151
|
Phase 1b study of the BET protein inhibitor RO6870810 with venetoclax and rituximab in patients with diffuse large B-cell lymphoma. Blood Adv 2021; 5:4762-4770. [PMID: 34581757 PMCID: PMC8759125 DOI: 10.1182/bloodadvances.2021004619] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/27/2021] [Indexed: 11/20/2022] Open
Abstract
Bromodomain and extraterminal (BET) proteins are transcriptional activators for multiple oncogenic processes in diffuse large B-cell lymphoma (DLBCL), including MYC, BCL2, E2F, and toll-like receptor signaling. We report results of a phase 1b dose-escalation study of the novel, subcutaneous BET inhibitor RO6870810 (RO) combined with the BCL-2 inhibitor venetoclax, and rituximab, in recurrent/refractory DLBCL. RO was delivered for 14 days of a 21-day cycle, whereas venetoclax was delivered continuously. A 3 + 3 escalation design was used to determine the safety of the RO+venetoclax doublet; rituximab was added in later cohorts. Thirty-nine patients were treated with a median of 2.8 cycles (range, 1-11). Dose-limiting toxicities included grade 3 febrile neutropenia, grade 4 diarrhea, and hypomagnesemia for the doublet; and grade 3 hyperbilirubinemia and grade 4 diarrhea when rituximab was added. The doublet maximum tolerated dose (MTD) was determined to be 0.65 mg/kg RO+600 mg venetoclax; for RO+venetoclax+rituximab, the MTDs were 0.45 mg/kg, 600 mg, and 375 mg/m2, respectively. The most frequent grade 3 and 4 adverse events were neutropenia (28%) and anemia and thrombocytopenia (23% each). Responses were seen in all cohorts and molecular subtypes. Sustained decreases in CD11b on monocytes indicated pharmacodynamic activity of RO. Overall response rate according to modified Lugano criteria was 38.5%; 48% of responses lasted for ≥180 days. Complete response was observed in 8 patients (20.5%). Optimization of the treatment schedule and a better understanding of predictors of response would be needed to support broader clinical use. This trial is registered on www.clinicaltrials.gov as NCT03255096.
Collapse
|
152
|
Wellinger LC, Hogg SJ, Newman DM, Friess T, Geiss D, Michie J, Ramsbottom KM, Bacac M, Fauti T, Marbach D, Jarassier L, Thienger P, Paehler A, Cluse LA, Kearney CJ, Vervoort SJ, Trapani JA, Oliaro J, Shortt J, Ruefli-Brasse A, Rohle D, Johnstone RW. BET Inhibition Enhances TNF-Mediated Anti-Tumor Immunity. Cancer Immunol Res 2021; 10:87-107. [PMID: 34782346 DOI: 10.1158/2326-6066.cir-21-0224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/06/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Targeting chromatin binding proteins and modifying enzymes can concomitantly affect tumor cell proliferation and survival, as well as enhance anti-tumor immunity and augment cancer immunotherapies. By screening a small-molecule library of epigenetics-based therapeutics, BET (Bromo- and Extra-Terminal domain) inhibitors (BETi) were identified as agents that sensitize tumor cells to the anti-tumor activity of CD8+ T cells. BETi modulated tumor cells to be sensitized to the cytotoxic effects of the pro-inflammatory cytokine TNF. By preventing the recruitment of BRD4 to p65-bound cis-regulatory elements, BETi suppressed the induction of inflammatory gene expression, including the key NF-κB target genes BIRC2 (cIAP1) and BIRC3 (cIAP2). Disruption of pro-survival NF-κB signaling by BETi led to unrestrained TNF-mediated activation of the extrinsic apoptotic cascade and tumor cell death. Administration of BETi in combination with T-cell bispecific antibodies (TCB) or immune checkpoint blockade increased bystander killing of tumor cells and enhanced tumor growth inhibition in vivo in a TNF-dependent manner. This novel epigenetic mechanism of immunomodulation may guide future use of BETi as adjuvants for immune oncology agents.
Collapse
Affiliation(s)
| | - Simon J Hogg
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center
| | - Dane M Newman
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre
| | - Thomas Friess
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Penzberg
| | - Daniela Geiss
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Penzberg
| | | | | | - Marina Bacac
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich
| | - Tanja Fauti
- Oncology DTA, Roche Innovation Center Zurich, Roche Pharmaceutical Research & Early Development, pRED
| | | | | | | | - Axel Paehler
- Roche Pharma Research and Early Development, PS, RICB
| | - Leonie A Cluse
- Gene Regulation Laboratory, Cancer Therapeutics Program, Peter MacCallum Cancer Centre
| | | | | | | | - Jane Oliaro
- Centre for Cancer Immunotherapy, Peter MacCallum Cancer Centre
| | - Jake Shortt
- School of Clinical Sciences at Monash Health, Monash University
| | | | | | | |
Collapse
|
153
|
Sceneay J, Sinclair C. The future of immune checkpoint combinations with tumor-targeted small molecule drugs. Emerg Top Life Sci 2021; 5:675-680. [PMID: 34196724 PMCID: PMC8726049 DOI: 10.1042/etls20210064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/05/2023]
Abstract
Immune-checkpoint blockade (ICB) has transformed the landscape of cancer treatment. However, there is much to understand around refractory or acquired resistance in patients in order to utilize ICB therapy to its full potential. In this perspective article, we discuss the opportunities and challenges that are emerging as our understanding of immuno-oncology resistance matures. Firstly, there has been remarkable progress made to understand the exquisite overlap between oncogenic and immune signaling pathways. Several cancer-signaling pathways are constitutively active in oncogenic settings and also play physiological roles in immune cell function. A growing number of precision oncology tumor-targeted drugs show remarkable immunogenic properties that might be harnessed with rational combination strategies. Secondly, we now understand that the immune system confers a strong selective pressure on tumors. Whilst this pressure can lead to novel tumor evolution and immune escape, there is a growing recognition of tumor-intrinsic dependencies that arise in immune pressured environments. Such dependencies provide a roadmap for novel tumor-intrinsic drug targets to alleviate ICB resistance. We anticipate that rational combinations with existing oncology drugs and a next wave of tumor-intrinsic drugs that specifically target immunological resistance will represent the next frontier of therapeutic opportunity.
Collapse
Affiliation(s)
- Jaclyn Sceneay
- Mechanisms of Cancer Resistance Thematic Research Center, Bristol Myers Squibb, 100 Binney Street, Cambridge, MA 02142, U.S.A
| | - Charles Sinclair
- Mechanisms of Cancer Resistance Thematic Research Center, Bristol Myers Squibb, 100 Binney Street, Cambridge, MA 02142, U.S.A
| |
Collapse
|
154
|
Niu X, Wang W, Liang T, Li S, Yang C, Xu X, Li L, Liu S. CPI-203 improves the efficacy of anti-PD-1 therapy by inhibiting the induced PD-L1 overexpression in liver cancer. Cancer Sci 2021; 113:28-40. [PMID: 34727389 PMCID: PMC8748230 DOI: 10.1111/cas.15190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the commonest lethal malignancies worldwide, and often diagnosed at an advanced stage, without any curative therapy. Immune checkpoint blockers targeting the programmed death receptor 1 (PD‐1) have shown impressive antitumor activity in patients with advanced‐stage HCC, while the response rate is only 30%. Inducible PD‐L1 overexpression may result in a lack of response to cancer immunotherapy, which is attributed to a mechanism of adaptive immune resistance. Our study investigated that the overexpression of PD‐L1 promoted the invasion and migration of liver cancer cells in vitro, and the induced overexpression of PD‐L1 in the tumor microenvironment could weaken the effects of anti‐PD‐1 immunotherapy in a BALB/c mouse model of liver cancer. CPI‐203, a small‐molecule bromodomain‐containing protein 4 (BRD4) inhibitor, which can potently inhibit PD‐L1 expression in vitro and in vivo, combined with PD‐1 antibody improved the response to immunotherapy in a liver cancer model. Cell transfection and chromatin immunoprecipitation assay manifested that BRD4 plays a key role in PD‐L1 expression; CPI‐203 can inhibit PD‐L1 expression by inhibiting the BRD4 occupation of the PD‐L1 promoter region. This study indicates a potential clinical immunotherapy method to reduce the incidence of clinical resistance to immunotherapy in patients with HCC.
Collapse
Affiliation(s)
- Xiaoge Niu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Department of Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Taizhen Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shasha Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xinfeng Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China
| |
Collapse
|
155
|
Li X, Shi H, Zhang W, Bai C, He M, Ta N, Huang H, Ning Y, Fang C, Qin H, Dong Y. Immunotherapy and Targeting the Tumor Microenvironment: Current Place and New Insights in Primary Pulmonary NUT Carcinoma. Front Oncol 2021; 11:690115. [PMID: 34660264 PMCID: PMC8515126 DOI: 10.3389/fonc.2021.690115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Primary pulmonary nuclear protein of testis carcinoma is a rare and highly aggressive malignant tumor. It accounts for approximately 0.22% of primary thoracic tumors and is little known, so it is often misdiagnosed as pulmonary squamous cell carcinoma. No effective treatment has been formed yet, and the prognosis is extremely poor. This review aims to summarize the etiology, pathogenesis, diagnosis, treatment, and prognosis of primary pulmonary nuclear protein of testis carcinoma in order to better recognize it and discuss the current and innovative strategies to overcome it. With the increasing importance of cancer immunotherapy and tumor microenvironment, the review also discusses whether immunotherapy and targeting the tumor microenvironment can improve the prognosis of primary pulmonary nuclear protein of testis carcinoma and possible treatment strategies. We reviewed and summarized the clinicopathological features of all patients with primary pulmonary nuclear protein of testis carcinoma who received immunotherapy, including initial misdiagnosis, disease stage, immunohistochemical markers related to tumor neovascularization, and biomarkers related to immunotherapy, such as PD-L1 (programmed death-ligand 1) and TMB (tumor mutational burden). In the meanwhile, we summarized and analyzed the progression-free survival (PFS) and the overall survival (OS) of patients with primary pulmonary nuclear protein of testis carcinoma treated with PD-1 (programmed cell death protein 1)/PD-L1 inhibitors and explored potential population that may benefit from immunotherapy. To the best of our knowledge, this is the first review on the exploration of the tumor microenvironment and immunotherapy effectiveness in primary pulmonary nuclear protein of testis carcinoma.
Collapse
Affiliation(s)
- Xiang Li
- Department of Respiratory and Critical Care Medicine, Changhai Hospital (The First Affiliated Hospital of Naval Medical University), Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hui Shi
- Department of Respiratory and Critical Care Medicine, Changhai Hospital (The First Affiliated Hospital of Naval Medical University), Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital (The First Affiliated Hospital of Naval Medical University), Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Changhai Hospital (The First Affiliated Hospital of Naval Medical University), Naval Medical University (Second Military Medical University), Shanghai, China
| | - Miaoxia He
- Department of Pathology, Changhai Hospital (The First Affiliated Hospital of Naval Medical University), Naval Medical University (Second Military Medical University), Shanghai, China
| | - Na Ta
- Department of Pathology, Changhai Hospital (The First Affiliated Hospital of Naval Medical University), Naval Medical University (Second Military Medical University), Shanghai, China
| | - Haidong Huang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital (The First Affiliated Hospital of Naval Medical University), Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yunye Ning
- Department of Respiratory and Critical Care Medicine, Changhai Hospital (The First Affiliated Hospital of Naval Medical University), Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chen Fang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital (The First Affiliated Hospital of Naval Medical University), Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hao Qin
- Department of Respiratory and Critical Care Medicine, Changhai Hospital (The First Affiliated Hospital of Naval Medical University), Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yuchao Dong
- Department of Respiratory and Critical Care Medicine, Changhai Hospital (The First Affiliated Hospital of Naval Medical University), Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
156
|
Feng L, Wang G, Chen Y, He G, Liu B, Liu J, Chiang CM, Ouyang L. Dual-target inhibitors of bromodomain and extra-terminal proteins in cancer: A review from medicinal chemistry perspectives. Med Res Rev 2021; 42:710-743. [PMID: 34633088 DOI: 10.1002/med.21859] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/14/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023]
Abstract
Bromodomain-containing protein 4 (BRD4), as the most studied member of the bromodomain and extra-terminal (BET) family, is a chromatin reader protein interpreting epigenetic codes through binding to acetylated histones and non-histone proteins, thereby regulating diverse cellular processes including cell cycle, cell differentiation, and cell proliferation. As a promising drug target, BRD4 function is closely related to cancer, inflammation, cardiovascular disease, and liver fibrosis. Currently, clinical resistance to BET inhibitors has limited their applications but synergistic antitumor effects have been observed when used in combination with other tumor inhibitors targeting additional cellular components such as PLK1, HDAC, CDK, and PARP1. Therefore, designing dual-target inhibitors of BET bromodomains is a rational strategy in cancer treatment to increase potency and reduce drug resistance. This review summarizes the protein structures and biological functions of BRD4 and discusses recent advances of dual BET inhibitors from a medicinal chemistry perspective. We also discuss the current design and discovery strategies for dual BET inhibitors, providing insight into potential discovery of additional dual-target BET inhibitors.
Collapse
Affiliation(s)
- Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
157
|
Zhou F, Gao J, Tang Y, Zou Z, Jiao S, Zhou Z, Xu H, Xu ZP, Yu H, Xu Z. Engineering Chameleon Prodrug Nanovesicles to Increase Antigen Presentation and Inhibit PD-L1 Expression for Circumventing Immune Resistance of Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102668. [PMID: 34463392 DOI: 10.1002/adma.202102668] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/11/2021] [Indexed: 01/07/2023]
Abstract
Immune evasion is the major obstacle for T-cell-based cancer immunotherapy. The insufficient expression of the tumor-rejection antigen causes the intrinsic immune resistance and high expression of programmed death ligand 1 (PD-L1) induced by interferon gamma (IFN-γ), which accounts for the inducible immune resistance. To deal with both the intrinsic and inducible immune resistance of cancer, a multifunctional prodrug nanovesicle is sequentially developed. It is first sorted out that doxycycline (Doxy) efficiently inhibits autophagy of the tumor cells, and increases the surface level of major histocompatibility complex class I (MHC-I). Then, chameleon-inspired prodrug nanovesicles are engineered for tumor-targeted delivery of Doxy. The prodrug nanovesicles integrating a sheddable poly(ethylene glycol) shell and CRGDK ligand are kept stable during blood circulation, while exposing the targeting ligand in the tumor, which significantly inhibits autophagy, elicits MHC-I expression, increases tumor antigen presentation, recruits more tumor-infiltrating T lymphocytes, and suppresses FN-γ-induced intratumoral PD-L1 expression. After a proof of concept for overcoming intrinsic and inducible immune evasion, the prodrug nanovesicles are applied to validate the efficacy of cancer immunotherapy in two tumor-bearing mouse models. This research thus provides a novel targeting strategy for reducing tumor immune resistance and potentiating tumor immunotherapy.
Collapse
Affiliation(s)
- Fengqi Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jing Gao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Tongji University Cancer Center, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yang Tang
- Tongji University Cancer Center, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhifeng Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Huixiong Xu
- Tongji University Cancer Center, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
158
|
Sanceau J, Gougelet A. Epigenetic mechanisms of liver tumor resistance to immunotherapy. World J Hepatol 2021; 13:979-1002. [PMID: 34630870 PMCID: PMC8473495 DOI: 10.4254/wjh.v13.i9.979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/04/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor, which stands fourth in rank of cancer-related deaths worldwide. The incidence of HCC is constantly increasing in correlation with the epidemic in diabetes and obesity, arguing for an urgent need for new treatments for this lethal cancer refractory to conventional treatments. HCC is the paradigm of inflammation-associated cancer, since more than 80% of HCC emerge consecutively to cirrhosis associated with a vast remodeling of liver microenvironment. In the recent decade, immunomodulatory drugs have been developed and have given impressive results in melanoma and later in several other cancers. In the present review, we will discuss the recent advancements concerning the use of immunotherapies in HCC, in particular those targeting immune checkpoints, used alone or in combination with other anti-cancers agents. We will address why these drugs demonstrate unsatisfactory results in a high proportion of liver cancers and the mechanisms of resistance developed by HCC to evade immune response with a focus on the epigenetic-related mechanisms.
Collapse
Affiliation(s)
- Julie Sanceau
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris 75006, France
| | - Angélique Gougelet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Paris 75006, France.
| |
Collapse
|
159
|
Jing L, Lin J, Yang Y, Tao L, Li Y, Liu Z, Zhao Q, Diao A. Quercetin inhibiting the PD-1/PD-L1 interaction for immune-enhancing cancer chemopreventive agent. Phytother Res 2021; 35:6441-6451. [PMID: 34560814 DOI: 10.1002/ptr.7297] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022]
Abstract
Targeting the PD-1/PD-L1 immune checkpoints has achieved significant positive results in the treatment of multiple cancers. Quercetin is one of the most abundant dietary flavonoids found in various vegetables and fruits, and has a wide range of biological activities including immunomodulation. Here we report that quercetin dihydrate was screened and shown to inhibit the PD-1/PD-L1 interaction. Treatment with quercetin dihydrate promoted the killing activity of T cells on MDA-MB-231 and NCI-H460 cancer cells. Experiments using the xenograft mouse model showed that the growth rate of tumor volumes and masses in the quercetin dihydrate-treated mice were decreased. Immunohistochemistry of the tumors showed that CD8, GZMB, and IFN-γ were increased in the quercetin dihydrate-treated mice. These results suggest that quercetin dihydrate attenuates the inhibitory effect of PD-L1 on T cells by inhibiting the PD-1/PD-L1 interaction, which has an exciting potential to be used as a cancer chemopreventive agent.
Collapse
Affiliation(s)
- Lei Jing
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,School of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Jieru Lin
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Yang
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Li Tao
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyin Li
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhenxing Liu
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qing Zhao
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Aipo Diao
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
160
|
Niu H, Song F, Wei H, Li Y, Huang H, Wu C. Inhibition of BRD4 Suppresses the Growth of Esophageal Squamous Cell Carcinoma. Cancer Invest 2021; 39:826-841. [PMID: 34519605 DOI: 10.1080/07357907.2021.1975736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bromodomain-containing protein 4 (BRD4) binds acetylated lysine residues on histones to facilitate the epigenetic regulation of many genes, and it plays a key role in many cancer types. Despite many prior reports that have explored the importance of BRD4 in oncogenesis and the regulation of epigenetic memory, its role in esophageal squamous cell carcinoma (ESCC) progression is poorly understood. Here, we investigated BRD4 expression in human ESCC tissues to understand how it regulates the biology of these tumor cells. METHODS BRD4 expression in ESCC tissues was measured via immunohistochemical staining. BRD4 inhibition in the Eca-109 and KYSE-150 ESCC cell lines was conducted to explore its functional role in these tumor cells. RESULTS BRD4 overexpression was observed in ESCC tissues and cells, and inhibiting the function of the gene impaired the proliferative, invasive, and migratory activity of these cells while promoting their apoptosis. Cyclin D1 and c-Myc expression were also suppressed by BRD4 inhibition, and the expression of key epithelial-mesenchymal transition markers including E-cadherin and Vimentin was markedly altered by such inhibition. CONCLUSIONS BRD4 plays key functional roles in the biology of ESCC, proposing that it could be a viable therapeutic target for treating this cancer type.
Collapse
Affiliation(s)
- Haiyu Niu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Oncology, Lanzhou University Second Hospital, Lanzhou, China.,Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Feixue Song
- Department of Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Hanwen Wei
- Department of Cardiology, The First People's Hospital of Lanzhou, Lanzhou, China
| | - Yuan Li
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Hao Huang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Institute of Cell Therapy, Soochow University, Changzhou, China.,Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
161
|
Malinee M, Pandian GN, Sugiyama H. Targeted epigenetic induction of mitochondrial biogenesis enhances antitumor immunity in mouse model. Cell Chem Biol 2021; 29:463-475.e6. [PMID: 34520746 DOI: 10.1016/j.chembiol.2021.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/04/2021] [Accepted: 08/01/2021] [Indexed: 11/25/2022]
Abstract
Considering the potential of combinatorial therapies in overcoming existing limitations of cancer immunotherapy, there is an increasing need to identify small-molecule modulators of immune cells capable of augmenting the effect of programmed cell death protein 1 (PD-1) blockade, leading to better cancer treatment. Although epigenetic drugs showed potential in combination therapy, the lack of sequence specificity is a major concern. Here, we identify and develop a DNA-based epigenetic activator with tri-arginine vector called EnPGC-1 that can trigger the targeted induction of the peroxisome proliferator-activated receptor-gamma coactivator 1 alpha/beta (PGC-1α/β), a regulator of mitochondrial biogenesis. EnPGC-1 enhances mitochondrial activation, energy metabolism, proliferation of CD8+ T cells in vitro, and, in particular, enhances oxidative phosphorylation, a feature of long-lived memory T cells. Genome-wide gene analysis suggests that EnPGC-1 and not the control compounds can regulate T cell activation as a major biological process. EnPGC-1 also synergizes with PD-1 blockade to enhance antitumor immunity and improved host survival.
Collapse
Affiliation(s)
- Madhu Malinee
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ganesh Namasivayam Pandian
- Institute of Integrated Cell Material Sciences (iCeMS), Kyoto University of Advanced Study, Kyoto, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
162
|
He ZD, Zhang M, Wang YH, He Y, Wang HR, Chen BF, Tu B, Zhu SQ, Huang YZ. Anti-PD-L1 mediating tumor-targeted codelivery of liposomal irinotecan/JQ1 for chemo-immunotherapy. Acta Pharmacol Sin 2021; 42:1516-1523. [PMID: 33311600 PMCID: PMC8379160 DOI: 10.1038/s41401-020-00570-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
Immune checkpoint blockade therapy has become a first-line treatment in various cancers. But there are only a small percent of colorectal patients responding to PD-1/PD-L1 blockage immunotherapy. How to increase their treatment efficacy is an urgent and clinically unmet need. It is acknowledged that immunogenic cell death (ICD) induced by some specific chemotherapy can enhance antitumor immunity. Chemo-based combination therapy can yield improved outcomes by activating the immune system to eliminate the tumor, compared with monotherapy. Here, we develop a PD-L1-targeting immune liposome (P-Lipo) for co-delivering irinotecan (IRI) and JQ1, and this system can successfully elicit antitumor immunity in colorectal cancer through inducing ICD by IRI and interfering in the immunosuppressive PD-1/PD-L1 pathway by JQ1. P-Lipo increases intratumoral drug accumulation and promotes DC maturation, and thereby facilitates adaptive immune responses against tumor growth. The remodeling tumor immune microenvironment was reflected by the increased amount of CD8+ T cells and the release of IFN-γ, and the reduced CD4+Foxp3+ regulatory T cells (Tregs). Collectively, the P-Lipo codelivery system provides a chemo-immunotherapy strategy that can effectively remodel the tumor immune microenvironment and activate the host immune system and arrest tumor growth.
Collapse
|
163
|
Kong W, Dimitri A, Wang W, Jung IY, Ott CJ, Fasolino M, Wang Y, Kulikovskaya I, Gupta M, Yoder T, DeNizio JE, Everett JK, Williams EF, Xu J, Scholler J, Reich TJ, Bhoj VG, Haines KM, Maus MV, Melenhorst JJ, Young RM, Jadlowsky JK, Marcucci KT, Bradner JE, Levine BL, Porter DL, Bushman FD, Kohli RM, June CH, Davis MM, Lacey SF, Vahedi G, Fraietta JA. BET bromodomain protein inhibition reverses chimeric antigen receptor extinction and reinvigorates exhausted T cells in chronic lymphocytic leukemia. J Clin Invest 2021; 131:e145459. [PMID: 34396987 DOI: 10.1172/jci145459] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells have induced remarkable antitumor responses in B cell malignancies. Some patients do not respond because of T cell deficiencies that hamper the expansion, persistence, and effector function of these cells. We used longitudinal immune profiling to identify phenotypic and pharmacodynamic changes in CD19-directed CAR T cells in patients with chronic lymphocytic leukemia (CLL). CAR expression maintenance was also investigated because this can affect response durability. CAR T cell failure was accompanied by preexisting T cell-intrinsic defects or dysfunction acquired after infusion. In a small subset of patients, CAR silencing was observed coincident with leukemia relapse. Using a small molecule inhibitor, we demonstrated that the bromodomain and extra-terminal (BET) family of chromatin adapters plays a role in downregulating CAR expression. BET protein blockade also ameliorated CAR T cell exhaustion as manifested by inhibitory receptor reduction, enhanced metabolic fitness, increased proliferative capacity, and enriched transcriptomic signatures of T cell reinvigoration. BET inhibition decreased levels of the TET2 methylcytosine dioxygenase, and forced expression of the TET2 catalytic domain eliminated the potency-enhancing effects of BET protein targeting in CAR T cells, providing a mechanism linking BET proteins and T cell dysfunction. Thus, modulating BET epigenetic readers may improve the efficacy of cell-based immunotherapies.
Collapse
Affiliation(s)
- Weimin Kong
- Department of Microbiology.,Center for Cellular Immunotherapies.,Abramson Cancer Center, and
| | - Alexander Dimitri
- Department of Microbiology.,Center for Cellular Immunotherapies.,Abramson Cancer Center, and
| | - Wenliang Wang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - In-Young Jung
- Department of Microbiology.,Center for Cellular Immunotherapies.,Abramson Cancer Center, and
| | - Christopher J Ott
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Maria Fasolino
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yan Wang
- Center for Cellular Immunotherapies
| | | | | | | | - Jamie E DeNizio
- Department of Medicine and.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Erik F Williams
- Department of Microbiology.,Center for Cellular Immunotherapies.,Abramson Cancer Center, and
| | - Jun Xu
- Center for Cellular Immunotherapies
| | | | | | - Vijay G Bhoj
- Center for Cellular Immunotherapies.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Marcela V Maus
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts, USA
| | - J Joseph Melenhorst
- Center for Cellular Immunotherapies.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - James E Bradner
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies.,Abramson Cancer Center, and.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David L Porter
- Abramson Cancer Center, and.,Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Rahul M Kohli
- Department of Medicine and.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carl H June
- Center for Cellular Immunotherapies.,Abramson Cancer Center, and.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Megan M Davis
- Center for Cellular Immunotherapies.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Simon F Lacey
- Center for Cellular Immunotherapies.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Golnaz Vahedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph A Fraietta
- Department of Microbiology.,Center for Cellular Immunotherapies.,Abramson Cancer Center, and.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
164
|
Akbari B, Ghahri-Saremi N, Soltantoyeh T, Hadjati J, Ghassemi S, Mirzaei HR. Epigenetic strategies to boost CAR T cell therapy. Mol Ther 2021; 29:2640-2659. [PMID: 34365035 DOI: 10.1016/j.ymthe.2021.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/19/2021] [Accepted: 07/31/2021] [Indexed: 02/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has led to a paradigm shift in cancer immunotherapy, but still several obstacles limit CAR T cell efficacy in cancers. Advances in high-throughput technologies revealed new insights into the role that epigenetic reprogramming plays in T cells. Mechanistic studies as well as comprehensive epigenome maps revealed an important role for epigenetic remodeling in T cell differentiation. These modifications shape the overall immune response through alterations in T cell phenotype and function. Here, we outline how epigenetic modifications in CAR T cells can overcome barriers limiting CAR T cell effectiveness, particularly in immunosuppressive tumor microenvironments. We also offer our perspective on how selected epigenetic modifications can boost CAR T cells to ultimately improve the efficacy of CAR T cell therapy.
Collapse
Affiliation(s)
- Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Navid Ghahri-Saremi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran.
| |
Collapse
|
165
|
Bhola NE, Njatcha C, Hu L, Lee ED, Shiah JV, Kim MO, Johnson DE, Grandis JR. PD-L1 is upregulated via BRD2 in head and neck squamous cell carcinoma models of acquired cetuximab resistance. Head Neck 2021; 43:3364-3373. [PMID: 34346116 DOI: 10.1002/hed.26827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/11/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tumor models resistant to EGFR tyrosine kinase inhibitors or cisplatin express higher levels of the immune checkpoint molecule PD-L1. We sought to determine whether PD-L1 expression is elevated in head and neck squamous cell carcinoma (HNSCC) models of acquired cetuximab resistance and whether the expression is regulated by bromodomain and extraterminal domain (BET) proteins. METHODS Expression of PD-L1 was assessed in HNSCC cell line models of acquired cetuximab resistance. Proteolysis targeting chimera (PROTAC)- and RNAi-mediated targeting were used to assess the role of BET proteins. RESULTS Cetuximab-resistant HNSCC cells expressed elevated PD-L1 compared to cetuximab-sensitive controls. Treatment with the BET inhibitor JQ1, the BET PROTAC MZ1, or RNAi-mediated knockdown of BRD2 decreased PD-L1 expression. Knockdown of BRD2 also reduced the elevated levels of PD-L1 seen in a model of acquired cisplatin resistance. CONCLUSIONS PD-L1 is significantly elevated in HNSCC models of acquired cetuximab and cisplatin resistance where BRD2 is the primary regulator.
Collapse
Affiliation(s)
- Neil E Bhola
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Christian Njatcha
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Lanlin Hu
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Eliot D Lee
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Jamie V Shiah
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Mi-Ok Kim
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
166
|
Milner JJ, Toma C, Quon S, Omilusik K, Scharping NE, Dey A, Reina-Campos M, Nguyen H, Getzler AJ, Diao H, Yu B, Delpoux A, Yoshida TM, Li D, Qi J, Vincek A, Hedrick SM, Egawa T, Zhou MM, Crotty S, Ozato K, Pipkin ME, Goldrath AW. Bromodomain protein BRD4 directs and sustains CD8 T cell differentiation during infection. J Exp Med 2021; 218:e20202512. [PMID: 34037670 PMCID: PMC8160575 DOI: 10.1084/jem.20202512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/10/2021] [Accepted: 05/03/2021] [Indexed: 12/26/2022] Open
Abstract
In response to infection, pathogen-specific CD8 T cells differentiate into functionally diverse effector and memory T cell populations critical for resolving disease and providing durable immunity. Through small-molecule inhibition, RNAi studies, and induced genetic deletion, we reveal an essential role for the chromatin modifier and BET family member BRD4 in supporting the differentiation and maintenance of terminally fated effector CD8 T cells during infection. BRD4 bound diverse regulatory regions critical to effector T cell differentiation and controlled transcriptional activity of terminal effector-specific super-enhancers in vivo. Consequentially, induced deletion of Brd4 or small molecule-mediated BET inhibition impaired maintenance of a terminal effector T cell phenotype. BRD4 was also required for terminal differentiation of CD8 T cells in the tumor microenvironment in murine models, which we show has implications for immunotherapies. Taken together, these data reveal an unappreciated requirement for BRD4 in coordinating activity of cis regulatory elements to control CD8 T cell fate and lineage stability.
Collapse
Affiliation(s)
- J. Justin Milner
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Clara Toma
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Sara Quon
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Kyla Omilusik
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Nicole E. Scharping
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Anup Dey
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Miguel Reina-Campos
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Hongtuyet Nguyen
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Adam J. Getzler
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| | - Huitian Diao
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| | - Bingfei Yu
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Arnaud Delpoux
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Tomomi M. Yoshida
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Deyao Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Adam Vincek
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Stephen M. Hedrick
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Matthew E. Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| | - Ananda W. Goldrath
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| |
Collapse
|
167
|
Cheng CLH, Tsang FHC, Wei L, Chen M, Chin DWC, Shen J, Law CT, Lee D, Wong CCL, Ng IOL, Wong CM. Bromodomain-containing protein BRPF1 is a therapeutic target for liver cancer. Commun Biol 2021; 4:888. [PMID: 34285329 PMCID: PMC8292510 DOI: 10.1038/s42003-021-02405-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Epigenetic deregulation plays an essential role in hepatocellular carcinoma (HCC) progression. Bromodomains are epigenetic "readers" of histone acetylation. Recently, bromodomain inhibitors have exhibited promising therapeutic potential for cancer treatment. Using transcriptome sequencing, we identified BRPF1 (bromodomain and PHD finger containing 1) as the most significantly upregulated gene among the 43 bromodomain-containing genes in human HCC. BRPF1 upregulation was significantly associated with poor patient survival. Gene ablation or pharmacological inactivation of BRPF1 significantly attenuated HCC cell growth in vitro and in vivo. BRPF1 was involved in cell cycle progression, senescence and cancer stemness. Transcriptome sequencing revealed that BRPF1 is a master regulator controlling the expression of multiple key oncogenes, including E2F2 and EZH2. We demonstrated that BRPF1 activated E2F2 and EZH2 expression by facilitating promoter H3K14 acetylation through MOZ/MORF complex. In conclusion, BRPF1 is frequently upregulated in human HCCs. Targeting BRPF1 may be an approach for HCC treatment.
Collapse
Affiliation(s)
- Carol Lai-Hung Cheng
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Felice Hoi-Ching Tsang
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lai Wei
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Mengnuo Chen
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Don Wai-Ching Chin
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jialing Shen
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheuk-Ting Law
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Derek Lee
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Carmen Chak-Lui Wong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Chun-Ming Wong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
168
|
PD-L1 regulation revisited: impact on immunotherapeutic strategies. Trends Mol Med 2021; 27:868-881. [PMID: 34187739 DOI: 10.1016/j.molmed.2021.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/29/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
A particularly promising cancer treatment is the use of monoclonal antibodies (mAbs) against immune checkpoints (i.e., immune checkpoint inhibitors; ICIs). However, many patients experience relapse and severe adverse events. To overcome these negative issues and improve efficiency, current approaches rely on combinatorial treatments, including some modulating the expression of programmed cell death receptor 1 (PD-1)/programmed death ligand 1 (PD-L1) immune checkpoints directly. In this review, we examine the recently discovered pathways involved in PD-L1 expression and highlight the relevant druggable strategies that are being developed to both improve the response rate and avoid the onset of resistance. Altogether, these new strategies will pave the way for effective treatment combinations in future oncology clinical trials.
Collapse
|
169
|
Mao CG, Jiang SS, Wang XY, Tao SL, Jiang B, Mao CY, Yang YL, Hu ZY, Long T, Jin H, Tan QY, Huang Y, Deng B. BCAR1 plays critical roles in the formation and immunoevasion of invasive circulating tumor cells in lung adenocarcinoma. Int J Biol Sci 2021; 17:2461-2475. [PMID: 34326687 PMCID: PMC8315020 DOI: 10.7150/ijbs.61790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
Background: We investigated the roles of breast cancer anti-estrogen resistance 1 (BCAR1/p130Cas) in the formation and immunoevasion of invasive circulating tumor cells (CTCs) in lung adenocarcinoma (LUAD). Methods: Biomarkers of CTCs including BCAR1 and CD274, were evaluated by the CanPatrol method. Proteomics analysis of LUAD cells and exosomes after BCAR1 overexpression (BCAR1-OE) was performed by mass spectrometry. Cell functions and relevant signaling pathways were investigated after BCAR1 knockdown (BCAR1-KO) or BCAR1-OE in LUAD cells. Lastly, in vitro and in vivo experiments were performed to confirm the roles of BCAR1 in the formation and immunoevasion of CTCs. Results: High expression of BCAR1 by CTCs correlated with CD274 expression and epithelial-to-mesenchymal transition (EMT). RAC1, together with BCAR1, was found to play an important role in the carcinogenesis of LUAD. RAC1 functioned with BCAR1 to induce EMT and to enhance cell proliferation, colony formation, cell invasion and migration, and anoikis resistance in LUAD cells. BCAR1 up-regulated CD274 expression probably by shuttling the short isoform of BRD4 (BRD4-S) into the nucleus. CTCs, as well as tumor formation, were prohibited in nude mice xenografted with BCAR1-KO cells. The co-expression of BCAR1/RAC1 and BCAR1/CD274 was confirmed in LUAD. BCAR1 expression in LUAD is an indicator of poor prognosis, and it associates with immunoevasion. Conclusion: BCAR1, as a new target for the treatment of LUAD, plays roles in the formation and immunoevasion of invasive CTCs. The mechanism includes triggering EMT via RAC1 signaling and up-regulating CD274 expression by shuttling BRD4-S into the nucleus.
Collapse
Affiliation(s)
- Chun-Guo Mao
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Sha-sha Jiang
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xiao-yang Wang
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Shao-Lin Tao
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Bin Jiang
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Cheng-Yi Mao
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yan-Lian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Zhi-Yuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tan Long
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Hua Jin
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qun-You Tan
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Bo Deng
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
170
|
Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L, Zeng WJ, Liu Z, Cheng Q. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res 2021; 40:184. [PMID: 34088360 PMCID: PMC8178863 DOI: 10.1186/s13046-021-01987-7] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 02/01/2023] Open
Abstract
The cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)/B7 and programmed death 1 (PD-1)/ programmed cell death-ligand 1 (PD-L1) are two most representative immune checkpoint pathways, which negatively regulate T cell immune function during different phases of T-cell activation. Inhibitors targeting CTLA-4/B7 and PD1/PD-L1 pathways have revolutionized immunotherapies for numerous cancer types. Although the combined anti-CTLA-4/B7 and anti-PD1/PD-L1 therapy has demonstrated promising clinical efficacy, only a small percentage of patients receiving anti-CTLA-4/B7 or anti-PD1/PD-L1 therapy experienced prolonged survival. Regulation of the expression of PD-L1 and CTLA-4 significantly impacts the treatment effect. Understanding the in-depth mechanisms and interplays of PD-L1 and CTLA-4 could help identify patients with better immunotherapy responses and promote their clinical care. In this review, regulation of PD-L1 and CTLA-4 is discussed at the levels of DNA, RNA, and proteins, as well as indirect regulation of biomarkers, localization within the cell, and drugs. Specifically, some potential drugs have been developed to regulate PD-L1 and CTLA-4 expressions with high efficiency.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Jing Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
171
|
Salahong T, Schwartz C, Sungthong R. Are BET Inhibitors yet Promising Latency-Reversing Agents for HIV-1 Reactivation in AIDS Therapy? Viruses 2021; 13:v13061026. [PMID: 34072421 PMCID: PMC8228869 DOI: 10.3390/v13061026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022] Open
Abstract
AIDS first emerged decades ago; however, its cure, i.e., eliminating all virus sources, is still unachievable. A critical burden of AIDS therapy is the evasive nature of HIV-1 in face of host immune responses, the so-called "latency." Recently, a promising approach, the "Shock and Kill" strategy, was proposed to eliminate latently HIV-1-infected cell reservoirs. The "Shock and Kill" concept involves two crucial steps: HIV-1 reactivation from its latency stage using a latency-reversing agent (LRA) followed by host immune responses to destroy HIV-1-infected cells in combination with reinforced antiretroviral therapy to kill the progeny virus. Hence, a key challenge is to search for optimal LRAs. Looking at epigenetics of HIV-1 infection, researchers proved that some bromodomains and extra-terminal motif protein inhibitors (BETis) are able to reactivate HIV-1 from latency. However, to date, only a few BETis have shown HIV-1-reactivating functions, and none of them have yet been approved for clinical trial. In this review, we aim to demonstrate the epigenetic roles of BETis in HIV-1 infection and HIV-1-related immune responses. Possible future applications of BETis and their HIV-1-reactivating properties are summarized and discussed.
Collapse
Affiliation(s)
- Thanarat Salahong
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Christian Schwartz
- Research Unit 7292, DHPI, IUT Louis Pasteur, University of Strasbourg, 67300 Schiltigheim, France
- Correspondence: (C.S.); (R.S.)
| | - Rungroch Sungthong
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
- Laboratory of Hydrology and Geochemistry of Strasbourg, University of Strasbourg, UMR 7517 CNRS/EOST, 67084 Strasbourg CEDEX, France
- Correspondence: (C.S.); (R.S.)
| |
Collapse
|
172
|
BRD4 inhibition boosts the therapeutic effects of epidermal growth factor receptor-targeted chimeric antigen receptor T cells in glioblastoma. Mol Ther 2021; 29:3011-3026. [PMID: 34058385 PMCID: PMC8531146 DOI: 10.1016/j.ymthe.2021.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/30/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma (GBM) is the deadliest brain malignancy without effective treatments. Here, we reported that epidermal growth factor receptor-targeted chimeric antigen receptor T cells (EGFR CAR-T) were effective in suppressing the growth of GBM cells in vitro and xenografts derived from GBM cell lines and patients in mice. However, mice soon acquired resistance to EGFR CAR-T cell treatment, limiting its potential use in the clinic. To find ways to improve the efficacy of EGFR CAR-T cells, we performed genomics and transcriptomics analysis for GBM cells incubated with EGFR CAR-T cells and found that a large cohort of genes, including immunosuppressive genes, as well as enhancers in vicinity are activated. BRD4, an epigenetic modulator functioning on both promoters and enhancers, was required for the activation of these immunosuppressive genes. Accordingly, inhibition of BRD4 by JQ1 blocked the activation of these immunosuppressive genes. Combination therapy with EGFR CAR-T cells and JQ1 suppressed the growth and metastasis of GBM cells and prolonged survival in mice. We demonstrated that transcriptional modulation by targeting epigenetic regulators could improve the efficacy of immunotherapy including CAR-T, providing a therapeutic avenue for treating GBM in the clinic.
Collapse
|
173
|
Li D, Zhao W, Zhang X, Lv H, Li C, Sun L. NEFM DNA methylation correlates with immune infiltration and survival in breast cancer. Clin Epigenetics 2021; 13:112. [PMID: 34001208 PMCID: PMC8130356 DOI: 10.1186/s13148-021-01096-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/02/2021] [Indexed: 11/25/2022] Open
Abstract
Background This study aims to determine whether NEFM (neurofilament medium) DNA methylation correlates with immune infiltration and prognosis in breast cancer (BRCA) and to explore NEFM-connected immune gene signature. Methods NEFM transcriptional expression was analyzed in BRCA and normal breast tissues using Oncomine and Tumor Immune Estimation Resource (TIMER) databases. The relationship between NEFM DNA methylation and NEFM transcriptional expression was investigated in TCGA. Potential influence of NEFM DNA methylation/expression on clinical outcome was evaluated using TCGA BRCA, The Human Protein Atlas and Kaplan–Meier plotter databases. Association of NEFM transcriptional expression/DNA methylation with cancer immune infiltration was investigated using TIMER and TISIDB databases. Results High expression of NEFM correlated with better overall survival (OS) and recurrence-free survival (RFS) in TCGA BRCA and Kaplan–Meier plotter, whereas NEFM DNA methylation with worse OS in TCGA BRCA. NEFM transcriptional expression negatively correlated with DNA methylation. NEFM DNA methylation significantly negatively correlated with infiltrating levels of B, CD8+ T/CD4+ T cells, macrophages, neutrophils and dendritic cells in TIMER and TISIDB. NEFM expression positively correlated with macrophage infiltration in TIMER and TISIDB. After adjusted with tumor purity, NEFM expression weekly negatively correlated with infiltration level of B cells, whereas positively correlated with CD8+ T cell infiltration in TIMER gene modules. NEFM expression/DNA methylation correlated with diverse immune markers in TCGA and TISIDB. Conclusions NEFM low-expression/DNA methylation correlates with poor prognosis. NEFM expression positively correlates with macrophage infiltration. NEFM DNA methylation strongly negatively correlates with immune infiltration in BRCA. Our study highlights novel potential functions of NEFM expression/DNA methylation in regulation of tumor immune microenvironment. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01096-4.
Collapse
Affiliation(s)
- Dandan Li
- Department of Radiotherapy Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenhao Zhao
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Xinyu Zhang
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Hanning Lv
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Chunhong Li
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China.
| | - Lichun Sun
- Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
174
|
Ma T, Hu C, Lal B, Zhou W, Ma Y, Ying M, Prinos P, Quiñones-Hinojosa A, Lim M, Laterra J, Li Y. Reprogramming Transcription Factors Oct4 and Sox2 Induce a BRD-Dependent Immunosuppressive Transcriptome in GBM-Propagating Cells. Cancer Res 2021; 81:2457-2469. [PMID: 33574085 PMCID: PMC8137560 DOI: 10.1158/0008-5472.can-20-2489] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/24/2020] [Accepted: 02/05/2021] [Indexed: 02/05/2023]
Abstract
A subset of stem-like cells in glioblastoma (GBM; GSC) underlies tumor propagation, therapeutic resistance, and tumor recurrence. Immune evasion is critical for GSCs to carry out these functions. However, the molecular mechanisms employed by GSCs to escape antitumor immunity remain largely unknown. The reprogramming transcription factors Oct4 and Sox2 function as core multipotency factors and play an essential role in the formation and maintenance of GSCs, but the roles of these transcription factors in GSC immune escape have not been well explored. Here we examine how Oct4/Sox2 coexpression contributes to the immunosuppressive phenotype of GSCs. Combined transcription profiling and functional studies of Oct4/Sox2 coexpressing GSCs and differentiated GBM cells demonstrated that Oct4 and Sox2 cooperatively induce an immunosuppressive transcriptome consisting of multiple immunosuppressive checkpoints (i.e., PD-L1, CD70, A2aR, TDO) and dysregulation of cytokines and chemokines that are associated with an immunosuppressive tumor microenvironment. Mechanistically, induction and function of BRD/H3k27Ac-dependent immunosuppressive genes played a role in the immunosuppressive phenotype of GSCs. Pan-BET bromodomain inhibitors (e.g., JQ1) and shBRD4 constructs significantly inhibited the immunosuppressive transcriptome and immunosuppressive biological responses induced by Oct4/Sox2. Our findings identify targetable mechanisms by which tumor-propagating GSCs contribute to the immunosuppressive microenvironment in GBM. SIGNIFICANCE: This report identifies mechanisms by which the reprogramming transcription factors Oct4 and Sox2 function to drive the immunomodulatory transcriptome of GSCs and contribute to the immunosuppressive microenvironment in GBM.
Collapse
Affiliation(s)
- Tengjiao Ma
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital and Collaborative Innovation Center, Sichuan University, Chengdu, China
| | - Chengchen Hu
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland
| | - Bachchu Lal
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Yongxin Ma
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital and Collaborative Innovation Center, Sichuan University, Chengdu, China
| | - Mingyao Ying
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery and Oncology, Mayo Clinic, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Lim
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland.
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yunqing Li
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland.
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
175
|
Xia L, Zheng Z, Liu JY, Chen YJ, Ding J, Hu GS, Hu YH, Liu S, Luo WX, Xia NS, Liu W. Targeting Triple-Negative Breast Cancer with Combination Therapy of EGFR CAR T Cells and CDK7 Inhibition. Cancer Immunol Res 2021; 9:707-722. [PMID: 33875483 DOI: 10.1158/2326-6066.cir-20-0405] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/22/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022]
Abstract
EGFR-targeted chimeric antigen receptor (CAR) T cells are potent and specific in suppressing the growth of triple-negative breast cancer (TNBC) in vitro and in vivo. However, in this study, a subset of mice soon acquired resistance, which limits the potential use of EGFR CAR T cells. We aimed to find a way to overcome the observed resistance. Transcriptomic analysis results revealed that EGFR CAR T-cell treatment induced a set of immunosuppressive genes, presumably through IFNγ signaling, in EGFR CAR T-cell-resistant TNBC tumors. The EGFR CAR T-cell-induced immunosuppressive genes were associated with EGFR CAR T-cell-activated enhancers and were especially sensitive to THZ1, a CDK7 inhibitor we screened out of a panel of small molecules targeting epigenetic modulators. Accordingly, combination therapy with THZ1 and EGFR CAR T cells suppressed immune resistance, tumor growth, and metastasis in TNBC tumor models, including human MDA-MB-231 cell-derived and TNBC patient-derived xenografts, and mouse EMT6 cell-derived allografts. Taken together, we demonstrated that transcriptional modulation using epigenetic inhibitors could overcome CAR T-cell therapy-induced immune resistance, thus providing a therapeutic avenue for treating TNBC in the clinic.
Collapse
Affiliation(s)
- Lin Xia
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Zaozao Zheng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jun-Yi Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Yu-Jie Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiancheng Ding
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Guo-Sheng Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ya-Hong Hu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Suling Liu
- Shanghai Cancer Hospital, Xuhui District, Shanghai, China
| | - Wen-Xin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China. .,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian, China.,State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
176
|
Maes K, Mondino A, Lasarte JJ, Agirre X, Vanderkerken K, Prosper F, Breckpot K. Epigenetic Modifiers: Anti-Neoplastic Drugs With Immunomodulating Potential. Front Immunol 2021; 12:652160. [PMID: 33859645 PMCID: PMC8042276 DOI: 10.3389/fimmu.2021.652160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer cells are under the surveillance of the host immune system. Nevertheless, a number of immunosuppressive mechanisms allow tumors to escape protective responses and impose immune tolerance. Epigenetic alterations are central to cancer cell biology and cancer immune evasion. Accordingly, epigenetic modulating agents (EMAs) are being exploited as anti-neoplastic and immunomodulatory agents to restore immunological fitness. By simultaneously acting on cancer cells, e.g. by changing expression of tumor antigens, immune checkpoints, chemokines or innate defense pathways, and on immune cells, e.g. by remodeling the tumor stroma or enhancing effector cell functionality, EMAs can indeed overcome peripheral tolerance to transformed cells. Therefore, combinations of EMAs with chemo- or immunotherapy have become interesting strategies to fight cancer. Here we review several examples of epigenetic changes critical for immune cell functions and tumor-immune evasion and of the use of EMAs in promoting anti-tumor immunity. Finally, we provide our perspective on how EMAs could represent a game changer for combinatorial therapies and the clinical management of cancer.
Collapse
Affiliation(s)
- Ken Maes
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, Vrije Universiteit Brussel (VUB), Universiteit Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Anna Mondino
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Xabier Agirre
- Laboratory of Cancer Epigenetics, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Pamplona, Spain.,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain
| | - Karin Vanderkerken
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Felipe Prosper
- Laboratory of Cancer Epigenetics, Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Pamplona, Spain.,Hemato-oncology Program, Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Pamplona, Spain.,Hematology and Cell Therapy Department, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
177
|
Li X, Zhang W. Expression of PD-L1 in EBV-associated malignancies. Int Immunopharmacol 2021; 95:107553. [PMID: 33765613 DOI: 10.1016/j.intimp.2021.107553] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus infection is closely related to the occurrence and development of a variety of malignant tumors. Tumor immunotherapy has been combined with modern biological high-tech technology, and has become the fourth cancer treatment mode after surgery, chemotherapy and radiotherapy. In 2013, immunotherapy was named the first of ten scientific breakthroughs by science. It aims to control and destroy tumor cells by stimulating and enhancing autoimmune function. In recent years, immune checkpoint inhibitors (ICIs) targeting PD-L1 have become a research hotspot in the field of cancer. Recent studies have shown that EBV infection can upregulate PD-L1 through complex mechanisms. Further understanding of these mechanisms and prevention of hyperprogressive disease (HPD) can make PD-L1 immune checkpoint inhibitors an effective way of immunotherapy for EBV related malignant tumors.
Collapse
Affiliation(s)
- Xiaoxu Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China; Clinical Laboratory, The Second People's Hospital of Wuhu City, Wuhu 241001, Anhui, People's Republic of China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
178
|
Wu X, Nelson M, Basu M, Srinivasan P, Lazarski C, Zhang P, Zheng P, Sandler AD. MYC oncogene is associated with suppression of tumor immunity and targeting Myc induces tumor cell immunogenicity for therapeutic whole cell vaccination. J Immunother Cancer 2021; 9:jitc-2020-001388. [PMID: 33757986 PMCID: PMC7993333 DOI: 10.1136/jitc-2020-001388] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
Background MYC oncogene is deregulated in 70% of all human cancers and is associated with multiple oncogenic functions including immunosuppression in the tumor microenvironment. The role of MYC in the immune microenvironment of neuroblastoma and melanoma is investigated and the effect of targeting Myc on immunogenicity of cancer cells is evaluated. Methods Immune cell infiltrates and immunogenic pathway signatures in the context of MYCN amplification were analyzed in human neuroblastoma tumors and in metastatic melanoma. Dose response and cell susceptibility to MYC inhibitors (I-BET726 and JQ1) were determined in mouse cell lines. The influence of downregulating Myc in tumor cells was characterized by immunogenic pathway signatures and functional assays. Myc-suppressed tumor cells were used as whole cell vaccines in preclinical neuroblastoma and melanoma models. Results Analysis of immune phenotype in human neuroblastoma and melanoma tumors revealed that MYCN or c-MYC amplified tumors respectively are associated with suppressed immune cell infiltrates and functional pathways. Targeting Myc in cancer cells with I-BET726 and JQ1 results in cell cycle arrest and induces cell immunogenicity. Combining vaccination of Myc-inhibited tumor cells with checkpoint inhibition induced robust antitumor immunity and resulted in therapeutic cancer vaccine therapy in mouse neuroblastoma tumors. Despite vigorous antitumor immunity in the mouse melanoma model, upregulation of immunosuppressive pathways enabled tumor escape. Conclusions This study demonstrates that the Myc oncogene is an appropriate target for inducing tumor cell immunogenicity and suggests that Myc-suppressed whole tumor cells combined with checkpoint therapy could be used for formulating a personalized therapeutic tumor vaccine.
Collapse
Affiliation(s)
- Xiaofang Wu
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Marie Nelson
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Mousumi Basu
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Priya Srinivasan
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Christopher Lazarski
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Peng Zhang
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pan Zheng
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anthony David Sandler
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA .,Joseph E. Robert Jr. Center for Surgical Care, Childrens National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
179
|
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of gynecological cancer-related mortality in the developed world. EOC is a heterogeneous disease represented by several histological and molecular subtypes. Therefore, exploration of relevant preclinical animal models that consider the heterogenic nature of EOC is of great importance for the development of novel therapeutic strategies that can be translated clinically to combat this devastating disease. In this review, we discuss recent progress in the development of preclinical mouse models for EOC study as well as their advantages and limitations.
Collapse
Affiliation(s)
- Sergey Karakashev
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Ru-Gang Zhang
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA. E-mail:
| |
Collapse
|
180
|
Characterizing the molecular regulation of inhibitory immune checkpoints with multimodal single-cell screens. Nat Genet 2021; 53:322-331. [PMID: 33649593 PMCID: PMC8011839 DOI: 10.1038/s41588-021-00778-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
The expression of inhibitory immune checkpoint molecules such as PD-L1 is frequently observed in human cancers and can lead to the suppression of T cell-mediated immune responses. Here, we apply ECCITE-seq, a technology which combines pooled CRISPR screens with single-cell mRNA and surface protein measurements, to explore the molecular networks that regulate PD-L1 expression. We also develop a computational framework, mixscape, that substantially improves the signal-to-noise ratio in single-cell perturbation screens by identifying and removing confounding sources of variation. Applying these tools, we identify and validate regulators of PD-L1, and leverage our multi-modal data to identify both transcriptional and post-transcriptional modes of regulation. Specifically, we discover that the kelch-like protein KEAP1 and the transcriptional activator NRF2, mediate levels of PD-L1 upregulation after IFNγ stimulation. Our results identify a novel mechanism for the regulation of immune checkpoints and present a powerful analytical framework for the analysis of multi-modal single-cell perturbation screens.
Collapse
|
181
|
Sun F, Zhu Q, Li T, Saeed M, Xu Z, Zhong F, Song R, Huai M, Zheng M, Xie C, Xu L, Yu H. Regulating Glucose Metabolism with Prodrug Nanoparticles for Promoting Photoimmunotherapy of Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002746. [PMID: 33643795 PMCID: PMC7887571 DOI: 10.1002/advs.202002746] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/19/2020] [Indexed: 05/21/2023]
Abstract
The low immunogenicity, insufficient infiltration of T lymphocytes, and dismal response to immune checkpoint blockade therapy pose major difficulties in immunotherapy of pancreatic cancer. Photoimmunotherapy by photodynamic therapy (PDT) can induce an antitumor immune response by triggering immunogenic cell death in the tumor cells. Notwithstanding, PDT-driven oxygen consumption and microvascular damage can further aggravate hypoxia to exaggerates glycolysis, leading to lactate accumulation and immunosuppressive tumor microenvironment. Herein, a supramolecular prodrug nanoplatform codelivering a photosensitizer and a prodrug of bromodomain-containing protein 4 inhibitor (BRD4i) JQ1 for combinatory photoimmunotherapy of pancreatic cancer are demonstrated. The nanoparticles are fabricated by host-guest complexation between cyclodextrin-grafted hyaluronic acid (HA-CD) and adamantine-conjugated heterodimers of pyropheophorbide a (PPa) and JQ1, respectively. HA can achieve active tumor targeting by recognizing highly expressed CD44 on the surface of pancreatic tumors. PPa-mediated PDT can enhance the immunogenicity of the tumor cells and promote intratumoral infiltration of the cytotoxic T lymphocytes. Meanwhile, JQ1 combats PDT-mediated immune evasion through inhibiting expression of c-Myc and PD-L1, which are key regulators of tumor glycolysis and immune evasion. Collectively, this study presents a novel strategy to enhance photoimmunotherapy of the pancreatic cancer by provoking T cells activation and overcoming adaptive immune resistance.
Collapse
Affiliation(s)
- Fang Sun
- Department of GastroenterologyXinhua HospitalShanghai Jiaotong University School of MedicineShanghai2000092China
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Qiurong Zhu
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Tianliang Li
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Madiha Saeed
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Zhiai Xu
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghai200241China
| | - Feisheng Zhong
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Rundi Song
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Manxiu Huai
- Department of GastroenterologyXinhua HospitalShanghai Jiaotong University School of MedicineShanghai2000092China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Cen Xie
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Leiming Xu
- Department of GastroenterologyXinhua HospitalShanghai Jiaotong University School of MedicineShanghai2000092China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Yantai Key Laboratory of Nanomedicine & Advanced PreparationsYantai Institute of Materia MedicaShandong264000China
| |
Collapse
|
182
|
Kim SI, Cassella CR, Byrne KT. Tumor Burden and Immunotherapy: Impact on Immune Infiltration and Therapeutic Outcomes. Front Immunol 2021; 11:629722. [PMID: 33597954 PMCID: PMC7882695 DOI: 10.3389/fimmu.2020.629722] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer immunotherapy has revolutionized the treatment landscape in medical oncology, but its efficacy has been variable across patients. Biomarkers to predict such differential response to immunotherapy include cytotoxic T lymphocyte infiltration, tumor mutational burden, and microsatellite instability. A growing number of studies also suggest that baseline tumor burden, or tumor size, predicts response to immunotherapy. In this review, we discuss the changes in immune profile and therapeutic responses that occur with increasing tumor size. We also overview therapeutic approaches to reduce tumor burden and favorably modulate the immune microenvironment of larger tumors.
Collapse
Affiliation(s)
- Samuel I Kim
- Program in Biochemistry, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher R Cassella
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Katelyn T Byrne
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
183
|
Chen C, Xu L, Gao R, Wang S, Zhang Y, Wang C, Zeng C, Li Y. Transcriptome-Based Co-Expression of BRD4 and PD-1/PD-L1 Predicts Poor Overall Survival in Patients With Acute Myeloid Leukemia. Front Pharmacol 2021; 11:582955. [PMID: 33658927 PMCID: PMC7917577 DOI: 10.3389/fphar.2020.582955] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Positive response to PD-1/PD-L1 blockades was observed in the treatment of solid tumors. However, the clinical response to PD-1/PD-L1 blockade varied in patients with acute myeloid leukemia (AML). It is thought that there are factors other than PD-1 and PD-L1 that may affect the effect of immunotherapy. This study explored the impact of transcriptome-based co-expression of bromodomain containing 4 (BRD4) and PD-1/PD-L1 on the overall survival (OS) of patients with AML, in order to understand whether BRD4 would affect the effect of PD-1/PD-L1 blockades. Bone marrow samples from 59 AML patients in our clinical center and data of 176 patients from the Cancer Genome Atlas (TCGA) database were used for OS analysis and validation. It was found that increased expression of BRD4 was associated with poor OS in AML patients. Moreover, co-expression of BRD4 with PD-1 or PD-L1 was related to poor OS. The co-expression of BRD4 and PD-L1 was better than BRD4 and PD-1 for OS prediction. Furthermore, co-expression of BRD4 and PD-L1 was positively correlated with high tumor mutation burden, which contributed to poor OS in AML patients. Additionally, the co-expression of BRD4 and PD-L1 was associated with poor OS in non-acute promyelocytic leukemia patients with intermediate/high risk or under 60 years. Our results suggest that transcriptome-based co-expression of BRD4 and PD-L1 is a predictor for poor OS in AML patients, which might provide novel insight into designing combinational targeted therapy for AML.
Collapse
Affiliation(s)
- Cunte Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Ling Xu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China.,Department of Hematology, First Affiliated Hospital, The Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Rili Gao
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Caixia Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chengwu Zeng
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
184
|
Abstract
BACKGROUND Bromodomain and extra-terminal (BET) proteins are epigenetic readers that bind to acetylated lysines of histones and regulate gene transcription. BET protein family members mediate the expression of various oncogenic drivers in ovarian cancer, such as the MYC and Neuregulin 1 (NRG1) genes. BRD4, the most thoroughly studied member of the BET family, is amplified in a significant subset of high-grade serous carcinomas (HGSC) of the ovary. It has been reported that BET inhibitors can attenuate the proliferation and dissemination of ovarian cancer cells by inhibiting oncogenic pathways, such as the FOXM1 and JAK/STAT pathways. BET inhibition can re-sensitize resistant ovarian cancer cells to already approved anticancer agents, including cisplatin and PARP inhibitors. This synergism was also confirmed in vivo in animal models. These and other preclinical results provide a promising basis for the application of BET inhibitors in ovarian cancer treatment. Currently, Phase I/II clinical trials explore the safety and efficacy profiles of BET inhibitors in various solid tumors, including ovarian tumors. Here, we review current knowledge on the molecular effects and preclinical activities of BET inhibitors in ovarian tumors. CONCLUSIONS BET proteins have emerged as new druggable targets for ovarian cancer. BET inhibitors may enhance antitumor activity when co-administered with conventional treatment regimens. Results from ongoing Phase I/II studies are anticipated to confirm this notion.
Collapse
|
185
|
Pan X, Li R, Guo H, Zhang W, Xu X, Chen X, Ding L. Dihydropyridine Calcium Channel Blockers Suppress the Transcription of PD-L1 by Inhibiting the Activation of STAT1. Front Pharmacol 2021; 11:539261. [PMID: 33519429 PMCID: PMC7838064 DOI: 10.3389/fphar.2020.539261] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) which is upregulated in various epithelial tumors, plays a central role in the evasion of the immune system. In addition to monoclonal antibodies that blocking PD1/PD-L1 axis, finding small molecule compounds that can suppress PD-L1 expression might be another substitutable strategy for PD1/PD-L1 based therapy. Here, we found that dihydropyridine calcium channel blockers dose-dependently reduced the expression of PD-L1, both in the cytoplasm and cell surface. IFNγ induced PD-L1 transcription was consistently suppressed by Lercanidipine in 24 h, whereas, the half-life of PD-L1 protein was not significantly affected. IFNγ trigged significant STAT1 phosphorylation, which was eliminated by Lercanidipine. Similarly, STAT1 phosphorylation could also be abolished by extracellular calcium chelating agent EGTA and intracellular calcium chelator BAPTA-AM. Furthermore, Lercanidipine enhanced killing ability of T cells by down-regulating PD-L1. Taken together, our studies suggest that calcium signal is a crucial factor that mediates the transcription of PD-L1 and regulation of calcium can be used as a potential strategy for PD-L1 inhibition.
Collapse
Affiliation(s)
- Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Run Li
- The Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaqing Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xi Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
186
|
Yung Y, Lee E, Chu HT, Yip PK, Gill H. Targeting Abnormal Hematopoietic Stem Cells in Chronic Myeloid Leukemia and Philadelphia Chromosome-Negative Classical Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22020659. [PMID: 33440869 PMCID: PMC7827471 DOI: 10.3390/ijms22020659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/02/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are unique hematopoietic stem cell disorders sharing mutations that constitutively activate the signal-transduction pathways involved in haematopoiesis. They are characterized by stem cell-derived clonal myeloproliferation. The key MPNs comprise chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). CML is defined by the presence of the Philadelphia (Ph) chromosome and BCR-ABL1 fusion gene. Despite effective cytoreductive agents and targeted therapy, complete CML/MPN stem cell eradication is rarely achieved. In this review article, we discuss the novel agents and combination therapy that can potentially abnormal hematopoietic stem cells in CML and MPNs and the CML/MPN stem cell-sustaining bone marrow microenvironment.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Autophagy
- Biomarkers, Tumor
- Cell Survival/drug effects
- Cell Transformation, Neoplastic/genetics
- Combined Modality Therapy
- Disease Susceptibility
- Genetic Predisposition to Disease
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Molecular Targeted Therapy
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/pathology
- Myeloproliferative Disorders/therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Philadelphia Chromosome
- Signal Transduction/drug effects
- Stem Cell Niche
- Tumor Microenvironment
Collapse
Affiliation(s)
| | | | | | | | - Harinder Gill
- Correspondence: ; Tel.: +852-2255-4542; Fax: +852-2816-2863
| |
Collapse
|
187
|
Determining Factors in the Therapeutic Success of Checkpoint Immunotherapies against PD-L1 in Breast Cancer: A Focus on Epithelial-Mesenchymal Transition Activation. J Immunol Res 2021; 2021:6668573. [PMID: 33506060 PMCID: PMC7808819 DOI: 10.1155/2021/6668573] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common neoplasm diagnosed in women around the world. Checkpoint inhibitors, targeting the programmed death receptor-1 or ligand-1 (PD-1/PD-L1) axis, have dramatically changed the outcome of cancer treatment. These therapies have been recently considered as alternatives for treatment of breast cancers, in particular those with the triple-negative phenotype (TNBC). A further understanding of the regulatory mechanisms of PD-L1 expression is required to increase the benefit of PD-L1/PD-1 checkpoint immunotherapy in breast cancer patients. In this review, we will compile the most recent studies evaluating PD-1/PD-L1 checkpoint inhibitors in breast cancer. We review factors that determine the therapeutic success of PD-1/PD-L1 immunotherapies in this pathology. In particular, we focus on pathways that interconnect the epithelial-mesenchymal transition (EMT) with regulation of PD-L1 expression. We also discuss the relationship between cellular metabolic pathways and PD-L1 expression that are involved in the promotion of resistance in TNBC.
Collapse
|
188
|
Yi M, Niu M, Xu L, Luo S, Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol 2021; 14:10. [PMID: 33413496 PMCID: PMC7792099 DOI: 10.1186/s13045-020-01027-5] [Citation(s) in RCA: 399] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) on cancer cells engages with programmed cell death-1 (PD-1) on immune cells, contributing to cancer immune escape. For multiple cancer types, the PD-1/PD-L1 axis is the major speed-limiting step of the anti-cancer immune response. In this context, blocking PD-1/PD-L1 could restore T cells from exhausted status and eradicate cancer cells. However, only a subset of PD-L1 positive patients benefits from α-PD-1/PD-L1 therapies. Actually, PD-L1 expression is regulated by various factors, leading to the diverse significances of PD-L1 positivity. Understanding the mechanisms of PD-L1 regulation is helpful to select patients and enhance the treatment effect. In this review, we focused on PD-L1 regulators at the levels of transcription, post-transcription, post-translation. Besides, we discussed the potential applications of these laboratory findings in the clinic.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Linping Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
189
|
Targeting non-canonical activation of GLI1 by the SOX2-BRD4 transcriptional complex improves the efficacy of HEDGEHOG pathway inhibition in melanoma. Oncogene 2021; 40:3799-3814. [PMID: 33958721 PMCID: PMC8175236 DOI: 10.1038/s41388-021-01783-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 02/03/2023]
Abstract
Despite the development of new targeted and immune therapies, the prognosis of metastatic melanoma remains bleak. Therefore, it is critical to better understand the mechanisms controlling advanced melanoma to develop more effective treatment regimens. Hedgehog/GLI (HH/GLI) signaling inhibitors targeting the central pathway transducer Smoothened (SMO) have shown to be clinical efficacious in skin cancer; however, several mechanisms of non-canonical HH/GLI pathway activation limit their efficacy. Here, we identify a novel SOX2-BRD4 transcriptional complex driving the expression of GLI1, the final effector of the HH/GLI pathway, providing a novel mechanism of non-canonical SMO-independent activation of HH/GLI signaling in melanoma. Consistently, we find a positive correlation between the expression of GLI1 and SOX2 in human melanoma samples and cell lines. Further, we show that combined targeting of canonical HH/GLI pathway with the SMO inhibitor MRT-92 and of the SOX2-BRD4 complex using a potent Proteolysis Targeted Chimeras (PROTACs)-derived BRD4 degrader (MZ1), yields a synergistic anti-proliferative effect in melanoma cells independently of their BRAF, NRAS, and NF1 mutational status, with complete abrogation of GLI1 expression. Combination of MRT-92 and MZ1 strongly potentiates the antitumor effect of either drug as single agents in an orthotopic melanoma model. Together, our data provide evidence of a novel mechanism of non-canonical activation of GLI1 by the SOX2-BRD4 transcriptional complex, and describe the efficacy of a new combinatorial treatment for a subset of melanomas with an active SOX2-BRD4-GLI1 axis.
Collapse
|
190
|
Wu Q, Jiang L, Li SC, He QJ, Yang B, Cao J. Small molecule inhibitors targeting the PD-1/PD-L1 signaling pathway. Acta Pharmacol Sin 2021; 42:1-9. [PMID: 32152439 PMCID: PMC7921448 DOI: 10.1038/s41401-020-0366-x] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Tumor cells form immune escape and subsequently obtain unlimited proliferation ability due to the abnormal immune surveillance mediated by immune checkpoints. Among this class of immune checkpoints, PD-1/PD-L1 was recognized as an anticancer drug target for many years, and so far, several monoclonal antibodies have achieved encouraging outcome in cancer treatment by targeting the PD-1/PD-L1 signaling pathway. Due to the inherent limitations of antibodies, the development of small molecule inhibitors based on PD-1/PD-L1 signaling pathway is gradually reviving in decades. In this review, we summarized a number of small molecule inhibitors based on three different therapeutic approaches interfering PD-1/PD-L1 signaling pathway: (1) blocking direct interaction between PD-1 and PD-L1; (2) inhibiting transcription and translation of PD-L1; and (3) promoting degradation of PD-L1 protein. The development of these small molecule inhibitors opens a new avenue for tumor immunotherapy based on PD-1/PD-L1 signaling pathway.
Collapse
Affiliation(s)
- Qian Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Jiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Si-Cheng Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiao-Jun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
191
|
Qiao H, Chen X, Wang Q, Zhang J, Huang D, Chen E, Qian H, Zhong Y, Tang Q, Chen W. Tumor localization of oncolytic adenovirus assisted by pH-degradable microgels with JQ1-mediated boosting replication and PD-L1 suppression for enhanced cancer therapy. Biomater Sci 2021; 8:2472-2480. [PMID: 32196028 DOI: 10.1039/d0bm00172d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oncolytic therapy is a fast-developing cancer treatment field based on the promising clinical performance from the selective tumor cell killing and induction of systemic antitumor immunity. The virotherapy efficacy, however, is strongly hindered by the limited virus propagation and negative immune regulation in the tumor microenvironments. To enhance the antitumor activity, we developed injectable pH-degradable PVA microgels encapsulated with oncolytic adenovirus (OA) by microfluidics for localized OA delivery and cancer treatments. PVA microgels were tailored with an OA encapsulation efficiency of 68% and exhibited a pH-dependent OA release as the microgel degradation at mildly acidic conditions. PVA microgels mediated fast viral release and increased replication in HEK293T and A549 cells at a lower pH, and the replication efficiency could be further reinforced by co-loading with one BET bromodomain inhibitor JQ1, inducing significant cytotoxicity against A549 cells. An in vivo study revealed that OA release was highly located at the tumor tissue assisted by PVA microgels, and the OA infection was also enhanced with the addition of JQ1 treatment, meanwhile greatly inhibiting the PD-L1 expression to overcome the immune suppression. OA/JQ1 co-encapsulated injectable microgels exhibited a superior in vivo antitumor activity on the A549 lung tumor-bearing mice by the combination of inhibited proliferation, amplified oncolysis, and potential immune regulation.
Collapse
Affiliation(s)
- Haishi Qiao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Xingmei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Qiming Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Enping Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Qi Tang
- Key Laboratory of Antibody Technology, National Health Commission, Nanjing Medical University, Nanjing 211166, PR China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
192
|
Manasa P, Sidhanth C, Krishnapriya S, Vasudevan S, Ganesan TS. Oncogenes in high grade serous adenocarcinoma of the ovary. Genes Cancer 2020; 11:122-136. [PMID: 33488950 PMCID: PMC7805537 DOI: 10.18632/genesandcancer.206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
High grade serous ovarian cancer is characterized by relatively few mutations occurring at low frequency, except in TP53. However other genetic aberrations such as copy number variation alter numerous oncogenes and tumor suppressor genes. Oncogenes are positive regulators of tumorigenesis and play a critical role in cancer cell growth, proliferation, and survival. Accumulating evidence suggests that they are crucial for the development and the progression of high grade serous ovarian carcinoma (HGSOC). Though many oncogenes have been identified, no successful inhibitors targeting these molecules and their associated pathways are available. This review discusses oncogenes that have been identified recently in HGSOC using different screening strategies. All the genes discussed in this review have been functionally characterized both in vitro and in vivo and some of them are able to transform immortalized ovarian surface epithelial and fallopian tube cells upon overexpression. However, it is necessary to delineate the molecular pathways affected by these oncogenes for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Pacharla Manasa
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Chirukandath Sidhanth
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Syama Krishnapriya
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Sekar Vasudevan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| | - Trivadi S Ganesan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research Cancer Institute (WIA), Chennai, India
| |
Collapse
|
193
|
Leal AS, Liu P, Krieger-Burke T, Ruggeri B, Liby KT. The Bromodomain Inhibitor, INCB057643, Targets Both Cancer Cells and the Tumor Microenvironment in Two Preclinical Models of Pancreatic Cancer. Cancers (Basel) 2020; 13:cancers13010096. [PMID: 33396954 PMCID: PMC7794921 DOI: 10.3390/cancers13010096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Pancreatic cancer remains a highly lethal disease, with only ~10% of patients still alive five years after diagnosis, as most patients already have advanced, metastatic disease at the time of diagnosis. Therefore, new treatments are needed for these patients. We tested INCB057643, a novel bromodomain inhibitor, in a relevant mouse model of pancreatic cancer, and this compound improves survival and reduces metastasis. Pancreatic cancers are very dense, as the stroma within the tumor can account for up to 90% of the tumor mass and is responsible for the failure of many drugs. INCB057643 modulates the immune cells within the tumor so they can attack and kill tumor cells. INCB057643 also alters immune cells within the pancreas in a mouse model of pancreatitis, which is inflammation of the pancreas that can promote the development of pancreatic cancer. Abstract In pancreatic cancer the tumor microenvironment (TME) can account for up to 90% of the tumor mass. The TME drives essential functions in disease progression, invasion and metastasis. Tumor cells can use epigenetic modulation to evade immune recognition and shape the TME toward an immunosuppressive phenotype. Bromodomain inhibitors are a class of drugs that target BET (bromodomain and extra-terminal) proteins, impairing their ability to bind to acetylated lysines and therefore interfering with transcriptional initiation and elongation. INCB057643 is a new generation, orally bioavailable BET inhibitor that was developed for treating patients with advanced malignancies. KrasG12D/+; Trp53R172H/+; Pdx-1-Cre (KPC) mice mimic human disease, with similar progression and incidence of metastasis. Treatment of established tumors in KPC mice with INCB057643 increased survival by an average of 55 days, compared to the control group. Moreover, INCB057643 reduced metastatic burden in these mice. KPC mice treated with INCB057643, starting at 4 weeks of age, showed beneficial changes in immune cell populations in the pancreas and liver. Similarly, INCB057643 modified immune cell populations in the pancreas of KrasG12D/+; Pdx-1-Cre (KC) mice with pancreatitis, an inflammatory process known to promote pancreatic cancer progression. The data presented here suggest that the bromodomain inhibitor INCB057643 modulates the TME, reducing disease burden in two mouse models of pancreatic cancer. Furthermore, this work suggests that BRD4 may play a role in establishing the TME in the liver, a primary metastatic site for pancreatic cancer.
Collapse
Affiliation(s)
- Ana S. Leal
- Department of Pharmacology & Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI 48824, USA; (A.S.L.); (T.K.-B.)
| | - Phillip Liu
- Incyte Corporation, Wilmington, DE 19803, USA; (P.L.); (B.R.)
| | - Teresa Krieger-Burke
- Department of Pharmacology & Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI 48824, USA; (A.S.L.); (T.K.-B.)
| | - Bruce Ruggeri
- Incyte Corporation, Wilmington, DE 19803, USA; (P.L.); (B.R.)
| | - Karen T. Liby
- Department of Pharmacology & Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI 48824, USA; (A.S.L.); (T.K.-B.)
- Correspondence: ; Tel.: +1-517-884-8955; Fax: +1-517-353-8915
| |
Collapse
|
194
|
Oleksiewicz U, Machnik M. Causes, effects, and clinical implications of perturbed patterns within the cancer epigenome. Semin Cancer Biol 2020; 83:15-35. [PMID: 33359485 DOI: 10.1016/j.semcancer.2020.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Somatic mutations accumulating over a patient's lifetime are well-defined causative factors that fuel carcinogenesis. It is now clear, however, that epigenomic signature is also largely perturbed in many malignancies. These alterations support the transcriptional program crucial for the acquisition and maintenance of cancer hallmarks. Epigenetic instability may arise due to the genetic mutations or transcriptional deregulation of the proteins implicated in epigenetic signaling. Moreover, external stimulation and physiological aging may also participate in this phenomenon. The epigenomic signature is frequently associated with a cell of origin, as well as with tumor stage and differentiation, which all reflect its high heterogeneity across and within various tumors. Here, we will overview the current understanding of the causes and effects of the altered and heterogeneous epigenomic landscape in cancer. We will focus mainly on DNA methylation and post-translational histone modifications as the key regulatory epigenetic signaling marks. In addition, we will describe how this knowledge is translated into the clinic. We will particularly concentrate on the applicability of epigenetic alterations as biomarkers for improved diagnosis, prognosis, and prediction. Finally, we will also review current developments regarding epi-drug usage in clinical and experimental settings.
Collapse
Affiliation(s)
- Urszula Oleksiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland; Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan, Poland.
| | - Marta Machnik
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland; Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
195
|
Shapiro GI, LoRusso P, Dowlati A, T Do K, Jacobson CA, Vaishampayan U, Weise A, Caimi PF, Eder JP, French CA, Labriola-Tompkins E, Boisserie F, Pierceall WE, Zhi J, Passe S, DeMario M, Kornacker M, Armand P. A Phase 1 study of RO6870810, a novel bromodomain and extra-terminal protein inhibitor, in patients with NUT carcinoma, other solid tumours, or diffuse large B-cell lymphoma. Br J Cancer 2020; 124:744-753. [PMID: 33311588 PMCID: PMC7884382 DOI: 10.1038/s41416-020-01180-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/19/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023] Open
Abstract
Background Bromodomain and extra-terminal (BET) proteins are epigenetic readers that can drive carcinogenesis and therapy resistance. RO6870810 is a novel, small-molecule BET inhibitor. Methods We conducted a Phase 1 study of RO6870810 administered subcutaneously for 21 or 14 days of 28- or 21-day cycles, respectively, in patients with the nuclear protein of the testis carcinoma (NC), other solid tumours, or diffuse large B-cell lymphoma (DLBCL) with MYC deregulation. Results Fatigue (42%), decreased appetite (35%) and injection-site erythema (35%) were the most common treatment-related adverse events. Pharmacokinetic parameters demonstrated linearity over the dose range tested and support once-daily dosing. Pharmacodynamic assessments demonstrated sustained decreases in CD11b levels in peripheral blood mononuclear cells. Objective response rates were 25% (2/8), 2% (1/47) and 11% (2/19) for patients with NC, other solid tumours and DLBCL, respectively. Responding tumours had evidence of deregulated MYC expression. Conclusions This trial establishes the safety, favourable pharmacokinetics, evidence of target engagement and preliminary single-agent activity of RO6870810. Responses in patients with NC, other solid tumours and DLBCL provide proof-of-principle for BET inhibition in MYC-driven cancers. The results support further exploration of RO6870810 as monotherapy and in combinations. Clinical trials registration NCT01987362.
Collapse
Affiliation(s)
- Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Patricia LoRusso
- Early Phase Clinical Trials Program, Yale University Medical Center, New Haven, CT, USA
| | - Afshin Dowlati
- Department of Medicine-Hematology and Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Khanh T Do
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Caron A Jacobson
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Amy Weise
- Medical Oncology, Karmanos Cancer Institute, Detroit, MI, USA
| | - Paolo F Caimi
- Department of Medicine-Hematology and Oncology, University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Joseph Paul Eder
- Early Phase Clinical Trials Program, Yale University Medical Center, New Haven, CT, USA
| | - Christopher A French
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Emily Labriola-Tompkins
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Frédéric Boisserie
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - William E Pierceall
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Jianguo Zhi
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Sharon Passe
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Mark DeMario
- Roche Pharma Research and Early Development, Roche Innovation Center New York, New York, NY, USA
| | - Martin Kornacker
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Philippe Armand
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
196
|
Cheng B, Xiao Y, Xue M, Cao H, Chen J. Recent Advances in the Development of PD-L1 Modulators: Degraders, Downregulators, and Covalent Inhibitors. J Med Chem 2020; 63:15389-15398. [PMID: 33272018 DOI: 10.1021/acs.jmedchem.0c01362] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Therapeutic interference of the programmed cell death protein 1(PD-1)/immunosuppressive programmed cell death ligand 1 (PD-L1) signaling pathway by monoclonal antibodies has achieved spectacular success for treating various tumors. However, the development of small molecule inhibitors of PD-1/PD-L1 has lagged far behind due to the challenge of targeting the highly hydrophobic and relatively flat binding interface, despite the benefits small molecule can bring over therapeutic antibodies. This technical challenge provokes the adoption of different strategies in searching for small, medium-sized, and large molecule modulators (e.g., degraders, downregulators, and covalent inhibitors) of the PD-1/PD-L1 protein-protein interaction. In this review article, we discuss latest advances in the development of PD-L1 modulators, with a focus on degraders, downregulators, and covalent inhibitors.
Collapse
Affiliation(s)
- Binbin Cheng
- Drug Design and Discovery Research Innovation Community, School of Pharmaceutical Sciences, Southern Medical University, Baiyun District, Guangzhou 510515, China
| | - Yao Xiao
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital, Wuchang 430063, China
| | - Mingming Xue
- Tianjin Tiancheng Chemical Co., Ltd., Chemical Street, Binhai New District, Tianjin 300480, China
| | - Hao Cao
- Drug Design and Discovery Research Innovation Community, School of Pharmaceutical Sciences, Southern Medical University, Baiyun District, Guangzhou 510515, China
| | - Jianjun Chen
- Drug Design and Discovery Research Innovation Community, School of Pharmaceutical Sciences, Southern Medical University, Baiyun District, Guangzhou 510515, China
| |
Collapse
|
197
|
Sreevalsan S, Döring M, Paszkowski-Rogacz M, Brux M, Blanck C, Meyer M, Momburg F, Buchholz F, Theis M. MLLT6 maintains PD-L1 expression and mediates tumor immune resistance. EMBO Rep 2020; 21:e50155. [PMID: 33063451 PMCID: PMC7726806 DOI: 10.15252/embr.202050155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022] Open
Abstract
Tumor cells subvert immune surveillance by harnessing signals from immune checkpoints to acquire immune resistance. The protein PD‐L1 is an important component in this process, and inhibition of PD‐L1 elicits durable anti‐tumor responses in a broad spectrum of cancers. However, immune checkpoint inhibition that target known pathways is not universally effective. A better understanding of the genetic repertoire underlying these processes is necessary to expand our knowledge in tumor immunity and to facilitate identification of alternative targets. Here, we present a CRISPR/Cas9 screen in human cancer cells to identify genes that confer tumors with the ability to evade the cytotoxic effects of the immune system. We show that the transcriptional regulator MLLT6 (AF17) is required for efficient PD‐L1 protein expression and cell surface presentation in cancer cells. MLLT6 depletion alleviates suppression of CD8+ cytotoxic T cell‐mediated cytolysis. Furthermore, cancer cells lacking MLLT6 exhibit impaired STAT1 signaling and are insensitive to interferon‐γ‐induced stimulation of IDO1, GBP5, CD74, and MHC class II genes. Collectively, our findings establish MLLT6 as a regulator of oncogenic and interferon‐γ‐associated immune resistance.
Collapse
Affiliation(s)
- Sandeep Sreevalsan
- National Center for Tumor Diseases (NCT/UCC) Dresden, German Cancer Research Center (DKFZ), University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Marietta Döring
- National Center for Tumor Diseases (NCT/UCC) Dresden, German Cancer Research Center (DKFZ), University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Melanie Brux
- National Center for Tumor Diseases (NCT/UCC) Dresden, German Cancer Research Center (DKFZ), University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Carolina Blanck
- Medical Systems Biology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marten Meyer
- Antigen Presentation & T/NK Cell Activation Group, Clinical Cooperation Unit 'Applied Tumor Immunity', German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Momburg
- Antigen Presentation & T/NK Cell Activation Group, Clinical Cooperation Unit 'Applied Tumor Immunity', German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Buchholz
- National Center for Tumor Diseases (NCT/UCC) Dresden, German Cancer Research Center (DKFZ), University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,Medical Systems Biology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mirko Theis
- National Center for Tumor Diseases (NCT/UCC) Dresden, German Cancer Research Center (DKFZ), University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,Medical Systems Biology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
198
|
Sabra S, Agwa MM. Lactoferrin, a unique molecule with diverse therapeutical and nanotechnological applications. Int J Biol Macromol 2020; 164:1046-1060. [PMID: 32707283 PMCID: PMC7374128 DOI: 10.1016/j.ijbiomac.2020.07.167] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 01/25/2023]
Abstract
Lactoferrin (LF) is a naturally glycoprotein with iron-binding properties and diverse biological applications including; antiviral, anti-inflammatory, antioxidant, anti-cancer and immune stimulating effects. In addition, LF was found to be an ideal nanocarrier for some hydrophobic therapeutics because of its active targeting potential due to overexpression of its receptor on the surface of many cells. Moreover, it was proven to be a good candidate for fabrication of nanocarriers to specifically deliver drugs in case of brain tumors owing to the capability of LF to cross the blood brain barrier (BBB). Consequently, it seems to be a promising molecule with multiple applications in the field of cancer therapy and nanomedicine.
Collapse
Affiliation(s)
- Sally Sabra
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt.
| | - Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El-Behooth St, Dokki, Giza 12311, Egypt.
| |
Collapse
|
199
|
Antonangeli F, Natalini A, Garassino MC, Sica A, Santoni A, Di Rosa F. Regulation of PD-L1 Expression by NF-κB in Cancer. Front Immunol 2020; 11:584626. [PMID: 33324403 PMCID: PMC7724774 DOI: 10.3389/fimmu.2020.584626] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
Immune checkpoints are inhibitory receptor/ligand pairs regulating immunity that are exploited as key targets of anti-cancer therapy. Although the PD-1/PD-L1 pair is one of the most studied immune checkpoints, several aspects of its biology remain to be clarified. It has been established that PD-1 is an inhibitory receptor up-regulated by activated T, B, and NK lymphocytes and that its ligand PD-L1 mediates a negative feedback of lymphocyte activation, contributing to the restoration of the steady state condition after acute immune responses. This loop might become detrimental in the presence of either a chronic infection or a growing tumor. PD-L1 expression in tumors is currently used as a biomarker to orient therapeutic decisions; nevertheless, our knowledge about the regulation of PD-L1 expression is limited. The present review discusses how NF-κB, a master transcription factor of inflammation and immunity, is emerging as a key positive regulator of PD-L1 expression in cancer. NF-κB directly induces PD-L1 gene transcription by binding to its promoter, and it can also regulate PD-L1 post-transcriptionally through indirect pathways. These processes, which under conditions of cellular stress and acute inflammation drive tissue homeostasis and promote tissue healing, are largely dysregulated in tumors. Up-regulation of PD-L1 in cancer cells is controlled via NF-κB downstream of several signals, including oncogene- and stress-induced pathways, inflammatory cytokines, and chemotherapeutic drugs. Notably, a shared signaling pathway in epithelial cancers induces both PD-L1 expression and epithelial–mesenchymal transition, suggesting that PD-L1 is part of the tissue remodeling program. Furthermore, PD-L1 expression by tumor infiltrating myeloid cells can contribute to the immune suppressive features of the tumor environment. A better understanding of the interplay between NF-κB signaling and PD-L1 expression is highly relevant to cancer biology and therapy.
Collapse
Affiliation(s)
- Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Marina Chiara Garassino
- Medical Oncology Department, Istituto Nazionale dei Tumori, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, A. Avogadro, Novara, Italy.,Humanitas Clinical and Research Center, Istituto di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Rome, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| |
Collapse
|
200
|
Chen Z, Chen Y, Peng L, Wang X, Tang N. 2,5-dimethylcelecoxib improves immune microenvironment of hepatocellular carcinoma by promoting ubiquitination of HBx-induced PD-L1. J Immunother Cancer 2020; 8:jitc-2020-001377. [PMID: 33028694 PMCID: PMC7542662 DOI: 10.1136/jitc-2020-001377] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
Background 2,5-dimethylcelecoxib (DMC) is a targeted inhibitor of microsomal prostaglandin E synthase-1 (mPGES-1), a key enzyme in the PGE2 synthesis pathway of inflammatory mediators. Previous studies have confirmed that DMC can inhibit the growth of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). However, it is not known whether DMC is involved in the changes of tumor immune microenvironment. Methods In this study, we explored the effects of DMC on HBV-related HCC immune microenvironment, and deeply analyzed its unique effect and mechanism on programmed death receptor 1 (PD-1)/and its ligand 1 (PD-L1) pathway. Results Clinical hepatoma tissues detection showed that compared with non-virus-related HCC, the level of CD8 of HBV-related HCC was significantly lower, while the levels of PD-L1 and CD163 were higher. In vivo experiments indicated that DMC could increase the level of tumor infiltrating CD8+ T cells in hepatitis B virus X (HBx) (+) hepatoma cells implanted mouse models, and inhibit the expression of PD-L1 and CD163 in tumor tissues. DMC combined with atezolizumab had more significant antitumor effect and stronger blocking effect on PD-1/PD-L1 pathway. Mechanism studies have shown that DMC can promote ubiquitin degradation of HBx-induced PD-L1 protein in HCC cells by activating adenosine 5′-monophosphate-activated protein kinase pathway. Further experiments confirmed that this process was mainly mediated by E3 ligase RBX1. Conclusions Our results uncover a role for DMC in promoting HBV-related HCC immune microenvironment, which not only enrich the relationship between inflammatory factors (mPGES-1/PGE2 pathway) and immunosuppression (PD-L1), but also provide an important strategic reference for multitarget or combined immunotherapy of HBV-related HCC.
Collapse
Affiliation(s)
- Zhanfei Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yiyin Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lirong Peng
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqian Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China .,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|