151
|
Hsu DT, Price JL. Paraventricular thalamic nucleus: subcortical connections and innervation by serotonin, orexin, and corticotropin-releasing hormone in macaque monkeys. J Comp Neurol 2009; 512:825-48. [PMID: 19085970 DOI: 10.1002/cne.21934] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study examines subcortical connections of paraventricular thalamic nucleus (Pa) following small anterograde and retrograde tracer injections in cynomolgus monkeys (Macaca fascicularis). An anterograde tracer injection into the dorsal midline thalamus revealed strong projections to the accumbens nucleus, basal amygdala, lateral septum, and hypothalamus. Retrograde tracer injections into these areas labeled neurons specifically in Pa. Following a retrograde tracer injection into Pa, labeled neurons were found in the hypothalamus, dorsal raphe, and periaqueductal gray. Pa contained a remarkably high density of axons and axonal varicosities immunoreactive for serotonin (5-HT) and orexin/hypocretin (ORX), as well as a moderate density of fibers immunoreactive for corticotropin-releasing hormone (CRH). A retrograde tracer injection into Pa combined with immunohistochemistry demonstrated that ORX and 5-HT axons originate from neurons in the hypothalamus and midbrain. Pa-projecting neurons were localized in the same nuclei of the hypothalamus, amygdala, and midbrain as CRH neurons, although no double labeling was found. The connections of Pa and its innervation by 5-HT, ORX, and CRH suggest that it may relay stress signals between the midbrain and hypothalamus with the accumbens nucleus, basal amygdala, and subgenual cortex as part of a circuit that manages stress and possibly stress-related psychopathologies.
Collapse
Affiliation(s)
- David T Hsu
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
152
|
Kamishina H, Conte WL, Patel SS, Tai RJ, Corwin JV, Reep RL. Cortical connections of the rat lateral posterior thalamic nucleus. Brain Res 2009; 1264:39-56. [PMID: 19368845 DOI: 10.1016/j.brainres.2009.01.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 11/29/2022]
Abstract
Spatial processing related to directed attention is thought to be mediated by a specific cortical-basal ganglia-thalamic-cortical network in the rat. Key components of this network are associative cortical areas medial agranular cortex (AGm) and posterior parietal cortex (PPC), dorsocentral striatum (DCS), and lateral posterior (LP) thalamic nucleus, all of which are interconnected. Previously, we found that thalamostriatal projections reaching DCS arise from separate populations of neurons of the mediorostral part of LP (LPMR). The far medial LPMR (fmLPMR) terminates in central DCS, a projection area of AGm, whereas central LPMR terminates in dorsal DCS, a projection area of PPC. This represents segregated regional convergence in DCS from different sources of thalamic and cortical inputs. In the present study, thalamocortical and corticothalamic projections arising from and terminating in LPMR and neighboring thalamic nuclei were studied by anterograde and retrograde tracing techniques in order to further understand the anatomical basis of this neural circuitry. A significant finding was that within LPMR, separate neuronal populations provide thalamic inputs to AGm or PPC and that these cortical areas project to separate regions in LPMR, from which they receive thalamic inputs. Other cortical areas adjacent to AGm or PPC also demonstrated reciprocal connections with LP or surrounding nuclei in a topographic manner. Our findings suggest that the cortical-basal ganglia-thalamic network mediating directed attention in the rat is formed by multiple loops, each having reciprocal connections that are organized in a precise and segregated topographical manner.
Collapse
Affiliation(s)
- Hiroaki Kamishina
- Department of Veterinary Clinical Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan.
| | | | | | | | | | | |
Collapse
|
153
|
Hamlin AS, Clemens KJ, Choi EA, McNally GP. Paraventricular thalamus mediates context-induced reinstatement (renewal) of extinguished reward seeking. Eur J Neurosci 2009; 29:802-12. [PMID: 19200064 DOI: 10.1111/j.1460-9568.2009.06623.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Paraventricular thalamus (PvTh) is uniquely placed to contribute to reinstatement of drug and reward seeking. It projects extensively to regions implicated in reinstatement including accumbens shell (AcbSh), prefrontal cortex (PFC) and basolateral amygdala (BLA), and receives afferents from other regions important for reinstatement such as lateral hypothalamus. We used complementary neuroanatomical and functional approaches to study the role of PvTh in context-induced reinstatement (renewal) of extinguished reward-seeking. Rats were trained to respond for a reward in context A, extinguished in context B and tested in context A or B. We applied the neuronal tracer cholera toxin B subunit (CTb) to AcbSh and examined retrograde-labelled neurons, c-Fos immunoreactivity (IR) and dual c-Fos/CTb labelled neurons in PvTh and other AcbSh afferents. In PvTh there was c-Fos IR in CTb-positive neurons associated with renewal showing activation of a PvTh-AcbSh pathway during renewal. In PFC there was little c-Fos IR in CTb-positive or negative neurons associated with renewal. In BLA, two distinct patterns of activation and retrograde labelling were observed. In rostral BLA there was significant c-Fos IR in CTb-negative neurons associated with renewal. In caudal BLA there was significant c-Fos IR in CTb-positive neurons associated with being tested in either the extinction (ABB) or training (ABA) context. We then studied the functional role of PvTh in renewal. Excitotoxic lesions of PvTh prevented renewal. These lesions had no effect on the acquisition of reward seeking. These results show that PvTh mediates context-induced reinstatement and that this renewal is associated with recruitment of a PvTh-AcbSh pathway.
Collapse
Affiliation(s)
- Adam S Hamlin
- School of Psychology, The University of New South Wales, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
154
|
Rubio-Garrido P, Pérez-de-Manzo F, Porrero C, Galazo MJ, Clascá F. Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. ACTA ACUST UNITED AC 2009; 19:2380-95. [PMID: 19188274 DOI: 10.1093/cercor/bhn259] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Input to apical dendritic tufts is now deemed crucial for associative learning, attention, and similar "feedback" interactions in the cerebral cortex. Excitatory input to apical tufts in neocortical layer 1 has been traditionally assumed to be predominantly cortical, as thalamic pathways directed to this layer were regarded relatively scant and diffuse. However, the sensitive tracing methods used in the present study show that, throughout the rat neocortex, large numbers (mean approximately 4500/mm(2)) of thalamocortical neurons converge in layer 1 and that this convergence gives rise to a very high local density of thalamic terminals. Moreover, we show that the layer 1-projecting neurons are present in large numbers in most, but not all, motor, association, limbic, and sensory nuclei of the rodent thalamus. Some layer 1-projecting axons branch to innervate large swaths of the cerebral hemisphere, whereas others arborize within only a single cortical area. Present data imply that realistic modeling of cortical circuitry should factor in a dense axonal canopy carrying highly convergent thalamocortical input to pyramidal cell apical tufts. In addition, they are consistent with the notion that layer 1-projecting axons may be a robust anatomical substrate for extensive "feedback" interactions between cortical areas via the thalamus.
Collapse
Affiliation(s)
- Pablo Rubio-Garrido
- Department of Anatomy and Neuroscience, School of Medicine, Autónoma University, Madrid, Spain
| | | | | | | | | |
Collapse
|
155
|
Meeren HKM, Veening JG, Möderscheim TAE, Coenen AML, van Luijtelaar G. Thalamic lesions in a genetic rat model of absence epilepsy: dissociation between spike-wave discharges and sleep spindles. Exp Neurol 2009; 217:25-37. [PMID: 19416679 DOI: 10.1016/j.expneurol.2009.01.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 12/11/2008] [Accepted: 01/15/2009] [Indexed: 11/30/2022]
Abstract
Recent findings have challenged the traditional view that the thalamus is the primary driving source of generalized spike-wave discharges (SWDs) characteristic for absence seizures, and indicate a leading role for the cortex instead. In light of this we investigated the effects of thalamic lesions on SWDs and sleep spindles in the WAG/Rij rat, a genetic model of absence epilepsy. EEG was recorded from neocortex and thalamus in freely moving rats, both before and after unilateral thalamic ibotenic acid lesions. Complete unilateral destruction of the reticular thalamic nucleus (RTN) combined with extensive destruction of the thalamocortical relay (TCR) nuclei, resulted in the bilateral abolishment of SWDs and ipsilateral abolishment of sleep spindles. A suppression of both types of thalamocortical oscillations was found when complete or extensive damage to the RTN was combined with minor to moderate damage to the TCR nuclei. Lesions that left the rostral pole of the RTN and part of the TCR nuclei intact, resulted in an ipsilateral suppression of sleep spindles, but a large increase of bilateral SWDs. These findings demonstrate that the thalamus in general and the RTN in particular are a prerequisite for both the typical bilateral 7-11 Hz SWDs and natural occurring sleep spindles in the WAG/Rij rat, but suggest that different intrathalamic subcircuits are involved in the two types of thalamocortical oscillations. Whereas the whole RTN appears to be critical for the generation of sleep spindles, the rostral pole of the RTN seems to be the most likely part that generates SWDs.
Collapse
Affiliation(s)
- Hanneke K M Meeren
- Cognitive and Affective Neuroscience, Tilburg University, Tilburg, The Netherlands
| | | | | | | | | |
Collapse
|
156
|
Campbell P, Reep RL, Stoll ML, Ophir AG, Phelps SM. Conservation and diversity of Foxp2 expression in muroid rodents: functional implications. J Comp Neurol 2009; 512:84-100. [PMID: 18972576 PMCID: PMC2677918 DOI: 10.1002/cne.21881] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
FOXP2, the first gene causally linked to a human language disorder, is implicated in song acquisition, production, and perception in oscine songbirds, the evolution of speech and language in hominids, and the evolution of echolocation in bats. Despite the evident relevance of Foxp2 to vertebrate acoustic communication, a comprehensive description of neural expression patterns is currently lacking in mammals. Here we use immunocytochemistry to systematically describe the neural distribution of Foxp2 protein in four species of muroid rodents: Scotinomys teguina and S. xerampelinus ("singing mice"), the deer mouse, Peromyscus maniculatus, and the lab mouse, Mus musculus. While expression patterns were generally highly conserved across brain regions, we identified subtle but consistent interspecific differences in Foxp2 distribution, most notably in the medial amygdala and nucleus accumbens, and in layer V cortex throughout the brain. Throughout the brain, Foxp2 was highly enriched in areas involved in modulation of fine motor output (striatum, mesolimbic dopamine circuit, olivocerebellar system) and in multimodal sensory processing and sensorimotor integration (thalamus, cortex). We propose a generalized model for Foxp2-modulated pathways in the adult brain including, but not limited to, fine motor production and auditory perception.
Collapse
Affiliation(s)
- Polly Campbell
- Department of Zoology, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | | | |
Collapse
|
157
|
Mair RG, Hembrook JR. Memory enhancement with event-related stimulation of the rostral intralaminar thalamic nuclei. J Neurosci 2008; 28:14293-300. [PMID: 19109510 PMCID: PMC2630113 DOI: 10.1523/jneurosci.3301-08.2008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 11/18/2008] [Accepted: 11/19/2008] [Indexed: 11/21/2022] Open
Abstract
The rostral intralaminar thalamic nuclei (ILn) are organized to activate pathways originating in medial prefrontal cortex (mPF) that mediate memory-guided responding during alert, wakeful states. Previous studies have shown that rostral ILn or mPF lesions produce deficits in delayed matching to position (DMTP). Here, we manipulated rostral ILn activity in rats by microinjecting drugs or applying electrical current and examined effects on DMTP. Inhibiting activity with the GABA(A) agonist muscimol impaired DMTP. Decreasing GABA(A) tone with FG-7142 (N-methyl-beta-carboline-3-carboxamide) improved DMTP at low but not high doses. Orexin A, which depolarizes thalamocortical neurons locally within the ILn, improved DMTP, whereas the cholinergic agonist carbachol impaired performance at the highest dose tested. These drug effects were unaffected by partial mPF lesions in a subset of animals. Microinjection results are consistent with an inverted-U relationship between thalamic activity and DMTP. This relationship was confirmed by event-related electrical stimulation, which produced improvement at low stimulation currents and impairment at higher currents. Electrical stimulation affected DMTP when applied at the start of the memory delay or choice response, but not earlier when trials began or the sample lever was presented. Our results are consistent with evidence that the rostral ILn play a role in retrieval, carrying response-related information across brief memory delays and facilitating memory-guided responding. They also provide evidence that treatments stimulating rostral ILn activity may be an effective means to enhance working memory and related cognitive processes and thus to treat disorders that affect these functions.
Collapse
Affiliation(s)
- Robert G Mair
- Department of Psychology, University of New Hampshire, Durham, New Hampshire 03824, USA.
| | | |
Collapse
|
158
|
Sedaghat K, Shen PJ, Finkelstein D, Henderson J, Gundlach A. Leucine-rich repeat-containing G-protein-coupled receptor 8 in the rat brain: Enrichment in thalamic neurons and their efferent projections. Neuroscience 2008; 156:319-33. [DOI: 10.1016/j.neuroscience.2008.07.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/06/2008] [Accepted: 07/08/2008] [Indexed: 11/25/2022]
|
159
|
Chen TC, Cheng YY, Sun WZ, Shyu BC. Differential regulation of morphine antinociceptive effects by endogenous enkephalinergic system in the forebrain of mice. Mol Pain 2008; 4:41. [PMID: 18826595 PMCID: PMC2569012 DOI: 10.1186/1744-8069-4-41] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Accepted: 09/30/2008] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mice lacking the preproenkephalin (ppENK) gene are hyperalgesic and show more anxiety and aggression than wild-type (WT) mice. The marked behavioral changes in ppENK knock-out (KO) mice appeared to occur in supraspinal response to painful stimuli. However the functional role of enkephalins in the supraspinal nociceptive processing and their underlying mechanism is not clear. The aim of present study was to compare supraspinal nociceptive and morphine antinociceptive responses between WT and ppENK KO mice. RESULTS The genotypes of bred KO mice were confirmed by PCR. Met-enkephalin immunoreactive neurons were labeled in the caudate-putamen, intermediated part of lateral septum, lateral globus pallidus, intermediated part of lateral septum, hypothalamus, and amygdala of WT mice. Met-enkephalin immunoreactive neurons were not found in the same brain areas in KO mice. Tail withdrawal and von Frey test results did not differ between WT and KO mice. KO mice had shorter latency to start paw licking than WT mice in the hot plate test. The maximal percent effect of morphine treatments (5 mg/kg and 10 mg/kg, i.p.) differed between WT and KO mice in hot plate test. The current source density (CSD) profiles evoked by peripheral noxious stimuli in the primary somatosenstory cortex (S1) and anterior cingulate cortex (ACC) were similar in WT and KO mice. After morphine injection, the amplitude of the laser-evoked sink currents was decreased in S1 while the amplitude of electrical-evoked sink currents was increased in the ACC. These differential morphine effects in S1 and ACC were enhanced in KO mice. Facilitation of synaptic currents in the ACC is mediated by GABA inhibitory interneurons in the local circuitry. Percent increases in opioid receptor binding in S1 and ACC were 5.1% and 5.8%, respectively. CONCLUSION The present results indicate that the endogenous enkephalin system is not involved in acute nociceptive transmission in the spinal cord, S1, and ACC. However, morphine preferentially suppressed supraspinal related nociceptive behavior in KO mice. This effect was reflected in the potentiated differential effects of morphine in the S1 and ACC in KO mice. This potentiation may be due to an up-regulation of opioid receptors. Thus these findings strongly suggest an antagonistic interaction between the endogenous enkephalinergic system and exogenous opioid analgesic actions in the supraspinal brain structures.
Collapse
Affiliation(s)
- Tsung-Chieh Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan, ROC.
| | | | | | | |
Collapse
|
160
|
Alloway KD, Olson ML, Smith JB. Contralateral corticothalamic projections from MI whisker cortex: potential route for modulating hemispheric interactions. J Comp Neurol 2008; 510:100-16. [PMID: 18615539 DOI: 10.1002/cne.21782] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rat whisking behavior is characterized by high amounts of bilateral coordination in which whisker movements on both sides of the face are linked. To elucidate the neural substrate that might mediate this bilateral coordination, neuronal tracers were used to characterize the bilateral distribution of corticothalamic projections from primary motor (MI) cortex. Some rats received tracers in the MI whisker region, whereas others received tracers in the MI forepaw region. The MI whisker region projects bilaterally to the anteromedial (AM), ventromedial (VM), and ventrolateral (VL) nuclei, and to parts of the intralaminar nuclei. By contrast, the MI forepaw region sends virtually no projections to the contralateral thalamus. Consistent with these findings, bilateral injections of different tracers into the MI whisker region of each hemisphere produced tracer overlap on both sides of the thalamus. Furthermore, MI whisker projections to the contralateral thalamus terminate in close proximity to the thalamocortical neurons that project to the MI whisker region of that contralateral hemisphere. The terminal endings of the contralateral corticothalamic projections contain small synaptic varicosities and other features that resemble the modulator pathways described for other corticothalamic projection systems. In addition, tracer injections into AM, VM, and VL revealed dense clusters of labeled neurons in layer VI of the medial agranular (Agm) zone, which corresponds to the MI whisker region. These results suggest that projections from the MI whisker region to the contralateral thalamus may modulate the callosal interactions that are presumed to play a role in coordinating bilateral whisking behavior.
Collapse
Affiliation(s)
- Kevin D Alloway
- Department of Neural & Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-2255, USA.
| | | | | |
Collapse
|
161
|
Sloan DM, Bertram EH. Changes in midline thalamic recruiting responses in the prefrontal cortex of the rat during the development of chronic limbic seizures. Epilepsia 2008; 50:556-65. [PMID: 18801032 DOI: 10.1111/j.1528-1167.2008.01790.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE Mesial temporal lobe epilepsy (MTLE) is a common form of epilepsy that affects the limbic system and is associated with decreases in memory and cognitive performance. The medial prefrontal cortex (PC) in rats, which has a role in memory, is associated with and linked anatomically to the limbic system, but it is unknown if and how MTLE affects the PC. METHODS We evoked responses in vivo in the PC by electrical stimulation of the mediodorsal (MD) and reuniens (RE) nuclei of the thalamus at several time points following status epilepticus, before and after onset of spontaneous seizures. Kindled animals were used as additional controls for the effect of seizures that were independent of epilepsy. RESULTS Epileptic animals had decreased response amplitudes and significantly reduced recruiting compared to controls, whereas kindled animals showed an increase in both measures. These changes were not associated with neuronal loss in the PC, although there was significant loss in both the MD and RE in the epileptic animals. CONCLUSIONS There is a significant reduction in the thalamically induced evoked responses in the PCs of epileptic animals. This finding suggests that physiologic dysfunction in MTLE extends beyond primary limbic circuits into areas without overt neuronal injury.
Collapse
Affiliation(s)
- David M Sloan
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | | |
Collapse
|
162
|
The hallucinogen DOI reduces low-frequency oscillations in rat prefrontal cortex: reversal by antipsychotic drugs. Biol Psychiatry 2008; 64:392-400. [PMID: 18436196 DOI: 10.1016/j.biopsych.2008.03.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 03/11/2008] [Accepted: 03/14/2008] [Indexed: 01/01/2023]
Abstract
BACKGROUND Perceptual and psychic alterations and thought disorder are fundamental elements of schizophrenia symptoms, a pathology associated with an abnormal macro- and microcircuitry of several brain areas including the prefrontal cortex (PFC). Alterations in information processing in PFC may partly underlie schizophrenia symptoms. METHODS The 5-HT(2A/2C) agonist DOI and antipsychotic drugs were administered to anesthetized rats. Single unit and local field potential (LFP) extracellular recordings were made in medial PFC (mPFC). Electrolytic lesions were performed in the thalamic nuclei. RESULTS DOI markedly disrupts cellular and network activity in rat PFC. DOI altered pyramidal discharge in mPFC (39% excited, 27% inhibited, 34% unaffected; n = 51). In all instances, DOI concurrently reduced low-frequency oscillations (.3-4 Hz; power spectrum: .25 +/- .02 and .14 +/- .01 microV(2) in basal conditions and after 50-300 microg/kg intravenous (i.v.) DOI, respectively; n = 51). Moreover, DOI disrupted the temporal association between the active phase of LFP and pyramidal discharge. Both effects were reversed by M100907 (5-HT(2A) receptor antagonist) and were not attenuated by thalamic lesions, supporting an intracortical origin of the effects of DOI. The reduction in low-frequency oscillations induced by DOI was significantly reversed by the antipsychotic drugs haloperidol (.1-.2 mg/kg i.v.) and clozapine (1 mg/kg i.v.). CONCLUSIONS DOI disorganizes network activity in PFC, reducing low-frequency oscillations and desynchronizing pyramidal discharge from active phases of LFP. These effects may underlie DOI's psychotomimetic action. The reversal by clozapine and haloperidol indicates that antipsychotic drugs may reduce psychotic symptoms by normalizing an altered PFC function.
Collapse
|
163
|
Wilson HD, Uhelski ML, Fuchs PN. Examining the role of the medial thalamus in modulating the affective dimension of pain. Brain Res 2008; 1229:90-9. [PMID: 18625207 DOI: 10.1016/j.brainres.2008.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 06/02/2008] [Accepted: 06/02/2008] [Indexed: 12/21/2022]
Abstract
The purpose of this project was to explore the role of the medial thalamus (MT), including the medial dorsal thalamus (MD) and associated midline nuclei in pain processing. Experiment 1 explored the role of electrolytic lesions to the MT in the formalin test. It was hypothesized that animals with electrolytic lesions to the MT would have attenuated paw licking behavior during the second phase of the formalin tests as compared to sham lesion controls. This hypothesis was based on evidence of projections from the MD to the ACC, and previous research demonstrating attenuation of paw licking behavior in the second phase of the formalin test in animals with ACC lesions. Experiment 2 tested the effects of electrolytic MT lesions on mechanical paw withdrawal thresholds in the L5 nerve ligation model. It was hypothesized that lesions of the MT would not alter mechanical paw withdrawal thresholds. Experiment 3 tested the effects of electrolytic MT lesions on escape/avoidance behavior in the place escape avoidance paradigm. For experiment 1, animals with MT lesions were found to have slightly elevated paw licking behavior, but only across two time points. No differences in mechanical paw withdrawal thresholds and in escape/avoidance behavior were detected as compared to the sham lesion group. These results indicate a limited role for the medial thalamic nuclei in coding for pain intensity and the affective dimension of pain. Additional research is needed to explore the role of individual medial nuclei in pain processing.
Collapse
|
164
|
Walker DL, Davis M. Role of the extended amygdala in short-duration versus sustained fear: a tribute to Dr. Lennart Heimer. Brain Struct Funct 2008; 213:29-42. [DOI: 10.1007/s00429-008-0183-3] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 05/15/2008] [Indexed: 10/22/2022]
|
165
|
|
166
|
Vertes RP, Hoover WB. Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat. J Comp Neurol 2008; 508:212-37. [PMID: 18311787 DOI: 10.1002/cne.21679] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The paraventricular (PV) and paratenial (PT) nuclei are prominent cell groups of the midline thalamus. To our knowledge, only a single early report has examined PV projections and no previous study has comprehensively analyzed PT projections. By using the anterograde anatomical tracer, Phaseolus vulgaris leucoagglutinin, and the retrograde tracer, FluoroGold, we examined the efferent projections of PV and PT. We showed that the output of PV is virtually directed to a discrete set of limbic forebrain structures, including 'limbic' regions of the cortex. These include the infralimbic, prelimbic, dorsal agranular insular, and entorhinal cortices, the ventral subiculum of the hippocampus, dorsal tenia tecta, claustrum, lateral septum, dorsal striatum, nucleus accumbens (core and shell), olfactory tubercle, bed nucleus of stria terminalis (BST), medial, central, cortical, and basal nuclei of amygdala, and the suprachiasmatic, arcuate, and dorsomedial nuclei of the hypothalamus. The posterior PV distributes more heavily than the anterior PV to the dorsal striatum and to the central and basal nuclei of amygdala. PT projections significantly overlap with those of PV, with some important differences. PT distributes less heavily than PV to BST and to the amygdala, but much more densely to the medial prefrontal and entorhinal cortices and to the ventral subiculum of hippocampus. As described herein, PV/PT receive a vast array of afferents from the brainstem, hypothalamus, and limbic forebrain, related to arousal and attentive states of the animal, and would appear to channel that information to structures of the limbic forebrain in the selection of appropriate responses to changing environmental conditions. Depending on the specific complement of emotionally associated information reaching PV/PT at any one time, PV/PT would appear positioned, by actions on the limbic forebrain, to direct behavior toward a particular outcome over a range of outcomes.
Collapse
Affiliation(s)
- Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431, USA.
| | | |
Collapse
|
167
|
Young CK, McNaughton N. Coupling of theta oscillations between anterior and posterior midline cortex and with the hippocampus in freely behaving rats. Cereb Cortex 2008; 19:24-40. [PMID: 18453538 DOI: 10.1093/cercor/bhn055] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Theta oscillations in the hippocampus support cognitive processing. Theta-range rhythmicity has also been reported in frontal and posterior cortical areas--where it tends to show consistent phase-relations with hippocampal rhythmicity. Theta-range rhythmicity may, then, be important for cortico-cortical and/or cortico-hippocampal interactions. Here, we surveyed the rat frontal and posterior midline cortices for theta-related oscillations and examined their relationships with hippocampal activity in freely moving rats. Variation in electroencephalography across 4 general classes of spontaneous behavior demonstrated different profiles of theta-like activities through the rat midline cortices. Analysis of cortico-cortical and cortico-hippocampal coherences showed distinct, behavior-dependent, couplings of theta and delta oscillations. Increased theta coherence between structures was most obvious during nonautomatic behaviors and least during immobility or grooming. Extensive coupling of theta oscillations throughout the rat midline cortices and hippocampus occurred during rearing, and exploratory behavior. Such increases in coherence could reflect binding of cortico-hippocampal pathways into temporary functional units by behavioral demands. Extensive coupling of frontal delta, which lacked coherence with posterior areas (including the hippocampus), suggests that different frequencies of rhythmicity may act to bind groups of structures into different functional circuits on different occasions.
Collapse
Affiliation(s)
- Calvin K Young
- Department of Psychology, University of Otago, Dunedin 9054, New Zealand
| | | |
Collapse
|
168
|
Wolff M, Gibb SJ, Cassel JC, Dalrymple-Alford JC. Anterior but not intralaminar thalamic nuclei support allocentric spatial memory. Neurobiol Learn Mem 2008; 90:71-80. [PMID: 18296080 DOI: 10.1016/j.nlm.2008.01.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 12/28/2007] [Accepted: 01/08/2008] [Indexed: 11/18/2022]
Abstract
Medial thalamic damage is a common cause of severe memory disruption in humans. Both the anterior thalamic nuclei (ATN) and the intralaminar thalamic nuclei (ILN) have been suggested as primary sites of diencephalic injury underlying learning and memory deficits, but their respective roles have yet to be resolved. The present study explicitly compared two spatial memory tasks in male PVGc hooded rats with selective neurotoxic lesions to either (1) the ATN or (2) the rostral ILN (and adjacent lateral mediodorsal thalamic nuclei; ILN/LT lesions). As predicted, the ATN group, but not the ILN/LT group, exhibited clear deficits in the Morris water maze task for the initial acquisition of a fixed hidden platform and its reversal to a new position. The second task examined acquisition of egocentric spatial reference memory for a left or right body turn, using any three arms in an 8-arm water maze on any given trial; contrary to predictions, both lesion groups performed as well as the Sham group. The lack of deficits in ILN/LT rats on this second task contrasted with previous findings reporting a detrimental effect of ILN/LT lesions on egocentric working memory. The clear dissociation between the influence of ATN and ILN/LT lesions with respect to allocentric spatial reference memory in the Morris maze emphasizes that caution is required when interpreting the effects of non-ATN thalamic lesions on spatial memory when the lesions encroach substantial areas of the adjacent ATN region.
Collapse
Affiliation(s)
- Mathieu Wolff
- Van der Veer Institute for Parkinson's and Brain Research, Department of Psychology, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand
| | | | | | | |
Collapse
|
169
|
Moutsimilli L, Farley S, El Khoury MA, Chamot C, Sibarita JB, Racine V, El Mestikawy S, Mathieu F, Dumas S, Giros B, Tzavara ET. Antipsychotics increase vesicular glutamate transporter 2 (VGLUT2) expression in thalamolimbic pathways. Neuropharmacology 2008; 54:497-508. [DOI: 10.1016/j.neuropharm.2007.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 10/13/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
|
170
|
Li S, Kirouac GJ. Projections from the paraventricular nucleus of the thalamus to the forebrain, with special emphasis on the extended amygdala. J Comp Neurol 2008; 506:263-87. [PMID: 18022956 DOI: 10.1002/cne.21502] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The paraventricular nucleus of the thalamus (PVT) is part of a group of midline and intralaminar thalamic nuclei implicated in arousal and attention. This study examined the connections between the PVT and the forebrain by using the retrograde tracer cholera toxin B (CTb) and the anterograde tracer biotin dextran amine (BDA). The anterior and posterior regions of the PVT were found to send a dense projection to the nucleus accumbens. The posterior PVT was also found to provide a strong projection to the lateral bed nucleus of the stria terminalis (BST), interstitial nucleus of the posterior limb of the anterior commissure (IPAC), and central nucleus of the amygdala (CeA), regions associated with the extended amygdala. In contrast, the anterior PVT was found to send a weaker projection to the extended amygdala. The basolateral nucleus of the amygdala and the medial prefrontal cortex were found to receive a relatively weak projection from the PVT, and other regions of the BST and amygdala were found to be poorly innervated by the PVT. In addition, the PVT was found to innervate regions in the extended amygdala that contained corticotropin-releasing factor (CRF) neurons, many of which were found to receive apparent contacts from PVT fibers. The projection from the PVT to the nucleus accumbens and extended amygdala places the PVT in a key anatomical position to influence adaptive behaviors as well as the physiological and neuroendocrine responses associated with these behaviors.
Collapse
Affiliation(s)
- Sa Li
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada
| | | |
Collapse
|
171
|
Striatal projections from the rat lateral posterior thalamic nucleus. Brain Res 2008; 1204:24-39. [PMID: 18342841 DOI: 10.1016/j.brainres.2008.01.094] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 01/18/2008] [Accepted: 01/19/2008] [Indexed: 11/21/2022]
Abstract
The dorsocentral striatum (DCS) has been implicated as an associative striatal area receiving inputs from several cortical areas including medial agranular cortex (AGm), posterior parietal cortex (PPC), and visual association cortex to form a cortical-subcortical circuit involved in directed attention and neglect. The lateral posterior thalamic nucleus (LP) may also play a role in directed attention and neglect because LP has robust reciprocal connections with these cortical areas and projects to DCS. We used anterograde axonal tracing to map thalamostriatal projections from LP and surrounding thalamic nuclei, with a focus on projections to DCS. The thalamic nuclei investigated included LP, laterodorsal thalamic nucleus (LD), central lateral nucleus (CL), and posterior thalamic nucleus (Po). We found that the mediorostral part of LP (LPMR) projects strongly to DCS as well as to the dorsal peripheral region of the striatum. Further, there is topography within LPMR and DCS such that the far medial LPMR projects to the central region of DCS (projection area of AGm) and the central LPMR projects to the dorsal region of DCS (projection area of PPC and Oc2M). In contrast, the laterorostral part of LP (LPLR) and other thalamic nuclei surrounding LP project to dorsolateral to dorsomedial peripheral regions of the striatum but do not project to DCS. These findings indicate that DCS is a region of convergence for thalamostriatal and corticostriatal projections from regions that are themselves interconnected, serving as the key element of the corticostriatal-thalamic network mediating spatial processing and directed attention.
Collapse
|
172
|
Zhang C, Marek GJ. AMPA receptor involvement in 5-hydroxytryptamine2A receptor-mediated pre-frontal cortical excitatory synaptic currents and DOI-induced head shakes. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:62-71. [PMID: 17728034 DOI: 10.1016/j.pnpbp.2007.07.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/03/2007] [Accepted: 07/04/2007] [Indexed: 11/23/2022]
Abstract
Glutamate plays an important role in the psychotomimetic effects of both channel blocking N-methyl D-aspartate (NMDA) receptor antagonists and hallucinogenic drugs which activate 5-hydroxytryptamine2A (5-HT2A) receptors. Previous work suggested that activation of non-NMDA ionotropic glutamate receptors mediates the effects of 5-HT-induced excitatory post-synaptic potentials/currents (EPSPs/EPSCs) when recording from layer V pyramidal cells in the rat medial pre-frontal cortex (mPFC). However, those effects are mediated by either alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) or kainate receptors of the iGluk5 subtype. To test whether activation of AMPA receptors is sufficient to mediate 5-HT-induced EPSCs, a 2,3-benzodiazepine that selectively blocks AMPA receptors was assessed. This selective AMPA receptor antagonist potently suppressed 5-HT-induced EPSCs. Since phenethylamine hallucinogens induce head shakes by activating 5-HT2A receptors in the mPFC and this action is modulated by glutamate, we also examined whether selective blockade of AMPA receptors would suppress DOI-induced head shakes. As predicted, we found that selective blockade of AMPA receptors suppressed DOI-induced head shakes. Given evidence that activation of AMPA receptors is an important downstream effect for both channel blocking NMDA receptor antagonists and phenethylamine hallucinogens, we also tested multiple doses of DOI with a sub-anesthetic dose of MK-801. Synergistic action between these two classes of psychotomimetic drugs was demonstrated by MK-801 enhancing DOI-induced head shakes and locomotor activity. These findings expand the dependence of both channel blocking NMDA receptor antagonists and phenethylamine hallucinogens on enhancing extracellular glutamate.
Collapse
Affiliation(s)
- Ce Zhang
- Department of Psychiatry, Yale University School of Medicine, Ribicoff Research Facilities of the Connecticut Mental Health Center, New Haven, Connecticut, USA
| | | |
Collapse
|
173
|
Abstract
The neocortex is an ultracomplex, six-layered structure that develops from the dorsal palliai sector of the telencephalic hemispheres (Figs. 2.24, 2.25, 11.1). All mammals, including monotremes and marsupials, possess a neocortex, but in reptiles, i.e. the ancestors of mammals, only a three-layered neocortical primordium is present [509, 511]. The term neocortex refers to its late phylogenetic appearance, in comparison to the “palaeocortical” olfactory cortex and the “archicortical” hippocampal cortex, both of which are present in all amniotes [509].
Collapse
|
174
|
Hsu DT, Price JL. Midline and intralaminar thalamic connections with the orbital and medial prefrontal networks in macaque monkeys. J Comp Neurol 2007; 504:89-111. [PMID: 17626282 DOI: 10.1002/cne.21440] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although the midline and intralaminar thalamic nuclei (MITN) were long believed to project "nonspecifically," they are now known from rat studies to have restricted connections to the prefrontal cortex. This has not been studied thoroughly in primates, however, and it is not known how MITN are associated with the "orbital" and "medial" prefrontal networks. This study examined the connections of MITN in cynomolgus monkeys (Macaca fascicularis). Experiments with retrograde and anterograde tracer injections into the orbital and medial prefrontal cortex (OMPFC) showed that MITN are strongly connected with the medial prefrontal network. The dorsal nuclei of the midline thalamus, including the paraventricular (Pa) and parataenial nuclei (Pt), had heavy connections with medial network areas 25, 32, and 14c in the subgenual region. Areas 13a and 12o, which are associated with both networks, were strongly connected with the Pt and the central intermedial nucleus, respectively. Otherwise, orbital network areas had weak connections with MITN. Anterograde tracer injections into the dorsal midline thalamus resulted in heavy terminal labeling in the medial prefrontal network, most notably in areas ventral to the genu of the corpus callosum (25, 32, and 14c), but also in adjacent areas (13a and 13b). Retrograde tracer injection into the dorsal midline labeled similar areas. The medial network, particularly the subgenual region, is involved in visceral and emotional control and has been implicated in mood disorders. The strong connections between the subgenual cortex and the Pa provide a pathway through which stress signals from the Pa may influence these prefrontal circuits.
Collapse
Affiliation(s)
- David T Hsu
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
175
|
Abstract
Advances in molecular biology have led to new peptides and proteins being discovered on a regular basis, including the isolation of a number of neurotransmitter candidates. Rarely, however, do these immediately capture the attention of the scientific community. The isolation and characterization of the orexin/hypocretin peptides a decade ago resulted in a slew of studies that have helped clarified their diverse functions, including prominent roles in arousal and appetitive behavior. A number of recent studies have detailed the role of the orexins/hypocretins in attention and cognition and uncovered an involvement in schizophrenia and the mechanisms of action of antipsychotic drugs (APDs). This issue of Schizophrenia Bulletin presents several articles that review our current understanding and point to future directions for the study of the orexins/hypocretins in schizophrenia and APD actions.
Collapse
Affiliation(s)
- Ariel Y Deutch
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37212, USA.
| | | |
Collapse
|
176
|
Abstract
Diminished connectivity between midline-intralaminar thalamic nuclei and prefrontal cortex has been suggested to contribute to cognitive deficits that are detectable even in early stages of schizophrenia. The midline-intralaminar relay cells comprise the final link in the ascending arousal pathway and are selectively excited by the wake-promoting peptides hypocretin 1 and 2 (orexin A and B). This excitation occurs both at the level of the relay cell bodies and their axon terminals within prefrontal cortex. In rat brain slices, the release of glutamate from midline-intralaminar thalamocortical terminals induces excitatory postsynaptic currents (EPSCs) in layer V pyramidal cells in prefrontal cortex. When hypocretin is infused into medial prefrontal cortex of behaving animals, it improves performance in a complex cognitive task requiring divided attention. Chronic restraint stress causes atrophy of the apical dendritic arbors in layer V prefrontal pyramidal cells and leads to a reduction in hypocretin-induced EPSCs, indicating impairment in excitatory thalamocortical transmission. Thus, taken together with evidence for an underlying loss of excitatory thalamocortical connectivity in schizophrenia, stress in this illness could further exacerbate a breakdown in cortical processing of incoming information from the ascending arousal system.
Collapse
Affiliation(s)
- Evelyn K Lambe
- Department of Physiology, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
177
|
Rubio-Garrido P, Pérez-de-Manzo F, Clascá F. Calcium-binding proteins as markers of layer-I projecting vs. deep layer-projecting thalamocortical neurons: A double-labeling analysis in the rat. Neuroscience 2007; 149:242-50. [PMID: 17850982 DOI: 10.1016/j.neuroscience.2007.07.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 07/20/2007] [Accepted: 07/27/2007] [Indexed: 11/27/2022]
Abstract
The thalamus contains two main populations of projection neurons that selectively innervate different elements of the cortical microcircuit: the well-known "specific" or "core" (C-type) cells that innervate cortical layer IV, and, the "matrix" (M-type) cells that innervate layer I. Observations in different mammal species suggest that this may be a conserved, basic organizational principle of thalamocortical networks. Fragmentary observations in primate sensory nuclei suggest that M-type and C-type cells might be distinguished by their selective expression of calcium binding-proteins. In adult rats, we tested this proposal in a systematic manner throughout the thalamus. Applying Fast-Blue (FB) to a large swath of the pial surface in the lateral aspect of the cerebral hemisphere we labeled a large part of the M-type cell populations in the thalamus and subsequently examined FB co-localization with calbindin or parvalbumin immunoreactivity in thalamic neuron somata. FB-labeled cells were present in large numbers in the ventromedial, interanteromedial, posterior, lateral posterior and medial geniculate nuclei. Distribution of the FB-labeled neuron somata was roughly coextensive with that of the calbindin immunolabeled somata, while parvalbumin immunoreactive somata were virtually absent from dorsal thalamus. Co-localization of FB and calbindin immunolabeling ranged from >95% in the ventromedial and interanteromedial nuclei, to 30% in the dorsal lateral geniculate. Moreover, in the ventromedial and interanteromedial nuclei nearly all of the calbindin-immunoreactive neurons were also labeled with FB. In most other nuclei, however, a major population of M-type cells cannot be identified with calbindin immunolabeling. Consistent with studies in primates and carnivores, present data show that in rats M-type cells are numerous and widely distributed across the rat thalamus; however, calbindin is expressed only by a fraction, albeit a large one, of these cells.
Collapse
Affiliation(s)
- P Rubio-Garrido
- Department of Anatomy and Neuroscience, Autonoma University School of Medicine, Avenida Arzobispo Morcillo s/n, Madrid, E-28029, Spain
| | | | | |
Collapse
|
178
|
Quiroz-Padilla MF, Guillazo-Blanch G, Vale-Martínez A, Torras-García M, Martí-Nicolovius M. Effects of parafascicular excitotoxic lesions on two-way active avoidance and odor-discrimination. Neurobiol Learn Mem 2007; 88:198-207. [PMID: 17631394 DOI: 10.1016/j.nlm.2007.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 05/31/2007] [Accepted: 06/01/2007] [Indexed: 11/23/2022]
Abstract
To investigate whether the parafascicular (PF) nucleus of the thalamus is involved in different learning and memory tasks, two experiments were carried out in adult male Wistar rats that were submitted to pre-training bilateral N-methyl-d-aspartate PF infusions (0.15M, pH 7.4; 1.2 microl/side, 0.2 microl/min). In Experiment 1, we evaluated the effects of PF lesions in two identical 30-trial training sessions, separated by a 24-h interval, of a two-way active avoidance conditioning. PF-lesioned rats exhibited impaired performance in both sessions, measured by number of avoidance responses. In Experiment 2, the effects of PF lesions were assessed in a training session (5 trials) and a 24-h retention test (2 retention trials and 2 relearning trials) of an odor-discrimination task. PF lesions did not significantly disrupt the acquisition or the first retention trial, which was not rewarded. However, lesioned animals' performance was clearly affected in subsequent trials, following the introduction of the single non-rewarded trial. Current data are discussed considering evidence that lesions of the PF nucleus affect learning and memory functions mediated by anatomically related areas of the frontal cortex and striatum.
Collapse
Affiliation(s)
- Maria Fernanda Quiroz-Padilla
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | | | | | | | | |
Collapse
|
179
|
Hoover WB, Vertes RP. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 2007; 212:149-79. [PMID: 17717690 DOI: 10.1007/s00429-007-0150-4] [Citation(s) in RCA: 997] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 06/04/2007] [Indexed: 11/28/2022]
Abstract
The medial prefrontal cortex (mPFC) has been associated with diverse functions including attentional processes, visceromotor activity, decision making, goal directed behavior, and working memory. Using retrograde tracing techniques, we examined, compared, and contrasted afferent projections to the four divisions of the mPFC in the rat: the medial (frontal) agranular (AGm), anterior cingulate (AC), prelimbic (PL), and infralimbic (IL) cortices. Each division of the mPFC receives a unique set of afferent projections. There is a shift dorsoventrally along the mPFC from predominantly sensorimotor input to the dorsal mPFC (AGm and dorsal AC) to primarily 'limbic' input to the ventral mPFC (PL and IL). The AGm and dorsal AC receive afferent projections from widespread areas of the cortex (and associated thalamic nuclei) representing all sensory modalities. This information is presumably integrated at, and utilized by, the dorsal mPFC in goal directed actions. In contrast with the dorsal mPFC, the ventral mPFC receives significantly less cortical input overall and afferents from limbic as opposed to sensorimotor regions of cortex. The main sources of afferent projections to PL/IL are from the orbitomedial prefrontal, agranular insular, perirhinal and entorhinal cortices, the hippocampus, the claustrum, the medial basal forebrain, the basal nuclei of amygdala, the midline thalamus and monoaminergic nuclei of the brainstem. With a few exceptions, there are few projections from the hypothalamus to the dorsal or ventral mPFC. Accordingly, subcortical limbic information mainly reaches the mPFC via the midline thalamus and basal nuclei of amygdala. As discussed herein, based on patterns of afferent (as well as efferent) projections, PL is positioned to serve a direct role in cognitive functions homologous to dorsolateral PFC of primates, whereas IL appears to represent a visceromotor center homologous to the orbitomedial PFC of primates.
Collapse
Affiliation(s)
- Walter B Hoover
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | |
Collapse
|
180
|
Lee CM, Chang WC, Chang KB, Shyu BC. Synaptic organization and input-specific short-term plasticity in anterior cingulate cortical neurons with intact thalamic inputs. Eur J Neurosci 2007; 25:2847-61. [PMID: 17561847 DOI: 10.1111/j.1460-9568.2007.05485.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The absence of a slice preparation with intact thalamocortical pathways has held back elucidation of the cellular and synaptic mechanisms by which thalamic signals are differentially transmitted to and processed in the anterior cingulate cortex (ACC). In this report we introduce an innovative mouse brain slice preparation in which it is possible to explore the electrophysiological properties of ACC neurons with intact long-distance inputs from medial thalamic (MT) nuclei by intracellular recordings; this MT-ACC neuronal pathway plays an integral role in information transmission. Biocytin-labeled fibers in a functional slice could be traced anterogradely or retrogradely from the MT via the reticular thalamic nuclei, striatum and corpus callosum to the cingulate cortical areas. Eighty-seven cells downstream of the thalamic projections in 49 slices were recorded intracellularly. Intracellular recordings in the ACC showed that thalamocingulate transmission involves both alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate and N-methyl-D-aspartate (NMDA) subtypes of glutamate receptors. Thalamus-evoked responses recorded extracellularly in the ACC were activated and progressed along a deep-superficial-deep trajectory loop across the ACC layers. We observed enhanced paired-pulse facilitation and tetanic potentiation of thalamocingulate synapses, suggestive of input-specific ACC plasticity and selective processing of information relayed by thalamocingulate pathways. Furthermore, we observed differential responses of ACC neurons to thalamic burst stimulation, which underscores the importance of MT afferents in relaying sensory information to the ACC. This new slice preparation enables the contribution of MT-evoked ACC synaptic transmission to short-term plasticity in the neuronal circuitry underlying sensory information processing to be examined in detail.
Collapse
Affiliation(s)
- Chia-Ming Lee
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
181
|
Kolaj M, Doroshenko P, Yan Cao X, Coderre E, Renaud LP. Orexin-induced modulation of state-dependent intrinsic properties in thalamic paraventricular nucleus neurons attenuates action potential patterning and frequency. Neuroscience 2007; 147:1066-75. [PMID: 17600629 DOI: 10.1016/j.neuroscience.2007.05.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 05/02/2007] [Accepted: 05/07/2007] [Indexed: 11/22/2022]
Abstract
The thalamic paraventricular nucleus (PVT) receives a dense innervation from orexin-synthesizing lateral hypothalamic neurons. Since PVT neurons display state-dependent tonic or low threshold spike-driven burst firing patterns, we examined how the response to exogenously applied orexins might modulate these features. Data were obtained with whole-cell patch clamp recording techniques in rat brain slices prepared during the subjective lights-on period. PVT neurons displayed a mean resting membrane potential of -61+/-6 mV and input conductance of 1.3+/-0.1 nS (n=60). The majority (90/107) of cells tested responded to orexin A and/or orexin B peptides (100-1000 nM), each inducing similar slowly rising and prolonged membrane depolarizations. We next evaluated associated changes in firing patterns and action potential frequency. Of 17 spontaneously silent neurons, 5 were induced into tonic firing and 4 into burst firing modes. Of nine spontaneously bursting neurons, three displayed an increase in burst frequency and in the number of action potentials within a burst. By contrast, another six cells were induced into tonic firing mode, with a marked decrease in instantaneous firing frequency and a shift in their excitatory postsynaptic potential-evoked responses from burst firing patterns to single action potentials. Under voltage clamp, orexins induced inward current (-21.8+/-2.4 pA at -60 mV) in 20/22 cells. In 13 cells, current-voltage (I-V) plots revealed a decrease in net conductance and reversal at -110+/-9 mV, while 3 cells displayed an increase in net conductance that reversed at -26+/-8 mV. These observations imply suppression of potassium and/or induction of nonselective cationic conductances in orexin-induced depolarization in PVT neurons, permitting these peptides to modulate intrinsic state-dependent properties. In vivo, such changes in firing patterns and frequency of action potential discharges could influence neurotransmission through PVT and activity-dependent synaptic plasticity at target sites of these neurons.
Collapse
Affiliation(s)
- M Kolaj
- Neurosciences, Ottawa Health Research Institute and University of Ottawa, 725 Parkdale Avenue, Ottawa, Ontario, Canada K1Y 4E9
| | | | | | | | | |
Collapse
|
182
|
Hagenston AM, Fitzpatrick JS, Yeckel MF. MGluR-mediated calcium waves that invade the soma regulate firing in layer V medial prefrontal cortical pyramidal neurons. Cereb Cortex 2007; 18:407-23. [PMID: 17573372 PMCID: PMC3005283 DOI: 10.1093/cercor/bhm075] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Factors that influence the activity of prefrontal cortex (PFC) pyramidal neurons are likely to play an important role in working memory function. One such factor may be the release of Ca2+ from intracellular stores. Here we investigate the hypothesis that metabotropic glutamate receptors (mGluRs)-mediated waves of internally released Ca2+ can regulate the intrinsic excitability and firing patterns of PFC pyramidal neurons. Synaptic or focal pharmacological activation of mGluRs triggered Ca2+ waves in the dendrites and somata of layer V medial PFC pyramidal neurons. These Ca2+ waves often evoked a transient SK-mediated hyperpolarization followed by a prolonged depolarization that respectively decreased and increased neuronal excitability. Generation of the hyperpolarization depended on whether the Ca2+ wave invaded or came near to the soma. The depolarization also depended on the extent of Ca2+ wave propagation. We tested factors that influence the propagation of Ca2+ waves into the soma. Stimulating more synapses, increasing inositol trisphosphate concentration near the soma, and priming with physiological trains of action potentials all enhanced the amplitude and likelihood of evoking somatic Ca2+ waves. These results suggest that mGluR-mediated Ca2+ waves may regulate firing patterns of PFC pyramidal neurons engaged by working memory, particularly under conditions that favor the propagation of Ca2+ waves into the soma.
Collapse
Affiliation(s)
- Anna M. Hagenston
- Department of Neurobiology, Yale University School of Medicine, CT 06520, USA
| | - John S. Fitzpatrick
- Department of Neurobiology, Yale University School of Medicine, CT 06520, USA
| | - Mark F. Yeckel
- Department of Neurobiology, Yale University School of Medicine, CT 06520, USA
- The Kavli Institute for Neuroscience, Yale University School of Medicine, CT 06520, USA
| |
Collapse
|
183
|
Vertes RP, Hoover WB, Do Valle AC, Sherman A, Rodriguez JJ. Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neurol 2007; 499:768-96. [PMID: 17048232 DOI: 10.1002/cne.21135] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The nucleus reuniens (RE) is the largest of the midline nuclei of the thalamus and exerts strong excitatory actions on the hippocampus and medial prefrontal cortex. Although RE projections to the hippocampus have been well documented, no study using modern tracers has examined the totality of RE projections. With the anterograde anatomical tracer Phaseolus vulgaris leuccoagglutinin, we examined the efferent projections of RE as well as those of the rhomboid nucleus (RH) located dorsal to RE. Control injections were made in the central medial nucleus (CEM) of the thalamus. We showed that the output of RE is almost entirely directed to the hippocampus and "limbic" cortical structures. Specifically, RE projects strongly to the medial frontal polar, anterior piriform, medial and ventral orbital, anterior cingulate, prelimbic, infralimbic, insular, perirhinal, and entorhinal cortices as well as to CA1, dorsal and ventral subiculum, and parasubiculum of the hippocampus. RH distributes more widely than RE, that is, to several RE targets but also significantly to regions of motor, somatosensory, posterior parietal, retrosplenial, temporal, and occipital cortices; to nucleus accumbens; and to the basolateral nucleus of amygdala. The ventral midline thalamus is positioned to exert significant control over fairly widespread regions of the cortex (limbic, sensory, motor), hippocampus, dorsal and ventral striatum, and basal nuclei of the amygdala, possibly to coordinate limbic and sensorimotor functions. We suggest that RE/RH may represent an important conduit in the exchange of information between subcortical-cortical and cortical-cortical limbic structures potentially involved in the selection of appropriate responses to specific and changing sets of environmental conditions.
Collapse
Affiliation(s)
- Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431, USA.
| | | | | | | | | |
Collapse
|
184
|
Sukhotinsky I, Zalkind V, Lu J, Hopkins DA, Saper CB, Devor M. Neural pathways associated with loss of consciousness caused by intracerebral microinjection of GABAA-active anesthetics. Eur J Neurosci 2007; 25:1417-36. [PMID: 17425568 DOI: 10.1111/j.1460-9568.2007.05399.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anesthesia, slow-wave sleep, syncope, concussion and reversible coma are behavioral states characterized by loss of consciousness, slow-wave cortical electroencephalogram, and motor and sensory suppression. We identified a focal area in the rat brainstem, the mesopontine tegmental anesthesia area (MPTA), at which microinjection of pentobarbital and other GABA(A) receptor (GABA(A)-R) agonists reversibly induced an anesthesia-like state. This effect was attenuated by local pre-treatment with the GABA(A)-R antagonist bicuculline. Using neuroanatomical tracing we identified four pathways ascending from the MPTA that are positioned to mediate electroencephalographic synchronization and loss of consciousness: (i) projections to the intralaminar thalamic nuclei that, in turn, project to the cortex; (ii) projections to several pontomesencephalic, diencephalic and basal forebrain nuclei that project cortically and are considered parts of an ascending "arousal system"; (iii) a projection to other parts of the subcortical forebrain, including the septal area, hypothalamus, zona incerta and striato-pallidal system, that may indirectly affect cortical arousal and hippocampal theta rhythm; and (iv) modest projections directly to the frontal cortex. Several of these areas have prominent reciprocal projections back to the MPTA, notably the zona incerta, lateral hypothalamus and frontal cortex. We hypothesize that barbiturate anesthetics and related agents microinjected into the MPTA enhance the inhibitory response of local GABA(A)-R-bearing neurons to endogenous GABA released at baseline during wakefulness. This modulates activity in one or more of the identified ascending neural pathways, ultimately leading to loss of consciousness.
Collapse
Affiliation(s)
- I Sukhotinsky
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
185
|
Couey JJ, Meredith RM, Spijker S, Poorthuis RB, Smit AB, Brussaard AB, Mansvelder HD. Distributed Network Actions by Nicotine Increase the Threshold for Spike-Timing-Dependent Plasticity in Prefrontal Cortex. Neuron 2007; 54:73-87. [PMID: 17408579 DOI: 10.1016/j.neuron.2007.03.006] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 01/22/2007] [Accepted: 03/15/2007] [Indexed: 10/23/2022]
Abstract
Nicotine enhances attention and working memory by activating nicotinic acetylcholine receptors (nAChRs). The prefrontal cortex (PFC) is critical for these cognitive functions and is also rich in nAChR expression. Specific cellular and synaptic mechanisms underlying nicotine's effects on cognition remain elusive. Here we show that nicotine exposure increases the threshold for synaptic spike-timing-dependent potentiation (STDP) in layer V pyramidal neurons of the mouse PFC. During coincident presynaptic and postsynaptic activity, nicotine reduces dendritic calcium signals associated with action potential propagation by enhancing GABAergic transmission. This results from a series of presynaptic actions involving different PFC interneurons and multiple nAChR subtypes. Pharmacological block of nAChRs or GABA(A) receptors prevented nicotine's actions and restored STDP, as did increasing dendritic calcium signals with stronger postsynaptic activity. Thus, by activating nAChRs distributed throughout the PFC neuronal network, nicotine affects PFC information processing and storage by increasing the amount of postsynaptic activity necessary to induce STDP.
Collapse
Affiliation(s)
- Jonathan J Couey
- Department of Experimental Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
186
|
Amargós-Bosch M, Adell A, Artigas F. Antipsychotic drugs reverse the AMPA receptor-stimulated release of 5-HT in the medial prefrontal cortex. J Neurochem 2007; 102:550-61. [PMID: 17394545 DOI: 10.1111/j.1471-4159.2007.04532.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The prefrontal cortex (PFC) is involved in the pathophysiology of schizophrenia. PFC neuronal activity is modulated by monoaminergic receptors for which antipsychotic drugs display moderate-high affinity, such as 5-HT(2A) and alpha(1)-adrenoceptors. Conversely, PFC pyramidal neurons project to and modulate the activity of raphe serotonergic neurons and serotonin (5-HT) release. Under the working hypothesis that atypical antipsychotic drugs may partly exert their action in PFC, we assessed their action on the in vivo 5-HT release evoked by increasing glutamatergic transmission in rat medial PFC (mPFC). This was achieved by applying S-AMPA in mPFC (reverse dialysis) or by disinhibiting thalamic excitatory afferents to mPFC with bicuculline. The application of haloperidol, chlorpromazine, clozapine and olanzapine in mPFC by reverse dialysis (but not reboxetine or diazepam) reversed the S-AMPA-evoked local 5-HT release. Likewise, the local (in mPFC) or systemic administration of these antipsychotic drugs reversed the increased prefrontal 5-HT release produced by thalamic disinhibition. These effects were shared by the 5-HT(2A) receptor antagonist M100907 and the alpha(1)-adrenoceptor antagonist prazosin. However, raclopride (DA D2 antagonist) had very modest effects. These results suggest that, besides their action in limbic striatum, antipsychotic drugs may attenuate glutamatergic transmission in PFC, possibly by interacting with 5-HT(2A) and/or alpha(1)-adrenoceptors.
Collapse
Affiliation(s)
- Mercè Amargós-Bosch
- Department of Neurochemistry and Neuropharmacology, Institut d' Investigacions Biomèdiques de Barcelona CSIC, IDIBAPS, Barcelona, Spain
| | | | | |
Collapse
|
187
|
Kubota Y, Hatada S, Kondo S, Karube F, Kawaguchi Y. Neocortical inhibitory terminals innervate dendritic spines targeted by thalamocortical afferents. J Neurosci 2007; 27:1139-50. [PMID: 17267569 PMCID: PMC6673192 DOI: 10.1523/jneurosci.3846-06.2007] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 12/21/2006] [Accepted: 12/21/2006] [Indexed: 11/21/2022] Open
Abstract
Fast inhibition in the cortex is gated primarily at GABAergic synapses formed by local interneurons onto postsynaptic targets. Although GABAergic inputs to the somata and axon initial segments of neocortical pyramidal neurons are associated with direct inhibition of action potential generation, the role of GABAergic inputs to distal dendritic segments, including spines, is less well characterized. Because a significant proportion of inhibitory input occurs on distal dendrites and spines, it will be important to determine whether these GABAergic synapses are formed selectively by certain classes of presynaptic cells onto specific postsynaptic elements. By electron microscopic observations of synapses formed by different subtypes of nonpyramidal cells, we found that a surprisingly large fraction (33.4 +/- 9.3%) of terminals formed symmetrical synaptic junctions onto a subset of cortical spines that were mostly coinnervated by an asymmetrical terminal. Using VGLUT1 and VGLUT2 isoform of the glutamate vesicular transporter immunohistochemistry, we found that the double-innervated spines selectively received thalamocortical afferents expressing the VGLUT2 but almost never intracortical inputs expressing the VGLUT1. When comparing the volumes of differentially innervated spines and their synaptic junction areas, we found that spines innervated by VGLUT2-positive terminal were significantly larger than spines innervated by VGLUT1-positive terminal and that these spines had larger, and more often perforated, synapses than those of spines innervated by VGLUT1-positive afferent. These results demonstrate that inhibitory inputs to pyramidal cell spines may preferentially reduce thalamocortical rather than intracortical synaptic transmission and are therefore positioned to selectively gate extracortical information.
Collapse
Affiliation(s)
- Yoshiyuki Kubota
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan.
| | | | | | | | | |
Collapse
|
188
|
Münch MY, Cain SW, Duffy JF. Biological Rhythms Workshop IC: sleep and rhythms. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:35-46. [PMID: 18419261 DOI: 10.1101/sqb.2007.72.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Rhythms of sleep and wakefulness (typically measured as rest/activity rhythms) are among the most prominent of biological rhythms and therefore were among the first to be recorded in early chronobiological studies. These rhythms can provide useful information about the central biological clock, although an appreciation of the problems associated with using rest/activity to infer central clock function is important in the design and interpretation of chronobiological experiments in both animals and humans. Here, we review the anatomical and neurophysiologic bases of sleep regulation in mammals as well as similarities and differences between the sleep of humans and that of other organisms. We outline how human sleep is measured, the role of the circadian system in models of human sleep regulation, and human circadian rhythm sleep disorders. Although the function of sleep is still not completely understood, sleep has a critical role for human health, and we have attempted to outline the role that the circadian timing system has in regulating human sleep and in contributing to sleep disorders.
Collapse
Affiliation(s)
- M Y Münch
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
189
|
Marek GJ. Serotonin and Dopamine Interactions in Rodents and Primates: Implications for Psychosis and Antipsychotic Drug Development. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 78:165-92. [PMID: 17349861 DOI: 10.1016/s0074-7742(06)78006-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Since the late 1950s, appreciation of dopamine receptor blockade has played a primary role in understanding the mechanism underlying the therapeutic effects of antipsychotic drugs in schizophrenic patients in treating the positive symptoms of schizophrenia (e.g., delusions and hallucinations). Development of the second generation of antipsychotic drugs, otherwise known as atypical antipsychotic drugs, has resulted in treatments with improved subjective tolerability but relatively modest improvements in the negative symptoms of schizophrenia such as avolition, flat affect, and anhedonia. The major current challenge is to develop medications which can further improve negative symptoms treatment and also tackle the intractable clinical problems of cognitive impairment associated with schizophrenia. Further advances along these lines with respect to the dopaminergic and serotonergic neurostransmitter systems will be aided by an appreciation of the interaction between dopamine and serotonin receptor subtypes in a range of key brain structures, such as the prefrontal cortex, thalamus, striatum, amygdala, hippocampus, and the brain stem nuclei, from which the cell bodies of monoaminergic-containing neurons originate. Increasing emphasis on the use of animal models which are homologous to critical aspects of the pathophysiology in the brains of schizophrenic patients will also be required, especially as negative symptoms and cognitive impairment become an important focus for generating novel therapeutics.
Collapse
Affiliation(s)
- Gerard J Marek
- Eli Lilly and Company, Lilly Research Laboratories, Psychiatric Disorders Discovery Biology Lilly Corporate Center, Indianapolis, Indiana 46285, USA
| |
Collapse
|
190
|
Zhang C, Marek GJ. Group III metabotropic glutamate receptor agonists selectively suppress excitatory synaptic currents in the rat prefrontal cortex induced by 5-hydroxytryptamine2A receptor activation. J Pharmacol Exp Ther 2007; 320:437-47. [PMID: 17021259 DOI: 10.1124/jpet.106.107490] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation and blockade of prefrontal cortical 5-hydroxytryptamine2A (5-HT2A) receptors have been linked to the action of hallucinogenic and antidepressant/antipsychotic drugs; these effects may involve modulation of glutamate release from thalamocortical afferents. Although activation of metabotropic glutamate 2 (mGlu2) receptors may suppress 5-HT-induced excitatory postsynaptic currents (EPSCs), group III mGlu receptors (mGlu4/7/8) also are expressed in the thalamus and may suppress 5-HT-induced EPSCs. We have found by intracellular recordings from layer V pyramidal cells of the medial prefrontal cortex (mPFC) that group III mGlu receptor agonists (R,S)-4-phosphonophenylglycine (PPG), L-4-phosphono-2-aminobutyric acid (L-AP4), L-serine-O-phosphate (L-SOP), and (S)-2-amino-2-methyl-4-phosphonobutanoic acid (MAP4) preferentially suppress 5-HT-induced EPSCs compared with excitatory postsynaptic potentials evoked by electrical stimulation of the white matter. A number of pharmacological features [e.g., the rank order of agonist potency; MAP4 partial agonist action; differential potency for the group III mGlu receptor antagonist (R,S)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG) in blocking the suppressant action of PPG or MAP4; and a relatively low potency of 2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3(xanthy-9-yl)propanoic acid (LY341495) in blocking the suppressant action of PPG or L-SOP] suggest that activation of both mGlu4 and mGlu8 receptors may play a role in suppressing 5-HT-induced EPSCs. Furthermore, L-SOP did not alter the synaptic currents or steady-state inward current induced by alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid. Thus, although both group III and group II mGlu receptor agonists suppress the frequency of 5-HT-induced EPSCs in the mPFC, they differ in that the group III mGlu receptor agonists appear to have relatively minimal effects on glutamate released by sources other than thalamocortical afferents.
Collapse
Affiliation(s)
- Ce Zhang
- Department of Psychiatry, Yale University School of Medicine, Ribicoff Research Facilities of the Connecticut Mental Health Center, New Haven, Connecticut, USA
| | | |
Collapse
|
191
|
Yang JW, Shih HC, Shyu BC. Intracortical circuits in rat anterior cingulate cortex are activated by nociceptive inputs mediated by medial thalamus. J Neurophysiol 2006; 96:3409-22. [PMID: 16956990 DOI: 10.1152/jn.00623.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigated the afferents and intracortical synaptic organization of the anterior cingulate cortex (ACC) during noxious electrical stimulation. Extracellular field potentials were recorded simultaneously from 16 electrodes spanning all layers of the ACC in male Sprague-Dawley rats anesthetized by halothane inhalation. Laminar-specific transmembrane currents were calculated with the current source density analysis method. Two major groups of evoked sink currents were identified: an early group (latency = 54.04 +/- 2.12 ms; 0.63 +/- 0.07 mV/mm(2)) in layers V-VI and a more intense late group (latency = 80.07 +/- 4.85 ms; 2.16 +/- 0.22 mV/mm(2)) in layer II/III and layer V. Multiunit activities were evoked mainly in layer V and deep layer II/III with latencies similar to that of the early and late sink groups. The evoked EPSP latencies of pyramidal neurons in layers II/III and V related closely with the sink currents. The sink currents were inhibited by intracortical injection of CNQX (1 mM, 1 microl), a glutaminergic receptor antagonist, and enhanced by intraperitoneal (5 mg/kg) and intracortical (10 microg/microl, 1 microl) injection of morphine, a mu-opioid receptor agonist. Paired-pulse depression was observed with interpulse intervals of 50 to 1,000 ms. High-frequency stimulation (100 Hz, 11 pulses) enhanced evoked responses in the ACC and evoked medial thalamic (MT) unit activities. MT lesions blocked evoked responses in the ACC. Our results demonstrated that two distinct synaptic circuits in the ACC were activated by noxious stimuli and that the MT is the major thalamic relay that transmits nociceptive information to the ACC.
Collapse
Affiliation(s)
- Jenq-Wei Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, R.O.C
| | | | | |
Collapse
|
192
|
Gibb SJ, Wolff M, Dalrymple-Alford JC. Odour–place paired-associate learning and limbic thalamus: Comparison of anterior, lateral and medial thalamic lesions. Behav Brain Res 2006; 172:155-68. [PMID: 16769133 DOI: 10.1016/j.bbr.2006.05.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 05/08/2006] [Accepted: 05/12/2006] [Indexed: 11/15/2022]
Abstract
Several subregions in the limbic thalamus have been suggested as the key locus for diencephalic amnesia, including the anterior thalamic nuclei, intralaminar nuclei and mediodorsal nuclei. There is, however, no consensus as to a single critical site and recent research has suggested instead that different thalamic areas may contribute to diencephalic amnesia in subtly different ways. This study compared the effects of lesions to anterior (AT), lateral (LT) and posteromedial (MT) aggregates of thalamic nuclei on Gilbert and Kesner's [Gilbert, PE, Kesner, RP. Role of the rodent hippocampus in paired-associate learning involving associations between a stimulus and a spatial location. Behav Neurosci 2002;116(1):63-71; Gilbert, PE, Kesner, RP. Localization of function within the dorsal hippocampus: the role of the CA3 subregion in paired-associate learning. Behav Neurosci 2003;117(6):1385-94] paired-associate task, in which rats were postoperatively trained to form an arbitrary association between odours and spatial locations in a circular open field. Both AT and LT lesions, but not MT lesions, severely impaired odour-place paired-associate learning. Probe trials revealed that the rats were not using specific location information after acquisition training. All groups were able to learn non-associative odour and place discrimination tasks quickly, with only the AT group showing delayed acquisition. This study provides the first direct comparison of different thalamic lesions on paired-associate learning and new evidence on the importance of the LT region in learning and memory. The results support the notion that injury to both the AT and LT subregions of the thalamus may each be major contributors to diencephalic amnesia. There is need for traditional models of memory function to take greater account of the contributions of thalamic nuclei.
Collapse
Affiliation(s)
- Sheree J Gibb
- Van der Veer Institute for Parkinson's and Brain Research, Department of Psychology, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand.
| | | | | |
Collapse
|
193
|
Mitchell AS, Dalrymple-Alford JC. Lateral and anterior thalamic lesions impair independent memory systems. Learn Mem 2006; 13:388-96. [PMID: 16741289 PMCID: PMC1475822 DOI: 10.1101/lm.122206] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Damage to the medial region of the thalamus, both in clinical cases (e.g., patients with infarcts or the Korsakoff's syndrome) and animal lesion models, is associated with variable amnesic deficits. Some studies suggest that many of these memory deficits rely on the presence of lateral thalamic lesions (LT) that include the intralaminar nuclei, presumably by altering normal function between the striatum and frontal cortex. Other studies suggest that the anterior thalamic nuclei (AT) may be more critical, as a result of disruption to an extended hippocampal system. Here, highly selective LT and AT lesions were made to test the prediction that these two regions contribute to two different memory systems. Only LT lesions produced deficits on a preoperatively acquired response-related (egocentric) working memory task, tested in a cross-maze. Conversely, only AT lesions impaired postoperative acquisition of spatial working memory, tested in a radial maze. These findings provide the first direct evidence of a double dissociation between the LT and AT neural aggregates. As the lateral and the anterior medial thalamus influence parallel independent memory processing systems, they may each contribute to memory deficits, depending on lesion extent in clinical and experimental cases of thalamic amnesia.
Collapse
Affiliation(s)
- Anna S Mitchell
- Van der Veer Institute for Parkinson's and Brain Research, and Department of Psychology, University of Canterbury, Christchurch 8020, New Zealand.
| | | |
Collapse
|
194
|
Vertes RP. Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 2006; 142:1-20. [PMID: 16887277 DOI: 10.1016/j.neuroscience.2006.06.027] [Citation(s) in RCA: 595] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 06/16/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
The medial prefrontal cortex (mPFC) participates in several higher order functions including selective attention, visceromotor control, decision making and goal-directed behaviors. We discuss the role of the infralimbic cortex (IL) in visceromotor control and the prelimbic cortex (PL) in cognition and their interactions in goal-directed behaviors in the rat. The PL strongly interconnects with a relatively small group of structures that, like PL, subserve cognition, and together have been designated the 'PL circuit.' These structures primarily include the hippocampus, insular cortex, nucleus accumbens, basolateral nucleus of the amygdala, the mediodorsal and reuniens nuclei of the thalamus and the ventral tegmental area of the midbrain. Lesions of each of these structures, like those of PL, produce deficits in delayed response tasks and memory. The PL (and ventral anterior cingulate cortex) (AC) of rats is ideally positioned to integrate current and past information, including its affective qualities, and act on it through its projections to the ventral striatum/ventral pallidum. We further discuss the role of nucleus reuniens of thalamus as a major interface between the mPFC and the hippocampus, and as a prominent source of afferent limbic information to the mPFC and hippocampus. We suggest that the IL of rats is functionally homologous to the orbitomedial cortex of primates and the prelimbic (and ventral AC) cortex to the lateral/dorsolateral cortex of primates, and that the IL/PL complex of rats exerts significant control over emotional and cognitive aspects of goal-directed behavior.
Collapse
Affiliation(s)
- Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
195
|
Mizuno A, Villalobos ME, Davies MM, Dahl BC, Müller RA. Partially enhanced thalamocortical functional connectivity in autism. Brain Res 2006; 1104:160-74. [PMID: 16828063 DOI: 10.1016/j.brainres.2006.05.064] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 05/17/2006] [Accepted: 05/19/2006] [Indexed: 10/24/2022]
Abstract
Based on evidence for thalamic abnormalities in autism, impairments of thalamocortical pathways have been suspected. We examined the functional connectivity between thalamus and cerebral cortex in terms of blood oxygen level dependent (BOLD) signal cross-correlation in 8 male participants with high-functioning autism and matched normal controls, using functional MRI during simple visuomotor coordination. Both groups exhibited widespread connectivity, consistent with known extensive thalamocortical connectivity. In a direct group comparison, overall more extensive connectivity was observed in the autism group, especially in the left insula and in right postcentral and middle frontal regions. Our findings are inconsistent with the hypothesis of general underconnectivity in autism and instead suggest that subcortico-cortical connectivity may be hyperfunctional, potentially compensating for reduced cortico-cortical connectivity.
Collapse
Affiliation(s)
- Akiko Mizuno
- Brain Development Imaging Laboratory, Department of Psychology, San Diego State University, CA 92120, USA
| | | | | | | | | |
Collapse
|
196
|
Marek GJ. A Novel Approach to the Identification of Psychiatric Drugs: Serotonin-Glutamate Interactions in the Prefrontal Cortex. CNS DRUG REVIEWS 2006. [DOI: 10.1111/j.1527-3458.2000.tb00148.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
197
|
Sugiyo S, Takemura M, Dubner R, Ren K. Demonstration of a trigeminothalamic pathway to the oval paracentral intralaminar thalamic nucleus and its involvement in the processing of noxious orofacial deep inputs. Brain Res 2006; 1097:116-22. [PMID: 16730672 DOI: 10.1016/j.brainres.2006.04.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/06/2006] [Accepted: 04/10/2006] [Indexed: 11/15/2022]
Abstract
Using combined retrograde labeling and Fos protein immunohistochemistry, we show that after masseter inflammation, a population of neurons in the dorsal portion of the subnuclei interpolaris/caudalis transition zone at the level of the obex was activated and projected to the oval paracentral nucleus (OPC) of the intralaminar thalamic nuclei. The present findings indicate a trigeminothalamic pathway to the OPC intralaminar nucleus involved in central processing of orofacial deep noxious input.
Collapse
Affiliation(s)
- Shinichi Sugiyo
- Department of Biomedical Sciences, Dental School; and Program in Neuroscience, University of Maryland, Rm. 5A26, 666 W. Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
198
|
Sun JJ, Chuang Kung J, Wang CC, Chen SL, Shyu BC. Short-term facilitation in the anterior cingulate cortex following stimulation of the medial thalamus in the rat. Brain Res 2006; 1097:101-15. [PMID: 16725116 DOI: 10.1016/j.brainres.2006.04.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 04/14/2006] [Accepted: 04/17/2006] [Indexed: 11/25/2022]
Abstract
The present study examined the distribution and localization of synaptic activities (field potentials, multiunit activities and sink source currents) evoked in the anterior cingulate cortex (ACC) by electrical paired pulse stimulation of the ipsilateral medial thalamus (MT). Male Sprague-Dawley rats were anesthetized with halothane (1.0-1.5%), and electrical paired pulses stimuli (100-300 microA, inter-pulse interval, 100 ms) were delivered to the MT. Tungsten microelectrodes and a multichannel Michigan probe were used to record the evoked field potentials and multiunit activities in the ACC. Paired pulse stimulation facilitated field potentials and multiunit activities elicited from several MT nuclei. The second component of the negative field potential (com2) was augmented to about 2.5 times that of the first component (com1), and the integrated multiunit activities were facilitated by about 1.6-fold. Paired stimulation produced an expansion of the maximal negative potential from layer II/III into the deeper layers of the cingulate cortex area 1 (Cg1). Furthermore, the potentiated activity spread into adjacent secondary motor cortex (M2) and prelimbic cortex (PrL). Meanwhile, the area covered by the maximal integrated multiunit activities expanded from layer V (com1) to layers II-V (com2) in M2, Cg1 and PrL. The current source density (CSD) analysis revealed that the short latency sinks were located in layer II/III and layer V/VI. The sink currents were potentiated and expanded to more superficial and to deeper layers when a second pulse was delivered with a 100-ms time delay. Sink currents and the paired pulse facilitation (PPF) were reduced by morphine treatment (5 mg/kg, i.v.), and this effect could be blocked by naloxone. Electrical stimulation at 10 Hz in the MT induced more pronounced c-fos immunolabeling of neurons in the medial prefrontal cortex than did 1-Hz stimulation. The short-term facilitation occurred in the middle layers and expanded to the deeper layers of the ACC. These changes may mediate the effective signal transference in the specific frequency associated with painful responses.
Collapse
Affiliation(s)
- Jyh-Jang Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
199
|
Huang H, Ghosh P, van den Pol AN. Prefrontal cortex-projecting glutamatergic thalamic paraventricular nucleus-excited by hypocretin: a feedforward circuit that may enhance cognitive arousal. J Neurophysiol 2006; 95:1656-68. [PMID: 16492946 DOI: 10.1152/jn.00927.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The paraventricular thalamic nucleus (PVT) receives one of the most dense innervations by hypothalamic hypocretin/orexin (Hcrt) neurons, which play important roles in sleep-wakefulness, attention, and autonomic function. The PVT projects to several loci, including the medial prefrontal cortex (mPFC), a cortical region involved in associative function and attention. To study the effect of Hcrt on excitatory PVT neurons that project to the mPFC, we used a new line of transgenic mice expressing green fluorescent protein (GFP) under the control of the vesicular glutamate-transporter-2 promoter. These neurons were retrogradely labeled with cholera toxin subunit B that had been microinjected into the mPFC. Membrane characteristics and responses to hypocretin-1 and -2 (Hcrt-1 and -2) were studied using whole cell recording (n > 300). PVT neurons showed distinct membrane properties including inward rectification, H-type potassium currents, low threshold spikes, and spike frequency adaptation. Cortically projecting neurons were depolarized and excited by Hcrt-2. Hcrt-2 actions were stronger than those of Hcrt-1, and the action persisted in TTX and in low calcium/high magnesium artificial cerebrospinal fluid, consistent with direct actions mediated by Hcrt receptor-2. Two mechanisms of Hcrt excitation were found: an increase in input resistance caused by closure of potassium channels and activation of nonselective cation channels. The robust excitation evoked by Hcrt-2 on cortically projecting glutamate PVT neurons could generate substantial excitation in multiple layers of the mPFC, adding to the more selective direct excitatory actions of Hcrt in the mPFC and potentially increasing cortical arousal and attention to limbic or visceral states.
Collapse
Affiliation(s)
- Hao Huang
- Dept. of Neurosurgery, Yale Univ., School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | | | | |
Collapse
|
200
|
DONG HONGWEI, SWANSON LARRYW. Projections from bed nuclei of the stria terminalis, dorsomedial nucleus: implications for cerebral hemisphere integration of neuroendocrine, autonomic, and drinking responses. J Comp Neurol 2006; 494:75-107. [PMID: 16304681 PMCID: PMC2707828 DOI: 10.1002/cne.20790] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The overall projection pattern of a tiny bed nuclei of the stria terminalis anteromedial group differentiation, the dorsomedial nucleus (BSTdm), was analyzed with the Phaseolus vulgaris-leucoagglutinin anterograde pathway tracing method in rats. Many brain regions receive a relatively moderate to strong input from the BSTdm. They fall into eight general categories: humeral sensory-related (subfornical organ and median preoptic nucleus, involved in initiating drinking behavior and salt appetite), neuroendocrine system (magnocellular: oxytocin, vasopressin; parvicellular: gonadotropin-releasing hormone, somatostatin, thyrotropin-releasing hormone, corticotropin-releasing hormone), central autonomic control network (central amygdalar nucleus, BST anterolateral group, descending paraventricular hypothalamic nucleus, retrochiasmatic area, ventrolateral periaqueductal gray, Barrington's nucleus), hypothalamic visceromotor pattern-generator network (five of six known components), behavior control column (ingestive: descending paraventricular nucleus; reproductive: lateral medial preoptic nucleus; defensive: anterior hypothalamic nucleus; foraging: ventral tegmental area, along with interconnected nucleus accumbens and substantia innominata), orofacial motor control (retrorubral area), thalamocortical feedback loops (paraventricular, central medial, intermediodorsal, and medial mediodorsal nuclei; nucleus reuniens), and behavioral state control (subparaventricular zone, ventrolateral preoptic nucleus, tuberomammillary nucleus, supramammillary nucleus, lateral habenula, and raphé nuclei). This pattern of axonal projections, and what little is known of its inputs suggest that the BSTdm is part of a striatopallidal differentiation involved in coordinating the homeostatic and behavioral responses associated thirst and salt appetite, although clearly it may relate them to other functions as well. The BSTdm generates the densest known inputs directly to the neuroendocrine system from any part of the cerebral hemispheres.
Collapse
Affiliation(s)
| | - LARRY W. SWANSON
- Correspondence to: Dr. L.W. Swanson, Hedco Neuroscience Building, 3641 Watt Way, University of Southern California, Los Angeles, California 90089-2520. Voice: (213) 740-5892 / Fax: (213) 741-0561.
| |
Collapse
|