151
|
Chen D, Fong HW, Davis JS. Induction of c-fos and c-jun messenger ribonucleic acid expression by prostaglandin F2alpha is mediated by a protein kinase C-dependent extracellular signal-regulated kinase mitogen-activated protein kinase pathway in bovine luteal cells. Endocrinology 2001; 142:887-95. [PMID: 11159862 DOI: 10.1210/endo.142.2.7938] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PGF2alpha triggers the demise of the corpus luteum whereby progesterone synthesis is inhibited, the luteal structure regresses, and the estrus cycle resumes. Upon binding to its heterotrimeric G-protein-coupled receptors, PGF2alpha initiates the phospholipase C/diacylglycerol and inositol-1,4,5-trisphosphate/Ca(2+)-protein kinase C (PKC) signaling pathway. More recently, we have demonstrated that PGF2alpha activates extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase signaling through a Raf-dependent mechanism in bovine luteal cells. However, the relationship between PKC and ERK activation in PGF2alpha signaling has not been clearly defined. Moreover, the signaling pathway that PGF2alpha uses to regulate gene expression is unknown. In this report, primary cultures of bovine luteal cells were used to address the role of PKC in ERK activation and the signaling pathway for induction of c-fos and c-jun messenger RNA (mRNA) expression in response to PGF2alpha. By using a PKC inhibitor and a PKC-deficient luteal cell model, we observed that phorbol ester-responsive isoforms of PKC were required for ERK phosphorylation and activation by PGF2alpha (1 microM) or phorbol 12-myristate 13-acetate (PMA) (20 nM). In PGF2alpha- and PMA-treated cells, active ERK MAP kinase was localized in the nucleus. PGF2alpha-induced ERK phosphorylation was dose-dependently inhibited by the MEK1 inhibitor PD098059 (1-50 microM). The expression of c-fos and c-jun mRNA in luteal cells was markedly increased by treatment with PGF2alpha (1 microM) or PMA (20 nM) for 30 min. We also observed that activation of ERK MAP kinase was required for the expression of c-fos and c-jun mRNA in response to PGF2alpha and PMA because it was abrogated by blocking the ERK pathway with PD098059. In addition, PGF2alpha and PMA-induced c-fos and c-jun mRNA expression was abolished in the PKC-deficient cells. Taken together, our data demonstrate that a PKC-dependent ERK MAP kinase pathway mediates the expression of c-fos and c-jun mRNA in PGF2alpha-treated bovine luteal cells.
Collapse
Affiliation(s)
- D Chen
- The Women's Research Institute, Department of Obstetrics and Gynecology, University of Kansas School of Medicine-Wichita, Kansas 67214, USA
| | | | | |
Collapse
|
152
|
Morin S, Paradis P, Aries A, Nemer M. Serum response factor-GATA ternary complex required for nuclear signaling by a G-protein-coupled receptor. Mol Cell Biol 2001; 21:1036-44. [PMID: 11158291 PMCID: PMC99558 DOI: 10.1128/mcb.21.4.1036-1044.2001] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Endothelins are a family of biologically active peptides that are critical for development and function of neural crest-derived and cardiovascular cells. These effects are mediated by two G-protein-coupled receptors and involve transcriptional regulation of growth-responsive and/or tissue-specific genes. We have used the cardiac ANF promoter, which represents the best-studied tissue-specific endothelin target, to elucidate the nuclear pathways responsible for the transcriptional effects of endothelins. We found that cardiac-specific response to endothelin 1 (ET-1) requires the combined action of the serum response factor (SRF) and the tissue-restricted GATA proteins which bind over their adjacent sites, within a 30-bp ET-1 response element. We show that SRF and GATA proteins form a novel ternary complex reminiscent of the well-characterized SRF-ternary complex factor interaction required for transcriptional induction of c-fos in response to growth factors. In transient cotransfections, GATA factors and SRF synergistically activate atrial natriuretic factor and other ET-1-inducible promoters that contain both GATA and SRF binding sites. Thus, GATA factors may represent a new class of tissue-specific SRF accessory factors that account for muscle- and other cell-specific SRF actions.
Collapse
Affiliation(s)
- S Morin
- Laboratoire de Développment et Différenciation Cardiaques, Institut de Recherches Cliniques de Montréal, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
153
|
Guiral M, Bess K, Goodwin G, Jayaraman PS. PRH represses transcription in hematopoietic cells by at least two independent mechanisms. J Biol Chem 2001; 276:2961-70. [PMID: 11054411 DOI: 10.1074/jbc.m004948200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PRH (proline-rich homeodomain protein) is strongly expressed in the hematopoietic compartment. Here we show that PRH is a repressor of transcription in hematopoietic cells. A fragment of PRH that includes the homeodomain can bind to TATA box sequences in vitro and can also bind to the TATA box-binding protein. PRH represses transcription from TATA box-containing promoters in intact cells but does not repress transcription from a promoter lacking a TATA box. A mutation in the PRH homeodomain that blocks binding to DNA but that has little or no effect on binding to the TATA box-binding protein significantly reduces the ability of the protein to repress transcription and provides the first clear demonstration that a homeodomain can bring about transcriptional repression in vivo by binding to a TATA box. However, we also show that mutation of the PRH homeodomain does not block the ability of PRH to repress transcription when this protein is tethered upstream of the TATA box via a heterologous DNA-binding domain. PRH also contains an N-terminal proline-rich repression domain that is separate from the homeodomain. Deletion mapping suggests that this repression domain contains at least two regions that both independently contribute to transcriptional repression.
Collapse
Affiliation(s)
- M Guiral
- Department of Biochemistry, University of Bristol, University Walk, Bristol, United Kingdom
| | | | | | | |
Collapse
|
154
|
Roberts EC, Deed RW, Inoue T, Norton JD, Sharrocks AD. Id helix-loop-helix proteins antagonize pax transcription factor activity by inhibiting DNA binding. Mol Cell Biol 2001; 21:524-33. [PMID: 11134340 PMCID: PMC86614 DOI: 10.1128/mcb.21.2.524-533.2001] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2000] [Accepted: 11/01/2000] [Indexed: 11/20/2022] Open
Abstract
The Id subfamily of helix-loop-helix (HLH) proteins plays a fundamental role in the regulation of cellular proliferation and differentiation. The major mechanism by which Id proteins are thought to inhibit differentiation is through interaction with other HLH proteins and inhibition of their DNA-binding activity. However, Id proteins have also been shown to interact with other proteins involved in regulating cellular proliferation and differentiation, suggesting a more widespread regulatory function. In this study we demonstrate functional interactions between Id proteins and members of the Pax-2/-5/-8 subfamily of paired-domain transcription factors. Members of the Pax transcription factor family have key functions in regulating several developmental processes exemplified by B lymphopoiesis, in which Pax-5 plays an essential role. Id proteins bind to Pax proteins in vitro and in vivo. Binding occurs through the paired DNA-binding domain of the Pax proteins and results in the disruption of DNA-bound complexes containing Pax-2, Pax-5, and Pax-8. In vivo, Id proteins modulate the transcriptional activity mediated by Pax-5 complexes on the B-cell-specific mb-1 promoter. Our results therefore demonstrate a novel facet of Id function in regulating cellular differentiation by functionally antagonizing the action of members of the Pax transcription factor family.
Collapse
Affiliation(s)
- E C Roberts
- Department of Biochemistry and Genetics, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | |
Collapse
|
155
|
Abstract
Bone formation in vivo is a complex phenomenon whereby recruitment and replication of mesenchymal precursors of osteoblasts, differentiation into preosteoblasts, osteoblasts, and mature osteoblasts ultimately result in the accumulation and mineralization of the extracellular matrix. MC3T3-E1, a clonal osteoblastic cell line, was derived from mouse calvaria and undergoes an ordered and time dependent developmental sequence leading to formation of multilayered bone nodules over a 30 - 35 day period. This developmental pattern is characterized by the replication of preosteoblasts followed by growth arrest and expression of mature osteoblastic characteristics such as matrix maturation and eventual formation of multilayered nodules with a mineralized extracellular matrix. We have found that Ets1 is expressed in proliferating preosteoblastic cells whereas Ets2 is expressed by differentiating and mature osteoblasts. In addition, the expression of Ets1 can be induced in MC3T3-E1 and fetal rat calvaria cells by retinoic acid (RA) which is known to exert profound effects on skeletal growth and development, bone turnover, and induce specific cellular responses in bone cells. Thus the multiple functions of RA in bone cells are likely to be mediated in part by Ets1. Also, Ets2 transgenic mice develop multiple neurocranial, viserocranial, and cervical skeletal abnormalities. Significantly, these abnormalities are similar to the skeletal anomalies found in trisomy-16 mice and in humans with Down's syndrome, wherein the dosage of Ets2 is known to be increased. These results indicate that Ets2 has an important role in skeletal development and that Ets2 overexpression in transgenics is responsible for the genesis of the same type of skeletal abnormalities that are seen in Down's syndrome. Thus the genetic programs regulated by Ets1 and Ets2 may significantly affect the development and differentiation of osteoblasts, and in fact, Ets1 has been shown to interact with the 'quintessential' osteoblast transcription factor CbfA1. This review will examine in detail the role and possible targets of Ets1 and Ets2 in osteoblast differentiation and bone formation.
Collapse
Affiliation(s)
- A Raouf
- Department of Laboratory Medicine and Pathobiology, MRC group in Periodontal Physiology, University of Toronto, Toronto, Canada
| | | |
Collapse
|
156
|
Mavrothalassitis G, Ghysdael J. Proteins of the ETS family with transcriptional repressor activity. Oncogene 2000; 19:6524-32. [PMID: 11175368 DOI: 10.1038/sj.onc.1204045] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ETS proteins form one of the largest families of signal-dependent transcriptional regulators, mediating cellular proliferation, differentiation and tumorigenesis. Most of the known ETS proteins have been shown to activate transcription. However, four ETS proteins (YAN, ERF, NET and TEL) can act as transcriptional repressors. In three cases (ERF, NET and TEL) distinct repression domains have been identified and there are indications that NET and TEL may mediate transcription via Histone Deacetylase recruitment. All four proteins appear to be regulated by MAPKs, though for YAN and ERF this regulation seems to be restricted to ERKs. YAN, ERF and TEL have been implicated in cellular proliferation although there are indications suggesting a possible involvement of YAN and TEL in differentiation as well. Other ETS-domain proteins have been shown to repress transcription in a context specific manner, and there are suggestions that the ETS DNA-binding domain may act as a transcriptional repressor. Transcriptional repression by ETS domain proteins adds an other level in the orchestrated regulation by this diverse family of transcription factors that often recognize similar if not identical binding sites on DNA and are believed to regulate critical genes in a variety of biological processes. Definitive assessment of the importance of this novel regulatory level will require the identification of ETS proteins target genes and the further analysis of transcriptional control and biological function of these proteins in defined pathways.
Collapse
Affiliation(s)
- G Mavrothalassitis
- School of Medicine, University of Crete and IMBB-FORTH, Voutes, Heraklion, Crete 714-09, Greece
| | | |
Collapse
|
157
|
Carson JA, Fillmore RA, Schwartz RJ, Zimmer WE. The smooth muscle gamma-actin gene promoter is a molecular target for the mouse bagpipe homologue, mNkx3-1, and serum response factor. J Biol Chem 2000; 275:39061-72. [PMID: 10993896 DOI: 10.1074/jbc.m006532200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An evolutionarily conserved vertebrate homologue of the Drosophila NK-3 homeodomain gene bagpipe, Nkx3-1, is expressed in vascular and visceral mesoderm-derived muscle tissues and may influence smooth muscle cell differentiation. Nkx3-1 was evaluated for mediating smooth muscle gamma-actin (SMGA) gene activity, a specific marker of smooth muscle differentiation. Expression of mNkx3-1 in heterologous CV-1 fibroblasts was unable to elicit SMGA promoter activity but required the coexpression of serum response factor (SRF) to activate robust SMGA transcription. A novel complex element containing a juxtaposed Nkx-binding site (NKE) and an SRF-binding element (SRE) in the proximal promoter region was found to be necessary for the Nkx3-1/SRF coactivation of SMGA transcription. Furthermore, Nkx3-1 and SRF associate through protein-protein interactions and the homeodomain region of Nkx3-1 facilitated SRF binding to the complex NKE.SRE. Mutagenesis of Nkx3-1 revealed an inhibitory domain within its C-terminal segment. In addition, mNkx3-1/SRF cooperative activity required an intact Nkx3-1 homeodomain along with the MADS box of SRF, which contains DNA binding and dimerization structural domains, and the contiguous C-terminal SRF activation domain. Thus, SMGA is a novel target for Nkx3-1, and the activity of Nkx3-1 on the SMGA promoter is dependent upon SRF.
Collapse
Affiliation(s)
- J A Carson
- Department of Cellular and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
158
|
Hanlon M, Bundy LM, Sealy L. C/EBP beta and Elk-1 synergistically transactivate the c-fos serum response element. BMC Cell Biol 2000; 1:2. [PMID: 11151091 PMCID: PMC29063 DOI: 10.1186/1471-2121-1-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2000] [Accepted: 12/06/2000] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The serum response element (SRE) in the c-fos promoter is a convergence point for several signaling pathways that regulate induction of the c-fos gene. Many transcription factors regulate the SRE, including serum response factor (SRF), ternary complex factor (TCF), and CCAAT/enhancer binding protein-beta (C/EBPbeta). Independently, the TCFs and C/EBPbeta have been shown to interact with SRF and to respond to Ras-dependent signaling pathways that result in transactivation of the SRE. Due to these common observations, we addressed the possibility that C/EBPbeta and Elk-1 could both be necessary for Ras-stimulated transactivation of the SRE. RESULTS In this report, we demonstrate that Elk-1 and C/EBPbeta functionally synergize in transactivation of both a Gal4 reporter plasmid in concert with Gal4-SRF and in transactivation of the SRE. Interestingly, this synergy is only observed upon activation of Ras-dependent signaling pathways. Furthermore, we show that Elk-1 and C/EBPbeta could interact both in an in vitro GST-pulldown assay and in an in vivo co-immunoprecipitation assay. The in vivo interaction between the two proteins is dependent on the presence of activated Ras. We have also shown that the C-terminal domain of C/EBPbeta and the N-terminal domain of Elk-1 are necessary for the proteins to interact. CONCLUSIONS These data show that C/EBPbeta and Elk-1 synergize in SRF dependent transcription of both a Gal-4 reporter and the SRE. This suggests that SRF, TCF, and C/EBPbeta are all necessary for maximal induction of the c-fos SRE in response to mitogenic signaling by Ras.
Collapse
Affiliation(s)
- Mary Hanlon
- Department of Molecular Physiology and Biophysics Vanderbilt University School of Medicine, Nashville, Tennessee USA
| | - Linda M Bundy
- Department of Molecular Physiology and Biophysics Vanderbilt University School of Medicine, Nashville, Tennessee USA
| | - Linda Sealy
- Department of Molecular Physiology and Biophysics Vanderbilt University School of Medicine, Nashville, Tennessee USA
| |
Collapse
|
159
|
Shuh M, Derse D. Ternary complex factors and cofactors are essential for human T-cell leukemia virus type 1 tax transactivation of the serum response element. J Virol 2000; 74:11394-7. [PMID: 11070040 PMCID: PMC113245 DOI: 10.1128/jvi.74.23.11394-11397.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human T-cell leukemia virus type 1 Tax protein activates the expression of cellular immediate early genes controlled by the serum response element (SRE), which contains both the serum response factor (SRF) binding element (CArG box) and the ternary complex factor (TCF) binding element (Ets box). We show that TCF binding is necessary for Tax activation of the SRE and that Tax directly interacts with TCFs in vitro. In addition, Tax interactions with CREB binding protein (CBP) and p300- and CBP-associated factor were found to be essential for Tax activation of SRF-mediated transcription.
Collapse
Affiliation(s)
- M Shuh
- Basic Research Laboratory, Division of Basic Sciences, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | | |
Collapse
|
160
|
Mikheev AM, Mikheev SA, Zhang Y, Aebersold R, Zarbl H. CArG binding factor A (CBF-A) is involved in transcriptional regulation of the rat Ha-ras promoter. Nucleic Acids Res 2000; 28:3762-70. [PMID: 11000268 PMCID: PMC110773 DOI: 10.1093/nar/28.19.3762] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the present study we identified a positive transcriptional element within the rat Ha-ras promoter previously known as Ha-ras response element (HRE) and identified a trans-acting factor that binds HRE sequences in rat mammary cells. To identify the binding protein we employed sequence specific DNA affinity chromatography. Amino acid sequence analysis of the affinity-purified proteins was performed by tandem mass spectroscopy. The results unexpectedly demonstrated that in rat mammary cells CArG box-binding factor A (CBF-A) is the major protein species that bind specifically to the rat and human HRE sequences with high affinity. The affinity of CBF-A binding to HRE was significantly higher than to the CArG box described as a recognition sequence for CBF-A protein. Transient transfection assays using reporter plasmids verified that mutations within the HRE that disrupt binding of CBF-A also reduced the activity of the rat Ha-ras promoter. Despite the fact that the HRE within the Ha-ras promoter resembles a binding site for Ets transcription factors, we did not detect the binding of Ets-related proteins to the rat HRE in BICR-M1Rk cells. We further demonstrated a correlation between the presence of HRE binding activity and induction of Ha-ras mRNA expression following serum stimulation in the mammary carcinoma cell line. Taken together, our results suggest that CBF-A may play an important role in transcriptional regulation of Ha-ras promoter activity during normal mammary cell growth and carcinogenesis.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Base Sequence
- Blotting, Western
- Cell Cycle Proteins
- Chromatography, Affinity
- Chromatography, High Pressure Liquid
- DNA/genetics
- DNA/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Reporter/genetics
- Genes, ras/genetics
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B
- Humans
- Mass Spectrometry
- Mimosine/pharmacology
- Molecular Sequence Data
- Molecular Weight
- Mutation/genetics
- Promoter Regions, Genetic/genetics
- Protein Binding/drug effects
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-ets
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Repressor Proteins/chemistry
- Repressor Proteins/isolation & purification
- Repressor Proteins/metabolism
- Response Elements/genetics
- Ribonucleoproteins
- Thermodynamics
- Transcription Factors/metabolism
- Transfection
- Tumor Cells, Cultured
- Ultraviolet Rays
Collapse
Affiliation(s)
- A M Mikheev
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C1-015, PO Box 19024, Seattle, WA 98104-2092, USA
| | | | | | | | | |
Collapse
|
161
|
Belaguli NS, Sepulveda JL, Nigam V, Charron F, Nemer M, Schwartz RJ. Cardiac tissue enriched factors serum response factor and GATA-4 are mutual coregulators. Mol Cell Biol 2000; 20:7550-8. [PMID: 11003651 PMCID: PMC86307 DOI: 10.1128/mcb.20.20.7550-7558.2000] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2000] [Accepted: 06/12/2000] [Indexed: 11/20/2022] Open
Abstract
Combinatorial interaction among cardiac tissue-restricted enriched transcription factors may facilitate the expression of cardiac tissue-restricted genes. Here we show that the MADS box factor serum response factor (SRF) cooperates with the zinc finger protein GATA-4 to synergistically activate numerous myogenic and nonmyogenic serum response element (SRE)-dependent promoters in CV1 fibroblasts. In the absence of GATA binding sites, synergistic activation depends on binding of SRF to the proximal CArG box sequence in the cardiac and skeletal alpha-actin promoter. GATA-4's C-terminal activation domain is obligatory for synergistic coactivation with SRF, and its N-terminal domain and first zinc finger are inhibitory. SRF and GATA-4 physically associate both in vivo and in vitro through their MADS box and the second zinc finger domains as determined by protein A pullout assays and by in vivo one-hybrid transfection assays using Gal4 fusion proteins. Other cardiovascular tissue-restricted GATA factors, such as GATA-5 and GATA-6, were equivalent to GATA-4 in coactivating SRE-dependent targets. Thus, interaction between the MADS box and C4 zinc finger proteins, a novel regulatory paradigm, mediates activation of SRF-dependent gene expression.
Collapse
Affiliation(s)
- N S Belaguli
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
162
|
Abstract
Precerebellin (Cbln1) is the precursor of the brain-specific hexadecapeptide cerebellin. Although cerebellin has properties of a conventional neuropeptide, its function is controversial because Cbln1 has structural features characteristic of circulating atypical collagens. Cbln1 is related to the three subunits of the complement C1q complex. Therefore, we hypothesized that Cbln1 participated in analogous heteromeric complexes with precerebellin-related proteins. Using LexA-Cbln1 as bait in a yeast two-hybrid screen, we isolated a cDNA encoding a novel Cbln1-related protein, designated Cbln3. The gene encoding cbln3 had the same intron-exon structure as cbln1 but mapped to a different mouse chromosome (14). The deduced amino acid sequence of Cbln3 was 55% identical to Cbln1 and also contained a C1q signature domain and signal sequence for secretion. In addition to binding avidly to Cbln3, Cbln1 also formed homomeric complexes. In contrast, Cbln3 homomeric association was weak. These interactions exhibited specificity because C1qB bound to neither Cbln1 nor Cbln3. Like cbln1, cbln3 was expressed in the cerebellum and dorsal cochlear nucleus in which it was detected in granule neurons. Because Cbln1 and Cbln3 are coexpressed in the brain and interact avidly, they may function as a secreted heteromeric complex in vivo.
Collapse
|
163
|
Bárdos JI, Saurin AJ, Tissot C, Duprez E, Freemont PS. HPC3 is a new human polycomb orthologue that interacts and associates with RING1 and Bmi1 and has transcriptional repression properties. J Biol Chem 2000; 275:28785-92. [PMID: 10825164 DOI: 10.1074/jbc.m001835200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polycomb group (PcG) proteins were first described in Drosophila as factors responsible for maintaining the transcriptionally repressed state of Hox/homeotic genes in a stable and heritable manner throughout development. A growing number of vertebrate genes related to the Drosophila PcG proteins have recently been identified, including two Polycomb orthologues, Pc2 and M33. PcG proteins form multiprotein complexes, termed PcG bodies, that are thought to repress transcription by altering chromatin structure. Here we report the identification and characterization of HPC3 (human Polycomb 3), a novel PcG protein isolated in a yeast two-hybrid screen using human RING1 as bait. HPC3 shows strong sequence similarity to Drosophila Pc and also to vertebrate Pc2 and M33, particularly within the chromodomain and C-box. Previous studies indicate that M33 and human Pc2 (HPC2) can interact with RING1, and we show here that HPC3 also binds to RING1. This interaction is dependent upon the HPC3 C-box but, only partially on the RING finger of RING1. In contrast to HPC2, HPC3 interactions with RING1 are only observed in vivo with covalently modified forms of RING1. HPC3 also colocalizes with other PcG proteins in human PcG bodies. Consistent with its role as a PcG member, HPC3 is able to act as a long range transcriptional silencer when targeted to a reporter gene by a heterologous DNA-binding domain. Taken together, these data suggest that HPC3 is part of a large multiprotein complex that also contains other PcG proteins and is involved in repression of transcriptional activity.
Collapse
Affiliation(s)
- J I Bárdos
- Molecular Structure and Function Laboratory, Imperial Cancer Research Fund, P.O. Box 123, London WC2A 3PX, United Kingdom
| | | | | | | | | |
Collapse
|
164
|
Abstract
The detected phenotypes in many diseases are caused from dysfunction in protein-protein, protein-DNA and receptor-ligand interactions. Therefore, determination of these molecular interactions followed by designing or screening the compounds to target these interactions provides a significant challenge in drug development. This review aims to highlight the yeast two-hybrid system in determination of protein-protein interactions and its possible outcomes in pharmaceutical research. The variations of the basic methodology as one- and three-hybrid systems are also discussed in relation to their potential pharmaceutical applications.
Collapse
Affiliation(s)
- Z Topcu
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Ege University, Izmir, Turkey.
| | | |
Collapse
|
165
|
Abstract
EWS is an RNA-binding protein involved in human tumor-specific chromosomal translocations. In approximately 85% of Ewing's sarcomas, such translocations give rise to the chimeric gene EWS/FLI. In the resulting fusion protein, the RNA binding domains from the C terminus of EWS are replaced by the DNA-binding domain of the ETS protein FLI-1. EWS/FLI can function as a transcription factor with the same DNA binding specificity as FLI-1. EWS and EWS/FLI can associate with the RNA polymerase II holoenzyme as well as with SF1, an essential splicing factor. Here we report that U1C, one of three human U1 small nuclear ribonucleoprotein-specific proteins, interacts in vitro and in vivo with both EWS and EWS/FLI. U1C interacts with other splicing factors and is important in the early stages of spliceosome formation. Importantly, co-expression of U1C represses EWS/FLI-mediated transactivation, demonstrating that this interaction can have functional ramifications. Our findings demonstrate that U1C, a well characterized splicing protein, can also function in transcriptional regulation. Furthermore, they suggest that EWS and EWS/FLI may function both in transcriptional and post-transcriptional processes.
Collapse
Affiliation(s)
- L L Knoop
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
166
|
Kumar R, Reynolds DM, Shevchenko A, Shevchenko A, Goldstone SD, Dalton S. Forkhead transcription factors, Fkh1p and Fkh2p, collaborate with Mcm1p to control transcription required for M-phase. Curr Biol 2000; 10:896-906. [PMID: 10959837 DOI: 10.1016/s0960-9822(00)00618-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The 'CLB2 cluster' in Saccharomyces cerevisiae consists of approximately 33 genes whose transcription peaks in late G2/early M phase of the cell cycle. Many of these genes are required for execution of the mitotic program and then for cytokinesis. The transcription factor SFF (SWI5 factor) is thought to regulate a program of mitotic transcription in conjunction with the general transcription factor Mcm1p. The identity of SFF has yet to be determined; hence further understanding of the mechanisms that regulate entry to M phase at the transcriptional level requires characterization of SFF at the molecular level. RESULTS We have purified the biochemical activity corresponding to SFF and identified it as the forkhead transcription factor Fkh2p. Fkh2p assembles into ternary complexes with Mcm1p on both the SWI5 and CLB2 cell-cycle-regulated upstream activating sequence (UAS) elements in vitro, and in an Mcm1 p-dependent manner in vivo. Another closely related forkhead protein, Fkh1p, is also recruited to the CLB2 promoter in vivo. We show that both FKH1 and FKH2 play essential roles in the activation of the CLB2 cluster genes during G2-M and in establishing their transcriptional periodicity. Hence, Fkh1p and Fkhp2 show the properties expected of SFF, both in vitro and in vivo. CONCLUSIONS Forkhead transcription factors have redundant roles in the control of CLB2 cluster genes during the G2-M period of the cell cycle, in collaboration with Mcm1p.
Collapse
Affiliation(s)
- R Kumar
- Department of Molecular Biosciences, University of Adelaide, North Terrace, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
167
|
Mora-Garcia P, Sakamoto KM. Granulocyte colony-stimulating factor induces Egr-1 up-regulation through interaction of serum response element-binding proteins. J Biol Chem 2000; 275:22418-26. [PMID: 10806199 DOI: 10.1074/jbc.m001731200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) stimulates the proliferation and maturation of myeloid progenitor cells both in vitro and in vivo. We showed that G-CSF rapidly and transiently induces expression of egr-1 in the NFS60 myeloid cell line. Transient transfections of NFS60 cells with recombinant constructs containing various deletions of the human egr-1 promoter identified the serum response element (SRE) between nucleotides (nt) -418 and -391 as a critical G-CSF-responsive sequence. The SRE (SRE-1) contains a CArG box, the binding site for the serum response factor (SRF), which is flanked at either side by an ETS protein binding site. We demonstrated that a single copy of the wild-type SRE-1 in the minimal promoter plasmid, pTE2, is sufficient to induce transcriptional activation in response to G-CSF and that both the ETS protein binding site and the CArG box are required for maximal transcriptional activation of the pTE2-SRE-1 construct. In electromobility shift assays using NFS60 nuclear extracts, we identified SRF and the ETS protein Fli-1 as proteins that bind the SRE-1. We also demonstrated through electrophoretic mobility shift assays, using an SRE-1 probe containing a CArG mutation, that Fli-1 binds the SRE-1 independently of SRF. Our data suggest that SRE-binding proteins potentially play a role in G-CSF-induced egr-1 expression in myeloid cells.
Collapse
Affiliation(s)
- P Mora-Garcia
- Department of Pediatrics, Division of Hematology/Oncology, School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
168
|
Huynh KD, Fischle W, Verdin E, Bardwell VJ. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev 2000. [DOI: 10.1101/gad.14.14.1810] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BCL-6 encodes a POZ/zinc finger transcriptional repressor that is required for germinal center formation and may influence apoptosis. Aberrant expression ofBCL-6 due to chromosomal translocations is implicated in certain subtypes of non-Hodgkin's lymphoma. The POZ domains of BCL-6 and several other POZ proteins interact with corepressors N-CoR and SMRT. Here we identify and characterize a novel corepressor BCoR (BCL-6 interacting corepressor), which is expressed ubiquitously in human tissues. BCoR can function as a corepressor when tethered to DNA and, when overexpressed, can potentiate BCL-6 repression. Specific class I and II histone deacetylases (HDACs) interact in vivo with BCoR, suggesting that BCoR may functionally link these two classes of HDACs. Strikingly, BCoR interacts selectively with the POZ domain of BCL-6 but not with eight other POZ proteins tested, including PLZF. Additionally, interactions between the BCL-6 POZ domain and SMRT, N-CoR, and BCoR are mutually exclusive. The specificity of the BCL-6/BCoR interaction suggests that BCoR may have a role in BCL-6-associated lymphomas.
Collapse
|
169
|
She QB, Chen N, Dong Z. ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem 2000; 275:20444-9. [PMID: 10781582 DOI: 10.1074/jbc.m001020200] [Citation(s) in RCA: 275] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phosphorylation of the p53 tumor suppressor protein is likely to play an important role in regulating its activity. Serine 15 phosphorylation of p53 leads to a stabilization of p53 by reducing its interaction with murine double minute 2, a negative regulatory partner. Recently, p53 was reported to be activated and phosphorylated at serine 15 following UV radiation. However, the signaling pathway that mediates UV-induced phosphorylation is less well characterized. Here, we provide evidence that UVB-induced phosphorylation of p53 at serine 15 is mediated directly by ERKs and p38 kinase. We find that in a mouse JB6 epidermal cell line, ERKs and p38 kinase form a complex with p53 following UVB radiation. Inhibition of ERKs or p38 kinase activity by the use of a dominant negative mutant of ERK2 or p38 kinase or their respective specific inhibitor, PD98059 or SB202190, results in abrogation of UVB-induced phosphorylation of p53 at serine 15. Strikingly, incubation of UVB-activated ERKs or p38 kinase immunoprecipitated complex with exogenous p53 shows serine 15 phosphorylation of both exogenous and co-precipitated endogenous p53 protein. Additionally, active recombinant ERK1/2 and p38 kinase but not JNKs are also able to phosphorylate p53 at serine 15 in vitro. Furthermore, pretreatment of cells with PD98059 or SB202190 blocks p53-dependent transcription activity but increases the level of p53 co-precipitated murine double minute. These results strongly suggest that both ERKs and p38 kinase have a direct role in UVB-induced phosphorylation of p53 at serine 15 in vivo.
Collapse
Affiliation(s)
- Q B She
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | |
Collapse
|
170
|
Fashena SJ, Serebriiskii I, Golemis EA. The continued evolution of two-hybrid screening approaches in yeast: how to outwit different preys with different baits. Gene 2000; 250:1-14. [PMID: 10854774 DOI: 10.1016/s0378-1119(00)00182-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The original two-hybrid system, an experimental approach designed to detect protein interactions, exploited the modular nature of many transcription factors. It has provided the intellectual and technical seed for the evolution of an array of innovative approaches, the application of which broadens the scope of experimentally feasible questions to include the interaction of proteins with diverse binding partners. The available array of modified and alternative approaches facilitates the analysis of complex cellular machinery and signaling networks that rely on multiple protein interactions. Such advances have facilitated the functional analysis of proteins on the genome level, a feat considered untenable a decade ago.
Collapse
Affiliation(s)
- S J Fashena
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
171
|
Bertolotto C, Ricci JE, Luciano F, Mari B, Chambard JC, Auberger P. Cleavage of the serum response factor during death receptor-induced apoptosis results in an inhibition of the c-FOS promoter transcriptional activity. J Biol Chem 2000; 275:12941-7. [PMID: 10777594 DOI: 10.1074/jbc.275.17.12941] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-FOS protooncogene is rapidly induced by a wide variety of extracellular stimuli including mitogenic signals. Regulation of c-FOS expression is tightly dependent on the serum response element localized within its promoter. Two transcription factors, the serum response factor (SRF) and the ternary complex factor, bind to the serum response element and play a key role in the regulation of the c-FOS promoter activity. In the present study, we show that two death effectors (CH11 and TRAIL) severely impaired the transcriptional activity of the c-FOS promoter in Jurkat T cells. This inhibition can be accounted for by the specific cleavage by caspase 3 of the SRF both in vitro and in vivo, since acetyl-DEVD-aldehyde prevented SRF cleavage and abolished the inhibitory effect of CH11 and TRAIL on the c-FOS promoter activity. Moreover, phorbol myristate acetate, a potent anti-apoptotic effector, was found to protect SRF completely from cleavage by caspase 3 and also to prevent the inhibition of the c-FOS promoter activity by death effectors. Survival factors play an essential function in the regulation of cell growth mainly by regulating the expression of immediate early gene such as c-FOS. In this line, cleavage of SRF at the onset of apoptosis could abrogate the ability of the cell to induce inappropriate survival pathways. All together, our results are consistent with a role of SRF at the interface between cell survival and death pathways.
Collapse
Affiliation(s)
- C Bertolotto
- INSERM U526, Activation des Cellules Hématopoïétiques, Physiopathologie de la Survie et de la Mort Cellulaires et Infections Virales, Faculté de Médecine, 28 Avenue de Valombrose, 06107 Nice Cedex 2, France
| | | | | | | | | | | |
Collapse
|
172
|
Zhu W, Hanes SD. Identification of drosophila bicoid-interacting proteins using a custom two-hybrid selection. Gene 2000; 245:329-39. [PMID: 10717484 DOI: 10.1016/s0378-1119(00)00048-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Bicoid directs pattern formation in the developing Drosophila embryo, and does so by performing two seemingly unrelated tasks; it activates transcription and represses translation. To understand how Bicoid carries out this dual role, we sought to identify Bicoid-ancillary proteins that might mediate Bicoid's function in transcription or translation. We used a customized version of the two-hybrid method and found two Bicoid-interacting proteins, Bin1 and Bin3, both of which interact with Bicoid in vitro. Bin1 is similar to a human protein (SAP18) involved in transcription regulation, and Bin3, described in this paper, is similar to a family of protein methyltransferases that modify RNA-binding proteins. Given that Bicoid's role as a translation regulator requires RNA binding, we suggest that the Bicoid-interacting methyltransferase might be important for that role. The custom two-hybrid method we used, in which Bicoid is bound to DNA via its own DNA binding domain, rather than via a fusion-protein tether, should be generally applicable to other DNA binding proteins.
Collapse
Affiliation(s)
- W Zhu
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY, USA
| | | |
Collapse
|
173
|
Knebel B, Kotzka J, Avci H, Schiller M, Brüning JC, Hafner M, Krone W, Müller-Wieland D. Characterization of a postreceptor signaling defect that impairs cfos expression in cultured fibroblasts of a patient with insulin resistance. Biochem Biophys Res Commun 2000; 268:577-82. [PMID: 10679246 DOI: 10.1006/bbrc.2000.2185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Induction of cfos expression is a definite end point of signal transduction by receptor tyrosine kinases via MAPK cascades. We have examined signal transduction to transcription factor cFos in isolated fibroblasts of a patient with an inherited syndrome of insulin resistance. MAPK phosphorylation and activity were unaltered, but inducibility of cfos transcription was strongly impaired by insulin and reduced by PDGF. Induction of the cfos promoter via MAPK is mediated by activation of the ternary complex. Abundance of SRF or Elk-1 was unaltered, but Elk-1 phosphorylation following stimulation was reduced. Transient transfections with reporter genes under control of the Elk-1 binding ets/sre cis element or expression plasmids coding for the regulatory domain of Elk-1 fused to heterologous DNA binding domains revealed a defect of Elk-1 activation in the patient cells. These data identify a novel postreceptor defect of insulin and growth factors involving activation of transcription.
Collapse
Affiliation(s)
- B Knebel
- Klinik II und Poliklinik für Innere Medizin, Zentrum für Molekulare Medizin Köln, Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Caldeira S, de Villiers EM, Tommasino M. Human papillomavirus E7 proteins stimulate proliferation independently of their ability to associate with retinoblastoma protein. Oncogene 2000; 19:821-6. [PMID: 10698500 DOI: 10.1038/sj.onc.1203375] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Studies on human papillomavirus type 16 have demonstrated that the product of the early gene, E7, plays a key role in the immortalization and malignant transformation of the host cell. Several of the biological activities of HPV16 E7 are mediated by inactivation of the members of the pocket protein family, pRb, p107 and p130. In this study, we have characterized the in vitro properties of five E7 proteins from benign and malignant HPV types (10, 32, 48, 54, 77). We show that these E7 proteins associate with pRb and p107 with different efficiencies. All E7s increased the proliferative rate of immortalized rodent fibroblasts cultured in 10% calf serum containing medium. This property is completely independent of their ability to associate with the pocket proteins. Furthermore, all E7s, except HPV10 E7, stimulate G1/S progression and activated the cyclin E and cyclin A promoter in the absence of growth factors. This activity also does not correlate with the E7-efficiency of binding the pocket proteins. Together these data provide evidence that different E7s alter the regulation of the cell cycle by diverse mechanism(s). Finally, this comparative analysis of the different E7 proteins demonstrates that the oncogenicity of a HPV type is not determined by the ability of E7 to associate with the pocket proteins.
Collapse
Affiliation(s)
- S Caldeira
- Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | |
Collapse
|
175
|
Mack CP, Thompson MM, Lawrenz-Smith S, Owens GK. Smooth muscle alpha-actin CArG elements coordinate formation of a smooth muscle cell-selective, serum response factor-containing activation complex. Circ Res 2000; 86:221-32. [PMID: 10666419 DOI: 10.1161/01.res.86.2.221] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that multiple serum response factor (SRF)-binding CArG elements were required for smooth muscle cell (SMC)-specific regulation of smooth muscle (SM) alpha-actin expression. However, a critical question remains as to the mechanisms whereby a ubiquitously expressed transcription factor such as SRF might contribute to SMC-specific expression. The goal of the present study was to investigate the hypothesis that SMC-selective expression of SM alpha-actin is due at least in part to (1) unique CArG flanking sequences that distinguish the SM alpha-actin CArGs from other ubiquitously expressed CArG-dependent genes such as c-fos, (2) cooperative interactions between CArG elements, and (3) SRF-dependent binding of SMC-selective proteins to the CArG-containing regions of the promoter. Results demonstrated that specific sequences flanking CArG B were important for promoter activity in SMCs but not in bovine aortic endothelial cells. We also provided evidence indicating that the structural orientation between CArGs A and B was an important determinant of promoter function. Electrophoretic mobility shift assays and methylation interference footprinting demonstrated that a unique SRF-containing complex formed that was selective for SMCs and, furthermore, that this complex was probably stabilized by protein-protein interactions and not by specific interactions with CArG flanking sequences. Taken together, the results of these studies provide evidence that SM alpha-actin expression in SMCs is complex and may involve the formation of a unique multiprotein initiation complex that is coordinated by SRF complexes bound to multiple CArG elements.
Collapse
MESH Headings
- Actins/analysis
- Actins/genetics
- Actins/metabolism
- Animals
- Aorta/cytology
- Cattle
- Cells, Cultured
- DNA Footprinting
- DNA Methylation
- DNA-Binding Proteins/analysis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/cytology
- Endothelium, Vascular/physiology
- Erythroid-Specific DNA-Binding Factors
- Gene Expression Regulation/physiology
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Mutagenesis/physiology
- Nuclear Proteins/analysis
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nucleic Acid Conformation
- Promoter Regions, Genetic/physiology
- Protein Binding/genetics
- Proto-Oncogene Proteins/analysis
- Rats
- Serum Response Factor
- Transcription Factors/analysis
- Transcription, Genetic/physiology
- ets-Domain Protein Elk-1
- ets-Domain Protein Elk-4
Collapse
Affiliation(s)
- C P Mack
- Department of Molecular Physiology and Biological Physics, University of Virginia Medical School, Charlottesville, USA
| | | | | | | |
Collapse
|
176
|
Abstract
Reactive oxygen species are produced by all aerobic cells and are widely believed to play a pivotal role in aging as well as a number of degenerative diseases. The consequences of the generation of oxidants in cells does not appear to be limited to promotion of deleterious effects. Alterations in oxidative metabolism have long been known to occur during differentiation and development. Experimental perturbations in cellular redox state have been shown to exert a strong impact on these processes. The discovery of specific genes and pathways affected by oxidants led to the hypothesis that reactive oxygen species serve as subcellular messengers in gene regulatory and signal transduction pathways. Additionally, antioxidants can activate numerous genes and pathways. The burgeoning growth in the number of pathways shown to be dependent on oxidation or antioxidation has accelerated during the last decade. In the discussion presented here, we provide a tabular summary of many of the redox effects on gene expression and signaling pathways that are currently known to exist.
Collapse
Affiliation(s)
- R G Allen
- Lankenau Medical Research Center, Thomas Jefferson University, Wynnewood, PA 19106, USA
| | | |
Collapse
|
177
|
Cowley DO, Graves BJ. Phosphorylation represses Ets-1 DNA binding by reinforcing autoinhibition. Genes Dev 2000. [DOI: 10.1101/gad.14.3.366] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phosphorylation of transcription factors is a key link between cell signaling and the control of gene expression. Here we report that phosphorylation regulates DNA binding of the Ets-1 transcription factor by reinforcing an autoinhibitory mechanism. Quantitative DNA-binding assays show that calcium-dependent phosphorylation inhibits Ets-1 DNA binding 50-fold. The four serines that mediate this inhibitory effect are distant from the DNA-binding domain but near structural elements required for autoinhibition. Mutational analyses demonstrate that an intact inhibitory module is required for phosphorylation-dependent regulation. Partial proteolysis studies indicate that phosphorylation stabilizes an inhibitory conformation. These findings provide a structural mechanism for phosphorylation-dependent inhibition of Ets-1 DNA binding and demonstrate a new function for inhibitory modules as structural mediators of negative signaling events.
Collapse
|
178
|
Kim DW, Cochran BH. Extracellular signal-regulated kinase binds to TFII-I and regulates its activation of the c-fos promoter. Mol Cell Biol 2000; 20:1140-8. [PMID: 10648599 PMCID: PMC85232 DOI: 10.1128/mcb.20.4.1140-1148.2000] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that TFII-I enhances transcriptional activation of the c-fos promoter through interactions with upstream elements in a signal-dependent manner. Here we demonstrate that activated Ras and RhoA synergize with TFII-I for c-fos promoter activation, whereas dominant-negative Ras and RhoA inhibit these effects of TFII-I. The Mek1 inhibitor, PD98059 abrogates the enhancement of the c-fos promoter by TFII-I, indicating that TFII-I function is dependent on an active mitogen-activated protein (MAP) kinase pathway. Analysis of the TFII-I protein sequence revealed that TFII-I contains a consensus MAP kinase interaction domain (D box). Consistent with this, we have found that TFII-I forms an in vivo complex with extracellular signal-related kinase (ERK). Point mutations within the consensus MAP kinase binding motif of TFII-I inhibit its ability to bind ERK and its ability to enhance the c-fos promoter. Therefore, the D box of TFII-I is required for its activity on the c-fos promoter. Moreover, the interaction between TFII-I and ERK can be regulated. Serum stimulation enhances complex formation between TFII-I and ERK, and dominant-negative Ras abrogates this interaction. In addition, TFII-I can be phosphorylated in vitro by ERK and mutation of consensus MAP kinase substrate sites at serines 627 and 633 impairs the phosphorylation of TFII-I by ERK and its activity on the c-fos promoter. These results suggest that ERK regulates the activity of TFII-I by direct phosphorylation.
Collapse
Affiliation(s)
- D W Kim
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
179
|
Nomura M, Ma WY, Huang C, Yang CS, Bowden GT, Miyamoto KI, Dong Z. Inhibition of Ultraviolet B-Induced AP-1 Activation by Theaflavins From Black Tea. Mol Carcinog 2000. [DOI: 10.1002/1098-2744(200007)28:3<148::aid-mc3>3.0.co;2-q] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
180
|
Gu TL, Goetz TL, Graves BJ, Speck NA. Auto-inhibition and partner proteins, core-binding factor beta (CBFbeta) and Ets-1, modulate DNA binding by CBFalpha2 (AML1). Mol Cell Biol 2000; 20:91-103. [PMID: 10594012 PMCID: PMC85059 DOI: 10.1128/mcb.20.1.91-103.2000] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Core-binding factor alpha2 (CBFalpha2; otherwise known as AML1 or PEBP2alphaB) is a DNA-binding subunit in the family of core-binding factors (CBFs), heterodimeric transcription factors that play pivotal roles in multiple developmental processes in mammals, including hematopoiesis and bone development. The Runt domain in CBFalpha2 (amino acids 51 to 178) mediates DNA binding and heterodimerization with the non-DNA-binding CBFbeta subunit. Both the CBFbeta subunit and the DNA-binding protein Ets-1 stimulate DNA binding by the CBFalpha2 protein. Here we quantify and compare the extent of cooperativity between CBFalpha2, CBFbeta, and Ets-1. We also identify auto-inhibitory sequences within CBFalpha2 and sequences that modulate its interactions with CBFbeta and Ets-1. We show that sequences in the CBFalpha2 Runt domain and sequences C terminal to amino acid 214 inhibit DNA binding. Sequences C terminal to amino acid 214 also inhibit heterodimerization with the non-DNA-binding CBFbeta subunit, particularly heterodimerization off DNA. CBFbeta rescinds the intramolecular inhibition of CBFalpha2, stimulating DNA binding approximately 40-fold. In comparison, Ets-1 stimulates CBFalpha2 DNA binding 7- to 10-fold. Although the Runt domain alone is sufficient for heterodimerization with CBFbeta, sequences N terminal to amino acid 41 and between amino acids 190 and 214 are required for cooperative DNA binding with Ets-1. Cooperative DNA binding with Ets-1 is less pronounced with the CBFalpha2-CBFbeta heterodimer than with CBFalpha2 alone. These analyses demonstrate that CBFalpha2 is subject to both negative regulation by intramolecular interactions, and positive regulation by two alternative partnerships.
Collapse
Affiliation(s)
- T L Gu
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
181
|
Brown LA, Yang SH, Hair A, Galanis A, Sharrocks AD. Molecular characterization of a zebrafish TCF ETS-domain transcription factor. Oncogene 1999; 18:7985-93. [PMID: 10637509 DOI: 10.1038/sj.onc.1203197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ternary complex factor (TCF) subfamily of ETS-transcription factors represent key nuclear targets of the MAP kinase pathways. Members of this subfamily are classified by the presence of several conserved domains for DNA binding, interaction with SRF, interaction with MAP kinases and transcriptional activation. In this study we have isolated a further member of this subfamily (TCF-1) from zebrafish. The protein product of zebrafish TCF-1 (zTCF-1), shares sequence similarity with the mammalian TCFs in all four conserved domains, with highest overall similarity to SAP-1. Zebrafish TCF-1 is expressed throughout zebrafish embryonic development and exhibits typical TCF DNA binding characteristics, with the B-box being required for interaction with SRF. Of the mammalian TCFs, its DNA binding specificity resembles Elk-1. zTCF-1 is a target for both the growth factor/mitogen-activated and stress-activated MAP kinase cascades in vitro and in vivo. However, differential targeting occurs, with the profile of its activation closely resembling that of mammalian SAP-1. Together, our results demonstrate that the TCFs have been functionally conserved during vertebrate development.
Collapse
Affiliation(s)
- L A Brown
- Department of Biochemistry and Genetics, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | |
Collapse
|
182
|
Cruzalegui FH, Cano E, Treisman R. ERK activation induces phosphorylation of Elk-1 at multiple S/T-P motifs to high stoichiometry. Oncogene 1999; 18:7948-57. [PMID: 10637505 DOI: 10.1038/sj.onc.1203362] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elk-1, a member of the TCF family of Ets domain proteins, contains a C-terminal transcriptional activation domain with multiple copies of the MAPK core consensus sequence S/T-P. This region is phosphorylated by MAP kinases in vitro and in vivo, but the extent and kinetics of phosphorylation at the different sites have not been investigated in detail. We prepared antisera against the phosphorylated forms of residues T353, T363, T368, S383, S389 and T417. The antisera specifically recognize the phosphorylated Elk-1 C terminus and are specific for their cognate sites, as assessed by peptide competition and mutagenesis experiments. Analysis of cells stably expressing Elk-1 in vivo shows that following serum or TPA stimulation, residues T353, T363, T368, S383, S389 and T417 become phosphorylated with similar kinetics. Mutation of any one site does not prevent phosphorylation of the others. Mutation to alanine of S383, F378 or W379, which virtually abolishes transcriptional activation by Elk-1, does not affect phosphorylation of any sites tested. Analysis of Elk-1 using two-dimensional gel electrophoresis shows that following ERK activation Elk-1 receives at least six phosphates in addition to those present prior to stimulation. We propose that the Elk-1 C-terminal regulatory domain becomes stoichiometrically phosphorylated following growth factor stimulation.
Collapse
Affiliation(s)
- F H Cruzalegui
- Transcription Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | |
Collapse
|
183
|
Moscufo N, Sverdrup F, Breiding DE, Androphy EJ. Two distinct regions of the BPV1 E1 replication protein interact with the activation domain of E2. Virus Res 1999; 65:141-54. [PMID: 10581387 DOI: 10.1016/s0168-1702(99)00113-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Papillomavirus E1 and E2 proteins co-operation in viral DNA replication is mediated by protein-protein interactions that lead to formation of an E1-E2 complex. To identify the domains involved, portions of the two proteins were expressed as fusions to the DNA-binding protein LexA or the transactivation domain of VP16 and analyzed by the yeast two-hybrid system. The C-terminal 266 amino acids of BPV1 E1 (E1C266) interacted strongly with E2 in the yeast system and in a mammalian two-hybrid assay. VP16-E1C266 interacted with a region encompassing amino acids 1-200 of the transactivation domain of E2 that was fused to LexA. The interaction between E1 full length and E2 was clearly observed only when E1 was expressed as LexA-E1 chimera. In addition, we found that in the LexA context also the N-terminal region encompassing the first 340 amino acids of E1 (E1N340) interacted with E2 full length. The interactions of E1N340 and E1C266 with E2 were confirmed also by in vitro binding studies. These observations demonstrate that two distinct regions of E1 mediate the interaction with E2 in vivo.
Collapse
Affiliation(s)
- N Moscufo
- Department of Dermatology, New England Medical Center and Tufts University School of Medicine, Boston, MA, USA.
| | | | | | | |
Collapse
|
184
|
Le YJ, Corry PM. Hypoxia-induced bFGF gene expression is mediated through the JNK signal transduction pathway. Mol Cell Biochem 1999; 202:1-8. [PMID: 10705989 DOI: 10.1023/a:1007059806016] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although the synthesis of angiogenic factors in hypoxic regions of solid tumors is recognized as one of the critical steps in tumor growth and metastasis, the signal transduction pathway involved in hypoxic induction of basic fibroblast growth factor (bFGF) gene expression is still obscure. In the study described here, we investigated the intracellular responses to hypoxia and the mechanisms triggering the initiation of angiogenic activity in drug-resistant human breast carcinoma MCF-7/ADR cells. Northern blots showed an increase in the level of c-jun, c-fos, and bFGF mRNA during hypoxia. Gel mobility-shift analysis of nuclear extracts from hypoxia-exposed cells showed an increase in AP-1 binding activity. In addition, hypoxic treatment strongly activated c-Jun N-terminal kinase 1 (JNK1), leading to phosphorylation and activation of c-Jun. Expression of a dominant negative mutant of JNK1 suppressed hypoxia-induced JNK1 activation as well as bFGF gene expression. Taken together, hypoxia-induced bFGF gene expression is mediated through the stress-activated protein kinase (SAPK) signal transduction pathway.
Collapse
Affiliation(s)
- Y J Le
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan 48073, USA
| | | |
Collapse
|
185
|
Hochholdinger F, Baier G, Nogalo A, Bauer B, Grunicke HH, Uberall F. Novel membrane-targeted ERK1 and ERK2 chimeras which act as dominant negative, isotype-specific mitogen-activated protein kinase inhibitors of Ras-Raf-mediated transcriptional activation of c-fos in NIH 3T3 cells. Mol Cell Biol 1999; 19:8052-65. [PMID: 10567531 PMCID: PMC84890 DOI: 10.1128/mcb.19.12.8052] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of constructs encoding fusion proteins of ERK1 and ERK2 containing a C-terminal farnesylation motif (CAAX) is predominantly localized at the cell membrane and was activated by coexpression of constitutively active Ha-RasL61 and epidermal growth factor. Both fusion proteins significantly inhibit the transcriptional activation of a c-fos-chloramphenicol acetyltransferase reporter induced by RasL61, constitutively active MEK1, or constitutively active RafBXB. The corresponding SAAX chimeras or overexpression of the wild-type ERKs did not interfere with the transcriptional activation of c-fos. The inhibition of the Ras-mediated c-fos induction by ERK2-CAAX can in part be rescued by coexpression of a wild-type ERK2 but not by wild-type ERK1. We find that ERK1-CAAX acts in the same fashion, indicating that mitogen-activated protein kinase (MAPK)-CAAX chimeras interact in an isotype-specific manner. It is demonstrated that both ERK1-CAAX and ERK2-CAAX associate with the corresponding endogenous ERKs, which explains the isotype-specific inhibitory effects of the ERK-CAAX chimeras. Evidence is presented that expression of ERK-CAAX fusion proteins inhibits the nuclear translocation of the corresponding endogenous ERKs. Disruption of MAPK translocation by membrane targeting provides additional, independent proof that nuclear translocation of ERKs is essential for the transcriptional activation of c-fos.
Collapse
Affiliation(s)
- F Hochholdinger
- Institute of Medical Chemistry and Biochemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
186
|
Villey I, de Chasseval R, de Villartay JP. RORgammaT, a thymus-specific isoform of the orphan nuclear receptor RORgamma / TOR, is up-regulated by signaling through the pre-T cell receptor and binds to the TEA promoter. Eur J Immunol 1999; 29:4072-80. [PMID: 10602018 DOI: 10.1002/(sici)1521-4141(199912)29:12<4072::aid-immu4072>3.0.co;2-e] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
TEA (T early alpha) is a genetic element located upstream of the TCR-Jalpha cluster. Thymocytes from mice carrying a targeted deletion of TEA do not rearrange their TCRalpha locus on a window spanning the first nine Jalpha segments. This led us to the hypothesis of TEA having a "rearrangement focusing" activity on the 5' side of the TCR-Jalpha region. We analyzed DNAseI and "phylogenetic" footprints within the TEA promoter in an attempt to identify trans-acting factors that could account for its regulatory function on DNA accessibility. One of these footprints corresponded to a putative DNA-binding site for an orphan nuclear receptor of the ROR / RZR family. The RORgammaT cDNA clone was isolated from a thymus library using a probe corresponding to the DNA-binding domain of RORgamma / TOR. RORgammaT is a thymus-specific isoform of RORgamma, expressed almost exclusively in immature double-positive thymocytes. RORgammaT binds, to the TEA promoter in vitro. Lastly, the expression of RORgammaT is stimulated in two situations that mimic activation through the pre-TCR and in which the thymocytes have their TCR-alpha locus in an "open", yet unrearranged DNA configuration. We propose that the expression of RORgammaT may be part of the pre-TCR activation cascade leading to the maturation of alpha / beta T cells and may participate in the regulation of DNA accessibility in the TCR-Jalpha locus.
Collapse
MESH Headings
- Amino Acid Transport Systems, Basic
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Genes, Immunoglobulin
- Humans
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Promoter Regions, Genetic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Cytoplasmic and Nuclear/immunology
- Receptors, Retinoic Acid
- Receptors, Thyroid Hormone
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- Thymus Gland/immunology
- Up-Regulation/immunology
Collapse
Affiliation(s)
- I Villey
- Développement Normal et Pathologique du Système Immunitaire INSERM U429, Hôpital Necker Enfants Malades, Paris, France
| | | | | |
Collapse
|
187
|
Oettgen P, Kas K, Dube A, Gu X, Grall F, Thamrongsak U, Akbarali Y, Finger E, Boltax J, Endress G, Munger K, Kunsch C, Libermann TA. Characterization of ESE-2, a novel ESE-1-related Ets transcription factor that is restricted to glandular epithelium and differentiated keratinocytes. J Biol Chem 1999; 274:29439-52. [PMID: 10506207 DOI: 10.1074/jbc.274.41.29439] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epithelial cell differentiation is tightly controlled by distinct sets of transcription factors that regulate the expression of stage-specific genes. We recently isolated the first epithelium-specific Ets transcription factor (ESE-1). Here we describe the characterization of ESE-2, a second epithelium-restricted ESE-1-related Ets factor. Like ESE-1, ESE-2 is induced during keratinocyte differentiation. However, whereas ESE-1 is expressed in the majority of epithelial cell types, ESE-2 expression is restricted to differentiated keratinocytes and glandular epithelium such as salivary gland, prostate, mammary gland, and kidney. In contrast to ESE-1, full-length ESE-2 binds poorly to DNA due to the presence of a negative regulatory domain at the amino terminus. Furthermore, although ESE-1 and the amino-terminally deleted ESE-2 bind with similar affinity to the canonical E74 Ets site, ESE-2 and ESE-1 differ strikingly in their relative affinity toward binding sites in the c-MET and PSMA promoters. Similarly, ESE-1 and ESE-2 drastically differ in their ability to transactivate epithelium-specific promoters. Thus, ESE-2, but not ESE-1, transactivates the parotid gland-specific PSP promoter and the prostate-specific PSA promoter. In contrast, ESE-1 transactivates the keratinocyte-specific SPRR2A promoter Ets site and the prostate-specific PSMA promoter significantly better than ESE-2. Our results demonstrate the existence of a unique class of related epithelium-specific Ets factors with distinct functions in epithelial cell gene regulation.
Collapse
Affiliation(s)
- P Oettgen
- New England Baptist Bone and Joint Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Abstract
Interleukin (IL)-16 is a proinflammatory cytokine that has attracted widespread attention because of its ability to block HIV replication. We describe the identification and characterization of a large neuronal IL-16 precursor, NIL-16. The N-terminal half of NIL-16 constitutes a novel PDZ domain protein sequence, whereas the C terminus is identical with splenocyte-derived mouse pro-IL-16. IL-16 has been characterized only in the immune system, and the identification of NIL-16 marks a previously unsuspected connection between the immune and the nervous systems. NIL-16 is a cytosolic protein that is detected only in neurons of the cerebellum and the hippocampus. The N-terminal portion of NIL-16 interacts selectively with a variety of neuronal ion channels, which is similar to the function of many other PDZ domain proteins that serve as intracellular scaffolding proteins. Among the NIL-16-interacting proteins is the class C alpha1 subunit of a mouse brain calcium channel (mbC alpha1). The C terminus of NIL-16 can be processed by caspase-3, resulting in the release of secreted IL-16. Furthermore, in cultured cerebellar granule neurons undergoing apoptosis, NIL-16 proteolysis parallels caspase-3 activation. Cerebellar granule neurons express the IL-16 receptor CD4. Exposure of these cells to IL-16 induces expression of the immediate-early gene, c-fos, via a signaling pathway that involves tyrosine phosphorylation. This suggests that IL-16 provides an autocrine function in the brain. Therefore, we hypothesize that NIL-16 is a dual function protein in the nervous system that serves as a secreted signaling molecule as well as a scaffolding protein.
Collapse
|
189
|
Rodríguez de Córdoba S, Díaz-Guillén MA, Heine-Suñer D. An integrated map of the human regulator of complement activation (RCA) gene cluster on 1q32. Mol Immunol 1999; 36:803-8. [PMID: 10698333 DOI: 10.1016/s0161-5890(99)00100-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
190
|
Hashimoto S, Nishizumi H, Hayashi R, Tsuboi A, Nagawa F, Takemori T, Sakano H. Prf, a novel Ets family protein that binds to the PU.1 binding motif, is specifically expressed in restricted stages of B cell development. Int Immunol 1999; 11:1423-9. [PMID: 10464163 DOI: 10.1093/intimm/11.9.1423] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the development of lymphocytes, expression of the Ig genes is strictly regulated in a tissue-specific manner and in a time-ordered fashion. We have previously shown that the PU.1 binding motif in the Igkappa 3' enhancer (kappaE3') and a novel Ets family protein other than PU.1 may be possibly involved in the control of V(kappa)-J(kappa) joining. In the attempt to isolate the novel Ets family protein, we have screened cDNA libraries with the yeast one-hybrid method and identified a new PU.1-related factor, Prf. This novel Ets family protein is shown to interact with the PU.1 binding sequences in various promoters and enhancers, including kappaE3'. It was found that expression of the prf gene is predominant in the B-lineage cells, with the exception of immature B cells. Since Prf does not exhibit functions of transcriptional activity, this novel protein may act as an antagonist against other Ets family proteins, e.g. PU.1 and Spi-B. Possible roles of Prf with respect to the B cell differentiation are discussed.
Collapse
Affiliation(s)
- S Hashimoto
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
191
|
Omoike OI, Benson BA, Chan MA, Benedict SH. Sequences at the 3' side of the c-fos SRE mediate gene expression via an Sob1-dependent, TCF-independent pathway. Biochem Biophys Res Commun 1999; 262:523-9. [PMID: 10462507 DOI: 10.1006/bbrc.1999.1175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously described a 110-kDa tyrosine phosphoprotein, Sob 1, that regulates formation of the DNA binding complex Band A at the c-fos serum response element (SRE) during T cell activation. Using competition and mutant oligonucleotide analysis, we have determined that both the core CArG box of the c-fos SRE and the 3' sequences flanking the CArG box are necessary for stable Band A complex formation. Moreover, using transient transfection and reporter assays, we show that mutations affecting Band A complex formation in vitro also impaired serum induction of c-fos gene expression in vivo. Since mutation at this site has no effect on SRF binding, our results suggest that in combination with SRE/SRF, Sob 1-regulated factor(s) bind at the 3' side of SRE to form Band A, and this confers maximal serum induction of c-fos gene expression via the SRE.
Collapse
Affiliation(s)
- O I Omoike
- Department of Microbiology, University of Kansas, Lawrence, Kansas, 66045, USA
| | | | | | | |
Collapse
|
192
|
Young KH. A yeast two-hybrid, systems based approach for the identification of novel pharmaceutical entities. Expert Opin Ther Pat 1999. [DOI: 10.1517/13543776.9.7.897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
193
|
Brady ME, Ozanne DM, Gaughan L, Waite I, Cook S, Neal DE, Robson CN. Tip60 is a nuclear hormone receptor coactivator. J Biol Chem 1999; 274:17599-604. [PMID: 10364196 DOI: 10.1074/jbc.274.25.17599] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR) is a member of the nuclear hormone receptor superfamily. Recent work in this field has been focused upon defining the mechanisms of transcriptional control exacted by members of this superfamily. Using a COOH-terminal region of the human AR in a yeast two-hybrid screen, we have identified Tip60 as an AR-interacting protein. In this report, we show that Tip60, which was originally identified as a coactivator for the human immunodeficiency virus TAT protein, can enhance AR-mediated transactivation in a ligand-dependent manner in LNCaP and COS-1 cell lines. In addition, our experiments show that Tip60 can also enhance transactivation through the estrogen receptor and progesterone receptor in a ligand-dependent manner; thus identifying Tip60 as a nuclear hormone receptor coactivator. Our studies also demonstrate that Tip60 co-immunoprecipitates with the full-length AR in vitro and that, in our system, Tip60 enhances transactivation to levels observed with the coactivators steroid receptor coactivator 1, p300, and CREB-binding protein. The importance of such proteins in enhancing nuclear hormone receptor-mediated transcriptional activation is widely accepted, and this work suggests that Tip60 may have an equally important role to play.
Collapse
Affiliation(s)
- M E Brady
- Prostate Research Group, Department of Surgery, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
194
|
Spencer JA, Baron MH, Olson EN. Cooperative transcriptional activation by serum response factor and the high mobility group protein SSRP1. J Biol Chem 1999; 274:15686-93. [PMID: 10336466 DOI: 10.1074/jbc.274.22.15686] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serum response factor (SRF) is a MADS box transcription factor that controls a wide range of genes involved in cell proliferation and differentiation. The MADS box mediates homodimerization and binding of SRF to the consensus sequence CC(A/T)6GG, known as a CArG box, which is found in the control regions of numerous serum-inducible and muscle-specific genes. Using a modified yeast one-hybrid screen to identify potential SRF cofactors, we found that SRF interacts with the high mobility group factor SSRP1 (structure-specific recognition protein). This interaction, which occurs in yeast and mammalian cells, is mediated through the MADS box of SRF and a basic region of SSRP1 encompassing amino acids 489-542, immediately adjacent to the high mobility group domain. SSRP1 does not bind the CArG box, but interaction of SSRP1 with SRF dramatically increases the DNA binding activity of SRF, resulting in synergistic transcriptional activation of native and artificial SRF-dependent promoters. These results reveal an important role for SSRP1 as a coregulator of SRF-dependent transcription in mammalian cells.
Collapse
Affiliation(s)
- J A Spencer
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235-9148, USA
| | | | | |
Collapse
|
195
|
Tian J, Karin M. Stimulation of Elk1 transcriptional activity by mitogen-activated protein kinases is negatively regulated by protein phosphatase 2B (calcineurin). J Biol Chem 1999; 274:15173-80. [PMID: 10329725 DOI: 10.1074/jbc.274.21.15173] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular calcium (Ca2+) and the Ca2+-binding protein calmodulin (CaM) regulate the activities of Ca2+/CaM-dependent protein kinases and protein phosphatase 2B (calcineurin). Functional interactions between CaM kinases and mitogen-activated protein (MAP) kinases were described. In this report, we describe cross-talk between calcineurin and mitogen-activated protein kinase signaling. Calcineurin was found to specifically down-regulate the transcriptional activity of transcription factor Elk1, following stimulation of this activity by the ERK, Jun N-terminal kinase, or p38 MAP kinase pathways. Expression of constitutively activated calcineurin or activation of endogenous calcineurin by Ca2+ ionophore decreased the phosphorylation of Elk1 at sites that positively regulate its transcriptional activity. Calcineurin specifically dephosphorylates Elk1 at phosphoserine 383, a site whose phosphorylation by MAP kinases makes a critical contribution to the enhanced transcriptional activity of Elk1. The cross-talk between calcineurin and MAP kinases is of physiological significance as low doses of Ca2+ ionophore which by themselves are insufficient for c-fos induction can actually inhibit induction of c-fos expression by activators of MAP kinases. Thus through the effect of calcineurin on Elk1 phosphorylation, Ca2+ can have a negative effect on expression of Elk1 target genes. This mechanism explains why different levels of intracellular Ca2+ can result in very different effects on gene expression.
Collapse
Affiliation(s)
- J Tian
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0636, USA
| | | |
Collapse
|
196
|
Madeo F, Fröhlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Fröhlich KU. Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 1999; 145:757-67. [PMID: 10330404 PMCID: PMC2133192 DOI: 10.1083/jcb.145.4.757] [Citation(s) in RCA: 802] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Oxygen radicals are important components of metazoan apoptosis. We have found that apoptosis can be induced in the yeast Saccharomyces cerevisiae by depletion of glutathione or by low external doses of H2O2. Cycloheximide prevents apoptotic death revealing active participation of the cell. Yeast can also be triggered into apoptosis by a mutation in CDC48 or by expression of mammalian bax. In both cases, we show oxygen radicals to accumulate in the cell, whereas radical depletion or hypoxia prevents apoptosis. These results suggest that the generation of oxygen radicals is a key event in the ancestral apoptotic pathway and offer an explanation for the mechanism of bax-induced apoptosis in the absence of any established apoptotic gene in yeast.
Collapse
Affiliation(s)
- F Madeo
- Physiologisch-Chemisches Institut, Universität Tübingen, 72076 Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
197
|
Naya FJ, Wu C, Richardson JA, Overbeek P, Olson EN. Transcriptional activity of MEF2 during mouse embryogenesis monitored with a MEF2-dependent transgene. Development 1999; 126:2045-52. [PMID: 10207130 DOI: 10.1242/dev.126.10.2045] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The four members of the MEF2 family of MADS-box transcription factors, MEF2-A, MEF2-B, MEF2-C and MEF2-D, are expressed in overlapping patterns in developing muscle and neural cell lineages during embryogenesis. However, during late fetal development and postnatally, MEF2 transcripts are also expressed in a wide range of cell types. Because MEF2 expression is controlled by translational and post-translational mechanisms, it has been unclear whether the presence of MEF2 transcripts in the embryo reflects transcriptionally active MEF2 proteins. To define the temporospatial expression pattern of transcriptionally active MEF2 proteins during mouse embryogenesis, we generated transgenic mice harboring a lacZ reporter gene controlled by three tandem copies of the MEF2 site and flanking sequences from the desmin enhancer, which is active in cardiac, skeletal and smooth muscle cells. Expression of this MEF2-dependent transgene paralleled expression of MEF2 mRNAs in developing myogenic lineages and regions of the adult brain. However, it was not expressed in other cell types that express MEF2 transcripts. Tandem copies of the MEF2 site from the c-jun promoter directed expression in a similar pattern to the desmin MEF2 site, suggesting that transgene expression reflects the presence of transcriptionally active MEF2 proteins, rather than other factors specific for DNA sequences flanking the MEF2 site. These results demonstrate the presence of transcriptionally active MEF2 proteins in the early muscle and neural cell lineages during embryogenesis and argue against the existence of lineage-restricted MEF2 cofactors that discriminate between MEF2 sites with different immediate flanking sequences. The discordance between MEF2 mRNA expression and MEF2 transcriptional activity in nonmuscle cell types of embryos and adults also supports the notion that post-transcriptional mechanisms regulate the expression of MEF2 proteins.
Collapse
Affiliation(s)
- F J Naya
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, TX 75235-9148, USA
| | | | | | | | | |
Collapse
|
198
|
Bowler WB, Dixon CJ, Halleux C, Maier R, Bilbe G, Fraser WD, Gallagher JA, Hipskind RA. Signaling in human osteoblasts by extracellular nucleotides. Their weak induction of the c-fos proto-oncogene via Ca2+ mobilization is strongly potentiated by a parathyroid hormone/cAMP-dependent protein kinase pathway independently of mitogen-activated protein kinase. J Biol Chem 1999; 274:14315-24. [PMID: 10318853 DOI: 10.1074/jbc.274.20.14315] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular nucleotides acting through specific P2 receptors activate intracellular signaling cascades. Consistent with the expression of G protein-coupled P2Y receptors in skeletal tissue, the human osteosarcoma cell line SaOS-2 and primary osteoblasts express P2Y1 and P2Y2 receptors, respectively. Their activation by nucleotide agonists (ADP and ATP for P2Y1; ATP and UTP for P2Y2) elevates [Ca2+]i and moderately induces expression of the c-fos proto-oncogene. A synergistic effect on c-fos induction is observed by combining ATP and parathyroid hormone, a key bone cell regulator. Parathyroid hormone elevates intracellular cAMP levels and correspondingly activates a stably integrated reporter gene driven by the Ca2+/cAMP-responsive element of the human c-fos promoter. Nucleotides have little effect on either cAMP levels or this reporter, instead activating luciferase controlled by the full c-fos promoter. This induction is reproduced by a stably integrated serum response element reporter independently of mitogen-activated protein kinase activation and ternary complex factor phosphorylation. This novel example of synergy between the cAMP-dependent protein kinase/CaCRE signaling module and a non-mitogen-activated protein kinase/ternary complex factor pathway that targets the serum response element shows that extracellular ATP, via P2Y receptors, can potentiate strong responses to ubiquitous growth and differentiative factors.
Collapse
Affiliation(s)
- W B Bowler
- Human Bone Cell Research Group, University of Liverpool, Liverpool L69 3GE, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Abstract
The myb gene family consists of three members, named A, B and c-myb which encode nuclear proteins that function as transcriptional transactivators. Proteins encoded by these three genes exhibit a tripartate structure with an N-terminal DNA-binding domain, a central transactivation domain and a C-terminal regulatory domain. These proteins exhibit highest homology in their DNA binding domains and appear to bind DNA with overlapping sequence specificities. Transactivation by myb gene family varies considerably depending on cell type and promoter context suggesting a dependence on interaction with other cell type specific co-factors. While the C-terminal domains of A-Myb and c-Myb proteins exert a negative regulatory effect on their transcriptional transactivation function, the C-terminal domain of B-Myb appears to function as a positive regulator of this activity. One or more of these proteins interact with other transcription factors such as Ets-2, CEBP and NF-M. In addition, expression of these genes is cell cycle-regulated and inhibition of their expression with antisense oligonucleotides has been found to affect cell cycle-progression, cell division and/or differentiation. Members of the myb gene family exhibit different temporal and spatial expression patterns suggesting a distinctive function for each of these genes. Gene knockout experiments show that these genes play an essential role in development. Loss of c-myb function results in embryonic lethality due to failure of fetal hepatic hematopoiesis. A-myb null mutant mice, on the other hand are viable but exhibit growth abnormalities, and defects in spermatogenesis and female breast development. While the role of c-myb in oncogenesis is well established, future experiments are likely to provide further clues regarding the role of A-myb and B-myb in tumorigenesis.
Collapse
Affiliation(s)
- I H Oh
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|
200
|
Kel A, Kel-Margoulis O, Babenko V, Wingender E. Recognition of NFATp/AP-1 composite elements within genes induced upon the activation of immune cells. J Mol Biol 1999; 288:353-76. [PMID: 10329147 DOI: 10.1006/jmbi.1999.2684] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Composite elements are regulatory modules of promoters or enhancers that consist of binding sites of two different but synergizing transcription factors. A well-studied example is nuclear factors of activated T-cell (NFAT) sites which are composite elements of a NFATp/c and an activating protein 1 (AP-1) binding site. We have developed a computational approach to identify potential NFAT target genes which (a) comprises an improved method to scan for individual NFAT composite elements; (b) considers positional effects relative to transcription start sites; and (c) involves cluster analysis of potential NFAT composite elements. All three steps progressively helpX?ed to discriminate T-cell-specific promoter sequences against other functional regions (coding and intronic sequences) of the same genes, against promoters of muscle-specific genes or against random sequences. Using this approach, we identified potential NFAT composite elements in promoters of cytokine genes and their receptors as well as in promoters of genes for AP-1 family members, Ca2+-binding proteins and some other components of the regulatory network operating in activated T-cells and other immune cells. The method developed can be adapted to characterize and identify other composite elements as well. The program for recognition NFAT composite elements is available through the World Wide Web (http://compel.bionet.nsc.ru/FunSite/CompelScan. html and http://transfac.gbf.de/dbsearch/funsitep/s _comp.html).
Collapse
Affiliation(s)
- A Kel
- Institute of Cytology and Genetics, pr. Lavrentyeva-10, 630090, Novosibirsk, Russia.
| | | | | | | |
Collapse
|