151
|
Rey O, Danchin E, Mirouze M, Loot C, Blanchet S. Adaptation to Global Change: A Transposable Element-Epigenetics Perspective. Trends Ecol Evol 2016; 31:514-526. [PMID: 27080578 DOI: 10.1016/j.tree.2016.03.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
Understanding how organisms cope with global change is a major scientific challenge. The molecular pathways underlying rapid adaptive phenotypic responses to global change remain poorly understood. Here, we highlight the relevance of two environment-sensitive molecular elements: transposable elements (TEs) and epigenetic components (ECs). We first outline the sensitivity of these elements to global change stressors and review how they interact with each other. We then propose an integrative molecular engine coupling TEs and ECs and allowing organisms to fine-tune phenotypes in a real-time fashion, adjust the production of phenotypic and genetic variation, and produce heritable phenotypes with different levels of transmission fidelity. We finally discuss the implications of this molecular engine in the context of global change.
Collapse
Affiliation(s)
- Olivier Rey
- CNRS, UPS, Station d'Écologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France; Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK.
| | - Etienne Danchin
- CNRS, UPS, ENFA, Évolution & Diversité Biologique (EDB) UMR 5174, 118 Route de Narbonne, 31062 Toulouse, Cedex 9, France; Université Paul Sabatier, Évolution & Diversité Biologique (EDB), 31062 Toulouse, Cedex 9, France
| | - Marie Mirouze
- Institut de Recherche pour le Développement, UMR232 DIADE Diversité Adaptation et Développement des Plantes, Laboratoire Génome et Développement des Plantes, 58 avenue Paul Alduy, 66860 Perpignan, France
| | - Céline Loot
- Institut Pasteur, Unité de Plasticité du Génome Bactérien, Paris, France; CNRS UMR3525, Paris, France
| | - Simon Blanchet
- CNRS, UPS, Station d'Écologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France; CNRS, UPS, ENFA, Évolution & Diversité Biologique (EDB) UMR 5174, 118 Route de Narbonne, 31062 Toulouse, Cedex 9, France.
| |
Collapse
|
152
|
Caputo A, Lagier J, Azza S, Robert C, Mouelhi D, Fournier P, Raoult D. Microvirga massiliensis sp. nov., the human commensal with the largest genome. Microbiologyopen 2016; 5:307-22. [PMID: 26749561 PMCID: PMC4831475 DOI: 10.1002/mbo3.329] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/12/2015] [Accepted: 11/19/2015] [Indexed: 11/09/2022] Open
Abstract
Microvirga massiliensis sp. nov. strain JC119(T) is a bacteria isolated in Marseille from a stool sample collected in Senegal. The 16S rRNA (JF824802) of M. massiliensis JC119(T) revealed 95% sequence identity with Microvirga lotononidis WSM3557(T) (HM362432). This bacterium is aerobic, gram negative, catalase positive, and oxidase negative. The draft genome of M. massiliensis JC119(T) comprises a 9,207,211-bp-long genome that is the largest bacterial genome of an isolate in humans. The genome exhibits a G+C content of 63.28% and contains 8685 protein-coding genes and 77 RNA genes, including 21 rRNA genes. Here, we describe the features of M. massiliensis JC119(T), together with the genome sequence information and its annotation.
Collapse
Affiliation(s)
- Aurélia Caputo
- Unité de Recherche sur les Maladies Infectieuses et Tropicales ÉmergentesCNRSUMR 7278 – IRD 198Faculté de médecineAix‐Marseille Université27 Boulevard Jean Moulin13385Marseille Cedex 05France
| | - Jean‐Christophe Lagier
- Unité de Recherche sur les Maladies Infectieuses et Tropicales ÉmergentesCNRSUMR 7278 – IRD 198Faculté de médecineAix‐Marseille Université27 Boulevard Jean Moulin13385Marseille Cedex 05France
| | - Saïd Azza
- Unité de Recherche sur les Maladies Infectieuses et Tropicales ÉmergentesCNRSUMR 7278 – IRD 198Faculté de médecineAix‐Marseille Université27 Boulevard Jean Moulin13385Marseille Cedex 05France
| | - Catherine Robert
- Unité de Recherche sur les Maladies Infectieuses et Tropicales ÉmergentesCNRSUMR 7278 – IRD 198Faculté de médecineAix‐Marseille Université27 Boulevard Jean Moulin13385Marseille Cedex 05France
| | - Donia Mouelhi
- Unité de Recherche sur les Maladies Infectieuses et Tropicales ÉmergentesCNRSUMR 7278 – IRD 198Faculté de médecineAix‐Marseille Université27 Boulevard Jean Moulin13385Marseille Cedex 05France
| | - Pierre‐Edouard Fournier
- Unité de Recherche sur les Maladies Infectieuses et Tropicales ÉmergentesCNRSUMR 7278 – IRD 198Faculté de médecineAix‐Marseille Université27 Boulevard Jean Moulin13385Marseille Cedex 05France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales ÉmergentesCNRSUMR 7278 – IRD 198Faculté de médecineAix‐Marseille Université27 Boulevard Jean Moulin13385Marseille Cedex 05France
- Special Infectious Agents UnitKing Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
153
|
Janowitz Koch I, Clark MM, Thompson MJ, Deere-Machemer KA, Wang J, Duarte L, Gnanadesikan GE, McCoy EL, Rubbi L, Stahler DR, Pellegrini M, Ostrander EA, Wayne RK, Sinsheimer JS, vonHoldt BM. The concerted impact of domestication and transposon insertions on methylation patterns between dogs and grey wolves. Mol Ecol 2016; 25:1838-55. [PMID: 27112634 PMCID: PMC4849173 DOI: 10.1111/mec.13480] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 12/21/2022]
Abstract
The process of domestication can exert intense trait-targeted selection on genes and regulatory regions. Specifically, rapid shifts in the structure and sequence of genomic regulatory elements could provide an explanation for the extensive, and sometimes extreme, variation in phenotypic traits observed in domesticated species. Here, we explored methylation differences from >24 000 cytosines distributed across the genomes of the domesticated dog (Canis familiaris) and the grey wolf (Canis lupus). PCA and model-based cluster analyses identified two primary groups, domestic vs. wild canids. A scan for significantly differentially methylated sites (DMSs) revealed species-specific patterns at 68 sites after correcting for cell heterogeneity, with weak yet significant hypermethylation typical of purebred dogs when compared to wolves (59% and 58%, P < 0.05, respectively). Additionally, methylation patterns at eight genes significantly deviated from neutrality, with similar trends of hypermethylation in purebred dogs. The majority (>66%) of differentially methylated regions contained or were associated with repetitive elements, indicative of a genotype-mediated trend. However, DMSs were also often linked to functionally relevant genes (e.g. neurotransmitters). Finally, we utilized known genealogical relationships among Yellowstone wolves to survey transmission stability of methylation marks, from which we found a substantial fraction that demonstrated high heritability (both H(2) and h(2 ) > 0.99). These analyses provide a unique epigenetic insight into the molecular consequences of recent selection and radiation of our most ancient domesticated companion, the dog. These findings suggest selection has acted on methylation patterns, providing a new genomic perspective on phenotypic diversification in domesticated species.
Collapse
Affiliation(s)
- Ilana Janowitz Koch
- Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Michelle M Clark
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael J Thompson
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Jun Wang
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48085, USA
| | - Lionel Duarte
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Eskender L McCoy
- Yale School of Management, Yale University, New Haven, CT, 06511, USA
| | - Liudmilla Rubbi
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Daniel R Stahler
- Yellowstone Center for Resources, National Park Service, Yellowstone National Park, WY, 82190, USA
| | - Matteo Pellegrini
- Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robert K Wayne
- Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Janet S Sinsheimer
- Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics and Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Bridgett M vonHoldt
- Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
154
|
Low Genetic Quality Alters Key Dimensions of the Mutational Spectrum. PLoS Biol 2016; 14:e1002419. [PMID: 27015430 PMCID: PMC4807879 DOI: 10.1371/journal.pbio.1002419] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/25/2016] [Indexed: 12/18/2022] Open
Abstract
Mutations affect individual health, population persistence, adaptation, diversification, and genome evolution. There is evidence that the mutation rate varies among genotypes, but the causes of this variation are poorly understood. Here, we link differences in genetic quality with variation in spontaneous mutation in a Drosophila mutation accumulation experiment. We find that chromosomes maintained in low-quality genetic backgrounds experience a higher rate of indel mutation and a lower rate of gene conversion in a manner consistent with condition-based differences in the mechanisms used to repair DNA double strand breaks. These aspects of the mutational spectrum were also associated with body mass, suggesting that the effect of genetic quality on DNA repair was mediated by overall condition, and providing a mechanistic explanation for the differences in mutational fitness decline among these genotypes. The rate and spectrum of substitutions was unaffected by genetic quality, but we find variation in the probability of substitutions and indels with respect to several aspects of local sequence context, particularly GC content, with implications for models of molecular evolution and genome scans for signs of selection. Our finding that the chances of mutation depend on genetic context and overall condition has important implications for how sequences evolve, the risk of extinction, and human health.
Collapse
|
155
|
Murgarella M, Puiu D, Novoa B, Figueras A, Posada D, Canchaya C. A First Insight into the Genome of the Filter-Feeder Mussel Mytilus galloprovincialis. PLoS One 2016; 11:e0151561. [PMID: 26977809 PMCID: PMC4792442 DOI: 10.1371/journal.pone.0151561] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 03/01/2016] [Indexed: 02/06/2023] Open
Abstract
Mussels belong to the phylum Mollusca, one of the largest and most diverse taxa in the animal kingdom. Despite their importance in aquaculture and in biology in general, genomic resources from mussels are still scarce. To broaden and increase the genomic knowledge in this family, we carried out a whole-genome sequencing study of the cosmopolitan Mediterranean mussel (Mytilus galloprovincialis). We sequenced its genome (32X depth of coverage) on the Illumina platform using three pair-end libraries with different insert sizes. The large number of contigs obtained pointed out a highly complex genome of 1.6 Gb where repeated elements seem to be widespread (~30% of the genome), a feature that is also shared with other marine molluscs. Notwithstanding the limitations of our genome sequencing, we were able to reconstruct two mitochondrial genomes and predict 10,891 putative genes. A comparative analysis with other molluscs revealed a gene enrichment of gene ontology categories related to multixenobiotic resistance, glutamate biosynthetic process, and the maintenance of ciliary structures.
Collapse
Affiliation(s)
- Maria Murgarella
- Department of Biochemistry, Genetics and Immunology and Unidad Asociada CSIC, University of Vigo, Vigo, Spain
| | - Daniela Puiu
- Center for Computational Biology. McKusick-Nathans, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Vigo, Spain
| | - Antonio Figueras
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Vigo, Spain
| | - David Posada
- Department of Biochemistry, Genetics and Immunology and Unidad Asociada CSIC, University of Vigo, Vigo, Spain
| | - Carlos Canchaya
- Department of Biochemistry, Genetics and Immunology and Unidad Asociada CSIC, University of Vigo, Vigo, Spain
- * E-mail:
| |
Collapse
|
156
|
Canapa A, Barucca M, Biscotti MA, Forconi M, Olmo E. Transposons, Genome Size, and Evolutionary Insights in Animals. Cytogenet Genome Res 2016; 147:217-39. [PMID: 26967166 DOI: 10.1159/000444429] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
The relationship between genome size and the percentage of transposons in 161 animal species evidenced that variations in genome size are linked to the amplification or the contraction of transposable elements. The activity of transposable elements could represent a response to environmental stressors. Indeed, although with different trends in protostomes and deuterostomes, comprehensive changes in genome size were recorded in concomitance with particular periods of evolutionary history or adaptations to specific environments. During evolution, genome size and the presence of transposable elements have influenced structural and functional parameters of genomes and cells. Changes of these parameters have had an impact on morphological and functional characteristics of the organism on which natural selection directly acts. Therefore, the current situation represents a balance between insertion and amplification of transposons and the mechanisms responsible for their deletion or for decreasing their activity. Among the latter, methylation and the silencing action of small RNAs likely represent the most frequent mechanisms.
Collapse
Affiliation(s)
- Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Universitx00E0; Politecnica delle Marche, Ancona, Italy
| | | | | | | | | |
Collapse
|
157
|
Sember A, Bohlen J, Šlechtová V, Altmanová M, Symonová R, Ráb P. Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol Biol 2015; 15:251. [PMID: 26573692 PMCID: PMC4647339 DOI: 10.1186/s12862-015-0532-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/04/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Loaches of the family Nemacheilidae are one of the most speciose elements of Palearctic freshwater ichthyofauna and have undergone rapid ecological adaptations and colonizations. Their cytotaxonomy is largely unexplored; with the impact of cytogenetical changes on this evolutionary diversification still unknown. An extensive cytogenetical survey was performed in 19 nemacheilid species using both conventional (Giemsa staining, C- banding, Ag- and Chromomycin A3/DAPI stainings) and molecular (fluorescence in situ hybridization with 5S rDNA, 45S rDNA, and telomeric (TTAGGG)n probes) methods. A phylogenetic tree of the analysed specimens was constructed based on one mitochondrial (cytochrome b) and two nuclear (RAG1, IRBP) genes. RESULTS Seventeen species showed karyotypes composed of 2n = 50 chromosomes but differentiated by fundamental chromosome number (NF = 68-90). Nemachilichthys ruppelli (2n = 38) and Schistura notostigma (2n = 44-48) displayed reduced 2n with an elevated number of large metacentric chromosomes. Only Schistura fasciolata showed morphologically differentiated sex chromosomes with a multiple system of the XY1Y2 type. Chromomycin A3 (CMA3)- fluorescence revealed interspecific heterogeneity in the distribution of GC-rich heterochromatin including its otherwise very rare association with 5S rDNA sites. The 45S rDNA sites were mostly located on a single chromosome pair contrasting markedly with a pattern of two (Barbatula barbatula, Nemacheilus binotatus, N. ruppelli) to 20 sites (Physoschistura sp.) of 5S rDNA. The cytogenetic changes did not follow the phylogenetic relationships between the samples. A high number of 5S rDNA sites was present in species with small effective population sizes. CONCLUSION Despite a prevailing conservatism of 2n, Nemacheilidae exhibited a remarkable cytogenetic variability on microstructural level. We suggest an important role for pericentric inversions, tandem and centric fusions in nemacheilid karyotype differentiation. Short repetitive sequences, genetic drift, founder effect, as well as the involvement of transposable elements in the dispersion of ribosomal DNA sites, might also have played a role in evolutionary processes such as reproductive isolation. These remarkable dynamics of their genomes qualify river loaches as a model for the study of the cytogenetic background of major evolutionary processes such as radiation, endemism and colonization of a wide range of habitats.
Collapse
Affiliation(s)
- Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic.
| | - Jörg Bohlen
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
| | - Vendula Šlechtová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
| | - Marie Altmanová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
- Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44, Prague 2, Czech Republic.
| | - Radka Symonová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
- Research Institute for Limnology, University of Innsbruck, Mondseestraße 9, A-5310, Mondsee, Austria.
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
| |
Collapse
|
158
|
Amselem J, Vigouroux M, Oberhaensli S, Brown JKM, Bindschedler LV, Skamnioti P, Wicker T, Spanu PD, Quesneville H, Sacristán S. Evolution of the EKA family of powdery mildew avirulence-effector genes from the ORF 1 of a LINE retrotransposon. BMC Genomics 2015; 16:917. [PMID: 26556056 PMCID: PMC4641428 DOI: 10.1186/s12864-015-2185-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/03/2015] [Indexed: 12/31/2022] Open
Abstract
Background The Avrk1 and Avra10 avirulence (AVR) genes encode effectors that increase the pathogenicity of the fungus Blumeria graminis f.sp. hordei (Bgh), the powdery mildew pathogen, in susceptible barley plants. In resistant barley, MLK1 and MLA10 resistance proteins recognize the presence of AVRK1 and AVRA10, eliciting the hypersensitive response typical of gene for gene interactions. Avrk1 and Avra10 have more than 1350 homologues in Bgh genome, forming the EKA (Effectors homologous to Avrk1 and Avra10) gene family. Results We tested the hypothesis that the EKA family originated from degenerate copies of Class I LINE retrotransposons by analysing the EKA family in the genome of Bgh isolate DH14 with bioinformatic tools specially developed for the analysis of Transposable Elements (TE) in genomes. The Class I LINE retrotransposon copies homologous to Avrk1 and Avra10 represent 6.5 % of the Bgh annotated genome and, among them, we identified 293 AVR/effector candidate genes. We also experimentally identified peptides that indicated the translation of several predicted proteins from EKA family members, which had higher relative abundance in haustoria than in hyphae. Conclusions Our analyses indicate that Avrk1 and Avra10 have evolved from part of the ORF1 gene of Class I LINE retrotransposons. The co-option of Avra10 and Avrk1 as effectors from truncated copies of retrotransposons explains the huge number of homologues in Bgh genome that could act as dynamic reservoirs from which new effector genes may evolve. These data provide further evidence for recruitment of retrotransposons in the evolution of new biological functions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2185-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joelle Amselem
- INRA, UR1164 URGI Unité de Recherche Génomique-Info, Institut National de la Recherche Agronomique de Versailles-Grignon, Versailles, 78026, France. .,INRA, UR1290 BIOGER, Biologie et gestion des risques en agriculture, Campus AgroParisTech, 78850, Thiverval-Grignon, France.
| | | | - Simone Oberhaensli
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - James K M Brown
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | | | - Pari Skamnioti
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, TK 11855, Athens, Greece.
| | - Thomas Wicker
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Pietro D Spanu
- Department of Life Sciences, Imperial College London, London, UK.
| | - Hadi Quesneville
- INRA, UR1164 URGI Unité de Recherche Génomique-Info, Institut National de la Recherche Agronomique de Versailles-Grignon, Versailles, 78026, France.
| | - Soledad Sacristán
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain.
| |
Collapse
|
159
|
The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature 2015; 524:220-4. [PMID: 26268193 PMCID: PMC4795812 DOI: 10.1038/nature14668] [Citation(s) in RCA: 375] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 06/16/2015] [Indexed: 12/21/2022]
Abstract
Coleoid cephalopods (octopus, squid, and cuttlefish) are active,
resourceful predators with a rich behavioral repertoire1. They have the largest nervous systems
among the invertebrates2 and
present other striking morphological innovations including camera-like eyes,
prehensile arms, a highly derived early embryogenesis, and the most
sophisticated adaptive coloration system among all animals1,3.
To investigate the molecular bases of cephalopod brain and body innovations we
sequenced the genome and multiple transcriptomes of the California two-spot
octopus, Octopus bimaculoides. We found no evidence for
hypothesized whole genome duplications in the octopus lineage4–6. The core developmental and neuronal gene repertoire of the
octopus is broadly similar to that found across invertebrate bilaterians, except
for massive expansions in two gene families formerly thought to be uniquely
enlarged in vertebrates: the protocadherins, which regulate neuronal
development, and the C2H2 superfamily of zinc finger transcription factors.
Extensive mRNA editing generates transcript and protein diversity in genes
involved in neural excitability, as previously described7, as well as in genes participating in a
broad range of other cellular functions. We identified hundreds of
cephalopod-specific genes, many of which showed elevated expression levels in
such specialized structures as the skin, the suckers, and the nervous system.
Finally, we found evidence for large-scale genomic rearrangements that are
closely associated with transposable element expansions. Our analysis suggests
that substantial expansion of a handful of gene families, along with extensive
remodeling of genome linkage and repetitive content, played a critical role in
the evolution of cephalopod morphological innovations, including their large and
complex nervous systems.
Collapse
|
160
|
Mind the gap; seven reasons to close fragmented genome assemblies. Fungal Genet Biol 2015; 90:24-30. [PMID: 26342853 DOI: 10.1016/j.fgb.2015.08.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
Abstract
Like other domains of life, research into the biology of filamentous microbes has greatly benefited from the advent of whole-genome sequencing. Next-generation sequencing (NGS) technologies have revolutionized sequencing, making genomic sciences accessible to many academic laboratories including those that study non-model organisms. Thus, hundreds of fungal genomes have been sequenced and are publically available today, although these initiatives have typically yielded considerably fragmented genome assemblies that often lack large contiguous genomic regions. Many important genomic features are contained in intergenic DNA that is often missing in current genome assemblies, and recent studies underscore the significance of non-coding regions and repetitive elements for the life style, adaptability and evolution of many organisms. The study of particular types of genetic elements, such as telomeres, centromeres, repetitive elements, effectors, and clusters of co-regulated genes, but also of phenomena such as structural rearrangements, genome compartmentalization and epigenetics, greatly benefits from having a contiguous and high-quality, preferably even complete and gapless, genome assembly. Here we discuss a number of important reasons to produce gapless, finished, genome assemblies to help answer important biological questions.
Collapse
|
161
|
|
162
|
Single-Molecule Real-Time Sequencing Combined with Optical Mapping Yields Completely Finished Fungal Genome. mBio 2015; 6:mBio.00936-15. [PMID: 26286689 PMCID: PMC4542186 DOI: 10.1128/mbio.00936-15] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have increased the scalability, speed, and resolution of genomic sequencing and, thus, have revolutionized genomic studies. However, eukaryotic genome sequencing initiatives typically yield considerably fragmented genome assemblies. Here, we assessed various state-of-the-art sequencing and assembly strategies in order to produce a contiguous and complete eukaryotic genome assembly, focusing on the filamentous fungus Verticillium dahliae. Compared with Illumina-based assemblies of the V. dahliae genome, hybrid assemblies that also include PacBio-generated long reads establish superior contiguity. Intriguingly, provided that sufficient sequence depth is reached, assemblies solely based on PacBio reads outperform hybrid assemblies and even result in fully assembled chromosomes. Furthermore, the addition of optical map data allowed us to produce a gapless and complete V. dahliae genome assembly of the expected eight chromosomes from telomere to telomere. Consequently, we can now study genomic regions that were previously not assembled or poorly assembled, including regions that are populated by repetitive sequences, such as transposons, allowing us to fully appreciate an organism’s biological complexity. Our data show that a combination of PacBio-generated long reads and optical mapping can be used to generate complete and gapless assemblies of fungal genomes. Studying whole-genome sequences has become an important aspect of biological research. The advent of next-generation sequencing (NGS) technologies has nowadays brought genomic science within reach of most research laboratories, including those that study nonmodel organisms. However, most genome sequencing initiatives typically yield (highly) fragmented genome assemblies. Nevertheless, considerable relevant information related to genome structure and evolution is likely hidden in those nonassembled regions. Here, we investigated a diverse set of strategies to obtain gapless genome assemblies, using the genome of a typical ascomycete fungus as the template. Eventually, we were able to show that a combination of PacBio-generated long reads and optical mapping yields a gapless telomere-to-telomere genome assembly, allowing in-depth genome analyses to facilitate functional studies into an organism’s biology.
Collapse
|
163
|
Faino L, Seidl MF, Datema E, van den Berg GCM, Janssen A, Wittenberg AHJ, Thomma BPHJ. Single-Molecule Real-Time Sequencing Combined with Optical Mapping Yields Completely Finished Fungal Genome. mBio 2015. [PMID: 26286689 DOI: 10.1128/mbio.00936-915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
UNLABELLED Next-generation sequencing (NGS) technologies have increased the scalability, speed, and resolution of genomic sequencing and, thus, have revolutionized genomic studies. However, eukaryotic genome sequencing initiatives typically yield considerably fragmented genome assemblies. Here, we assessed various state-of-the-art sequencing and assembly strategies in order to produce a contiguous and complete eukaryotic genome assembly, focusing on the filamentous fungus Verticillium dahliae. Compared with Illumina-based assemblies of the V. dahliae genome, hybrid assemblies that also include PacBio-generated long reads establish superior contiguity. Intriguingly, provided that sufficient sequence depth is reached, assemblies solely based on PacBio reads outperform hybrid assemblies and even result in fully assembled chromosomes. Furthermore, the addition of optical map data allowed us to produce a gapless and complete V. dahliae genome assembly of the expected eight chromosomes from telomere to telomere. Consequently, we can now study genomic regions that were previously not assembled or poorly assembled, including regions that are populated by repetitive sequences, such as transposons, allowing us to fully appreciate an organism's biological complexity. Our data show that a combination of PacBio-generated long reads and optical mapping can be used to generate complete and gapless assemblies of fungal genomes. IMPORTANCE Studying whole-genome sequences has become an important aspect of biological research. The advent of next-generation sequencing (NGS) technologies has nowadays brought genomic science within reach of most research laboratories, including those that study nonmodel organisms. However, most genome sequencing initiatives typically yield (highly) fragmented genome assemblies. Nevertheless, considerable relevant information related to genome structure and evolution is likely hidden in those nonassembled regions. Here, we investigated a diverse set of strategies to obtain gapless genome assemblies, using the genome of a typical ascomycete fungus as the template. Eventually, we were able to show that a combination of PacBio-generated long reads and optical mapping yields a gapless telomere-to-telomere genome assembly, allowing in-depth genome analyses to facilitate functional studies into an organism's biology.
Collapse
Affiliation(s)
- Luigi Faino
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
164
|
Morales ME, Servant G, Ade C, Roy-Enge AM. Altering Genomic Integrity: Heavy Metal Exposure Promotes Transposable Element-Mediated Damage. Biol Trace Elem Res 2015; 166:24-33. [PMID: 25774044 PMCID: PMC4696754 DOI: 10.1007/s12011-015-0298-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/03/2015] [Indexed: 12/13/2022]
Abstract
Maintenance of genomic integrity is critical for cellular homeostasis and survival. The active transposable elements (TEs) composed primarily of three mobile element lineages LINE-1, Alu, and SVA comprise approximately 30% of the mass of the human genome. For the past 2 decades, studies have shown that TEs significantly contribute to genetic instability and that TE-caused damages are associated with genetic diseases and cancer. Different environmental exposures, including several heavy metals, influence how TEs interact with its host genome increasing their negative impact. This mini-review provides some basic knowledge on TEs, their contribution to disease, and an overview of the current knowledge on how heavy metals influence TE-mediated damage.
Collapse
Affiliation(s)
- Maria E. Morales
- Department of Epidemiology and Tulane Cancer Center, SL-66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Geraldine Servant
- Department of Epidemiology and Tulane Cancer Center, SL-66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Catherine Ade
- Department of Cellular and Molecular Biology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Astrid M. Roy-Enge
- Department of Epidemiology and Tulane Cancer Center, SL-66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
- Corresponding author: Astrid M. Roy-Engel, Ph.D., Department of Epidemiology, Tulane Cancer Center, SL66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112. , Phone: (504) 988-6316, Fax: (504) 988-5516
| |
Collapse
|
165
|
Miousse IR, Chalbot MCG, Lumen A, Ferguson A, Kavouras IG, Koturbash I. Response of transposable elements to environmental stressors. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2015; 765:19-39. [PMID: 26281766 PMCID: PMC4544780 DOI: 10.1016/j.mrrev.2015.05.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/21/2022]
Abstract
Transposable elements (TEs) comprise a group of repetitive sequences that bring positive, negative, as well as neutral effects to the host organism. Earlier considered as "junk DNA," TEs are now well-accepted driving forces of evolution and critical regulators of the expression of genetic information. Their activity is regulated by epigenetic mechanisms, including methylation of DNA and histone modifications. The loss of epigenetic control over TEs, exhibited as loss of DNA methylation and decondensation of the chromatin structure, may result in TEs reactivation, initiation of their insertional mutagenesis (retrotransposition) and has been reported in numerous human diseases, including cancer. Accumulating evidence suggests that these alterations are not the simple consequences of the disease, but often may drive the pathogenesis, as they can be detected early during disease development. Knowledge derived from the in vitro, in vivo, and epidemiological studies, clearly demonstrates that exposure to ubiquitous environmental stressors, many of which are carcinogens or suspected carcinogens, are capable of causing alterations in methylation and expression of TEs and initiate retrotransposition events. Evidence summarized in this review suggests that TEs are the sensitive endpoints for detection of effects caused by such environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals. Furthermore, the significance of these effects is characterized by their early appearance, persistence and presence in both, target organs and peripheral blood. Altogether, these findings suggest that TEs may potentially be introduced into safety and risk assessment and serve as biomarkers of exposure to environmental stressors. Furthermore, TEs also show significant potential to become invaluable surrogate biomarkers in clinic and possible targets for therapeutic modalities for disease treatment and prevention.
Collapse
Affiliation(s)
- Isabelle R Miousse
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Marie-Cecile G Chalbot
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Annie Lumen
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Alesia Ferguson
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Ilias G Kavouras
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Igor Koturbash
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
166
|
Trevisan S, Manoli A, Ravazzolo L, Botton A, Pivato M, Masi A, Quaggiotti S. Nitrate sensing by the maize root apex transition zone: a merged transcriptomic and proteomic survey. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3699-715. [PMID: 25911739 PMCID: PMC4473975 DOI: 10.1093/jxb/erv165] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nitrate is an essential nutrient for plants, and crops depend on its availability for growth and development, but its presence in agricultural soils is far from stable. In order to overcome nitrate fluctuations in soil, plants have developed adaptive mechanisms allowing them to grow despite changes in external nitrate availability. Nitrate can act as both nutrient and signal, regulating global gene expression in plants, and the root tip has been proposed as the sensory organ. A set of genome-wide studies has demonstrated several nitrate-regulated genes in the roots of many plants, although only a few studies have been carried out on distinct root zones. To unravel new details of the transcriptomic and proteomic responses to nitrate availability in a major food crop, a double untargeted approach was conducted on a transition zone-enriched root portion of maize seedlings subjected to differing nitrate supplies. The results highlighted a complex transcriptomic and proteomic reprogramming that occurs in response to nitrate, emphasizing the role of this root zone in sensing and transducing nitrate signal. Our findings indicated a relationship of nitrate with biosynthesis and signalling of several phytohormones, such as auxin, strigolactones, and brassinosteroids. Moreover, the already hypothesized involvement of nitric oxide in the early response to nitrate was confirmed with the use of nitric oxide inhibitors. Our results also suggested that cytoskeleton activation and cell wall modification occurred in response to nitrate provision in the transition zone.
Collapse
Affiliation(s)
- Sara Trevisan
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy
| | - Alessandro Manoli
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy
| | - Laura Ravazzolo
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy
| | - Alessandro Botton
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy
| | - Micaela Pivato
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy Proteomics Centre of Padova University, VIMM and Padova University Hospital, Via Giuseppe Orus, 2, 35129 Padova, Italy
| | - Antonio Masi
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy
| | - Silvia Quaggiotti
- Department of Agriculture, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
167
|
|
168
|
Gompert Z, Jahner JP, Scholl CF, Wilson JS, Lucas LK, Soria-Carrasco V, Fordyce JA, Nice CC, Buerkle CA, Forister ML. The evolution of novel host use is unlikely to be constrained by trade-offs or a lack of genetic variation. Mol Ecol 2015; 24:2777-93. [DOI: 10.1111/mec.13199] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Zachariah Gompert
- Department of Biology; Utah State University; 5305 Old Main Hill Logan UT 84322-5305 USA
| | | | | | - Joseph S. Wilson
- Department of Biology; University of Nevada; Reno NV 89557 USA
- Department of Biology; Utah State University; Tooele UT 84074 USA
| | - Lauren K. Lucas
- Department of Biology; Utah State University; 5305 Old Main Hill Logan UT 84322-5305 USA
- Department of Biology; Texas State University; San Marcos TX 78666 USA
| | - Victor Soria-Carrasco
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| | - James A. Fordyce
- Department of Ecology & Evolutionary Biology; University of Tennessee; Knoxville TN 37996 USA
| | - Chris C. Nice
- Department of Biology; Texas State University; San Marcos TX 78666 USA
| | - C. Alex Buerkle
- Department of Botany and Program in Ecology; University of Wyoming; Laramie WY 82071 USA
| | | |
Collapse
|
169
|
Martoni F, Eickbush DG, Scavariello C, Luchetti A, Mantovani B. Dead element replicating: degenerate R2 element replication and rDNA genomic turnover in the Bacillus rossius stick insect (Insecta: Phasmida). PLoS One 2015; 10:e0121831. [PMID: 25799008 PMCID: PMC4370867 DOI: 10.1371/journal.pone.0121831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/04/2015] [Indexed: 11/18/2022] Open
Abstract
R2 is an extensively investigated non-LTR retrotransposon that specifically inserts into the 28S rRNA gene sequences of a wide range of metazoans, disrupting its functionality. During R2 integration, first strand synthesis can be incomplete so that 5’ end deleted copies are occasionally inserted. While active R2 copies repopulate the locus by retrotransposing, the non-functional truncated elements should frequently be eliminated by molecular drive processes leading to the concerted evolution of the rDNA array(s). Although, multiple R2 lineages have been discovered in the genome of many animals, the rDNA of the stick insect Bacillus rossius exhibits a peculiar situation: it harbors both a canonical, functional R2 element (R2Brfun) as well as a full-length but degenerate element (R2Brdeg). An intensive sequencing survey in the present study reveals that all truncated variants in stick insects are present in multiple copies suggesting they were duplicated by unequal recombination. Sequencing results also demonstrate that all R2Brdeg copies are full-length, i. e. they have no associated 5' end deletions, and functional assays indicate they have lost the active ribozyme necessary for R2 RNA maturation. Although it cannot be completely ruled out, it seems unlikely that the degenerate elements replicate via reverse transcription, exploiting the R2Brfun element enzymatic machinery, but rather via genomic amplification of inserted 28S by unequal recombination. That inactive copies (both R2Brdeg or 5'-truncated elements) are not eliminated in a short term in stick insects contrasts with findings for the Drosophila R2, suggesting a widely different management of rDNA loci and a lower efficiency of the molecular drive while achieving the concerted evolution.
Collapse
Affiliation(s)
- Francesco Martoni
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Danna G. Eickbush
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Claudia Scavariello
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Andrea Luchetti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
- * E-mail:
| | - Barbara Mantovani
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| |
Collapse
|
170
|
Mendes-Soares H, Krishnan V, Settles ML, Ravel J, Brown CJ, Forney LJ. Fine-scale analysis of 16S rRNA sequences reveals a high level of taxonomic diversity among vaginal Atopobium spp. Pathog Dis 2015; 73:ftv020. [PMID: 25778779 DOI: 10.1093/femspd/ftv020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 01/29/2023] Open
Abstract
Although vaginal microbial communities of some healthy women have high proportions of Atopobium vaginae, the genus Atopobium is more commonly associated with bacterial vaginosis, a syndrome associated with an increased risk of adverse pregnancy outcomes and the transmission of sexually transmitted diseases. Genetic differences within Atopobium species may explain why single species can be associated with both health and disease. We used 16S rRNA gene sequences from previously published studies to explore the taxonomic diversity of the genus Atopobium in vaginal microbial communities of healthy women. Although A. vaginae was the species most commonly found, we also observed three other Atopobium species in the vaginal microbiota, one of which, A. parvulum, was not previously known to reside in the human vagina. Furthermore, we found several potential novel species of the genus Atopobium and multiple phylogenetic clades of A. vaginae. The diversity of Atopobium found in our study, which focused only on samples from healthy women, is greater than previously recognized, suggesting that analysis of samples from women with BV would yield even more diversity. Classification of microbes only to the genus level may thus obfuscate differences that might be important to better understand health or disease.
Collapse
Affiliation(s)
- Helena Mendes-Soares
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow ID 83844, USA
| | - Vandhana Krishnan
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow ID 83844, USA
| | - Matthew L Settles
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow ID 83844, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Celeste J Brown
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow ID 83844, USA
| | - Larry J Forney
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow ID 83844, USA
| |
Collapse
|
171
|
Goubert C, Modolo L, Vieira C, ValienteMoro C, Mavingui P, Boulesteix M. De novo assembly and annotation of the Asian tiger mosquito (Aedes albopictus) repeatome with dnaPipeTE from raw genomic reads and comparative analysis with the yellow fever mosquito (Aedes aegypti). Genome Biol Evol 2015; 7:1192-205. [PMID: 25767248 PMCID: PMC4419797 DOI: 10.1093/gbe/evv050] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Repetitive DNA, including transposable elements (TEs), is found throughout eukaryotic genomes. Annotating and assembling the “repeatome” during genome-wide analysis often poses a challenge. To address this problem, we present dnaPipeTE—a new bioinformatics pipeline that uses a sample of raw genomic reads. It produces precise estimates of repeated DNA content and TE consensus sequences, as well as the relative ages of TE families. We shows that dnaPipeTE performs well using very low coverage sequencing in different genomes, losing accuracy only with old TE families. We applied this pipeline to the genome of the Asian tiger mosquito Aedes albopictus, an invasive species of human health interest, for which the genome size is estimated to be over 1 Gbp. Using dnaPipeTE, we showed that this species harbors a large (50% of the genome) and potentially active repeatome with an overall TE class and order composition similar to that of Aedes aegypti, the yellow fever mosquito. However, intraorder dynamics show clear distinctions between the two species, with differences at the TE family level. Our pipeline’s ability to manage the repeatome annotation problem will make it helpful for new or ongoing assembly projects, and our results will benefit future genomic studies of A. albopictus.
Collapse
Affiliation(s)
- Clément Goubert
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, INRIA, VetAgro Sup, Villeurbanne, France Université de Lyon 1, Villeurbanne, France Université de Lyon, Lyon, France
| | - Laurent Modolo
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, INRIA, VetAgro Sup, Villeurbanne, France Université de Lyon 1, Villeurbanne, France Université de Lyon, Lyon, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, INRIA, VetAgro Sup, Villeurbanne, France Université de Lyon 1, Villeurbanne, France Université de Lyon, Lyon, France
| | - Claire ValienteMoro
- Université de Lyon 1, Villeurbanne, France Université de Lyon, Lyon, France Ecologie Microbienne, UMR 5557, CNRS, USC INRA 1364, VetAgro Sup, FR41 BioEnvironment and Health, Villeurbanne, France
| | - Patrick Mavingui
- Université de Lyon 1, Villeurbanne, France Université de Lyon, Lyon, France Ecologie Microbienne, UMR 5557, CNRS, USC INRA 1364, VetAgro Sup, FR41 BioEnvironment and Health, Villeurbanne, France Université de La Réunion, UMR PIMIT, CNRS 9192, INSERM 1187, IRD 249
| | - Matthieu Boulesteix
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, INRIA, VetAgro Sup, Villeurbanne, France Université de Lyon 1, Villeurbanne, France Université de Lyon, Lyon, France
| |
Collapse
|
172
|
Hoen DR, Bureau TE. Discovery of novel genes derived from transposable elements using integrative genomic analysis. Mol Biol Evol 2015; 32:1487-506. [PMID: 25713212 DOI: 10.1093/molbev/msv042] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Complex eukaryotes contain millions of transposable elements (TEs), comprising large fractions of their nuclear genomes. TEs consist of structural, regulatory, and coding sequences that are ordinarily associated with transposition, but that occasionally confer on the organism a selective advantage and may thereby become exapted. Exapted transposable element genes (ETEs) are known to play critical roles in diverse systems, from vertebrate adaptive immunity to plant development. Yet despite their evident importance, most ETEs have been identified fortuitously and few systematic searches have been conducted, suggesting that additional ETEs may await discovery. To explore this possibility, we develop a comprehensive systematic approach to searching for ETEs. We use TE-specific conserved domains to identify with high precision genes derived from TEs and screen them for signatures of exaptation based on their similarities to reference sets of known ETEs, conventional (non-TE) genes, and TE genes across diverse genetic attributes including repetitiveness, conservation of genomic location and sequence, and levels of expression and repressive small RNAs. Applying this approach in the model plant Arabidopsis thaliana, we discover a surprisingly large number of novel high confidence ETEs. Intriguingly, unlike known plant ETEs, several of the novel ETE families form tandemly arrayed gene clusters, whereas others are relatively young. Our results not only identify novel TE-derived genes that may have practical applications but also challenge the notion that TE exaptation is merely a relic of ancient life, instead suggesting that it may continue to fundamentally drive evolution.
Collapse
Affiliation(s)
- Douglas R Hoen
- Department of Biology, McGill University, Montréal, QC, Canada
| | - Thomas E Bureau
- Department of Biology, McGill University, Montréal, QC, Canada
| |
Collapse
|
173
|
Stapley J, Santure AW, Dennis SR. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol Ecol 2015; 24:2241-52. [PMID: 25611725 DOI: 10.1111/mec.13089] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/17/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022]
Abstract
Rapid adaptation of invasive species to novel habitats has puzzled evolutionary biologists for decades, especially as this often occurs in the face of limited genetic variability. Although some ecological traits common to invasive species have been identified, little is known about the possible genomic/genetic mechanisms that may underlie their success. A common scenario in many introductions is that small founder population sizes will often lead to reduced genetic diversity, but that invading populations experience large environmental perturbations, such as changes in habitat and environmental stress. Although sudden and intense stress is usually considered in a negative context, these perturbations may actually facilitate rapid adaptation by affecting genome structure, organization and function via interactions with transposable elements (TEs), especially in populations with low genetic diversity. Stress-induced changes in TE activity can alter gene action and can promote structural variation that may facilitate the rapid adaptation observed in new environments. We focus here on the adaptive potential of TEs in relation to invasive species and highlight their role as powerful mutational forces that can rapidly create genetic diversity. We hypothesize that activity of transposable elements can explain rapid adaptation despite low genetic variation (the genetic paradox of invasive species), and provide a framework under which this hypothesis can be tested using recently developed and emerging genomic technologies.
Collapse
Affiliation(s)
- Jessica Stapley
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | | | | |
Collapse
|
174
|
Kharrat I, Mezghani M, Casse N, Denis F, Caruso A, Makni H, Capy P, Rouault JD, Chénais B, Makni M. Characterization of mariner-like transposons of the mauritiana Subfamily in seven tree aphid species. Genetica 2015; 143:63-72. [PMID: 25555688 DOI: 10.1007/s10709-014-9814-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/26/2014] [Indexed: 11/26/2022]
Abstract
Mariner-like elements (MLEs) are Class II transposons present in all eukaryotic genomes in which MLEs have been searched for. This article reports the detection of MLEs in seven of the main fruit tree aphid species out of eight species studied. Deleted MLE sequences of 916-919 bp were characterized, using the terminal-inverted repeats (TIRs) of mariner elements belonging to the mauritiana Subfamily as primers. All the sequences detected were deleted copies of full-length elements that included the 3'- and 5'-TIRs but displayed internal deletions affecting Mos1 activity. Networks based on the mtDNA cytochrome oxidase subunit-I (CO-I) and MLE sequences were incongruent, suggesting that mutations in transposon sequences had accumulated before speciation of tree aphid species occurred, and that they have been maintained in this species via vertical transmissions. This is the first evidence of the widespread occurrence of MLEs in aphids.
Collapse
Affiliation(s)
- Imen Kharrat
- Faculté des Sciences de Tunis, Université de Tunis El Manar, UR11ES10 Génomique des insectes ravageurs, 2092, Manar II, Tunisia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Lee HE, Ayarpadikannan S, Kim HS. Role of transposable elements in genomic rearrangement, evolution, gene regulation and epigenetics in primates. Genes Genet Syst 2015; 90:245-57. [DOI: 10.1266/ggs.15-00016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Hee-Eun Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University
- Genetic Engineering Institute, Pusan National University
| | - Selvam Ayarpadikannan
- Department of Biological Sciences, College of Natural Sciences, Pusan National University
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University
- Genetic Engineering Institute, Pusan National University
| |
Collapse
|
176
|
Fiston-Lavier AS, Barrón MG, Petrov DA, González J. T-lex2: genotyping, frequency estimation and re-annotation of transposable elements using single or pooled next-generation sequencing data. Nucleic Acids Res 2014; 43:e22. [PMID: 25510498 PMCID: PMC4344482 DOI: 10.1093/nar/gku1250] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Transposable elements (TEs) constitute the most active, diverse and ancient component in a broad range of genomes. Complete understanding of genome function and evolution cannot be achieved without a thorough understanding of TE impact and biology. However, in-depth analysis of TEs still represents a challenge due to the repetitive nature of these genomic entities. In this work, we present a broadly applicable and flexible tool: T-lex2. T-lex2 is the only available software that allows routine, automatic and accurate genotyping of individual TE insertions and estimation of their population frequencies both using individual strain and pooled next-generation sequencing data. Furthermore, T-lex2 also assesses the quality of the calls allowing the identification of miss-annotated TEs and providing the necessary information to re-annotate them. The flexible and customizable design of T-lex2 allows running it in any genome and for any type of TE insertion. Here, we tested the fidelity of T-lex2 using the fly and human genomes. Overall, T-lex2 represents a significant improvement in our ability to analyze the contribution of TEs to genome function and evolution as well as learning about the biology of TEs. T-lex2 is freely available online at http://sourceforge.net/projects/tlex.
Collapse
Affiliation(s)
- Anna-Sophie Fiston-Lavier
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR5554 CNRS-Université Montpellier 2, France
| | - Maite G Barrón
- Genomics, Bioinformatics and Evolution Group, Institut de Biotecnologia i de Biomedicina - IBB/Department of Genetics and Microbiology, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona 08003, Spain
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona 08003, Spain
| |
Collapse
|
177
|
Li J, Wang Z, Peng H, Liu Z. A MITE insertion into the 3′-UTR regulates the transcription of TaHSP16.9 in common wheat. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.cj.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
178
|
A transposable element insertion confers xenobiotic resistance in Drosophila. PLoS Genet 2014; 10:e1004560. [PMID: 25122208 PMCID: PMC4133159 DOI: 10.1371/journal.pgen.1004560] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/24/2014] [Indexed: 11/19/2022] Open
Abstract
The increase in availability of whole genome sequences makes it possible to search for evidence of adaptation at an unprecedented scale. Despite recent progress, our understanding of the adaptive process is still very limited due to the difficulties in linking adaptive mutations to their phenotypic effects. In this study, we integrated different levels of biological information to pinpoint the ecologically relevant fitness effects and the underlying molecular and biochemical mechanisms of a putatively adaptive TE insertion in Drosophila melanogaster: the pogo transposon FBti0019627. We showed that other than being incorporated into Kmn1 transcript, FBti0019627 insertion also affects the polyadenylation signal choice of CG11699 gene. Consequently, only the short 3'UTR transcript of CG11699 gene is produced and the expression level of this gene is higher in flies with the insertion. Our results indicated that increased CG11699 expression leads to xenobiotic stress resistance through increased ALDH-III activity: flies with FBti0019627 insertion showed increased survival rate in response to benzaldehyde, a natural xenobiotic, and to carbofuran, a synthetic insecticide. Although differences in survival rate between flies with and without the insertion were not always significant, when they were, they were consistent with FBti0019627 mediating resistance to xenobiotics. Taken together, our results provide a plausible explanation for the increase in frequency of FBti0019627 in natural populations of D. melanogaster and add to the limited number of examples in which a natural genetic mutation has been linked to its ecologically relevant phenotype. Furthermore, the widespread distribution of TEs across the tree of life and conservation of stress response pathways across organisms make our results relevant not only for Drosophila, but for other organisms as well.
Collapse
|
179
|
Elliott TA, Linquist S, Gregory TR. Conceptual and empirical challenges of ascribing functions to transposable elements. Am Nat 2014; 184:14-24. [PMID: 24921597 DOI: 10.1086/676588] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Media attention and the subsequent scientific backlash engendered by the claim by spokespeople for the Encyclopedia of DNA Elements (ENCODE) project that 80% of the human genome has a biochemical function highlight the need for a clearer understanding of function concepts in biology. This article provides an overview of two major function concepts that have been developed in the philosophy of science--the causal role concept and the selected effects concept--and their relevance to ENCODE. Unlike in some previous critiques, the ENCODE project is not considered problematic here because it employed a causal role definition of function (which is relatively common in genetics) but because of how this concept was misused. In addition, several unique challenges that arise when dealing with transposable elements (TEs) but that were ignored by ENCODE are highlighted. These include issues surrounding TE-level versus organism-level selection, the origins versus the persistence of elements, and accidental versus functional organism-level benefits. Finally, some key questions are presented that should be addressed in any study aiming to ascribe functions to major portions of large eukaryotic genomes, the majorities of which are made up of transposable elements.
Collapse
Affiliation(s)
- Tyler A Elliott
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
180
|
Vlaikou AM, Manolakos E, Noutsopoulos D, Markopoulos G, Liehr T, Vetro A, Ziegler M, Weise A, Kreskowski K, Papoulidis I, Thomaidis L, Syrrou M. An Interstitial 4q31.21q31.22 Microdeletion Associated with Developmental Delay: Case Report and Literature Review. Cytogenet Genome Res 2014; 142:227-38. [DOI: 10.1159/000361001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2014] [Indexed: 11/19/2022] Open
|
181
|
Mendes-Soares H, Suzuki H, Hickey RJ, Forney LJ. Comparative functional genomics of Lactobacillus spp. reveals possible mechanisms for specialization of vaginal lactobacilli to their environment. J Bacteriol 2014; 196:1458-70. [PMID: 24488312 PMCID: PMC3993339 DOI: 10.1128/jb.01439-13] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/26/2014] [Indexed: 02/04/2023] Open
Abstract
Lactobacilli are found in a wide variety of habitats. Four species, Lactobacillus crispatus, L. gasseri, L. iners, and L. jensenii, are common and abundant in the human vagina and absent from other habitats. These may be adapted to the vagina and possess characteristics enabling them to thrive in that environment. Furthermore, stable codominance of multiple Lactobacillus species in a single community is infrequently observed. Thus, it is possible that individual vaginal Lactobacillus species possess unique characteristics that confer to them host-specific competitive advantages. We performed comparative functional genomic analyses of representatives of 25 species of Lactobacillus, searching for habitat-specific traits in the genomes of the vaginal lactobacilli. We found that the genomes of the vaginal species were significantly smaller and had significantly lower GC content than those of the nonvaginal species. No protein families were found to be specific to the vaginal species analyzed, but some were either over- or underrepresented relative to nonvaginal species. We also found that within the vaginal species, each genome coded for species-specific protein families. Our results suggest that even though the vaginal species show no general signatures of adaptation to the vaginal environment, each species has specific and perhaps unique ways of interacting with its environment, be it the host or other microbes in the community. These findings will serve as a foundation for further exploring the role of lactobacilli in the ecological dynamics of vaginal microbial communities and their ultimate impact on host health.
Collapse
Affiliation(s)
- Helena Mendes-Soares
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Haruo Suzuki
- Department of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi, Japan
| | - Roxana J. Hickey
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, Idaho, USA
| | - Larry J. Forney
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
182
|
Elfving N, Chereji RV, Bharatula V, Björklund S, Morozov AV, Broach JR. A dynamic interplay of nucleosome and Msn2 binding regulates kinetics of gene activation and repression following stress. Nucleic Acids Res 2014; 42:5468-82. [PMID: 24598258 PMCID: PMC4027177 DOI: 10.1093/nar/gku176] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transcription factor Msn2 mediates a significant proportion of the environmental stress response, in which a common cohort of genes changes expression in a stereotypic fashion upon exposure to any of a wide variety of stresses. We have applied genome-wide chromatin immunoprecipitation and nucleosome profiling to determine where Msn2 binds under stressful conditions and how that binding affects, and is affected by, nucleosome positioning. We concurrently determined the effect of Msn2 activity on gene expression following stress and demonstrated that Msn2 stimulates both activation and repression. We found that some genes responded to both intermittent and continuous Msn2 nuclear occupancy while others responded only to continuous occupancy. Finally, these studies document a dynamic interplay between nucleosomes and Msn2 such that nucleosomes can restrict access of Msn2 to its canonical binding sites while Msn2 can promote reposition, expulsion and recruitment of nucleosomes to alter gene expression. This interplay may allow the cell to discriminate between different types of stress signaling.
Collapse
Affiliation(s)
- Nils Elfving
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Răzvan V Chereji
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
| | - Vasudha Bharatula
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Alexandre V Morozov
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - James R Broach
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
183
|
Bai F, Settles AM. Imprinting in plants as a mechanism to generate seed phenotypic diversity. FRONTIERS IN PLANT SCIENCE 2014; 5:780. [PMID: 25674092 PMCID: PMC4307191 DOI: 10.3389/fpls.2014.00780] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/16/2014] [Indexed: 05/21/2023]
Abstract
Normal plant development requires epigenetic regulation to enforce changes in developmental fate. Genomic imprinting is a type of epigenetic regulation in which identical alleles of genes are expressed in a parent-of-origin dependent manner. Deep sequencing of transcriptomes has identified hundreds of imprinted genes with scarce evidence for the developmental importance of individual imprinted loci. Imprinting is regulated through global DNA demethylation in the central cell prior to fertilization and directed repression of individual loci with the Polycomb Repressive Complex 2 (PRC2). There is significant evidence for transposable elements and repeat sequences near genes acting as cis-elements to determine imprinting status of a gene, implying that imprinted gene expression patterns may evolve randomly and at high frequency. Detailed genetic analysis of a few imprinted loci suggests an imprinted pattern of gene expression is often dispensable for seed development. Few genes show conserved imprinted expression within or between plant species. These data are not fully explained by current models for the evolution of imprinting in plant seeds. We suggest that imprinting may have evolved to provide a mechanism for rapid neofunctionalization of genes during seed development to increase phenotypic diversity of seeds.
Collapse
Affiliation(s)
| | - A. M. Settles
- *Correspondence: A. M. Settles, Horticultural Sciences Department and Plant Molecular and Cellular Biology Program, University of Florida, P. O. Box 110690, Gainesville, FL 32611-0690, USA e-mail:
| |
Collapse
|
184
|
Abstract
The etiology of many brain diseases remains allusive to date after intensive investigation of genomic background and symptomatology from the day of birth. Emerging evidences indicate that a third factor, epigenetics prior to the birth, can exert profound influence on the development and functioning of the brain and over many neurodevelopmental syndromes. This chapter reviews how aversive environmental exposure to parents might predispose or increase vulnerability of offspring to neurodevelopmental deficit through alteration of epigenetics. These epigenetic altering environmental factors will be discussed in the category of addictive agents, nutrition or diet, prescriptive medicine, environmental pollutant, and stress. Epigenetic alterations induced by these aversive environmental factors cover all aspects of epigenetics including DNA methylation, histone modification, noncoding RNA, and chromatin modification. Next, the mechanisms how these environmental inputs influence epigenetics will be discussed. Finally, how environmentally altered epigenetic marks affect neurodevelopment is exemplified by the alcohol-induced fetal alcohol syndrome. It is hoped that a thorough understanding of the nature of prenatal epigenetic inputs will enable researchers with a clear vision to better unravel neurodevelopmental deficit, late-onset neuropsychiatric diseases, or idiosyncratic mental disorders.
Collapse
Affiliation(s)
- Chiao-Ling Lo
- Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana Alcohol Research Center, Indiana University School of Medicine, and Department of Psychology, Indiana University Purdue University at Indianapolis, Indianapolis, Indiana, USA
| | - Feng C Zhou
- Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana Alcohol Research Center, Indiana University School of Medicine, and Department of Psychology, Indiana University Purdue University at Indianapolis, Indianapolis, Indiana, USA.
| |
Collapse
|
185
|
Nandety RS, Kamita SG, Hammock BD, Falk BW. Sequencing and de novo assembly of the transcriptome of the glassy-winged sharpshooter (Homalodisca vitripennis). PLoS One 2013; 8:e81681. [PMID: 24339955 PMCID: PMC3858241 DOI: 10.1371/journal.pone.0081681] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/15/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The glassy-winged sharpshooter Homalodisca vitripennis (Hemiptera: Cicadellidae), is a xylem-feeding leafhopper and important vector of the bacterium Xylella fastidiosa; the causal agent of Pierce's disease of grapevines. The functional complexity of the transcriptome of H. vitripennis has not been elucidated thus far. It is a necessary blueprint for an understanding of the development of H. vitripennis and for designing efficient biorational control strategies including those based on RNA interference. RESULTS Here we elucidate and explore the transcriptome of adult H. vitripennis using high-throughput paired end deep sequencing and de novo assembly. A total of 32,803,656 paired-end reads were obtained with an average transcript length of 624 nucleotides. We assembled 32.9 Mb of the transcriptome of H. vitripennis that spanned across 47,265 loci and 52,708 transcripts. Comparison of our non-redundant database showed that 45% of the deduced proteins of H. vitripennis exhibit identity (e-value ≤1(-5)) with known proteins. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript isoform. In order to gain insight into the molecular basis of key regulatory genes of H. vitripennis, we characterized predicted proteins involved in the metabolism of juvenile hormone, and biogenesis of small RNAs (Dicer and Piwi sequences) from the transcriptomic sequences. Analysis of transposable element sequences of H. vitripennis indicated that the genome is less expanded in comparison to many other insects with approximately 1% of the transcriptome carrying transposable elements. CONCLUSIONS Our data significantly enhance the molecular resources available for future study and control of this economically important hemipteran. This transcriptional information not only provides a more nuanced understanding of the underlying biological and physiological mechanisms that govern H. vitripennis, but may also lead to the identification of novel targets for biorationally designed control strategies.
Collapse
Affiliation(s)
- Raja Sekhar Nandety
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Shizuo G. Kamita
- Department of Entomology and UC Davis Comprehensive Cancer Research Center, University of California Davis, Davis, California, United States of America
| | - Bruce D. Hammock
- Department of Entomology and UC Davis Comprehensive Cancer Research Center, University of California Davis, Davis, California, United States of America
| | - Bryce W. Falk
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
186
|
Pathological and evolutionary implications of retroviruses as mobile genetic elements. Genes (Basel) 2013; 4:573-82. [PMID: 24705263 PMCID: PMC3927575 DOI: 10.3390/genes4040573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/27/2013] [Accepted: 10/08/2013] [Indexed: 11/17/2022] Open
Abstract
Retroviruses, a form of mobile genetic elements, have important roles in disease and primate evolution. Exogenous retroviruses, such as human immunodeficiency virus (HIV), have significant pathological implications that have created a massive public health challenge in recent years. Endogenous retroviruses (ERVs), which are the primary focus of this review, can also be pathogenic, as well as being beneficial to a host in some cases. Furthermore, retroviruses may have played a key role in primate evolution that resulted in the incorporation of these elements into the human genome. Retroviruses are mobile genetic elements that have important roles in disease and primate evolution. We will further discuss the pathogenic potential of retroviruses, including their role in cancer biology, and will briefly summarize their evolutionary implications.
Collapse
|
187
|
|
188
|
Alipour A, Tsuchimoto S, Sakai H, Ohmido N, Fukui K. Structural characterization of copia-type retrotransposons leads to insights into the marker development in a biofuel crop, Jatropha curcas L. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:129. [PMID: 24020916 PMCID: PMC3852365 DOI: 10.1186/1754-6834-6-129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/02/2013] [Indexed: 05/14/2023]
Abstract
BACKGROUND Recently, Jatropha curcas L. has attracted worldwide attention for its potential as a source of biodiesel. However, most DNA markers have demonstrated high levels of genetic similarity among and within jatropha populations around the globe. Despite promising features of copia-type retrotransposons as ideal genetic tools for gene tagging, mutagenesis, and marker-assisted selection, they have not been characterized in the jatropha genome yet. Here, we examined the diversity, evolution, and genome-wide organization of copia-type retrotransposons in the Asian, African, and Mesoamerican accessions of jatropha, then introduced a retrotransposon-based marker for this biofuel crop. RESULTS In total, 157 PCR fragments that were amplified using the degenerate primers for the reverse transcriptase (RT) domain of copia-type retroelements were sequenced and aligned to construct the neighbor-joining tree. Phylogenetic analysis demonstrated that isolated copia RT sequences were classified into ten families, which were then grouped into three lineages. An in-depth study of the jatropha genome for the RT sequences of each family led to the characterization of full consensus sequences of the jatropha copia-type families. Estimated copy numbers of target sequences were largely different among families, as was presence of genes within 5 kb flanking regions for each family. Five copia-type families were as appealing candidates for the development of DNA marker systems. A candidate marker from family Jc7 was particularly capable of detecting genetic variation among different jatropha accessions. Fluorescence in situ hybridization (FISH) to metaphase chromosomes reveals that copia-type retrotransposons are scattered across chromosomes mainly located in the distal part regions. CONCLUSION This is the first report on genome-wide analysis and the cytogenetic mapping of copia-type retrotransposons of jatropha, leading to the discovery of families bearing high potential as DNA markers. Distinct dynamics of individual copia-type families, feasibility of a retrotransposon-based insertion polymorphism marker system in examining genetic variability, and approaches for the development of breeding strategies in jatropha using copia-type retrotransposons are discussed.
Collapse
Affiliation(s)
- Atefeh Alipour
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Suguru Tsuchimoto
- Plant Bioengineering for Bioenergy Laboratory, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroe Sakai
- Plant Bioengineering for Bioenergy Laboratory, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Kiichi Fukui
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
189
|
Forconi M, Chalopin D, Barucca M, Biscotti MA, De Moro G, Galiana D, Gerdol M, Pallavicini A, Canapa A, Olmo E, Volff JN. Transcriptional activity of transposable elements in coelacanth. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:379-89. [PMID: 24038780 DOI: 10.1002/jez.b.22527] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/04/2013] [Accepted: 07/14/2013] [Indexed: 01/22/2023]
Abstract
The morphological stasis of coelacanths has long suggested a slow evolutionary rate. General genomic stasis might also imply a decrease of transposable elements activity. To evaluate the potential activity of transposable elements (TEs) in "living fossil" species, transcriptomic data of Latimeria chalumnae and its Indonesian congener Latimeria menadoensis were compared through the RNA-sequencing mapping procedures in three different organs (liver, testis, and muscle). The analysis of coelacanth transcriptomes highlights a significant percentage of transcribed TEs in both species. Major contributors are LINE retrotransposons, especially from the CR1 family. Furthermore, some particular elements such as a LF-SINE and a LINE2 sequences seem to be more expressed than other elements. The amount of TEs expressed in testis suggests possible transposition burst in incoming generations. Moreover, significant amount of TEs in liver and muscle transcriptomes were also observed. Analyses of elements displaying marked organ-specific expression gave us the opportunity to highlight exaptation cases, that is, the recruitment of TEs as new cellular genes, but also to identify a new Latimeria-specific family of Short Interspersed Nuclear Elements called CoeG-SINEs. Overall, transcriptome results do not seem to be in line with a slow-evolving genome with poor TE activity.
Collapse
Affiliation(s)
- Mariko Forconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy; Institut de Génomique Fonctionnelle de Lyon, ENS Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Luchetti A, Mantovani B. Conserved domains and SINE diversity during animal evolution. Genomics 2013; 102:296-300. [PMID: 23981965 DOI: 10.1016/j.ygeno.2013.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/25/2013] [Accepted: 08/14/2013] [Indexed: 11/28/2022]
Abstract
Eukaryotic genomes harbour a number of mobile genetic elements (MGEs); moving from one genomic location to another, they are known to impact on the host genome. Short interspersed elements (SINEs) are well-represented, non-autonomous retroelements and they are likely the most diversified MGEs. In some instances, sequence domains conserved across unrelated SINEs have been identified; remarkably, one of these, called Nin, has been conserved since the Radiata-Bilateria splitting. Here we report on two new domains: Inv, derived from Nin, identified in insects and in deuterostomes, and Pln, restricted to polyneopteran insects. The identification of Inv and Pln sequences allowed us to retrieve new SINEs, two in insects and one in a hemichordate. The diverse structural combination of the different domains in different SINE families, during metazoan evolution, offers a clearer view of SINE diversity and their frequent de novo emergence through module exchange, possibly underlying the high evolutionary success of SINEs.
Collapse
Affiliation(s)
- Andrea Luchetti
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA) - Università di Bologna, via Selmi 3, 40126 Bologna, Italy.
| | | |
Collapse
|
191
|
Lavialle C, Cornelis G, Dupressoir A, Esnault C, Heidmann O, Vernochet C, Heidmann T. Paleovirology of 'syncytins', retroviral env genes exapted for a role in placentation. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120507. [PMID: 23938756 DOI: 10.1098/rstb.2012.0507] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The development of the emerging field of 'paleovirology' allows biologists to reconstruct the evolutionary history of fossil endogenous retroviral sequences integrated within the genome of living organisms and has led to the retrieval of conserved, ancient retroviral genes 'exapted' by ancestral hosts to fulfil essential physiological roles, syncytin genes being undoubtedly among the most remarkable examples of such a phenomenon. Indeed, syncytins are 'new' genes encoding proteins derived from the envelope protein of endogenous retroviral elements that have been captured and domesticated on multiple occasions and independently in diverse mammalian species, through a process of convergent evolution. Knockout of syncytin genes in mice provided evidence for their absolute requirement for placenta development and embryo survival, via formation by cell-cell fusion of syncytial cell layers at the fetal-maternal interface. These genes of exogenous origin, acquired 'by chance' and yet still 'necessary' to carry out a basic function in placental mammals, may have been pivotal in the emergence of mammalian ancestors with a placenta from egg-laying animals via the capture of a founding retroviral env gene, subsequently replaced in the diverse mammalian lineages by new env-derived syncytin genes, each providing its host with a positive selective advantage.
Collapse
Affiliation(s)
- Christian Lavialle
- UMR 8122, Unité des Rétrovirus Endogènes et Éléments Rétroïdes des Eucaryotes Supérieurs, CNRS, Institut Gustave Roussy, , 94805 Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
192
|
What is being written, and why?: comment on "How life changes itself: the Read-Write (RW) genome" by James Shapiro. Phys Life Rev 2013; 10:336-7. [PMID: 23891466 DOI: 10.1016/j.plrev.2013.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 01/17/2023]
|
193
|
Shapiro JA. How life changes itself: the Read-Write (RW) genome. Phys Life Rev 2013; 10:287-323. [PMID: 23876611 DOI: 10.1016/j.plrev.2013.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 01/06/2023]
Abstract
The genome has traditionally been treated as a Read-Only Memory (ROM) subject to change by copying errors and accidents. In this review, I propose that we need to change that perspective and understand the genome as an intricately formatted Read-Write (RW) data storage system constantly subject to cellular modifications and inscriptions. Cells operate under changing conditions and are continually modifying themselves by genome inscriptions. These inscriptions occur over three distinct time-scales (cell reproduction, multicellular development and evolutionary change) and involve a variety of different processes at each time scale (forming nucleoprotein complexes, epigenetic formatting and changes in DNA sequence structure). Research dating back to the 1930s has shown that genetic change is the result of cell-mediated processes, not simply accidents or damage to the DNA. This cell-active view of genome change applies to all scales of DNA sequence variation, from point mutations to large-scale genome rearrangements and whole genome duplications (WGDs). This conceptual change to active cell inscriptions controlling RW genome functions has profound implications for all areas of the life sciences.
Collapse
Affiliation(s)
- James A Shapiro
- Dept. of Biochemistry and Molecular Biology, University of Chicago, GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA. http://www.huffingtonpost.com/james-a-shapiro
| |
Collapse
|
194
|
Dallinger R, Höckner M. Evolutionary concepts in ecotoxicology: tracing the genetic background of differential cadmium sensitivities in invertebrate lineages. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:767-778. [PMID: 23576190 DOI: 10.1007/s10646-013-1071-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
In many toxicological and ecotoxicological studies and experimental setups, the investigator is mainly interested in traditional parameters such as toxicity data and effects of toxicants on molecular, cellular or physiological functions of individuals, species or statistical populations. It is clear, however, that such approaches focus on the phenotype level of animal species, whilst the genetic and evolutionary background of reactions to environmental toxicants may remain untold. In ecotoxicological risk assessment, moreover, species sensitivities towards pollutants are often regarded as random variables in a statistical approach. Beyond statistics, however, toxicant sensitivity of every species assumes a biological significance, especially if we consider that sensitivity traits have developed in lineages of species with common evolutionary roots. In this article, the genetic and evolutionary background of differential Cd sensitivities among invertebrate populations and species and their potential of adaptation to environmental Cd exposure will be highlighted. Important evolutionary and population genetic concepts such as genome structure and their importance for evolutionary adaptation, population structure of affected individuals, as well as micro and macroevolutionary mechanisms of Cd resistance in invertebrate lineages will be stressed by discussing examples of work from our own laboratory along with a review of relevant literature data and a brief discussion of open questions along with some perspectives for further research. Both, differences and similarities in Cd sensitivity traits of related invertebrate species can only be understood if we consider the underlying evolutionary processes and genetic (or epigenetic) mechanisms. Keeping in mind this perception can help us to better understand and interpret more precisely why the sensitivity of some species or species groups towards a certain toxicant (or metal) may be ranked in the lower or higher range of species sensitivity distributions. Hence, such a perspective will transcend a purely statistical view of the sensitivity distributions concept, and will enhance ecotoxicology in many respects.
Collapse
Affiliation(s)
- Reinhard Dallinger
- Institut für Zoologie und Limnologie, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | | |
Collapse
|
195
|
Broaders E, Gahan CG, Marchesi JR. Mobile genetic elements of the human gastrointestinal tract: potential for spread of antibiotic resistance genes. Gut Microbes 2013; 4:271-80. [PMID: 23651955 PMCID: PMC3744512 DOI: 10.4161/gmic.24627] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human intestine is an important location for horizontal gene transfer (HGT) due to the presence of a densely populated community of microorganisms which are essential to the health of the human superorganism. HGT in this niche has the potential to influence the evolution of members of this microbial community and to mediate the spread of antibiotic resistance genes from commensal organisms to potential pathogens. Recent culture-independent techniques and metagenomic studies have provided an insight into the distribution of mobile genetic elements (MGEs) and the extent of HGT in the human gastrointestinal tract. In this mini-review, we explore the current knowledge of mobile genetic elements in the gastrointestinal tract, the progress of research into the distribution of antibiotic resistance genes in the gut and the potential role of MGEs in the spread of antibiotic resistance. In the face of reduced treatment options for many clinical infections, understanding environmental and commensal antibiotic resistance and spread is critical to the future development of meaningful and long lasting anti-microbial therapies.
Collapse
Affiliation(s)
- Eileen Broaders
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland,Department of Microbiology; University College Cork; Cork, Ireland
| | - Cormac G.M. Gahan
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland,Department of Microbiology; University College Cork; Cork, Ireland,School of Pharmacy; University College Cork; Cork, Ireland
| | - Julian R. Marchesi
- School of Biosciences; Cardiff University; Cardiff, United Kingdom,Correspondence to: Julian R. Marchesi,
| |
Collapse
|
196
|
Bleykasten-Grosshans C, Friedrich A, Schacherer J. Genome-wide analysis of intraspecific transposon diversity in yeast. BMC Genomics 2013; 14:399. [PMID: 23768249 PMCID: PMC4022208 DOI: 10.1186/1471-2164-14-399] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/06/2013] [Indexed: 02/02/2023] Open
Abstract
Background In the model organism Saccharomyces cerevisiae, the transposable elements (TEs) consist of LTR (Long Terminal Repeat) retrotransposons called Ty elements belonging to five families, Ty1 to Ty5. They take the form of either full-length coding elements or non-coding solo-LTRs corresponding to remnants of former transposition events. Although the biological features of Ty elements have been studied in detail in S. cerevisiae and the Ty content of the reference strain (S288c) was accurately annotated, the Ty-related intra-specific diversity has not been closely investigated so far. Results In this study, we investigated the Ty contents of 41 available genomes of isolated S. cerevisiae strains of diverse geographical and ecological origins. The strains were compared in terms of the number of Ty copies, the content of the potential transpositionally active elements and the genomic insertion maps. The strain repertoires were also investigated in the closely related Ty1 and Ty2 families and subfamilies. Conclusions This is the first genome-wide analysis of the diversity associated to the Ty elements, carried out for a large set of S. cerevisiae strains. The results of the present analyses suggest that the current Ty-related polymorphism has resulted from multiple causes such as differences between strains, between Ty families and over time, in the recent transpositional activity of Ty elements. Some new Ty1 variants were also identified, and we have established that Ty1 variants have different patterns of distribution among strains, which further contributes to the strain diversity.
Collapse
Affiliation(s)
- Claudine Bleykasten-Grosshans
- CNRS, Department of Genetics, Genomics and Microbiology, University of Strasbourg, UMR 7156, 28, rue Goethe, Strasbourg, 67083, France.
| | | | | |
Collapse
|
197
|
Hertweck KL. Assembly and comparative analysis of transposable elements from low coverage genomic sequence data in Asparagales. Genome 2013; 56:487-94. [PMID: 24168669 DOI: 10.1139/gen-2013-0042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The research field of comparative genomics is moving from a focus on genes to a more holistic view including the repetitive complement. This study aimed to characterize relative proportions of the repetitive fraction of large, complex genomes in a nonmodel system. The monocotyledonous plant order Asparagales (onion, asparagus, agave) comprises some of the largest angiosperm genomes and represents variation in both genome size and structure (karyotype). Anonymous, low coverage, single-end Illumina data from 11 exemplar Asparagales taxa were assembled using a de novo method. Resulting contigs were annotated using a reference library of available monocot repetitive sequences. Mapping reads to contigs provided rough estimates of relative proportions of each type of transposon in the nuclear genome. The results were parsed into general repeat types and synthesized with genome size estimates and a phylogenetic context to describe the pattern of transposable element evolution among these lineages. The major finding is that although some lineages in Asparagales exhibit conservation in repeat proportions, there is generally wide variation in types and frequency of repeats. This approach is an appropriate first step in characterizing repeats in evolutionary lineages with a paucity of genomic resources.
Collapse
Affiliation(s)
- Kate L Hertweck
- National Evolutionary Synthesis Center, 2024 West Main Street, Suite A200, Durham, NC 27705, USA
| |
Collapse
|
198
|
Esnault C, Chénais B, Casse N, Delorme N, Louarn G, Pilard JF. Electrochemically Modified Carbon and Chromium Surfaces for AFM Imaging of Double-Strand DNA Interaction with Transposase Protein. Chemphyschem 2013; 14:338-45. [DOI: 10.1002/cphc.201200885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Indexed: 11/08/2022]
|
199
|
|
200
|
Leclercq S, Cordaux R. Selection-driven extinction dynamics for group II introns in Enterobacteriales. PLoS One 2012; 7:e52268. [PMID: 23251705 PMCID: PMC3522654 DOI: 10.1371/journal.pone.0052268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/12/2012] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Some TEs were proposed to evolve under a pattern of periodic extinctions-recolonizations, in which elements recurrently invade and quickly proliferate within their host genomes, then start to disappear until total extinction. Depending on the model, TE extinction is assumed to be driven by purifying selection against colonized host genomes (Sel-DE model) or by saturation of host genomes (Sat-DE model). Bacterial group II introns are suspected to follow an extinction-recolonization model of evolution, but whether they follow Sel-DE or Sat-DE dynamics is not known. Our analysis of almost 200 group II intron copies from 90 sequenced Enterobacteriales genomes confirms their extinction-recolonization dynamics: patchy element distributions among genera and even among strains within genera, acquisition of new group II introns through plasmids or other mobile genetic elements, and evidence for recent proliferations in some genomes. Distributions of recent and past proliferations and of their respective homing sites further provide strong support for the Sel-DE model, suggesting that group II introns are deleterious to their hosts. Overall, our observations emphasize the critical impact of host properties on TE dynamics.
Collapse
Affiliation(s)
- Sébastien Leclercq
- Université de Poitiers, CNRS UMR 7267 Ecologie et Biologie des Interactions, Poitiers, France
| | - Richard Cordaux
- Université de Poitiers, CNRS UMR 7267 Ecologie et Biologie des Interactions, Poitiers, France
- * E-mail:
| |
Collapse
|