151
|
Rose AS, Zachariae U, Grubmüller H, Hofmann KP, Scheerer P, Hildebrand PW. Role of Structural Dynamics at the Receptor G Protein Interface for Signal Transduction. PLoS One 2015; 10:e0143399. [PMID: 26606751 PMCID: PMC4659624 DOI: 10.1371/journal.pone.0143399] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022] Open
Abstract
GPCRs catalyze GDP/GTP exchange in the α-subunit of heterotrimeric G proteins (Gαßγ) through displacement of the Gα C-terminal α5 helix, which directly connects the interface of the active receptor (R*) to the nucleotide binding pocket of G. Hydrogen-deuterium exchange mass spectrometry and kinetic analysis of R* catalysed G protein activation have suggested that displacement of α5 starts from an intermediate GDP bound complex (R*•GGDP). To elucidate the structural basis of receptor-catalysed displacement of α5, we modelled the structure of R*•GGDP. A flexible docking protocol yielded an intermediate R*•GGDP complex, with a similar overall arrangement as in the X-ray structure of the nucleotide free complex (R*•Gempty), however with the α5 C-terminus (GαCT) forming different polar contacts with R*. Starting molecular dynamics simulations of GαCT bound to R* in the intermediate position, we observe a screw-like motion, which restores the specific interactions of α5 with R* in R*•Gempty. The observed rotation of α5 by 60° is in line with experimental data. Reformation of hydrogen bonds, water expulsion and formation of hydrophobic interactions are driving forces of the α5 displacement. We conclude that the identified interactions between R* and G protein define a structural framework in which the α5 displacement promotes direct transmission of the signal from R* to the GDP binding pocket.
Collapse
Affiliation(s)
- Alexander S. Rose
- Institute of Medical Physics and Biophysics (CC2), Universitätsmedizin Berlin, Charitéplatz 1, 10098, Berlin, Germany
- Team ProteiInformatics, Universitätsmedizin Berlin, Charitéplatz 1, 10098, Berlin, Germany
| | - Ulrich Zachariae
- Dep. of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
- Computational Biology, School of Life Sciences, and Physics, School of Science and Engineering, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Helmut Grubmüller
- Dep. of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Klaus Peter Hofmann
- Institute of Medical Physics and Biophysics (CC2), Universitätsmedizin Berlin, Charitéplatz 1, 10098, Berlin, Germany
- Centre of Biophysics and Bioinformatics, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115, Berlin, Germany
| | - Patrick Scheerer
- Institute of Medical Physics and Biophysics (CC2), Universitätsmedizin Berlin, Charitéplatz 1, 10098, Berlin, Germany
- Team Protein X-ray Crystallography and Signal Transduction, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10098, Berlin, Germany
| | - Peter W. Hildebrand
- Institute of Medical Physics and Biophysics (CC2), Universitätsmedizin Berlin, Charitéplatz 1, 10098, Berlin, Germany
- Team ProteiInformatics, Universitätsmedizin Berlin, Charitéplatz 1, 10098, Berlin, Germany
| |
Collapse
|
152
|
Brand CS, Sadana R, Malik S, Smrcka AV, Dessauer CW. Adenylyl Cyclase 5 Regulation by Gβγ Involves Isoform-Specific Use of Multiple Interaction Sites. Mol Pharmacol 2015; 88:758-67. [PMID: 26206488 PMCID: PMC4576683 DOI: 10.1124/mol.115.099556] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/23/2015] [Indexed: 12/21/2022] Open
Abstract
Adenylyl cyclase (AC) converts ATP into cyclic AMP (cAMP), an important second messenger in cell signaling. Heterotrimeric G proteins and other regulators are important for control of AC activity. Depending on the AC isoform, Gβγ subunits can either conditionally stimulate or inhibit cAMP synthesis. We previously showed that the Gαs-βγ heterotrimer binds to the N terminus (NT) of type 5 AC (AC5). We now show that Gβγ binds to the NT of a wide variety of AC isoforms. We hypothesized that Gβγ/AC5 interactions involving inactive heterotrimer and Gβγ stimulation of AC5 were separable events. Mutations of the Gβγ "hotspot" show that this site is necessary for AC5 stimulation but not for interactions with the first 198 aa of AC5NT, which is a G protein scaffolding site. This contrasts with AC6, where the Gβγ hotspot is required for both interactions with AC6NT and for stimulation of AC6. Additionally, the SIGK hotspot peptide disrupts Gβγ regulation of AC isoforms 1, 2, and 6, but not AC5. Gβγ also binds the C1/C2 catalytic domains of AC5 and AC6. Finally, cellular interactions with full-length AC5 depend on multiple sites on Gβγ. This suggests an isoform-specific mechanism in which bound Gβγ at the AC5NT is ideally situated for spatiotemporal control of AC5. We propose Gβγ regulation of AC involves multiple binding events, and the role of the AC NT for mechanisms of regulation by heterotrimeric G protein subunits is isoform-specific.
Collapse
Affiliation(s)
- Cameron S Brand
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas (C.S.B., C.W.D.); Department of Natural Sciences, University of Houston-Downtown, Houston, Texas (R.S.); and Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York (S.M., A.V.S.)
| | - Rachna Sadana
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas (C.S.B., C.W.D.); Department of Natural Sciences, University of Houston-Downtown, Houston, Texas (R.S.); and Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York (S.M., A.V.S.)
| | - Sundeep Malik
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas (C.S.B., C.W.D.); Department of Natural Sciences, University of Houston-Downtown, Houston, Texas (R.S.); and Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York (S.M., A.V.S.)
| | - Alan V Smrcka
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas (C.S.B., C.W.D.); Department of Natural Sciences, University of Houston-Downtown, Houston, Texas (R.S.); and Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York (S.M., A.V.S.)
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas (C.S.B., C.W.D.); Department of Natural Sciences, University of Houston-Downtown, Houston, Texas (R.S.); and Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York (S.M., A.V.S.)
| |
Collapse
|
153
|
Xu L, Choi S, Xie Y, Sze JY. Cell-Autonomous Gβ Signaling Defines Neuron-Specific Steady State Serotonin Synthesis in Caenorhabditis elegans. PLoS Genet 2015; 11:e1005540. [PMID: 26402365 PMCID: PMC4581872 DOI: 10.1371/journal.pgen.1005540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/27/2015] [Indexed: 11/19/2022] Open
Abstract
Heterotrimeric G proteins regulate a vast array of cellular functions via specific intracellular effectors. Accumulating pharmacological and biochemical studies implicate Gβ subunits as signaling molecules interacting directly with a wide range of effectors to modulate downstream cellular responses, in addition to their role in regulating Gα subunit activities. However, the native biological roles of Gβ-mediated signaling pathways in vivo have been characterized only in a few cases. Here, we identified a Gβ GPB-1 signaling pathway operating in specific serotonergic neurons to the define steady state serotonin (5-HT) synthesis, through a genetic screen for 5-HT synthesis mutants in Caenorhabditis elegans. We found that signaling through cell autonomous GPB-1 to the OCR-2 TRPV channel defines the baseline expression of 5-HT synthesis enzyme tryptophan hydroxylase tph-1 in ADF chemosensory neurons. This Gβ signaling pathway is not essential for establishing the serotonergic cell fates and is mechanistically separated from stress-induced tph-1 upregulation. We identified that ADF-produced 5-HT controls specific innate rhythmic behaviors. These results revealed a Gβ-mediated signaling operating in differentiated cells to specify intrinsic functional properties, and indicate that baseline TPH expression is not a default generic serotonergic fate, but is programmed in a cell-specific manner in the mature nervous system. Cell-specific regulation of TPH expression could be a general principle for tailored steady state 5-HT synthesis in functionally distinct neurons and their regulation of innate behavior. Levels of neurotransmitter serotonin synthesis shape disparate behaviors in evolutionary diverse organisms, but the mechanisms defining steady state serotonin synthesis in functionally distinct neuronal types remain unknown. A genetic screen for neuron-specific serotonin synthesis mutants in Caenorhabditis elegans revealed a unique Gβ GPB-1 signaling pathway operating in specific serotonergic neurons to define the baseline expression of serotonin synthesis rate-limiting enzyme tryptophan hydroxylase tph-1. Unlike in canonical heterotrimeric G protein signaling pathways where Gα subunits drive downstream effectors, we found that signaling through Gβ GPB-1 to the OCR-2 TRPV channel defines the baseline tph-1 expression. This Gβ signaling is not required for the establishment or maintenance of the serotonergic cell fates, but dedicated to set steady state 5-HT synthesis in mature neurons. Behavioral analyses showed that 5-HT synthesized in different neurons modulates distinct innate rhythmic behaviors. Our work identified a Gβ-mediated signaling pathway operating in differentiated neuronal cells to specify intrinsic functional diversities, and illuminate a mechanistic principle for genetic programming of neuron-specific steady state 5-HT synthesis in dedicated behavioral circuits.
Collapse
Affiliation(s)
- Lu Xu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sunju Choi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yusu Xie
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ji Ying Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
154
|
Kwan DHT, Wong KM, Chan ASL, Yung LY, Wong YH. An intact helical domain is required for Gα14 to stimulate phospholipase Cβ. BMC STRUCTURAL BIOLOGY 2015; 15:18. [PMID: 26377666 PMCID: PMC4573470 DOI: 10.1186/s12900-015-0043-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/26/2015] [Indexed: 11/17/2022]
Abstract
Background Stimulation of phospholipase Cβ (PLCβ) by the activated α-subunit of Gq (Gαq) constitutes a major signaling pathway for cellular regulation, and structural studies have recently revealed the molecular interactions between PLCβ and Gαq. Yet, most of the PLCβ-interacting residues identified on Gαq are not unique to members of the Gαq family. Molecular modeling predicts that the core PLCβ-interacting residues located on the switch regions of Gαq are similarly positioned in Gαz which does not stimulate PLCβ. Using wild-type and constitutively active chimeras constructed between Gαz and Gα14, a member of the Gαq family, we examined if the PLCβ-interacting residues identified in Gαq are indeed essential. Results Four chimeras with the core PLCβ-interacting residues composed of Gαz sequences were capable of binding PLCβ2 and stimulating the formation of inositol trisphosphate. Surprisingly, all chimeras with a Gαz N-terminal half failed to functionally associate with PLCβ2, despite the fact that many of them contained the core PLCβ-interacting residues from Gα14. Further analyses revealed that the non-PLCβ2 interacting chimeras were capable of interacting with other effector molecules such as adenylyl cyclase and tetratricopeptide repeat 1, indicating that they could adopt a GTP-bound active conformation. Conclusion Collectively, our study suggests that the previously identified PLCβ-interacting residues are insufficient to ensure productive interaction of Gα14 with PLCβ, while an intact N-terminal half of Gα14 is apparently required for PLCβ interaction. Electronic supplementary material The online version of this article (doi:10.1186/s12900-015-0043-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dawna H T Kwan
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Ka M Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Anthony S L Chan
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Lisa Y Yung
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Yung H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. .,State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
155
|
Sun D, Flock T, Deupi X, Maeda S, Matkovic M, Mendieta S, Mayer D, Dawson R, Schertler GFX, Madan Babu M, Veprintsev DB. Probing Gαi1 protein activation at single-amino acid resolution. Nat Struct Mol Biol 2015; 22:686-694. [PMID: 26258638 PMCID: PMC4876908 DOI: 10.1038/nsmb.3070] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/17/2015] [Indexed: 11/08/2022]
Abstract
We present comprehensive maps at single-amino acid resolution of the residues stabilizing the human Gαi1 subunit in nucleotide- and receptor-bound states. We generated these maps by measuring the effects of alanine mutations on the stability of Gαi1 and the rhodopsin-Gαi1 complex. We identified stabilization clusters in the GTPase and helical domains responsible for structural integrity and the conformational changes associated with activation. In activation cluster I, helices α1 and α5 pack against strands β1-β3 to stabilize the nucleotide-bound states. In the receptor-bound state, these interactions are replaced by interactions between α5 and strands β4-β6. Key residues in this cluster are Y320, which is crucial for the stabilization of the receptor-bound state, and F336, which stabilizes nucleotide-bound states. Destabilization of helix α1, caused by rearrangement of this activation cluster, leads to the weakening of the interdomain interface and release of GDP.
Collapse
Affiliation(s)
- Dawei Sun
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Tilman Flock
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Xavier Deupi
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Condensed Matter Theory Group, Paul Scherrer Institut, Villigen, Switzerland
| | - Shoji Maeda
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Milos Matkovic
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Sandro Mendieta
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Daniel Mayer
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Roger Dawson
- F. Hoffmann-La Roche AG, Pharma Research & Early Development, Discovery Technologies, Basel, Switzerland
| | - Gebhard F X Schertler
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - M Madan Babu
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Dmitry B Veprintsev
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
156
|
Álvarez R, López DJ, Casas J, Lladó V, Higuera M, Nagy T, Barceló M, Busquets X, Escribá PV. G protein-membrane interactions I: Gαi1 myristoyl and palmitoyl modifications in protein-lipid interactions and its implications in membrane microdomain localization. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1511-20. [PMID: 26253820 DOI: 10.1016/j.bbalip.2015.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 07/10/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022]
Abstract
G proteins are fundamental elements in signal transduction involved in key cell responses, and their interactions with cell membrane lipids are critical events whose nature is not fully understood. Here, we have studied how the presence of myristic and palmitic acid moieties affects the interaction of the Gαi1 protein with model and biological membranes. For this purpose, we quantified the binding of purified Gαi1 protein and Gαi1 protein acylation mutants to model membranes, with lipid compositions that resemble different membrane microdomains. We observed that myristic and palmitic acids not only act as membrane anchors but also regulate Gαi1 subunit interaction with lipids characteristics of certain membrane microdomains. Thus, when the Gαi1 subunit contains both fatty acids it prefers raft-like lamellar membranes, with a high sphingomyelin and cholesterol content and little phosphatidylserine and phosphatidylethanolamine. By contrast, the myristoylated and non-palmitoylated Gαi1 subunit prefers other types of ordered lipid microdomains with higher phosphatidylserine content. These results in part explain the mobility of Gαi1 protein upon reversible palmitoylation to meet one or another type of signaling protein partner. These results also serve as an example of how membrane lipid alterations can change membrane signaling or how membrane lipid therapy can regulate the cell's physiology.
Collapse
Affiliation(s)
- Rafael Álvarez
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - David J López
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Jesús Casas
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Victoria Lladó
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Mónica Higuera
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Tünde Nagy
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Miquel Barceló
- Bioinorganic and Bioorganic Research Group, Department of Chemistry, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Xavier Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Pablo V Escribá
- Laboratory of Molecular Cell Biomedicine, Department of Biology, IUNICS, University of Islas Baleares, Carretera de Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain.
| |
Collapse
|
157
|
Cellular Protein WDR11 Interacts with Specific Herpes Simplex Virus Proteins at the trans-Golgi Network To Promote Virus Replication. J Virol 2015; 89:9841-52. [PMID: 26178983 DOI: 10.1128/jvi.01705-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/12/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED It has recently been proposed that the herpes simplex virus (HSV) protein ICP0 has cytoplasmic roles in blocking antiviral signaling and in promoting viral replication in addition to its well-known proteasome-dependent functions in the nucleus. However, the mechanisms through which it produces these effects remain unclear. While investigating this further, we identified a novel cytoplasmic interaction between ICP0 and the poorly characterized cellular protein WDR11. During an HSV infection, WDR11 undergoes a dramatic change in localization at late times in the viral replication cycle, moving from defined perinuclear structures to a dispersed cytoplasmic distribution. While this relocation was not observed during infection with viruses other than HSV-1 and correlated with efficient HSV-1 replication, the redistribution was found to occur independently of ICP0 expression, instead requiring viral late gene expression. We demonstrate for the first time that WDR11 is localized to the trans-Golgi network (TGN), where it interacts specifically with some, but not all, HSV virion components, in addition to ICP0. Knockdown of WDR11 in cultured human cells resulted in a modest but consistent decrease in yields of both wild-type and ICP0-null viruses, in the supernatant and cell-associated fractions, without affecting viral gene expression. Although further study is required, we propose that WDR11 participates in viral assembly and/or secondary envelopment. IMPORTANCE While the TGN has been proposed to be the major site of HSV-1 secondary envelopment, this process is incompletely understood, and in particular, the role of cellular TGN components in this pathway is unknown. Additionally, little is known about the cellular functions of WDR11, although the disruption of this protein has been implicated in multiple human diseases. Therefore, our finding that WDR11 is a TGN-resident protein that interacts with specific viral proteins to enhance viral yields improves both our understanding of basic cellular biology as well as how this protein is co-opted by HSV.
Collapse
|
158
|
Dror RO, Mildorf TJ, Hilger D, Manglik A, Borhani DW, Arlow DH, Philippsen A, Villanueva N, Yang Z, Lerch MT, Hubbell WL, Kobilka BK, Sunahara RK, Shaw DE. SIGNAL TRANSDUCTION. Structural basis for nucleotide exchange in heterotrimeric G proteins. Science 2015; 348:1361-5. [PMID: 26089515 DOI: 10.1126/science.aaa5264] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors (GPCRs) relay diverse extracellular signals into cells by catalyzing nucleotide release from heterotrimeric G proteins, but the mechanism underlying this quintessential molecular signaling event has remained unclear. Here we use atomic-level simulations to elucidate the nucleotide-release mechanism. We find that the G protein α subunit Ras and helical domains-previously observed to separate widely upon receptor binding to expose the nucleotide-binding site-separate spontaneously and frequently even in the absence of a receptor. Domain separation is necessary but not sufficient for rapid nucleotide release. Rather, receptors catalyze nucleotide release by favoring an internal structural rearrangement of the Ras domain that weakens its nucleotide affinity. We use double electron-electron resonance spectroscopy and protein engineering to confirm predictions of our computationally determined mechanism.
Collapse
Affiliation(s)
- Ron O Dror
- D. E. Shaw Research, New York, NY 10036, USA.
| | | | - Daniel Hilger
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aashish Manglik
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | - Nicolas Villanueva
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhongyu Yang
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Michael T Lerch
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Wayne L Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roger K Sunahara
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - David E Shaw
- D. E. Shaw Research, New York, NY 10036, USA. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
159
|
Ehlert FJ. Functional studies cast light on receptor states. Trends Pharmacol Sci 2015; 36:596-604. [PMID: 26123416 DOI: 10.1016/j.tips.2015.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
Abstract
Contemporary analysis of the functional responses of G-protein-coupled receptors (GPCRs) usually addresses drug-receptor interactions from the perspective of the average behavior of the receptor population. This behavior is characterized in terms of observed affinity and efficacy. Efficacy is a measure of how well a drug activates the receptor population and observed affinity a measure of how potently a drug occupies the receptor population. The latter is quantified in terms of the dissociation constant of the ligand-receptor complex. At a deeper level of analysis, drug-receptor interactions are described in terms of ligand affinity constants for active and inactive receptor states. Unlike observed affinity and efficacy, estimates of receptor state affinity constants are unperturbed by G proteins, guanine nucleotides, or other signaling proteins that interact with the receptor. Recent advances in the analysis of the functional responses of GPCRs have enabled the estimation of receptor state affinity constants. These constants provide a more fundamental measure of drug-receptor interactions and are useful in analyzing structure-activity relationships and in quantifying allosterism, biased signaling, and receptor-subtype selectivity.
Collapse
Affiliation(s)
- Frederick J Ehlert
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA 92697-4625, USA.
| |
Collapse
|
160
|
Glaaser IW, Slesinger PA. Structural Insights into GIRK Channel Function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:117-60. [PMID: 26422984 DOI: 10.1016/bs.irn.2015.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
G protein-gated inwardly rectifying potassium (GIRK; Kir3) channels, which are members of the large family of inwardly rectifying potassium channels (Kir1-Kir7), regulate excitability in the heart and brain. GIRK channels are activated following stimulation of G protein-coupled receptors that couple to the G(i/o) (pertussis toxin-sensitive) G proteins. GIRK channels, like all other Kir channels, possess an extrinsic mechanism of inward rectification involving intracellular Mg(2+) and polyamines that occlude the conduction pathway at membrane potentials positive to E(K). In the past 17 years, more than 20 high-resolution atomic structures containing GIRK channel cytoplasmic domains and transmembrane domains have been solved. These structures have provided valuable insights into the structural determinants of many of the properties common to all inward rectifiers, such as permeation and rectification, as well as revealing the structural bases for GIRK channel gating. In this chapter, we describe advances in our understanding of GIRK channel function based on recent high-resolution atomic structures of inwardly rectifying K(+) channels discussed in the context of classical structure-function experiments.
Collapse
Affiliation(s)
- Ian W Glaaser
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paul A Slesinger
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
161
|
Knockenhauer KE, Schwartz TU. Structural Characterization of Bardet-Biedl Syndrome 9 Protein (BBS9). J Biol Chem 2015; 290:19569-83. [PMID: 26085087 DOI: 10.1074/jbc.m115.649202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 01/07/2023] Open
Abstract
The Bardet-Biedl syndrome protein complex (BBSome) is an octameric complex that transports membrane proteins into the primary cilium signaling organelle in eukaryotes and is implicated in human disease. Here we have analyzed the 99-kDa human BBS9 protein, one of the eight BBSome components. The protein is composed of four structured domains, including a β-stranded N-terminal domain. The 1.8 Å crystal structure of the 46-kDa N-terminal domain reveals a seven-bladed β-propeller. A structure-based homology search suggests that it functions in protein-protein interactions. We show that the Bardet-Biedl syndrome-causing G141R mutation in BBS9 likely results in misfolding of the β-propeller. Although the C-terminal half of BBS9 dimerizes in solution, the N-terminal domain only does so in the crystal lattice. This C-terminal dimerization interface might be important for the assembly of the BBSome.
Collapse
Affiliation(s)
- Kevin E Knockenhauer
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Thomas U Schwartz
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
162
|
Dewhurst HM, Choudhury S, Torres MP. Structural Analysis of PTM Hotspots (SAPH-ire)--A Quantitative Informatics Method Enabling the Discovery of Novel Regulatory Elements in Protein Families. Mol Cell Proteomics 2015; 14:2285-97. [PMID: 26070665 PMCID: PMC4528253 DOI: 10.1074/mcp.m115.051177] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 11/08/2022] Open
Abstract
Predicting the biological function potential of post-translational modifications (PTMs) is becoming increasingly important in light of the exponential increase in available PTM data from high-throughput proteomics. We developed structural analysis of PTM hotspots (SAPH-ire)—a quantitative PTM ranking method that integrates experimental PTM observations, sequence conservation, protein structure, and interaction data to allow rank order comparisons within or between protein families. Here, we applied SAPH-ire to the study of PTMs in diverse G protein families, a conserved and ubiquitous class of proteins essential for maintenance of intracellular structure (tubulins) and signal transduction (large and small Ras-like G proteins). A total of 1728 experimentally verified PTMs from eight unique G protein families were clustered into 451 unique hotspots, 51 of which have a known and cited biological function or response. Using customized software, the hotspots were analyzed in the context of 598 unique protein structures. By comparing distributions of hotspots with known versus unknown function, we show that SAPH-ire analysis is predictive for PTM biological function. Notably, SAPH-ire revealed high-ranking hotspots for which a functional impact has not yet been determined, including phosphorylation hotspots in the N-terminal tails of G protein gamma subunits—conserved protein structures never before reported as regulators of G protein coupled receptor signaling. To validate this prediction we used the yeast model system for G protein coupled receptor signaling, revealing that gamma subunit–N-terminal tail phosphorylation is activated in response to G protein coupled receptor stimulation and regulates protein stability in vivo. These results demonstrate the utility of integrating protein structural and sequence features into PTM prioritization schemes that can improve the analysis and functional power of modification-specific proteomics data.
Collapse
Affiliation(s)
- Henry M Dewhurst
- From the ‡Georgia Institute of Technology; School of Biology; 310 Ferst Drive; Atlanta, Georgia 30332
| | - Shilpa Choudhury
- From the ‡Georgia Institute of Technology; School of Biology; 310 Ferst Drive; Atlanta, Georgia 30332
| | - Matthew P Torres
- From the ‡Georgia Institute of Technology; School of Biology; 310 Ferst Drive; Atlanta, Georgia 30332
| |
Collapse
|
163
|
Schröter G, Mann D, Kötting C, Gerwert K. Integration of Fourier Transform Infrared Spectroscopy, Fluorescence Spectroscopy, Steady-state Kinetics and Molecular Dynamics Simulations of Gαi1 Distinguishes between the GTP Hydrolysis and GDP Release Mechanism. J Biol Chem 2015; 290:17085-95. [PMID: 25979337 DOI: 10.1074/jbc.m115.651190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Indexed: 11/06/2022] Open
Abstract
Gα subunits are central molecular switches in cells. They are activated by G protein-coupled receptors that exchange GDP for GTP, similar to small GTPase activation mechanisms. Gα subunits are turned off by GTP hydrolysis. For the first time we employed time-resolved FTIR difference spectroscopy to investigate the molecular reaction mechanisms of Gαi1. FTIR spectroscopy is a powerful tool that monitors reactions label free with high spatio-temporal resolution. In contrast to common multiple turnover assays, FTIR spectroscopy depicts the single turnover GTPase reaction without nucleotide exchange/Mg(2+) binding bias. Global fit analysis resulted in one apparent rate constant of 0.02 s(-1) at 15 °C. Isotopic labeling was applied to assign the individual phosphate vibrations for α-, β-, and γ-GTP (1243, 1224, and 1156 cm(-1), respectively), α- and β-GDP (1214 and 1134/1103 cm(-1), respectively), and free phosphate (1078/991 cm(-1)). In contrast to Ras · GAP catalysis, the bond breakage of the β-γ-phosphate but not the Pi release is rate-limiting in the GTPase reaction. Complementary common GTPase assays were used. Reversed phase HPLC provided multiple turnover rates and tryptophan fluorescence provided nucleotide exchange rates. Experiments were complemented by molecular dynamics simulations. This broad approach provided detailed insights at atomic resolution and allows now to identify key residues of Gαi1 in GTP hydrolysis and nucleotide exchange. Mutants of the intrinsic arginine finger (Gαi1-R178S) affected exclusively the hydrolysis reaction. The effect of nucleotide binding (Gαi1-D272N) and Ras-like/all-α interface coordination (Gαi1-D229N/Gαi1-D231N) on the nucleotide exchange reaction was furthermore elucidated.
Collapse
Affiliation(s)
- Grit Schröter
- From the Biophysics Department, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Daniel Mann
- From the Biophysics Department, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Carsten Kötting
- From the Biophysics Department, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Klaus Gerwert
- From the Biophysics Department, Ruhr-University Bochum, 44801 Bochum, Germany
| |
Collapse
|
164
|
Duc NM, Kim HR, Chung KY. Structural mechanism of G protein activation by G protein-coupled receptor. Eur J Pharmacol 2015; 763:214-22. [PMID: 25981300 DOI: 10.1016/j.ejphar.2015.05.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/03/2015] [Accepted: 05/11/2015] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are a family of membrane receptors that regulate physiology and pathology of various organs. Consequently, about 40% of drugs in the market targets GPCRs. Heterotrimeric G proteins are composed of α, β, and γ subunits, and act as the key downstream signaling molecules of GPCRs. The structural mechanism of G protein activation by GPCRs has been of a great interest, and a number of biochemical and biophysical studies have been performed since the late 80's. These studies investigated the interface between GPCR and G proteins and the structural mechanism of GPCR-induced G protein activation. Recently, arrestins are also reported to be important molecular switches in GPCR-mediated signal transduction, and the physiological output of arrestin-mediated signal transduction is different from that of G protein-mediated signal transduction. Understanding the structural mechanism of the activation of G proteins and arrestins would provide fundamental information for the downstream signaling-selective GPCR-targeting drug development. This review will discuss the structural mechanism of GPCR-induced G protein activation by comparing previous biochemical and biophysical studies.
Collapse
Affiliation(s)
- Nguyen Minh Duc
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Hee Ryung Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea.
| |
Collapse
|
165
|
Saitsu H, Fukai R, Ben-Zeev B, Sakai Y, Mimaki M, Okamoto N, Suzuki Y, Monden Y, Saito H, Tziperman B, Torio M, Akamine S, Takahashi N, Osaka H, Yamagata T, Nakamura K, Tsurusaki Y, Nakashima M, Miyake N, Shiina M, Ogata K, Matsumoto N. Phenotypic spectrum of GNAO1 variants: epileptic encephalopathy to involuntary movements with severe developmental delay. Eur J Hum Genet 2015; 24:129-34. [PMID: 25966631 DOI: 10.1038/ejhg.2015.92] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/24/2015] [Accepted: 04/14/2015] [Indexed: 12/11/2022] Open
Abstract
De novo GNAO1 variants have been found in four patients including three patients with Ohtahara syndrome and one patient with childhood epilepsy. In addition, two patients showed involuntary movements, suggesting that GNAO1 variants can cause various neurological phenotypes. Here we report an additional four patients with de novo missense GNAO1 variants, one of which was identical to that of the previously reported. All the three novel variants were predicted to impair Gαo function by structural evaluation. Two patients showed early-onset epileptic encephalopathy, presenting with migrating or multifocal partial seizures in their clinical course, but the remaining two patients showed no or a few seizures. All the four patients showed severe intellectual disability, motor developmental delay, and involuntary movements. Progressive cerebral atrophy and thin corpus callosum were common features in brain images. Our study demonstrated that GNAO1 variants can cause involuntary movements and severe developmental delay with/without seizures, including various types of early-onset epileptic encephalopathy.
Collapse
Affiliation(s)
- Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryoko Fukai
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Bruria Ben-Zeev
- The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel aviv, Israel
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Yasuhiro Suzuki
- Department of Pediatric Neurology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Yukifumi Monden
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Hiroshi Saito
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Barak Tziperman
- The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Michiko Torio
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Akamine
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | | | - Kazuyuki Nakamura
- Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yoshinori Tsurusaki
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masaaki Shiina
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
166
|
Bajusz I, Sipos L, Pirity MK. Nucleotide substitutions revealing specific functions of Polycomb group genes. Mol Genet Metab 2015; 114:547-56. [PMID: 25669595 DOI: 10.1016/j.ymgme.2015.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 01/22/2023]
Abstract
POLYCOMB group (PCG) proteins belong to the family of epigenetic regulators of genes playing important roles in differentiation and development. Mutants of PcG genes were isolated first in the fruit fly, Drosophila melanogaster, resulting in spectacular segmental transformations due to the ectopic expression of homeotic genes. Homologs of Drosophila PcG genes were also identified in plants and in vertebrates and subsequent experiments revealed the general role of PCG proteins in the maintenance of the repressed state of chromatin through cell divisions. The past decades of gene targeting experiments have allowed us to make significant strides towards understanding how the network of PCG proteins influences multiple aspects of cellular fate determination during development. Being involved in the transmission of specific expression profiles of different cell lineages, PCG proteins were found to control wide spectra of unrelated epigenetic processes in vertebrates, such as stem cell plasticity and renewal, genomic imprinting and inactivation of X-chromosome. PCG proteins also affect regulation of metabolic genes being important for switching programs between pluripotency and differentiation. Insight into the precise roles of PCG proteins in normal physiological processes has emerged from studies employing cell culture-based systems and genetically modified animals. Here we summarize the findings obtained from PcG mutant fruit flies and mice generated to date with a focus on PRC1 and PRC2 members altered by nucleotide substitutions resulting in specific alleles. We also include a compilation of lessons learned from these models about the in vivo functions of this complex protein family. With multiple knockout lines, sophisticated approaches to study the consequences of peculiar missense point mutations, and insights from complementary gain-of-function systems in hand, we are now in a unique position to significantly advance our understanding of the molecular basis of in vivo functions of PcG proteins.
Collapse
Affiliation(s)
- Izabella Bajusz
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, H-6701 Szeged, Hungary.
| | - László Sipos
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, H-6701 Szeged, Hungary
| | - Melinda K Pirity
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, H-6701 Szeged, Hungary
| |
Collapse
|
167
|
A mutational analysis of residues in cholera toxin A1 necessary for interaction with its substrate, the stimulatory G protein Gsα. Toxins (Basel) 2015; 7:919-35. [PMID: 25793724 PMCID: PMC4379533 DOI: 10.3390/toxins7030919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 01/10/2023] Open
Abstract
Pathogenesis of cholera diarrhea requires cholera toxin (CT)-mediated adenosine diphosphate (ADP)-ribosylation of stimulatory G protein (Gsα) in enterocytes. CT is an AB5 toxin with an inactive CTA1 domain linked via CTA2 to a pentameric receptor-binding B subunit. Allosterically activated CTA1 fragment in complex with NAD+ and GTP-bound ADP-ribosylation factor 6 (ARF6-GTP) differs conformationally from the CTA1 domain in holotoxin. A surface-exposed knob and a short α-helix (formed, respectively, by rearranging “active-site” and “activation” loops in inactive CTA1) and an ADP ribosylating turn-turn (ARTT) motif, all located near the CTA1 catalytic site, were evaluated for possible roles in recognizing Gsα. CT variants with one, two or three alanine substitutions at surface-exposed residues within these CTA1 motifs were tested for assembly into holotoxin and ADP-ribosylating activity against Gsα and diethylamino-(benzylidineamino)-guanidine (DEABAG), a small substrate predicted to fit into the CTA1 active site). Variants with single alanine substitutions at H55, R67, L71, S78, or D109 had nearly wild-type activity with DEABAG but significantly decreased activity with Gsα, suggesting that the corresponding residues in native CTA1 participate in recognizing Gsα. As several variants with multiple substitutions at these positions retained partial activity against Gsα, other residues in CTA1 likely also participate in recognizing Gsα.
Collapse
|
168
|
Papasergi MM, Patel BR, Tall GG. The G protein α chaperone Ric-8 as a potential therapeutic target. Mol Pharmacol 2015; 87:52-63. [PMID: 25319541 PMCID: PMC4279082 DOI: 10.1124/mol.114.094664] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/14/2014] [Indexed: 02/06/2023] Open
Abstract
Resistance to inhibitors of cholinesterase (Ric-8)A and Ric-8B are essential genes that encode positive regulators of heterotrimeric G protein α subunits. Controversy persists surrounding the precise way(s) that Ric-8 proteins affect G protein biology and signaling. Ric-8 proteins chaperone nucleotide-free Gα-subunit states during biosynthetic protein folding prior to G protein heterotrimer assembly. In organisms spanning the evolutionary window of Ric-8 expression, experimental perturbation of Ric-8 genes results in reduced functional abundances of G proteins because G protein α subunits are misfolded and degraded rapidly. Ric-8 proteins also act as Gα-subunit guanine nucleotide exchange factors (GEFs) in vitro. However, Ric-8 GEF activity could strictly be an in vitro phenomenon stemming from the ability of Ric-8 to induce partial Gα unfolding, thereby enhancing GDP release. Ric-8 GEF activity clearly differs from the GEF activity of G protein-coupled receptors (GPCRs). G protein βγ is inhibitory to Ric-8 action but obligate for receptors. It remains an open question whether Ric-8 has dual functions in cells and regulates G proteins as both a molecular chaperone and GEF. Clearly, Ric-8 has a profound influence on heterotrimeric G protein function. For this reason, we propose that Ric-8 proteins are as yet untested therapeutic targets in which pharmacological inhibition of the Ric-8/Gα protein-protein interface could serve to attenuate the effects of disease-causing G proteins (constitutively active mutants) and/or GPCR signaling. This minireview will chronicle the understanding of Ric-8 function, provide a comparative discussion of the Ric-8 molecular chaperoning and GEF activities, and support the case for why Ric-8 proteins should be considered potential targets for development of new therapies.
Collapse
Affiliation(s)
- Makaía M Papasergi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Bharti R Patel
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Gregory G Tall
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
169
|
Yoda A, Adelmant G, Tamburini J, Chapuy B, Shindoh N, Yoda Y, Weigert O, Kopp N, Wu SC, Kim SS, Liu H, Tivey T, Christie AL, Elpek KG, Card J, Gritsman K, Gotlib J, Deininger MW, Makishima H, Turley SJ, Javidi-Sharifi N, Maciejewski JP, Jaiswal S, Ebert BL, Rodig SJ, Tyner JW, Marto JA, Weinstock DM, Lane AA. Mutations in G protein β subunits promote transformation and kinase inhibitor resistance. Nat Med 2014; 21:71-5. [PMID: 25485910 PMCID: PMC4289115 DOI: 10.1038/nm.3751] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/17/2014] [Indexed: 12/18/2022]
Abstract
Activating mutations in genes encoding G protein α (Gα) subunits occur in 4-5% of all human cancers, but oncogenic alterations in Gβ subunits have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors and disrupt Gα interactions with the Gβγ dimer. Different mutations in Gβ proteins clustered partly on the basis of lineage; for example, all 11 GNB1 K57 mutations were in myeloid neoplasms, and seven of eight GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 variants in Cdkn2a-deficient mouse bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K-mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, mutations in the gene encoding GNB1 co-occurred with oncogenic kinase alterations, including the BCR-ABL fusion protein, the V617F substitution in JAK2 and the V600K substitution in BRAF. Coexpression of patient-derived GNB1 variants with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 alterations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling.
Collapse
Affiliation(s)
- Akinori Yoda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Guillaume Adelmant
- 1] Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA. [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jerome Tamburini
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Bjoern Chapuy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Nobuaki Shindoh
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA. [2] Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Yuka Yoda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Oliver Weigert
- Department of Medicine III, Campus Grosshadern, Ludwig-Maximilians-University, and Helmholtz Center, Munich, Germany
| | - Nadja Kopp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Shuo-Chieh Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Sunhee S Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Huiyun Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Trevor Tivey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda L Christie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kutlu G Elpek
- 1] Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA. [2] Jounce Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Joseph Card
- Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kira Gritsman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason Gotlib
- Division of Hematology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Michael W Deininger
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, The University of Utah, Salt Lake City, Utah, USA
| | - Hideki Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shannon J Turley
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathalie Javidi-Sharifi
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Siddhartha Jaiswal
- 1] Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Division of Hematology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Benjamin L Ebert
- 1] Division of Hematology, Brigham and Women's Hospital, Boston, Massachusetts, USA. [2] Broad Institute, Cambridge, Massachusetts, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jeffrey W Tyner
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Knight Cancer Institute, Portland, Oregon, USA
| | - Jarrod A Marto
- 1] Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA. [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - David M Weinstock
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA. [2] Broad Institute, Cambridge, Massachusetts, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
170
|
Miyata Y, Shibata T, Aoshima M, Tsubata T, Nishida E. The molecular chaperone TRiC/CCT binds to the Trp-Asp 40 (WD40) repeat protein WDR68 and promotes its folding, protein kinase DYRK1A binding, and nuclear accumulation. J Biol Chem 2014; 289:33320-32. [PMID: 25342745 PMCID: PMC4246089 DOI: 10.1074/jbc.m114.586115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/18/2014] [Indexed: 11/06/2022] Open
Abstract
Trp-Asp (WD) repeat protein 68 (WDR68) is an evolutionarily conserved WD40 repeat protein that binds to several proteins, including dual specificity tyrosine phosphorylation-regulated protein kinase (DYRK1A), MAPK/ERK kinase kinase 1 (MEKK1), and Cullin4-damage-specific DNA-binding protein 1 (CUL4-DDB1). WDR68 affects multiple and diverse physiological functions, such as controlling anthocyanin synthesis in plants, tissue growth in insects, and craniofacial development in vertebrates. However, the biochemical basis and the regulatory mechanism of WDR68 activity remain largely unknown. To better understand the cellular function of WDR68, here we have isolated and identified cellular WDR68 binding partners using a phosphoproteomic approach. More than 200 cellular proteins with wide varieties of biochemical functions were identified as WDR68-binding protein candidates. Eight T-complex protein 1 (TCP1) subunits comprising the molecular chaperone TCP1 ring complex/chaperonin-containing TCP1 (TRiC/CCT) were identified as major WDR68-binding proteins, and phosphorylation sites in both WDR68 and TRiC/CCT were identified. Co-immunoprecipitation experiments confirmed the binding between TRiC/CCT and WDR68. Computer-aided structural analysis suggested that WDR68 forms a seven-bladed β-propeller ring. Experiments with a series of deletion mutants in combination with the structural modeling showed that three of the seven β-propeller blades of WDR68 are essential and sufficient for TRiC/CCT binding. Knockdown of cellular TRiC/CCT by siRNA caused an abnormal WDR68 structure and led to reduction of its DYRK1A-binding activity. Concomitantly, nuclear accumulation of WDR68 was suppressed by the knockdown of TRiC/CCT, and WDR68 formed cellular aggregates when overexpressed in the TRiC/CCT-deficient cells. Altogether, our results demonstrate that the molecular chaperone TRiC/CCT is essential for correct protein folding, DYRK1A binding, and nuclear accumulation of WDR68.
Collapse
Affiliation(s)
- Yoshihiko Miyata
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan and
| | | | | | | | - Eisuke Nishida
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan and
| |
Collapse
|
171
|
Huang J, Sun Y, Zhang JJ, Huang XY. Pivotal role of extended linker 2 in the activation of Gα by G protein-coupled receptor. J Biol Chem 2014; 290:272-83. [PMID: 25414258 DOI: 10.1074/jbc.m114.608661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors (GPCRs) relay extracellular signals mainly to heterotrimeric G-proteins (Gαβγ) and they are the most successful drug targets. The mechanisms of G-protein activation by GPCRs are not well understood. Previous studies have revealed a signal relay route from a GPCR via the C-terminal α5-helix of Gα to the guanine nucleotide-binding pocket. Recent structural and biophysical studies uncover a role for the opening or rotating of the α-helical domain of Gα during the activation of Gα by a GPCR. Here we show that β-adrenergic receptors activate eight Gαs mutant proteins (from a screen of 66 Gαs mutants) that are unable to bind Gβγ subunits in cells. Five of these eight mutants are in the αF/Linker 2/β2 hinge region (extended Linker 2) that connects the Ras-like GTPase domain and the α-helical domain of Gαs. This extended Linker 2 is the target site of a natural product inhibitor of Gq. Our data show that the extended Linker 2 is critical for Gα activation by GPCRs. We propose that a GPCR via its intracellular loop 2 directly interacts with the β2/β3 loop of Gα to communicate to Linker 2, resulting in the opening and closing of the α-helical domain and the release of GDP during G-protein activation.
Collapse
Affiliation(s)
- Jianyun Huang
- From the Department of Physiology, Cornell University Weill Medical College, New York, New York 10065
| | - Yutong Sun
- From the Department of Physiology, Cornell University Weill Medical College, New York, New York 10065
| | - J Jillian Zhang
- From the Department of Physiology, Cornell University Weill Medical College, New York, New York 10065
| | - Xin-Yun Huang
- From the Department of Physiology, Cornell University Weill Medical College, New York, New York 10065
| |
Collapse
|
172
|
Stein RSL, Ehlert FJ. A kinetic model of GPCRs: analysis of G protein activity, occupancy, coupling and receptor-state affinity constants. J Recept Signal Transduct Res 2014; 35:269-83. [PMID: 25353707 DOI: 10.3109/10799893.2014.975250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT G protein-coupled receptors are vital macromolecules for a wide variety of physiological processes. Upon agonist binding, these receptors accelerate the exchange of GDP for GTP in G proteins coupled to them. The activated G protein interacts with effector proteins to implement downstream biological functions. OBJECTIVE We present a kinetic, quaternary complex model, based on a system of coupled linear first-order differential equations, which accounts for the binding attributes of the ligand, receptor, G protein and two types of guanine nucleotide (GDP and GTP) as well as for GTPase activity. METHODS We solved the model numerically to predict the extents of G protein activation, receptor occupancy by ligand and receptor coupling that result from varying the ligand concentration, presence of GDP and/or GTP, the ratio of G protein to receptor and the equilibrium constants governing receptor pre-coupling and constitutive activity. We also simulated responses downstream from G protein activation using a transducer function. RESULTS Our model shows that agonist-induced G protein activation can occur with either a net decrease or increase in total receptor-G protein coupling. In addition, we demonstrate that affinity constants of the ligand for both the active and inactive states of the receptor can be derived to a close approximation from analysis of simulated responses downstream from receptor activation. DISCUSSION AND CONCLUSION The latter result validates our prior methods for estimating the active state affinity constants of ligands, and our results on receptor coupling have relevance to studies investigating receptor-G protein interactions using fluorescence techniques.
Collapse
Affiliation(s)
- Richard S L Stein
- a Department of Pharmacology, School of Medicine , University of California , Irvine , CA , USA
| | - Frederick J Ehlert
- a Department of Pharmacology, School of Medicine , University of California , Irvine , CA , USA
| |
Collapse
|
173
|
Biophysical highlights from 54 years of macromolecular crystallography. Biophys J 2014; 106:510-25. [PMID: 24507592 DOI: 10.1016/j.bpj.2014.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 01/03/2014] [Indexed: 12/22/2022] Open
Abstract
The United Nations has declared 2014 the International Year of Crystallography, and in commemoration, this review features a selection of 54 notable macromolecular crystal structures that have illuminated the field of biophysics in the 54 years since the first excitement of the myoglobin and hemoglobin structures in 1960. Chronological by publication of the earliest solved structure, each illustrated entry briefly describes key concepts or methods new at the time and key later work leveraged by knowledge of the three-dimensional atomic structure.
Collapse
|
174
|
Salamun J, Kallio JP, Daher W, Soldati-Favre D, Kursula I. Structure of Toxoplasma gondii coronin, an actin-binding protein that relocalizes to the posterior pole of invasive parasites and contributes to invasion and egress. FASEB J 2014; 28:4729-47. [PMID: 25114175 DOI: 10.1096/fj.14-252569] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coronins are involved in the regulation of actin dynamics in a multifaceted way, participating in cell migration and vesicular trafficking. Apicomplexan parasites, which exhibit an actin-dependent gliding motility that is essential for traversal through tissues, as well as invasion of and egress from host cells, express only a single coronin, whereas higher eukaryotes possess several isoforms. We set out to characterize the 3-D structure, biochemical function, subcellular localization, and genetic ablation of Toxoplasma gondii coronin (TgCOR), to shed light on its biological role. A combination of X-ray crystallography, small-angle scattering of X-rays, and light scattering revealed the atomic structure of the conserved WD40 domain and the dimeric arrangement of the full-length protein. TgCOR binds to F-actin and increases the rate and extent of actin polymerization. In vivo, TgCOR relocalizes transiently to the posterior pole of motile and invading parasites, independent of actin dynamics, but concomitant to microneme secretory organelle discharge. TgCOR contributes to, but is not essential for, invasion and egress. Taken together, our data point toward a role for TgCOR in stabilizing newly formed, short filaments and F-actin cross-linking, as well as functions linked to endocytosis and recycling of membranes.
Collapse
Affiliation(s)
- Julien Salamun
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Juha P Kallio
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research and German Electron Synchrotron (DESY), Hamburg, Germany; and
| | - Wassim Daher
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland;
| | - Inari Kursula
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research and German Electron Synchrotron (DESY), Hamburg, Germany; and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
175
|
Omosigho NN, Swaminathan K, Plomann M, Müller-Taubenberger A, Noegel AA, Riyahi TY. The Dictyostelium discoideum RACK1 orthologue has roles in growth and development. Cell Commun Signal 2014; 12:37. [PMID: 24930026 PMCID: PMC4094278 DOI: 10.1186/1478-811x-12-37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/06/2014] [Indexed: 12/19/2022] Open
Abstract
Background The receptor for activated C-kinase 1 (RACK1) is a conserved protein belonging to the WD40 repeat family of proteins. It folds into a beta propeller with seven blades which allow interactions with many proteins. Thus it can serve as a scaffolding protein and have roles in several cellular processes. Results We identified the product of the Dictyostelium discoideum gpbB gene as the Dictyostelium RACK1 homolog. The protein is mainly cytosolic but can also associate with cellular membranes. DdRACK1 binds to phosphoinositides (PIPs) in protein-lipid overlay and liposome-binding assays. The basis of this activity resides in a basic region located in the extended loop between blades 6 and 7 as revealed by mutational analysis. Similar to RACK1 proteins from other organisms DdRACK1 interacts with G protein subunits alpha, beta and gamma as shown by yeast two-hybrid, pulldown, and immunoprecipitation assays. Unlike the Saccharomyces cerevisiae and Cryptococcus neoformans RACK1 proteins it does not appear to take over Gβ function in D. discoideum as developmental and other defects were not rescued in Gβ null mutants overexpressing GFP-DdRACK1. Overexpression of GFP-tagged DdRACK1 and a mutant version (DdRACK1mut) which carried a charge-reversal mutation in the basic region in wild type cells led to changes during growth and development. Conclusion DdRACK1 interacts with heterotrimeric G proteins and can through these interactions impact on processes specifically regulated by these proteins.
Collapse
Affiliation(s)
| | | | | | | | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Köln, Germany.
| | | |
Collapse
|
176
|
What ligand-gated ion channels can tell us about the allosteric regulation of G protein-coupled receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 115:291-347. [PMID: 23415097 DOI: 10.1016/b978-0-12-394587-7.00007-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The GABA(A) receptor is the target for a number of important allosteric drugs used in medicine, including benzodiazepines and anesthetics. These modulators have variable effects on the potency and maximal response of macroscopic currents elicited by different GABA(A) receptor agonists, yet this modulation is consistent with a two-state model in which the allosteric ligand has invariant affinity constants for the active and inactive states. Analysis of the effects of an allosteric agonist, like etomidate, on the population current provides a means of estimating the gating constant of the unliganded GABA(A) receptor (∼10(-4)). In contrast, allosteric interactions at the M(2) muscarinic receptor are often inconsistent with a two-state model. Analyzing allosterism within the constraints of a two-state model, nonetheless, provides an unbiased measure of probe dependence as well as clues to the mechanism of allosteric modulation. The rather simple allosteric effect of affinity-only modulation is difficult to explain and suggests modulation of a peripheral orthosteric ligand-docking site on the M(2) muscarinic receptor.
Collapse
|
177
|
Mnpotra JS, Qiao Z, Cai J, Lynch DL, Grossfield A, Leioatts N, Hurst DP, Pitman MC, Song ZH, Reggio PH. Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex. J Biol Chem 2014; 289:20259-72. [PMID: 24855641 DOI: 10.1074/jbc.m113.539916] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)-Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins.
Collapse
Affiliation(s)
- Jagjeet S Mnpotra
- From the Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina 27402
| | - Zhuanhong Qiao
- the Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky 40292
| | - Jian Cai
- the Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky 40292
| | - Diane L Lynch
- From the Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina 27402
| | - Alan Grossfield
- the Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Nicholas Leioatts
- the Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, and
| | - Dow P Hurst
- From the Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina 27402
| | - Michael C Pitman
- From the Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina 27402, the Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
| | - Zhao-Hui Song
- the Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky 40292,
| | - Patricia H Reggio
- From the Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina 27402,
| |
Collapse
|
178
|
Villamil MA, Liang Q, Zhuang Z. The WD40-repeat protein-containing deubiquitinase complex: catalysis, regulation, and potential for therapeutic intervention. Cell Biochem Biophys 2014; 67:111-26. [PMID: 23797609 DOI: 10.1007/s12013-013-9637-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ubiquitination has emerged as an essential signaling mechanism in eukaryotes. Deubiquitinases (DUBs) counteract the activities of the ubiquitination machinery and provide another level of control in cellular ubiquitination. Not surprisingly, DUBs are subjected to stringent regulations. Besides regulation by the noncatalytic domains present in the DUB sequences, DUB-interacting proteins are increasingly realized as essential regulators for DUB activity and function. This review focuses on DUBs that are associated with WD40-repeat proteins. Many human ubiquitin-specific proteases (USPs) were found to interact with WD40-repeat proteins, but little is known as to how this interaction regulates the activity and function of USPs. In recent years, significant progress has been made in understanding a prototypical WD40-repeat protein-containing DUB complex that comprises USP1 and USP1-associated factor 1 (UAF1). It has been shown that UAF1 activates USP1 through a potential active-site modulation, and the complex formation between USP1 and UAF1 is regulated by serine phosphorylation. Recently, human USPs have been recognized as a promising target class for inhibitor discovery. Small molecule inhibitors targeting several human USPs have been reported. USP1 is involved in two major DNA damage response pathways, DNA translesion synthesis and the Fanconi anemia pathway. Inhibiting the USP1/UAF1 deubiquitinase complex represents a new strategy to potentiate cancer cells to DNA-crosslinking agents and to overcome resistance that has plagued clinical cancer chemotherapy. The progress in inhibitor discovery against USPs and the WD40-repeat protein-containing USP complex will be discussed.
Collapse
Affiliation(s)
- Mark A Villamil
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, DE 19716, USA
| | | | | |
Collapse
|
179
|
Januschke J, Näthke I. Stem cell decisions: a twist of fate or a niche market? Semin Cell Dev Biol 2014; 34:116-23. [PMID: 24613913 PMCID: PMC4169664 DOI: 10.1016/j.semcdb.2014.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 12/28/2022]
Abstract
Extrinsic and intrinsic cues that impact on stem cell biology. The importance to establish methods that allow to compare spindle orientation measurements. Mechanisms of centrosome segregation in asymmetrically dividing cells.
Establishing and maintaining cell fate in the right place at the right time is a key requirement for normal tissue maintenance. Stem cells are at the core of this process. Understanding how stem cells balance self-renewal and production of differentiating cells is key for understanding the defects that underpin many diseases. Both, external cues from the environment and cell intrinsic mechanisms can control the outcome of stem cell division. The role of the orientation of stem cell division has emerged as an important mechanism for specifying cell fate decisions. Although, the alignment of cell divisions can dependent on spatial cues from the environment, maintaining stemness is not always linked to positioning of stem cells in a particular microenvironment or `niche'. Alternate mechanisms that could contribute to cellular memory include differential segregation of centrosomes in asymmetrically dividing cells.
Collapse
Affiliation(s)
- Jens Januschke
- Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - Inke Näthke
- Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
180
|
Thaker TM, Sarwar M, Preininger AM, Hamm HE, Iverson TM. A transient interaction between the phosphate binding loop and switch I contributes to the allosteric network between receptor and nucleotide in Gαi1. J Biol Chem 2014; 289:11331-11341. [PMID: 24596087 DOI: 10.1074/jbc.m113.539064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor-mediated activation of the Gα subunit of heterotrimeric G proteins requires allosteric communication between the receptor binding site and the guanine nucleotide binding site, which are separated by >30 Å. Structural changes in the allosteric network connecting these sites are predicted to be transient in the wild-type Gα subunit, making studies of these connections challenging. In the current work, site-directed mutants that alter the energy barriers between the activation states are used as tools to better understand the transient features of allosteric signaling in the Gα subunit. The observed differences in relative receptor affinity for intact Gαi1 subunits versus C-terminal Gαi1 peptides harboring the K345L mutation are consistent with this mutation modulating the allosteric network in the protein subunit. Measurement of nucleotide exchange rates, affinity for metarhodopsin II, and thermostability suggest that the K345L Gαi1 variant has reduced stability in both the GDP-bound and nucleotide-free states as compared with wild type but similar stability in the GTPγS-bound state. High resolution x-ray crystal structures reveal conformational changes accompanying the destabilization of the GDP-bound state. Of these, the conformation for Switch I was stabilized by an ionic interaction with the phosphate binding loop. Further site-directed mutagenesis suggests that this interaction between Switch I and the phosphate binding loop is important for receptor-mediated nucleotide exchange in the wild-type Gαi1 subunit.
Collapse
Affiliation(s)
- Tarjani M Thaker
- Department of Biochemistry and Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Maruf Sarwar
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Anita M Preininger
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232.
| | - T M Iverson
- Department of Biochemistry and Vanderbilt University Medical Center, Nashville, Tennessee 37232; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232.
| |
Collapse
|
181
|
Kashiwagi K, Ito T, Yokoyama S. Crystal structure of the eukaryotic translation initiation factor 2A from Schizosaccharomyces pombe. ACTA ACUST UNITED AC 2014; 15:125-30. [PMID: 24569939 PMCID: PMC4125824 DOI: 10.1007/s10969-014-9177-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/17/2014] [Indexed: 11/25/2022]
Abstract
The eukaryotic translation initiation factor 2A (eIF2A) was identified as a factor that stimulates the binding of methionylated initiator tRNA (Met-tRNAiMet) to the 40S ribosomal subunit, but its physiological role remains poorly defined. Recently, eIF2A was shown to be involved in unconventional translation initiation from CUG codons and in viral protein synthesis under stress conditions where eIF2 is inactivated. We determined the crystal structure of the WD-repeat domain of Schizosaccharomyces pombe eIF2A at 2.5 Å resolution. The structure adopts a novel nine-bladed β-propeller fold. In contrast to the usual β-propeller proteins, the central channel of the molecule has the narrower opening on the bottom of the protein and the wider opening on the top. Highly conserved residues are concentrated in the positively-charged top face, suggesting the importance of this face for interactions with nucleic acids or other initiation factors.
Collapse
Affiliation(s)
- Kazuhiro Kashiwagi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045 Japan
| | - Takuhiro Ito
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045 Japan
- RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045 Japan
| | - Shigeyuki Yokoyama
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045 Japan
| |
Collapse
|
182
|
Ehlert FJ, Griffin MT. Estimation of ligand affinity constants for receptor states in functional studies involving the allosteric modulation of G protein-coupled receptors: implications for ligand bias. J Pharmacol Toxicol Methods 2014; 69:253-79. [PMID: 24434717 DOI: 10.1016/j.vascn.2014.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/05/2013] [Accepted: 01/02/2014] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The affinity constants of a ligand for active and inactive states of a receptor ultimately determine its capacity to activate downstream signaling events. In this report, we describe a reverse-engineering strategy for estimating these microscopic constants. METHODS Our approach involves analyzing responses measured downstream in the signaling pathway of a G protein-coupled receptor under conditions of allosteric modulation and reduced receptor expression or partial receptor inactivation. The analysis also yields estimates of the isomerization constant of the unoccupied receptor, the sensitivity constant of the signaling pathway, and the more empirical parameters of the receptor population including the observed affinities and efficacies of allosteric and orthosteric ligands - including inverse agonists - and the efficacy of the unoccupied receptor (i.e., constitutive activity). RESULTS AND DISCUSSION We validate our approach with an analytical proof and by analysis of simulated data. We also use our method to analyze data from the literature. We show that the values of the microscopic constants of orthosteric and allosteric ligands are constant regardless of the allosteric interaction and the nature of the receptor-signaling pathway as long as the same active state mediates the response. Our analysis is useful for quantifying probe-dependent allosteric interactions and the selectivity of agonists for different signaling pathways. Knowing the isomerization constant and sensitivity constant of a signaling pathway in a given cell line or tissue preparation enables future investigators to estimate the affinity constants of agonists for receptor states simply through analysis of their concentration-response curves. Our approach also provides a means of validating in silico estimates of ligand affinity for crystal structures of active and inactive states of the receptor.
Collapse
Affiliation(s)
- Frederick J Ehlert
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, CA 92617-4625, United States; Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States.
| | - Michael T Griffin
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, CA 92617-4625, United States; Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| |
Collapse
|
183
|
Chung KY. Structural Aspects of GPCR-G Protein Coupling. Toxicol Res 2014; 29:149-55. [PMID: 24386514 PMCID: PMC3877993 DOI: 10.5487/tr.2013.29.3.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 11/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are membrane receptors; approximately 40% of drugs on the market target GPCRs. A precise understanding of the activation mechanism of GPCRs would facilitate the development of more effective and less toxic drugs. Heterotrimeric G proteins are important molecular switches in GPCR-mediated signal transduction. An agonist-activated receptor interacts with specific sites on G proteins and promotes the release of GDP from the Gα subunit. Because of the important biological role of the GPCR-G protein coupling, conformational changes in the G protein upon receptor coupling have been of great interest. One of the most important questions was the interface between the GPCR and G proteins and the structural mechanism of GPCR-induced G protein activation. A number of biochemical and biophysical studies have been performed since the late 80s to address these questions; there was a significant breakthrough in 2011 when the crystal structure of a GPCR-G protein complex was solved. This review discusses the structural aspects of GPCR-G protein coupling by comparing the results of previous biochemical and biophysical studies to the GPCR-G protein crystal structure.
Collapse
Affiliation(s)
- Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
184
|
Johnston JM, Filizola M. Beyond standard molecular dynamics: investigating the molecular mechanisms of G protein-coupled receptors with enhanced molecular dynamics methods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 796:95-125. [PMID: 24158803 PMCID: PMC4074508 DOI: 10.1007/978-94-007-7423-0_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The majority of biological processes mediated by G Protein-Coupled Receptors (GPCRs) take place on timescales that are not conveniently accessible to standard molecular dynamics (MD) approaches, notwithstanding the current availability of specialized parallel computer architectures, and efficient simulation algorithms. Enhanced MD-based methods have started to assume an important role in the study of the rugged energy landscape of GPCRs by providing mechanistic details of complex receptor processes such as ligand recognition, activation, and oligomerization. We provide here an overview of these methods in their most recent application to the field.
Collapse
Affiliation(s)
- Jennifer M. Johnston
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Marta Filizola
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
185
|
Yadav DK, Shukla D, Tuteja N. Isolation, in silico characterization, localization and expression analysis of abiotic stress-responsive rice G-protein β subunit (RGB1). PLANT SIGNALING & BEHAVIOR 2014; 9:e28890. [PMID: 24739238 PMCID: PMC4091194 DOI: 10.4161/psb.28890] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Heterotrimeric G-proteins constitute the classical signaling paradigm along with their cognate G-protein coupled receptors (GPCRs) and appropriate downstream effectors. G-protein complex is composed of highly conserved Gα, Gβ, and Gγ subunits. In the present study, we have characterized the cis-regulatory elements of the promoter, signature motifs, transcript profile in response to abiotic stresses, and sub-cellular localization of G-protein β subunit RGB1(I) from Indica rice. The RGB1(I) promoter sequence has various stress-related cis-regulatory elements suggesting its role in abiotic stress signaling. Presence of six WD-40 repeat signature motifs in RGB1(I) suggest its role in exchange of GDP by GTP in Gα subunit and receptor recognition. Presence of multiple N-myristoylation consensus sites in RGB1(I) protein sequence, which is necessary for membrane localization of protein, confirms the association of RGB1(I) in plasma membrane. Extrinsic association of RGB1(I) with plasma membrane seems essential for its role in regulation of signaling pathways and adaptation to high salt stress. We report the sub-cellular localization of RGB1(I) in plasma membrane, cytosol and nucleus. The localization of RGB1(I) in nucleus supports its possible interaction with transcription factors regulating the expression of salt stress responsive genes. The RGB1(I) transcript was upregulated under KCl, cold, dehydration and micronutrient (Mn (2+) and Zn (2+)) stress. However, transcript variation under elevated temperature, ABA, NaCl, and toxic heavy metals (viz. arsenite, arsenate, cadmium and lead) was not encouraging. These evidences indicate an active and significant role of RGB1(I) in the regulation of abiotic stresses in rice and propound its possible exploitation in the development of abiotic stress tolerance in crops.
Collapse
|
186
|
Ahmed SM, Angers S. Emerging non-canonical functions for heterotrimeric G proteins in cellular signaling. J Recept Signal Transduct Res 2013; 33:177-83. [PMID: 23721574 DOI: 10.3109/10799893.2013.795972] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Classically heterotrimeric G proteins have been described as the principal signal transducing machinery for G-protein-coupled receptors. Receptor activation catalyzes nucleotide exchange on the Gα protein, enabling Gα-GTP and Gβγ-subunits to engage intracellular effectors to generate various cellular effects such as second messenger production or regulation of ion channel conductivity. Recent genetic and proteomic screens have identified novel heterotrimeric G-protein-interacting proteins and expanded their functional roles. This review highlights some examples of recently identified interacting proteins and summarizes how they functionally connect heterotrimeric G proteins to previously underappreciated cellular roles.
Collapse
Affiliation(s)
- Syed M Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
187
|
Bondar A, Lazar J. Dissociated GαGTP and Gβγ protein subunits are the major activated form of heterotrimeric Gi/o proteins. J Biol Chem 2013; 289:1271-81. [PMID: 24307173 DOI: 10.1074/jbc.m113.493643] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although most heterotrimeric G proteins are thought to dissociate into Gα and Gβγ subunits upon activation, the evidence in the Gi/o family has long been inconsistent and contradictory. The Gi/o protein family mediates inhibition of cAMP production and regulates the activity of ion channels. On the basis of experimental evidence, both heterotrimer dissociation and rearrangement have been postulated as crucial steps of Gi/o protein activation and signal transduction. We have now investigated the process of Gi/o activation in living cells directly by two-photon polarization microscopy and indirectly by observations of G protein-coupled receptor kinase-derived polypeptides. Our observations of existing fluorescently labeled and non-modified Gαi/o constructs indicate that the molecular mechanism of Gαi/o activation is affected by the presence and localization of the fluorescent label. All investigated non-labeled, non-modified Gi/o complexes dissociate extensively upon activation. The dissociated subunits can activate downstream effectors and are thus likely to be the major activated Gi/o form. Constructs of Gαi/o subunits fluorescently labeled at the N terminus (GAP43-CFP-Gαi/o) seem to faithfully reproduce the behavior of the non-modified Gαi/o subunits. Gαi constructs labeled within the helical domain (Gαi-L91-YFP) largely do not dissociate upon activation, yet still activate downstream effectors, suggesting that the dissociation seen in non-modified Gαi/o proteins is not required for downstream signaling. Our results appear to reconcile disparate published data and settle a long running dispute.
Collapse
Affiliation(s)
- Alexey Bondar
- From the Faculty of Science, University of South Bohemia, Branisovska 31a, 37005 Ceske Budejovice, Czech Republic and
| | | |
Collapse
|
188
|
Li Q, Zhao P, Li J, Zhang C, Wang L, Ren Z. Genome-wide analysis of the WD-repeat protein family in cucumber and Arabidopsis. Mol Genet Genomics 2013; 289:103-24. [DOI: 10.1007/s00438-013-0789-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/19/2013] [Indexed: 12/31/2022]
|
189
|
Lyon AM, Taylor VG, Tesmer JJG. Strike a pose: Gαq complexes at the membrane. Trends Pharmacol Sci 2013; 35:23-30. [PMID: 24287282 DOI: 10.1016/j.tips.2013.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 12/20/2022]
Abstract
The heterotrimeric G protein Gαq is a central player in signal transduction, relaying signals from activated G-protein-coupled receptors (GPCRs) to effectors and other proteins to elicit changes in intracellular Ca(2+), the actin cytoskeleton, and gene transcription. Gαq functions at the intracellular surface of the plasma membrane, as do its best-characterized targets, phospholipase C-β, p63RhoGEF, and GPCR kinase 2 (GRK2). Recent insights into the structure and function of these signaling complexes reveal several recurring themes, including complex multivalent interactions between Gαq, its protein target, and the membrane, that are likely essential for allosteric control and maximum efficiency in signal transduction. Thus, the plasma membrane is not only a source of substrates but also a key player in the scaffolding of Gαq-dependent signaling pathways.
Collapse
Affiliation(s)
- Angeline M Lyon
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Veronica G Taylor
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - John J G Tesmer
- Life Sciences Institute and the Departments of Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
190
|
Kruse AC, Manglik A, Kobilka BK, Weis WI. Applications of molecular replacement to G protein-coupled receptors. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2287-92. [PMID: 24189241 PMCID: PMC3817703 DOI: 10.1107/s090744491301322x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/14/2013] [Indexed: 11/20/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large class of integral membrane proteins involved in regulating virtually every aspect of human physiology. Despite their profound importance in human health and disease, structural information regarding GPCRs has been extremely limited until recently. With the advent of a variety of new biochemical and crystallographic techniques, the structural biology of GPCRs has advanced rapidly, offering key molecular insights into GPCR activation and signal transduction. To date, almost all GPCR structures have been solved using molecular-replacement techniques. Here, the unique aspects of molecular replacement as applied to individual GPCRs and to signaling complexes of these important proteins are discussed.
Collapse
Affiliation(s)
- Andrew C. Kruse
- Molecular and Cellular Physiology, Stanford University, 279 Campus Drive, Stanford, CA 94305, USA
| | - Aashish Manglik
- Molecular and Cellular Physiology, Stanford University, 279 Campus Drive, Stanford, CA 94305, USA
| | - Brian K. Kobilka
- Molecular and Cellular Physiology, Stanford University, 279 Campus Drive, Stanford, CA 94305, USA
| | - William I. Weis
- Molecular and Cellular Physiology, Stanford University, 279 Campus Drive, Stanford, CA 94305, USA
- Structural Biology, Stanford University, Fairchild Building, Stanford, CA 94305, USA
| |
Collapse
|
191
|
Shim JY, Ahn KH, Kendall DA. Molecular basis of cannabinoid CB1 receptor coupling to the G protein heterotrimer Gαiβγ: identification of key CB1 contacts with the C-terminal helix α5 of Gαi. J Biol Chem 2013; 288:32449-32465. [PMID: 24092756 DOI: 10.1074/jbc.m113.489153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cannabinoid (CB1) receptor is a member of the rhodopsin-like G protein-coupled receptor superfamily. The human CB1 receptor, which is among the most expressed receptors in the brain, has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. Different classes of CB1 agonists evoke signaling pathways through the activation of specific subtypes of G proteins. The molecular basis of CB1 receptor coupling to its cognate G protein is unknown. As a first step toward understanding CB1 receptor-mediated G protein signaling, we have constructed a ternary complex structural model of the CB1 receptor and Gi heterotrimer (CB1-Gi), guided by the x-ray structure of β2-adrenergic receptor (β2AR) in complex with Gs (β2AR-Gs), through 824-ns duration molecular dynamics simulations in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer environment. We identified a group of residues at the juxtamembrane regions of the intracellular loops 2 and 3 (IC2 and IC3) of the CB1 receptor, including Ile-218(3.54), Tyr-224(IC2), Asp-338(6.30), Arg-340(6.32), Leu-341(6.33), and Thr-344(6.36), as potential key contacts with the extreme C-terminal helix α5 of Gαi. Ala mutations of these residues at the receptor-Gi interface resulted in little G protein coupling activity, consistent with the present model of the CB1-Gi complex, which suggests tight interactions between CB1 and the extreme C-terminal helix α5 of Gαi. The model also suggests that unique conformational changes in the extreme C-terminal helix α5 of Gα play a crucial role in the receptor-mediated G protein activation.
Collapse
Affiliation(s)
- Joong-Youn Shim
- From the J. L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707.
| | - Kwang H Ahn
- the Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269
| | - Debra A Kendall
- the Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
192
|
Nakamura K, Kodera H, Akita T, Shiina M, Kato M, Hoshino H, Terashima H, Osaka H, Nakamura S, Tohyama J, Kumada T, Furukawa T, Iwata S, Shiihara T, Kubota M, Miyatake S, Koshimizu E, Nishiyama K, Nakashima M, Tsurusaki Y, Miyake N, Hayasaka K, Ogata K, Fukuda A, Matsumoto N, Saitsu H. De Novo mutations in GNAO1, encoding a Gαo subunit of heterotrimeric G proteins, cause epileptic encephalopathy. Am J Hum Genet 2013; 93:496-505. [PMID: 23993195 DOI: 10.1016/j.ajhg.2013.07.014] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/09/2013] [Accepted: 07/17/2013] [Indexed: 12/21/2022] Open
Abstract
Heterotrimeric G proteins, composed of α, β, and γ subunits, can transduce a variety of signals from seven-transmembrane-type receptors to intracellular effectors. By whole-exome sequencing and subsequent mutation screening, we identified de novo heterozygous mutations in GNAO1, which encodes a Gαo subunit of heterotrimeric G proteins, in four individuals with epileptic encephalopathy. Two of the affected individuals also showed involuntary movements. Somatic mosaicism (approximately 35% to 50% of cells, distributed across multiple cell types, harbored the mutation) was shown in one individual. By mapping the mutation onto three-dimensional models of the Gα subunit in three different complexed states, we found that the three mutants (c.521A>G [p.Asp174Gly], c.836T>A [p.Ile279Asn], and c.572_592del [p.Thr191_Phe197del]) are predicted to destabilize the Gα subunit fold. A fourth mutant (c.607G>A), in which the Gly203 residue located within the highly conserved switch II region is substituted to Arg, is predicted to impair GTP binding and/or activation of downstream effectors, although the p.Gly203Arg substitution might not interfere with Gα binding to G-protein-coupled receptors. Transient-expression experiments suggested that localization to the plasma membrane was variably impaired in the three putatively destabilized mutants. Electrophysiological analysis showed that Gαo-mediated inhibition of calcium currents by norepinephrine tended to be lower in three of the four Gαo mutants. These data suggest that aberrant Gαo signaling can cause multiple neurodevelopmental phenotypes, including epileptic encephalopathy and involuntary movements.
Collapse
Affiliation(s)
- Kazuyuki Nakamura
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Isom DG, Sridharan V, Baker R, Clement ST, Smalley DM, Dohlman HG. Protons as second messenger regulators of G protein signaling. Mol Cell 2013; 51:531-8. [PMID: 23954348 DOI: 10.1016/j.molcel.2013.07.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/11/2013] [Accepted: 06/26/2013] [Indexed: 12/19/2022]
Abstract
In response to environmental stress, cells often generate pH signals that serve to protect vital cellular components and reprogram gene expression for survival. A major barrier to our understanding of this process has been the identification of signaling proteins that detect changes in intracellular pH. To identify candidate pH sensors, we developed a computer algorithm that searches proteins for networks of proton-binding sidechains. This analysis indicates that Gα subunits, the principal transducers of G protein-coupled receptor (GPCR) signals, are pH sensors. Our structure-based calculations and biophysical investigations reveal that Gα subunits contain networks of pH-sensing sidechains buried between their Ras and helical domains. Further, we show that proton binding induces changes in conformation that promote Gα phosphorylation and suppress receptor-initiated signaling. Together, our computational, biophysical, and cellular analyses reveal an unexpected function for G proteins as mediators of stress-response signaling.
Collapse
Affiliation(s)
- Daniel G Isom
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
194
|
Mahajan R, Ha J, Zhang M, Kawano T, Kozasa T, Logothetis DE. A computational model predicts that Gβγ acts at a cleft between channel subunits to activate GIRK1 channels. Sci Signal 2013; 6:ra69. [PMID: 23943609 DOI: 10.1126/scisignal.2004075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The atrial G protein (heterotrimeric guanine nucleotide-binding protein)-regulated inwardly rectifying K(+) (GIRK1 and GIRK4) heterotetrameric channels underlie the acetylcholine-induced K(+) current responsible for vagal inhibition of heart rate and are activated by the G protein βγ subunits (Gβγ). We used a multistage protein-protein docking approach with data from published structures of GIRK1 and Gβγ to generate an experimentally testable interaction model of Gβγ docked onto the cytosolic domains of the GIRK1 homotetramer. The model suggested a mechanism by which Gβγ promotes the open state of a specific cytosolic gate in the channel, the G loop gate. The predicted structure showed that the Gβ subunit interacts with the channel near the site of action for ethanol and stabilizes an intersubunit cleft formed by two loops (LM and DE) of adjacent channel subunits. Using a heterologous expression system, we disrupted the predicted GIRK1- and Gβγ-interacting residues by mutation of one protein and then rescued the regulatory activity by mutating reciprocal residues in the other protein. Disulfide cross-linking of channels and Gβγ with cysteine mutations at the predicted interacting residues yielded activated channels. The mechanism of Gβγ-induced activation of GIRK4 was distinct from GIRK1 homotetramers. However, GIRK1-GIRK4 heterotetrameric channels activated by Gβγ displayed responses indicating that the GIRK1 subunit dominated the response pattern. This work demonstrated that combining computational with experimental approaches is an effective method for elucidating interactions within protein complexes that otherwise might be challenging to decipher.
Collapse
Affiliation(s)
- Rahul Mahajan
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
195
|
Affiliation(s)
- Diomedes E. Logothetis
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Rahul Mahajan
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Annalisa M. VanHook
- Web Editor, Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue, NW, Washington, DC 20005, USA
| |
Collapse
|
196
|
Kumar S, Jordan MC, Datla R, Cloutier S. The LuWD40-1 gene encoding WD repeat protein regulates growth and pollen viability in flax (Linum Usitatissimum L.). PLoS One 2013; 8:e69124. [PMID: 23935935 PMCID: PMC3728291 DOI: 10.1371/journal.pone.0069124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/11/2013] [Indexed: 01/22/2023] Open
Abstract
As a crop, flax holds significant commercial value for its omega-3 rich oilseeds and stem fibres. Canada is the largest producer of linseed but there exists scope for significant yield improvements. Implementation of mechanisms such as male sterility can permit the development of hybrids to assist in achieving this goal. Temperature sensitive male sterility has been reported in flax but the leakiness of this system in field conditions limits the production of quality hybrid seeds. Here, we characterized a 2,588 bp transcript differentially expressed in male sterile lines of flax. The twelve intron gene predicted to encode a 368 amino acid protein has five WD40 repeats which, in silico, form a propeller structure with putative nucleic acid and histone binding capabilities. The LuWD40-1 protein localized to the nucleus and its expression increased during the transition and continued through the vegetative stages (seed, etiolated seedling, stem) while the transcript levels declined during reproductive development (ovary, anthers) and embryonic morphogenesis of male fertile plants. Knockout lines for LuWD40-1 in flax failed to develop shoots while overexpression lines showed delayed growth phenotype and were male sterile. The non-viable flowers failed to open and the pollen grains from these flowers were empty. Three independent transgenic lines overexpressing the LuWD40-1 gene had ∼80% non-viable pollen, reduced branching, delayed flowering and maturity compared to male fertile genotypes. The present study provides new insights into a male sterility mechanism present in flax.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba, Canada
| | - Mark C. Jordan
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba, Canada
| | - Raju Datla
- National Research Council, Saskatoon, Saskatchewan, Canada
| | - Sylvie Cloutier
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
197
|
Louet M, Karakas E, Perret A, Perahia D, Martinez J, Floquet N. Conformational restriction of G-proteins Coupled Receptors (GPCRs) upon complexation to G-proteins: a putative activation mode of GPCRs? FEBS Lett 2013; 587:2656-61. [PMID: 23851072 DOI: 10.1016/j.febslet.2013.06.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/13/2013] [Accepted: 06/29/2013] [Indexed: 10/26/2022]
Abstract
GPCRs undergo large conformational changes during their activation. Starting from existing X-ray structures, we used Normal Modes Analyses to study the collective motions of the agonist-bound β2-adrenergic receptor both in its isolated "uncoupled" and G-protein "coupled" conformations. We interestingly observed that the receptor was able to adopt only one major motion in the protein:protein complex. This motion corresponded to an anti-symmetric rotation of both its extra- and intra-cellular parts, with a key role of previously identified highly conserved proline residues. Because this motion was also retrieved when performing NMA on 7 other GPCRs which structures were available, it is strongly suspected to possess a significant biological role, possibly being the "activation mode" of a GPCR when coupled to G-proteins.
Collapse
Affiliation(s)
- Maxime Louet
- Institut des Biomolécules Max Mousseron (IBMM, CNRS UMR5247), Faculté de Pharmacie, 15 avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 05, France
| | | | | | | | | | | |
Collapse
|
198
|
Crystal structure of peroxisomal targeting signal-2 bound to its receptor complex Pex7p–Pex21p. Nat Struct Mol Biol 2013; 20:987-93. [DOI: 10.1038/nsmb.2618] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 05/13/2013] [Indexed: 12/26/2022]
|
199
|
Kling RC, Lanig H, Clark T, Gmeiner P. Active-state models of ternary GPCR complexes: determinants of selective receptor-G-protein coupling. PLoS One 2013; 8:e67244. [PMID: 23826246 PMCID: PMC3691126 DOI: 10.1371/journal.pone.0067244] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/16/2013] [Indexed: 11/29/2022] Open
Abstract
Based on the recently described crystal structure of the β2 adrenergic receptor - Gs-protein complex, we report the first molecular-dynamics simulations of ternary GPCR complexes designed to identify the selectivity determinants for receptor-G-protein binding. Long-term molecular dynamics simulations of agonist-bound β2AR-Gαs and D2R-Gαi complexes embedded in a hydrated bilayer environment and computational alanine-scanning mutagenesis identified distinct residues of the N-terminal region of intracellular loop 3 to be crucial for coupling selectivity. Within the G-protein, specific amino acids of the α5-helix, the C-terminus of the Gα-subunit and the regions around αN-β1 and α4-β6 were found to determine receptor recognition. Knowledge of these determinants of receptor-G-protein binding selectivity is essential for designing drugs that target specific receptor/G-protein combinations.
Collapse
MESH Headings
- Alanine/genetics
- Amino Acid Sequence
- Binding Sites
- Dopamine/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/chemistry
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Proteins/metabolism
- Histidine/metabolism
- Ligands
- Models, Biological
- Molecular Dynamics Simulation
- Molecular Sequence Data
- Multiprotein Complexes/metabolism
- Mutagenesis
- Protein Structure, Secondary
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Dopamine/chemistry
- Receptors, Dopamine/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Sequence Alignment
- Structural Homology, Protein
Collapse
Affiliation(s)
- Ralf C. Kling
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Erlangen, Germany
- Department of Chemistry and Pharmacy, Computer Chemistry Center, Friedrich Alexander University, Erlangen, Germany
| | - Harald Lanig
- Department of Chemistry and Pharmacy, Computer Chemistry Center, Friedrich Alexander University, Erlangen, Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Computer Chemistry Center, Friedrich Alexander University, Erlangen, Germany
- Centre for Molecular Design, University of Portsmouth, King Henry Building, Portsmouth, United Kingdom
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Erlangen, Germany
- * E-mail:
| |
Collapse
|
200
|
X-ray structure of the mammalian GIRK2-βγ G-protein complex. Nature 2013; 498:190-7. [PMID: 23739333 PMCID: PMC4654628 DOI: 10.1038/nature12241] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/03/2013] [Indexed: 01/09/2023]
Abstract
G protein-gated inward rectifier K+ (GIRK) channels allow neurotransmitters, via G protein-coupled receptor stimulation, to control cellular electrical excitability. In cardiac and neuronal cells this control regulates heart rate and neural circuit activity. We present the 3.5 Å resolution crystal structure of the mammalian GIRK2 channel in complex with βγ G protein subunits, the central signaling complex that links G protein-coupled receptor stimulation to K+ channel activity. Short-range atomic and long-range electrostatic interactions stabilize four βγ G protein subunits at the interfaces between four K+ channel subunits, inducing a pre-open state of the channel. The pre-open state exhibits a conformation that is intermediate between the closed and constitutively active mutant, open conformations. The resultant structural picture is compatible with “membrane delimited” activation of GIRK channels by G proteins and the characteristic burst kinetics of channel gating. The structures also permit a conceptual understanding of how the signaling lipid PIP2 and intracellular Na+ ions participate in multi-ligand regulation of GIRK channels.
Collapse
|