151
|
Control of Blood Vessel Formation by Notch Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:319-338. [PMID: 30030834 DOI: 10.1007/978-3-319-89512-3_16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Blood vessels span throughout the body to nourish tissue cells and to provide gateways for immune surveillance. Endothelial cells that line capillaries have the remarkable capacity to be quiescent for years but to switch rapidly into the activated state once new blood vessels need to be formed. In addition, endothelial cells generate niches for progenitor and tumor cells and provide organ-specific paracrine (angiocrine) factors that control organ development and regeneration, maintenance of homeostasis and tumor progression. Recent data indicate a pivotal role for blood vessels in responding to metabolic changes and that endothelial cell metabolism is a novel regulator of angiogenesis. The Notch pathway is the central signaling mode that cooperates with VEGF, WNT, BMP, TGF-β, angiopoietin signaling and cell metabolism to orchestrate angiogenesis, tip/stalk cell selection and arteriovenous specification. Here, we summarize the current knowledge and implications regarding the complex roles of Notch signaling during physiological and tumor angiogenesis, the dynamic nature of tip/stalk cell selection in the nascent vessel sprout and arteriovenous differentiation. Furthermore, we shed light on recent work on endothelial cell metabolism, perfusion-independent angiocrine functions of endothelial cells in organ-specific vascular beds and how manipulation of Notch signaling may be used to target the tumor vasculature.
Collapse
|
152
|
Ruiz S, Chandakkar P, Zhao H, Papoin J, Chatterjee PK, Christen E, Metz CN, Blanc L, Campagne F, Marambaud P. Tacrolimus rescues the signaling and gene expression signature of endothelial ALK1 loss-of-function and improves HHT vascular pathology. Hum Mol Genet 2017; 26:4786-4798. [PMID: 28973643 PMCID: PMC5886173 DOI: 10.1093/hmg/ddx358] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/09/2017] [Accepted: 09/11/2017] [Indexed: 01/02/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a highly debilitating and life-threatening genetic vascular disorder arising from endothelial cell (EC) proliferation and hypervascularization, for which no cure exists. Because HHT is caused by loss-of-function mutations in bone morphogenetic protein 9 (BMP9)-ALK1-Smad1/5/8 signaling, interventions aimed at activating this pathway are of therapeutic value. We interrogated the whole-transcriptome in human umbilical vein ECs (HUVECs) and found that ALK1 signaling inhibition was associated with a specific pro-angiogenic gene expression signature, which included a significant elevation of DLL4 expression. By screening the NIH clinical collections of FDA-approved drugs, we identified tacrolimus (FK-506) as the most potent activator of ALK1 signaling in BMP9-challenged C2C12 reporter cells. In HUVECs, tacrolimus activated Smad1/5/8 and opposed the pro-angiogenic gene expression signature associated with ALK1 loss-of-function, by notably reducing Dll4 expression. In these cells, tacrolimus also inhibited Akt and p38 stimulation by vascular endothelial growth factor, a major driver of angiogenesis. In the BMP9/10-immunodepleted postnatal retina-a mouse model of HHT vascular pathology-tacrolimus activated endothelial Smad1/5/8 and prevented the Dll4 overexpression and hypervascularization associated with this model. Finally, tacrolimus stimulated Smad1/5/8 signaling in C2C12 cells expressing BMP9-unresponsive ALK1 HHT mutants and in HHT patient blood outgrowth ECs. Tacrolimus repurposing has therefore therapeutic potential in HHT.
Collapse
Affiliation(s)
- Santiago Ruiz
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
| | | | - Haitian Zhao
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
| | | | - Prodyot K Chatterjee
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Erica Christen
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
| | - Christine N Metz
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
- Hofstra Northwell School of Medicine, Hempstead, NY 11549, USA
| | - Lionel Blanc
- Center for Autoimmune and Musculoskeletal Disorders
- Hofstra Northwell School of Medicine, Hempstead, NY 11549, USA
| | - Fabien Campagne
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine
- Department of Physiology and Biophysics, The Weill Cornell Medical College, New York, NY 10021, USA
| | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
- Hofstra Northwell School of Medicine, Hempstead, NY 11549, USA
| |
Collapse
|
153
|
Astrologo L, Zoni E, Karkampouna S, Gray PC, Klima I, Grosjean J, Goumans MJ, Hawinkels LJAC, van der Pluijm G, Spahn M, Thalmann GN, Ten Dijke P, Kruithof-de Julio M. ALK1Fc Suppresses the Human Prostate Cancer Growth in in Vitro and in Vivo Preclinical Models. Front Cell Dev Biol 2017; 5:104. [PMID: 29259971 PMCID: PMC5723291 DOI: 10.3389/fcell.2017.00104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer is the second most common cancer in men and lethality is normally associated with the consequences of metastasis rather than the primary tumor. Therefore, targeting the molecular pathways that underlie dissemination of primary tumor cells and the formation of metastases has a great clinical value. Bone morphogenetic proteins (BMPs) play a critical role in tumor progression and this study focuses on the role of BMP9- Activin receptor-Like Kinase 1 and 2 (ALK1 and ALK2) axis in prostate cancer. In order to study the effect of BMP9 in vitro and in vivo on cancer cells and tumor growth, we used a soluble chimeric protein consisting of the ALK1 extracellular domain (ECD) fused to human Fc (ALK1Fc) that prevents binding of BMP9 to its cell surface receptors and thereby blocks its ability to activate downstream signaling. ALK1Fc sequesters BMP9 and the closely related BMP10 while preserving the activation of ALK1 and ALK2 through other ligands. We show that ALK1Fc acts in vitro to decrease BMP9-mediated signaling and proliferation of prostate cancer cells with tumor initiating and metastatic potential. In line with these observations, we demonstrate that ALK1Fc also reduces tumor cell proliferation and tumor growth in vivo in an orthotopic transplantation model, as well as in the human patient derived xenograft BM18. Furthermore, we also provide evidence for crosstalk between BMP9 and NOTCH and find that ALK1Fc inhibits NOTCH signaling in human prostate cancer cells and blocks the induction of the NOTCH target Aldehyde dehydrogenase member ALDH1A1, which is a clinically relevant marker associated with poor survival and advanced-stage prostate cancer. Our study provides the first demonstration that ALK1Fc inhibits prostate cancer progression, identifying BMP9 as a putative therapeutic target and ALK1Fc as a potential therapy. Altogether, these findings support the validity of ongoing clinical development of drugs blocking ALK1 and ALK2 receptor activity.
Collapse
Affiliation(s)
- Letizia Astrologo
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Eugenio Zoni
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Urology, Leiden University Medical Centre, Leiden, Netherlands
| | - Sofia Karkampouna
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| | - Peter C Gray
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Irena Klima
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Joël Grosjean
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Marie J Goumans
- Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| | - Lukas J A C Hawinkels
- Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands.,Department of Gastroenterology-Hepatology, Leiden University Medical Centre, Leiden, Netherlands
| | | | - Martin Spahn
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - George N Thalmann
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| | - Marianna Kruithof-de Julio
- Department of Urology and Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Urology, Leiden University Medical Centre, Leiden, Netherlands.,Department of Molecular Cell Biology, Cancer Genomics Center, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
154
|
Roman BL, Hinck AP. ALK1 signaling in development and disease: new paradigms. Cell Mol Life Sci 2017; 74:4539-4560. [PMID: 28871312 PMCID: PMC5687069 DOI: 10.1007/s00018-017-2636-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Abstract
Activin A receptor like type 1 (ALK1) is a transmembrane serine/threonine receptor kinase in the transforming growth factor-beta receptor family that is expressed on endothelial cells. Defects in ALK1 signaling cause the autosomal dominant vascular disorder, hereditary hemorrhagic telangiectasia (HHT), which is characterized by development of direct connections between arteries and veins, or arteriovenous malformations (AVMs). Although previous studies have implicated ALK1 in various aspects of sprouting angiogenesis, including tip/stalk cell selection, migration, and proliferation, recent work suggests an intriguing role for ALK1 in transducing a flow-based signal that governs directed endothelial cell migration within patent, perfused vessels. In this review, we present an updated view of the mechanism of ALK1 signaling, put forth a unified hypothesis to explain the cellular missteps that lead to AVMs associated with ALK1 deficiency, and discuss emerging roles for ALK1 signaling in diseases beyond HHT.
Collapse
Affiliation(s)
- Beth L Roman
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 130 DeSoto St, Pittsburgh, PA, 15261, USA.
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
155
|
Bansal VK, Herzog CA, Sarnak MJ, Choi MJ, Mehta R, Jaar BG, Rocco MV, Kramer H. Oral Anticoagulants to Prevent Stroke in Nonvalvular Atrial Fibrillation in Patients With CKD Stage 5D: An NKF-KDOQI Controversies Report. Am J Kidney Dis 2017; 70:859-868. [DOI: 10.1053/j.ajkd.2017.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/08/2017] [Indexed: 12/17/2022]
|
156
|
Retinal vasculature development in health and disease. Prog Retin Eye Res 2017; 63:1-19. [PMID: 29129724 DOI: 10.1016/j.preteyeres.2017.11.001] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 12/17/2022]
Abstract
Development of the retinal vasculature is based on highly coordinated signalling between different cell types of the retina, integrating internal metabolic requirements with external influences such as the supply of oxygen and nutrients. The developing mouse retinal vasculature is a useful model system to study these interactions because it is experimentally accessible for intra ocular injections and genetic manipulations, can be easily imaged and develops in a similar fashion to that of humans. Research using this model has provided insights about general principles of angiogenesis as well as pathologies that affect the developing retinal vasculature. In this review, we discuss recent advances in our understanding of the molecular and cellular mechanisms that govern the interactions between neurons, glial and vascular cells in the developing retina. This includes a review of mechanisms that shape the retinal vasculature, such as sprouting angiogenesis, vascular network remodelling and vessel maturation. We also explore how the disruption of these processes in mice can lead to pathology - such as oxygen induced retinopathy - and how this translates to human retinopathy of prematurity.
Collapse
|
157
|
Abstract
Correct organization of the vascular tree requires the balanced activities of several signaling pathways that regulate tubulogenesis and vascular branching, elongation, and pruning. When this balance is lost, the vessels can be malformed and fragile, and they can lose arteriovenous differentiation. In this review, we concentrate on the transforming growth factor (TGF)-β/bone morphogenetic protein (BMP) pathway, which is one of the most important and complex signaling systems in vascular development. Inactivation of these pathways can lead to altered vascular organization in the embryo. In addition, many vascular malformations are related to deregulation of TGF-β/BMP signaling. Here, we focus on two of the most studied vascular malformations that are induced by deregulation of TGF-β/BMP signaling: hereditary hemorrhagic telangiectasia (HHT) and cerebral cavernous malformation (CCM). The first of these is related to loss-of-function mutation of the TGF-β/BMP receptor complex and the second to increased signaling sensitivity to TGF-β/BMP. In this review, we discuss the potential therapeutic targets against these vascular malformations identified so far, as well as their basis in general mechanisms of vascular development and stability.
Collapse
Affiliation(s)
- Sara I Cunha
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| | - Peetra U Magnusson
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| | - Elisabetta Dejana
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.).
| | - Maria Grazia Lampugnani
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| |
Collapse
|
158
|
Tischfield MA, Robson CD, Gilette NM, Chim SM, Sofela FA, DeLisle MM, Gelber A, Barry BJ, MacKinnon S, Dagi LR, Nathans J, Engle EC. Cerebral Vein Malformations Result from Loss of Twist1 Expression and BMP Signaling from Skull Progenitor Cells and Dura. Dev Cell 2017; 42:445-461.e5. [PMID: 28844842 PMCID: PMC5595652 DOI: 10.1016/j.devcel.2017.07.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 05/04/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
Abstract
Dural cerebral veins (CV) are required for cerebrospinal fluid reabsorption and brain homeostasis, but mechanisms that regulate their growth and remodeling are unknown. We report molecular and cellular processes that regulate dural CV development in mammals and describe venous malformations in humans with craniosynostosis and TWIST1 mutations that are recapitulated in mouse models. Surprisingly, Twist1 is dispensable in endothelial cells but required for specification of osteoprogenitor cells that differentiate into preosteoblasts that produce bone morphogenetic proteins (BMPs). Inactivation of Bmp2 and Bmp4 in preosteoblasts and periosteal dura causes skull and CV malformations, similar to humans harboring TWIST1 mutations. Notably, arterial development appears normal, suggesting that morphogens from the skull and dura establish optimal venous networks independent from arterial influences. Collectively, our work establishes a paradigm whereby CV malformations result from primary or secondary loss of paracrine BMP signaling from preosteoblasts and dura, highlighting unique cellular interactions that influence tissue-specific angiogenesis in mammals.
Collapse
Affiliation(s)
- Max A Tischfield
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.
| | - Caroline D Robson
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole M Gilette
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Shek Man Chim
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Folasade A Sofela
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michelle M DeLisle
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alon Gelber
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Brenda J Barry
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Sarah MacKinnon
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Linda R Dagi
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy Nathans
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Ophthalmology, Boston Children's Hospital, Boston, MA 02115, USA; FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
159
|
Abstract
Vascular malformations result from improper blood vessel responses to molecular and mechanical signals. Two studies now show that endothelial cell migration and cell shape changes are perturbed in mutants lacking the TGFβ/BMP co-receptor endoglin, leading to arteriovenous shunts. Endoglin coordinates endothelial cell responses to ligand-receptor signalling and flow-mediated mechanical cues.
Collapse
|
160
|
Nedvetsky PI, Zhao X, Mathivet T, Aspalter IM, Stanchi F, Metzger RJ, Mostov KE, Gerhardt H. cAMP-dependent protein kinase A (PKA) regulates angiogenesis by modulating tip cell behavior in a Notch-independent manner. Development 2017; 143:3582-3590. [PMID: 27702786 DOI: 10.1242/dev.134767] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/08/2016] [Indexed: 01/06/2023]
Abstract
cAMP-dependent protein kinase A (PKA) is a ubiquitously expressed serine/threonine kinase that regulates a variety of cellular functions. Here, we demonstrate that endothelial PKA activity is essential for vascular development, specifically regulating the transition from sprouting to stabilization of nascent vessels. Inhibition of endothelial PKA by endothelial cell-specific expression of dominant-negative PKA in mice led to perturbed vascular development, hemorrhage and embryonic lethality at mid-gestation. During perinatal retinal angiogenesis, inhibition of PKA resulted in hypersprouting as a result of increased numbers of tip cells. In zebrafish, cell autonomous PKA inhibition also increased and sustained endothelial cell motility, driving cells to become tip cells. Although these effects of PKA inhibition were highly reminiscent of Notch inhibition effects, our data demonstrate that PKA and Notch independently regulate tip and stalk cell formation and behavior.
Collapse
Affiliation(s)
- Pavel I Nedvetsky
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium Vascular Patterning Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Xiaocheng Zhao
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium Vascular Patterning Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Thomas Mathivet
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium Vascular Patterning Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Irene M Aspalter
- Vascular Biology Laboratory, London Research Institute - Cancer Research UK, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Fabio Stanchi
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium Vascular Patterning Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ross J Metzger
- Department of Anatomy, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, CA 94143-2140, USA
| | - Keith E Mostov
- Department of Anatomy, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, CA 94143-2140, USA
| | - Holger Gerhardt
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium Vascular Patterning Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium Vascular Biology Laboratory, London Research Institute - Cancer Research UK, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany DZHK (German Center for Cardiovascular Research), partner site Berlin Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
161
|
Baluk P, Yao LC, Flores JC, Choi D, Hong YK, McDonald DM. Rapamycin reversal of VEGF-C-driven lymphatic anomalies in the respiratory tract. JCI Insight 2017; 2:90103. [PMID: 28814666 DOI: 10.1172/jci.insight.90103] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 07/06/2017] [Indexed: 12/17/2022] Open
Abstract
Lymphatic malformations are serious but poorly understood conditions that present therapeutic challenges. The goal of this study was to compare strategies for inducing regression of abnormal lymphatics and explore underlying mechanisms. CCSP-rtTA/tetO-VEGF-C mice, in which doxycycline regulates VEGF-C expression in the airway epithelium, were used as a model of pulmonary lymphangiectasia. After doxycycline was stopped, VEGF-C expression returned to normal, but lymphangiectasia persisted for at least 9 months. Inhibition of VEGFR-2/VEGFR-3 signaling, Notch, β-adrenergic receptors, or autophagy and antiinflammatory steroids had no noticeable effect on the amount or severity of lymphangiectasia. However, rapamycin inhibition of mTOR reduced lymphangiectasia by 76% within 7 days without affecting normal lymphatics. Efficacy of rapamycin was not increased by coadministration with the other agents. In prevention trials, rapamycin suppressed VEGF-C-driven mTOR phosphorylation and lymphatic endothelial cell sprouting and proliferation. However, in reversal trials, no lymphatic endothelial cell proliferation was present to block in established lymphangiectasia, and rapamycin did not increase caspase-dependent apoptosis. However, rapamycin potently suppressed Prox1 and VEGFR-3. These experiments revealed that lymphangiectasia is remarkably resistant to regression but is responsive to rapamycin, which rapidly reduces and normalizes the abnormal lymphatics without affecting normal lymphatics.
Collapse
Affiliation(s)
- Peter Baluk
- Cardiovascular Research Institute, Department of Anatomy, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Li-Chin Yao
- Cardiovascular Research Institute, Department of Anatomy, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Julio C Flores
- Cardiovascular Research Institute, Department of Anatomy, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Dongwon Choi
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Young-Kwon Hong
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Donald M McDonald
- Cardiovascular Research Institute, Department of Anatomy, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
162
|
Poduri A, Chang AH, Raftrey B, Rhee S, Van M, Red-Horse K. Endothelial cells respond to the direction of mechanical stimuli through SMAD signaling to regulate coronary artery size. Development 2017; 144:3241-3252. [PMID: 28760815 DOI: 10.1242/dev.150904] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/22/2017] [Indexed: 02/01/2023]
Abstract
How mechanotransduction intersects with chemical and transcriptional factors to shape organogenesis is an important question in developmental biology. This is particularly relevant to the cardiovascular system, which uses mechanical signals from flowing blood to stimulate cytoskeletal and transcriptional responses that form a highly efficient vascular network. Using this system, artery size and structure are tightly regulated, but the underlying mechanisms are poorly understood. Here, we demonstrate that deletion of Smad4 increased the diameter of coronary arteries during mouse embryonic development, a phenotype that followed the initiation of blood flow. At the same time, the BMP signal transducers SMAD1/5/8 were activated in developing coronary arteries. In a culture model of blood flow-induced shear stress, human coronary artery endothelial cells failed to align when either BMPs were inhibited or SMAD4 was depleted. In contrast to control cells, SMAD4-deficient cells did not migrate against the direction of shear stress and increased proliferation rates specifically under flow. Similar alterations were seen in coronary arteries in vivo Thus, endothelial cells perceive the direction of blood flow and respond through SMAD signaling to regulate artery size.
Collapse
Affiliation(s)
- Aruna Poduri
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Andrew H Chang
- Department of Biology, Stanford University, Stanford, CA 94305, USA.,Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Brian Raftrey
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Siyeon Rhee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Mike Van
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
163
|
Zhao M, Hu Y, Jin J, Yu Y, Zhang S, Cao J, Zhai Y, Wei R, Shou J, Cai W, Liu S, Yang X, Xu GT, Yang J, Corry DB, Su SB, Liu X, Yang T. Interleukin 37 promotes angiogenesis through TGF-β signaling. Sci Rep 2017; 7:6113. [PMID: 28733640 PMCID: PMC5522482 DOI: 10.1038/s41598-017-06124-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 05/30/2017] [Indexed: 01/10/2023] Open
Abstract
IL-37 is a novel pro-angiogenic cytokine that potently promotes endothelial cell activation and pathological angiogenesis in our previous study, but the mechanisms behind the pro-angiogenic effect of IL-37 are less well understood. Extending our observations, we found that TGF-β interacts with IL-37, and potently enhances the binding affinity of IL-37 to the ALK1 receptor complex, thus allowing IL-37 to signal through ALK1 to activate pro-angiogenic responses. We further show that TGF-β and ALK1 are required in IL-37 induced pro-angiogenic response in ECs and in the mouse model of Matrigel plug and oxygen-induced retinopathy. The result suggests that IL-37 induces pro-angiogenic responses through TGF-β, which may act as the bridging molecule that mediates IL-37 binding to the TGF-β receptor complex.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongguang Hu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiayi Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ying Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Zhang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingjing Cao
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanfen Zhai
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rongbin Wei
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juanjuan Shou
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenping Cai
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shangfeng Liu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoping Yang
- Johns Hopkins University School of Medicine, Baltimore, United States
| | - Guo-Tong Xu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianhua Yang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - David B Corry
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States
| | - Shao Bo Su
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Tianshu Yang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
164
|
Benn A, Hiepen C, Osterland M, Schütte C, Zwijsen A, Knaus P. Role of bone morphogenetic proteins in sprouting angiogenesis: differential BMP receptor-dependent signaling pathways balance stalk vs. tip cell competence. FASEB J 2017; 31:4720-4733. [PMID: 28733457 PMCID: PMC5636702 DOI: 10.1096/fj.201700193rr] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/27/2017] [Indexed: 01/04/2023]
Abstract
Before the onset of sprouting angiogenesis, the endothelium is prepatterned for the positioning of tip and stalk cells. Both cell identities are not static, as endothelial cells (ECs) constantly compete for the tip cell position in a dynamic fashion. Here, we show that both bone morphogenetic protein 2 (BMP2) and BMP6 are proangiogenic in vitro and ex vivo and that the BMP type I receptors, activin receptor-like kinase 3 (ALK3) and ALK2, play crucial and distinct roles in this process. BMP2 activates the expression of tip cell-associated genes, such as delta-like ligand 4 (DLL4) and kinase insert domain receptor (KDR), and p38-heat shock protein 27 (HSP27)-dependent cell migration, thereby generating tip cell competence. Whereas BMP6 also triggers collective cell migration via the p38-HSP27 signaling axis, BMP6 induces in addition SMAD1/5 signaling, thereby promoting the expression of stalk cell-associated genes, such as hairy and enhancer of split 1 (HES1) and fms-like tyrosine kinase 1 (FLT1). Specifically, ALK3 is required for sprouting from HUVEC spheroids, whereas ALK2 represses sprout formation. We demonstrate that expression levels and respective complex formation of BMP type I receptors in ECs determine stalk vs. tip cell identity, thus contributing to endothelial plasticity during sprouting angiogenesis. As antiangiogenic monotherapies that target the VEGF or ALK1 pathways have not fulfilled efficacy objectives in clinical trials, the selective targeting of the ALK2/3 pathways may be an attractive new approach.-Benn, A., Hiepen, C., Osterland, M., Schütte, C., Zwijsen, A., Knaus, P. Role of bone morphogenetic proteins in sprouting angiogenesis: differential BMP receptor-dependent signaling pathways balance stalk vs. tip cell competence.
Collapse
Affiliation(s)
- Andreas Benn
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Deutsche Forschungsgemeinschaft (DFG) Graduate School 1093, Berlin School of Integrative Oncology, Berlin, Germany.,DFG Graduate School 203, Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany.,Vlaams Instituut voor Biotechnologie (VIB) Center for Brain and Disease Research, KU Leuven, Leuven, Belgium.,Department of Human Genetics, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Christian Hiepen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,DFG Graduate School 203, Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| | - Marc Osterland
- Zuse Institute Berlin, Berlin, Germany.,Institute for Mathematics, Freie Universität Berlin, Berlin, Germany
| | - Christof Schütte
- Zuse Institute Berlin, Berlin, Germany.,Institute for Mathematics, Freie Universität Berlin, Berlin, Germany
| | - An Zwijsen
- Vlaams Instituut voor Biotechnologie (VIB) Center for Brain and Disease Research, KU Leuven, Leuven, Belgium.,Department of Human Genetics, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; .,Deutsche Forschungsgemeinschaft (DFG) Graduate School 1093, Berlin School of Integrative Oncology, Berlin, Germany.,DFG Graduate School 203, Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
165
|
Targeting tumour vasculature by inhibiting activin receptor-like kinase (ALK)1 function. Biochem Soc Trans 2017; 44:1142-9. [PMID: 27528762 DOI: 10.1042/bst20160093] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 12/23/2022]
Abstract
Angiogenesis is a hallmark of cancer and is now a validated therapeutic target in the clinical setting. Despite the initial success, anti-angiogenic compounds impinging on the vascular endothelial growth factor (VEGF) pathway display limited survival benefits in patients and resistance often develops due to activation of alternative pathways. Thus, finding and validating new targets is highly warranted. Activin receptor-like kinase (ALK)1 is a transforming growth factor beta (TGF-β) type I receptor predominantly expressed in actively proliferating endothelial cells (ECs). ALK1 has been shown to play a pivotal role in regulating angiogenesis by binding to bone morphogenetic protein (BMP)9 and 10. Two main pharmacological inhibitors, an ALK1-Fc fusion protein (Dalantercept/ACE-041) and a fully human antibody against the extracellular domain of ALK1 (PF-03446962) are currently under clinical development. Herein, we briefly recapitulate the role of ALK1 in blood vessel formation and the current status of the preclinical and clinical studies on inhibition of ALK1 signalling as an anti-angiogenic strategy. Future directions in terms of new combination regimens will also be presented.
Collapse
|
166
|
Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 2017; 20:409-426. [PMID: 28660302 DOI: 10.1007/s10456-017-9562-9] [Citation(s) in RCA: 1003] [Impact Index Per Article: 125.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/21/2017] [Indexed: 12/27/2022]
Abstract
Tumor blood vessels are a key target for cancer therapeutic management. Tumor cells secrete high levels of pro-angiogenic factors which contribute to the creation of an abnormal vascular network characterized by disorganized, immature and permeable blood vessels, resulting in poorly perfused tumors. The hypoxic microenvironment created by impaired tumor perfusion can promote the selection of more invasive and aggressive tumor cells and can also impede the tumor-killing action of immune cells. Furthermore, abnormal tumor perfusion also reduces the diffusion of chemotherapeutic drugs and radiotherapy efficiency. To fight against this defective phenotype, the normalization of the tumor vasculature has emerged as a new therapeutic strategy. Vascular normalization, by restoring proper tumor perfusion and oxygenation, could limit tumor cell invasiveness and improve the effectiveness of anticancer treatments. In this review, we investigate the mechanisms involved in tumor angiogenesis and describe strategies used to achieve vascular normalization.
Collapse
|
167
|
Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 2017; 18:477-494. [PMID: 28537573 DOI: 10.1038/nrm.2017.36] [Citation(s) in RCA: 425] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Blood and lymphatic vessels pervade almost all body tissues and have numerous essential roles in physiology and disease. The inner lining of these networks is formed by a single layer of endothelial cells, which is specialized according to the needs of the tissue that it supplies. Whereas the general mechanisms of blood and lymphatic vessel development are being defined with increasing molecular precision, studies of the processes of endothelial specialization remain mostly descriptive. Recent insights from genetic animal models illuminate how endothelial cells interact with each other and with their tissue environment, providing paradigms for vessel type- and organ-specific endothelial differentiation. Delineating these governing principles will be crucial for understanding how tissues develop and maintain, and how their function becomes abnormal in disease.
Collapse
|
168
|
Jin Y, Muhl L, Burmakin M, Wang Y, Duchez AC, Betsholtz C, Arthur HM, Jakobsson L. Endoglin prevents vascular malformation by regulating flow-induced cell migration and specification through VEGFR2 signalling. Nat Cell Biol 2017; 19:639-652. [PMID: 28530660 PMCID: PMC5467724 DOI: 10.1038/ncb3534] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 04/18/2017] [Indexed: 12/15/2022]
Abstract
Loss-of-function (LOF) mutations in the endothelial cell (EC) enriched gene endoglin (ENG) causes the human disease hereditary haemorrhagic telangiectasia-1, characterized by vascular malformations promoted by vascular endothelial growth factor A (VEGFA). How ENG deficiency alters EC behaviour to trigger these anomalies is not understood. Mosaic ENG deletion in the postnatal mouse rendered Eng LOF ECs insensitive to flow-mediated venous to arterial migration. Eng LOF ECs retained within arterioles acquired venous characteristics and secondary ENG-independent proliferation resulting in arterio-venous malformation (AVM). Analysis following simultaneous Eng LOF and overexpression (OE) revealed that ENG OE ECs dominate tip cell positions and home preferentially to arteries. ENG knock-down altered VEGFA-mediated VEGFR2 kinetics and promoted AKT signalling. Blockage of PI3K/AKT partly normalised flow-directed migration of ENG LOF ECs in vitro and reduced the severity of AVM in vivo. This demonstrates the requirement of ENG in flow-mediated migration and modulation of VEGFR2 signalling in vascular patterning.
Collapse
Affiliation(s)
- Yi Jin
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 171 77 Stockholm, Sweden
| | - Lars Muhl
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 171 77 Stockholm, Sweden
| | - Mikhail Burmakin
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 171 77 Stockholm, Sweden
| | - Yixin Wang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 171 77 Stockholm, Sweden
| | - Anne-Claire Duchez
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 171 77 Stockholm, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, 751 85 Uppsala, Sweden.,Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, Novum, Blickagången 6, SE14157 Huddinge, Sweden
| | - Helen M Arthur
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Lars Jakobsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 171 77 Stockholm, Sweden
| |
Collapse
|
169
|
Liu Z, Sanders AJ, Liang G, Song E, Jiang WG, Gong C. Hey Factors at the Crossroad of Tumorigenesis and Clinical Therapeutic Modulation of Hey for Anticancer Treatment. Mol Cancer Ther 2017; 16:775-786. [PMID: 28468863 DOI: 10.1158/1535-7163.mct-16-0576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Zihao Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Gehao Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom.
| | - Chang Gong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| |
Collapse
|
170
|
Delev D, Pavlova A, Grote A, Boström A, Höllig A, Schramm J, Fimmers R, Oldenburg J, Simon M. NOTCH4 gene polymorphisms as potential risk factors for brain arteriovenous malformation development and hemorrhagic presentation. J Neurosurg 2017; 126:1552-1559. [DOI: 10.3171/2016.3.jns151731] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVEArteriovenous malformations (AVMs) of the brain are a frequent and important cause of intracranial hemorrhage in young adults. Little is known about the molecular-genetic pathomechanisms underlying AVM development. Genes of the NOTCH family control the normal development of vessels and proper arteriovenous specification. Transgenic mice with constitutive expression of active NOTCH4 frequently develop AVMs. Here, the authors report a genetic association study investigating possible associations between NOTCH4 gene polymorphisms and formation and clinical presentation of AVMs.METHODSAfter PCR amplification and direct DNA sequencing or restriction digests, 10 single-nucleotide polymorphisms (SNPs) of the NOTCH4 gene were used for genotyping 153 AVM patients and 192 healthy controls (i.e., blood donors). Pertinent clinical data were available for 129 patients. Uni- and multivariate single-marker and explorative haplotype analyses were performed to identify potential genetic risk factors for AVM development and for hemorrhagic or epileptic presentation.RESULTSEleven calculated haplotypes consisting of 3–4 SNPs (most of which were located in the epidermal growth factor–like domain of the NOTCH4 gene) were observed significantly more often among AVM patients than among controls. Univariate analysis indicated that rs443198_TT and rs915895_AA genotypes both were significantly associated with hemorrhage and that an rs1109771_GG genotype was associated with epilepsy. The association between rs443198_TT and AVM bleeding remained significant in the multivariate regression analysis.CONCLUSIONSThe authors' results suggest NOTCH4 SNPs as possible genetic risk factors for the development and clinical presentation of AVMs and a role of NOTCH4 in the pathogenesis of this disease.
Collapse
Affiliation(s)
| | - Anna Pavlova
- 2Institute for Experimental Haematology and Transfusion Medicine, and
| | | | | | - Anke Höllig
- 3Department of Neurosurgery, University Hospital, RWTH Aachen University, Aachen, Germany
| | | | - Rolf Fimmers
- 4Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, University Medical Center, Bonn; and
| | | | | |
Collapse
|
171
|
Tachida Y, Izumi N, Sakurai T, Kobayashi H. Mutual interaction between endothelial cells and mural cells enhances BMP9 signaling in endothelial cells. Biol Open 2017; 6:370-380. [PMID: 28298363 PMCID: PMC5374394 DOI: 10.1242/bio.020503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia is characterized by the formation of abnormal vascular networks and caused by the mutation of genes involved in BMP9 signaling. It is also known that the interaction between endothelial cells (ECs) and mural cells (MCs) is critical to maintain vessel integrity. However, it has not yet fully been uncovered whether the EC–MC interaction affects BMP9 signaling or not. To elucidate this point, we analyzed BMP9 signaling in a co-culture of several types of human primary culture ECs and MCs. The co-culture activated the Notch pathway in both types of cells in a co-culture- and BMP9-dependent manner. In HUVECs, the genes induced by BMP9 were significantly and synergistically induced in the presence of pericytes, fibroblasts or mesenchymal stem cells. The synergistic induction was greatly reduced in a non-contact condition. In fibroblasts, PDGFRB expression was potently induced in the presence of HUVECs, and BMP9 additively increased this response. Taken together, these results suggest that the EC–MC interaction potentiates BMP9 signaling both in ECs and MCs and plays a critical role in the maintenance of proper vessel functions. Summary: A mutual interaction between endothelial cells and mural cells enhances BMP9 signaling in endothelial cells, with implications for the maintenance of vascular integrity and vascular disease research.
Collapse
Affiliation(s)
- Yuki Tachida
- Pain and Neuroscience Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Nanae Izumi
- End-Organ Disease Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Toyo Sakurai
- Hit Discovery and Cell Processing Research Group Biological Research Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo 134-8630, Japan
| | - Hideki Kobayashi
- Pain and Neuroscience Laboratories, R&D Division, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| |
Collapse
|
172
|
Lee HW, Chong DC, Ola R, Dunworth WP, Meadows S, Ka J, Kaartinen VM, Qyang Y, Cleaver O, Bautch VL, Eichmann A, Jin SW. Alk2/ACVR1 and Alk3/BMPR1A Provide Essential Function for Bone Morphogenetic Protein-Induced Retinal Angiogenesis. Arterioscler Thromb Vasc Biol 2017; 37:657-663. [PMID: 28232325 DOI: 10.1161/atvbaha.116.308422] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/09/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Increasing evidence suggests that bone morphogenetic protein (BMP) signaling regulates angiogenesis. Here, we aimed to define the function of BMP receptors in regulating early postnatal angiogenesis by analysis of inducible, endothelial-specific deletion of the BMP receptor components Bmpr2 (BMP type 2 receptor), Alk1 (activin receptor-like kinase 1), Alk2, and Alk3 in mouse retinal vessels. APPROACH AND RESULTS Expression analysis of several BMP ligands showed that proangiogenic BMP ligands are highly expressed in postnatal retinas. Consistently, BMP receptors are also strongly expressed in retina with a distinct pattern. To assess the function of BMP signaling in retinal angiogenesis, we first generated mice carrying an endothelial-specific inducible deletion of Bmpr2. Postnatal deletion of Bmpr2 in endothelial cells substantially decreased the number of angiogenic sprouts at the vascular front and branch points behind the front, leading to attenuated radial expansion. To identify critical BMPR1s (BMP type 1 receptors) associated with BMPR2 in retinal angiogenesis, we generated endothelial-specific inducible deletion of 3 BMPR1s abundantly expressed in endothelial cells and analyzed the respective phenotypes. Among these, endothelial-specific deletion of either Alk2/acvr1 or Alk3/Bmpr1a caused a delay in radial expansion, reminiscent of vascular defects associated with postnatal endothelial-specific deletion of BMPR2, suggesting that ALK2/ACVR1 and ALK3/BMPR1A are likely to be the critical BMPR1s necessary for proangiogenic BMP signaling in retinal vessels. CONCLUSIONS Our data identify BMP signaling mediated by coordination of ALK2/ACVR1, ALK3/BMPR1A, and BMPR2 as an essential proangiogenic cue for retinal vessels.
Collapse
Affiliation(s)
- Heon-Woo Lee
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - Diana C Chong
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - Roxana Ola
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - William P Dunworth
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - Stryder Meadows
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - Jun Ka
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - Vesa M Kaartinen
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - Yibing Qyang
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - Ondine Cleaver
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - Victoria L Bautch
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.).
| | - Anne Eichmann
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| | - Suk-Won Jin
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT (H.-W.L., R.O., W.P.D., Y.Q., A.E., S.-W.J.); Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill (D.C.C., V.L.B.); Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX (S.M., O.C.); School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology, Korea (J.K., S.-W.J.); and Department of Biologic & Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor (V.M.K.)
| |
Collapse
|
173
|
Cho H, Sengupta S, Jeon SSH, Hur W, Choi HG, Seo HS, Lee BJ, Kim JH, Chung M, Jeon NL, Kim ND, Sim T. Identification of the First Selective Activin Receptor-Like Kinase 1 Inhibitor, a Reversible Version of L-783277. J Med Chem 2017; 60:1495-1508. [PMID: 28103025 DOI: 10.1021/acs.jmedchem.6b01679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We synthesized 1 (San78-130), a reversible version of L-783277, as a selective and potent ALK1 inhibitor. Our study showed that 1 possesses great kinase selectivity against a panel of 342 kinases and more potent activity against ALK1 than L-783277. Among the six ALK isotypes (ALK1-6), ALK1 is most significantly inhibited by compound 1. Compound 1 suppresses the BMP9-induced Smad1/5 pathway by mainly inhibiting ALK1 in C2C12 cells. Our molecular dynamics simulations suggest that H-bonding interaction between the C-4' hydroxyl group of 1 and Arg334 of ALK1 substantially contributes to the ALK1 inhibition. To the best of our knowledge, 1 is the first selective ALK1 inhibitor. Furthermore, compound 1 promoted angiogenesis in both endothelial tube formation and microfluidic chip based 3D angiogenesis assays, suggesting that 1 could be a lead compound for therapeutic angiogenesis agents. Our study may provide an insight into designing selective and potent inhibitors against ALK1.
Collapse
Affiliation(s)
- Hanna Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sandip Sengupta
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST) , 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sean S H Jeon
- KU-KIST Graduate School of Converging Science and Technology, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Wooyoung Hur
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST) , 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hwan Geun Choi
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST) , 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hong-Seog Seo
- KU-KIST Graduate School of Converging Science and Technology, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.,Cardiovascular Center, Korea University Guro Hospital , 80 Guro-dong, Guro-gu, Seoul 152-703, Republic of Korea
| | - Byung Joo Lee
- Fight Against Angiogenesis-related Blindness Laboratory, Clinical Research Institute, Seoul National University Hospital , 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University , 103, Daehakro, Jongro-gu, Seoul 03080, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-related Blindness Laboratory, Clinical Research Institute, Seoul National University Hospital , 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University , 103, Daehakro, Jongro-gu, Seoul 03080, Republic of Korea.,Department of Ophthalmology, College of Medicine, Seoul National University , 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Minhwan Chung
- Mechanical Engineering, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Noo Li Jeon
- Mechanical Engineering, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Nam Doo Kim
- Daegu-Gyeongbuk Medical Innovation Foundation , 2387 dalgubeol-daero, Suseong-gu, Daegu 42019, Republic of Korea
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.,Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST) , 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
174
|
Abstract
Cytokines of the transforming growth factor β (TGF-β) family, including TGF-βs, bone morphogenic proteins (BMPs), activins, and Nodal, play crucial roles in embryonic development and adult tissue homeostasis by regulating cell proliferation, survival, and differentiation, as well as stem-cell self-renewal and lineage-specific differentiation. Smad proteins are critical downstream mediators of these signaling activities. In addition to regulating the transcription of direct target genes of TGF-β, BMP, activin, or Nodal, Smad proteins also participate in extensive cross talk with other signaling pathways, often in a cell-type- or developmental stage-specific manner. These combinatorial signals often produce context-, time-, and location-dependent biological outcomes that are critical for development. This review discusses recent progress in our understanding of the cross talk between Smad proteins and signaling pathways of Wnt, Notch, Hippo, Hedgehog (Hh), mitogen-activated protein (MAP), kinase, phosphoinositide 3-kinase (PI3K)-Akt, nuclear factor κB (NF-κB), and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways.
Collapse
Affiliation(s)
- Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, and Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
175
|
Luo K. Signaling Cross Talk between TGF-β/Smad and Other Signaling Pathways. Cold Spring Harb Perspect Biol 2017. [PMID: 27836834 DOI: 10.1101/cshperspect] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytokines of the transforming growth factor β (TGF-β) family, including TGF-βs, bone morphogenic proteins (BMPs), activins, and Nodal, play crucial roles in embryonic development and adult tissue homeostasis by regulating cell proliferation, survival, and differentiation, as well as stem-cell self-renewal and lineage-specific differentiation. Smad proteins are critical downstream mediators of these signaling activities. In addition to regulating the transcription of direct target genes of TGF-β, BMP, activin, or Nodal, Smad proteins also participate in extensive cross talk with other signaling pathways, often in a cell-type- or developmental stage-specific manner. These combinatorial signals often produce context-, time-, and location-dependent biological outcomes that are critical for development. This review discusses recent progress in our understanding of the cross talk between Smad proteins and signaling pathways of Wnt, Notch, Hippo, Hedgehog (Hh), mitogen-activated protein (MAP), kinase, phosphoinositide 3-kinase (PI3K)-Akt, nuclear factor κB (NF-κB), and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways.
Collapse
Affiliation(s)
- Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, and Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
176
|
The expanding role of neuropilin: regulation of transforming growth factor-β and platelet-derived growth factor signaling in the vasculature. Curr Opin Hematol 2016; 23:260-7. [PMID: 26849476 DOI: 10.1097/moh.0000000000000233] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Long recognized for its role in regulation of vascular endothelial growth factor signaling, neuropilin (Nrp)1 has emerged as a modulator of additional signaling pathways critical for vascular development and function. Here we review two novel functions of Nrp1 in blood vessels: regulation of transforming growth factor-β (TGFβ) signaling in endothelial cells and regulation of platelet-derived growth factor (PDGF) signaling in vascular smooth muscle cells. RECENT FINDINGS Novel mouse models demonstrate that Nrp1 fulfills vascular functions independent of vascular endothelial growth factor signaling. These include modulation of TGFβ-dependent inhibition of endothelial sprouting during developmental angiogenesis and PDGF signaling in vascular smooth muscle cells during development and disease. SUMMARY Broadening our understanding of how and where Nrp1 functions in the vasculature is critical for the development of targeted therapeutics for cancer and vascular diseases such as atherosclerosis and retinopathies.
Collapse
|
177
|
Núñez-Gómez E, Pericacho M, Ollauri-Ibáñez C, Bernabéu C, López-Novoa JM. The role of endoglin in post-ischemic revascularization. Angiogenesis 2016; 20:1-24. [PMID: 27943030 DOI: 10.1007/s10456-016-9535-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
Following arterial occlusion, blood vessels respond by forming a new network of functional capillaries (angiogenesis), by reorganizing preexisting capillaries through the recruitment of smooth muscle cells to generate new arteries (arteriogenesis) and by growing and remodeling preexisting collateral arterioles into physiologically relevant arteries (collateral development). All these processes result in the recovery of organ perfusion. The importance of endoglin in post-occlusion reperfusion is sustained by several observations: (1) endoglin expression is increased in vessels showing active angiogenesis/remodeling; (2) genetic endoglin haploinsufficiency in humans causes deficient angiogenesis; and (3) the reduction of endoglin expression by gene disruption or the administration of endoglin-neutralizing antibodies reduces angiogenesis and revascularization. However, the precise role of endoglin in the several processes associated with revascularization has not been completely elucidated and, in some cases, the function ascribed to endoglin by different authors is controversial. The purpose of this review is to organize in a critical way the information available for the role of endoglin in several phenomena (angiogenesis, arteriogenesis and collateral development) associated with post-ischemic revascularization.
Collapse
Affiliation(s)
- Elena Núñez-Gómez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Claudia Ollauri-Ibáñez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Carmelo Bernabéu
- Centro de Investigaciones Biológicas, Spanish National Research Council (CIB, CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - José M López-Novoa
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain. .,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
178
|
Ola R, Dubrac A, Han J, Zhang F, Fang JS, Larrivée B, Lee M, Urarte AA, Kraehling JR, Genet G, Hirschi KK, Sessa WC, Canals FV, Graupera M, Yan M, Young LH, Oh PS, Eichmann A. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia. Nat Commun 2016; 7:13650. [PMID: 27897192 PMCID: PMC5141347 DOI: 10.1038/ncomms13650] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/20/2016] [Indexed: 12/26/2022] Open
Abstract
Activin receptor-like kinase 1 (ALK1) is an endothelial serine-threonine kinase receptor for bone morphogenetic proteins (BMPs) 9 and 10. Inactivating mutations in the ALK1 gene cause hereditary haemorrhagic telangiectasia type 2 (HHT2), a disabling disease characterized by excessive angiogenesis with arteriovenous malformations (AVMs). Here we show that inducible, endothelial-specific homozygous Alk1 inactivation and BMP9/10 ligand blockade both lead to AVM formation in postnatal retinal vessels and internal organs including the gastrointestinal (GI) tract in mice. VEGF and PI3K/AKT signalling are increased on Alk1 deletion and BMP9/10 ligand blockade. Genetic deletion of the signal-transducing Vegfr2 receptor prevents excessive angiogenesis but does not fully revert AVM formation. In contrast, pharmacological PI3K inhibition efficiently prevents AVM formation and reverts established AVMs. Thus, Alk1 deletion leads to increased endothelial PI3K pathway activation that may be a novel target for the treatment of vascular lesions in HHT2.
Collapse
Affiliation(s)
- Roxana Ola
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Alexandre Dubrac
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Jinah Han
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Feng Zhang
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Jennifer S. Fang
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Bruno Larrivée
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Monica Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Ana A. Urarte
- Vascular Signalling Laboratory, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Jan R. Kraehling
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Gael Genet
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Karen K. Hirschi
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - William C. Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Francesc V. Canals
- Translation Research Laboratory, Catalan Institute of Oncology, Idibell, Barcelona 08908, Spain
| | - Mariona Graupera
- Vascular Signalling Laboratory, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Minhong Yan
- Molecular Oncology, Genentech, Inc., South San Francisco, California 94080-4990, USA
| | - Lawrence H. Young
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Paul S. Oh
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, PO Box 100274, Gainesville, Florida 32610, USA
| | - Anne Eichmann
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Inserm U970, Paris Cardiovascular Research Center, Paris 75015, France
| |
Collapse
|
179
|
A mouse model of hereditary hemorrhagic telangiectasia generated by transmammary-delivered immunoblocking of BMP9 and BMP10. Sci Rep 2016; 5:37366. [PMID: 27874028 PMCID: PMC5118799 DOI: 10.1038/srep37366] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/27/2016] [Indexed: 01/03/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a potentially life-threatening genetic vascular disorder caused by loss-of-function mutations in the genes encoding activin receptor-like kinase 1 (ALK1), endoglin, Smad4, and bone morphogenetic protein 9 (BMP9). Injections of mouse neonates with BMP9/10 blocking antibodies lead to HHT-like vascular defects in the postnatal retinal angiogenesis model. Mothers and their newborns share the same immunity through the transfer of maternal antibodies during lactation. Here, we investigated whether the transmammary delivery route could improve the ease and consistency of administering anti-BMP9/10 antibodies in the postnatal retinal angiogenesis model. We found that anti-BMP9/10 antibodies, when intraperitoneally injected into lactating dams, are efficiently transferred into the blood circulation of lactationally-exposed neonatal pups. Strikingly, pups receiving anti-BMP9/10 antibodies via lactation displayed consistent and robust vascular pathology in the retina, which included hypervascularization and defects in arteriovenous specification, as well as the presence of multiple and massive arteriovenous malformations. Furthermore, RNA-Seq analyses of neonatal retinas identified an increase in the key pro-angiogenic factor, angiopoietin-2, as the most significant change in gene expression triggered by the transmammary delivery of anti-BMP9/10 antibodies. Transmammary-delivered BMP9/10 immunoblocking in the mouse neonatal retina is therefore a practical, noninvasive, reliable, and robust model of HHT vascular pathology.
Collapse
|
180
|
Time to Decide? Dynamical Analysis Predicts Partial Tip/Stalk Patterning States Arise during Angiogenesis. PLoS One 2016; 11:e0166489. [PMID: 27846305 PMCID: PMC5113036 DOI: 10.1371/journal.pone.0166489] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
Angiogenesis is a highly dynamic morphogenesis process; however, surprisingly little is known about the timing of the different molecular processes involved. Although the role of the VEGF-notch-DLL4 signaling pathway has been established as essential for tip/stalk cell competition during sprouting, the speed and dynamic properties of the underlying process at the individual cell level has not been fully elucidated. In this study, using mathematical modeling we investigate how specific, biologically meaningful, local conditions around and within an individual cell can influence their unique tip/stalk phenotype switching kinetics. To this end we constructed an ordinary differential equation model of VEGF-notch-DLL4 signaling in a system of two, coupled endothelial cells (EC). Our studies reveal that at any given point in an angiogenic vessel the time it takes a cell to decide to take on a tip or stalk phenotype may be drastically different, and this asynchrony of tip/stalk cell decisions along vessels itself acts to speed up later competitions. We unexpectedly uncover intermediate "partial" yet stable states lying between the tip and stalk cell fates, and identify that internal cellular factors, such as NAD-dependent deacetylase sirtuin-1 (Sirt1) and Lunatic fringe 1 (Lfng1), can specifically determine the length of time a cell spends in these newly identified partial tip/stalk states. Importantly, the model predicts that these partial EC states can arise during normal angiogenesis, in particular during cell rearrangement in sprouts, providing a novel two-stage mechanism for rapid adaptive behavior to the cells highly dynamic environment. Overall, this study demonstrates that different factors (both internal and external to EC) can be used to modulate the speed of tip/stalk decisions, opening up new opportunities and challenges for future biological experiments and therapeutic targeting to manipulate vascular network topology, and our basic understanding of developmental/pathological angiogenesis.
Collapse
|
181
|
Notch regulates BMP responsiveness and lateral branching in vessel networks via SMAD6. Nat Commun 2016; 7:13247. [PMID: 27834400 PMCID: PMC5114582 DOI: 10.1038/ncomms13247] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 09/15/2016] [Indexed: 12/13/2022] Open
Abstract
Functional blood vessel growth depends on generation of distinct but coordinated responses from endothelial cells. Bone morphogenetic proteins (BMP), part of the TGFβ superfamily, bind receptors to induce phosphorylation and nuclear translocation of SMAD transcription factors (R-SMAD1/5/8) and regulate vessel growth. However, SMAD1/5/8 signalling results in both pro- and anti-angiogenic outputs, highlighting a poor understanding of the complexities of BMP signalling in the vasculature. Here we show that BMP6 and BMP2 ligands are pro-angiogenic in vitro and in vivo, and that lateral vessel branching requires threshold levels of R-SMAD phosphorylation. Endothelial cell responsiveness to these pro-angiogenic BMP ligands is regulated by Notch status and Notch sets responsiveness by regulating a cell-intrinsic BMP inhibitor, SMAD6, which affects BMP responses upstream of target gene expression. Thus, we reveal a paradigm for Notch-dependent regulation of angiogenesis: Notch regulates SMAD6 expression to affect BMP responsiveness of endothelial cells and new vessel branch formation. The mechanism underlying endothelial cell responses to BMP signals is unknown. Here, the authors show that the endothelial response to pro-angiogenic BMP ligands is regulated by Notch via its effect on SMAD6, a known inhibitor of BMP intracellular signaling cascade.
Collapse
|
182
|
LaFoya B, Munroe JA, Mia MM, Detweiler MA, Crow JJ, Wood T, Roth S, Sharma B, Albig AR. Notch: A multi-functional integrating system of microenvironmental signals. Dev Biol 2016; 418:227-41. [PMID: 27565024 PMCID: PMC5144577 DOI: 10.1016/j.ydbio.2016.08.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
Abstract
The Notch signaling cascade is an evolutionarily ancient system that allows cells to interact with their microenvironmental neighbors through direct cell-cell interactions, thereby directing a variety of developmental processes. Recent research is discovering that Notch signaling is also responsive to a broad variety of stimuli beyond cell-cell interactions, including: ECM composition, crosstalk with other signaling systems, shear stress, hypoxia, and hyperglycemia. Given this emerging understanding of Notch responsiveness to microenvironmental conditions, it appears that the classical view of Notch as a mechanism enabling cell-cell interactions, is only a part of a broader function to integrate microenvironmental cues. In this review, we summarize and discuss published data supporting the idea that the full function of Notch signaling is to serve as an integrator of microenvironmental signals thus allowing cells to sense and respond to a multitude of conditions around them.
Collapse
Affiliation(s)
- Bryce LaFoya
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA
| | - Jordan A Munroe
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Masum M Mia
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Michael A Detweiler
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Jacob J Crow
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA
| | - Travis Wood
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Steven Roth
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Bikram Sharma
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Allan R Albig
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
183
|
Baeyens N, Larrivée B, Ola R, Hayward-Piatkowskyi B, Dubrac A, Huang B, Ross TD, Coon BG, Min E, Tsarfati M, Tong H, Eichmann A, Schwartz MA. Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. J Cell Biol 2016; 214:807-16. [PMID: 27646277 PMCID: PMC5037412 DOI: 10.1083/jcb.201603106] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/30/2016] [Indexed: 11/27/2022] Open
Abstract
Morphogenesis of the vascular system is strongly modulated by mechanical forces from blood flow. Hereditary hemorrhagic telangiectasia (HHT) is an inherited autosomal-dominant disease in which arteriovenous malformations and telangiectasias accumulate with age. Most cases are linked to heterozygous mutations in Alk1 or Endoglin, receptors for bone morphogenetic proteins (BMPs) 9 and 10. Evidence suggests that a second hit results in clonal expansion of endothelial cells to form lesions with poor mural cell coverage that spontaneously rupture and bleed. We now report that fluid shear stress potentiates BMPs to activate Alk1 signaling, which correlates with enhanced association of Alk1 and endoglin. Alk1 is required for BMP9 and flow responses, whereas endoglin is only required for enhancement by flow. This pathway mediates both inhibition of endothelial proliferation and recruitment of mural cells; thus, its loss blocks flow-induced vascular stabilization. Identification of Alk1 signaling as a convergence point for flow and soluble ligands provides a molecular mechanism for development of HHT lesions.
Collapse
Affiliation(s)
- Nicolas Baeyens
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Bruno Larrivée
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511 Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Roxana Ola
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Brielle Hayward-Piatkowskyi
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Alexandre Dubrac
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Billy Huang
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Tyler D Ross
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Brian G Coon
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Elizabeth Min
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Maya Tsarfati
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Haibin Tong
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511 Jilin Provincial Key Laboratory of Molecular Geriatric Medicine, Life Science Research Center, Beihua University, Jilin 132013, China
| | - Anne Eichmann
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Institut National de la Santé et de la Recherche Médicale U970, Paris Center for Cardiovascular Research, 75015 Paris, France
| | - Martin A Schwartz
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Department of Cell Biology, Yale University, New Haven, CT 06510 Department of Biomedical Engineering, Yale University, New Haven, CT 06510
| |
Collapse
|
184
|
Ntumba K, Akla N, Oh SP, Eichmann A, Larrivée B. BMP9/ALK1 inhibits neovascularization in mouse models of age-related macular degeneration. Oncotarget 2016; 7:55957-55969. [PMID: 27517154 PMCID: PMC5302889 DOI: 10.18632/oncotarget.11182] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/13/2016] [Indexed: 12/15/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in aging populations of industrialized countries. The drawbacks of inhibitors of vascular endothelial growth factor (VEGFs) currently used for the treatment of AMD, which include resistance and potential serious side-effects, require the identification of new therapeutic targets to modulate angiogenesis. BMP9 signaling through the endothelial Alk1 serine-threonine kinase receptor modulates the response of endothelial cells to VEGF and promotes vessel quiescence and maturation during development. Here, we show that BMP9/Alk1 signaling inhibits neovessel formation in mouse models of pathological ocular angiogenesis relevant to AMD. Activating Alk1 signaling in laser-induced choroidal neovascularization (CNV) and oxygen-induced retinopathy (OIR) inhibited neovascularization and reduced the volume of vascular lesions. Alk1 signaling was also found to interfere with VEGF signaling in endothelial cells whereas BMP9 potentiated the inhibitory effects of VEGFR2 signaling blockade, both in OIR and laser-induced CNV. Together, our data show that targeting BMP9/Alk1 efficiently prevents the growth of neovessels in AMD models and introduce a new approach to improve conventional anti-VEGF therapies.
Collapse
Affiliation(s)
- Kalonji Ntumba
- Department of Biomedical Sciences, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Naoufal Akla
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - S. Paul Oh
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Anne Eichmann
- Yale Cardiovascular Research Center, New Haven, CT, USA
- Inserm U970, Paris Cardiovascular Research Center, Paris, France
| | - Bruno Larrivée
- Department of Biomedical Sciences, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Molecular Biology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
- Department of Biological Sciences, Université du Québec à Montréal, Montréal, Quebec, Canada
| |
Collapse
|
185
|
Arthur H, Geisthoff U, Gossage JR, Hughes CCW, Lacombe P, Meek ME, Oh P, Roman BL, Trerotola SO, Velthuis S, Wooderchak-Donahue W. Executive summary of the 11th HHT international scientific conference. Angiogenesis 2016; 18:511-24. [PMID: 26391603 DOI: 10.1007/s10456-015-9482-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a hereditary condition that results in vascular malformations throughout the body, which have a proclivity to rupture and bleed. HHT has a worldwide incidence of about 1:5000 and approximately 80 % of cases are due to mutations in ENG, ALK1 (aka activin receptor-like kinase 1 or ACVRL1) and SMAD4. Over 200 international clinicians and scientists met at Captiva Island, Florida from June 11-June 14, 2015 to present and discuss the latest research on HHT. 156 abstracts were accepted to the meeting and 60 were selected for oral presentations. The first two sections of this article present summaries of the basic science and clinical talks. Here we have summarized talks covering key themes, focusing on areas of agreement, disagreement, and unanswered questions. The final four sections summarize discussions in the Workshops, which were theme-based topical discussions led by two moderators. We hope this overview will educate as well as inspire those within the field and from outside, who have an interest in the science and treatment of HHT.
Collapse
MESH Headings
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Congresses as Topic
- Endoglin
- Humans
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Smad4 Protein/genetics
- Smad4 Protein/metabolism
- Telangiectasia, Hereditary Hemorrhagic/genetics
- Telangiectasia, Hereditary Hemorrhagic/metabolism
- Telangiectasia, Hereditary Hemorrhagic/pathology
- Telangiectasia, Hereditary Hemorrhagic/therapy
Collapse
Affiliation(s)
- Helen Arthur
- Institute of Genetic Medicine, Centre for Life, Newcastle University, Newcastle upon Tyne, UK
| | - Urban Geisthoff
- Department of Otorhinolaryngology, Essen University Hospital, Essen, Germany
| | - James R Gossage
- Department of Medicine, Georgia Regents University, Augusta, GA, USA.
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Pascal Lacombe
- Department of Diagnostic and Interventional Radiology, Hôpital Ambroise Paré, Université de Versailles, Assistance Publique-Hôpitaux de Paris, Boulogne-Billancourt, France
| | - Mary E Meek
- Department of Interventional Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul Oh
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Beth L Roman
- Department of Human Genetics and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott O Trerotola
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sebastiaan Velthuis
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Whitney Wooderchak-Donahue
- ARUP Institute for Clinical and Experimental Pathology, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
186
|
Abstract
Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are uniquely required to balance the formation of new blood vessels with the maintenance and remodelling of existing ones, during development and in adult tissues. Recent advances have greatly expanded our understanding of the tight and multi-level regulation of VEGFR2 signalling, which is the primary focus of this Review. Important insights have been gained into the regulatory roles of VEGFR-interacting proteins (such as neuropilins, proteoglycans, integrins and protein tyrosine phosphatases); the dynamics of VEGFR2 endocytosis, trafficking and signalling; and the crosstalk between VEGF-induced signalling and other endothelial signalling cascades. A clear understanding of this multifaceted signalling web is key to successful therapeutic suppression or stimulation of vascular growth.
Collapse
|
187
|
Gordon EJ, Fukuhara D, Weström S, Padhan N, Sjöström EO, van Meeteren L, He L, Orsenigo F, Dejana E, Bentley K, Spurkland A, Claesson-Welsh L. The endothelial adaptor molecule TSAd is required for VEGF-induced angiogenic sprouting through junctional c-Src activation. Sci Signal 2016; 9:ra72. [PMID: 27436360 DOI: 10.1126/scisignal.aad9256] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) by VEGF binding is critical for vascular morphogenesis. In addition, VEGF disrupts the endothelial barrier by triggering the phosphorylation and turnover of the junctional molecule VE-cadherin, a process mediated by the VEGFR2 downstream effectors T cell-specific adaptor (TSAd) and the tyrosine kinase c-Src. We investigated whether the VEGFR2-TSAd-c-Src pathway was required for angiogenic sprouting. Indeed, Tsad-deficient embryoid bodies failed to sprout in response to VEGF. Tsad-deficient mice displayed impaired angiogenesis specifically during tracheal vessel development, but not during retinal vasculogenesis, and in VEGF-loaded Matrigel plugs, but not in those loaded with FGF. The SH2 and proline-rich domains of TSAd bridged VEGFR2 and c-Src, and this bridging was critical for the localization of activated c-Src to endothelial junctions and elongation of the growing sprout, but not for selection of the tip cell. These results revealed that vascular sprouting and permeability are both controlled through the VEGFR2-TSAd-c-Src signaling pathway in a subset of tissues, which may be useful in developing strategies to control tissue-specific pathological angiogenesis.
Collapse
Affiliation(s)
- Emma J Gordon
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden.
| | - Daisuke Fukuhara
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden
| | - Simone Weström
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden
| | - Narendra Padhan
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden
| | - Elisabet O Sjöström
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden
| | - Laurens van Meeteren
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden
| | - Fabrizio Orsenigo
- FIRC Institute of Molecular Oncology Foundation, IFOM, Milan 20139, Italy
| | - Elisabetta Dejana
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden. FIRC Institute of Molecular Oncology Foundation, IFOM, Milan 20139, Italy
| | - Katie Bentley
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden. Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Anne Spurkland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo 0317, Norway
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv 20, Uppsala 75185, Sweden.
| |
Collapse
|
188
|
A Survey of Strategies to Modulate the Bone Morphogenetic Protein Signaling Pathway: Current and Future Perspectives. Stem Cells Int 2016; 2016:7290686. [PMID: 27433166 PMCID: PMC4940573 DOI: 10.1155/2016/7290686] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/24/2016] [Indexed: 12/14/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the TGF-β family of ligands and are unequivocally involved in regulating stem cell behavior. Appropriate regulation of canonical BMP signaling is critical for the development and homeostasis of numerous human organ systems, as aberrations in the BMP pathway or its regulation are increasingly associated with diverse human pathologies. In this review, we provide a wide-perspective on strategies that increase or decrease BMP signaling. We briefly outline the current FDA-approved approaches, highlight emerging next-generation technologies, and postulate prospective avenues for future investigation. We also detail how activating other pathways may indirectly modulate BMP signaling, with a particular emphasis on the relationship between the BMP and Activin/TGF-β pathways.
Collapse
|
189
|
Pardanaud L, Pibouin-Fragner L, Dubrac A, Mathivet T, English I, Brunet I, Simons M, Eichmann A. Sympathetic Innervation Promotes Arterial Fate by Enhancing Endothelial ERK Activity. Circ Res 2016; 119:607-20. [PMID: 27354211 DOI: 10.1161/circresaha.116.308473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/24/2016] [Indexed: 12/31/2022]
Abstract
RATIONALE Arterial endothelial cells are morphologically, functionally, and molecularly distinct from those found in veins and lymphatic vessels. How arterial fate is acquired during development and maintained in adult vessels is incompletely understood. OBJECTIVE We set out to identify factors that promote arterial endothelial cell fate in vivo. METHODS AND RESULTS We developed a functional assay, allowing us to monitor and manipulate arterial fate in vivo, using arteries isolated from quails that are grafted into the coelom of chick embryos. Endothelial cells migrate out from the grafted artery, and their colonization of host arteries and veins is quantified. Here we show that sympathetic innervation promotes arterial endothelial cell fate in vivo. Removal of sympathetic nerves decreases arterial fate and leads to colonization of veins, whereas exposure to sympathetic nerves or norepinephrine imposes arterial fate. Mechanistically, sympathetic nerves increase endothelial ERK (extracellular signal-regulated kinase) activity via adrenergic α1 and α2 receptors. CONCLUSIONS These findings show that sympathetic innervation promotes arterial endothelial fate and may lead to novel approaches to improve arterialization in human disease.
Collapse
Affiliation(s)
- Luc Pardanaud
- From the INSERM U970, Paris Center for Cardiovascular Research (PARCC), Paris, France (L.P., L.P.-F., T.M., A.E.); Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., M.S., A.E.); and INSERM U1050, Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), Paris, France (I.E., I.B.).
| | - Laurence Pibouin-Fragner
- From the INSERM U970, Paris Center for Cardiovascular Research (PARCC), Paris, France (L.P., L.P.-F., T.M., A.E.); Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., M.S., A.E.); and INSERM U1050, Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), Paris, France (I.E., I.B.)
| | - Alexandre Dubrac
- From the INSERM U970, Paris Center for Cardiovascular Research (PARCC), Paris, France (L.P., L.P.-F., T.M., A.E.); Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., M.S., A.E.); and INSERM U1050, Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), Paris, France (I.E., I.B.)
| | - Thomas Mathivet
- From the INSERM U970, Paris Center for Cardiovascular Research (PARCC), Paris, France (L.P., L.P.-F., T.M., A.E.); Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., M.S., A.E.); and INSERM U1050, Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), Paris, France (I.E., I.B.)
| | - Isabel English
- From the INSERM U970, Paris Center for Cardiovascular Research (PARCC), Paris, France (L.P., L.P.-F., T.M., A.E.); Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., M.S., A.E.); and INSERM U1050, Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), Paris, France (I.E., I.B.)
| | - Isabelle Brunet
- From the INSERM U970, Paris Center for Cardiovascular Research (PARCC), Paris, France (L.P., L.P.-F., T.M., A.E.); Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., M.S., A.E.); and INSERM U1050, Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), Paris, France (I.E., I.B.)
| | - Michael Simons
- From the INSERM U970, Paris Center for Cardiovascular Research (PARCC), Paris, France (L.P., L.P.-F., T.M., A.E.); Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., M.S., A.E.); and INSERM U1050, Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), Paris, France (I.E., I.B.)
| | - Anne Eichmann
- From the INSERM U970, Paris Center for Cardiovascular Research (PARCC), Paris, France (L.P., L.P.-F., T.M., A.E.); Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., M.S., A.E.); and INSERM U1050, Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), Paris, France (I.E., I.B.).
| |
Collapse
|
190
|
Fleetwood F, Güler R, Gordon E, Ståhl S, Claesson-Welsh L, Löfblom J. Novel affinity binders for neutralization of vascular endothelial growth factor (VEGF) signaling. Cell Mol Life Sci 2016; 73:1671-83. [PMID: 26552422 PMCID: PMC11108507 DOI: 10.1007/s00018-015-2088-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/19/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023]
Abstract
Angiogenesis denotes the formation of new blood vessels from pre-existing vasculature. Progression of diseases such as cancer and several ophthalmological disorders may be promoted by excess angiogenesis. Novel therapeutics to inhibit angiogenesis and diagnostic tools for monitoring angiogenesis during therapy, hold great potential for improving treatment of such diseases. We have previously generated so-called biparatopic Affibody constructs with high affinity for the vascular endothelial growth factor receptor-2 (VEGFR2), which recognize two non-overlapping epitopes in the ligand-binding site on the receptor. Affibody molecules have previously been demonstrated suitable for imaging purposes. Their small size also makes them attractive for applications where an alternative route of administration is beneficial, such as topical delivery using eye drops. In this study, we show that decreasing linker length between the two Affibody domains resulted in even slower dissociation from the receptor. The new variants of the biparatopic Affibody bound to VEGFR2-expressing cells, blocked VEGFA binding, and inhibited VEGFA-induced signaling of VEGFR2 over expressing cells. Moreover, the biparatopic Affibody inhibited sprout formation of endothelial cells in an in vitro angiogenesis assay with similar potency as the bivalent monoclonal antibody ramucirumab. This study demonstrates that the biparatopic Affibody constructs show promise for future therapeutic as well as in vivo imaging applications.
Collapse
Affiliation(s)
- Filippa Fleetwood
- Division of Protein Technology, School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden
| | - Rezan Güler
- Division of Protein Technology, School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden
| | - Emma Gordon
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv. 20, Uppsala, Sweden
| | - Stefan Ståhl
- Division of Protein Technology, School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjöldsv. 20, Uppsala, Sweden
| | - John Löfblom
- Division of Protein Technology, School of Biotechnology, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden.
| |
Collapse
|
191
|
Gkatzis K, Thalgott J, Dos-Santos-Luis D, Martin S, Lamandé N, Carette MF, Disch F, Snijder RJ, Westermann CJ, Mager JJ, Oh SP, Miquerol L, Arthur HM, Mummery CL, Lebrin F. Interaction Between ALK1 Signaling and Connexin40 in the Development of Arteriovenous Malformations. Arterioscler Thromb Vasc Biol 2016; 36:707-17. [PMID: 26821948 DOI: 10.1161/atvbaha.115.306719] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/20/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To determine the role of Gja5 that encodes for the gap junction protein connexin40 in the generation of arteriovenous malformations in the hereditary hemorrhagic telangiectasia type 2 (HHT2) mouse model. APPROACH AND RESULTS We identified GJA5 as a target gene of the bone morphogenetic protein-9/activin receptor-like kinase 1 signaling pathway in human aortic endothelial cells and importantly found that connexin40 levels were particularly low in a small group of patients with HHT2. We next took advantage of the Acvrl1(+/-) mutant mice that develop lesions similar to those in patients with HHT2 and generated Acvrl1(+/-); Gja5(EGFP/+) mice. Gja5 haploinsufficiency led to vasodilation of the arteries and rarefaction of the capillary bed in Acvrl1(+/-) mice. At the molecular level, we found that reduced Gja5 in Acvrl1(+/-) mice stimulated the production of reactive oxygen species, an important mediator of vessel remodeling. To normalize the altered hemodynamic forces in Acvrl1(+/-); Gja5(EGFP/+) mice, capillaries formed transient arteriovenous shunts that could develop into large malformations when exposed to environmental insults. CONCLUSIONS We identified GJA5 as a potential modifier gene for HHT2. Our findings demonstrate that Acvrl1 haploinsufficiency combined with the effects of modifier genes that regulate vessel caliber is responsible for the heterogeneity and severity of the disease. The mouse models of HHT have led to the proposal that 3 events-heterozygosity, loss of heterozygosity, and angiogenic stimulation-are necessary for arteriovenous malformation formation. Here, we present a novel 3-step model in which pathological vessel caliber and consequent altered blood flow are necessary events for arteriovenous malformation development.
Collapse
MESH Headings
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Animals
- Arteriovenous Malformations/enzymology
- Arteriovenous Malformations/genetics
- Arteriovenous Malformations/pathology
- Cells, Cultured
- Connexins/genetics
- Connexins/metabolism
- Disease Models, Animal
- Endothelial Cells/enzymology
- Genetic Predisposition to Disease
- Haploinsufficiency
- Humans
- Mice, Mutant Strains
- Mice, Transgenic
- Neovascularization, Pathologic
- Phenotype
- RNA Interference
- Reactive Oxygen Species/metabolism
- Retinal Vessels/enzymology
- Retinal Vessels/pathology
- Signal Transduction
- Telangiectasia, Hereditary Hemorrhagic/enzymology
- Telangiectasia, Hereditary Hemorrhagic/genetics
- Telangiectasia, Hereditary Hemorrhagic/pathology
- Transfection
- Vascular Remodeling
- Gap Junction alpha-5 Protein
Collapse
Affiliation(s)
- Konstantinos Gkatzis
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Jérémy Thalgott
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Damien Dos-Santos-Luis
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Sabrina Martin
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Noël Lamandé
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Marie France Carette
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Frans Disch
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Repke J Snijder
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Cornelius J Westermann
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Johannes J Mager
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - S Paul Oh
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Lucile Miquerol
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Helen M Arthur
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Christine L Mummery
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Franck Lebrin
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.).
| |
Collapse
|
192
|
Kar S, Baisantry A, Nabavi A, Bertalanffy H. Role of Delta-Notch signaling in cerebral cavernous malformations. Neurosurg Rev 2016; 39:581-9. [DOI: 10.1007/s10143-015-0699-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/03/2015] [Accepted: 12/23/2015] [Indexed: 11/28/2022]
|
193
|
Vattulainen-Collanus S, Akinrinade O, Li M, Koskenvuo M, Li CG, Rao SP, de Jesus Perez V, Yuan K, Sawada H, Koskenvuo JW, Alvira C, Rabinovitch M, Alastalo TP. Loss of PPARγ in endothelial cells leads to impaired angiogenesis. J Cell Sci 2016; 129:693-705. [PMID: 26743080 DOI: 10.1242/jcs.169011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 12/30/2015] [Indexed: 12/21/2022] Open
Abstract
Tie2-promoter-mediated loss of peroxisome proliferator-activated receptor gamma (PPARγ, also known as PPARG) in mice leads to osteopetrosis and pulmonary arterial hypertension. Vascular disease is associated with loss of PPARγ in pulmonary microvascular endothelial cells (PMVEC); we evaluated the role of PPARγ in PMVEC functions, such as angiogenesis and migration. The role of PPARγ in angiogenesis was evaluated in Tie2CrePPARγ(flox/flox) and wild-type mice, and in mouse and human PMVECs. RNA sequencing and bioinformatic approaches were utilized to reveal angiogenesis-associated targets for PPARγ. Tie2CrePPARγ(flox/flox) mice showed an impaired angiogenic capacity. Analysis of endothelial progenitor-like cells using bone marrow transplantation combined with evaluation of isolated PMVECs revealed that loss of PPARγ attenuates the migration and angiogenic capacity of mature PMVECs. PPARγ-deficient human PMVECs showed a similar migration defect in culture. Bioinformatic and experimental analyses newly revealed E2F1 as a target of PPARγ in the regulation of PMVEC migration. Disruption of the PPARγ-E2F1 axis was associated with a dysregulated Wnt pathway related to the GSK3B interacting protein (GSKIP). In conclusion, PPARγ plays an important role in sustaining angiogenic potential in mature PMVECs through E2F1-mediated gene regulation.
Collapse
Affiliation(s)
- Sanna Vattulainen-Collanus
- Children's Hospital Helsinki, Pediatric Cardiology, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Oyediran Akinrinade
- Children's Hospital Helsinki, Pediatric Cardiology, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland Institute of Biomedicine, University of Helsinki, Helsinki 00290, Finland
| | - Molong Li
- The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland
| | - Minna Koskenvuo
- Children's Hospital Helsinki, Division of Hematology-Oncology and Stem Cell Transplantation, University of Helsinki and Helsinki University Central Hospital, 00290 Helsinki, Finland
| | - Caiyun Grace Li
- Department of Pediatrics, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute Stanford University, Stanford, CA 94305, USA
| | - Shailaja P Rao
- Department of Pediatrics, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute Stanford University, Stanford, CA 94305, USA
| | - Vinicio de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
| | - Hirofumi Sawada
- Department of Pediatrics, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute Stanford University, Stanford, CA 94305, USA Department of Pediatrics, Mie University Graduate School of Medicine, Mie 5148507, Japan
| | - Juha W Koskenvuo
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland Department of Clinical Physiology and Nuclear Medicine, HUS Medical Imaging Center, Helsinki University Central Hospital and University of Helsinki, 00290 Helsinki, Finland
| | - Cristina Alvira
- Department of Pediatrics, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute Stanford University, Stanford, CA 94305, USA
| | - Marlene Rabinovitch
- Department of Pediatrics, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute Stanford University, Stanford, CA 94305, USA
| | - Tero-Pekka Alastalo
- Children's Hospital Helsinki, Pediatric Cardiology, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| |
Collapse
|
194
|
Novakova V, Sandhu GS, Dragomir-Daescu D, Klabusay M. Apelinergic system in endothelial cells and its role in angiogenesis in myocardial ischemia. Vascul Pharmacol 2016; 76:1-10. [DOI: 10.1016/j.vph.2015.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022]
|
195
|
Zhang R, Zhu W, Su H. Vascular Integrity in the Pathogenesis of Brain Arteriovenous Malformation. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:29-35. [PMID: 26463919 DOI: 10.1007/978-3-319-18497-5_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brain arteriovenous malformation (bAVM) is an important cause of intracranial hemorrhage (ICH), particularly in the young population. ICH is the first clinical symptom in about 50 % of bAVM patients. The vessels in bAVM are fragile and prone to rupture, causing bleeding into the brain. About 30 % of unruptured and non-hemorrhagic bAVMs demonstrate microscopic evidence of hemosiderin in the vascular wall. In bAVM mouse models, vascular mural cell coverage is reduced in the AVM lesion, accompanied by vascular leakage and microhemorrhage. In this review, we discuss possible signaling pathways involved in abnormal vascular development in bAVM.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, 1001 Potrero Avenue, 1363, San Francisco, CA, 94110, USA
| | - Wan Zhu
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, 1001 Potrero Avenue, 1363, San Francisco, CA, 94110, USA
| | - Hua Su
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, 1001 Potrero Avenue, 1363, San Francisco, CA, 94110, USA.
| |
Collapse
|
196
|
García de Vinuesa A, Abdelilah-Seyfried S, Knaus P, Zwijsen A, Bailly S. BMP signaling in vascular biology and dysfunction. Cytokine Growth Factor Rev 2015; 27:65-79. [PMID: 26823333 DOI: 10.1016/j.cytogfr.2015.12.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vascular system is critical for developmental growth, tissue homeostasis and repair but also for tumor development. Bone morphogenetic protein (BMP) signaling has recently emerged as a fundamental pathway of the endothelium by regulating cardiovascular and lymphatic development and by being causative for several vascular dysfunctions. Two vascular disorders have been directly linked to impaired BMP signaling: pulmonary arterial hypertension and hereditary hemorrhagic telangiectasia. Endothelial BMP signaling critically depends on the cellular context, which includes among others vascular heterogeneity, exposure to flow, and the intertwining with other signaling cascades (Notch, WNT, Hippo and hypoxia). The purpose of this review is to highlight the most recent findings illustrating the clear need for reconsidering the role of BMPs in vascular biology.
Collapse
Affiliation(s)
- Amaya García de Vinuesa
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany; Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Straße 1, D-30625 Hannover, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universitaet Berlin, Berlin, Germany
| | - An Zwijsen
- VIB Center for the Biology of Disease, Leuven, Belgium; KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Sabine Bailly
- Institut National de la Santé et de la Recherche Médicale (INSERM, U1036), Grenoble F-38000, France; Commissariat à l'Énergie Atomique et aux Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire Biologie du Cancer et de l'Infection, Grenoble F-38000, France; Université Grenoble-Alpes, Grenoble F-38000, France.
| |
Collapse
|
197
|
Ulrich F, Carretero-Ortega J, Menéndez J, Narvaez C, Sun B, Lancaster E, Pershad V, Trzaska S, Véliz E, Kamei M, Prendergast A, Kidd KR, Shaw KM, Castranova DA, Pham VN, Lo BD, Martin BL, Raible DW, Weinstein BM, Torres-Vázquez J. Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development 2015; 143:147-59. [PMID: 26657775 DOI: 10.1242/dev.123059] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 11/25/2015] [Indexed: 01/03/2023]
Abstract
The cerebral vasculature provides the massive blood supply that the brain needs to grow and survive. By acquiring distinctive cellular and molecular characteristics it becomes the blood-brain barrier (BBB), a selectively permeable and protective interface between the brain and the peripheral circulation that maintains the extracellular milieu permissive for neuronal activity. Accordingly, there is great interest in uncovering the mechanisms that modulate the formation and differentiation of the brain vasculature. By performing a forward genetic screen in zebrafish we isolated no food for thought (nft (y72)), a recessive late-lethal mutant that lacks most of the intracerebral central arteries (CtAs), but not other brain blood vessels. We found that the cerebral vascularization deficit of nft (y72) mutants is caused by an inactivating lesion in reversion-inducing cysteine-rich protein with Kazal motifs [reck; also known as suppressor of tumorigenicity 15 protein (ST15)], which encodes a membrane-anchored tumor suppressor glycoprotein. Our findings highlight Reck as a novel and pivotal modulator of the canonical Wnt signaling pathway that acts in endothelial cells to enable intracerebral vascularization and proper expression of molecular markers associated with BBB formation. Additional studies with cultured endothelial cells suggest that, in other contexts, Reck impacts vascular biology via the vascular endothelial growth factor (VEGF) cascade. Together, our findings have broad implications for both vascular and cancer biology.
Collapse
Affiliation(s)
- Florian Ulrich
- Dept of Cell Biology, Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, 540 First Avenue, New York, NY 10016, USA
| | - Jorge Carretero-Ortega
- Dept of Cell Biology, Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, 540 First Avenue, New York, NY 10016, USA
| | - Javier Menéndez
- Dept of Cell Biology, Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, 540 First Avenue, New York, NY 10016, USA
| | - Carlos Narvaez
- Dept of Cell Biology, Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, 540 First Avenue, New York, NY 10016, USA
| | - Belinda Sun
- Dept of Cell Biology, Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, 540 First Avenue, New York, NY 10016, USA
| | - Eva Lancaster
- Dept of Cell Biology, Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, 540 First Avenue, New York, NY 10016, USA
| | - Valerie Pershad
- Dept of Cell Biology, Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, 540 First Avenue, New York, NY 10016, USA
| | - Sean Trzaska
- Dept of Cell Biology, Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, 540 First Avenue, New York, NY 10016, USA
| | - Evelyn Véliz
- Dept of Cell Biology, Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, 540 First Avenue, New York, NY 10016, USA
| | - Makoto Kamei
- Program in Genomics of Differentiation, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew Prendergast
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Kameha R Kidd
- Program in Genomics of Differentiation, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenna M Shaw
- Program in Genomics of Differentiation, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel A Castranova
- Program in Genomics of Differentiation, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Van N Pham
- Program in Genomics of Differentiation, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brigid D Lo
- Program in Genomics of Differentiation, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - David W Raible
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Brant M Weinstein
- Program in Genomics of Differentiation, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesús Torres-Vázquez
- Dept of Cell Biology, Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
198
|
Dubrac A, Genet G, Ola R, Zhang F, Pibouin-Fragner L, Han J, Zhang J, Thomas JL, Chedotal A, Schwartz MA, Eichmann A. Targeting NCK-Mediated Endothelial Cell Front-Rear Polarity Inhibits Neovascularization. Circulation 2015; 133:409-21. [PMID: 26659946 DOI: 10.1161/circulationaha.115.017537] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Sprouting angiogenesis is a key process driving blood vessel growth in ischemic tissues and an important drug target in a number of diseases, including wet macular degeneration and wound healing. Endothelial cells forming the sprout must develop front-rear polarity to allow sprout extension. The adaptor proteins Nck1 and 2 are known regulators of cytoskeletal dynamics and polarity, but their function in angiogenesis is poorly understood. Here, we show that the Nck adaptors are required for endothelial cell front-rear polarity and migration downstream of the angiogenic growth factors VEGF-A and Slit2. METHODS AND RESULTS Mice carrying inducible, endothelial-specific Nck1/2 deletions fail to develop front-rear polarized vessel sprouts and exhibit severe angiogenesis defects in the postnatal retina and during embryonic development. Inactivation of NCK1 and 2 inhibits polarity by preventing Cdc42 and Pak2 activation by VEGF-A and Slit2. Mechanistically, NCK binding to ROBO1 is required for both Slit2- and VEGF-induced front-rear polarity. Selective inhibition of polarized endothelial cell migration by targeting Nck1/2 prevents hypersprouting induced by Notch or Bmp signaling inhibition, and pathological ocular neovascularization and wound healing, as well. CONCLUSIONS These data reveal a novel signal integration mechanism involving NCK1/2, ROBO1/2, and VEGFR2 that controls endothelial cell front-rear polarity during sprouting angiogenesis.
Collapse
Affiliation(s)
- Alexandre Dubrac
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Gael Genet
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Roxana Ola
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Feng Zhang
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Laurence Pibouin-Fragner
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Jinah Han
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Jiasheng Zhang
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Jean-Léon Thomas
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Alain Chedotal
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Martin A Schwartz
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Anne Eichmann
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.).
| |
Collapse
|
199
|
Peacock HM, Caolo V, Jones EAV. Arteriovenous malformations in hereditary haemorrhagic telangiectasia: looking beyond ALK1-NOTCH interactions. Cardiovasc Res 2015; 109:196-203. [PMID: 26645978 DOI: 10.1093/cvr/cvv264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/29/2015] [Indexed: 12/20/2022] Open
Abstract
Hereditary haemorrhagic telangiectasia (HHT) is characterized by the development of arteriovenous malformations--enlarged shunts allowing arterial flow to bypass capillaries and enter directly into veins. HHT is caused by mutations in ALK1 or Endoglin; however, the majority of arteriovenous malformations are idiopathic and arise spontaneously. Idiopathic arteriovenous malformations differ from those due to loss of ALK1 in terms of both location and disease progression. Furthermore, while arteriovenous malformations in HHT and Alk1 knockout models have decreased NOTCH signalling, some idiopathic arteriovenous malformations have increased NOTCH signalling. The pathogenesis of these lesions also differs, with loss of ALK1 causing expansion of the shunt through proliferation, and NOTCH gain of function inducing initial shunt enlargement by cellular hypertrophy. Hence, we propose that idiopathic arteriovenous malformations are distinct from those of HHT. In this review, we explore the role of ALK1-NOTCH interactions in the development of arteriovenous malformations and examine a possible role of two signalling pathways downstream of ALK1, TMEM100 and IDs, in the development of arteriovenous malformations in HHT. A nuanced understanding of the precise molecular mechanisms underlying idiopathic and HHT-associated arteriovenous malformations will allow for development of targeted treatments for these lesions.
Collapse
Affiliation(s)
- Hanna M Peacock
- Department of Cardiovascular Science, Centre for Molecular and Vascular Biology, KU Leuven, UZ Herestraat 49-Box 911, 3000 Leuven, Belgium
| | - Vincenza Caolo
- Department of Cardiovascular Science, Centre for Molecular and Vascular Biology, KU Leuven, UZ Herestraat 49-Box 911, 3000 Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Science, Centre for Molecular and Vascular Biology, KU Leuven, UZ Herestraat 49-Box 911, 3000 Leuven, Belgium
| |
Collapse
|
200
|
Borggrefe T, Lauth M, Zwijsen A, Huylebroeck D, Oswald F, Giaimo BD. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:303-13. [PMID: 26592459 DOI: 10.1016/j.bbamcr.2015.11.020] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 01/12/2023]
Abstract
Notch signaling is a highly conserved signal transduction pathway that regulates stem cell maintenance and differentiation in several organ systems. Upon activation, the Notch receptor is proteolytically processed, its intracellular domain (NICD) translocates into the nucleus and activates expression of target genes. Output, strength and duration of the signal are tightly regulated by post-translational modifications. Here we review the intracellular post-translational regulation of Notch that fine-tunes the outcome of the Notch response. We also describe how crosstalk with other conserved signaling pathways like the Wnt, Hedgehog, hypoxia and TGFβ/BMP pathways can affect Notch signaling output. This regulation can happen by regulation of ligand, receptor or transcription factor expression, regulation of protein stability of intracellular key components, usage of the same cofactors or coregulation of the same key target genes. Since carcinogenesis is often dependent on at least two of these pathways, a better understanding of their molecular crosstalk is pivotal.
Collapse
Affiliation(s)
| | - Matthias Lauth
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, Germany
| | - An Zwijsen
- VIB Center for the Biology of Disease and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Franz Oswald
- University Medical Center Ulm, Department of Internal Medicine I, Ulm, Germany
| | | |
Collapse
|