151
|
Jaiswal AS, Narayan S. Upstream stimulating factor-1 (USF1) and USF2 bind to and activate the promoter of the adenomatous polyposis coli (APC) tumor suppressor gene. J Cell Biochem 2001; 81:262-77. [PMID: 11241666 DOI: 10.1002/1097-4644(20010501)81:2<262::aid-jcb1041>3.0.co;2-r] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adenomatous polyposis coli (APC) gene product is involved in cell cycle arrest and apoptosis, and loss of function is associated with the development of colorectal carcinogenesis. Although it has been demonstrated that the APC gene is inducible, its transcriptional regulation has not been elucidated. Therefore, we characterized the promoter region of the APC gene and transcription factors required for basal expression. The APC gene has a TATA-less promoter and contains consensus binding sites for Octamer, AP2, Sp1, a CAAT-box, and three nucleotide sequences for E-box A, B, and M. The E-boxes are functional in several cancer cell lines and upstream stimulating factor-1 (USF1) and USF2 interact with these sites, with a preferred sequence-specificity for the B site. Analysis of activation of the cloned APC promoter by USF1 and USF2 in transient transfection assays in HCT-116 cells demonstrated that mutation of the E-box B site completely abolished the basal promoter activity. Further, the ectopic USF1 and USF2 expression in HCT-116 cells with deletion mutations of E-box A, B, and M sites showed that these E-boxes contribute to USF1- and USF2-mediated transcriptional activation of the APC promoter, with maximum promoter activity being associated with the E-box B site. Thus, USF1 and USF2 transcription factors are critical for APC gene expression.
Collapse
Affiliation(s)
- A S Jaiswal
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | |
Collapse
|
152
|
Skowyra D, Zeremski M, Neznanov N, Li M, Choi Y, Uesugi M, Hauser CA, Gu W, Gudkov AV, Qin J. Differential association of products of alternative transcripts of the candidate tumor suppressor ING1 with the mSin3/HDAC1 transcriptional corepressor complex. J Biol Chem 2001; 276:8734-9. [PMID: 11118440 DOI: 10.1074/jbc.m007664200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The candidate tumor suppressor ING1 was identified in a genetic screen aimed at isolation of human genes whose expression is suppressed in cancer cells. It may function as a negative growth regulator in the p53 signal transduction pathway. However, its molecular mechanism is not clear. The ING1 locus encodes alternative transcripts of p47(ING1a), p33(ING1b), and p24(ING1c). Here we report differential association of protein products of ING1 with the mSin3 transcriptional corepressor complex. p33(ING1b) associates with Sin3, SAP30, HDAC1, RbAp48, and other proteins, to form large protein complexes, whereas p24(ING1c) does not. The ING1 immune complexes are active in deacetylating core histones in vitro, and p33(ING1b) is functionally associated with HDAC1-mediated transcriptional repression in transfected cells. Our data provide basis for a p33(ING1b)-specific molecular mechanism for the function of the ING1 locus.
Collapse
Affiliation(s)
- D Skowyra
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Grandori C, Cowley SM, James LP, Eisenman RN. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2001; 16:653-99. [PMID: 11031250 DOI: 10.1146/annurev.cellbio.16.1.653] [Citation(s) in RCA: 1000] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Myc/Max/Mad network comprises a group of transcription factors whose distinct interactions result in gene-specific transcriptional activation or repression. A great deal of research indicates that the functions of the network play roles in cell proliferation, differentiation, and death. In this review we focus on the Myc and Mad protein families and attempt to relate their biological functions to their transcriptional activities and gene targets. Both Myc and Mad, as well as the more recently described Mnt and Mga proteins, form heterodimers with Max, permitting binding to specific DNA sequences. These DNA-bound heterodimers recruit coactivator or corepressor complexes that generate alterations in chromatin structure, which in turn modulate transcription. Initial identification of target genes suggests that the network regulates genes involved in the cell cycle, growth, life span, and morphology. Because Myc and Mad proteins are expressed in response to diverse signaling pathways, the network can be viewed as a functional module which acts to convert environmental signals into specific gene-regulatory programs.
Collapse
Affiliation(s)
- C Grandori
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | | | |
Collapse
|
154
|
Washburn BK, Esposito RE. Identification of the Sin3-binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast. Mol Cell Biol 2001; 21:2057-69. [PMID: 11238941 PMCID: PMC86811 DOI: 10.1128/mcb.21.6.2057-2069.2001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The DNA-binding protein Ume6 is required for both repression and activation of meiosis-specific genes, through interaction with the Sin3 corepressor and Rpd3 histone deacetylase and the meiotic activator Ime1. Here we show that fusion of a heterologous activation domain to Ume6 is unable to convert it into a constitutive activator of early meiotic gene transcription, indicating that an additional function is needed to overcome repression at these promoters. Mutations in UME6 allowing the fusion to activate lie in a predicted amphipathic alpha helix and specifically disrupt interaction with Sin3 but not with Teal, an activator of Ty transcription also found to interact with Ume6 in a two-hybrid screen. The mutations cause a loss of repression by Ume6 and precisely identify the Ume6 Sin3-binding domain, which we show interacts with the paired amphipathic helix 2 region of Sin3. Analysis of these mutants indicates that conversion of Ume6 to an activator involves two genetically distinct steps that act to relieve Sin3-mediated repression and provide an activation domain to Ume6. The mutants further demonstrate that premature expression and lack of subsequent rerepression of Ume6-Sin3-regulated genes are not deleterious to meiotic progression and suggest that the essential role of Sin3 in meiosis is independent of Ume6. The model for Ume6 function arising from these studies indicates that Ume6 is similar in many respects to metazoan regulators that utilize Sin3, such as the Myc-Mad-Max system and nuclear hormone receptors, and provides new insights into the control of transcriptional repression and activation by the Ume6-URS1 regulatory complex in yeast.
Collapse
Affiliation(s)
- B K Washburn
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
155
|
Lu Y, Lian H, Sharma P, Schreiber-Agus N, Russell RG, Chin L, van der Horst GT, Bregman DB. Disruption of the Cockayne syndrome B gene impairs spontaneous tumorigenesis in cancer-predisposed Ink4a/ARF knockout mice. Mol Cell Biol 2001; 21:1810-8. [PMID: 11238917 PMCID: PMC86742 DOI: 10.1128/mcb.21.5.1810-1818.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2000] [Accepted: 11/30/2000] [Indexed: 11/20/2022] Open
Abstract
Cells isolated from individuals with Cockayne syndrome (CS) have a defect in transcription-coupled DNA repair, which rapidly corrects certain DNA lesions located on the transcribed strand of active genes. Despite this DNA repair defect, individuals with CS group A (CSA) or group B (CSB) do not exhibit an increased spontaneous or UV-induced cancer rate. In order to investigate the effect of CSB deficiency on spontaneous carcinogenesis, we crossed CSB(-/-) mice with cancer-prone mice lacking the p16(Ink4a)/p19(ARF) tumor suppressor locus. CSB(-/-) mice are sensitive to UV-induced skin cancer but show no increased rate of spontaneous cancer. CSB(-/-) Ink4a/ARF(-/-) mice developed 60% fewer tumors than Ink4a/ARF(-/-) animals and demonstrated a longer tumor-free latency time (260 versus 150 days). Moreover, CSB(-/-) Ink4a/ARF(-/-) mouse embryo fibroblasts (MEFs) exhibited a lower colony formation rate after low-density seeding, a lower rate of H-Ras-induced transformation, slower proliferation, and a lower mRNA synthesis rate than Ink4a/ARF(-/-) MEFs. CSB(-/-) Ink4a/ARF(-/-) MEFs were also more sensitive to UV-induced p53 induction and UV-induced apoptosis than were Ink4a/ARF(-/-) MEFs. In order to investigate whether the apparent antineoplastic effect of CSB gene disruption was caused by sensitization to genotoxin-induced (p53-mediated) apoptosis or by p53-independent sequelae, we also generated p53(-/-) and CSB(-/-) p53(-/-) MEFs. The CSB(-/-) p53(-/-) MEFs demonstrated lower colony formation efficiency, a lower proliferation rate, a lower mRNA synthesis rate, and a higher rate of UV-induced cell death than p53(-/-) MEFs. Collectively, these results indicate that the antineoplastic effect of CSB gene disruption is at least partially p53 independent; it may result from impaired transcription or from apoptosis secondary to environmental or endogenous DNA damage.
Collapse
Affiliation(s)
- Y Lu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Van Lint C. Role of chromatin in HIV-1 transcriptional regulation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:121-60. [PMID: 10987090 DOI: 10.1016/s1054-3589(00)48005-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- C Van Lint
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
157
|
Affiliation(s)
- T A Baudino
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
158
|
Quéva C, McArthur GA, Iritani BM, Eisenman RN. Targeted deletion of the S-phase-specific Myc antagonist Mad3 sensitizes neuronal and lymphoid cells to radiation-induced apoptosis. Mol Cell Biol 2001; 21:703-12. [PMID: 11154258 PMCID: PMC86662 DOI: 10.1128/mcb.21.3.703-712.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mad family comprises four basic-helix-loop-helix/leucine zipper proteins, Mad1, Mxi1, Mad3, and Mad4, which heterodimerize with Max and function as transcriptional repressors. The balance between Myc-Max and Mad-Max complexes has been postulated to influence cell proliferation and differentiation. The expression patterns of Mad family genes are complex, but in general, the induction of most family members is linked to cell cycle exit and differentiation. The expression pattern of mad3 is unusual in that mad3 mRNA and protein were found to be restricted to proliferating cells prior to differentiation. We show here that during murine development mad3 is specifically expressed in the S phase of the cell cycle in neuronal progenitor cells that are committed to differentiation. To investigate mad3 function, we disrupted the mad3 gene by homologous recombination in mice. No defect in cell cycle exit and differentiation could be detected in mad3 homozygous mutant mice. However, upon gamma irradiation, increased cell death of thymocytes and neural progenitor cells was observed, implicating mad3 in the regulation of the cellular response to DNA damage.
Collapse
Affiliation(s)
- C Quéva
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | |
Collapse
|
159
|
Mellström B, Naranjo JR. Ca2+-dependent transcriptional repression and derepression: DREAM, a direct effector. Semin Cell Dev Biol 2001; 12:59-63. [PMID: 11162748 DOI: 10.1006/scdb.2000.0218] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Control of gene expression by Ca2+ is a well known phenomenon acting through three major pathways: (i) changes in the transactivating properties of transcription factors after induction of Ca2+-dependent kinases and phosphatases (ii) Ca2+-dependent interaction between calmodulin and S-100 proteins with basic helix-loop-helix (bHLH) transcription factors that prevents binding to DNA and (iii) direct interaction between Ca2+-free DREAM and DNA that represses transcription. Because the first mechanism has been extensively reviewed, (Gallin, W. J., Greenberg, M. E. (1995). Calcium regulation of gene expression in neurons: the mode of entry matters. Curr Opin Neurobiol 5: 367-374; Santella, L., Carafoli, E. (1997). Calcium signaling in the cell nucleus. FASEB J, 11: 1091-1109) this commentary will focus on the other two with special emphasis on DREAM, the first EF-hand protein known to specifically bind DNA and regulate transcription in a Ca2+-dependent manner (Carrion, A. M.; Link, W. A., Ledo, F., Mellstrom, B., Naranjo, J. R. (1999). DREAM is a Ca2+-regulated transcriptional repressor, Nature. 398: 80-84).
Collapse
Affiliation(s)
- B Mellström
- Dpto. Biología Molecular y Celular, Centro Nacional de Biotecnología, C.S.I.C., Spain
| | | |
Collapse
|
160
|
Perdomo J, Holmes M, Chong B, Crossley M. Eos and pegasus, two members of the Ikaros family of proteins with distinct DNA binding activities. J Biol Chem 2000; 275:38347-54. [PMID: 10978333 DOI: 10.1074/jbc.m005457200] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the Ikaros family of transcription factors, Ikaros, Aiolos, and Helios, are expressed in lymphocytes and have been implicated in controlling lymphoid development. These proteins contain two characteristic clusters of zinc fingers, an N-terminal domain important for DNA recognition, and a C-terminal domain that mediates homo- and heterotypic associations between family members. The conservation of these domains is such that all three proteins recognize related DNA sequences, and all are capable of dimerizing with other family members. Here we describe two additional Ikaros family proteins, Eos and Pegasus. Eos is most highly related to Helios and shares its DNA binding and protein association properties. Pegasus is related to other Ikaros proteins in its C-terminal dimerization domain but contains a divergent N-terminal zinc finger domain. Pegasus self-associates and binds to other family members but recognizes distinct DNA-binding sites. Eos and Pegasus repress the expression of reporter genes containing their recognition elements. Our results suggest that these proteins may associate with previously described Ikaros family proteins in lymphoid cells and play additional roles in other tissues.
Collapse
Affiliation(s)
- J Perdomo
- Department of Biochemistry, G08, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | |
Collapse
|
161
|
Brubaker K, Cowley SM, Huang K, Loo L, Yochum GS, Ayer DE, Eisenman RN, Radhakrishnan I. Solution structure of the interacting domains of the Mad-Sin3 complex: implications for recruitment of a chromatin-modifying complex. Cell 2000; 103:655-65. [PMID: 11106735 DOI: 10.1016/s0092-8674(00)00168-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Gene-specific targeting of the Sin3 corepressor complex by DNA-bound repressors is an important mechanism of gene silencing in eukaryotes. The Sin3 corepressor specifically associates with a diverse group of transcriptional repressors, including members of the Mad family, that play crucial roles in development. The NMR structure of the complex formed by the PAH2 domain of mammalian Sin3A with the transrepression domain (SID) of human Mad1 reveals that both domains undergo mutual folding transitions upon complex formation generating an unusual left-handed four-helix bundle structure and an amphipathic alpha helix, respectively. The SID helix is wedged within a deep hydrophobic pocket defined by two PAH2 helices. Structure-function analyses of the Mad-Sin3 complex provide a basis for understanding the underlying mechanism(s) that lead to gene silencing.
Collapse
Affiliation(s)
- K Brubaker
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Abstract
The diagnostic category of Burkitt's lymphoma encompasses a closely related group of aggressive B-cell tumors that includes sporadic, endemic, and human immunodeficiency virus-associated subtypes. All subtypes are characterized by chromosomal rearrangements involving the c-myc proto-oncogene that lead to its inappropriate expression. This review focuses on the roles of c-myc dysregulation and Epstein-Barr virus infection in Burkitt's lymphoma. Although the normal function of c-Myc remains enigmatic, recent data indicate that it has a central role in several fundamental aspects of cellular biology, including proliferation, differentiation, metabolism, apoptosis, and telomere maintenance. We discuss new insights into the molecular mechanisms of these c-Myc activities and their potential relevance to the pathogenesis of Burkitt's lymphoma and speculate on the role of Epstein-Barr virus.
Collapse
Affiliation(s)
- J L Hecht
- Departments of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
163
|
Bejarano MT, Albihn A, Cornvik T, Brijker SO, Asker C, Osorio LM, Henriksson M. Inhibition of cell growth and apoptosis by inducible expression of the transcriptional repressor Mad1. Exp Cell Res 2000; 260:61-72. [PMID: 11010811 DOI: 10.1006/excr.2000.4996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mad1 is a Myc antagonist that heterodimerizes with Max and functions as a transcriptional repressor. We have studied the effects of Mad1 on cell growth, cell cycle distribution, and apoptosis using Mad1-inducible cell lines. Expression of Mad1 inhibited cell proliferation, S-phase entry, and colony formation, changes that were accompanied by a reduction in CDK2 activity. The inhibition of Mad1 on cell proliferation was potentiated by serum starvation and was paralleled by accumulation of cells in the G0/G1 and the G2 phases of the cell cycle. Mad1 also reduced apoptosis induced by serum withdrawal and by the cytostatic drug cisplatinum. The effects on both cell growth and apoptosis were dependent on the mSin3 interaction domain of Mad1, which is necessary for recruitment of histone deacetylases and corepressors, suggesting that transcriptional repression is mediating these functions. Taken together with the expression pattern of Mad1, these results suggest that Mad1 plays an important role during initiation of differentiation by inhibiting cell proliferation and blocking apoptosis.
Collapse
Affiliation(s)
- M T Bejarano
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, S-171 77, Sweden
| | | | | | | | | | | | | |
Collapse
|
164
|
Abstract
In the last 5 years, many co-repressors have been identified in eukaryotes that function in a wide range of species, from yeast to Drosophila and humans. Co-repressors are coregulators that are recruited by DNA-bound transcriptional silencers and play essential roles in many pathways including differentiation, proliferation, programmed cell death, and cell cycle. Accordingly, it has been shown that aberrant interactions of co-repressors with transcriptional silencers provide the molecular basis of a variety of human diseases. Co-repressors mediate transcriptional silencing by mechanisms that include direct inhibition of the basal transcription machinery and recruitment of chromatin-modifying enzymes. Chromatin modification includes histone deacetylation, which is thought to lead to a compact chromatin structure to which the accessibility of transcriptional activators is impaired. In a general mechanistic view, the overall picture suggests that transcriptional silencers and co-repressors act in analogy to transcriptional activators and coactivators, but with the opposite effect leading to gene silencing. We provide a comprehensive overview of the currently known higher eukaryotic co-repressors, their mechanism of action, and their involvement in biological and pathophysiological pathways. We also show the different pathways that lead to the regulation of co-repressor-silencer complex formation.
Collapse
Affiliation(s)
- L J Burke
- Genetic Institute, Justus Liebig University, Heinrich Buff Ring 58-62, D-35392 Giessen, Germany
| | | |
Collapse
|
165
|
Elkhaimi M, Kaadige MR, Kamath D, Jackson JC, Biliran H, Lopes JM. Combinatorial regulation of phospholipid biosynthetic gene expression by the UME6, SIN3 and RPD3 genes. Nucleic Acids Res 2000; 28:3160-7. [PMID: 10931932 PMCID: PMC108424 DOI: 10.1093/nar/28.16.3160] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2000] [Revised: 05/18/2000] [Accepted: 06/21/2000] [Indexed: 12/18/2022] Open
Abstract
The Ume6p-Sin3p-Rpd3p complex negatively regulates expression of genes containing a Ume6p binding site. However, these regulatory proteins also function independently to regulate gene expression both negatively and positively. The model system for this combinatorial regulation is the yeast phospholipid biosynthetic pathway. Sin3p negatively regulates the INO1, CHO1, CHO2 and OPI3 genes while Ume6p negatively regulates the INO1 gene and positively regulates the other genes. We have suggested that the positive regulation results from indirect effects on expression of the INO2 transcriptional activator gene. Here, we demonstrate that the effect of Ume6p on INO2 gene expression is also indirect. We also show that Rpd3p is a negative regulator of phospholipid biosynthetic gene expression. The ability of Ume6p, Sin3p and Rpd3p to differentially regulate expression of the phospholipid biosynthetic genes affects phospholipid composition. A sin3 mutant strain lacks detectable levels of phosphatidylethanolamine and elevated levels of phosphatidylcholine (PC) and a rpd3 mutant strain has reduced levels of PC. These alterations in membrane composition suggest that there may exist additional differences in regulation of phospholipid biosynthetic gene expression and that membrane compositions may be coordinated with other biological processes regulated by Ume6p, Sin3p and Rpd3p.
Collapse
Affiliation(s)
- M Elkhaimi
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
166
|
Mahlknecht U, Hoelzer D. Histone Acetylation Modifiers in the Pathogenesis of Malignant Disease. Mol Med 2000. [DOI: 10.1007/bf03402044] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
167
|
Meroni G, Cairo S, Merla G, Messali S, Brent R, Ballabio A, Reymond A. Mlx, a new Max-like bHLHZip family member: the center stage of a novel transcription factors regulatory pathway? Oncogene 2000; 19:3266-77. [PMID: 10918583 DOI: 10.1038/sj.onc.1203634] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Myc proto-oncogene family members have been identified as the cellular homologs of the transforming oncogene of avian retroviruses. They encode central regulators of mammalian cell proliferation and apoptosis, and they associate with the bHLHZip protein Max to bind specific DNA sequences and regulate the expression of genes important for cell cycle progression. The other family members, Mad1, Mxi1, Mad3, Mad4 and Rox (Mnt) antagonize their activities. The Mads and Rox compete with Myc in heterodimerizing with Max and in binding to the same specific target sequences. These Mads:Max and Rox:Max dimers repress transcription through binding to the mSIN3 corepressor protein and by tethering histone deacetylase-containing complexes to the DNA. In a screen for Rox interactors we isolated Mlx, a bHLHZip protein previously identified in a screen for Mad1 interactors. In the present work we extend the known dimerization partners of Mlx by demonstrating its ability to interact with Rox. Moreover, we show that contrary to previous reports Mlx is able to homodimerize and to bind E-box sequences at low concentration levels. The possible role of Mlx in an emerging regulatory pathway and acting parallel to the Max driven network is discussed.
Collapse
Affiliation(s)
- G Meroni
- Telethon Institute of Genetics and Medicine, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
168
|
Abstract
A key event in the regulation of eukaryotic gene expression is the posttranslational modification of nucleosomal histones, which converts regions of chromosomes into transcriptionally active or inactive chromatin. The most well studied posttranslational modification of histones is the acetylation of epsilon-amino groups on conserved lysine residues in the histones' amino-terminal tail domains. Significant advances have been made in the past few years toward the identification of histone acetyltransferases and histone deacetylases. Currently, there are over a dozen cloned histone acetyltransferases and at least eight cloned human histone deacetylases. Interestingly, many histone deacetylases can function as transcriptional corepressors and, often, they are present in multi-subunit complexes. More intriguing, at least some histone deacetylases are associated with chromatin-remodeling machines. In addition, several studies have pointed to the possible involvement of histone deacetylases in human cancer. The availability of the cloned histone deacetylase genes has provided swift progress in the understanding of the mechanisms of deacetylases, their role in transcription, and their possible role in health and disease.
Collapse
Affiliation(s)
- W D Cress
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida
| | | |
Collapse
|
169
|
Youn HD, Liu JO. Cabin1 represses MEF2-dependent Nur77 expression and T cell apoptosis by controlling association of histone deacetylases and acetylases with MEF2. Immunity 2000; 13:85-94. [PMID: 10933397 DOI: 10.1016/s1074-7613(00)00010-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
TCR signaling leading to thymocyte apoptosis is mediated through the expression of the Nur77 family of orphan nuclear receptors. MEF2 has been shown to be the major transcription factor responsible for calcium-dependent Nur77 transcription. Cabin1 was recently identified as a transcriptional repressor of MEF2, which can be released from MEF2 in a calcium-dependent fashion. The molecular basis of repression of MEF2 by Cabin1, however, has remained unknown. We report that Cabin1 represses MEF2 by two distinct mechanisms. Cabin1 recruits mSin3 and its associated histone deacetylases 1 and 2; Cabin1 also competes with p300 for binding to MEF2. Thus, activation of MEF2 and the consequent transcription of Nur77 are controlled by the association of MEF2 with the histone deacetylases via the calcium-dependent repressor Cabin1.
Collapse
Affiliation(s)
- H D Youn
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
170
|
Barrera-Hernandez G, Cultraro CM, Pianetti S, Segal S. Mad1 function is regulated through elements within the carboxy terminus. Mol Cell Biol 2000; 20:4253-64. [PMID: 10825189 PMCID: PMC85793 DOI: 10.1128/mcb.20.12.4253-4264.2000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myc and Mad are basic helix-loop-helix leucine zipper (bHLH-LZ) proteins that heterodimerize with Max to bind DNA and thereby influence the transcription of Myc-responsive genes. Myc-Max dimers transactivate whereas Mad-Max-mSin3 complexes repress Myc-mediated transcriptional activation. We have previously shown that the N-terminal mSin3 binding domain and the centrally located bHLH-LZ are required for Mad1 to function during a molecular switch from proliferation to differentiation. Here we demonstrate that the carboxy terminus (CT) of Mad1 contains previously unidentified motifs necessary for the regulation of Mad1 function. We show that removal of the last 18 amino acids of Mad1 (region V) abolishes the growth-inhibitory function of the protein and the ability to reverse a Myc-imposed differentiation block. Moreover, deletion of region V results in a protein that binds DNA weakly and no longer represses Myc-dependent transcriptional activation. In contrast, deletion of the preceding 24 amino acids (region IV) together with region V restores DNA binding and transcriptional repression, suggesting a functional interplay between these two regions. Furthermore, phosphorylation within region IV appears to mediate this interplay. These findings indicate that novel regulatory elements are present in the Mad1 CT.
Collapse
Affiliation(s)
- G Barrera-Hernandez
- NCI-Navy Medicine Branch, Genetics Department, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20889-5105, USA
| | | | | | | |
Collapse
|
171
|
Pulverer B, Sommer A, McArthur GA, Eisenman RN, Lüscher B. Analysis of Myc/Max/Mad network members in adipogenesis: inhibition of the proliferative burst and differentiation by ectopically expressed Mad1. J Cell Physiol 2000; 183:399-410. [PMID: 10797315 DOI: 10.1002/(sici)1097-4652(200006)183:3<399::aid-jcp13>3.0.co;2-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transcription factors of the Myc/Max/Mad network affect multiple aspects of cellular behavior, including proliferation, differentiation, and apoptosis. Recent studies have shown that Mad proteins can inhibit cellular growth and transformation and thus antagonize the function of Myc proteins. To define further the contribution of these proteins to cellular growth control, we have studied the expression of the respective genes and proteins in 3T3-L1 cells, both upon serum stimulation of quiescent cells and during adipocytic differentiation in response to insulin, dexamethasone, and isobutylmethylxanthine. We found distinct expression patterns for the mad genes. Mad4 was induced when cells exit the cell cycle and, together with mad1, during the late phase of differentiation. In contrast, mad3 expression was associated with progression through S phase and the proliferative burst of differentiating preadipocytes, overlapping in part c-myc expression. DNA binding analyses revealed that the most prominent network complex both in cycling and in differentiating cells was Mnt/Max, whereas c-Myc/Max complexes were detectable only during peak c-Myc expression periods. Ectopic expression of Mad1 in preadipocytes resulted in the inhibition of S phase and the proliferation associated with the proliferative burst; as a consequence, adipocytic differentiation was significantly inhibited. Our findings suggest that the precise temporal regulation of Myc/Max/Mad network proteins is critical for determining cellular behavior.
Collapse
Affiliation(s)
- B Pulverer
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
172
|
Ward AC, Loeb DM, Soede-Bobok AA, Touw IP, Friedman AD. Regulation of granulopoiesis by transcription factors and cytokine signals. Leukemia 2000; 14:973-90. [PMID: 10865962 DOI: 10.1038/sj.leu.2401808] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The development of mature granulocytes from hematopoietic precursor cells is controlled by a myriad of transcription factors which regulate the expression of essential genes, including those encoding growth factors and their receptors, enzymes, adhesion molecules, and transcription factors themselves. In particular, C/EBPalpha, PU.1, CBF, and c-Myb have emerged as critical players during early granulopoiesis. These transcription factors interact with one another as well as other factors to regulate the expression of a variety of genes important in granulocytic lineage commitment. An important goal remains to understand in greater detail how these various factors act in concert with signals emanating from cytokine receptors to influence the various steps of maturation, from the pluripotent hematopoietic stem cell, to a committed myeloid progenitor, to myeloid precursors, and ultimately to mature granulocytes.
Collapse
Affiliation(s)
- A C Ward
- Institute of Hematology, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
173
|
Lukashok SA, Tarassishin L, Li Y, Horwitz MS. An adenovirus inhibitor of tumor necrosis factor alpha-induced apoptosis complexes with dynein and a small GTPase. J Virol 2000; 74:4705-9. [PMID: 10775608 PMCID: PMC111992 DOI: 10.1128/jvi.74.10.4705-4709.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adenoviruses (Ad) code for immunoregulatory and cytokine regulatory proteins, one of which is the early region 3, 14.7-kDa protein (Ad E3-14.7K), which has been shown to inhibit tumor necrosis factor alpha-induced apoptosis. In an effort to understand the mechanism of action of Ad E3-14.7K, we previously searched for cell proteins with which it interacted. Three Ad E3-14.7K-interacting proteins (FIP-1, -2, and -3) were isolated. FIP-1 is a small GTPase which was used in this report as bait in the yeast two-hybrid system to find other interacting cell targets. The search resulted in the isolation of a protein, which we called GIP-1 (GTPase-interacting protein) that subsequently was shown to be identical to one of the light-chain components of human dynein (TCTEL1). FIP-1 was able to bind both TCTEL1 and Ad E3-14.7K simultaneously and was necessary to form a complex in which the viral protein was associated with a microtubule-binding motor protein. The functional significance of these interactions is discussed with respect to the steps of the Ad life cycle which are microtubule associated.
Collapse
Affiliation(s)
- S A Lukashok
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
174
|
Wang DY, Xiang YY, Li XJ, Hashimoto M, Tanaka M, Sugimura H. Mxi1 is a potential cellular target of carcinogens and frequently mutated in experimental rat tumors and tumor cell lines. Pathol Int 2000; 50:373-383. [PMID: 10849326 DOI: 10.1046/j.1440-1827.2000.01057.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mxi1, a member of the Myc family of transcription factors, negatively regulates Myc oncoprotein activity and thus may be a tumor suppressor gene. It is mutated in a few human prostate cancers. Rat Mxi1 was isolated as a selective overexpressive message in rat esophageal cancer induced by N-nitrososarcosine ethyl ester using differential display and polymerase chain reaction cloning. Reverse transcription, single-strand conformation polymorphism analysis and subsequent DNA sequencing were used to screen mutations for the rat Mxi1 coding region including the functional domains, Sin3-interacting, helix-loop-helix and leucine zipper in samples from 24 rat tumor tissues and various cell lines. Seven mutations were revealed to exist in six rat tumors (including two esophageal tumors and a breast cancer), and three rat tumor cell lines: Leydig cell tumor, osteogenic sarcoma, and pituitary tumor. No coding changes were detected in 34 samples of human sporadic gastric adenocarcinoma. A silent base substitution (GAG to GAA) at codon 131 was also identified in six rat tumors as well as in one human gastric cancer. Our results indicate that Mxi1 is often mutated in experimental rat tumors but mutations are rare in human sporadic cancers. The Mxi1 tumor suppressor gene may be a cellular target of strong carcinogens. Considering the frequency of mutations in chemical carcinogen-induced tumors, searches for Mxi1 mutation in human tumors should be directed toward patients with a specific epidemiological background.
Collapse
Affiliation(s)
- D Y Wang
- First Department of Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | |
Collapse
|
175
|
Gehring S, Rottmann S, Menkel AR, Mertsching J, Krippner-Heidenreich A, Lüscher B. Inhibition of proliferation and apoptosis by the transcriptional repressor Mad1. Repression of Fas-induced caspase-8 activation. J Biol Chem 2000; 275:10413-20. [PMID: 10744730 DOI: 10.1074/jbc.275.14.10413] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mad1 is a member of the Myc/Max/Mad network of transcriptional regulators that play a central role in the control of cellular behavior. Mad proteins are thought to antagonize Myc functions at least in part by repressing gene transcription. To systematically examine the function of Mad1 in growth control and during apoptosis, we have generated U2OS cell clones that express Mad1 under a tetracyline-regulatable promoter (UTA-Mad1). Mad1 was induced rapidly and efficiently, localized to the nucleus, and bound to DNA as a heterodimer with Max. The induction of Mad1 reduced cellular growth and, more profoundly, inhibited colony formation of UTA-Mad1 cells. Conditioned medium neutralized this inhibitory effect implying that Mad1 function is regulated by extracellular signals. In addition Mad1 interfered with Fas-, TRAIL-, and UV-induced apoptosis, which coincided with a reduced activation of caspase-8 during Fas-mediated apoptosis in response to Mad1 expression. Furthermore, microinjection of Mad1-expressing plasmids into fibroblasts inhibited apoptosis induced by the oncoproteins c-Myc and E1A. Thus, Mad1 not only interferes with cellular proliferation but also with apoptosis, which defines a novel aspect of Mad1 function.
Collapse
Affiliation(s)
- S Gehring
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Carl-Neuberg Strasse 1, 30623 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
176
|
Gagandeep S, Sokhi R, Slehria S, Gorla GR, Furgiuele J, DePinho RA, Gupta S. Hepatocyte transplantation improves survival in mice with liver toxicity induced by hepatic overexpression of Mad1 transcription factor. Mol Ther 2000; 1:358-65. [PMID: 10933954 DOI: 10.1006/mthe.2000.0051] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hepatic overexpression of Mad1 with an adenoviral vector, AdMad, induced liver toxicity in immunodeficient mice. Transduction of cultured hepatocytes with AdMad inhibited cellular DNA synthesis and cell cycling, along with increased lactate dehydrogenase release, indicating cytotoxicity. When dipeptidyl peptidase IV-deficient F344 rat hepatocytes were transplanted into the liver of immunodeficient mice after treatment with AdMad, significant portions of the liver were repopulated. This was in agreement with corresponding losses of host hepatocytes, which showed increased apoptosis rates. Mortality in mice following AdMad treatment decreased significantly when animals were subjected to hepatocyte transplantation. The findings indicated that Mad1 overexpression perturbed hepatocyte survival. Investigation of pathophysiological mechanisms concerning specific cell cycle regulators in acute liver toxicity will thus be appropriate. Cell therapy has potential for treating acute liver injury under suitable circumstances.
Collapse
Affiliation(s)
- S Gagandeep
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
177
|
Robinson KA, Lopes JM. SURVEY AND SUMMARY: Saccharomyces cerevisiae basic helix-loop-helix proteins regulate diverse biological processes. Nucleic Acids Res 2000; 28:1499-505. [PMID: 10710415 PMCID: PMC102793 DOI: 10.1093/nar/28.7.1499] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/1999] [Revised: 02/14/2000] [Accepted: 02/14/2000] [Indexed: 01/07/2023] Open
Abstract
Basic helix-loop-helix (bHLH) proteins are among the most well studied and functionally important regulatory proteins in all eukaryotes. The HLH domain dictates dimerization to create homo- and heterodimers. Dimerization juxtaposes the basic regions of the two monomers to create a DNA interaction surface that recognizes the consensus sequence called the E-box, 5'-CANNTG-3'. Several bHLH proteins have been identified in the yeast Saccharomyces cerevisiae using traditional genetic methodologies. These proteins regulate diverse biological pathways. The completed sequence of the yeast genome, combined with novel methodologies allowing whole-genome expression studies, now offers a unique opportunity to study the function of these bHLH proteins. It is the purpose of this review to summarize the current knowledge of bHLH protein function in yeast.
Collapse
Affiliation(s)
- K A Robinson
- Department of Molecular and Cellular Biochemistry, Loyola University of Chicago, Maywood, IL 60153, USA
| | | |
Collapse
|
178
|
Masselink H, Bernards R. The adenovirus E1A binding protein BS69 is a corepressor of transcription through recruitment of N-CoR. Oncogene 2000; 19:1538-46. [PMID: 10734313 DOI: 10.1038/sj.onc.1203421] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BS69 was first identified as a protein that interacts directly with the transactivation domain (conserved region 3) of the 289R adenovirus type 5 E1A protein. We show here that BS69 is a potent repressor of transcription. BS69 mediates repression, at least in part, through interaction with the co-repressor N-CoR. BS69 interacts with N-CoR through a MYND domain in its carboxyl terminus. A recently cloned splice variant of BS69, designated BRAM1, is also capable of interacting with N-CoR and E1A, but unlike BS69, is not able to repress transcription, indicating that N-CoR interaction is necessary but not sufficient for BS69 repression. Expression of E1A inhibits repression mediated by BS69. Our data suggest that BS69 participates in transcriptional repressor complexes and that E1A can modulate these complexes through interaction with BS69.
Collapse
Affiliation(s)
- H Masselink
- Division of Molecular Carcinogenesis and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
179
|
Gagandeep S, Ott M, Nisen PD, DePinho RA, Gupta S. Overexpression of Mad transcription factor inhibits proliferation of cultured human hepatocellular carcinoma cells along with tumor formation in immunodeficient animals. J Gene Med 2000; 2:117-27. [PMID: 10809145 DOI: 10.1002/(sici)1521-2254(200003/04)2:2<117::aid-jgm96>3.0.co;2-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Dominant negative regulation of critical cell cycle molecules could perturb survival of cancer cells and help develop novel therapies. METHODS To perturb the activity of c-Myc, which regulates G0/G1 transitions, we overexpressed Mad1 protein with an adenoviral vector, AdMad. Studies were conducted with established cell lines, including HepG2, HuH-7 and PLC/PRF/5 liver cancer cells, RAT-1A embryonic fibroblasts and U373MG astrocytoma cells. RESULTS After AdMad-treatment, transduced cells exhibited decreased proliferation rates in culture conditions. RAT-1A embryonic fibroblasts and U373MG astrocytoma cells showed accumulations in G0/G1, whereas HepG2 and HuH-7 cells accumulated in G0/G1, and additionally in G2/M, albeit to a lesser extent. An in vitro assay using hepatocyte growth factor to stimulate proliferation in HuH-7 cells showed blunting of growth factor responsiveness, along with inhibition of cell cycle progression in AdMad-treated cells. No cytotoxicity was observed in AdMad-treated cells in culture, although cells lost clonogenic capacity in soft agar. In vivo assays using HepG2 cell tumors in immunodeficient mice showed that overexpression of AdMad prevented tumorigenesis. CONCLUSIONS These studies indicate roles of Mad in G2/M, as well as the potential of manipulating cell cycle controls for treating liver cancer.
Collapse
Affiliation(s)
- S Gagandeep
- Marion Bessin Liver Research Center, Comprehensive Cancer Research Center, and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
180
|
|
181
|
O'Hagan RC, Schreiber-Agus N, Chen K, David G, Engelman JA, Schwab R, Alland L, Thomson C, Ronning DR, Sacchettini JC, Meltzer P, DePinho RA. Gene-target recognition among members of the myc superfamily and implications for oncogenesis. Nat Genet 2000; 24:113-9. [PMID: 10655054 DOI: 10.1038/72761] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myc and Mad family proteins regulate multiple biological processes through their capacity to influence gene expression directly. Here we show that the basic regions of Myc and Mad proteins are not functionally equivalent in oncogenesis, have separable E-box-binding activities and engage both common and distinct gene targets. Our data support the view that the opposing biological actions of Myc and Mxi1 extend beyond reciprocal regulation of common gene targets. Identification of differentially regulated gene targets provides a framework for understanding the mechanism through which the Myc superfamily governs the growth, proliferation and survival of normal and neoplastic cells.
Collapse
Affiliation(s)
- R C O'Hagan
- Department of Adult Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000. [DOI: 10.1101/gad.14.2.121] [Citation(s) in RCA: 900] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
183
|
Shen-Li H, O'Hagan RC, Hou H, Horner JW, Lee HW, DePinho RA. Essential role for Max in early embryonic growth and development. Genes Dev 2000. [DOI: 10.1101/gad.14.1.17] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Loss of Max function in the mouse resulted in generalized developmental arrest of both embryonic and extraembryonic tissues at early postimplantation (∼E5.5–6.5), coincident with loss or dilution of maternal Max stores in the expanding embryo in vivo and in blastocyst outgrowths in vitro. Developmentally arrested embryos were reduced in size and exhibited widespread cytological degeneration and feeble BrdU incorporation. Max and, by extension, the Myc superfamily, serve essential roles in early mammalian development and a maternal reservoir of Max exists in sufficient amount to sustain Myc superfamily function through preimplantation stages of development.
Collapse
|
184
|
Massari ME, Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 2000; 20:429-40. [PMID: 10611221 PMCID: PMC85097 DOI: 10.1128/mcb.20.2.429-440.2000] [Citation(s) in RCA: 1368] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- M E Massari
- Department of Biology, University of California, San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
185
|
McMahon SB, Wood MA, Cole MD. The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol Cell Biol 2000; 20:556-62. [PMID: 10611234 PMCID: PMC85131 DOI: 10.1128/mcb.20.2.556-562.2000] [Citation(s) in RCA: 366] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The c-Myc protein functions as a transcription factor to facilitate oncogenic transformation; however, the biochemical and genetic pathways leading to transformation remain undefined. We demonstrate here that the recently described c-Myc cofactor TRRAP recruits histone acetylase activity, which is catalyzed by the human GCN5 protein. Since c-Myc function is inhibited by recruitment of histone deacetylase activity through Mad family proteins, these opposing biochemical activities are likely to be responsible for the antagonistic biological effects of c-Myc and Mad on target genes and ultimately on cellular transformation.
Collapse
Affiliation(s)
- S B McMahon
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
186
|
Chien PY, Ito M, Park Y, Tagami T, Gehm BD, Jameson JL. A fusion protein of the estrogen receptor (ER) and nuclear receptor corepressor (NCoR) strongly inhibits estrogen-dependent responses in breast cancer cells. Mol Endocrinol 1999; 13:2122-36. [PMID: 10598586 DOI: 10.1210/mend.13.12.0394] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nuclear receptor corepressor (NCoR) mediates repression (silencing) of basal gene transcription by nuclear receptors for thyroid hormone and retinoic acid. The goal of this study was to create novel estrogen receptor (ER) mutants by fusing transferable repressor domains from the N-terminal region of NCoR to a functional ER fragment. Three chimeric NCoR-ER proteins were created and shown to lack transcriptional activity. These fusion proteins silenced basal transcription of the ERE2-tk-Luc reporter gene and inhibited the activity of co-transfected wild-type ER (wtER), indicating that they possess dominant negative activity. One of the fusion proteins (CDE-RD1), containing the ER DNA-binding and ligand-binding domains linked to the NCoR repressor domain (RD1), was selected for detailed examination. Its hormone affinity, intracellular localization, and level of expression in transfected cells were similar to wtER, and it bound to the estrogen response element (ERE) DNA in gel shift assays. Glutathione-S-transferase pull-down assays showed that CDE-RD1 retains the ability to bind to steroid receptor coactivator-1. Introduction of a DNA-binding domain mutation into the CDE-RD1 fusion protein eliminated silencing and dominant negative activity. Thus, the RD1 repressor domain prevents transcriptional activation despite the apparent ability of CDE-RD1 to bind DNA, ligand, and coactivators. Transcriptional silencing was incompletely reversed by trichostatin A, suggesting a histone deacetylase-independent mechanism for repression. CDE-RD1 inhibited ER-mediated transcription in T47D and MDA-MB-231 breast cancer cells and repressed the growth of T47D cells when delivered to the cells by a retroviral vector. These ER-NCoR fusion proteins provide a novel means for inhibiting ER-mediated cellular responses, and analogous strategies could be used to create dominant negative mutants of other transcription factors.
Collapse
Affiliation(s)
- P Y Chien
- Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
187
|
Jiang Y, Drysdale TA, Evans T. A role for GATA-4/5/6 in the regulation of Nkx2.5 expression with implications for patterning of the precardiac field. Dev Biol 1999; 216:57-71. [PMID: 10588863 DOI: 10.1006/dbio.1999.9469] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interactions between the key regulatory genes of the cardiogenic pathway, including those from the GATA and Nkx2 transcription factor families, are not well defined. Treating neurula-stage Xenopus embryos with retinoic acid (RA) causes a specific block in cardiomyocyte development that correlates with a progressive reduction in the region of the presumptive heart-forming region expressing Nkx2.5. In contrast, RA does not block expression of the GATA-4/5/6 genes, which are transcribed normally in an overlapping pattern with Nkx2.5 throughout cardiogenesis. Instead, GATA-4/5/6 transcription levels are increased, including an expansion of the expression domain corresponding to lateral plate mesoderm that is part of the early heart field, but that normally is progressively restricted in its ability to contribute to the myocardium. GATA-dependent regulatory sequences of the Nkx2.5 gene that implicate GATA-4/5/6 as upstream positive regulators were described recently. However, our experiments also indicate that GATA factors might normally antagonize transcription of Nkx2.5. To test this hypothesis we generated a dominant negative isoform of GATA-4 (SRG4) capable of inhibiting transcription of GATA-dependent target genes. Ectopic expression of SRG4 results in a transient expansion of the Nkx2.5 transcript pattern, indicating that a normal function of GATA factors is to limit the boundary of the Nkx2.5 expression domain to the most anterior ventral region of the heart field. Regulatory mechanisms altered by excess RA must function normally to limit GATA-4/5/6 expression levels, to define the region of Nkx2.5 expression and regulate myocardial differentiation.
Collapse
Affiliation(s)
- Y Jiang
- Department of Developmental Biology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | | | | |
Collapse
|
188
|
Dang CV, Resar LM, Emison E, Kim S, Li Q, Prescott JE, Wonsey D, Zeller K. Function of the c-Myc oncogenic transcription factor. Exp Cell Res 1999; 253:63-77. [PMID: 10579912 DOI: 10.1006/excr.1999.4686] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The c-myc gene and the expression of the c-Myc protein are frequently altered in human cancers. The c-myc gene encodes the transcription factor c-Myc, which heterodimerizes with a partner protein, termed Max, to regulate gene expression. Max also heterodimerizes with the Mad family of proteins to repress transcription, antagonize c-Myc, and promote cellular differentiation. The constitutive activation of c-myc expression is key to the genesis of many cancers, and hence the understanding of c-Myc function depends on our understanding of its target genes. In this review, we attempt to place the putative target genes of c-Myc in the context of c-Myc-mediated phenotypes. From this perspective, c-Myc emerges as an oncogenic transcription factor that integrates the cell cycle machinery with cell adhesion, cellular metabolism, and the apoptotic pathways.
Collapse
Affiliation(s)
- C V Dang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Yin XY, Gupta K, Han WP, Levitan ES, Prochownik EV. Mmip-2, a novel RING finger protein that interacts with mad members of the Myc oncoprotein network. Oncogene 1999; 18:6621-34. [PMID: 10597267 DOI: 10.1038/sj.onc.1203097] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mad proteins are basic-helix-loop-helix-leucine zipper (bHLH-ZIP)-containing members of the myc oncoprotein network. They interact with the bHLH-ZIP protein max, compete for the same DNA binding sites as myc-max heterodimers and down-regulate myc-responsive genes. Using the bHLH-ZIP domain of mad1 as a yeast two-hybrid 'bait', we identified Mmip-2, a novel RING finger protein that interacts with all mad members, but weakly or not at all with c-myc, max or unrelated bHLH or bZIP proteins. The mad1-Mmip-2 interaction is mediated by the ZIP domain in the former protein and by at least two regions in the latter which do not include the RING finger. Mmip-2 can disrupt max-mad DNA binding and can reverse the suppressive effects of mad proteins on c-myc-responsive target genes and on c-myc + ras-mediated focus formation in fibroblasts. Tagging with spectral variants of green fluorescent protein showed that Mmip-2 and mad proteins reside in separate cytoplasmic and nuclear compartments, respectively. When co-expressed, however, the proteins interact and translocate to the cellular compartment occupied by the more abundant protein. These observations suggest a novel way by which Mmip-2 can modulate the transcriptional activity of myc oncoproteins.
Collapse
Affiliation(s)
- X Y Yin
- Section of Hematology/Oncology, Children's Hospital of Pittsburgh, University of Pittsburgh Cancer Institute, PA 15213, USA
| | | | | | | | | |
Collapse
|
190
|
Eilers AL, Billin AN, Liu J, Ayer DE. A 13-amino acid amphipathic alpha-helix is required for the functional interaction between the transcriptional repressor Mad1 and mSin3A. J Biol Chem 1999; 274:32750-6. [PMID: 10551834 DOI: 10.1074/jbc.274.46.32750] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the Mad family of bHLHZip proteins heterodimerize with Max and function to repress the transcriptional and transforming activities of the Myc proto-oncogene. Mad:Max heterodimers repress transcription by recruiting a large multi-protein complex containing the histone deacetylases, HDAC1 and HDAC2, to DNA. The interaction between Mad proteins and HDAC1/2 is mediated by the corepressor mSin3A and requires sequences at the amino terminus of the Mad proteins, termed the SID, for Sin3 interaction domain, and the second of four paired amphipathic alpha-helices (PAH2) in mSin3A. To better understand the requirements for the interaction between the SID and PAH2, we have performed mutagenesis and structural studies on the SID. These studies show that amino acids 8-20 of Mad1 are sufficient for SID:PAH2 interaction. Further, this minimal 13-residue SID peptide forms an amphipathic alpha-helix in solution, and residues on the hydrophobic face of the SID helix are required for interaction with PAH2. Finally, the minimal SID can function as an autonomous and portable repression domain, demonstrating that it is sufficient to target a functional mSin3A/HDAC corepressor complex.
Collapse
Affiliation(s)
- A L Eilers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112-5330, USA
| | | | | | | |
Collapse
|
191
|
Benson LQ, Coon MR, Krueger LM, Han GC, Sarnaik AA, Wechsler DS. Expression of MXI1, a Myc antagonist, is regulated by Sp1 and AP2. J Biol Chem 1999; 274:28794-802. [PMID: 10497252 DOI: 10.1074/jbc.274.40.28794] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
MXI1, a member of the MAD family of Myc antagonists, encodes a transcription factor whose expression must be tightly regulated to maintain normal cell growth and differentiation. To more closely investigate the transcriptional regulation of the human MXI1 gene, we have cloned and characterized the MXI1 promoter. After clarification of the 5'- and 3'-untranslated regions of the cDNA (indicating that the true length of the MXI1 transcript is 2643 base pairs), we identified two transcription initiation sites. We subsequently isolated the MXI1 promoter, which is GC-rich and lacks a TATA box. Although it contains at least six potential initiator sequences, functional studies indicate the proximal two initiator sequences in combination with nearby Sp1 and MED-1 sites together account for virtually all promoter activity. We also demonstrate that MXI1 promoter activity is repressed by high levels of AP2. These studies provide further insight into the complex regulatory mechanisms governing MXI1 gene expression and its role in cellular differentiation and tumor suppression.
Collapse
Affiliation(s)
- L Q Benson
- Division of Pediatric Hematology, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
192
|
McArthur GA, Laherty CD, Quéva C, Hurlin PJ, Loo L, James L, Grandori C, Gallant P, Shiio Y, Hokanson WC, Bush AC, Cheng PF, Lawrence QA, Pulverer B, Koskinen PJ, Foley KP, Ayer DE, Eisenman RN. The Mad protein family links transcriptional repression to cell differentiation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:423-33. [PMID: 10384307 DOI: 10.1101/sqb.1998.63.423] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- G A McArthur
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1042, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Elliott K, Sakamuro D, Basu A, Du W, Wunner W, Staller P, Gaubatz S, Zhang H, Prochownik E, Eilers M, Prendergast GC. Bin1 functionally interacts with Myc and inhibits cell proliferation via multiple mechanisms. Oncogene 1999; 18:3564-73. [PMID: 10380878 DOI: 10.1038/sj.onc.1202670] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tumor suppressor Bin1 was identified through its interaction with the N-terminal region of Myc which harbors its transcriptional activation domain. Here we show that Bin1 and Myc physically and functionally associate in cells and that Bin1 inhibits cell proliferation through both Myc-dependent and Myc-independent mechanisms. Bin1 specifically inhibited transactivation by Myc as assayed from artificial promoters or from the Myc target genes ornithine decarboxylase (ODC) and alpha prothymosin (pT). Inhibition of ODC but not pT required the presence of the Myc binding domain (MBD) of Bin1 suggesting two mechanisms of action. Consistent with this possibility, a non-MBD region of Bin1 was sufficient to recruit a repression function to DNA that was unrelated to histone deacetylase. Regions outside the MBD required for growth inhibition were mapped in Ras cotransformation or HepG2 hepatoma cell growth assays. Bin1 required the N-terminal BAR domain to suppress focus formation by Myc whereas the C-terminal U1 and SH3 domains were required to inhibit adenovirus E1A or mutant p53, respectively. All three domains contributed to Bin1 suppression of tumor cell growth but BAR-C was most crucial. These findings supported functional interaction between Myc and Bin1 in cells and indicated that Bin1 could inhibit malignant cell growth through multiple mechanisms.
Collapse
Affiliation(s)
- K Elliott
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Koipally J, Renold A, Kim J, Georgopoulos K. Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes. EMBO J 1999; 18:3090-100. [PMID: 10357820 PMCID: PMC1171390 DOI: 10.1093/emboj/18.11.3090] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Here we show that the lymphoid lineage-determining factors Ikaros and Aiolos can function as strong transcriptional repressors. This function is mediated through two repression domains and is dependent upon the promoter context and cell type. Repression by Ikaros proteins correlates with hypo-acetylation of core histones at promoter sites and is relieved by histone deacetylase inhibitors. Consistent with these findings, Ikaros and its repression domains can interact in vivo and in vitro with the mSin3 family of co-repressors which bind to histone deacetylases. Based on these and our recent findings of associations between Ikaros and Mi-2-HDAC, we propose that Ikaros family members modulate gene expression during lymphocyte development by recruiting distinct histone deacetylase complexes to specific promoters.
Collapse
Affiliation(s)
- J Koipally
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
195
|
Abstract
The cell proliferative activity of the Myc family of basic helix-loop-helix/leucine zipper (bHLHZip) transcription factors is dependent upon binding to the ubiquitous Max protein. In the absence of heterodimerization with Max, Myc protein is unable to efficiently bind to DNA and activate transcription. Members of the Mad family of transcription factors are thought to modulate the cell proliferative effects of the c-myc proto-oncogene by binding to Max, directly competing with the Myc protein for both heterodimerization and DNA binding. Consistent with a role in down-regulating cell division, the murine mad genes are expressed in embryonic tissues undergoing differentiation, often during or shortly after the down-regulation of myc gene expression. Here, we report the isolation and characterization of the first Xenopus mad family member, Xmad4. Maternal Xmad4 transcripts are present at high levels in the oocyte and in the cleavage stage embryo, but almost disappear by the neurula stage. Zygotic expression of the Xmad4 gene is initiated in the epidermis of the late neurula stage, and shortly thereafter, Xmad4 is transiently detectable in the cement and hatching glands. At later stages, expression is also observed in the developing pronephros and liver. Unlike the murine mad4 gene, we find that multiple Xmad4 splice variants exist in Xenopus and that these variants are differentially expressed in both the embryo and the adult. Despite the demonstrated antagonistic role of Mad proteins in the regulation of Myc activity, we show that the over-expression of Xmad4 in the cleavage-stage embryo has no detectable phenotypic effect, suggesting that Myc function is dispensable during early embryonic development.
Collapse
Affiliation(s)
- C S Newman
- Institute for Cellular and Molecular Biology and Department of Zoology, University of Texas at Austin, 78712, USA
| | | |
Collapse
|
196
|
Foley KP, Eisenman RN. Two MAD tails: what the recent knockouts of Mad1 and Mxi1 tell us about the MYC/MAX/MAD network. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1423:M37-47. [PMID: 10382539 DOI: 10.1016/s0304-419x(99)00012-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Members of the MAD/MXI protein family heterodimerize with MAX and repress transcription by recruiting a chromatin-modifying co-repressor complex to specific DNA target genes. Repression mediated by MAD is thought to antagonize the transcriptional activation and proliferation-promoting functions of MYC-MAX heterodimers. Because they are induced during differentiation, it has been suggested that MAD proteins act to limit cell proliferation during terminal differentiation. There is also controversial evidence that these proteins may function as tumor suppressors. Recently, targeted gene deletions of two members of this gene family, Mad1 and Mxi1, have been carried out in mice. Although these animals display what appear to be quite different phenotypes, further analysis supports the view that both these proteins function in cell-cycle exit during terminal differentiation, and that at least MXI1 can act as a tumor suppressor.
Collapse
Affiliation(s)
- K P Foley
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | |
Collapse
|
197
|
Fry CJ, Pearson A, Malinowski E, Bartley SM, Greenblatt J, Farnham PJ. Activation of the murine dihydrofolate reductase promoter by E2F1. A requirement for CBP recruitment. J Biol Chem 1999; 274:15883-91. [PMID: 10336493 DOI: 10.1074/jbc.274.22.15883] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The E2F family of heterodimeric transcription factors plays an important role in the regulation of gene expression at the G1/S phase transition of the mammalian cell cycle. Previously, we have demonstrated that cell cycle regulation of murine dihydrofolate reductase (dhfr) expression requires E2F-mediated activation of the dhfr promoter in S phase. To investigate the mechanism by which E2F activates an authentic E2F-regulated promoter, we precisely replaced the E2F binding site in the dhfr promoter with a Gal4 binding site. Using Gal4-E2F1 derivatives, we found that E2F1 amino acids 409-437 contain a potent core transactivation domain. Functional analysis of the E2F1 core domain demonstrated that replacement of phenylalanine residues 413, 425, and 429 with alanine reduces both transcriptional activation of the dhfr promoter and protein-protein interactions with CBP, transcription factor (TF) IIH, and TATA-binding protein (TBP). However, additional amino acid substitutions for phenylalanine 429 demonstrated a strong correlation between activation of the dhfr promoter and binding of CBP, but not TFIIH or TBP. Finally, transactivator bypass experiments indicated that direct recruitment of CBP is sufficient for activation of the dhfr promoter. Therefore, we suggest that recruitment of CBP is one mechanism by which E2F activates the dhfr promoter.
Collapse
Affiliation(s)
- C J Fry
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
198
|
Abstract
Despite its intensive investigation for almost two decades, c-Myc remains a fascinating and enigmatic subject. A large and compelling body of evidence indicates that c-Myc is a transcription factor with central roles in the regulation of cell proliferation, differentiation, and apoptosis, but its exact function has remained elusive. In this review we survey recent advances in the identification and analysis of c-Myc-binding proteins, which suggest insights into the transcriptional roles of c-Myc but which also extend the existing functional paradigms. The C-terminal domain (CTD) of c-Myc mediates interaction with Max and physiological recognition of DNA target sequences, events needed for all biological actions. Recently described interactions between the CTD and other cellular proteins, including YY-1, AP-2, BRCA-1, TFII-I, and Miz-1, suggest levels of regulatory complexity beyond Max in controlling DNA recognition by c-Myc. The N-terminal domain (NTD), which includes the evolutionarily conserved and functionally crucial Myc Box sequences (MB1 and MB2), contains the transcription activation domain (TAD) of c-Myc as well as regions required for transcriptional repression, cell cycle regulation, transformation, and apoptosis. In addition to interaction with the retinoblastoma family protein p107, the NTD has been shown to interact with alpha-tubulin and the novel adaptor proteins Binl, MM-1, Pam, TRRAP, and AMY-1. The structure of these proteins and their effects on c-Myc actions suggest links to the transcriptional regulatory machinery as well as to cell cycle regulation, chromatin modeling, and apoptosis. Investigations of this emerging NTD-based network may reveal how c-Myc is regulated and how it affects cell fate, as well as providing tools to distinguish the physiological roles of various Myc target genes.
Collapse
Affiliation(s)
- D Sakamuro
- The Wistar Institute, Philadelphia, Pennsylvania 19104-4268, USA
| | | |
Collapse
|
199
|
Abstract
The DNA in eukaryotic cells is packaged into chromatin, which functions as a boundary to the transcriptional activation process. The nucleosome is the basic repeating unit of chromatin. The purification and characterization of several chromatin-remodelling complexes and the demonstration that histone acetyltransferases and histone deacetylases are regulatory components of coactivator and corepressor complexes, respectively, demonstrates that the nucleosome is not simply a static architectural feature of chromatin but, rather, plays a dynamic and integral role in the regulation of gene expression. This review focuses primarily on histone deacetylases and deacetylase-containing complexes and their role in mediating transcriptional repression.
Collapse
Affiliation(s)
- D E Ayer
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
200
|
FitzGerald MJ, Arsura M, Bellas RE, Yang W, Wu M, Chin L, Mann KK, DePinho RA, Sonenshein GE. Differential effects of the widely expressed dMax splice variant of Max on E-box vs initiator element-mediated regulation by c-Myc. Oncogene 1999; 18:2489-98. [PMID: 10229200 DOI: 10.1038/sj.onc.1202611] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
dMax, a naturally occurring splice variant of the Myc binding protein Max, lacks the DNA binding basic region and helix 1 of the Helix-Loop-Helix domain; dMax interacts with c-Myc in vitro and in vivo, and inhibits E-box Myc site driven transcription in transient transfection assays. Here we have investigated the expression, function and interactions of dMax. RT/PCR analyses detected dmax mRNA in multiple tissues of the developing, newborn and adult mouse. Functionally, dMax reduced the ability of c-Myc to cooperate with the progression factor A-Myb to promote S phase entry of quiescent smooth muscle cells. In contrast, dMax failed to ablate inhibition of initiator element (Inr)-mediated transcription by c-Myc in Jurkat T cells. In in vitro protein:protein association assays, dMax interacted with c-Myc, N-Myc, L-Myc, Mad1, Mxi1, Mad3 and Mad4, but not with itself or wild-type Max. These interactions required an intact leucine zipper. Inhibition of E-box-mediated transactivation by induction of dMax overexpression resulted in apoptosis of WEHI 231 B cells. Thus, dMax is a widely expressed, naturally occurring protein, with the capacity to bind most members of the Myc/Max superfamily; dMax has little effect on Inr-mediated repression by c-Myc, but can significantly decrease E-box-mediated events promoting proliferation and cell survival.
Collapse
Affiliation(s)
- M J FitzGerald
- Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|