151
|
Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ, Notorfrancesco KL, Cardiff RD, Chodosh LA. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 2005; 8:197-209. [PMID: 16169465 DOI: 10.1016/j.ccr.2005.07.009] [Citation(s) in RCA: 548] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 06/21/2005] [Accepted: 07/28/2005] [Indexed: 01/11/2023]
Abstract
Breast cancer recurrence is a fundamental clinical manifestation of tumor progression and represents the principal cause of death from this disease. Using a conditional transgenic mouse model for the recurrence of HER2/neu-induced mammary tumors, we demonstrate that the transcriptional repressor Snail is spontaneously upregulated in recurrent tumors in vivo and that recurrence is accompanied by epithelial-to-mesenchymal transition (EMT). Consistent with a causal role for Snail in these processes, we show that Snail is sufficient to induce EMT in primary tumor cells, that Snail is sufficient to promote mammary tumor recurrence in vivo, and that high levels of Snail predict decreased relapse-free survival in women with breast cancer. In aggregate, our observations strongly implicate Snail in the process of breast cancer recurrence.
Collapse
Affiliation(s)
- Susan E Moody
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Steventon B, Carmona-Fontaine C, Mayor R. Genetic network during neural crest induction: from cell specification to cell survival. Semin Cell Dev Biol 2005; 16:647-54. [PMID: 16084743 DOI: 10.1016/j.semcdb.2005.06.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The concerted action of extracellular signals such as BMP, Wnt, FGF, RA and Notch activate a genetic program required to transform a naïve ectodermal cell into a neural crest cell. In this review we will analyze the extracellular signals and the network of transcription factors that are required for this transformation. We will propose the division of this complex network of factors in two main steps: an initial cell specification step followed by a maintenance or cell survival step.
Collapse
Affiliation(s)
- Ben Steventon
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
153
|
Abstract
Of all the model organisms used to study human development, rodents such as mice most accurately reflect human craniofacial development. Collective advances in mouse embryology and mouse genetics continue to shape our understanding of neural crest cell development and by extrapolation the etiology of human congenital head and facial birth defects. The aim of this review is to highlight the considerable progress being made in our understanding of cranial neural crest cell patterning in mouse embryos.
Collapse
Affiliation(s)
- Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| |
Collapse
|
154
|
Picker JD, Coyle JT. Do maternal folate and homocysteine levels play a role in neurodevelopmental processes that increase risk for schizophrenia? Harv Rev Psychiatry 2005; 13:197-205. [PMID: 16126606 DOI: 10.1080/10673220500243372] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Evidence from many different lines of research supports the hypothesis that schizophrenia is a disorder of development with etiological factors implicated as early as the second trimester in utero. We suggest that low maternal folate, acting to increase homocysteine levels, may provide a functional link between many of the identified prenatal risk factors and the hypothesized mechanisms whereby neurodevelopmental patterning deviates toward a schizophrenic potential. METHODS PubMed was searched from the present back to 1963, when elevated homocysteine was identified as a pathogen in homocystinuria as first described by Carson and colleagues (Arch Dis Child 1963;38:425-36). All articles for homocystinuria, homocysteine, folate, and development with schizophrenia were evaluated. RESULTS The findings from this review support the hypothesis that maternal low folate and high homocysteine levels may provide a potential teratogenic mechanism that increases the risk for developing schizophrenia. CONCLUSION The potential role of maternal folate deficiency and hyperhomocystinemia in the genesis of schizophrenia would extend the range of their known teratogenic effects. Given the potential for preventive treatment offered by this hypothesis, we believe further investigation into this mechanism is warranted.
Collapse
Affiliation(s)
- Jonathan D Picker
- Department of Genetics, Harvard Medical School; McLean Hospital, Belmont, MA, USA.
| | | |
Collapse
|
155
|
de Heer IM, de Klein A, van den Ouweland AM, Vermeij-Keers C, Wouters CH, Vaandrager JM, Hovius SER, Hoogeboom JM. Clinical and Genetic Analysis of Patients with Saethre-Chotzen Syndrome. Plast Reconstr Surg 2005; 115:1894-902; discussion 1903-5. [PMID: 15923834 DOI: 10.1097/01.prs.0000165278.72168.51] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Saethre-Chotzen syndrome is a craniosynostosis syndrome further characterized by distinctive facial and limb abnormalities. It shows complete penetrance and variable expressivity and has been linked to the TWIST gene on chromosome 7p21; more than 80 different intragenic mutations and, recently, large deletions have been detected in Saethre-Chotzen patients. The aim of this study was to genetically and phenotypically characterize patients with a clinical diagnosis of Saethre-Chotzen syndrome. METHODS Patients with a clinical diagnosis as well as those with a genetic diagnosis of Saethre-Chotzen syndrome (n = 34) were included in the study. RESULTS The study showed that the important features of Saethre-Chotzen syndrome are brachycephaly (occurring in 74 percent of patients), a broad, depressed nasal bridge (65 percent), a high forehead (56 percent), ptosis (53 percent), and prominent auricular crura (56 percent). Furthermore, using different molecular techniques, pathogenic mutations in the TWIST gene were identified in 71 percent of patients. CONCLUSIONS Patients with deletions of the TWIST gene did not differ from those with intragenic TWIST mutations in frequency or severity of craniofacial abnormalities. However, they did distinguish themselves by the presence of many additional anomalies and diseases and--most importantly--the high frequency of mental retardation, which was borderline significant. The authors conclude that when using stringent inclusion criteria for studies of Saethre-Chotzen syndrome, patients who have a pathogenic mutation of the TWIST gene should be excluded.
Collapse
Affiliation(s)
- Inge Marieke de Heer
- Department of Plastic and Reconstructive Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Heeg-Truesdell E, LaBonne C. A slug, a fox, a pair of sox: transcriptional responses to neural crest inducing signals. ACTA ACUST UNITED AC 2005; 72:124-39. [PMID: 15269887 DOI: 10.1002/bdrc.20011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The neural crest, a cell type found only in vertebrate embryos, gives rise to the structures of the skull and face and most of the peripheral nervous system, as well as other cell types characteristic of vertebrates. These cells are of great clinical significance and a wide variety of congenital defects are due to aberrant neural crest development. Increasing numbers of studies are contributing to our understanding of how this group of cells form and differentiate during normal development. Wnt, FGF, BMP, and Notch-mediated signals all have essential roles in this process, and several of these signals appear to play multiple temporally distinct roles. Changes in the response of neural crest cells to the same signal over time may be mediated, in part, by an ever-changing cocktail of transcription factors expressed within these cells. Neural crest development is thus a complex multistep process, and elucidating the molecular mechanisms that mediate distinct aspects of this process will require that we determine the role of each of these factors alone and in combination. Here, we review some recent advances in our understanding of the signals and downstream transcription factors involved in neural crest cell formation.
Collapse
Affiliation(s)
- Elizabeth Heeg-Truesdell
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | |
Collapse
|
157
|
Huang X, Saint-Jeannet JP. Induction of the neural crest and the opportunities of life on the edge. Dev Biol 2004; 275:1-11. [PMID: 15464568 DOI: 10.1016/j.ydbio.2004.07.033] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 07/21/2004] [Accepted: 07/23/2004] [Indexed: 01/10/2023]
Abstract
The neural crest is a multipotent population of migratory cells unique to the vertebrate embryo. Neural crest arises at the lateral edge of the neural plate and migrates throughout the embryo to give rise to a wide variety of cell types including peripheral and enteric neurons and glia, craniofacial cartilage and bone, smooth muscle, and pigment cells. Here we review recent studies that have addressed the role of several signaling pathways in the induction of the neural crest. Work in the mouse, chick, Xenopus, and zebrafish have shown that a complex network of genes is activated at the neural plate border in response to neural crest-inducing signals. We also summarize some of these findings and discuss how the differential activation of these genes may contribute to the establishment of neural crest diversity.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
158
|
Fernandes KJL, McKenzie IA, Mill P, Smith KM, Akhavan M, Barnabé-Heider F, Biernaskie J, Junek A, Kobayashi NR, Toma JG, Kaplan DR, Labosky PA, Rafuse V, Hui CC, Miller FD. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 2004; 6:1082-93. [PMID: 15517002 DOI: 10.1038/ncb1181] [Citation(s) in RCA: 576] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A fundamental question in stem cell research is whether cultured multipotent adult stem cells represent endogenous multipotent precursor cells. Here we address this question, focusing on SKPs, a cultured adult stem cell from the dermis that generates both neural and mesodermal progeny. We show that SKPs derive from endogenous adult dermal precursors that exhibit properties similar to embryonic neural-crest stem cells. We demonstrate that these endogenous SKPs can first be isolated from skin during embryogenesis and that they persist into adulthood, with a niche in the papillae of hair and whisker follicles. Furthermore, lineage analysis indicates that both hair and whisker follicle dermal papillae contain neural-crest-derived cells, and that SKPs from the whisker pad are of neural-crest origin. We propose that SKPs represent an endogenous embryonic precursor cell that arises in peripheral tissues such as skin during development and maintains multipotency into adulthood.
Collapse
Affiliation(s)
- Karl J L Fernandes
- Department of Cancer Research, Hospital For Sick Children Research Institute, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Abstract
In this review, we outline the gene-regulatory interactions driving neural crest development and compare these to a hypothetical network operating in the embryonic ectoderm of the cephalochordate amphioxus. While the early stages of ectodermal patterning appear conserved between amphioxus and vertebrates, later activation of neural crest-specific factors at the neural plate border appears to be a vertebrate novelty. This difference may reflect co-option of genetic pathways which conferred novel properties upon the evolving vertebrate neural plate border, potentiating the evolution of definitive neural crest.
Collapse
Affiliation(s)
- Daniel Meulemans
- California Institute of Technology, 1200 East California Boulevard, Pasadena 91125, USA
| | | |
Collapse
|
160
|
Hornik C, Brand-Saberi B, Rudloff S, Christ B, Füchtbauer EM. Twist is an integrator of SHH, FGF, and BMP signaling. ACTA ACUST UNITED AC 2004; 209:31-9. [PMID: 15742476 DOI: 10.1007/s00429-004-0412-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Development of vertebrate embryos is regulated by a number of different signaling pathways. These pathways are frequently not independent of each other but are connected by crosstalk between cells and tissues. Furthermore, different signaling pathways have been found to interact at the cellular level. Development of cranial and limb structures is an example, in which FGF, BMP, and SHH signaling interact. Mutations in the different signaling pathways may therefore result in complex but similar phenotypes. This indicates the existence of integrator molecules, which depend in their expression or activity on the combination of different signaling pathways. Here we show that expression of the bHLH transcription factor Twist in the paraxial mesoderm requires an induction from the notochord. This induction can only be substituted by a combination of FGF and SHH signaling, but not by individual application of FGF8 or SHH alone. Furthermore, the expression of Twist can be modified by BMP2 in a complex, age-dependent manner. We propose that Twist is one of the integrating parts of the three signaling pathways and mediates some of the common effects.
Collapse
Affiliation(s)
- Christoph Hornik
- Institute of Anatomy and Cell Biology, Department II, Albert-Ludwigs-University, Freiburg, Germany
| | | | | | | | | |
Collapse
|
161
|
Borue X, Noden DM. Normal and aberrant craniofacial myogenesis by grafted trunk somitic and segmental plate mesoderm. Development 2004; 131:3967-80. [PMID: 15269174 DOI: 10.1242/dev.01276] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Our research assesses the ability of three trunk mesodermal populations– medial and lateral halves of newly formed somites, and presomitic(segmental plate) mesenchyme – to participate in the differentiation and morphogenesis of craniofacial muscles. Grafts from quail donor embryos were placed in mesodermal pockets adjacent to the midbrain-hindbrain boundary,prior to the onset of neural crest migration, in chick host embryos. This encompasses the site where the lateral rectus and the proximal first branchial arch muscle primordia arise. The distribution and differentiation of graft-derived cells were assayed using QCPN and QH1 antibodies to identify all quail cells and quail endothelial cells, respectively. Chimeric embryos were assayed for expression of myf5, myod, paraxis and lbx1, and the synthesis of myosin heavy chain (MyHC), between 1 and 6 days later (stages 14-30). Heterotopic and control (orthotopic) transplants consistently produced invasive angioblasts, and contributed to the lateral rectus and proximal first branchial arch muscles; many also contributed to the dorsal oblique muscle. The spatiotemporal patterns of transcription factor and MyHC expression by these trunk cells mimicked those of normal head muscles. Heterotopic grafts also gave rise to many ectopic muscles. These were observed in somite-like condensations at the implant site, in dense mesenchymal aggregates adjacent to the midbrain-hindbrain boundary, and in numerous small condensations scattered deep to the dorsal margin of the eye. Cells in ectopic condensations expressed trunk transcription factors and differentiated rapidly, mimicking the trunk myogenic timetable. A novel discovery was the formation by grafted trunk mesoderm of many mononucleated myocytes and irregularly oriented myotubes deep to the eye. These results establish that the head environment is able to support the progressive differentiation of several distinct trunk myogenic progenitor populations, over-riding whatever biases were present at the time of grafting. The spatial and temporal control of head muscle differentiation and morphogenesis are very site specific, and head mesoderm outside of these sites is normally refractory to, or inhibited by, the signals that initiate ectopic myogenesis by grafted trunk mesoderm cells.
Collapse
Affiliation(s)
- Xenia Borue
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401, USA
| | | |
Collapse
|
162
|
Ruest LB, Xiang X, Lim KC, Levi G, Clouthier DE. Endothelin-A receptor-dependent and -independent signaling pathways in establishing mandibular identity. Development 2004; 131:4413-23. [PMID: 15306564 PMCID: PMC2818681 DOI: 10.1242/dev.01291] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The lower jaw skeleton is derived from cephalic neural crest (CNC) cells that reside in the mandibular region of the first pharyngeal arch. Endothelin-A receptor (Ednra) signaling in crest cells is crucial for their development, as Ednra(-/-) mice are born with severe craniofacial defects resulting in neonatal lethality. In this study, we undertook a more detailed analysis of mandibular arch development in Ednra(-/-) embryos to better understand the cellular and molecular basis for these defects. We show that most lower jaw structures in Ednra(-/-) embryos undergo a homeotic transformation into maxillary-like structures similar to those observed in Dlx5/Dlx6(-/-) embryos, though lower incisors are still present in both mutant embryos. These structural changes are preceded by aberrant expansion of proximal first arch gene expression into the distal arch, in addition to the previously described loss of a Dlx6/Hand2 expression network. However, a small distal Hand2 expression domain remains. Although this distal expression is not dependent on either Ednra or Dlx5/Dlx6 function, it may require one or more GATA factors. Using fate analysis, we show that these distal Hand2-positive cells probably contribute to lower incisor formation. Together, our results suggest that the establishment of a 'mandibular identity' during lower jaw development requires both Ednra-dependent and -independent signaling pathways.
Collapse
Affiliation(s)
- Louis-Bruno Ruest
- Department of Molecular, Cellular and Craniofacial Biology and the Birth Defects Center, University of Louisville, Louisville, KY 40292, USA
| | - Xilin Xiang
- Department of Molecular, Cellular and Craniofacial Biology and the Birth Defects Center, University of Louisville, Louisville, KY 40292, USA
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Giovanni Levi
- UMR5166 CNRS/MNHN Evolution des Régulations Endocriniennes, 7 rue Cuvier, 75005 Paris, France
| | - David E. Clouthier
- Department of Molecular, Cellular and Craniofacial Biology and the Birth Defects Center, University of Louisville, Louisville, KY 40292, USA
- Author for correspondence ()
| |
Collapse
|
163
|
Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117:927-39. [PMID: 15210113 DOI: 10.1016/j.cell.2004.06.006] [Citation(s) in RCA: 2967] [Impact Index Per Article: 141.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 03/01/2004] [Accepted: 05/03/2004] [Indexed: 12/12/2022]
Abstract
Metastasis is a multistep process during which cancer cells disseminate from the site of primary tumors and establish secondary tumors in distant organs. In a search for key regulators of metastasis in a murine breast tumor model, we have found that the transcription factor Twist, a master regulator of embryonic morphogenesis, plays an essential role in metastasis. Suppression of Twist expression in highly metastatic mammary carcinoma cells specifically inhibits their ability to metastasize from the mammary gland to the lung. Ectopic expression of Twist results in loss of E-cadherin-mediated cell-cell adhesion, activation of mesenchymal markers, and induction of cell motility, suggesting that Twist contributes to metastasis by promoting an epithelial-mesenchymal transition (EMT). In human breast cancers, high level of Twist expression is correlated with invasive lobular carcinoma, a highly infiltrating tumor type associated with loss of E-cadherin expression. These results establish a mechanistic link between Twist, EMT, and tumor metastasis.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cadherins/metabolism
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Cell Line
- Cell Line, Tumor
- Cell Movement
- Epithelial Cells/cytology
- Epithelial Cells/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Luciferases/metabolism
- Lung Neoplasms/secondary
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mesoderm
- Mice
- Mice, Inbred BALB C
- Morphogenesis
- Myogenic Regulatory Factors/antagonists & inhibitors
- Neoplasm Invasiveness
- Neoplasm Metastasis
- Neoplasm Transplantation
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/metabolism
- Organ Size
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Repressor Proteins
- Transcription Factors/metabolism
- Twist-Related Protein 1
Collapse
Affiliation(s)
- Jing Yang
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Yasutake J, Inohaya K, Kudo A. Twist functions in vertebral column formation in medaka, Oryzias latipes. Mech Dev 2004; 121:883-94. [PMID: 15210193 DOI: 10.1016/j.mod.2004.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Revised: 03/14/2004] [Accepted: 03/16/2004] [Indexed: 11/19/2022]
Abstract
Medaka twist, a basic helix-loop-helix (bHLH) transcription factor, is expressed in the sclerotome during embryogenesis. We previously established a line of twist-EGFP transgenic medaka, whose EGFP expression is regulated by the twist promoter; therefore, we could observe the behavior of sclerotomal cells in vivo. In the transgenic medaka embryos, EGFP-positive sclerotomal cells migrated dorsally around the notochord and the neural tube, where at a later stage the vertebral column would be formed. This finding strongly suggests that twist-expressing sclerotomal cells participate in vertebral column formation in medaka. To clarify the function of twist gene in the sclerotome, we performed knockdown analysis of twist by using two kinds of morpholino antisense oligonucleotides targeted against twist (MO1 and MO2). Both the MO1 and MO2 morphants exhibited absence of neural arches, which are bilaterally paired, dorsomedially oriented bones on the dorsal aspect of the centrum. In addition, MO2, which blocks translation of only endogenous twist mRNA in the twist-EGFP transgenic medaka, did not affect the migration pattern of EGFP-positive cells, revealing that the migration of sclerotome-derived cells were normal in the absence of twist gene function. These results demonstrate that medaka twist functions in vertebral column formation by regulating the sclerotomal cell differentiation.
Collapse
Affiliation(s)
- Junichi Yasutake
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
165
|
Davy A, Aubin J, Soriano P. Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev 2004; 18:572-83. [PMID: 15037550 PMCID: PMC374238 DOI: 10.1101/gad.1171704] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eph receptors and ephrin ligands are key players in many developmental processes including embryo patterning, angiogenesis, and axon guidance. Eph/ephrin interactions lead to the generation of a bidirectional signal, in which both the Eph receptors and the ephrins activate downstream signaling cascades simultaneously. To understand the role of ephrin-B1 and the importance of ephrin-B1-induced reverse signaling during embryonic development, we have generated mouse lines carrying mutations in the efnb1 gene. Complete ablation of ephrin-B1 resulted in perinatal lethality associated with a range of phenotypes, including defects in neural crest cell (NCC)-derived tissues, incomplete body wall closure, and abnormal skeletal patterning. Conditional deletion of ephrin-B1 demonstrated that ephrin-B1 acts autonomously in NCCs, and controls their migration. Last, a mutation in the PDZ binding domain indicated that ephrin-B1-induced reverse signaling is required in NCCs. Our results demonstrate that ephrin-B1 acts both as a ligand and as a receptor in a tissue-specific manner during embryogenesis.
Collapse
Affiliation(s)
- Alice Davy
- Program in Developmental Biology, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
166
|
Weston JA, Yoshida H, Robinson V, Nishikawa S, Fraser ST, Nishikawa S. Neural crest and the origin of ectomesenchyme: neural fold heterogeneity suggests an alternative hypothesis. Dev Dyn 2004; 229:118-30. [PMID: 14699583 DOI: 10.1002/dvdy.10478] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The striking similarity between mesodermally derived fibroblasts and ectomesenchyme cells, which are thought to be derivatives of the neural crest, has long been a source of interest and controversy. In mice, the gene encoding the alpha subunit of the platelet-derived growth factor receptor (PDGFRalpha) is expressed both by mesodermally derived mesenchymal cells and by ectomesenchyme. Whole-mount immunostaining previously revealed that PDGFRalpha is present in the cephalic neural fold epithelium of early murine embryos (Takakura et al. [1997] J Histochem Cytochem 45:883-893). We now show that, within the neural fold, a sharp boundary exists between E-cadherin-expressing non-neural epithelium and the neural epithelium of the dorsal ridge. In addition, we found that cells coexpressing E-cadherin and PDGFRalpha are present in the non-neural epithelium of the neural folds. These observations raise the possibility that at least some PDGFRalpha(+) ectomesenchyme originates from the lateral non-neural domain of neural fold epithelium. This inference is consistent with previous reports (Nichols [ 1981] J Embryol Exp Morphol 64:105-120; Nichols [ 1986] Am J Anat 176:221-231) that mesenchymal cells emerge precociously from an epithelial neural fold domain resembling the primitive streak in the early embryonic epiblast. Therefore, we propose the name "metablast" for this non-neural epithelial domain to indicate that it is the site of a delayed local delamination of mesenchyme similar to involution of mesoderm during gastrulation. We further propose the testable hypothesis that neural crest and ectomesenchyme are developmentally distinct progenitor populations and that at least some ectomesenchyme is metablast-derived rather than neural crest-derived tissue. Developmental Dynamics 229:118-130, 2004.
Collapse
Affiliation(s)
- James A Weston
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA.
| | | | | | | | | | | |
Collapse
|
167
|
Ishii M, Merrill AE, Chan YS, Gitelman I, Rice DPC, Sucov HM, Maxson RE. Msx2 and Twist cooperatively control the development of the neural crest-derived skeletogenic mesenchyme of the murine skull vault. Development 2004; 130:6131-42. [PMID: 14597577 DOI: 10.1242/dev.00793] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The flat bones of the vertebrate skull vault develop from two migratory mesenchymal cell populations, the cranial neural crest and paraxial mesoderm. At the onset of skull vault development, these mesenchymal cells emigrate from their sites of origin to positions between the ectoderm and the developing cerebral hemispheres. There they combine, proliferate and differentiate along an osteogenic pathway. Anomalies in skull vault development are relatively common in humans. One such anomaly is familial calvarial foramina, persistent unossified areas within the skull vault. Mutations in MSX2 and TWIST are known to cause calvarial foramina in humans. Little is known of the cellular and developmental processes underlying this defect. Neither is it known whether MSX2 and TWIST function in the same or distinct pathways. We trace the origin of the calvarial foramen defect in Msx2 mutant mice to a group of skeletogenic mesenchyme cells that compose the frontal bone rudiment. We show that this cell population is reduced not because of apoptosis or deficient migration of neural crest-derived precursor cells, but because of defects in its differentiation and proliferation. We demonstrate, in addition, that heterozygous loss of Twist function causes a foramen in the skull vault similar to that caused by loss of Msx2 function. Both the quantity and proliferation of the frontal bone skeletogenic mesenchyme are reduced in Msx2-Twist double mutants compared with individual mutants. Thus Msx2 and Twist cooperate in the control of the differentiation and proliferation of skeletogenic mesenchyme. Molecular epistasis analysis suggests that Msx2 and Twist do not act in tandem to control osteoblast differentiation, but function at the same epistatic level.
Collapse
Affiliation(s)
- Mamoru Ishii
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center and Hospital, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90089-9176, USA
| | | | | | | | | | | | | |
Collapse
|
168
|
Ota MS, Loebel DAF, O'Rourke MP, Wong N, Tsoi B, Tam PPL. Twist is required for patterning the cranial nerves and maintaining the viability of mesodermal cells. Dev Dyn 2004; 230:216-28. [PMID: 15162501 DOI: 10.1002/dvdy.20047] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Twist encodes a basic helix-loop-helix transcription factor that is required for normal craniofacial morphogenesis in the mouse. Loss of Twist activity in the cranial mesenchyme leads to aberrant migratory behaviour of the neural crest cells, whereas Twist-deficient neural crest cells are located in an inappropriate location in the first branchial arch and display defective osteogenic and odontogenic differentiation (Soo et al. [2002] Dev. Biol. 247:251-270). Results of the present study further show that loss of Twist impacts on the patterning of the cranial ganglia and nerves but not that of the peripheral ganglia and nerves in the trunk region of the body axis. Analyses of the expression of molecular markers of early differentiation of the paraxial mesoderm and the histogenetic potency of somites of Twist(-/-) embryos reveal that Twist-deficient somites can differentiate into muscles, cartilage, and bones, albeit less prolifically. Twist function, therefore, is not essential for mesoderm differentiation. The poor growth of the Twist-deficient somites after transplantation to the ectopic site may be attributed to reduced proliferative capacity and extensive apoptosis of the paraxial mesoderm, suggesting that Twist is required for maintaining cell proliferation and viability in the mesodermal progenitors.
Collapse
Affiliation(s)
- Masato S Ota
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW Australia
| | | | | | | | | | | |
Collapse
|
169
|
Knight RD, Nair S, Nelson SS, Afshar A, Javidan Y, Geisler R, Rauch GJ, Schilling TF. lockjawencodes a zebrafishtfap2arequired for early neural crest development. Development 2003; 130:5755-68. [PMID: 14534133 DOI: 10.1242/dev.00575] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neural crest is a uniquely vertebrate cell type that gives rise to much of the craniofacial skeleton, pigment cells and peripheral nervous system, yet its specification and diversification during embryogenesis are poorly understood. Zebrafish homozygous for the lockjaw (low)mutation show defects in all of these derivatives and we show that low (allelic with montblanc) encodes a zebrafish tfap2a, one of a small family of transcription factors implicated in epidermal and neural crest development. A point mutation in lowtruncates the DNA binding and dimerization domains of tfap2a, causing a loss of function. Consistent with this, injection of antisense morpholino oligonucleotides directed against splice sites in tfap2a into wild-type embryos produces a phenotype identical to low. Analysis of early ectodermal markers revealed that neural crest specification and migration are disrupted in low mutant embryos. TUNEL labeling of dying cells in mutants revealed a transient period of apoptosis in crest cells prior to and during their migration. In the cranial neural crest, gene expression in the mandibular arch is unaffected in low mutants, in contrast to the hyoid arch, which shows severe reductions in dlx2 and hoxa2 expression. Mosaic analysis, using cell transplantation,demonstrated that neural crest defects in low are cell autonomous and secondarily cause disruptions in surrounding mesoderm. These studies demonstrate that low is required for early steps in neural crest development and suggest that tfap2a is essential for the survival of a subset of neural crest derivatives.
Collapse
Affiliation(s)
- Robert D Knight
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Gammill LS, Bronner-Fraser M. Neural crest specification: migrating into genomics. Nat Rev Neurosci 2003; 4:795-805. [PMID: 14523379 DOI: 10.1038/nrn1219] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Laura S Gammill
- Division of Biology 139-74, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
171
|
Hunt R, Hunt PN. The role of cell mixing in branchial arch development. Mech Dev 2003; 120:769-90. [PMID: 12915228 DOI: 10.1016/s0925-4773(03)00070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Compartmental structures are the basis of a number of developing systems, including parts of the vertebrate head. One of the characteristics of a series of compartments is that mixing between cells in adjacent units is restricted. This is a consequence of differential chemoaffinity between neighbouring cells in adjacent compartments. We set out to determine whether mesenchymal cells in the branchial arches and their precursors show cell-mixing properties consistent with a compartmental organisation. In chimaeric avian embryos we found no evidence of preferential association or segregation of neural crest cells when surrounded by cells derived from a different axial level. In reassociation assays using mesenchymal cells isolated from chick branchial arches at stage 18, cells reformed into clusters without exhibiting a preferential affinity for cells derived from the same branchial arch. We find no evidence for differential chemoaffinity in vivo or in vitro between mesenchymal cells in different branchial arches. Our findings suggest that branchial arch mesenchyme is not organised into a series of compartments.
Collapse
Affiliation(s)
- Romita Hunt
- School of Biological and Biomedical Sciences, University of Durham, South Road, DH1 3LE Durham, UK
| | | |
Collapse
|
172
|
O'Rourke MP, Soo K, Behringer RR, Hui CC, Tam PPL. Twist plays an essential role in FGF and SHH signal transduction during mouse limb development. Dev Biol 2002; 248:143-56. [PMID: 12142027 DOI: 10.1006/dbio.2002.0730] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Loss of Twist gene function arrests the growth of the limb bud shortly after its formation. In the Twist(-/-) forelimb bud, Fgf10 expression is reduced, Fgf4 is not expressed, and the domain of Fgf8 and Fgfr2 expression is altered. This is accompanied by disruption of the expression of genes (Shh, Gli1, Gli2, Gli3, and Ptch) associated with SHH signalling in the limb bud mesenchyme, the down-regulation of Bmp4 in the apical ectoderm, the absence of Alx3, Alx4, Pax1, and Pax3 activity in the mesenchyme, and a reduced potency of the limb bud tissues to differentiate into osteogenic and myogenic tissues. Development of the hindlimb buds in Twist(-/-) embryos is also retarded. The overall activity of genes involved in SHH signalling is reduced.Fgf4 and Fgf8 expression is lost or reduced in the apical ectoderm, but other genes (Fgf10, Fgfr2) involved with FGF signalling are expressed in normal patterns. Twist(+/-);Gli3(+/XtJ) mice display more severe polydactyly than that seen in either Twist(+/-) or Gli3(+/XtJ) mice, suggesting that there is genetic interaction between Twist and Gli3 activity. Twist activity is therefore essential for the growth and differentiation of the limb bud tissues as well as regulation of tissue patterning via the modulation of SHH and FGF signal transduction.
Collapse
Affiliation(s)
- Meredith P O'Rourke
- Embryology Unit, Children's Medical Research Institute, Wentworthville, NSW 2145, Australia
| | | | | | | | | |
Collapse
|