151
|
Yang Y. Wnts and wing: Wnt signaling in vertebrate limb development and musculoskeletal morphogenesis. ACTA ACUST UNITED AC 2004; 69:305-17. [PMID: 14745971 DOI: 10.1002/bdrc.10026] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the past twenty years, secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development from hydra to human. In the developing vertebrate limb, Wnt signaling is required for limb bud initiation, early limb patterning (which is governed by several well-characterized signaling centers), and, finally, late limb morphogenesis events. Wnt ligands are unique, in that they can activate several different receptor-mediated signal transduction pathways. The most extensively studied Wnt pathway is the canonical Wnt pathway, which controls gene expression by stabilizing beta-catenin in regulating a diverse array of biological processes. Recently, more attention has been given to the noncanonical Wnt pathway, which is beta-catenin-independent. The noncanonical Wnt pathway signals through activating Ca(2+) flux, JNK activation, and both small and heterotrimeric G proteins, to induce changes in gene expression, cell adhesion, migration, and polarity. Abnormal Wnt signaling leads to developmental defects and human diseases affecting either tissue development or homeostasis. Further understanding of the biological function and signaling mechanism of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. This review provides a critical perspective on how Wnt signaling regulates different developmental processes. As Wnt signaling in tumor formation has been reviewed extensively elsewhere, this part is not included in the review of the clinical significance of Wnt signaling.
Collapse
Affiliation(s)
- Yingzi Yang
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA.
| |
Collapse
|
152
|
Honig MG, Camilli SJ, Xue QS. Ectoderm removal prevents cutaneous nerve formation and perturbs sensory axon growth in the chick hindlimb. Dev Biol 2004; 266:27-42. [PMID: 14729476 DOI: 10.1016/j.ydbio.2003.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Target tissues are thought to provide important cues for growing axons, yet there is little direct evidence that they are essential for axonal pathfinding. Here we examined whether target ectoderm is necessary for the formation of cutaneous nerves, and for the normal growth and guidance of cutaneous axons as they first enter the limb plexus. To do this, we removed a patch of ectoderm from the chick hindlimb at various times during early axon outgrowth. We find there is a critical period when cutaneous nerve formation requires target ectoderm. When the ectoderm is absent during this time, axons progress into the limb more slowly and, although a few sensory axons occasionally diverge a short distance from the plexus, they do not form a discrete nerve that travels to the skin. A few days later, when the nerve pattern is mature, axons normally destined for the 'deprived' cutaneous nerve are not segregated appropriately within the plexus. Some cutaneous axons are instead misdirected along an inappropriate cutaneous nerve, while others have seemingly failed to reach their correct target, or a suitable alternative, and died. These results demonstrate that the target ectoderm is necessary for normal sensory axon growth and guidance in the hindlimb.
Collapse
Affiliation(s)
- Marcia G Honig
- Department of Anatomy and Neurobiology, University of Tennessee College of Medicine, The Health Science Center, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
153
|
Yan SJ, Gu Y, Li WX, Fleming RJ. Multiple signaling pathways and a selector protein sequentially regulate Drosophila wing development. Development 2004; 131:285-98. [PMID: 14701680 DOI: 10.1242/dev.00934] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila wing development is a useful model to study organogenesis, which requires the input of selector genes that specify the identity of various morphogenetic fields (Weatherbee, S. D. and Carroll, S. B. (1999) Cell 97, 283-286) and cell signaling molecules. In order to understand how the integration of multiple signaling pathways and selector proteins can be achieved during wing development, we studied the regulatory network that controls the expression of Serrate (Ser), a ligand for the Notch (N) signaling pathway, which is essential for the development of the Drosophila wing, as well as vertebrate limbs. Here, we show that a 794 bp cis-regulatory element located in the 3' region of the Ser gene can recapitulate the dynamic patterns of endogenous Ser expression during wing development. Using this enhancer element, we demonstrate that Apterous (Ap, a selector protein), and the Notch and Wingless (Wg) signaling pathways, can sequentially control wing development through direct regulation of Ser expression in early, mid and late third instar stages, respectively. In addition, we show that later Ser expression in the presumptive vein cells is controlled by the Egfr pathway. Thus, a cis-regulatory element is sequentially regulated by multiple signaling pathways and a selector protein during Drosophila wing development. Such a mechanism is possibly conserved in the appendage outgrowth of other arthropods and vertebrates.
Collapse
Affiliation(s)
- Shian-Jang Yan
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | | | |
Collapse
|
154
|
Liu Y, Helms AW, Johnson JE. Distinct activities of Msx1 and Msx3 in dorsal neural tube development. Development 2004; 131:1017-28. [PMID: 14973289 DOI: 10.1242/dev.00994] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Patterning of the dorsal neural tube involves Bmp signaling, which results in activation of multiple pathways leading to the formation of neural crest,roof plate and dorsal interneuron cell types. We show that constitutive activation of Bmp signaling at early stages (HH10-12) of chick neural tube development induces roof-plate cell fate, accompanied by an increase of programmed cell death and a repression of neuronal differentiation. These activities are mimicked by the overexpression of the homeodomain transcription factor Msx1, a factor known to be induced by Bmp signaling. By contrast, the closely related factor, Msx3, does not have these activities. At later stages of neural tube development (HH14-16), dorsal progenitor cells lose their competence to generate roof-plate cells in response to Bmp signaling and instead generate dorsal interneurons. This aspect of Bmp signaling is phenocopied by the overexpression of Msx3 but not Msx1. Taken together, these results suggest that these two different Msx family members can mediate distinct aspects of Bmp signaling during neural tube development.
Collapse
Affiliation(s)
- Ying Liu
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | |
Collapse
|
155
|
Candille SI, Raamsdonk CDV, Chen C, Kuijper S, Chen-Tsai Y, Russ A, Meijlink F, Barsh GS. Dorsoventral patterning of the mouse coat by Tbx15. PLoS Biol 2004; 2:E3. [PMID: 14737183 PMCID: PMC314463 DOI: 10.1371/journal.pbio.0020003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Accepted: 10/21/2003] [Indexed: 11/23/2022] Open
Abstract
Many members of the animal kingdom display coat or skin color differences along their dorsoventral axis. To determine the mechanisms that control regional differences in pigmentation, we have studied how a classical mouse mutation, droopy ear (deH), affects dorsoventral skin characteristics, especially those under control of the Agouti gene. Mice carrying the Agouti allele black-and-tan (at) normally have a sharp boundary between dorsal black hair and yellow ventral hair; the deH mutation raises the pigmentation boundary, producing an apparent dorsal-to-ventral transformation. We identify a 216 kb deletion in deH that removes all but the first exon of the Tbx15 gene, whose embryonic expression in developing mesenchyme correlates with pigmentary and skeletal malformations observed in deH/deH animals. Construction of a targeted allele of Tbx15 confirmed that the deH phenotype was caused by Tbx15 loss of function. Early embryonic expression of Tbx15 in dorsal mesenchyme is complementary to Agouti expression in ventral mesenchyme; in the absence of Tbx15, expression of Agouti in both embryos and postnatal animals is displaced dorsally. Transplantation experiments demonstrate that positional identity of the skin with regard to dorsoventral pigmentation differences is acquired by E12.5, which is shortly after early embryonic expression of Tbx15. Fate-mapping studies show that the dorsoventral pigmentation boundary is not in register with a previously identified dermal cell lineage boundary, but rather with the limb dorsoventral boundary. Embryonic expression of Tbx15 in dorsolateral mesenchyme provides an instructional cue required to establish the future positional identity of dorsal dermis. These findings represent a novel role for T-box gene action in embryonic development, identify a previously unappreciated aspect of dorsoventral patterning that is widely represented in furred mammals, and provide insight into the mechanisms that underlie region-specific differences in body morphology. Greg Barsh and colleagues show that a member of the well-known family of T-box genes helps to form an important pigmentation boundary in mice
Collapse
Affiliation(s)
- Sophie I Candille
- 1Departments of Genetics and Pediatrics, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Catherine D. Van Raamsdonk
- 1Departments of Genetics and Pediatrics, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Changyou Chen
- 1Departments of Genetics and Pediatrics, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Sanne Kuijper
- 2Netherlands Institute for Developmental BiologyUtrechtThe Netherlands
| | - Yanru Chen-Tsai
- 1Departments of Genetics and Pediatrics, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Andreas Russ
- 3Genetics Unit, Department of BiochemistryUniversity of Oxford, OxfordUnited Kingdom
| | - Frits Meijlink
- 2Netherlands Institute for Developmental BiologyUtrechtThe Netherlands
| | - Gregory S Barsh
- 1Departments of Genetics and Pediatrics, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| |
Collapse
|
156
|
Abstract
The apical ectodermal ridge (AER) is a critical signaling center at the tip of the limb that promotes outgrowth. In mouse, formation of the AER involves a gradual restriction of AER gene expression from a broad ventral preAER domain to the tip of the limb, as well as progressive thickening of cells to form a multilayered epithelium. The AER is visible from embryonic day 10.5 to 13.5 (E10.5-E13.5) in the mouse forelimb. Previous short-term fate mapping studies indicated that, once a cell is incorporated into the AER, its descendents remain within the AER. In addition, some preAER cells appear to become incorporated into the ventral ectoderm. In the present study, we used an inducible CreER/loxP fate mapping approach in mouse to examine the long-term contribution of preAER cells to limb ventral ectoderm, as well as the ultimate fate of the mature AER cells. We used a CreER transgene that contains Msx2 regulatory sequences specific to the developing AER, and demonstrate by marking preAER cells that, at stage 2 of mouse limb bud development, the majority of the ventral ectoderm that protrudes from the body wall later covers only the paw. Furthermore, when Msx2-CreER-expressing preAER cells are marked after the onset of preAER gene expression, a similar domain of paw ventral ectoderm is marked at E16.5, in addition to the AER. Strikingly, mapping the long-term fate of cells that form the mature AER showed that, although this structure is indeed a distinct compartment, AER-derived cells are gradually lost after E12.5 and no cells remain by birth. A distinct dorsal/ventral border nevertheless is maintained in the ectoderm of the paw, with the distal-most border being located at the edge of the nail bed. These studies have uncovered new aspects of the cellular mechanisms involved in AER formation and in partitioning the ventral ectoderm in mouse limb.
Collapse
Affiliation(s)
- Qiuxia Guo
- Howard Hughes Medical Institute and Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
157
|
Holmes G, Crooijmans R, Groenen M, Niswander L. ALC (adjacent to LMX1 in chick) is a novel dorsal limb mesenchyme marker. Gene Expr Patterns 2003; 3:735-41. [PMID: 14643681 DOI: 10.1016/s1567-133x(03)00139-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During dorsal-ventral (DV) patterning of the vertebrate limb, WNT7A is expressed in dorsal limb ectoderm and activates the expression of LMX1 (in chick; Lmx1b in mouse) in dorsal limb mesenchyme, resulting in the appropriate development of dorsal cell fates. These two genes are the only known factors involved in directing dorsal patterning and the molecular events that link these two factors or that occur downstream of LMX1/1b are unknown. We have isolated a novel chick transcript, ALC (adjacent to LMX1 in chick). ALC is located 5.3 kb from the 5' end of LMX1 and is transcribed in the opposite direction. It is expressed in a sub-set of tissues expressing LMX1, most notably in the dorsal mesenchyme of the limb, and thus is the second gene discovered with such a distribution in the limb. Misexpression studies with viral constructs show that ALC is downstream of WNT7A but not of LMX1. ALC shows no homology to known genes and its function remains to be determined. However, similarly placed transcripts occur in the human and mouse genomes, and we demonstrate that a mouse transcript is also expressed in dorsal limb mesenchyme.
Collapse
Affiliation(s)
- Greg Holmes
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10021, USA
| | | | | | | |
Collapse
|
158
|
Abstract
▪ Abstract Our understanding of developmental biology burgeoned during the last decade. This review summarizes recent advances, provides definitions and explanations of some basic principles, and does so in a way that will aid anthropologists in understanding their profound implications. Crucial concepts, such as developmental fields, selector and realizator genes, cell signaling mechanisms, and gene regulatory elements are briefly described and then integrated with the emergence of skeletal morphology. For the postcranium, a summary of events from limb bud formation, the appearance of anlagen, the expression of Hox genes, and the fundamentals of growth plate dynamics are briefly summarized. Of particular importance are revelations that bony morphology is largely determined by pattern formation, that growth foci such as physes and synovial joints appear to be regulated principally by positional information, and that variation in these fields is most likely determined by cis-regulatory elements acting on restricted numbers of anabolic genes downstream of selectors (such as Hox). The implications of these discoveries for the interpretation of both contemporary and ancient human skeletal morphology are profound. One of the most salient is that strain transduction now appears to play a much reduced role in shaping the human skeleton. Indeed, the entirety of “Wolff's Law” must now be reassessed in light of new knowledge about pattern formation. The review concludes with a brief discussion of some implications of these findings, including their impact on cladistics and homology, as well as on biomechanical and morphometric analyses of both ancient and modern human skeletal material.
Collapse
Affiliation(s)
- C. Owen Lovejoy
- Matthew Ferrini Institute of Human Evolutionary Research, Department of Anthropology and Division of Biomedical Sciences, Kent State University, Kent, Ohio 44242
- Departments of Anatomy and Oral and Maxillofacial Surgery, Case Western Reserve University, Cleveland, Ohio 44106
| | - Melanie A. McCollum
- Matthew Ferrini Institute of Human Evolutionary Research, Department of Anthropology and Division of Biomedical Sciences, Kent State University, Kent, Ohio 44242
- Departments of Anatomy and Oral and Maxillofacial Surgery, Case Western Reserve University, Cleveland, Ohio 44106
| | - Philip L. Reno
- Matthew Ferrini Institute of Human Evolutionary Research, Department of Anthropology and Division of Biomedical Sciences, Kent State University, Kent, Ohio 44242
- Departments of Anatomy and Oral and Maxillofacial Surgery, Case Western Reserve University, Cleveland, Ohio 44106
| | - Burt A. Rosenman
- Matthew Ferrini Institute of Human Evolutionary Research, Department of Anthropology and Division of Biomedical Sciences, Kent State University, Kent, Ohio 44242
- Departments of Anatomy and Oral and Maxillofacial Surgery, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
159
|
Kornak U, Mundlos S. Genetic disorders of the skeleton: a developmental approach. Am J Hum Genet 2003; 73:447-74. [PMID: 12900795 PMCID: PMC1180673 DOI: 10.1086/377110] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Accepted: 05/22/2003] [Indexed: 01/07/2023] Open
Abstract
Although disorders of the skeleton are individually rare, they are of clinical relevance because of their overall frequency. Many attempts have been made in the past to identify disease groups in order to facilitate diagnosis and to draw conclusions about possible underlying pathomechanisms. Traditionally, skeletal disorders have been subdivided into dysostoses, defined as malformations of individual bones or groups of bones, and osteochondrodysplasias, defined as developmental disorders of chondro-osseous tissue. In light of the recent advances in molecular genetics, however, many phenotypically similar skeletal diseases comprising the classical categories turned out not to be based on defects in common genes or physiological pathways. In this article, we present a classification based on a combination of molecular pathology and embryology, taking into account the importance of development for the understanding of bone diseases.
Collapse
Affiliation(s)
- Uwe Kornak
- Institute for Medical Genetics, Charité University Hospital, Campus Virchow, Berlin, Germany
| | | |
Collapse
|
160
|
Soshnikova N, Zechner D, Huelsken J, Mishina Y, Behringer RR, Taketo MM, Crenshaw EB, Birchmeier W. Genetic interaction between Wnt/beta-catenin and BMP receptor signaling during formation of the AER and the dorsal-ventral axis in the limb. Genes Dev 2003; 17:1963-8. [PMID: 12923052 PMCID: PMC196251 DOI: 10.1101/gad.263003] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
By conditional gene ablation in mice, we found that beta-catenin, an essential downstream effector of canonical Wnt signaling, is a key regulator of formation of the apical ectodermal ridge (AER) and of the dorsal-ventral axis of the limbs. By generation of compound mutants, we also show that beta-catenin acts downstream of the BMP receptor IA in AER induction, but upstream or parallel in dorsal-ventral patterning. Thus, AER formation and dorsal-ventral patterning of limbs are tightly controlled by an intricate interplay between Wnt/beta-catenin and BMP receptor signaling.
Collapse
Affiliation(s)
- Natalia Soshnikova
- Max-Delbrück-Centrum for Molecular Medicine, Robert-Rössle-Strasse 10, 13125Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Jeong Y, Epstein DJ. Distinct regulators of Shh transcription in the floor plate and notochord indicate separate origins for these tissues in the mouse node. Development 2003; 130:3891-902. [PMID: 12835403 DOI: 10.1242/dev.00590] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The establishment of the floor plate at the ventral midline of the CNS is dependent on an inductive signaling process mediated by the secreted protein Sonic hedgehog (Shh). To understand molecularly how floor plate induction proceeds we identified a Shh-responsive regulatory element that directs transgene reporter expression to the ventral midline of the CNS and notochord in a Shh-like manner and characterized critical cis-acting sequences regulating this element. Cross-species comparisons narrowed the activity of the Shh floor plate enhancer to an 88-bp sequence within intron 2 of Shh that included highly conserved binding sites matching the consensus for homeodomain, Tbx and Foxa transcription factors. Mutational analysis revealed that the homeodomain and Foxa binding sites are each required for activation of the Shh floor plate enhancer, whereas the Tbx site was required for repression in regions of the CNS where Shh is not normally expressed. We further show that Shh enhancer activity was detected in the mouse node from where the floor plate and notochord precursors derive. Shh reporter expression was restricted to the ventral (mesodermal) layer of the node in a pattern similar to endogenous Shh. X-gal-positive cells emerging from the node were only detected in the notochord lineage, suggesting that the floor plate and notochord arise from distinct precursors in the mouse node.
Collapse
Affiliation(s)
- Yongsu Jeong
- Department of Genetics, University of Pennsylvania School of Medicine, Clinical Research Building, Room 470, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | | |
Collapse
|
162
|
MESH Headings
- Abnormalities, Multiple/embryology
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/surgery
- Animals
- Bone Diseases, Developmental/embryology
- Bone Diseases, Developmental/genetics
- Bone Diseases, Developmental/surgery
- Diagnosis, Differential
- Ectromelia/embryology
- Ectromelia/genetics
- Ectromelia/surgery
- Hand Deformities, Congenital/embryology
- Hand Deformities, Congenital/genetics
- Hand Deformities, Congenital/surgery
- Humans
- Polydactyly/embryology
- Polydactyly/genetics
- Polydactyly/surgery
- Referral and Consultation
- Syndrome
- Thumb/abnormalities
- Thumb/embryology
- Thumb/surgery
Collapse
Affiliation(s)
- Scott H Kozin
- Shriners Hospitals for Children, Philadelphia, PA 19140, USA.
| |
Collapse
|
163
|
Heidet L, Bongers EMHF, Sich M, Zhang SY, Loirat C, Meyrier A, Broyer M, Landthaler G, Faller B, Sado Y, Knoers NVAM, Gubler MC. In vivo expression of putative LMX1B targets in nail-patella syndrome kidneys. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:145-55. [PMID: 12819019 PMCID: PMC1868155 DOI: 10.1016/s0002-9440(10)63638-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nail-patella syndrome (NPS) is characterized by nail and bone abnormalities, associated with glomerular involvement in approximately 40% of patients. Typical glomerular changes consist of fibrillar material in the irregularly thickened glomerular basement membrane. NPS is inherited as an autosomal dominant trait and caused by heterozygous loss of function mutations in LMX1B, a member of the LIM homeodomain protein family. Mice with homozygous inactivation of the gene exhibit nail and skeletal defects, similar to those observed in patients, associated with glomerular abnormalities. Strong reduction in the glomerular expression of the alpha3 and alpha4 chains of type IV collagen, and of podocin and CD2AP, two podocyte proteins critical for glomerular function, has been observed in Lmx1b null mice. The expression of these proteins appeared to be regulated by Lmx1b. To determine whether these changes in podocyte gene expression are involved in the development of NPS nephropathy, using immunohistological techniques, we analyzed the podocyte phenotype and the renal distribution of type IV collagen chains in the kidneys of seven NPS patients with severe glomerular disease. We also examined the nature of the fibrillar material present within the glomerular extracellular matrix. The glomerular basement membrane fibrillar material was specifically labeled with anti-type III collagen antibodies, suggesting a possible regulation of type III collagen expression by LMX1B. The expression of the alpha3 and alpha4 chains of type IV collagen, and of podocin and CD2AP, was found to be normal in the seven patients. These findings indicate that heterozygous mutations of LMX1B do not appear to dramatically affect the expression of type IV collagen chains, podocin, or CD2AP in NPS patients.
Collapse
Affiliation(s)
- Laurence Heidet
- INSERM U574, Université René Descartes, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Abstract
Cell signaling plays a key role in the development of all multicellular organisms. Numerous studies have established the importance of Hedgehog signaling in a wide variety of regulatory functions during the development of vertebrate and invertebrate organisms. Several reviews have discussed the signaling components in this pathway, their various interactions, and some of the general principles that govern Hedgehog signaling mechanisms. This review focuses on the developing systems themselves, providing a comprehensive survey of the role of Hedgehog signaling in each of these. We also discuss the increasing significance of Hedgehog signaling in the clinical setting.
Collapse
Affiliation(s)
- Andrew P McMahon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | |
Collapse
|
165
|
Al-Qattan MM. Congenital duplication of the palm in a patient with multiple anomalies. JOURNAL OF HAND SURGERY (EDINBURGH, SCOTLAND) 2003; 28:276-9. [PMID: 12809666 DOI: 10.1016/s0266-7681(02)00084-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In 1995, Parr and McMahon described a syndrome of congenital duplication of footpads in mice which lacked a protein called 'Wingless-type mouse mammary tumour virus integration site family member 7a" (Wnt-7a). This syndrome has not been described in humans and the following report describes a similar syndrome in a Saudi girl. The role of Wnt-7a in the development of the limb along the dorso-ventral axis is discussed, along with interaction between the Wnt-7a and other axes of limb growth.
Collapse
Affiliation(s)
- M M Al-Qattan
- Division of Plastic Surgery, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
166
|
Kania A, Jessell TM. Topographic motor projections in the limb imposed by LIM homeodomain protein regulation of ephrin-A:EphA interactions. Neuron 2003; 38:581-96. [PMID: 12765610 DOI: 10.1016/s0896-6273(03)00292-7] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The formation of topographic neural maps relies on the coordinate assignment of neuronal cell body position and axonal trajectory. The projection of motor neurons of the lateral motor column (LMC) along the dorsoventral axis of the limb mesenchyme constitutes a simple topographic map that is organized in a binary manner. We show that LIM homeodomain proteins establish motor neuron topography by coordinating the mediolateral settling position of motor neurons within the LMC with the dorsoventral selection of axon pathways in the limb. These topographic projections are established, in part, through LIM homeodomain protein control of EphA receptors and ephrin-A ligands in motor neurons and limb mesenchymal cells.
Collapse
Affiliation(s)
- Artur Kania
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
167
|
Bell SM, Schreiner CM, Hess KA, Anderson KP, Scott WJ. Asymmetric limb malformations in a new transgene insertional mutant, footless. Mech Dev 2003; 120:597-605. [PMID: 12782276 DOI: 10.1016/s0925-4773(03)00021-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Six to eight copies of a transgene integrated into mouse chromosome 15 resulting in a new transgene insertional mutant, Footless, presenting with malformations of the limbs, kidney, and soft palate. Homozygotes possess a unique asymmetric pattern of limb truncations. Posterior structures from the autopod and zeugopod of the hindlimbs are missing with left usually more severely affected than right. In contrast, anterior structures are missing from the right forelimbs. The left forelimb is usually normal except for the absence of the distal telephalanges and nails. These structures are absent on all formed digits. In situ hybridization assays examined the expression of Shh, dHand, Msx2, Fgf8, En1, and Lmx1b in mutant limb buds and indicated normal establishment of the anterior/posterior and dorsal/ventral axes of the developing limbs. However, dysmorphology of the apical ectodermal ridge was observed in the mutant limb buds.
Collapse
Affiliation(s)
- Sheila M Bell
- Division of Developmental Biology, Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | | | | | | | | |
Collapse
|
168
|
Shum L, Coleman CM, Hatakeyama Y, Tuan RS. Morphogenesis and dysmorphogenesis of the appendicular skeleton. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2003; 69:102-22. [PMID: 12955856 DOI: 10.1002/bdrc.10012] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cartilage patterning and differentiation are prerequisites for skeletal development through endochondral ossification (EO). Multipotential mesenchymal cells undergo a complex process of cell fate determination to become chondroprogenitors and eventually differentiate into chondrocytes. These developmental processes require the orchestration of cell-cell and cell-matrix interactions. In this review, we present limb bud development as a model for cartilage patterning and differentiation. We summarize the molecular and cellular events and signaling pathways for axis patterning, cell condensation, cell fate determination, digit formation, interdigital apoptosis, EO, and joint formation. The interconnected nature of these pathways underscores the effects of genetic and teratogenic perturbations that result in skeletal birth defects. The topics reviewed also include limb dysmorphogenesis as a result of genetic disorders and environmental factors, including FGFR, GLI3, GDF5/CDMP1, Sox9, and Cbfa1 mutations, as well as thalidomide- and alcohol-induced malformations. Understanding the complex interactions involved in cartilage development and EO provides insight into mechanisms underlying the biology of normal cartilage, congenital disorders, and pathologic adult cartilage.
Collapse
Affiliation(s)
- Lillian Shum
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Building 50, Room 1503, MSC 8022, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
169
|
Liu C, Nakamura E, Knezevic V, Hunter S, Thompson K, Mackem S. A role for the mesenchymal T-box gene Brachyury in AER formation during limb development. Development 2003; 130:1327-37. [PMID: 12588849 DOI: 10.1242/dev.00354] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During limb development, several signaling centers organize limb pattern. One of these, the apical ectodermal ridge (AER), is critical for proximodistal limb outgrowth mediated by FGFs. Signals from the underlying mesoderm, including WNTs and FGFs, regulate early steps of AER induction. Ectodermal factors, particularly En1, play a critical role in regulating morphogenesis of a mature, compact AER along the distal limb apex, from a broad ventral ectodermal precursor domain. Contribution of mesodermal factors to the morphogenesis of a mature AER is less clear. We previously noted that the chick T gene (Brachyury), the prototypical T-box transcription factor, is expressed in the limb bud as well as axial mesoderm and primitive streak. Here we show that T is expressed in lateral plate mesoderm at the onset of limb bud formation and subsequently in the subridge mesoderm beneath the AER. Retroviral misexpression of T in chick results in anterior extension of the AER and subsequent limb phenotypes consistent with augmented AER extent and function. Analysis of markers for functional AER in mouse T(-/-) null mutant limb buds reveals disrupted AER morphogenesis. Our data also suggest that FGF and WNT signals may operate both upstream and downstream of T. Taken together, the results show that T plays a role in the regulation of AER formation, particularly maturation, and suggest that T may also be a component of the epithelialmesenchymal regulatory loop involved in maintenance of a mature functioning AER.
Collapse
Affiliation(s)
- Chunqiao Liu
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
170
|
Abstract
A combination of embryology and gene identification has led us to the current view of vertebrate limb development, in which a series of three interlocking patterning systems operate sequentially over time. This review describes current understanding of these regulatory mechanisms and how they form a framework for future analysis of limb patterning.
Collapse
Affiliation(s)
- C Tickle
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD15EH, United Kingdom.
| |
Collapse
|
171
|
Bulchand S, Subramanian L, Tole S. Dynamic spatiotemporal expression of LIM genes and cofactors in the embryonic and postnatal cerebral cortex. Dev Dyn 2003; 226:460-9. [PMID: 12619132 DOI: 10.1002/dvdy.10235] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
LIM-homeodomain (LIM-HD) genes encode a family of transcription factors known to be involved in development and patterning in several systems. Previously, we have shown that LIM-HD gene Lhx2 is required for the formation of a crucial boundary in the dorsal telencephalon (Bulchand et al. [2001] Mech Dev 100:165-175). To further explore the role of LIM-HD genes as well as the broader LIM gene family in dorsal telencephalic development, we examined the expression pattern of the members of this gene family and their cofactors in the developing mouse cerebral cortex. Transcription factor activity of the LIM-HD proteins requires the formation of a tetrameric complex consisting of two LIM-HD molecules linked by a dimer of cofactor (Clim) molecules. LIM-only (Lmo) proteins can interfere with this process by competing for the cofactors. LIM-HD protein function, thus, can be modulated by the presence of the appropriate Clim or Lmo molecules. At least 13 LIM-HD, 4 Lmo, and 2 Clim genes have been identified in the mouse. Several of these genes exhibit complex spatiotemporal patterns spanning different stages of cortical development, from embryonic to postnatal ages. Noteworthy features of the expression patterns include delineation of boundaries within the developing cortex, up- or down-regulation during formation of selected cortical layers, and a striking complementarity of expression of several members consistent with specific functions in cortical development. Significantly, in some cases, Lmo or Clim gene expression is robust where no LIM-HD gene expression is detectable. These results suggest multiple and distinct roles for LIM-HD, Lmo, and Clim genes in cortical development, and also support a LIM-HD-independent role for some Lmo and Clim members.
Collapse
|
172
|
Sweeney E, Fryer A, Mountford R, Green A, McIntosh I. Nail patella syndrome: a review of the phenotype aided by developmental biology. J Med Genet 2003; 40:153-62. [PMID: 12624132 PMCID: PMC1735400 DOI: 10.1136/jmg.40.3.153] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Nail patella syndrome (NPS) is an autosomal dominant condition affecting the nails, skeletal system, kidneys, and eyes. Skeletal features include absent or hypoplastic patellae, patella dislocations, elbow abnormalities, talipes, and iliac horns on x ray. Kidney involvement may lead to renal failure and there is also a risk of glaucoma. There is marked inter- and intrafamilial variability. The results of a British study involving 123 NPS patients are compared with previously published studies and it is suggested that neurological and vasomotor symptoms are also part of the NPS phenotype. In addition, the first data on the incidence of glaucoma and gastrointestinal (GI) symptoms in NPS are presented. NPS is caused by loss of function mutations in the transcription factor LMX1B at 9q34. The expansion of the clinical phenotype is supported by the role of LMX1B during development.
Collapse
Affiliation(s)
- E Sweeney
- Merseyside and Cheshire Clinical Genetics Service, Royal Liverpool Children's Hospital, Alder Hey, Eaton Road, Liverpool L12 2AP, UK.
| | | | | | | | | |
Collapse
|
173
|
Barrow JR, Thomas KR, Boussadia-Zahui O, Moore R, Kemler R, Capecchi MR, McMahon AP. Ectodermal Wnt3/beta-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev 2003; 17:394-409. [PMID: 12569130 PMCID: PMC195987 DOI: 10.1101/gad.1044903] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The formation of the apical ectodermal ridge (AER) is critical for the distal outgrowth and patterning of the vertebrate limb. Recent work in the chick has demonstrated that interplay between the Wnt and Fgf signaling pathways is essential in the limb mesenchyme and ectoderm in the establishment and perhaps the maintenance of the AER. In the mouse, whereas a role for Fgfs for AER establishment and function has been clearly demonstrated, the role of Wnt/beta-catenin signaling, although known to be important, is obscure. In this study, we demonstrate that Wnt3, which is expressed ubiquitously throughout the limb ectoderm, is essential for normal limb development and plays a critical role in the establishment of the AER. We also show that the conditional removal of beta-catenin in the ventral ectodermal cells is sufficient to elicit the mutant limb phenotype. In addition, removing beta-catenin after the induction of the ridge results in the disappearance of the AER, demonstrating the requirement for continued beta-catenin signaling for the maintenance of this structure. Finally, we demonstrate that Wnt/beta-catenin signaling lies upstream of the Bmp signaling pathway in establishment of the AER and regulation of the dorsoventral polarity of the limb.
Collapse
Affiliation(s)
- Jeffery R Barrow
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | |
Collapse
|
174
|
Gurrieri F, Kjaer KW, Sangiorgi E, Neri G. Limb anomalies: Developmental and evolutionary aspects. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 115:231-44. [PMID: 12503118 DOI: 10.1002/ajmg.10981] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this review we describe the developmental mechanisms involved in the making of a limb, by focusing on the nature and types of interactions of the molecules that play a part in the regulation of limb patterning and characterizing clinical conditions that are known to result from the abnormal function of these molecules. The latter subject is divided into sections dealing with syndromal and nonsyndromal deficiencies, polydactylies, and brachydactylies. Conditions caused by mutations in homeobox genes and fibroblast growth factors and their receptor genes are listed separately. Since the process of limb development has been conserved for more than 300 millions years, with all the necessary adaptive modifications occurring throughout evolution, we also take into consideration the evolutionary aspects of limb development in terms of genetic repertoire, molecular pathways, and morphogenetic events.
Collapse
Affiliation(s)
- Fiorella Gurrieri
- Institute of Medical Genetics, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy.
| | | | | | | |
Collapse
|
175
|
Yokoyama H, Tamura K, Ide H. Anteroposterior axis formation in Xenopus limb bud recombinants: a model of pattern formation during limb regeneration. Dev Dyn 2002; 225:277-88. [PMID: 12412010 DOI: 10.1002/dvdy.10155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We previously showed that recombinant limb buds with dissociated and reaggregated mesenchyme develop more than 30 digits in Xenopus laevis, which exhibits different capacities for limb regeneration at different developmental stages (Yokoyama et al. [1998] Dev Biol 196:1-10). Cell-cell contact among anterior- and posterior-derived mesenchymal cells is required for anteroposterior (AP) axis formation of recombinant limbs in an intercalary manner. However, whether one-way induction from posterior cells to anterior cells as proposed by the polarizing zone model or interactions between anterior and posterior cells evoke the AP axis formation in recombinant limbs remains unclear. In this study, we found, by a combination of X-ray irradiation and a recombinant limb technique, that not one-way induction but interactions between anterior and posterior cells accompanied by cell contribution are indispensable for AP axis formation in recombinant limbs. Shh was expressed in posterior-derived not anterior-derived cells. We propose that the recombinant limb is an excellent model for examining the axis formation mechanism in regenerating limbs because, as in recombinant limbs, cell-cell contact among cells derived from different positions of an amputation plane occurs in the blastema of regenerating limbs.
Collapse
Affiliation(s)
- Hitoshi Yokoyama
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Japan.
| | | | | |
Collapse
|
176
|
Grotewold L, Rüther U. The Fused toes (Ft) mouse mutation causes anteroposterior and dorsoventral polydactyly. Dev Biol 2002; 251:129-41. [PMID: 12413903 DOI: 10.1006/dbio.2002.0817] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mouse mutants have been proven to be a valuable system to analyze the molecular network governing vertebrate limb development. In the present study, we report on the molecular and morphological consequences of the Fused toes (Ft) mutation on limb morphogenesis in homozygous embryos. We show that Ft affects all three axes as the mutant limbs display severe distal truncations of skeletal elements as well as an anteroposterior and an unusual form of dorsoventral polydactyly. Ectopic activation of the Shh signalling cascade in the distal-most mesoderm together with malformations of the AER likely account for these alterations. Moreover, we provide evidence that a deregulated control of programmed cell death triggered by Bmp-4 and Dkk-1 significantly contributes to the complex limb phenotype. In addition, our analysis reveals a specific requirement of the genes deleted by the Ft mutation in hindlimb morphogenesis.
Collapse
Affiliation(s)
- Lars Grotewold
- Institut für Entwicklungs- und Molekularbiologie der Tiere (EMT), Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | |
Collapse
|
177
|
Abstract
The topographic assembly of neural circuits is dependent upon the generation of specific neuronal subtypes, each subtype displaying unique properties that direct the formation of selective connections with appropriate target cells. Studies of motor neuron development in the spinal cord have begun to elucidate the molecular mechanisms involved in controlling motor projections. In this review, we first describe the actions of transcription factors within motor neuron progenitors, which initiate a cascade of transcriptional interactions that lead to motor neuron specification. We next highlight the contribution of the LIM homeodomain (LIM-HD) transcription factors in establishing motor neuron subtype identity. Importantly, it has recently been shown that the combinatorial expression of LIM-HD transcription factors, the LIM code, confers motor neuron subtypes with the ability to select specific axon pathways to reach their distinct muscle targets. Finally, the downstream targets of the LIM code are discussed, especially in the context of subtype-specific motor axon pathfinding.
Collapse
Affiliation(s)
- Ryuichi Shirasaki
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | |
Collapse
|
178
|
Rhee CS, Sen M, Lu D, Wu C, Leoni L, Rubin J, Corr M, Carson DA. Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene 2002; 21:6598-605. [PMID: 12242657 DOI: 10.1038/sj.onc.1205920] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2002] [Revised: 07/30/2002] [Accepted: 07/31/2002] [Indexed: 12/20/2022]
Abstract
The diverse receptor-ligand pairs of the Wnt and frizzled (Fz) families play important roles during embryonic development, and thus may be overexpressed in cancers that arise from immature cells. Hence, we investigated the expression and function of five Wnt (Wnt-1, 5a, 7a, 10b, 13) and two Fz (Fz-2, 5) genes in 10 head and neck squamous carcinoma cell lines (HNSCC). In comparison to normal bronchial or oral epithelial cells, all the HNSCC had markedly increased mRNA levels of Wnt-1, 7a, 10b, and 13, as well as Fz-2. Moreover, the levels of Wnt-1, 10b, and Fz-2 proteins were also markedly increased in HNSCC, relative to normal epithelial cells. Treatment of one HNSCC cell line (SNU 1076) with anti-Wnt-1 antibodies reduced the activity of the Wnt/Fz dependent transcription factor LEF/TCF, and diminished the expression of cyclin D1 and beta-catenin proteins. Blocking Wnt-1 signaling also inhibited proliferation and induced apoptosis in these cells. These results show that HNSCC cell lines often overexpress one or more Wnt and Fz genes, and suggest that the growth and survival of a subset of HNSCC may depend on the Wnt/Fz pathway. Hence, the Wnt and Fz receptors may be possible targets for immunotherapy therapy of this common cancer.
Collapse
Affiliation(s)
- Chae-Seo Rhee
- Department of Medicine and The Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, California, CA 92093-0663, USA
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Failli V, Bachy I, Rétaux S. Expression of the LIM-homeodomain gene Lmx1a (dreher) during development of the mouse nervous system. Mech Dev 2002; 118:225-8. [PMID: 12351192 DOI: 10.1016/s0925-4773(02)00254-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The expression pattern of Lmx1a, a LIM-homeodomain gene disrupted in the dreher mouse neurological mutant, is described during development. Lmx1a is predominantly expressed in the developing nervous system from embryonic day E8.5 to adulthood, in restricted areas. Major expression domains include the dorsal midline (roof plate) of the neural tube, the cortical hem, the otic vesicles, the developing cerebellum and the notochord. The Lmx1a expression pattern is therefore well correlated with the various aspects of the phenotype of the dreher mutant mice.
Collapse
Affiliation(s)
- Vieri Failli
- UPR 2197, Développement, Evolution, Plasticité du Système Nerveux, Institut de Neurobiologie Alfred FESSARD, C.N.R.S., Avenue de la Terrasse, 91198 GIF-sur-YVETTE cedex, France
| | | | | |
Collapse
|
180
|
Hsieh YW, Zhang XM, Lin E, Oliver G, Yang XJ. The homeobox gene Six3 is a potential regulator of anterior segment formation in the chick eye. Dev Biol 2002; 248:265-80. [PMID: 12167403 PMCID: PMC7048386 DOI: 10.1006/dbio.2002.0732] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The anterior segment of the vertebrate eye consists of highly organized and specialized ocular tissues critical for normal vision. The periocular mesenchyme, originating from the neural crest, contributes extensively to the anterior segment. During chick eye morphogenesis, the homeobox gene Six3 is expressed in a subset of periocular mesenchymal cells and in differentiating anterior segment tissues. Retrovirus-mediated misexpression of Six3 causes eye anterior segment malformation, including corneal protrusion and opacification, ciliary body and iris hypoplasia, and trabecular meshwork dysgenesis. Histological and molecular marker analyses demonstrate that Six3 misexpression disrupts the integrity of the corneal endothelium and the expression of extracellular matrix components critical for corneal transparency. Six3 misexpression also leads to a reduction of the periocular mesenchymal cell population expressing Lmx1b, Pitx2, and Pax6, transcription factors critical for eye anterior segment morphogenesis. Moreover, elevated levels of Six3 attenuate proliferation of periocular mesenchymal cells in vitro and differentiating anterior segment tissues in vivo. These results suggest that, in addition to its function in eye primordium determination, Six3 plays a role in regulating the development of the vertebrate eye anterior segment.
Collapse
Affiliation(s)
- Yi-Wen Hsieh
- Jules Stein Eye Institute, Molecular Biology Institute, Department of Ophthalmology, University of California, Los Angeles, California 90095
| | - Xiang-Mei Zhang
- Jules Stein Eye Institute, Molecular Biology Institute, Department of Ophthalmology, University of California, Los Angeles, California 90095
| | - Eddie Lin
- Jules Stein Eye Institute, Molecular Biology Institute, Department of Ophthalmology, University of California, Los Angeles, California 90095
| | - Guillermo Oliver
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Xian-Jie Yang
- Jules Stein Eye Institute, Molecular Biology Institute, Department of Ophthalmology, University of California, Los Angeles, California 90095
| |
Collapse
|
181
|
Abstract
We analysed spatio-temporal expression of dorso-ventral genes - Wnt-7a, En-1, Lmx-1 and Fgf-8 - during both normal and ectopic limb formation following fibroblast growth factor (FGF) application to the flank. We confirm that Wnt-7a is the first of these genes to be expressed in dorsal ectoderm in limb-forming regions. We also noticed patterns and kinetics of gene expression specific to chick that could account for differences observed in ridge formation between chick and mouse. We find that Wnt-7a expression, in dorsal ectoderm, is rapidly and locally induced by FGF application. In contrast, ectopic induction of Lmx-1 expression, in dorsal mesoderm, is much slower, occurs first at a distance from the FGF-2 bead and seems initially independent of direct Wnt-7a signalling during FGF-2 limb induction. Finally, we show that there is no contribution to extra-limb mesoderm from normal limb mesoderm and confirm that flank cells give rise to the extra limb. Furthermore, we suggest that an inhibitor present in the flank normally prevents Lmx-1 expression in this region and restricts its expression to limb-forming regions.
Collapse
Affiliation(s)
- Muriel Altabef
- Department of Anatomy and Developmental Biology, University College London, Medawar Building, Malet Place, UK.
| | | |
Collapse
|
182
|
Eberhart J, Swartz ME, Koblar SA, Pasquale EB, Krull CE. EphA4 constitutes a population-specific guidance cue for motor neurons. Dev Biol 2002; 247:89-101. [PMID: 12074554 DOI: 10.1006/dbio.2002.0695] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Motor neurons in the ventral neural tube project axons specifically to their target muscles in the periphery. Although many of the transcription factors that specify motor neuron cell fates have been characterized, less is understood about the mechanisms that guide motor axons to their correct targets. We show that ectopic expression of EphA4 receptor tyrosine kinase alters the trajectories of a specific population of motor axons in the avian hindlimb. Most motor neurons in the medial portion of the lateral motor column (LMC) extend their axons aberrantly in the dorsal nerve trunk at the level of the crural plexus, in the presence of ectopic EphA4. This misrouting of motor axons is not accompanied by alterations in motor neuron identity, settling patterns in the neural tube, or the fasciculation of spinal nerves. However, ectopic EphA4 axons do make errors in pathway selection during sorting in the plexus at the base of the hindlimb. These results suggest that EphA4 in motor neurons acts as a population-specific guidance cue to control the dorsal trajectory of their axons in the hindlimb.
Collapse
Affiliation(s)
- J Eberhart
- Biological Sciences, University of Missouri, Columbia 65211, USA
| | | | | | | | | |
Collapse
|
183
|
Gupta BP, Sternberg PW. Tissue-specific regulation of the LIM homeobox gene lin-11 during development of the Caenorhabditis elegans egg-laying system. Dev Biol 2002; 247:102-15. [PMID: 12074555 DOI: 10.1006/dbio.2002.0688] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The egg-laying system of Caenorhabditis elegans hermaphrodites requires development of the vulva and its precise connection with the uterus. This process is regulated by LET-23-mediated epidermal growth factor signaling and LIN-12-mediated lateral signaling pathways. Among the nuclear factors that act downstream of these pathways, the LIM homeobox gene lin-11 plays a major role. lin-11 mutant animals are egg-laying defective because of the abnormalities in vulval lineage and uterine seam-cell formation. However, the mechanisms providing specificity to lin-11 function are not understood. Here, we examine the regulation of lin-11 during development of the egg-laying system. Our results demonstrate that the tissue-specific expression of lin-11 is controlled by two distinct regulatory elements that function as independent modules and together specify a wild-type egg-laying system. A uterine pi lineage module depends on the LIN-12/Notch signaling, while a vulval module depends on the LIN-17-mediated Wnt signaling. These results provide a unique example of the tissue-specific regulation of a LIM homeobox gene by two evolutionarily conserved signaling pathways. Finally, we provide evidence that the regulation of lin-11 by LIN-12/Notch signaling is directly mediated by the Su(H)/CBF1 family member LAG-1.
Collapse
Affiliation(s)
- Bhagwati P Gupta
- HHMI and Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
184
|
Schubert FR, Mootoosamy RC, Walters EH, Graham A, Tumiotto L, Münsterberg AE, Lumsden A, Dietrich S. Wnt6 marks sites of epithelial transformations in the chick embryo. Mech Dev 2002; 114:143-8. [PMID: 12175501 DOI: 10.1016/s0925-4773(02)00039-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In a screen for Wnt genes executing the patterning function of the vertebrate surface ectoderm, we have isolated a novel chick Wnt gene, chick Wnt6. This gene encodes the first pan-epidermal Wnt signalling molecule. Further sites of expression are the boundary of the early neural plate and surface ectoderm, the roof of mesencephalon, pretectum and dorsal thalamus, the differentiating heart, and the otic vesicle. The precise sites of Wnt6 expression coincide with crucial changes in tissue architecture, namely epithelial remodelling and epithelial-mesenchymal transformation (EMT). Moreover, the expression of Wnt6 is closely associated with areas of Bmp signalling.
Collapse
Affiliation(s)
- Frank R Schubert
- MRC Centre for Developmental Neurobiology, King's College London, 4th Floor New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Zhang Y, Mori T, Takaki H, Takeuch M, Iseki K, Hagino S, Murakawa M, Yokoya S, Wanaka A. Comparison of the expression patterns of two LIM-homeodomain genes, Lhx6 and L3/Lhx8, in the developing palate. Orthod Craniofac Res 2002; 5:65-70. [PMID: 12086327 DOI: 10.1034/j.1600-0544.2002.02198.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To compare and contrast the gene expression of two LIM-homeobox type transcription factors, Lhx6 and L3/Lhx8, in secondary palate formation. METHODS In situ hybridization histochemistry with digoxygenin (DIG) labelled cRNA probes specific for Lhx6 and L3/Lhx8. MATERIALS Serial cryo-sections of embryonic day (E)13.5, 14.5, and 15.5 mice (C57BL/6). OUTCOME MEASURE Comparison of the signal intensities of NBT/BCIP precipitate by alkaline phosphatase conjugated anti-DIG antibody. RESULTS From E13.5 to E15.5, Lhx6 and L3/Lhx8 signals are detected in palatal mesenchyme, but the L3/Lhx8 signal is much more intense than the Lhx6 signal. In palatal epithelium, covering the mesenchyme, Lhx6 mRNA is transiently expressed at E14.5, while L3/Lhx8 mRNA expression is never detected throughout the development. CONCLUSION Lhx6 and L3/Lhx8 functions may be partially redundant in the mesenchyme of the secondary palate, but not in the palatal epithelium.
Collapse
Affiliation(s)
- Y Zhang
- Department of Anesthesiology, School of Medicine, Fukushima Medical University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Morello R, Lee B. Insight into podocyte differentiation from the study of human genetic disease: nail-patella syndrome and transcriptional regulation in podocytes. Pediatr Res 2002; 51:551-8. [PMID: 11978876 DOI: 10.1203/00006450-200205000-00002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, our understanding of the molecular basis of kidney development has benefited from the study of rare genetic diseases affecting renal function. This has especially been the case with the differentiation of the highly specialized podocyte in the pathogenesis of human disorders and mouse phenotypes affecting the renal filtration barrier. This filtration barrier represents the end product of a complex series of signaling events that produce a tripartite structure consisting of interdigitating podocyte foot processes with intervening slit diaphragms, the glomerular basement membrane, and the fenestrated endothelial cell. Dysregulation of unique cytoskeletal and extracellular matrix proteins in genetic forms of nephrotic syndrome has shown how specific structural proteins contribute to podocyte function and differentiation. However, much less is known about the transcriptional determinants that both specify and maintain this differentiated cell. Our studies of a skeletal malformation syndrome, nail-patella syndrome, have shown how the LIM homeodomain transcription factor, Lmx1b, contributes to transcriptional regulation of glomerular basement membrane collagen expression by podocytes. Moreover, they raise intriguing questions about more global transcriptional regulation of podocyte morphogenesis.
Collapse
Affiliation(s)
- Roy Morello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
187
|
Abstract
Classic hypotheses of vertebrate morphology are being informed by new data and new methods. Long nascent issues, such as the origin of tetrapod limbs, are being explored by paleontologists, molecular biologists, and functional anatomists. Progress in this arena will ultimately come down to knowing how macroevolutionary differences between taxa emerge from the genetic and phenotypic variation that arises within populations. The assembly of limbs over developmental and evolutionary time offers examples of the major processes at work in the origin of novelties. Recent comparative developmental analyses demonstrate that many of the mechanisms used to pattern limbs are ancient. One of the major consequences of this phenomenon is parallelism in the evolution of anatomical structures. Studies of both the fossil record and intrapopulational variation of extant populations reveal regularities in the origin of variation. These examples reveal processes acting at the level of populations that directly affect the patterns of diversity observed at higher taxonomic levels.
Collapse
Affiliation(s)
- Neil H Shubin
- Department of Organismal Biology and Anatomy, Chicago, Illinois 60637, USA.
| |
Collapse
|
188
|
Abstract
Chick embryos are good models for vertebrate development. The principles that underlie chick wing development have been discovered and there is increasing knowledge about the molecules involved. The importance of identifying molecules is that this provides a direct link to understanding the genetic basis of diversity in form. Chick wing development will be compared with limb development in other vertebrates. Possible mechanisms that could lead to variations in form, including limb reductions and limblessness, differences between fore- and hindlimbs, limb proportions, and interdigital webbing can be suggested.
Collapse
Affiliation(s)
- Cheryll Tickle
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
189
|
Capdevila J, Izpisúa Belmonte JC. Patterning mechanisms controlling vertebrate limb development. Annu Rev Cell Dev Biol 2002; 17:87-132. [PMID: 11687485 DOI: 10.1146/annurev.cellbio.17.1.87] [Citation(s) in RCA: 324] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vertebrate limb buds are embryonic structures for which much molecular and cellular data are known regarding the mechanisms that control pattern formation during development. Specialized regions of the developing limb bud, such as the zone of polarizing activity (ZPA), the apical ectodermal ridge (AER), and the non-ridge ectoderm, direct and coordinate the development of the limb bud along the anterior-posterior (AP), dorsal-ventral (DV), and proximal-distal (PD) axes, giving rise to a stereotyped pattern of elements well conserved among tetrapods. In recent years, specific gene functions have been shown to mediate the organizing and patterning activities of the ZPA, the AER, and the non-ridge ectoderm. The analysis of these gene functions has revealed the existence of complex interactions between signaling pathways operated by secreted factors of the HH, TGF-beta/BMP, WNT, and FGF superfamilies, which interact with many other genetic networks to control limb positioning, outgrowth, and patterning. The study of limb development has helped to establish paradigms for the analysis of pattern formation in many other embryonic structures and organs.
Collapse
Affiliation(s)
- J Capdevila
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
190
|
Pizette S, Abate-Shen C, Niswander L. BMP controls proximodistal outgrowth, via induction of the apical ectodermal ridge, and dorsoventral patterning in the vertebrate limb. Development 2001; 128:4463-74. [PMID: 11714672 DOI: 10.1242/dev.128.22.4463] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dorsoventral (DV) patterning of the vertebrate limb requires the function of the transcription factor Engrailed 1 (EN1) in the ventral ectoderm. EN1 restricts, to the dorsal half of the limb, the expression of the two genes known to specify dorsal pattern. Limb growth along the proximodistal (PD) axis is controlled by the apical ectodermal ridge (AER), a specialized epithelium that forms at the distal junction between dorsal and ventral ectoderm. Using retroviral-mediated misexpression of the bone morphogenetic protein (BMP) antagonist Noggin or an activated form of the BMP receptor in the chick limb, we demonstrate that BMP plays a key role in both DV patterning and AER induction. Thus, the DV and PD axes are linked by a common signal. Loss and gain of BMP function experiments show that BMP signaling is both necessary and sufficient to regulate EN1 expression, and consequently DV patterning. Our results also indicate that BMPs are required during induction of the AER. Manipulation of BMP signaling results in either disruptions in the endogenous AER, leading to absent or severely truncated limbs or the formation of ectopic AERs that can direct outgrowth. Moreover, BMP controls the expression of the MSX transcription factors, and our results suggest that MSX acts downstream of BMP in AER induction. We propose that the BMP signal bifurcates at the level of EN1 and MSX to mediate differentially DV patterning and AER induction, respectively.
Collapse
Affiliation(s)
- S Pizette
- Molecular Biology Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
191
|
Ahn K, Mishina Y, Hanks MC, Behringer RR, Crenshaw EB. BMPR-IA signaling is required for the formation of the apical ectodermal ridge and dorsal-ventral patterning of the limb. Development 2001; 128:4449-61. [PMID: 11714671 DOI: 10.1242/dev.128.22.4449] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We demonstrate that signaling via the bone morphogenetic protein receptor IA (BMPR-IA) is required to establish two of the three cardinal axes of the limb: the proximal-distal axis and the dorsal-ventral axis. We generated a conditional knockout of the gene encoding BMPR-IA (Bmpr) that disrupted BMP signaling in the limb ectoderm. In the most severely affected embryos, this conditional mutation resulted in gross malformations of the limbs with complete agenesis of the hindlimbs. The proximal-distal axis is specified by the apical ectodermal ridge (AER), which forms from limb ectoderm at the distal tip of the embryonic limb bud. Analyses of the expression of molecular markers, such as Fgf8, demonstrate that formation of the AER was disrupted in the Bmpr mutants. Along the dorsal/ventral axis, loss of engrailed 1 (En1) expression in the non-ridge ectoderm of the mutants resulted in a dorsal transformation of the ventral limb structures. The expression pattern of Bmp4 and Bmp7 suggest that these growth factors play an instructive role in specifying dorsoventral pattern in the limb. This study demonstrates that BMPR-IA signaling plays a crucial role in AER formation and in the establishment of the dorsal/ventral patterning during limb development.
Collapse
Affiliation(s)
- K Ahn
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
192
|
Milán M, Weihe U, Tiong S, Bender W, Cohen SM. msh specifies dorsal cell fate in the Drosophila wing. Development 2001; 128:3263-8. [PMID: 11546743 DOI: 10.1242/dev.128.17.3263] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila limbs develop from imaginal discs that are subdivided into compartments. Dorsal-ventral subdivision of the wing imaginal disc depends on apterous activity in dorsal cells. Apterous protein is expressed in dorsal cells and is responsible for (1) induction of a signaling center along the dorsal-ventral compartment boundary (2) establishment of a lineage restriction boundary between compartments and (3) specification of dorsal cell fate. Here, we report that the homeobox gene msh (muscle segment homeobox) acts downstream of apterous to confer dorsal identity in wing development.
Collapse
Affiliation(s)
- M Milán
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
193
|
Sifakis S, Basel D, Ianakiev P, Kilpatrick M, Tsipouras P. Distal limb malformations: underlying mechanisms and clinical associations. Clin Genet 2001; 60:165-72. [PMID: 11595015 DOI: 10.1034/j.1399-0004.2001.600301.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Congenital malformations of the extremities are conspicuous and have been described through the ages. Over the past decade, a wealth of knowledge has been generated regarding the genetic regulation of limb development and the underlying molecular mechanisms. Recent studies have identified several of the signaling molecules, growth factors, and transcriptional regulators involved in the initiation and maintenance of the apical ectodermal ridge (AER) as well as the molecular markers defining the three axes of the developing limb. Studies of abnormal murine phenotypes have uncovered the role played by genes such as p63 and Dactylin in the maintenance of AER activity. These phenotypes resemble human malformations and in this review we describe the underlying mechanisms and clinical associations of split hand/foot malformation and ectrodactyly-ectodermal dysplasia-cleft lip/palate syndrome, which have both been associated with mutations in the p63 gene.
Collapse
Affiliation(s)
- S Sifakis
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
194
|
Scott M. Signalling and endocytosis: Wnt breaks down on back roads. Nat Cell Biol 2001; 3:E185-6. [PMID: 11483976 DOI: 10.1038/35087126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M Scott
- Departments of Developmental Biology and Genetics, Howard Hughes Medical Institute, 279 Campus Drive, Stanford University School of Medicine, Stanford, California 94305-5329, USA.
| |
Collapse
|
195
|
Wharton KA, Zimmermann G, Rousset R, Scott MP. Vertebrate proteins related to Drosophila Naked Cuticle bind Dishevelled and antagonize Wnt signaling. Dev Biol 2001; 234:93-106. [PMID: 11356022 DOI: 10.1006/dbio.2001.0238] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Wnt signals control cell fate decisions and orchestrate cell behavior in metazoan animals. In the fruit fly Drosophila, embryos defective in signaling mediated by the Wnt protein Wingless (Wg) exhibit severe segmentation defects. The Drosophila segment polarity gene naked cuticle (nkd) encodes an EF hand protein that regulates early Wg activity by acting as an inducible antagonist. Nkd antagonizes Wg via a direct interaction with the Wnt signaling component Dishevelled (Dsh). Here we describe two mouse and human proteins, Nkd1 and Nkd2, related to fly Nkd. The most conserved region among the fly and vertebrate proteins, the EFX domain, includes the putative EF hand and flanking sequences. EFX corresponds to a minimal domain required for fly or vertebrate Nkd to interact with the basic/PDZ domains of fly Dsh or vertebrate Dvl proteins in the yeast two-hybrid assay. During mouse development, nkd1 and nkd2 are expressed in multiple tissues in partially overlapping, gradient-like patterns, some of which correlate with known patterns of Wnt activity. Mouse Nkd1 can block Wnt1-mediated, but not beta-catenin-mediated, activation of a Wnt-dependent reporter construct in mammalian cell culture. Misexpression of mouse nkd1 in Drosophila antagonizes Wg function. The data suggest that the vertebrate Nkd-related proteins, similar to their fly counterpart, may act as inducible antagonists of Wnt signals.
Collapse
Affiliation(s)
- K A Wharton
- Department of Developmental Biology, Howard Hughes Medical Institute, Beckman Center, B300, Stanford School of Medicine, 279 Campus Drive, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|
196
|
Briegel KJ, Joyner AL. Identification and characterization of Lbh, a novel conserved nuclear protein expressed during early limb and heart development. Dev Biol 2001; 233:291-304. [PMID: 11336496 DOI: 10.1006/dbio.2001.0225] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the cloning, protein characterization, and expression of a novel vertebrate gene, termed Lbh (Limb-bud-and-heart), with a spatiotemporal expression pattern that marks embryologically significant domains in the developing limbs and heart. Lbh encodes a highly conserved nuclear protein, which in tissue culture cells possesses a transcriptional activator function. During limb development, expression of Lbh initiates in the ectoderm of the presumptive limb territory in the lateral body wall. As the limb buds appear, Lbh expression is restricted primarily to the distal ventral limb ectoderm and the apical ectodermal ridge, and overlaps in these ectodermal compartments with En1 and Fgf8 expression. During heart formation, Lbh is expressed as early as Nkx2.5 and dHand in the bilateral heart primordia, with the highest levels in the anterior promyocardium. After heart tube fusion and looping, Lbh expression is confined to the ventricular myocardium, with the highest intensity in the right ventricle and atrioventricular canal, as well as in the sinus venosus. Based on the molecular characteristics and the domain-specific expression pattern, it is possible that Lbh functions in synergy with other genes known to be required for heart and limb development.
Collapse
Affiliation(s)
- K J Briegel
- Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
197
|
Pellegrini M, Pantano S, Fumi MP, Lucchini F, Forabosco A. Agenesis of the scapula in Emx2 homozygous mutants. Dev Biol 2001; 232:149-56. [PMID: 11254354 DOI: 10.1006/dbio.2001.0159] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The shoulder and pelvic girdles represent the proximal bones of the appendicular skeleton that connect the anterior and posterior limbs to the body trunk. Although the limb is a well-known model in developmental biology, the genetic mechanisms controlling the development of the more proximal elements of the appendicular skeleton are still unknown. The knock-out of Pax1 has shown that this gene is involved in patterning the acromion, while the expression pattern candidates Hoxc6 as a gene involved in scapula development. Surprisingly, we have found that scapula and ilium do not develop in Emx2 knock-out mice. In the homozygous mutants, developmental abnormalities of the brain cortex, the most anterior structure of the primary axis of the body, are associated with important defects of the girdles, the more proximal elements of the secondary axis. These abnormalities suggest that the molecular mechanisms patterning the more proximal elements of the limb axis are different from those patterning the rest of appendicular skeleton. While Hox genes specify the different segments of the more distal part of the appendicular skeleton forming the limb, Emx2 is concerned with the more proximal elements constituting the girdles.
Collapse
Affiliation(s)
- M Pellegrini
- Dipartimento di Scienze Morfologiche e Medico Legali, Università di Modena e Reggio Emilia, Modena, 41100, Italy.
| | | | | | | | | |
Collapse
|
198
|
Abstract
Early development of the vertebrate skeleton depends on genes that pattern the distribution and proliferation of cells from cranial neural crest, sclerotomes, and lateral plate mesoderm into mesenchymal condensations at sites of future skeletal elements. Within these condensations, cells differentiate to chondrocytes or osteoblasts and form cartilages and bones under the control of various transcription factors. In most of the skeleton, organogenesis results in cartilage models of future bones; in these models cartilage is replaced by bone by the process of endochondral ossification. Lastly, through a controlled process of bone growth and remodeling the final skeleton is shaped and molded. Significant and exciting insights into all aspects of vertebrate skeletal development have been obtained through molecular and genetic studies of animal models and humans with inherited disorders of skeletal morphogenesis, organogenesis, and growth.
Collapse
Affiliation(s)
- B R Olsen
- Harvard Medical School, Department of Cell Biology, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
199
|
Schaller SA, Li S, Ngo-Muller V, Han MJ, Omi M, Anderson R, Muneoka K. Cell biology of limb patterning. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:483-517. [PMID: 11131524 DOI: 10.1016/s0074-7696(01)03014-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Of vertebrate organ systems, the developing limb has been especially well characterized. Morphological studies have yielded a wealth of information describing limb outgrowth and have allowed for the identification of a multitude of important factors. In terms of the latter, key signaling pathways are known to control numerous aspects of limb development, including establishment of the early limb field, determination of limb identity, elongation of the limb bud, specification of digit pattern, and sculpting of the digits. Modification of underlying signaling pathways can thus result in dramatic alterations of the limb phenotype, accounting for many of the diverse limb patterns observed in nature. Given this, it is clear that signaling pathways regulate the highly orchestrated and tightly controlled sequence of cellular events necessary for limb outgrowth; however, exactly how molecular signals interface with the cell biology of limb development remains largely a mystery. In this review we first provide an overview of a number of the morphogenetic signaling pathways that have been identified in the developing limb and then review how a subset of these signals are known to modify cell behaviors important for limb outgrowth.
Collapse
Affiliation(s)
- S A Schaller
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Lousiana 70118, USA
| | | | | | | | | | | | | |
Collapse
|
200
|
Morello R, Zhou G, Dreyer SD, Harvey SJ, Ninomiya Y, Thorner PS, Miner JH, Cole W, Winterpacht A, Zabel B, Oberg KC, Lee B. Regulation of glomerular basement membrane collagen expression by LMX1B contributes to renal disease in nail patella syndrome. Nat Genet 2001; 27:205-8. [PMID: 11175791 DOI: 10.1038/84853] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Basement membrane (BM) morphogenesis is critical for normal kidney function. Heterotrimeric type IV collagen, composed of different combinations of six alpha-chains (1-6), is a major matrix component of all BMs (ref. 2). Unlike in other BMs, glomerular BM (GBM) contains primarily the alpha 3(IV) and alpha 4(IV) chains, together with the alpha 5(IV) chain. A poorly understood, coordinated temporal and spatial switch in gene expression from ubiquitously expressed alpha 1(IV) and alpha 2(IV) collagen to the alpha 3(IV), alpha 4(IV) and alpha 5(IV) chains occurs during normal embryogenesis of GBM (ref. 4). Structural abnormalities of type IV collagen have been associated with diverse biological processes including defects in molecular filtration in Alport syndrome, cell differentiation in hereditary leiomyomatosis, and autoimmunity in Goodpasture syndrome; however, the transcriptional and developmental regulation of type IV collagen expression is unknown. Nail patella syndrome (NPS) is caused by mutations in LMX1B, encoding a LIM homeodomain transcription factor. Some patients have nephrosis-associated renal disease characterized by typical ultrastructural abnormalities of GBM (refs. 8,9). In Lmx1b(-/-) mice, expression of both alpha(3)IV and alpha(4)IV collagen is strongly diminished in GBM, whereas that of alpha1, alpha2 and alpha5(IV) collagen is unchanged. Moreover, LMX1B binds specifically to a putative enhancer sequence in intron 1 of both mouse and human COL4A4 and upregulates reporter constructs containing this enhancer-like sequence. These data indicate that LMX1B directly regulates the coordinated expression of alpha 3(IV) and alpha 4(IV) collagen required for normal GBM morphogenesis and that its dysregulation in GBM contributes to the renal pathology and nephrosis in NPS.
Collapse
Affiliation(s)
- R Morello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|