace clustering method based on proximity enhancement, is put forward. The self-expression matrix (SEM), learned from the deep auto-encoder with two part generalized gamma (TPGG) distribution, are adopted to generate the similarity matrix along with its second power. Compared with eight state-of-the-art single-cell clustering methods on twelve real biological datasets, the proposed method scPEDSSC can achieve superior performance in most datasets, which has been verified through a number of experiments.
Collapse
Affiliation(s)
- Xiaopeng Wei
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin, Guangxi, China
- College of Computer Science and Engineering, Guangxi Normal University, Guilin, Guangxi, China
| | - Jingli Wu
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin, Guangxi, China
- College of Computer Science and Engineering, Guangxi Normal University, Guilin, Guangxi, China
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin, Guangxi, China
| | - Gaoshi Li
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin, Guangxi, China
- College of Computer Science and Engineering, Guangxi Normal University, Guilin, Guangxi, China
| | - Jiafei Liu
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin, Guangxi, China
- College of Computer Science and Engineering, Guangxi Normal University, Guilin, Guangxi, China
| | - Xi Wu
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin, Guangxi, China
- College of Computer Science and Engineering, Guangxi Normal University, Guilin, Guangxi, China
| | - Chang He
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin, Guangxi, China
- College of Computer Science and Engineering, Guangxi Normal University, Guilin, Guangxi, China
| |
Collapse
|
116
|
Zhang Y, Chen S, Chen G, Zhou L, Zhou G, Yu X, Yuan L, Deng W, Wang Z, Li J, Tu Y, Zhang D, li Y, Sammad A, Zhu X, Yin K. The Type III Secretion System (T3SS) of Escherichia Coli Promotes Atherosclerosis in Type 2 Diabetes Mellitus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413296. [PMID: 39807021 PMCID: PMC12005784 DOI: 10.1002/advs.202413296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Large-scale studies indicate a strong relationship between the gut microbiome, type 2 diabetes mellitus (T2DM), and atherosclerotic cardiovascular disease (ASCVD). Here, a higher abundance of the type III secretion system (T3SS) virulence factors of Enterobacteriaceae/Escherichia-Shigella in patients with T2DM-related-ASCVD, which correlates with their atherosclerotic stenosis is reported. Overexpression of T3SS via Citrobacter rodentium (CR) infection in Apoe-/- T2DM mice exacerbated atherosclerotic lesion formation and increased gut permeability. Non-targeted metabolomic and proteomic analysis of mouse serum showed that T3SS caused abnormal glycerophospholipid metabolism in mice. Proteomics, RNA sequencing, and functional analyses showed that T3SS induced ferroptosis in intestinal epithelial cells, partly due to increased expression of ferritin heavy chains (FTH1). This findings first demonstrated that T3SS increases ferroptosis in intestinal epithelial cells, via disrupting the intestinal barrier and upregulation of phosphatidylcholine, thereby exacerbating T2DM-related ASCVD.
Collapse
Affiliation(s)
- Yao‐Yuan Zhang
- Department of General PracticeThe Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Drug Non‐Clinical Evaluation and ResearchGuangzhou510515China
| | - Song‐Tao Chen
- Department of General PracticeThe Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510515China
| | - Gang Chen
- Department of General PracticeThe Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510515China
| | - Le Zhou
- Department of General PracticeThe Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510515China
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541199China
| | - Guo‐Liang Zhou
- Department of CardiologyThe Second Affiliated Hospital of Guilin Medical UniversityGuilin541199China
| | - Xin‐Yuan Yu
- Department of General PracticeThe Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510515China
| | - Long Yuan
- Department of General PracticeThe Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510515China
| | - Wei‐Qian Deng
- Department of General PracticeThe Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510515China
| | - Zhen‐Bo Wang
- Department of General PracticeThe Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510515China
| | - Jing Li
- Department of Imaging DiagnosisZhujiang Hospital of Southern Medical UniversityGuangzhou510515China
| | - Yi‐Fu Tu
- Department of General PracticeThe Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510515China
| | - Da‐Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of PediatricsFaculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaT6G 2R3Canada
| | - Yuan li
- Department of General PracticeThe Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510515China
- Guangxi Key Laboratory of Diabetic Systems MedicineGuilin Medical UniversityGuilin541199China
| | - Abdul Sammad
- Department of General PracticeThe Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510515China
| | - Xiao Zhu
- Department of General PracticeThe Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Drug Non‐Clinical Evaluation and ResearchGuangzhou510515China
- Guangzhou Key Laboratory of Metabolic remodeling and Precise Prevention and Control of DiabetesGuangzhou510515China
| | - Kai Yin
- Department of General PracticeThe Fifth Affiliated Hospital of Southern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Drug Non‐Clinical Evaluation and ResearchGuangzhou510515China
- Guangzhou Key Laboratory of Metabolic remodeling and Precise Prevention and Control of DiabetesGuangzhou510515China
- Guangxi Clinical Research Center for Diabetes and Metabolic DiseasesThe Second Affiliated Hospital of Guilin Medical UniversityGuilin541199China
| |
Collapse
|
117
|
Ding DY, Tang Z, Zhu B, Ren H, Shalek AK, Tibshirani R, Nolan GP. Quantitative characterization of tissue states using multiomics and ecological spatial analysis. Nat Genet 2025; 57:910-921. [PMID: 40169791 PMCID: PMC11985343 DOI: 10.1038/s41588-025-02119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/05/2025] [Indexed: 04/03/2025]
Abstract
The spatial organization of cells in tissues underlies biological function, and recent advances in spatial profiling technologies have enhanced our ability to analyze such arrangements to study biological processes and disease progression. We propose MESA (multiomics and ecological spatial analysis), a framework drawing inspiration from ecological concepts to delineate functional and spatial shifts across tissue states. MESA introduces metrics to systematically quantify spatial diversity and identify hot spots, linking spatial patterns to phenotypic outcomes, including disease progression. Furthermore, MESA integrates spatial and single-cell multiomics data to facilitate an in-depth, molecular understanding of cellular neighborhoods and their spatial interactions within tissue microenvironments. Applying MESA to diverse datasets demonstrates additional insights it brings over prior methods, including newly identified spatial structures and key cell populations linked to disease states. Available as a Python package, MESA offers a versatile framework for quantitative decoding of tissue architectures in spatial omics across health and disease.
Collapse
Affiliation(s)
- Daisy Yi Ding
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Zeyu Tang
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Bokai Zhu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hongyu Ren
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Robert Tibshirani
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
118
|
Ocón B, Brulois KF, Hadeiba H, Gaafarelkhalifa M, Ayesha A, Bi Y, Xiang M, Gulman J, Kooshesh M, Pan J, Butcher EC. An SSTR2-somatostatin chemotactic axis drives T cell progenitor homing to the intestines. Nat Immunol 2025; 26:607-618. [PMID: 40140497 DOI: 10.1038/s41590-025-02097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/24/2025] [Indexed: 03/28/2025]
Abstract
Progenitors of intraepithelial T cells (IELps) migrate from the thymus to the intestines after birth where they develop into unconventional TCRγδ and TCRαβ lymphocytes in a process of extrathymic lymphopoiesis within cryptopatches. Mechanisms of IELp migration have remained unclear. Here we show that thymic IELps express the somatostatin receptor SSTR2, which contributes to their homing to the gut. IELp homing is Sstr2 dependent and correlates with neonatal induction of Sst encoding somatostatin in neuroendocrine and lamina propria stromal cells. The SSTR2 ligands somatostatin and cortistatin attract IELps in chemotaxis assays and somatostatin triggers IELp binding to the mucosal vascular addressin MAdCAM1. T cell transduction with Sstr2 confers homing to the neonatal colon. Human fetal thymic IELp-like cells express SSTR2 and intestinal stromal cells express SST at the time of initial T cell population, suggesting conserved mechanisms of progenitor seeding of the developing intestines. These results reveal an unexpected role for the SSTR2-somatostatin axis in early immune system development and describe a new role for a small peptide hormone G-protein-coupled receptor in developmental lymphocyte trafficking.
Collapse
Affiliation(s)
- Borja Ocón
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA.
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.
| | - Kevin F Brulois
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Husein Hadeiba
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mohammed Gaafarelkhalifa
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Aiman Ayesha
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Yuhan Bi
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Menglan Xiang
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jacob Gulman
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Maryam Kooshesh
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Junliang Pan
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Eugene C Butcher
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
119
|
Siegert E, Biesen R, Dzamukova M, Furth C, Probst M, Doellinger F, Walter-Rittel T, Fleischmann A, Wilhelm A, Beenken AE, Wiebe E, Pecher AC, Henes J, Florian S, Simon D, Kleyer A, Burmester GR, Keller U, Krönke J, Krönke G, Alexander T. Teclistamab in relapsed systemic sclerosis after autologous haematopoietic stem cell transplantation. Ann Rheum Dis 2025; 84:653-656. [PMID: 40000264 DOI: 10.1016/j.ard.2025.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025]
Affiliation(s)
- Elise Siegert
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Biesen
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maria Dzamukova
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Rheumatology Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Meike Probst
- Department of Infectious Diseases, Respiratory and Critical Care Medicine, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Felix Doellinger
- Department of Radiology, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thula Walter-Rittel
- Department of Radiology, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anja Fleischmann
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Rheumatology Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Artur Wilhelm
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Rheumatology Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Anne Elisabeth Beenken
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Rheumatology Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Edgar Wiebe
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ann-Christin Pecher
- Center for Interdisciplinary Rheumatology, Immunology and Autoimmune Diseases (INDIRA) and Department for Internal Medicine II (Hematology, Oncology, Rheumatology and Immunology), Universitätsklinikum Tübingen, Tübingen, Germany
| | - Jörg Henes
- Center for Interdisciplinary Rheumatology, Immunology and Autoimmune Diseases (INDIRA) and Department for Internal Medicine II (Hematology, Oncology, Rheumatology and Immunology), Universitätsklinikum Tübingen, Tübingen, Germany
| | - Stefan Florian
- Institute of Pathology, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Simon
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arnd Kleyer
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gerd-Rüdiger Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Rheumatology Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Translational Cancer Research (DKTK), Partner Site Berlin, Berlin, Germany
| | - Jan Krönke
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Translational Cancer Research (DKTK), Partner Site Berlin, Berlin, Germany
| | - Gerhard Krönke
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Rheumatology Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Rheumatology Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany.
| |
Collapse
|
120
|
Zheng Y, Gong W, Wu Z, Zhang S, Wang N, Hu Z, Shou Y, Xu T, Shen Y, Li X, Jin L, Cong W, Zhu Z. FGF21 Ameliorates Fibroblasts Activation and Systemic Sclerosis by Inhibiting CK2α/GLI2 Signaling Axis. J Invest Dermatol 2025; 145:842-853.e8. [PMID: 39182559 DOI: 10.1016/j.jid.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
Systemic sclerosis is a typical fibrotic disease of unknown etiology that is characterized by abnormal fibroblast activation and excessive deposition of extracellular matrix. Unfortunately, effective therapeutic approaches are lacking. FGF21 plays a key role in mediating a variety of biological activities. However, its specific function in systemic sclerosis is unclear. In this study, we found that the expression of FGF21 was significantly downregulated in fibrotic skin tissue and in TGF-β-stimulated fibroblasts. Furthermore, our studies demonstrated that treatment with recombinant FGF21 in the skin significantly alleviated bleomycin-induced and TBRI-activated fibrosis and inhibited the activation of fibroblasts, whereas skin fibrosis was exacerbated by deletion of FGF21. Mechanistically, FGF21 inhibits the activity of CK2α and promotes the degradation of GLI2. In conclusion, these results indicate that FGF21 attenuates skin fibrosis through the CK2α/GLI2 signaling pathway and therefore may be a potential therapeutic target for systemic sclerosis.
Collapse
Affiliation(s)
- Yeyi Zheng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China; Ningbo Key Laboratory of Skin Science, Ningbo College of Health Sciences, Ningbo, People's Republic of China
| | - Wenjie Gong
- Department of Pharmacy, Ningbo Women and Children's Hospital, Ningbo, People's Republic of China
| | - Zhaohang Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Siyi Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Nan Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhenyu Hu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanni Shou
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Tianpeng Xu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yingjie Shen
- School of Life Sciences, Huzhou University, Huzhou, People's Republic of China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China; Ningbo Key Laboratory of Skin Science, Ningbo College of Health Sciences, Ningbo, People's Republic of China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhongxin Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
121
|
Huang C, Lyu C, Mok HL, Xu Y, Cheng KW, Zhang C, Hu D, Zhu L, Lin C, Chen X, Tan HY, Bian Z. Tolerogenic dendritic cell-mediated regulatory T cell differentiation by Chinese herbal formulation attenuates colitis progression. J Adv Res 2025; 70:499-513. [PMID: 38677546 PMCID: PMC11976409 DOI: 10.1016/j.jare.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/31/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic inflammatory disease characterized by loss of immune tolerance to luminal antigens and progressive intestinal tissue injury. Thus, the re-establishment of immune tolerance is crucial for suppressing aberrant immune responses and UC progression. OBJECTIVES This study aimed to investigate the mechanisms underlying the action of CDD-2103 and its bioactive compounds in mediating immune regulation in mouse models of colitis. METHODS Two experimental colitis models, chronic 2,4,6-trinitrobenzene sulfonic acid (TNBS)- and T-cell transfer-induced Rag1-/- mice, were used to determine the effects of CDD-2103 on colitis progression. Single-cell transcriptome analysis was used to profile the immune landscape and its interactions after CDD-2103 treatment. Liquid chromatography-mass spectrometry (LC-MS) was used to analyze the major components interacting with lymphoid cells. A primary cell co-culture system was used to confirm the effects of bioactive component. RESULTS CDD-2103 dose-dependently suppresses the progression of colitis induced by chemicals or T cell transplantation in Rag1-/- mice. The effect of CDD-2103 is primarily attributable to an increase in the de novo generation of regulatory T cells (Tregs) in the lamina propria (LP). Single-cell transcriptomic analysis revealed that CDD-2103 treatment increased the number of tolerogenic dendritic cells (DCs). Mechanistically, CDD-2103 promoted tolerogenic DCs accumulation and function by upregulating several genes in the electron transport chain related to oxidative phosphorylation, leading to increased differentiation of Tregs. Further LC-MS analysis identified several compounds in CDD-2103, particularly those distributed within the mesenteric lymph nodes of mice. Subsequent studies revealed that palmatine and berberine promoted tolerogenic bone marrow-derived dendritic cells (BMDC)-mediated Treg differentiation. CONCLUSION Overall, our study demonstrated that the clinically beneficial effect of CDD-2103 in the treatment of UC is based on the induction of immune tolerance. In addition, this study supports berberine and palmatine as potential chemical entities in CDD-2103 that modulate immune tolerance.
Collapse
Affiliation(s)
- Chunhua Huang
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Cheng Lyu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Heung-Lam Mok
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Yiqi Xu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Ka-Wing Cheng
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Die Hu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Lin Zhu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Regions of China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China.
| | - Zhaoxiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong Special Administrative Region of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region of China.
| |
Collapse
|
122
|
Nguyen NTB, Gevers S, Kok RNU, Burgering LM, Neikes H, Akkerman N, Betjes MA, Ludikhuize MC, Gulersonmez C, Stigter ECA, Vercoulen Y, Drost J, Clevers H, Vermeulen M, van Zon JS, Tans SJ, Burgering BMT, Rodríguez Colman MJ. Lactate controls cancer stemness and plasticity through epigenetic regulation. Cell Metab 2025; 37:903-919.e10. [PMID: 39933514 DOI: 10.1016/j.cmet.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 11/04/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025]
Abstract
Tumors arise from uncontrolled cell proliferation driven by mutations in genes that regulate stem cell renewal and differentiation. Intestinal tumors, however, retain some hierarchical organization, maintaining both cancer stem cells (CSCs) and cancer differentiated cells (CDCs). This heterogeneity, coupled with cellular plasticity enabling CDCs to revert to CSCs, contributes to therapy resistance and relapse. Using genetically encoded fluorescent reporters in human tumor organoids, combined with our machine-learning-based cell tracker, CellPhenTracker, we simultaneously traced cell-type specification, metabolic changes, and reconstructed cell lineage trajectories during tumor organoid development. Our findings reveal distinctive metabolic phenotypes in CSCs and CDCs. We find that lactate regulates tumor dynamics, suppressing CSC differentiation and inducing dedifferentiation into a proliferative CSC state. Mechanistically, lactate increases histone acetylation, epigenetically activating MYC. Given that lactate's regulation of MYC depends on the bromodomain-containing protein 4 (BRD4), targeting cancer metabolism and BRD4 inhibitors emerge as a promising strategy to prevent tumor relapse.
Collapse
Affiliation(s)
- Nguyen T B Nguyen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Sira Gevers
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Rutger N U Kok
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Lotte M Burgering
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hannah Neikes
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen 6525 GA, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Ninouk Akkerman
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Marlies C Ludikhuize
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Can Gulersonmez
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Edwin C A Stigter
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Yvonne Vercoulen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Jarno Drost
- Oncode Institute, Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands
| | - Hans Clevers
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen 6525 GA, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | | | - Sander J Tans
- AMOLF, Amsterdam, the Netherlands; Bionanoscience Department, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Maria J Rodríguez Colman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
123
|
Domingo C, Busse WW, Hanania NA, Ertugrul M, Millette LA, Maio‐Twofoot T, Jaumont X, Palomares O. The Direct and Indirect Role of IgE on Airway Epithelium in Asthma. Allergy 2025; 80:919-931. [PMID: 39963805 PMCID: PMC11969325 DOI: 10.1111/all.16459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 04/05/2025]
Abstract
Asthma is a chronic airway inflammatory disorder, affecting over 350 million people worldwide, with allergic asthma being the most common form of the disease. Allergic asthma is characterized by a type 2 (T2) inflammatory response triggered by numerous allergens beginning in the airway epithelium, which acts as a physical barrier to allergens as well as other external irritants including infectious agents, and atmospheric pollutants. T2 inflammation is propagated by several key cell types including T helper 2 (Th2) cells, eosinophils, mast cells, and B cells. Immunoglobulin E (IgE), produced by B cells, is a key molecule in allergic airway disease and plays an important role in T2 inflammation, as well as being central to remodeling processes within the airway epithelium. Blocking IgE with omalizumab has been shown to be efficacious in treating allergic asthma however, the role of IgE on airway epithelial cells is less communicated. Developing a deeper explanation of the complex network of interactions between IgE and the airway epithelium will facilitate an improved understanding of asthma pathophysiology. This review discusses the indirect and direct roles of IgE on airway epithelial cells, with a focus on allergic asthma disease.
Collapse
Affiliation(s)
- Christian Domingo
- Department of Pulmonary Medicine, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT‐CERCA)Universitat Autònoma de BarcelonaSabadellSpain
| | - William W. Busse
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Nicola A. Hanania
- Section of Pulmonary, Critical Care and Sleep MedicineBaylor College of MedicineHoustonTexasUSA
| | | | | | | | | | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| |
Collapse
|
124
|
Singh VR, O'Donnell LA. Age-Stratified Treg Responses During Viral Infections of the Central Nervous System: A Literature Review. J Med Virol 2025; 97:e70315. [PMID: 40178106 PMCID: PMC11967158 DOI: 10.1002/jmv.70315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/24/2024] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
Regulatory T cells (Tregs) play a vital role in limiting inflammation and resolving the immune response after a viral infection. Within the central nervous system (CNS), Tregs are especially important for the protection of neurons, which have limited regenerative capacity, and the preservation of myelin sheaths, which support neuronal function and survival. Nevertheless, viral infections of the CNS often result in enduring neurological dysfunction, especially in more vulnerable age groups such as newborns and the elderly. Although it is appreciated that Treg activity changes with age, it is unclear how these age-dependent changes impact viral CNS infections. In this review, we explore Treg development over the life of the host and discuss evidence for age-dependent Treg responses to peripheral viral infections. We also discuss the CNS-specific roles of Tregs, where both immunomodulatory and neuroprotective functions can contribute to preservation of brain cells. Finally, we examine the current evidence for Treg activity in neurotropic infections in the context of age, and highlight gaps in our understanding of Treg function in younger and older hosts. Overall, a better understanding of age-dependent Treg activity in the CNS may reveal opportunities for therapeutic interventions tailored to the most vulnerable ages.
Collapse
Affiliation(s)
- Vivek R. Singh
- School of Pharmacy and the Graduate School of Pharmaceutical SciencesDuquesne UniversityPittsburghPennsylvaniaUSA
| | - Lauren A. O'Donnell
- School of Pharmacy and the Graduate School of Pharmaceutical SciencesDuquesne UniversityPittsburghPennsylvaniaUSA
| |
Collapse
|
125
|
Juefeng Z, Fang L, Haiying Z, Liwei L, Jianming C. Integrated microbiome and metabolomic analysis of Spodoptera litura under Metarhizium flavoviride qc1401 stress. Int Microbiol 2025; 28:721-737. [PMID: 39145832 PMCID: PMC11991939 DOI: 10.1007/s10123-024-00574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Metarhizium spp. have emerged as an alternative to chemical pesticides for protecting crops from insect pest. Here, we investigated midgut microbial community and metabolites of Spodoptera litura at three different timepoints after infection with Metarhizium flavoviride. The innate immune system of S. litura was activated with levels of polyphenol oxidase, carboxylesterase, multifunctional oxidase, and glutathione S-transferase activity significantly increasing. Exposure to the fungal pathogen also altered bacterial abundance and diversity in host's midgut, and these changes varied depending on the time elapsed since exposure. We identified more operational taxonomic units in the treated samples as compared to the control samples at all tested time points. A total of 372 metabolites were identified, and 88, 149, and 142 differentially accumulated metabolites (DAMs) were identified between the treatment and control groups at 3 timepoints after treatment, respectively. Based on the changes of DAMs in response to M. flavoviride infection at different timepoints and significantly enriched KEGG pathways, we speculated that "tyrosine metabolism," "galactose metabolism," "ATP-binding cassette transporters," "neuroactive ligand-receptor interaction," "purine metabolism," "arginine and proline metabolism," "beta-alanine metabolism," "lysosome," and "carbon metabolism" may participate in the metabolic-level defense response. An integrated pathway-level analysis of the 16S-rDNA and metabolomic data illustrated the connections and interdependencies between the metabolic responses of S. litura and the midgut microorganisms to M. flavoviride infection. This work emphasizes the value of integrated analyses of insect-pathogen interactions, provides a framework for future studies of critical microorganisms and metabolic determinants of these interactions, establishes a theoretical basis for the sustainable use of M. flavoviride.
Collapse
Affiliation(s)
- Zhang Juefeng
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.
| | - Li Fang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Zhong Haiying
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Liu Liwei
- Zhejiang Natural Museum, Hangzhou, Zhejiang, China
| | - Chen Jianming
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
126
|
Yang F, Wang L, Wang H, Zhang S, Li Y. Perspectives on photodynamic therapy combined with immunotherapy in treatment of colorectal cancer: An overview based on experimental studies. Photodiagnosis Photodyn Ther 2025; 52:104464. [PMID: 39746558 DOI: 10.1016/j.pdpdt.2024.104464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Colorectal cancer (CRC) is one of the major cancers threatening human health, with high mortality, tumor drug resistance and metastasis. Due to its advantages of non-invasive, strongly targeted and limited side effects, Photodynamic therapy (PDT) has become a promising treatment for CRC. Remarkably, PDT has been shown to activate T cell-adaptive immune response and induce immunogenic cell death (ICD). Used in combination with other treatment techniques, PDT has considerable promise in the management of colorectal cancer. In particular, the combination of PDT and tumor immunotherapy, the systemic anti-tumor immune response was enhanced more significantly. This strategy is expected to achieve a synergistic anti-tumor effect by inducing tumor cell apoptosis, regulating tumor immune microenvironment and effectively activating anti-tumor immunity during treatment process. This review focuses on the research of PDT combined with immunotherapy to improve the treatment of CRC. In most studies, a positive effect was observed for combination therapy, experimentally indicating new therapeutic opportunities for CRC.
Collapse
Affiliation(s)
- Fang Yang
- Medical College, Guangxi University, Nanning 530004, Guangxi, China
| | - Li Wang
- Medical College, Guangxi University, Nanning 530004, Guangxi, China
| | - Haiping Wang
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, China
| | - Song Zhang
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan, 430070, Hubei, China.
| | - Yixiang Li
- Medical College, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
127
|
Nakayama Y, Ihara F, Okuzaki D, Nishikawa Y, Sasai M, Yamamoto M. Toxoplasma GRA15 expression on dendritic cells inhibits B cell differentiation and antibody production. Parasitol Int 2025; 105:102995. [PMID: 39557359 DOI: 10.1016/j.parint.2024.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
One of the dense granule proteins named GRA15 in Toxoplasma gondii (T. gondii), is known to support an innate immune response in host through activation of NF-κB. However, little is known about advantages of GRA15 for parasites. By examining the role of GRA15 in the host-parasite interactions, it was clarified that GRA15 in T. gondii suppressed acquired immune responses in host. Wild-type parasite infection to C57BL/6 mice resulted in lower titers of T. gondii antibody and lower plasma cell counts compared to Δgra15 T. gondii. To identify host cells in which GRA15 acts to suppress antibody production, we generated conditional knock-in mice that express GRA15 in specific cell lineages. Anti-T. gondii antibodies were not reduced in macrophages of conditional knock-in mice after infection with Δgra15 T. gondii, while the production of T. gondii antibody was suppressed in dendritic cells of the conditional knock-in mice (CD11c-Cre/GRA15cKI). In the CD11c-Cre/GRA15cKI immunized with ovalbumin (OVA), the titers of anti-OVA antibody were reduced compared to control mice. Furthermore, the number of OVA antigen-specific T cells was also decreased in CD11c-Cre/GRA15cKI. These data showed that GRA15 in dendritic cells suppressed T cell-mediated humoral immunity. These findings might implicate the pathological significance of GRA15 and facilitate Toxoplasma vaccines production.
Collapse
Affiliation(s)
- Yuki Nakayama
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fumiaki Ihara
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Bioinformatics Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Center for Advances Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan; Center for Advances Modalities and Drug Delivery Systems, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
128
|
Erkert L, Ruder B, Kabisch M, Gamez Belmonte R, Patankar JV, Gonzalez Acera M, Schödel L, Chiriac MT, Cineus R, Gnafakis S, Leupold T, Thoma OM, Stolzer I, Taut A, Thonn V, Zundler S, Günther C, Diefenbach A, Kühl AA, Hegazy AN, Waldner M, Basic M, Bleich A, Neurath MF, Wirtz S, Becker C. TIFA renders intestinal epithelial cells responsive to microbial ADP-heptose and drives colonic inflammation in mice. Mucosal Immunol 2025; 18:453-466. [PMID: 39842611 DOI: 10.1016/j.mucimm.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
Intestinal immune homeostasis relies on intestinal epithelial cells (IECs), which provide an efficient barrier, and warrant a state of tolerance between the microbiome and the mucosal immune system. Thus, proper epithelial microbial sensing and handling of microbes is key to preventing excessive immunity, such as seen in patients with inflammatory bowel disease (IBD). To date, the molecular underpinnings of these processes remain incompletely understood. This study identifies TIFA as a driver of intestinal inflammation and an epithelial signaling hub between the microbiome and mucosal immune cells. TIFA was constitutively expressed in crypt epithelial cells and was highly induced in the intestine of mice and IBD patients with intestinal inflammation. We further identified IL-22 signaling via STAT3 as key mechanism driving TIFA expression in IECs. At the molecular level, we demonstrate that TIFA expression is essential for IEC responsiveness to the bacterial metabolite ADP-heptose. Most importantly, ADP-heptose-induced TIFA signaling orchestrates an inflammatory cellular response in the epithelium, with NF-κB and inflammasome activation, and high levels of chemokine production. Finally, mice lacking TIFA were protected from intestinal inflammation when subjected to a model of experimental colitis. In conclusion, our study implicates that targeting TIFA may be a strategy for future IBD therapy.
Collapse
Affiliation(s)
- Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Barbara Ruder
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Melanie Kabisch
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Reyes Gamez Belmonte
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Jay V Patankar
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Miguel Gonzalez Acera
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Lena Schödel
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Mircea T Chiriac
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Roodline Cineus
- Department of Gastroenterology, Infectiology and Rheumatology, Charité Universitätsmedizin Berlin, Germany
| | - Stylianos Gnafakis
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Germany
| | - Tamara Leupold
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Oana-Maria Thoma
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Astrid Taut
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Veronika Thonn
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Sebastian Zundler
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Andreas Diefenbach
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Germany
| | - Anja A Kühl
- iPATH.Berlin, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ahmed N Hegazy
- Department of Gastroenterology, Infectiology and Rheumatology, Charité Universitätsmedizin Berlin, Germany; Deutsches Rheumaforschungszentrum Berlin (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Maximilian Waldner
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.
| |
Collapse
|
129
|
Yan Z, Li Y, Chang M, Xia T, Wang Y, Yu H, Zhang L, Shen P, Bai Z, Wang N, Zhou W, Ni Z, Dou Y, Gao Y. Maintained homeostasis: LGYD facilitated the restoration of ISCs following radiation exposure by activating Hes1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156506. [PMID: 39954618 DOI: 10.1016/j.phymed.2025.156506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Radiation-induced Intestinal Injury (RIII) affects quality of life in radiotherapy patients; Liangxue Guyuan Yishen Decoction (LGYD) offers protection but requires further study on its mechanism. PURPOSE The aim of this study was to investigate the heterogeneity of cellular responses in the intestine at a single-cell level following radiation and LGYD treatment. STUDY DESIGN This study's design includes in vivo and in vitro assessments to evaluate LGYD's effects on intestinal cells post-radiation, targeting survival, recovery, and molecular pathways. METHODS Mice were categorized into four groups: LGYD group, NC group, IR group, and Am group. Each group received daily drug administrations. All groups, except for the NC group, were subjected to a single whole-body irradiation at a dose rate of 70 R/min with a source-to-skin distance of 250 cm. Subsequent experiments were conducted following the irradiation, which led to severe survival impairments in the mice. RESULTS Our findings demonstrate that LGYD intervention substantially improves survival rates following lethal doses (8.5 Gy, 70R/min) of whole-body irradiation. Moreover, LGYD expedites the recovery period for intestinal injury on the fifth day after radiation by promoting repair mechanisms within intestinal tissue, with particular focus on mitigating intestinal stem cells (ISCs) damage and immune disorders. Through both in vivo and in vitro experiments, we have discovered that LGYD effectively treats RIII by activating Hes1 transcription factor activity through its key active ingredients in drug-containing serum. This activation further upregulates the downstream Stat3 and Akt gene, thereby facilitating repair processes within intestinal stem cells. CONCLUSION In this study, we discovered that LGYD can enhance the downstream expression and phosphorylation pathways of Stat3 and Akt by upregulating the expression of Hes1 gene following high-dose radiation exposure.
Collapse
Affiliation(s)
- Ziqiao Yan
- Department of Traditional Chinese Medicine, the Sixth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China; Chinese PLA Medical School, Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Yangshuo Li
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China
| | - Mingyang Chang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Tiantian Xia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China; Medical College of Qinghai University, Xining, PR China
| | - Yuguo Wang
- Department of Traditional Chinese Medicine, the Sixth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China
| | - Hongyang Yu
- Department of Traditional Chinese Medicine, the Sixth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China; Chinese PLA Medical School, Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China
| | - Liangliang Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Zhijie Bai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Ningning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Zhexin Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China.
| | - Yongqi Dou
- Department of Traditional Chinese Medicine, the Sixth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China; Chinese PLA Medical School, Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China.
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, PR China.
| |
Collapse
|
130
|
Bhattacharya S, Tie G, Singh PNP, Malagola E, Eskiocak O, He R, Kraiczy J, Gu W, Perlov Y, Alici-Garipcan A, Beyaz S, Wang TC, Zhou Q, Shivdasani RA. Intestinal secretory differentiation reflects niche-driven phenotypic and epigenetic plasticity of a common signal-responsive terminal cell. Cell Stem Cell 2025:S1934-5909(25)00095-5. [PMID: 40203837 DOI: 10.1016/j.stem.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/27/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025]
Abstract
Enterocytes and four classic secretory cell types derive from intestinal epithelial stem cells. Based on morphology, location, and canonical markers, goblet and Paneth cells are considered distinct secretory types. Here, we report high overlap in their transcripts and sites of accessible chromatin, in marked contrast to those of their enteroendocrine or tuft cell siblings. Mouse and human goblet and Paneth cells express extraordinary fractions of few antimicrobial genes, which reflect specific responses to local niches. Wnt signaling retains some ATOH1+ secretory cells in crypt bottoms, where the absence of BMP signaling potently induces Paneth features. Cells that migrate away from crypt bottoms encounter BMPs and thereby acquire goblet properties. These phenotypes and underlying accessible cis-elements interconvert in post-mitotic cells. Thus, goblet and Paneth properties represent alternative phenotypic manifestations of a common signal-responsive terminal cell type. These findings reveal exquisite niche-dependent cell plasticity and cis-regulatory dynamics in likely response to antimicrobial needs.
Collapse
Affiliation(s)
- Swarnabh Bhattacharya
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Guodong Tie
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Pratik N P Singh
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, State University of New York, Stony Brook, NY 11794, USA
| | - Ruiyang He
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Judith Kraiczy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Gu
- Division of Regenerative Medicine & Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yakov Perlov
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Qiao Zhou
- Division of Regenerative Medicine & Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
131
|
Henry A, Mo X, Finan C, Chaffin MD, Speed D, Issa H, Denaxas S, Ware JS, Zheng SL, Malarstig A, Gratton J, Bond I, Roselli C, Miller D, Chopade S, Schmidt AF, Abner E, Adams L, Andersson C, Aragam KG, Ärnlöv J, Asselin G, Raja AA, Backman JD, Bartz TM, Biddinger KJ, Biggs ML, Bloom HL, Boersma E, Brandimarto J, Brown MR, Brunak S, Bruun MT, Buckbinder L, Bundgaard H, Carey DJ, Chasman DI, Chen X, Cook JP, Czuba T, de Denus S, Dehghan A, Delgado GE, Doney AS, Dörr M, Dowsett J, Dudley SC, Engström G, Erikstrup C, Esko T, Farber-Eger EH, Felix SB, Finer S, Ford I, Ghanbari M, Ghasemi S, Ghouse J, Giedraitis V, Giulianini F, Gottdiener JS, Gross S, Guðbjartsson DF, Gui H, Gutmann R, Hägg S, Haggerty CM, Hedman ÅK, Helgadottir A, Hemingway H, Hillege H, Hyde CL, Aagaard Jensen B, Jukema JW, Kardys I, Karra R, Kavousi M, Kizer JR, Kleber ME, Køber L, Koekemoer A, Kuchenbaecker K, Lai YP, Lanfear D, Langenberg C, Lin H, Lind L, Lindgren CM, Liu PP, London B, Lowery BD, Luan J, Lubitz SA, Magnusson P, Margulies KB, Marston NA, Martin H, März W, Melander O, Mordi IR, Morley MP, et alHenry A, Mo X, Finan C, Chaffin MD, Speed D, Issa H, Denaxas S, Ware JS, Zheng SL, Malarstig A, Gratton J, Bond I, Roselli C, Miller D, Chopade S, Schmidt AF, Abner E, Adams L, Andersson C, Aragam KG, Ärnlöv J, Asselin G, Raja AA, Backman JD, Bartz TM, Biddinger KJ, Biggs ML, Bloom HL, Boersma E, Brandimarto J, Brown MR, Brunak S, Bruun MT, Buckbinder L, Bundgaard H, Carey DJ, Chasman DI, Chen X, Cook JP, Czuba T, de Denus S, Dehghan A, Delgado GE, Doney AS, Dörr M, Dowsett J, Dudley SC, Engström G, Erikstrup C, Esko T, Farber-Eger EH, Felix SB, Finer S, Ford I, Ghanbari M, Ghasemi S, Ghouse J, Giedraitis V, Giulianini F, Gottdiener JS, Gross S, Guðbjartsson DF, Gui H, Gutmann R, Hägg S, Haggerty CM, Hedman ÅK, Helgadottir A, Hemingway H, Hillege H, Hyde CL, Aagaard Jensen B, Jukema JW, Kardys I, Karra R, Kavousi M, Kizer JR, Kleber ME, Køber L, Koekemoer A, Kuchenbaecker K, Lai YP, Lanfear D, Langenberg C, Lin H, Lind L, Lindgren CM, Liu PP, London B, Lowery BD, Luan J, Lubitz SA, Magnusson P, Margulies KB, Marston NA, Martin H, März W, Melander O, Mordi IR, Morley MP, Morris AP, Morrison AC, Morton L, Nagle MW, Nelson CP, Niessner A, Niiranen T, Noordam R, Nowak C, O'Donoghue ML, Ostrowski SR, Owens AT, Palmer CNA, Paré G, Pedersen OB, Perola M, Pigeyre M, Psaty BM, Rice KM, Ridker PM, Romaine SPR, Rotter JI, Ruff CT, Sabatine MS, Sallah N, Salomaa V, Sattar N, Shalaby AA, Shekhar A, Smelser DT, Smith NL, Sørensen E, Srinivasan S, Stefansson K, Sveinbjörnsson G, Svensson P, Tammesoo ML, Tardif JC, Teder-Laving M, Teumer A, Thorgeirsson G, Thorsteinsdottir U, Torp-Pedersen C, Tragante V, Trompet S, Uitterlinden AG, Ullum H, van der Harst P, van Heel D, van Setten J, van Vugt M, Veluchamy A, Verschuuren M, Verweij N, Vissing CR, Völker U, Voors AA, Wallentin L, Wang Y, Weeke PE, Wiggins KL, Williams LK, Yang Y, Yu B, Zannad F, Zheng C, Asselbergs FW, Cappola TP, Dubé MP, Dunn ME, Lang CC, Samani NJ, Shah S, Vasan RS, Smith JG, Holm H, Shah S, Ellinor PT, Hingorani AD, Wells Q, Lumbers RT. Genome-wide association study meta-analysis provides insights into the etiology of heart failure and its subtypes. Nat Genet 2025; 57:815-828. [PMID: 40038546 PMCID: PMC11985341 DOI: 10.1038/s41588-024-02064-3] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/17/2024] [Indexed: 03/06/2025]
Abstract
Heart failure (HF) is a major contributor to global morbidity and mortality. While distinct clinical subtypes, defined by etiology and left ventricular ejection fraction, are well recognized, their genetic determinants remain inadequately understood. In this study, we report a genome-wide association study of HF and its subtypes in a sample of 1.9 million individuals. A total of 153,174 individuals had HF, of whom 44,012 had a nonischemic etiology (ni-HF). A subset of patients with ni-HF were stratified based on left ventricular systolic function, where data were available, identifying 5,406 individuals with reduced ejection fraction and 3,841 with preserved ejection fraction. We identify 66 genetic loci associated with HF and its subtypes, 37 of which have not previously been reported. Using functionally informed gene prioritization methods, we predict effector genes for each identified locus, and map these to etiologic disease clusters through phenome-wide association analysis, network analysis and colocalization. Through heritability enrichment analysis, we highlight the role of extracardiac tissues in disease etiology. We then examine the differential associations of upstream risk factors with HF subtypes using Mendelian randomization. These findings extend our understanding of the mechanisms underlying HF etiology and may inform future approaches to prevention and treatment.
Collapse
Affiliation(s)
- Albert Henry
- Institute of Cardiovascular Science, University College London, London, UK
- Institute of Health Informatics, University College London, London, UK
| | - Xiaodong Mo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Chris Finan
- Institute of Cardiovascular Science, University College London, London, UK
| | - Mark D Chaffin
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Doug Speed
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Hanane Issa
- Institute of Health Informatics, University College London, London, UK
| | - Spiros Denaxas
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, London, UK
- British Heart Foundation Data Science Centre, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| | - James S Ware
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Hammersmith Hospital, Imperial College Hospitals NHS Trust, London, UK
| | - Sean L Zheng
- National Heart & Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Anders Malarstig
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
- Pfizer Worldwide Research & Development, Cambridge, MA, USA
| | - Jasmine Gratton
- Institute of Cardiovascular Science, University College London, London, UK
| | - Isabelle Bond
- Institute of Cardiovascular Science, University College London, London, UK
| | - Carolina Roselli
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - David Miller
- Division of Biosciences, University College London, London, UK
| | - Sandesh Chopade
- Institute of Cardiovascular Science, University College London, London, UK
| | - A Floriaan Schmidt
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Erik Abner
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Charlotte Andersson
- Department of Cardiology, Herlev Gentofte Hospital, Herlev, Denmark
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Krishna G Aragam
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Johan Ärnlöv
- Department of Neurobiology, Care Sciences and Society/Section of Family Medicine and Primary Care, Karolinska Institutet, Stockholm, Sweden
- School of Health and Social Sciences, Dalarna University, Falun, Sweden
| | | | - Anna Axelsson Raja
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Joshua D Backman
- Analytical Genetics, Regeneron Genetics Center, Tarrytown, NY, USA
| | - Traci M Bartz
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Kiran J Biddinger
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Mary L Biggs
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Heather L Bloom
- Department of Medicine, Division of Cardiology, Emory University Medical Center, Atlanta, GA, USA
| | - Eric Boersma
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeffrey Brandimarto
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael R Brown
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas School of Public Health, Houston, TX, USA
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | | | - Henning Bundgaard
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - David J Carey
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Xing Chen
- Pfizer Worldwide Research & Development, Cambridge, MA, USA
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Tomasz Czuba
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Simon de Denus
- Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Abbas Dehghan
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Graciela E Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Alexander S Doney
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Joseph Dowsett
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Samuel C Dudley
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Gunnar Engström
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Deparment of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Tõnu Esko
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Eric H Farber-Eger
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan B Felix
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Sarah Finer
- Centre for Primary Care and Public Health, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Ian Ford
- Robertson Center for Biostatistics, Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sahar Ghasemi
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Jonas Ghouse
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - John S Gottdiener
- Department of Medicine, Division of Cardiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stefan Gross
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Daníel F Guðbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Hongsheng Gui
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Rebecca Gutmann
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Åsa K Hedman
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | | | - Harry Hemingway
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, London, UK
| | - Hans Hillege
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Craig L Hyde
- Pfizer Worldwide Research & Development, Cambridge, MA, USA
| | | | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, the Netherlands
| | - Isabella Kardys
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ravi Karra
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, USA
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health System, and Departments of Medicine, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Lars Køber
- Department of Cardiology, Nordsjaellands Hospital, Copenhagen, Denmark
| | - Andrea Koekemoer
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Karoline Kuchenbaecker
- Division of Psychiatry, University College London, London, UK
- UCL Genetics Institute, University College London, London, UK
| | - Yi-Pin Lai
- Pfizer Worldwide Research & Development, Cambridge, MA, USA
| | - David Lanfear
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
- Heart and Vascular Institute, Henry Ford Hospital, Detroit, MI, USA
| | - Claudia Langenberg
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
- Computational Medicine, Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Honghuang Lin
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Peter P Liu
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Barry London
- Division of Cardiovascular Medicine and Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA
| | - Brandon D Lowery
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Steven A Lubitz
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Patrik Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kenneth B Margulies
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas A Marston
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Hilary Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology), Medical Faculty of Mannheim, University of Heidelberg, Heidelberg, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
- Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Germany
| | - Olle Melander
- Department of Internal Medicine, Clinical Sciences, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Ify R Mordi
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Michael P Morley
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas School of Public Health, Houston, TX, USA
| | - Lori Morton
- Cardiovascular Research, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Alexander Niessner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Teemu Niiranen
- Department of Medicine, Turku University Hospital and University of Turku, Turku, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Christoph Nowak
- Department of Neurobiology, Care Sciences and Society/Section of Family Medicine and Primary Care, Karolinska Institutet, Stockholm, Sweden
| | - Michelle L O'Donoghue
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anjali T Owens
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colin N A Palmer
- Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Guillaume Paré
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Ole Birger Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland
| | - Marie Pigeyre
- Population Health Research Institute, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Simon P R Romaine
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, CA, USA
- Departments of Pediatrics and Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Christian T Ruff
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Marc S Sabatine
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Neneh Sallah
- Institute of Health Informatics, University College London, London, UK
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Naveed Sattar
- BHF Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Alaa A Shalaby
- Department of Medicine, Division of Cardiology, University of Pittsburgh Medical Center and VA Pittsburgh HCS, Pittsburgh, PA, USA
| | - Akshay Shekhar
- Cardiovascular Research, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Diane T Smelser
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA
| | - Nicholas L Smith
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Veterans Affairs Office of Research & Development, Seattle Epidemiologic Research and Information Center, Seattle, WA, USA
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sundararajan Srinivasan
- Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Per Svensson
- Department of Cardiology, Söderjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education-Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Mari-Liis Tammesoo
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Maris Teder-Laving
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Alexander Teumer
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Guðmundur Thorgeirsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Internal Medicine, Division of Cardiology, National University Hospital of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - David van Heel
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK
| | - Jessica van Setten
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marion van Vugt
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Abirami Veluchamy
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
- Division of Population Health and Genomics, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Monique Verschuuren
- Department Life Course and Health, Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Christoffer Rasmus Vissing
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Uwe Völker
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lars Wallentin
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Yunzhang Wang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Peter E Weeke
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kerri L Wiggins
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - Yifan Yang
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas School of Public Health, Houston, TX, USA
| | - Faiez Zannad
- Université de Lorraine, CHU de Nancy, Inserm and INI-CRCT (F-CRIN), Institut Lorrain du Coeur et des Vaisseaux, Vandoeuvre Lès Nancy, France
| | - Chaoqun Zheng
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Folkert W Asselbergs
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Thomas P Cappola
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie-Pierre Dubé
- Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Michael E Dunn
- Cardiovascular Research, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Chim C Lang
- Division of Molecular & Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Svati Shah
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - Ramachandran S Vasan
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Sections of Cardiology, Preventive Medicine and Epidemiology, Department of Medicine, Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | - J Gustav Smith
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden
| | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Sonia Shah
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Patrick T Ellinor
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, University College London, London, UK
| | - Quinn Wells
- Division of Cardiovascular Medicine, Vanderbilt University, Nashville, TN, USA
| | - R Thomas Lumbers
- Institute of Health Informatics, University College London, London, UK.
- Health Data Research UK, London, UK.
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK.
| |
Collapse
|
132
|
Gustafsson JK, Hansson GC. Immune Regulation of Goblet Cell and Mucus Functions in Health and Disease. Annu Rev Immunol 2025; 43:169-189. [PMID: 39752567 DOI: 10.1146/annurev-immunol-101721-065224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The mucosal surfaces of the body are the most vulnerable points for infection because they are lined by single or multiple layers of very active epithelial cells. The main protector of these cells is the mucus system generated by the specialized goblet cell secreting its main components, the gel-forming mucins. The organization of the mucus varies from an attached mucus that is impenetrable to bacteria in the large intestine to a nonattached, more penetrable mucus in the small intestine. The respiratory tract mucus system clears particles and microorganisms from healthy lungs but causes disease if reorganized to an attached mucus that cannot be efficiently transported. Similarly, transformation of large intestine mucus from impenetrable to penetrable causes chronic inflammation directed toward the intestinal microbiota. Mucus-producing goblet cells are regulated by and responsive to signals from immune cells, and at the same time signal back to the immune system. In this review we focus on the relationship of immune cells with intestinal goblet cells and mucus, making parallels to the respiratory tract.
Collapse
Affiliation(s)
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden;
| |
Collapse
|
133
|
Marefati M, Fernandez-Vallone V, Leprovots M, Vasile G, Libert F, Lefort A, Dinsart G, Weber A, Jetzer J, Garcia MI, Vassart G. A Lgr5-independent developmental lineage is involved in mouse intestinal regeneration. Development 2025; 152:dev204654. [PMID: 40013494 PMCID: PMC12045596 DOI: 10.1242/dev.204654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/06/2025] [Indexed: 02/28/2025]
Abstract
Collagenase and dispase treatment of intestinal tissue from adult mice generates cells growing in matrigel as stably replatable cystic spheroids, in addition to differentiated organoids. Contrary to classical EDTA-derived organoids, these spheroids display poor intestinal differentiation and grow independently of Rspondin, noggin and EGF. Their transcriptome strikingly resembles that of fetal intestinal spheroids, with downregulation of crypt base columnar cell (CBC) markers (Lgr5, Ascl2, Smoc2 and Olfm4). In addition, they display upregulation of inflammatory and mesenchymal genetic programs, together with robust expression of YAP target genes. Lineage tracing, cell-sorting and single cell RNA sequencing experiments demonstrate that adult spheroid-generating cells belong to a hitherto undescribed developmental lineage, independent of Lgr5-positive CBCs, and are involved in regeneration of the epithelium following CBC ablation.
Collapse
Affiliation(s)
- Maryam Marefati
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM, https://iribhm.org/), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Valeria Fernandez-Vallone
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM, https://iribhm.org/), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Morgane Leprovots
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM, https://iribhm.org/), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Gabriella Vasile
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM, https://iribhm.org/), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Frédérick Libert
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM, https://iribhm.org/), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Anne Lefort
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM, https://iribhm.org/), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Gilles Dinsart
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM, https://iribhm.org/), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Achim Weber
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
| | - Jasna Jetzer
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
- Institute of Molecular Cancer Research, University of Zurich, CH-8091 Zurich, Switzerland
| | - Marie-Isabelle Garcia
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM, https://iribhm.org/), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Gilbert Vassart
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM, https://iribhm.org/), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
134
|
Di Rienzi SC, Danhof HA, Forshee MD, Roberts A, Britton RA. Limosilactobacillus reuteri promotes the expression and secretion of enteroendocrine- and enterocyte-derived hormones. FASEB J 2025; 39:e70408. [PMID: 40098558 PMCID: PMC11914943 DOI: 10.1096/fj.202401669r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 03/19/2025]
Abstract
Intestinal microbes can beneficially impact host physiology, prompting investigations into the therapeutic usage of such microbes in a range of diseases. For example, human intestinal microbe Limosilactobacillus reuteri strains ATCC PTA 6475 and DSM 17938 are being considered for use for intestinal ailments, including colic, infection, and inflammation, as well as for non-intestinal ailments, including osteoporosis, wound healing, and autism spectrum disorder. While many of their beneficial properties are attributed to suppressing inflammatory responses, we postulated that L. reuteri may also regulate intestinal hormones to affect physiology within and outside of the gut. To determine if L. reuteri secreted factors impact the secretion of enteric hormones, we treated an engineered jejunal organoid line, NGN3-HIO, which can be induced to be enriched in enteroendocrine cells, with L. reuteri 6475 or 17938 conditioned medium and performed transcriptomics. Our data suggest that these L. reuteri strains affect the transcription of many gut hormones, including vasopressin and luteinizing hormone subunit beta, which have not been previously recognized as produced in the gut epithelium. Moreover, we find that these hormones appear to be produced in enterocytes, in contrast to canonical gut hormones produced in enteroendocrine cells. Finally, we show that L. reuteri conditioned media promote the secretion of enteric hormones, including serotonin, GIP, PYY, vasopressin, and luteinizing hormone subunit beta, and identify by metabolomics metabolites potentially mediating these effects on hormones. These results support L. reuteri affecting host physiology through intestinal hormone secretion, thereby expanding our understanding of the mechanistic actions of this microbe.
Collapse
Affiliation(s)
- Sara C. Di Rienzi
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Heather A. Danhof
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Micah D. Forshee
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Ari Roberts
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Robert A. Britton
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
135
|
Caronni N, La Terza F, Frosio L, Ostuni R. IL-1β + macrophages and the control of pathogenic inflammation in cancer. Trends Immunol 2025:S1471-4906(25)00059-6. [PMID: 40169292 DOI: 10.1016/j.it.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025]
Abstract
While highlighting the complexity and heterogeneity of tumor immune microenvironments, the application of single-cell analyses in human cancers has identified recurrent subsets of tumor-associated macrophages (TAMs). Among these, interleukin (IL)-1β+ TAMs - cells with high levels of expression of inflammatory response and tissue repair genes, but with limited capacity to stimulate cytotoxic immunity - are emerging as key drivers of pathogenic inflammation in cancer. In this review we discuss recent literature defining the phenotypical, molecular, and functional properties of IL-1β+ TAMs, as well as their temporal dynamics and spatial organization. Elucidating the biology of these cells across tumor initiation, progression, metastasis, and therapy could inform the design and interpretation of clinical trials targeting IL-1β and/or other inflammatory factors in cancer immunotherapy.
Collapse
Affiliation(s)
- Nicoletta Caronni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Federica La Terza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Frosio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
136
|
Hazelett DJ. Rethinking GWAS: how lessons from genetic screens and artificial intelligence could reveal biological mechanisms. Bioinformatics 2025; 41:btaf153. [PMID: 40198231 PMCID: PMC12014097 DOI: 10.1093/bioinformatics/btaf153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/10/2025] Open
Abstract
MOTIVATION Modern single-cell omics data are key to unraveling the complex mechanisms underlying risk for complex diseases revealed by genome-wide association studies (GWAS). Phenotypic screens in model organisms have several important parallels to GWAS which the author explores in this essay. RESULTS The author provides the historical context of such screens, comparing and contrasting similarities to association studies, and how these screens in model organisms can teach us what to look for. Then the author considers how the results of GWAS might be exhaustively interrogated to interpret the biological mechanisms underpinning disease processes. Finally, the author proposes a general framework for tackling this problem computationally, and explore the data, mechanisms, and technology (both existing and yet to be invented) that are necessary to complete the task. AVAILABILITY AND IMPLEMENTATION There are no data or code associated with this article.
Collapse
Affiliation(s)
- Dennis J Hazelett
- Department of Computational Biomedicine at Cedars-Sinai Medical Center, West Hollywood, CA 90069, United States
- Cancer Prevention and Control—Samuel Oschin Cancer Center, Los Angeles, CA 90048, United States
| |
Collapse
|
137
|
Wallis NJ, McClellan A, Mörseburg A, Kentistou KA, Jamaluddin A, Dowsett GKC, Schofield E, Morros-Nuevo A, Saeed S, Lam BYH, Sumanasekera NT, Chan J, Kumar SS, Zhang RM, Wainwright JF, Dittmann M, Lakatos G, Rainbow K, Withers D, Bounds R, Ma M, German AJ, Ladlow J, Sargan D, Froguel P, Farooqi IS, Ong KK, Yeo GSH, Tadross JA, Perry JRB, Gorvin CM, Raffan E. Canine genome-wide association study identifies DENND1B as an obesity gene in dogs and humans. Science 2025; 387:eads2145. [PMID: 40048553 DOI: 10.1126/science.ads2145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/10/2025] [Indexed: 03/29/2025]
Abstract
Obesity is a heritable disease, but its genetic basis is incompletely understood. Canine population history facilitates trait mapping. We performed a canine genome-wide association study for body condition score-a measure of obesity-in 241 Labrador retrievers. Using a cross-species approach, we showed that canine obesity genes are also associated with rare and common forms of obesity in humans. The lead canine association was within the gene DENN domain containing 1B (DENND1B). Each copy of the alternate allele was associated with ~7.5% greater body fat. We demonstrate a role for this gene in regulating signaling and trafficking of melanocortin 4 receptor, a critical controller of energy homeostasis. Thus, canine genetics identified obesity genes and mechanisms relevant to both dogs and humans.
Collapse
Affiliation(s)
- Natalie J Wallis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alyce McClellan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alexander Mörseburg
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Aqfan Jamaluddin
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Georgina K C Dowsett
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Ellen Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Anna Morros-Nuevo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sadia Saeed
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Brian Y H Lam
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Natasha T Sumanasekera
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Justine Chan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sambhavi S Kumar
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Rey M Zhang
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jodie F Wainwright
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Marie Dittmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Gabriella Lakatos
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Kara Rainbow
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - David Withers
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Rebecca Bounds
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre, Cambridge, UK
| | - Marcella Ma
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Alexander J German
- Institute of Life Course and Medical Sciences and School of Veterinary Science, University of Liverpool, Neston, UK
| | - Jane Ladlow
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David Sargan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Philippe Froguel
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - I Sadaf Farooqi
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Giles S H Yeo
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - John A Tadross
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Histopathology and Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - John R B Perry
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Eleanor Raffan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| |
Collapse
|
138
|
Saw AK, Madhok A, Bhattacharya A, Nandi S, Galande S. Integrated promoter-capture Hi-C and Hi-C analysis reveals fine-tuned regulation of the 3D chromatin architecture in colorectal cancer. Front Genet 2025; 16:1553469. [PMID: 40225268 PMCID: PMC11985782 DOI: 10.3389/fgene.2025.1553469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction Hi-C is a widely used technique for mapping chromosomal interactions within a 3D genomic framework, however, its resolution is often constrained by sequencing depth, making it challenging to detect fine-scale interactions. To overcome this limitation, Promoter-Capture Hi-C (PCHi-C), as it selectively enriches for promoter-associated interactions, was employed. This study integrates PCHi-C and Hi-C datasets from colorectal cancer (CRC) models investigate chromosomal interaction dynamics across various regulatory levels, from cis-regulatory elements to topologically associated domains (TADs). The primary goal is to examine how genomic structural alterations shape the epigenomic landscape in CRC and to assess their potential role in colorectal cancer susceptibility. Methods PCHi-C and Hi-C datasets from multiple colorectal cancer (CRC) studies were integrated to enhance the resolution of chromatin interaction mapping. The analysis focused on identifying fine-scale interactions within topologically associated domains (TADs) while incorporating histone modification landscapes (H3K27ac, H3K4me3) and transcriptomic signatures from CRC cell lines and the TCGA database. For experimental validation, ChIP-quantitative PCR was performed at the promoters of target genes using the highly malignant colorectal cell line HT29 and compared it to an embryonic cell line NT2D1. Results Our integrated analysis revealed significant genomic structural instability in CRC cells, closely associated with tumor-suppressive transcriptional programs. We identified nine dysregulated genes, including long non-coding RNAs (MALAT1, NEAT1, FTX, and PVT1), small nucleolar RNAs (SNORA26 and SNORA71A), and protein-coding genes (TMPRSS11D, TSPEAR, and DSG4), all of which exhibited a substantial increase in expression in CRC cell lines compared to human embryonic stem cells (hESCs). Additionally, we observed enriched activation-associated histone modifications (H3K27ac and H3K4me3) at the potential enhancer regions of these genes, indicating possible transcriptional activation. ChIP-quantitative PCRs conducted using in the highly malignant CRC cell line HT29, compared to the embryonic cell line NT2D1, further validated these findings, reinforcing the link between altered chromosomal interactions and gene dysregulation in CRC. Discussion This study sheds light on the dynamic 3D genome organization in CRC, highlighting critical structural changes associated with disease-associated loci. The identification of nine dysregulated genes points to potential biomarkers for colorectal cancer, with implications for diagnostic and therapeutic strategies. The combination of Hi-C and PCHi-C offers a refined approach for detecting chromosomal interactions at a higher resolution, laying the foundation for future studies on cancer-associated chromatin architecture.
Collapse
Affiliation(s)
- Ajay Kumar Saw
- Laboratory of Chromatin Biology and Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Ayush Madhok
- Laboratory of Chromatin Biology and Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Anupam Bhattacharya
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam, India
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India
| | - Soumyadeep Nandi
- Data Sciences and Computational Biology Centre, Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, Manesar, Haryana, India
| | - Sanjeev Galande
- Laboratory of Chromatin Biology and Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
- Center of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
139
|
Iliopoulou L, Tzaferis C, Prados A, Roumelioti F, Koliaraki V, Kollias G. Different fibroblast subtypes propel spatially defined ileal inflammation through TNFR1 signalling in murine ileitis. Nat Commun 2025; 16:3023. [PMID: 40155385 PMCID: PMC11953319 DOI: 10.1038/s41467-025-57570-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 02/25/2025] [Indexed: 04/01/2025] Open
Abstract
Crohn's disease (CD) is a persistent inflammatory disorder primarily affecting the terminal ileum. The TnfΔΑRE mice, which spontaneously develop CD-like ileitis due to TNF overexpression, represent a faithful model of the human disease. Here, via single-cell RNA sequencing in TnfΔΑRE mice, we show that murine TNF-dependent ileitis is characterized by cell expansion in tertiary lymphoid organs (TLO), T cell effector reprogramming, and accumulation of activated macrophages in the submucosal granulomas. Within the stromal cell compartment, fibroblast subsets (telocytes, trophocytes, PdgfraloCd81- cells) are less abundant while lymphatic endothelial cells (LEC) and fibroblastic reticular cells (FRC) show relative expansion compared to the wild type. All three fibroblast subsets show strong pro-inflammatory signature. TNFR1 loss or gain of function experiments in specific fibroblast subsets suggest that the TnfΔΑRE-induced ileitis is initiated in the lamina propria via TNF pathway activation in villus-associated fibroblasts (telocytes and PdgfraloCd81- cells), which are responsible for the organization of TLOs. Trophocytes drive disease progression in the submucosal layer, accompanied by the excessive formation of granulomas. These findings provide evidence for spatial regulation of inflammation by fibroblast subsets and underscore the pivotal role of fibroblasts in the inception and advancement of ileitis.
Collapse
Affiliation(s)
- Lida Iliopoulou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Christos Tzaferis
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Alejandro Prados
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fani Roumelioti
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Vasiliki Koliaraki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
140
|
Metz S, Belanich JR, Claussnitzer M, Kilpeläinen TO. Variant-to-function approaches for adipose tissue: Insights into cardiometabolic disorders. CELL GENOMICS 2025:100844. [PMID: 40185091 DOI: 10.1016/j.xgen.2025.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/14/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with cardiometabolic disorders. However, the functional interpretation of these loci remains a daunting challenge. This is particularly true for adipose tissue, a critical organ in systemic metabolism and the pathogenesis of various cardiometabolic diseases. We discuss how variant-to-function (V2F) approaches are used to elucidate the mechanisms by which GWAS loci increase the risk of cardiometabolic disorders by directly influencing adipose tissue. We outline GWAS traits most likely to harbor adipose-related variants and summarize tools to pinpoint the putative causal variants, genes, and cell types for the associated loci. We explain how large-scale perturbation experiments, coupled with imaging and multi-omics, can be used to screen variants' effects on cellular phenotypes and how these phenotypes can be tied to physiological mechanisms. Lastly, we discuss the challenges and opportunities that lie ahead for V2F research and propose a roadmap for future studies.
Collapse
Affiliation(s)
- Sophia Metz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Jonathan Robert Belanich
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Melina Claussnitzer
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Endocrine Division, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02142, USA
| | - Tuomas Oskari Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
141
|
Buenrostro J, Nagaraja S, Ojeda-Miron L, Zhang R, Oreskovic E, Hu Y, Zeve D, Sharma K, Hyman R, Zhang Q, Castillo A, Breault D, Yilmaz O. Clonal memory of colitis accumulates and promotes tumor growth. RESEARCH SQUARE 2025:rs.3.rs-6081101. [PMID: 40196012 PMCID: PMC11975019 DOI: 10.21203/rs.3.rs-6081101/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Chronic inflammation is a well-established risk factor for cancer, but the underlying molecular mechanisms remain unclear. Using a mouse model of colitis, we demonstrate that colonic stem cells retain an epigenetic memory of inflammation following disease resolution, characterized by a cumulative gain of activator protein 1 (AP-1) transcription factor activity. Further, we develop SHARE-TRACE, a method that enables simultaneous profiling of gene expression, chromatin accessibility and clonal history in single cells, enabling high resolution tracking of epigenomic memory. This reveals that inflammatory memory is propagated cell-intrinsically and inherited through stem cell lineages, with certain clones demonstrating dramatically stronger memory than others. Finally, we show that colitis primes stem cells for amplified expression of regenerative gene programs following oncogenic mutation that accelerate tumor growth. This includes a subpopulation of tumors that have exceptionally high AP-1 activity and the additional upregulation of pro-oncogenic programs. Together, our findings provide a mechanistic link between chronic inflammation and malignancy, revealing how long-lived epigenetic alterations in regenerative tissues may contribute to disease susceptibility and suggesting potential therapeutic strategies to mitigate cancer risk in patients with chronic inflammatory conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniel Zeve
- Boston Children's Hospital and Harvard Medical School
| | | | | | | | | | - David Breault
- Boston Children's Hospital and Department of Pediatrics
| | - Omer Yilmaz
- Koch Institute for Integrative Cancer Research at MIT
| |
Collapse
|
142
|
Humeidi R, Oshiro-Rapley N, Gu X, An JS, Ananthakrishnan AN, Creasey EA, Daly MJ, Schreiber SL, Graham DB, Seyedsayamdost MR, Xavier RJ. The Ulcerative Colitis-Associated Gene NXPE1 Catalyzes Glycan Modifications on Colonic Mucin. J Am Chem Soc 2025; 147:10618-10628. [PMID: 40067145 DOI: 10.1021/jacs.5c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Colonic mucus forms a first line of defense against bacterial invasion while providing nutrition to support coinhabiting microbes in the gut. Mucus is composed of polymeric networks of mucin proteins, which are heavily modified post-translationally. The full compendium of enzymes responsible for these modifications and their roles in health and disease remain incompletely understood. Herein, we determine the biochemical function of NXPE1, a gene implicated in ulcerative colitis (UC), and demonstrate that it encodes an acetyltransferase that modifies mucin glycans. Specifically, NXPE1 utilizes acetyl-CoA to regioselectively modify the mucus sialic acid, 5-N-acetylneuraminic acid (Neu5Ac), at the 9-OH group to generate 9-O-acetylated Neu5Ac (Neu5,9Ac2). We further demonstrate that colonic organoids derived from donors harboring the missense variant NXPE1 G353R, which is protective against UC, exhibit severely impaired acetylation of Neu5Ac on mucins. Together, our findings support a model in which NXPE1 masks the alcohols of mucus sialoglycans via acetylation, which is important for modulating mucus barrier properties that limit interactions with commensal microbes.
Collapse
Affiliation(s)
- Ranad Humeidi
- Program for Chemistry & Chemical Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, United States
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Noriko Oshiro-Rapley
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, United States
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Xiebin Gu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, United States
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Joon Soo An
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ashwin N Ananthakrishnan
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, United States
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Elizabeth A Creasey
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Mark J Daly
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, United States
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Stuart L Schreiber
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, United States
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, United States
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, United States
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
143
|
Dorscheid D, Gauvreau GM, Georas SN, Hiemstra PS, Varricchi G, Lambrecht BN, Marone G. Airway epithelial cells as drivers of severe asthma pathogenesis. Mucosal Immunol 2025:S1933-0219(25)00029-7. [PMID: 40154790 DOI: 10.1016/j.mucimm.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/31/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Our understanding of the airway epithelium's role in driving asthma pathogenesis has evolved over time. From being regarded primarily as a physical barrier that could be damaged via inflammation, the epithelium is now known to actively contribute to asthma development through interactions with the immune system. The airway epithelium contains multiple cell types with specialized functions spanning barrier action, mucociliary clearance, immune cell recruitment, and maintenance of tissue homeostasis. Environmental insults may cause direct or indirect injury to the epithelium leading to impaired barrier function, epithelial remodelling, and increased release of inflammatory mediators. In severe asthma, the epithelial barrier repair process is inhibited and the response to insults is exaggerated, driving downstream inflammation. Genetic and epigenetic mechanisms also maintain dysregulation of the epithelial barrier, adding to disease chronicity. Here, we review the role of the airway epithelium in severe asthma and how targeting the epithelium can contribute to asthma treatment.
Collapse
Affiliation(s)
- Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gail M Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Steve N Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Bart N Lambrecht
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| |
Collapse
|
144
|
Nakajima-Koyama M, Kabata M, Lee J, Sogabe Y, Sakurai S, Hirota A, Kimura M, Nakamura T, Imoto Y, Kometani K, Hamazaki Y, Hiraoka Y, Saitou M, Nishida E, Yamamoto T. The balance between IFN-γ and ERK/MAPK signaling activities ensures lifelong maintenance of intestinal stem cells. Cell Rep 2025; 44:115286. [PMID: 39952238 DOI: 10.1016/j.celrep.2025.115286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 12/09/2024] [Accepted: 01/17/2025] [Indexed: 02/17/2025] Open
Abstract
While the intestinal epithelium has the highest cellular turnover rates in the mammalian body, it is also considered one of the tissues most resilient to aging-related disorders. Here, we reveal an innate protective mechanism that safeguards intestinal stem cells (ISCs) from environmental conditions in the aged intestine. Using in vivo phenotypic analysis, transcriptomics, and in vitro intestinal organoid studies, we show that age-dependent activation of interferon-γ (IFN-γ) signaling and inactivation of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling are responsible for establishing an equilibrium of Lgr5+ ISCs-between active and quiescent states-to preserve the ISC pool during aging. Furthermore, we show that differentiated cells have different sensitivities to each of the two signaling pathways, which may induce aging-related, functional, and metabolic changes in the body. Thus, our findings reveal an exquisitely balanced, age-dependent signaling mechanism that preserves stem cells at the expense of differentiated cells.
Collapse
Affiliation(s)
- May Nakajima-Koyama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Mio Kabata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Joonseong Lee
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuko Sogabe
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Satoko Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akira Hirota
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mizuki Kimura
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Hakubi Center for Advanced Research, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Imoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kohei Kometani
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoko Hamazaki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Laboratory of Immunobiology, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuaki Hiraoka
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitinori Saitou
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan; RIKEN Center for Biosystems Dynamics Research (BDR), Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan.
| |
Collapse
|
145
|
Ribeiro NV, Anwar S, Withoff S, Jonkers IH. Shared Genetics in Celiac Disease and Inflammatory Bowel Disease Specify a Greater Role for Intestinal Epithelial Cells. Int J Mol Sci 2025; 26:2982. [PMID: 40243612 PMCID: PMC11988521 DOI: 10.3390/ijms26072982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 04/18/2025] Open
Abstract
The contribution of genetics to the development of gut-related autoimmune diseases such as celiac disease (CeD) and inflammatory bowel diseases (IBDs) is well-established, especially in immune cells, but pinpointing the significance of genetic variants to other cell types is more elusive. Increasing evidence indicates that intestinal epithelial cells are active players in modulating the immune response, suggesting that genetic variants affecting these cells could change cell behavior during disease. Moreover, fine-mapping genetic variants and causal genes to relevant cell types can help to identify drug targets and develop personalized targeted therapies. In this context, we reviewed the functions of genes in disease-associated loci shared by CeD and IBD that are expressed in epithelial cells and explored their potential impacts.
Collapse
Affiliation(s)
| | | | | | - Iris H. Jonkers
- Department of Genetics, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (N.V.R.); (S.A.); (S.W.)
| |
Collapse
|
146
|
Fang X, Zhang Y, Ke Z, Zhang Y, Lin Y, Huang Y, Zhou J, Su H, Xu J, Liu Y. The m6A reader HNRNPC is a key regulator in DSS-induced colitis by modulating macrophage phenotype. iScience 2025; 28:111812. [PMID: 40124522 PMCID: PMC11927749 DOI: 10.1016/j.isci.2025.111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/25/2024] [Accepted: 01/10/2025] [Indexed: 03/25/2025] Open
Abstract
m6A regulators were demonstrated to modulate the functions of intestinal epithelial and immune cells in the ulcerative colitis. This study aimed to elucidate whether and how the m6A reader heterogeneous nuclear ribonucleoprotein C (HNRNPC) regulates macrophage function in the colitis. We observed elevated HNRNPC in the inflammatory Raw264.7 cells and macrophages in the dextran sodium sulfate (DSS)-induced colitis. Knocking down HNRNPC can mitigate LPS-induced activation of macrophages in vitro. Furthermore, adoptive transfer of macrophages with HNRNPC knockdown significantly alleviated colitis compared to those transfected with negative control siRNA. Additionally, RNA sequencing illuminated that HNRNPC regulated functions of macrophages by inhibiting alternative mRNA slicing, involving adjusting acute inflammatory response, and promoting cell chemotaxis and migration. Besides, HNRNPC can govern the stability of Itgb7, and Itgb7 might be an effective target for HNRNPC in macrophages. Our findings highlight the crucial role and therapeutic potential of HNRNPC inhibition in macrophages in alleviating colitis.
Collapse
Affiliation(s)
- Xiaohui Fang
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yu Zhang
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Ziliang Ke
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yang Zhang
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yiken Lin
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yibo Huang
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Jianhua Zhou
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Huiting Su
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Jun Xu
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University Peoples Hospital, No.11, Xizhimen South Street, Xicheng District, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| |
Collapse
|
147
|
Sadria M, Layton A. scVAEDer: integrating deep diffusion models and variational autoencoders for single-cell transcriptomics analysis. Genome Biol 2025; 26:64. [PMID: 40119479 PMCID: PMC11927372 DOI: 10.1186/s13059-025-03519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 02/27/2025] [Indexed: 03/24/2025] Open
Abstract
Discovering a lower-dimensional embedding of single-cell data can improve downstream analysis. The embedding should encapsulate both the high-level features and low-level variations. While existing generative models attempt to learn such low-dimensional representations, they have limitations. Here, we introduce scVAEDer, a scalable deep-learning model that combines the power of variational autoencoders and deep diffusion models to learn a meaningful representation that retains both global structure and local variations. Using the learned embeddings, scVAEDer can generate novel scRNA-seq data, predict perturbation response on various cell types, identify changes in gene expression during dedifferentiation, and detect master regulators in biological processes.
Collapse
Affiliation(s)
- Mehrshad Sadria
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada.
| | - Anita Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
148
|
Zhao T, Luo Y, Sun Y, Wei Z. Characterizing macrophage diversity in colorectal malignancies through single-cell genomics. Front Immunol 2025; 16:1526668. [PMID: 40191203 PMCID: PMC11968368 DOI: 10.3389/fimmu.2025.1526668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract, with increasing incidence and mortality rates, posing a significant burden on human health. Its progression relies on various mechanisms, among which the tumor microenvironment and tumor-associated macrophages (TAMs) have garnered increasing attention. Macrophage infiltration in various solid tumors is associated with poor prognosis and is linked to chemotherapy resistance in many cancers. These significant biological behaviors depend on the heterogeneity of macrophages. Tumor-promoting TAMs comprise subpopulations characterized by distinct markers and unique transcriptional profiles, rendering them potential targets for anticancer therapies through either depletion or reprogramming from a pro-tumoral to an anti-tumoral state. Single-cell RNA sequencing technology has significantly enhanced our research resolution, breaking the traditional simplistic definitions of macrophage subtypes and deepening our understanding of the diversity within TAMs. However, a unified elucidation of the nomenclature and molecular characteristics associated with this diversity remains lacking. In this review, we assess the application of conventional macrophage polarization subtypes in colorectal malignancies and explore several unique subtypes defined from a single-cell omics perspective in recent years, categorizing them based on their potential functions.
Collapse
Affiliation(s)
- Tingshuo Zhao
- First Clinical Medical College, Shanxi Medical University, Tai Yuan, China
| | - Yinyi Luo
- First Clinical Medical College, Shanxi Medical University, Tai Yuan, China
| | - Yuanjie Sun
- First Clinical Medical College, Shanxi Medical University, Tai Yuan, China
| | - Zhigang Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Shanxi Medical University, Tai Yuan, China
| |
Collapse
|
149
|
Quan T, Li R, Gao T. The Intestinal Macrophage-Intestinal Stem Cell Axis in Inflammatory Bowel Diseases: From Pathogenesis to Therapy. Int J Mol Sci 2025; 26:2855. [PMID: 40243444 PMCID: PMC11988290 DOI: 10.3390/ijms26072855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
The gut plays a crucial role in digestion and immunity, so its balance is essential to overall health. This balance relies on dynamic interactions between intestinal epithelial cells, immune cells, and crypt stem cells. Inflammatory bowel disease (IBD), which consists of ulcerative colitis and Crohn's disease, is a chronic relapsing inflammatory disease of the gastrointestinal tract closely related to immune dysfunction. Stem cells, known for their ability to self-renew and differentiate, play an important role in repairing damaged intestinal epithelium and maintaining homeostasis in vivo. Macrophages are key gatekeepers of intestinal immune homeostasis and have a significant impact on IBD. Current research has focused on the link between epithelial cells and stem cells, but interactions with macrophages, which have been recognized as attractive targets for the development of new therapeutic approaches to disease, have been less explored. Recently, the developing field of immunometabolism has reinforced that metabolic reprogramming is a key determinant of macrophage function and subsequent disease progression. The aim of this review is to explore the role of the macrophage-stem cell axis in the maintenance of intestinal homeostasis and to summarize potential approaches to treating IBD by manipulating the cellular metabolism of macrophages, as well as the main opportunities and challenges faced. In summary, our overview provides a framework for understanding the critical role of macrophage immunometabolism in maintaining gut health and potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Ting Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (T.Q.); (R.L.)
| |
Collapse
|
150
|
Zhang X, Gao Y, Zhang S, Wang Y, Du Y, Hao S, Ni T. The Regulation of Cellular Senescence in Cancer. Biomolecules 2025; 15:448. [PMID: 40149983 PMCID: PMC11940315 DOI: 10.3390/biom15030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Cellular senescence is a stable state of cell cycle arrest caused by telomere shortening or various stresses. After senescence, cells cease dividing and exhibit many age-related characteristics. Unlike the halted proliferation of senescence cells, cancer cells are considered to have unlimited growth potential. When cells display senescence-related features, such as telomere loss or stem cell failure, they can inhibit tumor development. Therefore, inducing cells to enter a senescence state can serve as a barrier to tumor cell development. However, many recent studies have found that sustained senescence of tumor cells or normal cells under certain circumstances can exert environment-dependent effects of tumor promotion and inhibition by producing various cytokines. In this review, we first introduce the causes and characteristics of induced cellular senescence, analyze the senescence process of immune cells and cancer cells, and then discuss the dual regulatory role of cell senescence on tumor growth and senescence-induced therapies targeting cancer cells. Finally, we discuss the role of senescence in tumor progression and treatment opportunities, and propose further studies on cellular senescence and cancer therapy.
Collapse
Affiliation(s)
- Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Siyu Zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China;
| | - Yixiong Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.W.); (Y.D.)
| |
Collapse
|