151
|
Kamoshida G, Akaji T, Takemoto N, Suzuki Y, Sato Y, Kai D, Hibino T, Yamaguchi D, Kikuchi-Ueda T, Nishida S, Unno Y, Tansho-Nagakawa S, Ubagai T, Miyoshi-Akiyama T, Oda M, Ono Y. Lipopolysaccharide-Deficient Acinetobacter baumannii Due to Colistin Resistance Is Killed by Neutrophil-Produced Lysozyme. Front Microbiol 2020; 11:573. [PMID: 32373082 PMCID: PMC7183746 DOI: 10.3389/fmicb.2020.00573] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/16/2020] [Indexed: 12/16/2022] Open
Abstract
Acinetobacter baumannii causes nosocomial infections due to its multidrug resistance and high environmental adaptability. Colistin is a polypeptide antibacterial agent that targets lipopolysaccharide (LPS) and is currently used to control serious multidrug-resistant Gram-negative bacterial infections, including those caused by A. baumannii. However, A. baumannii may acquire colistin resistance by losing their LPS. In mouse models, LPS-deficient A. baumannii have attenuated virulence. Nevertheless, the mechanism through which the pathogen is cleared by host immune cells is unknown. Here, we established colistin-resistant A. baumannii strains and analyzed possible mechanisms through which they are cleared by neutrophils. Colistin-resistant, LPS-deficient strains harbor mutations or insertion sequence (IS) in lpx genes, and introduction of intact lpx genes restored LPS deficiency. Analysis of interactions between these strains and neutrophils revealed that compared with wild type, LPS-deficient A. baumannii only weakly stimulated neutrophils, with consequent reduced levels of reactive oxygen species (ROS) and inflammatory cytokine production. Nonetheless, neutrophils preferentially killed LPS-deficient A. baumannii compared to wild-type strains. Moreover, LPS-deficient A. baumannii strains presented with increased sensitivities to antibacterial lysozyme and lactoferrin. We revealed that neutrophil-secreted lysozyme was the antimicrobial factor during clearance of LPS-deficient A. baumannii strains. These findings may inform the development of targeted therapeutics aimed to treat multidrug-resistant infections in immunocompromised patients who are unable to mount an appropriate cell-mediated immune response.
Collapse
Affiliation(s)
- Go Kamoshida
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.,Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Takuya Akaji
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Yoshinori Sato
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Daichi Kai
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Taishi Hibino
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daiki Yamaguchi
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Takane Kikuchi-Ueda
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Satoshi Nishida
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Yuka Unno
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Shigeru Tansho-Nagakawa
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Tsuneyuki Ubagai
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masataka Oda
- Department of Microbiology and Infection Control Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yasuo Ono
- Department of Microbiology and Immunology, School of Medicine, Teikyo University, Tokyo, Japan
| |
Collapse
|
152
|
A peripheral neutrophil-related inflammatory factor predicts a decline in executive function in mild Alzheimer's disease. J Neuroinflammation 2020; 17:84. [PMID: 32171317 PMCID: PMC7071641 DOI: 10.1186/s12974-020-01750-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background Studies suggest a role of the innate immune system, including the activity of neutrophils, in neurodegeneration related to Alzheimer’s disease (AD), but prospective cognitive data remain lacking in humans. We aimed to investigate the predictive relationship between neutrophil-associated inflammatory proteins in peripheral blood and changes in memory and executive function over 1 year in patients with AD. Methods Participants with AD were identified from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Neutrophil gelatinase-associated lipocalin (NGAL), myeloperoxidase (MPO), interleukin-8 (IL-8), macrophage inflammatory protein-1 beta (MIP-1β), and tumor necrosis factor (TNF) were assayed by luminex immunofluorescence multiplex assay at baseline. Confirmatory factor analysis was used to test an underlying neutrophil associated plasma inflammatory factor. Composite z-scores for memory and executive function were generated from multiple tests at baseline and at 1 year. A multiple linear regression model was used to investigate the association of the baseline inflammatory factor with changes in memory and executive function over 1 year. Results Among AD patients (n = 109, age = 74.8 ± 8.1, 42% women, Mini Mental State Examination [MMSE] = 23.6 ± 1.9), the neutrophil-related inflammatory proteins NGAL (λ = 0.595, p < .001), MPO (λ = 0.575, p < .001), IL-8 (λ = 0.525, p < .001), MIP-1β (λ = 0.411, p = .008), and TNF (λ = 0.475, p < .001) were found to inform an underlying factor. Over 1 year, this inflammatory factor predicted a decline in executive function (β = − 0.152, p = 0.015) but not memory (β = 0.030, p = 0.577) in models controlling for demographics, brain atrophy, white matter hyperintensities, the ApoE ε4 allele, concomitant medications, and baseline cognitive performance. Conclusions An inflammatory factor constructed from five neutrophil-related markers in peripheral blood predicted a decline in executive function over 1 year in people with mild AD.
Collapse
|
153
|
Catz SD, McLeish KR. Therapeutic targeting of neutrophil exocytosis. J Leukoc Biol 2020; 107:393-408. [PMID: 31990103 PMCID: PMC7044074 DOI: 10.1002/jlb.3ri0120-645r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of neutrophil activation causes disease in humans. Neither global inhibition of neutrophil functions nor neutrophil depletion provides safe and/or effective therapeutic approaches. The role of neutrophil granule exocytosis in multiple steps leading to recruitment and cell injury led each of our laboratories to develop molecular inhibitors that interfere with specific molecular regulators of secretion. This review summarizes neutrophil granule formation and contents, the role granule cargo plays in neutrophil functional responses and neutrophil-mediated diseases, and the mechanisms of granule release that provide the rationale for development of our exocytosis inhibitors. We present evidence for the inhibition of granule exocytosis in vitro and in vivo by those inhibitors and summarize animal data indicating that inhibition of neutrophil exocytosis is a viable therapeutic strategy.
Collapse
Affiliation(s)
- Sergio D. Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
154
|
Scandolara TB, Panis C. Neutrophil traps, anti-myeloperoxidase antibodies and cancer: Are they linked? Immunol Lett 2020; 221:33-38. [PMID: 32092357 DOI: 10.1016/j.imlet.2020.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022]
Abstract
Myeloperoxidase is an enzyme present in neutrophils and has been demonstrated to be an important molecule for neutrophil extracellular traps (NETs) formation and function. Yet, it is also a source of autoantigens for anti-neutrophil or anti-myeloperoxidase antibodies (ANCAs), which are capable of activating these immune cells and provoke tissue damage in a sterile microenvironment. The presence of these antibodies in cancer has been related by case reports, but a few studies addressed the significance of this finding beyond autoimmunity context. In this review, we discuss the evidences regarding ANCAs and cancer and its putative clinical meaning in the context of tumor immunology.
Collapse
Affiliation(s)
- Thalita Basso Scandolara
- Laboratory of Tumor Biology, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil; Health-Applied Sciences Post Graduation Program, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil; Federal University of Rio de Janeiro, UFRJ, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil; Health-Applied Sciences Post Graduation Program, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil.
| |
Collapse
|
155
|
Miralda I, Klaes CK, Graham JE, Uriarte SM. Human Neutrophil Granule Exocytosis in Response to Mycobacterium smegmatis. Pathogens 2020; 9:pathogens9020123. [PMID: 32075233 PMCID: PMC7169382 DOI: 10.3390/pathogens9020123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium smegmatis rarely causes disease in the immunocompetent, but reported cases of soft tissue infection describe abscess formation requiring surgical debridement for resolution. Neutrophils are the first innate immune cells to accumulate at sites of bacterial infection, where reactive oxygen species and proteolytic enzymes are used to kill microbial invaders. As these phagocytic cells play central roles in protection from most bacteria, we assessed human neutrophil phagocytosis and granule exocytosis in response to serum opsonized or non-opsonized M. smegmatis mc2. Although phagocytosis was enhanced by serum opsonization, M. smegmatis did not induce exocytosis of secretory vesicles or azurophilic granules at any time point tested, with or without serum opsonization. At early time points, opsonized M. smegmatis induced significant gelatinase granule exocytosis compared to non-opsonized bacteria. Differences in granule release between opsonized and non-opsonized M. smegmatis decreased in magnitude over the time course examined, with bacteria also evoking specific granule exocytosis by six hours after addition to cultured primary single-donor human neutrophils. Supernatants from neutrophils challenged with opsonized M. smegmatis were able to digest gelatin, suggesting that complement and gelatinase granule exocytosis can contribute to neutrophil-mediated tissue damage seen in these rare soft tissue infections.
Collapse
Affiliation(s)
- Irina Miralda
- Department of Microbiology & Immunology, School of Medicine, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA;
| | - Christopher K. Klaes
- Department of Medicine, School of Medicine, University of Louisville, 570 S. Preston St., Louisville, KY 40202, USA;
| | - James E. Graham
- Department of Microbiology & Immunology, School of Medicine, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA;
- Correspondence: (J.E.G.); (S.M.U.); Tel.: +1-502-852-2781 (J.E.G.); +1-502-852-1396 (S.M.U.)
| | - Silvia M. Uriarte
- Department of Microbiology & Immunology, School of Medicine, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA;
- Department of Medicine, School of Medicine, University of Louisville, 570 S. Preston St., Louisville, KY 40202, USA;
- Correspondence: (J.E.G.); (S.M.U.); Tel.: +1-502-852-2781 (J.E.G.); +1-502-852-1396 (S.M.U.)
| |
Collapse
|
156
|
Miller LC, Fleming DS, Lager KM. Comparison of the Transcriptome Response within the Swine Tracheobronchial Lymphnode Following Infection with PRRSV, PCV-2 or IAV-S. Pathogens 2020; 9:E99. [PMID: 32033425 PMCID: PMC7168592 DOI: 10.3390/pathogens9020099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major respiratory pathogen of swine that has become extremely costly to the swine industry worldwide, often causing losses in production and animal life due to their ease of spread. However, the intracellular changes that occur in pigs following viral respiratory infections are still scantily understood for PRRSV, as well as other viral respiratory infections. The aim of this study was to acquire a better understanding of the PRRS disease by comparing gene expression changes that occur in tracheobronchial lymph nodes (TBLN) of pigs infected with either porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV-2), or swine influenza A virus (IAV-S) infections. The study identified and compared gene expression changes in the TBLN of 80 pigs following infection by PRRSV, PCV-2, IAV-S, or sham inoculation. Total RNA was pooled for each group and time-point (1, 3, 6, and 14 dpi) to make 16 libraries-analyses are by Digital Gene Expression Tag Profiling (DGETP). The data underwent standard filtering to generate a list of sequence tag raw counts that were then analyzed using multidimensional and differential expression statistical tests. The results showed that PRRSV, IAV-S and PCV-2 viral infections followed a clinical course in the pigs typical of experimental infection of young pigs with these viruses. Gene expression results echoed this course, as well as uncovered genes related to intersecting and unique host immune responses to the three viruses. By testing and observing the host response to other respiratory viruses, our study has elucidated similarities and differences that can assist in the development of vaccines and therapeutics that shorten or prevent a chronic PRRSV infection.
Collapse
Affiliation(s)
- Laura C. Miller
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50161, USA; (D.S.F.); (K.M.L.)
| | - Damarius S. Fleming
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50161, USA; (D.S.F.); (K.M.L.)
- Oak Ridge Associated Universities/Oak Ridge Institute for Science and Education, Oakridge, TN 37830, USA
| | - Kelly M. Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50161, USA; (D.S.F.); (K.M.L.)
| |
Collapse
|
157
|
Adrover JM, Aroca-Crevillén A, Crainiciuc G, Ostos F, Rojas-Vega Y, Rubio-Ponce A, Cilloniz C, Bonzón-Kulichenko E, Calvo E, Rico D, Moro MA, Weber C, Lizasoaín I, Torres A, Ruiz-Cabello J, Vázquez J, Hidalgo A. Programmed 'disarming' of the neutrophil proteome reduces the magnitude of inflammation. Nat Immunol 2020; 21:135-144. [PMID: 31932813 PMCID: PMC7223223 DOI: 10.1038/s41590-019-0571-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
The antimicrobial functions of neutrophils are facilitated by a defensive armamentarium of proteins stored in granules, and by the formation of neutrophil extracellular traps (NETs). However, the toxic nature of these structures poses a threat to highly vascularized tissues, such as the lungs. Here, we identified a cell-intrinsic program that modified the neutrophil proteome in the circulation and caused the progressive loss of granule content and reduction of the NET-forming capacity. This program was driven by the receptor CXCR2 and by regulators of circadian cycles. As a consequence, lungs were protected from inflammatory injury at times of day or in mouse mutants in which granule content was low. Changes in the proteome, granule content and NET formation also occurred in human neutrophils, and correlated with the incidence and severity of respiratory distress in pneumonia patients. Our findings unveil a 'disarming' strategy of neutrophils that depletes protein stores to reduce the magnitude of inflammation.
Collapse
Affiliation(s)
- Jose M Adrover
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alejandra Aroca-Crevillén
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Georgiana Crainiciuc
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Fernando Ostos
- Unidad de Investigación Neurovascular, Department of Pharmacology, Faculty of Medicine, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Yeny Rojas-Vega
- Advanced Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Andrea Rubio-Ponce
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Catia Cilloniz
- Department of Pneumology, Institut Clinic de Respiratori, Hospital Clinic of Barcelona, and Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Ciber de Enfermedades, Barcelona, Spain
| | - Elena Bonzón-Kulichenko
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Enrique Calvo
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Daniel Rico
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - María A Moro
- Unidad de Investigación Neurovascular, Department of Pharmacology, Faculty of Medicine, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximillians University, Munich, Germany
- German Cardiovascular Research Centre (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Ignacio Lizasoaín
- Unidad de Investigación Neurovascular, Department of Pharmacology, Faculty of Medicine, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Antoni Torres
- Department of Pneumology, Institut Clinic de Respiratori, Hospital Clinic of Barcelona, and Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Ciber de Enfermedades, Barcelona, Spain
| | - Jesús Ruiz-Cabello
- Advanced Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIC biomaGUNE, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Ciber de Enfermedades Respiratorias, Madrid, Spain
- Universidad Complutense Madrid, Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
- Institute for Cardiovascular Prevention, Ludwig-Maximillians University, Munich, Germany.
| |
Collapse
|
158
|
Lämmermann T, Kastenmüller W. Concepts of GPCR-controlled navigation in the immune system. Immunol Rev 2020; 289:205-231. [PMID: 30977203 PMCID: PMC6487968 DOI: 10.1111/imr.12752] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
G‐protein–coupled receptor (GPCR) signaling is essential for the spatiotemporal control of leukocyte dynamics during immune responses. For efficient navigation through mammalian tissues, most leukocyte types express more than one GPCR on their surface and sense a wide range of chemokines and chemoattractants, leading to basic forms of leukocyte movement (chemokinesis, haptokinesis, chemotaxis, haptotaxis, and chemorepulsion). How leukocytes integrate multiple GPCR signals and make directional decisions in lymphoid and inflamed tissues is still subject of intense research. Many of our concepts on GPCR‐controlled leukocyte navigation in the presence of multiple GPCR signals derive from in vitro chemotaxis studies and lower vertebrates. In this review, we refer to these concepts and critically contemplate their relevance for the directional movement of several leukocyte subsets (neutrophils, T cells, and dendritic cells) in the complexity of mouse tissues. We discuss how leukocyte navigation can be regulated at the level of only a single GPCR (surface expression, competitive antagonism, oligomerization, homologous desensitization, and receptor internalization) or multiple GPCRs (synergy, hierarchical and non‐hierarchical competition, sequential signaling, heterologous desensitization, and agonist scavenging). In particular, we will highlight recent advances in understanding GPCR‐controlled leukocyte navigation by intravital microscopy of immune cells in mice.
Collapse
Affiliation(s)
- Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | |
Collapse
|
159
|
Relationship of Late Lactation Milk Somatic Cell Count and Cathelicidin with Intramammary Infection in Small Ruminants. Pathogens 2020; 9:pathogens9010037. [PMID: 31906374 PMCID: PMC7168667 DOI: 10.3390/pathogens9010037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/21/2019] [Accepted: 12/28/2019] [Indexed: 12/16/2022] Open
Abstract
Late lactation is a critical moment for making mastitis management decisions, but in small ruminants the reliability of diagnostic tests is typically lower at this stage. We evaluated somatic cell counts (SCC) and cathelicidins (CATH) in late lactation sheep and goat milk for their relationship with intramammary infections (IMI), as diagnosed by bacteriological culture (BC). A total of 315 sheep and 223 goat half-udder milk samples collected in the last month of lactation were included in the study. IMI prevalence was 10.79% and 15.25%, respectively, and non-aureus staphylococci were the most common finding. Taking BC as a reference, the diagnostic performance of SCC and CATH was quite different in the two species. In sheep, receiver operating characteristic (ROC) analysis produced a higher area under the curve (AUC) value for CATH than SCC (0.9041 versus 0.8829, respectively). Accordingly, CATH demonstrated a higher specificity than SCC (82.92% versus 73.67%, respectively) at comparable sensitivity (91.18%). Therefore, CATH showed a markedly superior diagnostic performance than SCC in late lactation sheep milk. In goats, AUC was <0.67 for both parameters, and CATH was less specific than SCC (61.90% versus 65.08%) at comparable sensitivity (64.71%). Therefore, both CATH and SCC performed poorly in late lactation goats. In conclusion, sheep can be screened for mastitis at the end of lactation, while goats should preferably be tested at peak lactation. In late lactation sheep, CATH should be preferred over SCC for its higher specificity, but careful cost/benefit evaluations will have to be made.
Collapse
|
160
|
Characterization of IL-10-producing neutrophils in cattle infected with Ostertagia ostertagi. Sci Rep 2019; 9:20292. [PMID: 31889109 PMCID: PMC6937330 DOI: 10.1038/s41598-019-56824-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
IL-10 is a master regulator of immune responses, but its cellular source and function in cattle during the initial phase of immune priming have not been well established. Despite a massive B cell response in the abomasal draining lymph nodes in Ostertagia ostertagi (OO)-infected cattle, protective immunity is slow to develop, and partial protection requires years of repeated exposure. In addressing this problem, our initial hypothesis was that B cells produce IL-10 that downregulates the host protective immune response. However, our results showed that neutrophils made up the majority of IL-10-producing cells in circulation and in secondary lymphoid tissues, particularly the spleen (80%). Conversely, IL-10-producing B cells were rare. In addition, approximately 10% to 20% of the neutrophils in the blood and spleen expressed MHC II and were IL-10 negative, suggesting that neutrophils could also participate in antigen presentation. In vitro investigation of bovine neutrophils revealed that exposure thereof to OO extract increased IL-10 and MHC II expression in these cells in a dose-dependent manner, consistent with IL-10+/MHC II+ neutrophils detected in cattle shortly after experimental OO infection. Co-culture of untreated neutrophils with anti-CD3 antibody (Ab)-stimulated CD4+ T cells led to enhanced T cell activation; also, IL-10 depletion with neutralizing Ab enhanced the stimulatory function of neutrophils. OO extract depressed neutrophil stimulation of CD4+ T cells in the presence of IL-10-neutralizing Ab, suggesting that OO utilizes both IL-10-dependent and independent mechanisms to manipulate the bovine immune response. Finally, contact and viability were required for T cell-stimulatory neutrophil function. This report, to the best of our knowledge, is the first to demonstrate that neutrophil-derived IL-10 is directly involved in T cell regulation in cattle. Our data suggest that neutrophils and neutrophil-derived IL-10 are co-opted by nematode parasites and other pathogens to attenuate host immune responses and facilitate pathogen survival.
Collapse
|
161
|
Matlung HL, Babes L, Zhao XW, van Houdt M, Treffers LW, van Rees DJ, Franke K, Schornagel K, Verkuijlen P, Janssen H, Halonen P, Lieftink C, Beijersbergen RL, Leusen JHW, Boelens JJ, Kuhnle I, van der Werff Ten Bosch J, Seeger K, Rutella S, Pagliara D, Matozaki T, Suzuki E, Menke-van der Houven van Oordt CW, van Bruggen R, Roos D, van Lier RAW, Kuijpers TW, Kubes P, van den Berg TK. Neutrophils Kill Antibody-Opsonized Cancer Cells by Trogoptosis. Cell Rep 2019; 23:3946-3959.e6. [PMID: 29949776 DOI: 10.1016/j.celrep.2018.05.082] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/30/2018] [Accepted: 05/23/2018] [Indexed: 02/07/2023] Open
Abstract
Destruction of cancer cells by therapeutic antibodies occurs, at least in part, through antibody-dependent cellular cytotoxicity (ADCC), and this can be mediated by various Fc-receptor-expressing immune cells, including neutrophils. However, the mechanism(s) by which neutrophils kill antibody-opsonized cancer cells has not been established. Here, we demonstrate that neutrophils can exert a mode of destruction of cancer cells, which involves antibody-mediated trogocytosis by neutrophils. Intimately associated with this is an active mechanical disruption of the cancer cell plasma membrane, leading to a lytic (i.e., necrotic) type of cancer cell death. Furthermore, this mode of destruction of antibody-opsonized cancer cells by neutrophils is potentiated by CD47-SIRPα checkpoint blockade. Collectively, these findings show that neutrophil ADCC toward cancer cells occurs by a mechanism of cytotoxicity called trogoptosis, which can be further improved by targeting CD47-SIRPα interactions.
Collapse
Affiliation(s)
- Hanke L Matlung
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Liane Babes
- Immunology Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Xi Wen Zhao
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michel van Houdt
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Louise W Treffers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dieke J van Rees
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Katka Franke
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Karin Schornagel
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Verkuijlen
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Hans Janssen
- Division of Cell Biology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Pasi Halonen
- Division of Molecular Carcinogenesis and the NKI Robotics and Screening Center, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis and the NKI Robotics and Screening Center, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis and the NKI Robotics and Screening Center, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jeanette H W Leusen
- Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jaap J Boelens
- U-DANCE, Laboratory for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands; Department of Pediatrics, Blood and Marrow Transplantation Program, UMC Utrecht, Utrecht, the Netherlands
| | - Ingrid Kuhnle
- Department of Pediatrics, University Medicine Göttingen, Göttingen, Germany
| | | | - Karl Seeger
- Department of Pediatric Oncology/Hematology, Otto-Heubner-Center for Pediatric and Adolescent Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sergio Rutella
- Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Daria Pagliara
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Takashi Matozaki
- Department of Biochemistry and Molecular Biology, Division of Molecular and Cellular Signaling, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Eiji Suzuki
- Department of Breast Surgery, Kyoto University Hospital, Kyoto, Japan
| | | | - Robin van Bruggen
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rene A W van Lier
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Kubes
- Immunology Research Group, University of Calgary, Calgary, Alberta, Canada
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Molecular Cell Biology and Immunology, VU Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
162
|
Tavernaro I, Rodrigo AM, Kandziora M, Kuntz S, Dernedde J, Trautwein C, Tacke F, Blas‐Garcia A, Bartneck M. Modulating Myeloid Immune Cell Migration Using Multivalently Presented Monosaccharide Ligands for Advanced Immunotherapy. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Isabella Tavernaro
- Institute of Inorganic and Analytical Chemistry Justus‐Liebig‐University Giessen Heinrich‐Buff‐Ring 17 35392 Giessen Germany
| | - Alberto Marti Rodrigo
- Dpto.Farmacología Facultad de Medicina Avda Blasco Ibañez n.15‐17 46010 Valencia Spain
| | - Maja Kandziora
- Institute of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Sabine Kuntz
- Institute of Nutritional Sciences Justus‐Liebig‐University Giessen Wilhelmstraße 20 35392 Giessen Germany
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie Charité‐Universitätsmedizin Berlin Augustenburger Platz 1 13353 Berlin Germany
| | | | - Frank Tacke
- Department of Hepatology & Gastroenterology Charité‐Universitätsmedizin Berlin Augustenburger Platz 1 13353 Berlin Germany
| | - Ana Blas‐Garcia
- Dpto.Farmacología Facultad de Medicina Avda Blasco Ibañez n.15‐17 46010 Valencia Spain
| | | |
Collapse
|
163
|
Awasthi D, Nagarkoti S, Sadaf S, Chandra T, Kumar S, Dikshit M. Glycolysis dependent lactate formation in neutrophils: A metabolic link between NOX-dependent and independent NETosis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165542. [PMID: 31473341 DOI: 10.1016/j.bbadis.2019.165542] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/06/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022]
|
164
|
Assessment of Neutrophil Apoptosis. Methods Mol Biol 2019. [PMID: 31728991 DOI: 10.1007/978-1-0716-0154-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The process of neutrophil apoptosis has an important role in the resolution of acute inflammation. Apoptotic cell death is characterized by a coordinated sequence of cellular alterations that serve to uncouple neutrophil effector functions whilst maintaining plasma membrane integrity. In this way the release on neutrophil intracellular contents, including proteases, glycosidases, and reactive oxygen species, is limited during apoptosis. In addition, plasma membrane alterations associated with neutrophil apoptosis provide molecular cues that enable recognition by phagocytic cells, including macrophages. The recognition and uptake of apoptotic neutrophils by macrophages dampens proinflammatory responses to pathogen- or damage-associated molecular patterns and triggers release of proresolution mediators, that further promote resolution of inflammation. The key cellular and molecular events that act to control neutrophil apoptosis and subsequent macrophage phagocytosis have been characterized by in vitro studies, unveiling potential therapeutic targets for the manipulation of these regulatory pathways. In this chapter, we outline some of the key assays that are used to assess neutrophil apoptosis in vitro, together with methods to assess activation of the apoptotic machinery and phagocytic clearance of apoptotic neutrophils.
Collapse
|
165
|
Chatterjee S, Lee LY, Kawahara R, Abrahams JL, Adamczyk B, Anugraham M, Ashwood C, Sumer‐Bayraktar Z, Briggs MT, Chik JHL, Everest‐Dass A, Förster S, Hinneburg H, Leite KRM, Loke I, Möginger U, Moh ESX, Nakano M, Recuero S, Sethi MK, Srougi M, Stavenhagen K, Venkatakrishnan V, Wongtrakul‐Kish K, Diestel S, Hoffmann P, Karlsson NG, Kolarich D, Molloy MP, Muders MH, Oehler MK, Packer NH, Palmisano G, Thaysen‐Andersen M. Protein Paucimannosylation Is an EnrichedN‐Glycosylation Signature of Human Cancers. Proteomics 2019; 19:e1900010. [DOI: 10.1002/pmic.201900010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/25/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Sayantani Chatterjee
- Department of Molecular Sciences and Biomolecular Discovery and Design Research Centre (BDDRC) Macquarie University Sydney 2109 Australia
| | - Ling Y. Lee
- Department of Molecular Sciences and Biomolecular Discovery and Design Research Centre (BDDRC) Macquarie University Sydney 2109 Australia
- ISGlobal, Barcelona Centre for International Health Research (CRESIB) Hospital Clínic–Universitat de Barcelona Barcelona 08193 Spain
| | - Rebeca Kawahara
- Department of Molecular Sciences and Biomolecular Discovery and Design Research Centre (BDDRC) Macquarie University Sydney 2109 Australia
- Department of Parasitology, Institute of Biomedical Sciences University of São Paulo São Paulo 01000 Brazil
| | - Jodie L. Abrahams
- Department of Molecular Sciences and Biomolecular Discovery and Design Research Centre (BDDRC) Macquarie University Sydney 2109 Australia
- Institute for Glycomics, Griffith University Gold Coast 4222 Australia
| | - Barbara Adamczyk
- Department of Medical Biochemistry and Cell Biology Institute of Biomedicine, Sahlgrenska Academy University of Gothenburg Gothenburg SE 405 30 Sweden
| | - Merrina Anugraham
- Department of Molecular Sciences and Biomolecular Discovery and Design Research Centre (BDDRC) Macquarie University Sydney 2109 Australia
- Institute of Biological Chemistry Academia Sinica Taipei 11529 Taiwan
| | - Christopher Ashwood
- Department of Molecular Sciences and Biomolecular Discovery and Design Research Centre (BDDRC) Macquarie University Sydney 2109 Australia
- Department of Biochemistry Medical College of Wisconsin Milwaukee WI 53226 USA
| | - Zeynep Sumer‐Bayraktar
- Department of Molecular Sciences and Biomolecular Discovery and Design Research Centre (BDDRC) Macquarie University Sydney 2109 Australia
- School of Life and Environmental Sciences Charles Perkins Centre (CPC), The University of Sydney Sydney 2006 Australia
| | - Matthew T. Briggs
- Future Industries Institute Mawson Lakes Campus, University of South Australia Adelaide 5005 Australia
| | - Jenny H. L. Chik
- Department of Molecular Sciences and Biomolecular Discovery and Design Research Centre (BDDRC) Macquarie University Sydney 2109 Australia
- International Collaboration on Repair Discoveries Vancouver Coastal Health Research Institute and Department of Pathology and Laboratory Medicine The University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Arun Everest‐Dass
- Department of Molecular Sciences and Biomolecular Discovery and Design Research Centre (BDDRC) Macquarie University Sydney 2109 Australia
- Institute for Glycomics, Griffith University Gold Coast 4222 Australia
| | - Sarah Förster
- Rudolf‐Becker‐Laboratory Institute of Pathology University Hospital Bonn Bonn 53127 Germany
| | - Hannes Hinneburg
- Department of Molecular Sciences and Biomolecular Discovery and Design Research Centre (BDDRC) Macquarie University Sydney 2109 Australia
| | - Katia R. M. Leite
- Laboratório de Investigação Médica da Disciplina de Urologia (LIM55) Faculdade de Medicina da FMUSP Universidade de Sao Paulo São Paulo 01000 Brazil
| | - Ian Loke
- Department of Molecular Sciences and Biomolecular Discovery and Design Research Centre (BDDRC) Macquarie University Sydney 2109 Australia
- Department of Biological Sciences National University of Singapore Singapore 119077 Singapore
| | - Uwe Möginger
- Department for Biochemistry and Molecular Biology University of Southern Denmark Odense 5230 Denmark
| | - Edward S. X. Moh
- Department of Molecular Sciences and Biomolecular Discovery and Design Research Centre (BDDRC) Macquarie University Sydney 2109 Australia
- ARC Centre for Nanoscale Biophotonics Macquarie University Sydney 2109 Australia
| | - Miyako Nakano
- Department of Molecular Sciences and Biomolecular Discovery and Design Research Centre (BDDRC) Macquarie University Sydney 2109 Australia
- Graduate School of Advanced Sciences of Matter Hiroshima University Hiroshima 739‐8527 Japan
| | - Saulo Recuero
- Laboratório de Investigação Médica da Disciplina de Urologia (LIM55) Faculdade de Medicina da FMUSP Universidade de Sao Paulo São Paulo 01000 Brazil
| | - Manveen K. Sethi
- Department of Molecular Sciences and Biomolecular Discovery and Design Research Centre (BDDRC) Macquarie University Sydney 2109 Australia
- Center for Biomedical Mass Spectrometry Department of Biochemistry Boston University School of Medicine Boston University Boston MA 02215 USA
| | - Miguel Srougi
- Laboratório de Investigação Médica da Disciplina de Urologia (LIM55) Faculdade de Medicina da FMUSP Universidade de Sao Paulo São Paulo 01000 Brazil
| | - Kathrin Stavenhagen
- Department of Molecular Sciences and Biomolecular Discovery and Design Research Centre (BDDRC) Macquarie University Sydney 2109 Australia
- Beth Israel Deaconess Medical Center Department of Surgery and Harvard Medical School Center for Glycoscience Harvard Medical School Boston MA 02215 USA
| | - Vignesh Venkatakrishnan
- Department of Rheumatology and Inflammation Research Institute of Medicine, Sahlgrenska Academy University of Gothenburg Gothenburg SE 405 30 Sweden
| | - Katherine Wongtrakul‐Kish
- Department of Molecular Sciences and Biomolecular Discovery and Design Research Centre (BDDRC) Macquarie University Sydney 2109 Australia
- Bioprocessing Technology Institute A*STAR Singapore 13862 Singapore
| | - Simone Diestel
- Institute of Nutrition and Food Sciences University of Bonn Bonn 53127 Germany
| | - Peter Hoffmann
- Future Industries Institute Mawson Lakes Campus, University of South Australia Adelaide 5005 Australia
| | - Niclas G. Karlsson
- Department of Medical Biochemistry and Cell Biology Institute of Biomedicine, Sahlgrenska Academy University of Gothenburg Gothenburg SE 405 30 Sweden
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University Gold Coast 4222 Australia
| | - Mark P. Molloy
- Department of Molecular Sciences and Biomolecular Discovery and Design Research Centre (BDDRC) Macquarie University Sydney 2109 Australia
- Faculty of Medicine and Health Sydney School of Medicine Royal North Shore Hospital Sydney 2065 Australia
| | - Michael H. Muders
- Rudolf‐Becker‐Laboratory Institute of Pathology University Hospital Bonn Bonn 53127 Germany
| | - Martin K. Oehler
- Department of Gynaecological Oncology Royal Adelaide Hospital Adelaide 5000 Australia
| | - Nicolle H. Packer
- Department of Molecular Sciences and Biomolecular Discovery and Design Research Centre (BDDRC) Macquarie University Sydney 2109 Australia
- Institute for Glycomics, Griffith University Gold Coast 4222 Australia
- ARC Centre for Nanoscale Biophotonics Macquarie University Sydney 2109 Australia
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences University of São Paulo São Paulo 01000 Brazil
| | - Morten Thaysen‐Andersen
- Department of Molecular Sciences and Biomolecular Discovery and Design Research Centre (BDDRC) Macquarie University Sydney 2109 Australia
| |
Collapse
|
166
|
Lisowska-Myjak B, Skarżyńska E, Płazińska M, Jakimiuk A. Relationships between meconium concentrations of acute phase proteins. Clin Exp Pharmacol Physiol 2019; 45:1218-1220. [PMID: 29908081 DOI: 10.1111/1440-1681.12995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/12/2023]
Abstract
Meconium concentrations of naturally accumulated ceruloplasmin (CER), lactoferrin (LF), and neutrophil gelatinase-associated lipocalin (NGAL) and their relationships considered as a panel of acute phase proteins could be used for the assessment of fetal homeostasis. CER, LF and NGAL concentrations were measured using enzyme-linked immunosorbent assay kits in meconium portions (n = 80) collected from 19 healthy neonates. The coefficients of variation (CV) of the meconium LF (1.77) and NGAL (1.26) were about two-fold higher than that of CER (0.73) with significant (P < 0.05) correlations between all three parameters. The LF to NGAL ratio (CV = 0.67) correlated strongly with the CER concentrations (r = 0.39, P < 0.01). These correlations between CER, LF and NGAL concentrations suggest their combined involvement in the metabolic processes in the developing fetus.
Collapse
Affiliation(s)
- Barbara Lisowska-Myjak
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Skarżyńska
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, Warsaw, Poland
| | - Maria Płazińska
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Artur Jakimiuk
- Institute of Mother and Child, Reproductive Health Department, Warsaw, Poland
| |
Collapse
|
167
|
Volkmann J, Schmitz J, Nordlohne J, Dong L, Helmke A, Sen P, Immenschuh S, Bernhardt WM, Gwinner W, Bräsen JH, Schmitt R, Haller H, von Vietinghoff S. Kidney injury enhances renal G-CSF expression and modulates granulopoiesis and human neutrophil CD177 in vivo. Clin Exp Immunol 2019; 199:97-108. [PMID: 31509227 PMCID: PMC6904607 DOI: 10.1111/cei.13372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2019] [Indexed: 12/25/2022] Open
Abstract
Kidney injury significantly increases overall mortality. Neutrophilic granulocytes (neutrophils) are the most abundant human blood leukocytes. They are characterized by a high turnover rate, chiefly controlled by granulocyte colony stimulating factor (G‐CSF). The role of kidney injury and uremia in regulation of granulopoiesis has not been reported. Kidney transplantation, which inherently causes ischemia–reperfusion injury of the graft, elevated human neutrophil expression of the surface glycoprotein CD177. CD177 is among the most G‐CSF‐responsive neutrophil genes and reversibly increased on neutrophils of healthy donors who received recombinant G‐CSF. In kidney graft recipients, a transient rise in neutrophil CD177 correlated with renal tubular epithelial G‐CSF expression. In contrast, CD177 was unaltered in patients with chronic renal impairment and independent of renal replacement therapy. Under controlled conditions of experimental ischemia–reperfusion and unilateral ureteral obstruction injuries in mice, renal G‐CSF mRNA and protein expression significantly increased and systemic neutrophilia developed. Human renal tubular epithelial cell G‐CSF expression was promoted by hypoxia and proinflammatory cytokine interleukin 17A in vitro. Clinically, recipients of ABO blood group‐incompatible kidney grafts developed a larger rise in neutrophil CD177. Their grafts are characterized by complement C4d deposition on the renal endothelium, even in the absence of rejection. Indeed, complement activation, but not hypoxia, induced primary human endothelial cell G‐CSF expression. Our data demonstrate that kidney injury induces renal G‐CSF expression and modulates granulopoiesis. They delineate differential G‐CSF regulation in renal epithelium and endothelium. Altered granulopoiesis may contribute to the systemic impact of kidney injury.
Collapse
Affiliation(s)
- J Volkmann
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - J Schmitz
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - J Nordlohne
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - L Dong
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - A Helmke
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - P Sen
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - S Immenschuh
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - W M Bernhardt
- Clinic for Hypertension, Kidney- and Metabolic Diseases Hannover, Hannover, Germany
| | - W Gwinner
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - J H Bräsen
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | - R Schmitt
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - H Haller
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - S von Vietinghoff
- Department of Internal Medicine, Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
168
|
Bartneck M, Wang J. Therapeutic Targeting of Neutrophil Granulocytes in Inflammatory Liver Disease. Front Immunol 2019; 10:2257. [PMID: 31616430 PMCID: PMC6764082 DOI: 10.3389/fimmu.2019.02257] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022] Open
Abstract
Neutrophil granulocytes are the most numerous type of leukocyte in humans bearing an enormous, yet largely unexplored therapeutic potential. Scientists have very recently increased their efforts to study and understand these cells which contribute to various types of inflammatory diseases and cancer. The mechanisms that regulate neutrophil recruitment to inflamed tissues and neutrophil cytotoxic activities against host tissues and pathogens require more attention. The reactive oxygen species (ROS) are a popular source of cellular stress and organ injury, and are critically expressed by neutrophils. By combating pathogens using molecular combat factors such as neutrophil extracellular traps (NETs), these are immobilized and killed i.e., by ROS. NETs and ROS are essential for the immune defense, but upon excessive activation, may also harm healthy tissue. Thus, exploring new routes for modulating their migration and activation is highly desired for creating novel anti-inflammatory treatment options. Leukocyte transmigration represents a key process for inflammatory cell infiltration to injury sites. In this review, we briefly summarize the differentiation and roles of neutrophils, with a spotlight on intravital imaging. We further discuss the potential of nanomedicines, i.e., selectin mimetics to target cell migration and influence liver disease outcome in animal models. Novel perspectives further arise from formulations of the wide array of options of small non-coding RNA such as small interfering RNA (siRNA) and micro-RNA (miR) which exhibit enzymatic functions: while siRNA binds and degrades a single mRNA based on full complementarity of binding, miR can up and down-regulate multiple targets in gene transcription and translation, mediated by partial complementarity of binding. Notably, miR is known to regulate at least 60% of the protein-coding genes and thus includes a potent strategy for a large number of targets in neutrophils. Nanomedicines can combine properties of different drugs in a single formulation, i.e., combining surface functionalization with ligands and drug delivery. Inevitably, nanomedicines accumulate in other phagocytes, a fact that should be controlled for every novel formulation to restrain activation of macrophages or modifications of the immunological synapse. Controlled drug release enabled by nanotechnological delivery systems may advance the options of modulating neutrophil activation and migration.
Collapse
Affiliation(s)
- Matthias Bartneck
- Department of Medicine III, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
169
|
The Possible Role of Neutrophils in the Induction of Osteoclastogenesis. J Immunol Res 2019; 2019:8672604. [PMID: 31637266 PMCID: PMC6766092 DOI: 10.1155/2019/8672604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/18/2019] [Indexed: 12/24/2022] Open
Abstract
The ligand of the receptor activator of NF-κB (RANKL) is a key molecule in the formation of osteoclasts, the key cells that cause the disease-associated alveolar bone resorption in periodontitis. We hypothesized that polymorphonuclear leukocytes (PMNs), found as the most prominent cells of inflamed periodontal tissues, could play an important role in providing signals to trigger osteoclastogenesis and thus activating pathological bone resorption in periodontitis. RANKL expression was investigated on circulatory PMNs (cPMNs) and oral PMNs (oPMNs) taken from both controls and periodontitis patients. On average, 2.3% and 2.4% RANKL expression was detected on the cPMNs and oPMNs from periodontitis patients, which did not differ significantly from healthy controls. Since cPMNs may acquire a more osteoclastogenesis-facilitating phenotype while migrating into the inflamed periodontium, we next investigated whether stimulated (with LPS, TNF-α, or IL-6) cPMNs have the capacity to contribute to osteoclastogenesis. Enduring surface expression of RANKL for short-lived cells as cPMNs was achieved by fixating stimulated cPMNs. RANKL expression on stimulated cPMNs, as assessed by flow cytometry and immunohistochemistry, was limited (6.48 ± 0.72%, mean expression ± SEM) after 24 and 48 hours of stimulation with LPS. Likewise, stimulation with TNF-α and IL-6 resulted in limited RANKL expression levels. These limited levels of expression did not induce osteoclastogenesis when cocultured with preosteoclasts for 10 days. We report that, under the aforementioned experimental conditions, neither cPMNs nor oPMNs directly induced osteoclastogenesis. Further elucidation of the key cellular players and immune mediators that stimulate alveolar bone resorption in periodontitis will help to unravel its pathogenesis.
Collapse
|
170
|
Rodríguez-Carrio J, Carrillo-López N, Ulloa C, Seijo M, Rodríguez-García M, Rodríguez-Suárez C, Díaz-Corte C, Cannata-Andía JB, Suárez A, Dusso AS. A subset of low density granulocytes is associated with vascular calcification in chronic kidney disease patients. Sci Rep 2019; 9:13230. [PMID: 31519925 PMCID: PMC6744494 DOI: 10.1038/s41598-019-49429-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/24/2019] [Indexed: 01/11/2023] Open
Abstract
Inflammation is central to chronic kidney disease (CKD) pathogenesis and vascular outcomes, but the exact players remain unidentified. Since low density granulocytes (LDGs) are emerging mediators in inflammatory conditions, we aimed to evaluate whether LDGs may be altered in CKD and related to clinical outcomes as biomarkers. To his end, LDGs subsets were measured in peripheral blood by flow cytometry and confocal microscopy in 33 CKD patients undergoing peritoneal dialysis and 15 healthy controls (HC). Analyses were replicated in an additional cohort. DEF3 (marker of early granulopoiesis) gene expression on PBMCs was quantified by qPCR. Total CD15+ LDGs and both CD14lowCD16+ and CD14-CD16- subsets were expanded in CKD. The relative frequency of the CD14-CD16- subpopulation was higher among the CD15+ pool in CKD. This alteration was stable over-time. The increased CD14-CD16-CD15+ paralleled Kauppila scores and DEF3 expression, whereas no association was found with CD14lowCD16+ CD15+. Both subsets differed in their CD11b, CD10, CD35, CD31, CD62L, IFNAR1 and CD68 expression, FSC/SSC features and nuclear morphology, pointing to different origins and maturation status. In conclusion, LDGs were expanded in CKD showing a skewed distribution towards a CD14-CD16-CD15+ enrichment, in association with vascular calcification. DEF3 expression in PBMC can be a marker of LDG expansion.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Area of Immunology, Department of Functional Biology, University of Oviedo, Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III (ISCIII), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Catalina Ulloa
- Division of Nephrology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Mariana Seijo
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Laboratorio de Enfermedades Metabólicas Óseas, Hospital de Clínicas, Instituto de Inmunología, Genética y Metabolismo (INIGEM) CONICET- UBA, Buenos Aires, Argentina
| | - Minerva Rodríguez-García
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III (ISCIII), Hospital Universitario Central de Asturias, Oviedo, Spain
- Division of Nephrology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Carmen Díaz-Corte
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III (ISCIII), Hospital Universitario Central de Asturias, Oviedo, Spain
- Division of Nephrology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Jorge B Cannata-Andía
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III (ISCIII), Hospital Universitario Central de Asturias, Oviedo, Spain
- Department of Medicine, University of Oviedo, Oviedo, Spain
| | - Ana Suárez
- Area of Immunology, Department of Functional Biology, University of Oviedo, Oviedo, Spain.
| | - Adriana S Dusso
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Red de Investigación Renal (REDinREN), Instituto de Salud Carlos III (ISCIII), Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
171
|
Abdel-Azim H, Sun W, Wu L. Strategies to generate functionally normal neutrophils to reduce infection and infection-related mortality in cancer chemotherapy. Pharmacol Ther 2019; 204:107403. [PMID: 31470030 DOI: 10.1016/j.pharmthera.2019.107403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023]
Abstract
Neutrophils form an essential part of innate immunity against infection. Cancer chemotherapy-induced neutropenia (CCIN) is a condition in which the number of neutrophils in a patient's bloodstream is decreased, leading to increased susceptibility to infection. Granulocyte colony-stimulating factor (GCSF) has been the only approved treatment for CCIN over two decades. To date, CCIN-related infection and mortality remain a significant concern, as neutrophils generated in response to administered GCSF are functionally immature and cannot effectively fight infection. This review summarizes the molecular regulatory mechanisms of neutrophil granulocytic differentiation and innate immunity development, dissects the biology of GCSF in myeloid expansion, highlights the shortcomings of GCSF in CCIN treatment, updates the recent advance of a selective retinoid agonist that promotes neutrophil granulocytic differentiation, and evaluates the benefits of developing GCSF biosimilars to increase access to GCSF biologics versus seeking a new mode to fundamentally advance GCSF therapy for treatment of CCIN.
Collapse
Affiliation(s)
- Hisham Abdel-Azim
- Pediatric Hematology-Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles Saban Research Institute, University of Southern California Keck School of Medicine, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Weili Sun
- Pediatric Hematology-Oncology, City of Hope National Medical Center, 1500 E. Duarte road, Duarte, CA 91010, USA
| | - Lingtao Wu
- Research and Development, Therapeutic Approaches, 2712 San Gabriel Boulevard, Rosemead, CA 91770, USA.
| |
Collapse
|
172
|
Ravindran M, Khan MA, Palaniyar N. Neutrophil Extracellular Trap Formation: Physiology, Pathology, and Pharmacology. Biomolecules 2019; 9:biom9080365. [PMID: 31416173 PMCID: PMC6722781 DOI: 10.3390/biom9080365] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
Neutrophil extracellular traps (NETs), a unique DNA framework decorated with antimicrobial peptides, have been in the scientific limelight for their role in a variety of pathologies ranging from cystic fibrosis to cancer. The formation of NETs, as well as relevant regulatory mechanisms, physiological factors, and pharmacological agents have not been systematically discussed in the context of their beneficial and pathological aspects. Novel forms of NET formation including vital NET formation continue to be uncovered, however, there remain fundamental questions around established mechanisms such as NADPH-oxidase (Nox)-dependent and Nox-independent NET formation. Whether NET formation takes place in the tissue versus the bloodstream, internal factors (e.g. reactive oxygen species (ROS) production and transcription factor activation), and external factors (e.g. alkaline pH and hypertonic conditions), have all been demonstrated to influence specific NET pathways. Elements of neutrophil biology such as transcription and mitochondria, which were previously of unknown significance, have been identified as critical mediators of NET formation through facilitating chromatin decondensation and generating ROS, respectively. While promising therapeutics inhibiting ROS, transcription, and gasdermin D are being investigated, neutrophil phagocytosis plays a critical role in host defense and any therapies targeting NET formation must avoid impairing the physiological functions of these cells. This review summarizes what is known in the many domains of NET research, highlights the most relevant challenges in the field, and inspires new questions that can bring us closer to a unified model of NET formation.
Collapse
Affiliation(s)
- Mithunan Ravindran
- Program in Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Meraj A Khan
- Program in Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Nades Palaniyar
- Program in Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A8, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S1A8, Canada.
| |
Collapse
|
173
|
Tjondro HC, Loke I, Chatterjee S, Thaysen-Andersen M. Human protein paucimannosylation: cues from the eukaryotic kingdoms. Biol Rev Camb Philos Soc 2019; 94:2068-2100. [PMID: 31410980 DOI: 10.1111/brv.12548] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022]
Abstract
Paucimannosidic proteins (PMPs) are bioactive glycoproteins carrying truncated α- or β-mannosyl-terminating asparagine (N)-linked glycans widely reported across the eukaryotic domain. Our understanding of human PMPs remains limited, despite findings documenting their existence and association with human disease glycobiology. This review comprehensively surveys the structures, biosynthetic routes and functions of PMPs across the eukaryotic kingdoms with the aim of synthesising an improved understanding on the role of protein paucimannosylation in human health and diseases. Convincing biochemical, glycoanalytical and biological data detail a vast structural heterogeneity and fascinating tissue- and subcellular-specific expression of PMPs within invertebrates and plants, often comprising multi-α1,3/6-fucosylation and β1,2-xylosylation amongst other glycan modifications and non-glycan substitutions e.g. O-methylation. Vertebrates and protists express less-heterogeneous PMPs typically only comprising variable core fucosylation of bi- and trimannosylchitobiose core glycans. In particular, the Manα1,6Manβ1,4GlcNAc(α1,6Fuc)β1,4GlcNAcβAsn glycan (M2F) decorates various human neutrophil proteins reportedly displaying bioactivity and structural integrity demonstrating that they are not degradation products. Less-truncated paucimannosidic glycans (e.g. M3F) are characteristic glycosylation features of proteins expressed by human cancer and stem cells. Concertedly, these observations suggest the involvement of human PMPs in processes related to innate immunity, tumorigenesis and cellular differentiation. The absence of human PMPs in diverse bodily fluids studied under many (patho)physiological conditions suggests extravascular residence and points to localised functions of PMPs in peripheral tissues. Absence of PMPs in Fungi indicates that paucimannosylation is common, but not universally conserved, in eukaryotes. Relative to human PMPs, the expression of PMPs in plants, invertebrates and protists is more tissue-wide and constitutive yet, similar to their human counterparts, PMP expression remains regulated by the physiology of the producing organism and PMPs evidently serve essential functions in development, cell-cell communication and host-pathogen/symbiont interactions. In most PMP-producing organisms, including humans, the N-acetyl-β-hexosaminidase isoenzymes and linkage-specific α-mannosidases are glycoside hydrolases critical for generating PMPs via N-acetylglucosaminyltransferase I (GnT-I)-dependent and GnT-I-independent truncation pathways. However, the identity and structure of many species-specific PMPs in eukaryotes, their biosynthetic routes, strong tissue- and development-specific expression, and diverse functions are still elusive. Deep exploration of these PMP features involving, for example, the characterisation of endogenous PMP-recognising lectins across a variety of healthy and N-acetyl-β-hexosaminidase-deficient human tissue types and identification of microbial adhesins reactive to human PMPs, are amongst the many tasks required for enhanced insight into the glycobiology of human PMPs. In conclusion, the literature supports the notion that PMPs are significant, yet still heavily under-studied biomolecules in human glycobiology that serve essential functions and create structural heterogeneity not dissimilar to other human N-glycoprotein types. Human PMPs should therefore be recognised as bioactive glycoproteins that are distinctly different from the canonical N-glycoprotein classes and which warrant a more dedicated focus in glycobiological research.
Collapse
Affiliation(s)
- Harry C Tjondro
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Ian Loke
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
174
|
Zhao G, Zhang T, Wu H, Jiang K, Qiu C, Deng G. MicroRNA let-7c Improves LPS-Induced Outcomes of Endometritis by Suppressing NF-κB Signaling. Inflammation 2019; 42:650-657. [PMID: 30406463 DOI: 10.1007/s10753-018-0922-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endometritis is a common inflammatory disease which endangers human and animal reproductive health. MicroRNA (miRNA) let-7c plays an important role in the inflammatory process; however, the regulatory underlying mechanism of let-7c in endometritis is unclear. In this study, we confirmed that let-7c was significantly reduced in LPS-induced mouse endometritis model, and overexpression of let-7c was able to effectively reduce uterine tissue damage caused by lipopolysaccharide (LPS), and then, a LPS-induced bovine endometrial epithelial cell (BEND) line was used to mimic the inflammatory model in vitro. Our data showed that overexpression of let-7c significantly reduced the expression of pro-inflammatory cytokines in BEND cells induced by LPS. Meanwhile, immunofluorescence and western blotting results showed that let-7c significantly inhibited LPS-induced phosphorylation of NF-κB, thereby inhibiting downstream pro-inflammatory cytokine expression. Taken together, our results suggested that let-7c ameliorates LPS-induced endometritis by attenuating the expression of pro-inflammatory cytokines via inhibition of the activation of NF-κB.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
175
|
Manchanda K, Kolarova H, Kerkenpaß C, Mollenhauer M, Vitecek J, Rudolph V, Kubala L, Baldus S, Adam M, Klinke A. MPO (Myeloperoxidase) Reduces Endothelial Glycocalyx Thickness Dependent on Its Cationic Charge. Arterioscler Thromb Vasc Biol 2019; 38:1859-1867. [PMID: 29903730 DOI: 10.1161/atvbaha.118.311143] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective- The leukocyte heme-enzyme MPO (myeloperoxidase) exerts proinflammatory effects on the vascular system primarily linked to its catalytic properties. Recent studies have shown that MPO, depending on its cationic charge, mediates neutrophil recruitment and activation. Here, we further investigated MPO's extracatalytic properties and its effect on endothelial glycocalyx (EG) integrity. Approach and Results- In vivo staining of murine cremaster muscle vessels with Alcian Blue 8GX provided evidence of an MPO-dependent decrease in anionic charge of the EG. MPO binding to the glycocalyx was further characterized using Chinese hamster ovary cells and its glycosaminoglycan mutants-pgsA-745 (mutant Chinese hamster ovary cells lacking heparan sulfate and chondroitin sulfate glycosaminoglycan) and pgsD-677 (mutant Chinese hamster ovary cells lacking heparan sulfate glycosaminoglycan), which revealed heparan sulfate as the main mediator of MPO binding. Further, EG integrity was assessed in terms of thickness using intravital microscopy of murine cremaster muscle. A significant reduction in EG thickness was observed on infusion of catalytically active MPO, as well as mutant inactive MPO and cationic polymer polylysine. Similar effects were also observed in wild-type mice after a local inflammatory stimulus but not in MPO-knockout mice. The reduction in EG thickness was reversed after removal of vessel-bound MPO, suggesting a possible physical collapse of the EG. Last, experiments with in vivo neutrophil depletion revealed that MPO also induced neutrophil-mediated shedding of the EG core protein, Sdc1 (syndecan-1). Conclusions- These findings provide evidence that MPO, via ionic interaction with heparan sulfate side chains, can cause neutrophil-dependent Sdc1 shedding and collapse of the EG structure.
Collapse
Affiliation(s)
- Kashish Manchanda
- From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- Cologne Cardiovascular Research Center, University of Cologne, Germany (K.M., S.B., A.K.)
| | - Hana Kolarova
- Institute of Biophysics AS CR, Brno, Czech Republic (H.K., J.V., L.K.)
- International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (H.K., J.V., L.K., A.K.)
| | - Christina Kerkenpaß
- From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
| | - Martin Mollenhauer
- From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
| | - Jan Vitecek
- Institute of Biophysics AS CR, Brno, Czech Republic (H.K., J.V., L.K.)
- International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (H.K., J.V., L.K., A.K.)
| | - Volker Rudolph
- From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
| | - Lukas Kubala
- Institute of Biophysics AS CR, Brno, Czech Republic (H.K., J.V., L.K.)
- International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (H.K., J.V., L.K., A.K.)
| | - Stephan Baldus
- From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- Cologne Cardiovascular Research Center, University of Cologne, Germany (K.M., S.B., A.K.)
| | - Matti Adam
- From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
| | - Anna Klinke
- From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.)
- International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (H.K., J.V., L.K., A.K.)
- Cologne Cardiovascular Research Center, University of Cologne, Germany (K.M., S.B., A.K.)
| |
Collapse
|
176
|
Harfi I, D'Hondt S, Sariban E. iPLA 2 Activation Mediates Granular Exocytosis and Corrects Microbicidal Defects in ROS-Deficient and CGD Human Neutrophils. J Clin Immunol 2019; 39:486-493. [PMID: 31154555 DOI: 10.1007/s10875-019-00630-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/11/2019] [Indexed: 11/30/2022]
Abstract
PURPOSE The ubiquitous calcium-independent phospholipase A2 enzyme (iPLA2) is inhibited by calmodulin binding and known to be responsible for phospholipid remodeling housekeeping functions including granule exocytosis-associated membrane fusion in normal human neutrophils. We evaluate in human neutrophils the iPLA2 secretagogue effects using normal neutrophils, where reactive oxygen species (ROS) generation has been blocked by diphenyleneiodonium, as well as in neutrophils from chronic granulomatous disease (CGD) patients. METHODS Neutrophils were pretreated with W7, a calmodulin inhibitor known to activate iPLA2 and exocytosis of granules, and vesicles as well as intra- and extra-microbicidal activity against Staphylococcus aureus and Aspergillus fumigatus were evaluated. RESULTS W7 increases exocytosis of primary, secondary, and tertiary granules and vesicles and improves neutrophil microbicidal activity against S. aureus and A. fumigatus. CONCLUSIONS In neutrophils, calmodulin-mediated iPLA2 inhibition controls granule and vesicle exocytosis in the phagosome and in the extracellular microenvironment. Relieving iPLA2 inhibition results in increased exocytosis of primary, secondary, and tertiary granules and secretory vesicles with correction of defective intracellular and extracellular microbicidal activity. In CGD patients presenting ROS defective production, this increase in the non-oxidative killing pathway partially corrects their microbicidal defects.
Collapse
Affiliation(s)
- Issam Harfi
- Pediatric Oncology Laboratory, Hôpital Universitaire des Enfants, 1020, Brussels, Belgium. .,Cancer Unit, Hôpital Universitaire des Enfants, 15, Avenue Jean-Joseph Crocq, 1020, Brussels, Belgium.
| | - Stéphanie D'Hondt
- Pediatric Oncology Laboratory, Hôpital Universitaire des Enfants, 1020, Brussels, Belgium
| | - Eric Sariban
- Pediatric Oncology Laboratory, Hôpital Universitaire des Enfants, 1020, Brussels, Belgium.,Cancer Unit, Hôpital Universitaire des Enfants, 15, Avenue Jean-Joseph Crocq, 1020, Brussels, Belgium
| |
Collapse
|
177
|
Abstract
This research communication reports the evaluation of cathelicidin in dairy goat milk for its relationship with the somatic cell count (SCC) and microbial culture results. Considering the limited performances of SCC for mastitis monitoring in goats, there is interest in evaluating alternative diagnostic tools. Cathelicidin is an antimicrobial protein involved in innate immunity of the mammary gland. In this work, half-udder milk was sampled bimonthly from a herd of 37 Alpine goats along an entire lactation and tested with the cathelicidin ELISA together with SCC and bacterial culture. Cathelicidin and SCC showed a strong correlation (r = 0.72; n = 360 milk samples). This was highest in mid-lactation (r = 0.83) and lowest in late lactation (r = 0.61), and was higher in primiparous (0.80, n = 130) than in multiparous goats (0.71, n = 230). Both markers increased with stage of lactation, but cathelicidin increased significantly less than SCC. In addition, peak level in late lactation was lower for cathelicidin (5.05-fold increase) than for SCC (7.64-fold increase). Twenty-one (5.8%) samples were positive to bacteriological culture, 20 for coagulase-negative staphylococci and one for Streptococcus spp.; 18 of them were positive to the cathelicidin ELISA (85.71% sensitivity). Sensitivity of SCC >500 000 and of SCC >1 000 000 cells/ml was lower (71.43 and 23.81%, respectively). Therefore, the high correlation of cathelicidin with SCC during the entire lactation, along with its lower increase in late lactation and good sensitivity in detecting intramammary infection (IMI), indicate a potential for monitoring subclinical mastitis in dairy goats. However, based on this preliminary assessment, specificity should be improved (40.41% for cathelicidin vs. 54.57 and 67.85% for SCC >500 000 and >1 000 000 cells/ml, respectively). Therefore, the application of cathelicidin for detecting goat IMI will require further investigation and optimization, especially concerning the definition of diagnostic thresholds.
Collapse
|
178
|
Zhou M, Yi Y, Hong L. Oridonin Ameliorates Lipopolysaccharide-Induced Endometritis in Mice via Inhibition of the TLR-4/NF-κBpathway. Inflammation 2019; 42:81-90. [PMID: 30132202 DOI: 10.1007/s10753-018-0874-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endometritis is a health threat to both humans and animals and poses a huge economic burden. Oridonin (Ori) is a natural diterpenoid isolated from the traditional Chinese herb Rabdosiarubescens (R. rubescens) and has multiple health-promoting effects, including antioxidant, anti-inflammatory, and antitumor effects. There is little evidence showing that Ori can effectively treat endometritis, and the relevant mechanisms need to be further clarified. In this study, we investigated the effects of Ori on LPS-induced endometritis in vivo. Additionally, we examined the effects of Ori on LPS-stimulated mouse endometrial epithelial cells (mEECs). The results showed that Ori treatment significantly alleviated LPS-induced endometritis and reduced the activity of myeloperoxidase. ELISA and qPCR results indicated that Ori dose-dependently decreased the expression of TNF-α, IL-1β, and IL-6 both in tissues and in mEECs. In addition, Ori was found to inhibit LPS-induced TLR4/NF-κB signaling pathway activation. These results suggest that Ori effectively attenuates LPS-induced endometritis by inhibiting the TLR4/NF-κB signaling pathway and that Ori might be an effective drug for the prevention and treatment of LPS-induced endometritis.
Collapse
Affiliation(s)
- Min Zhou
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, People's Republic of China
| | - Yinyi Yi
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, People's Republic of China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan City, Hubei Province, People's Republic of China.
| |
Collapse
|
179
|
Sande CJ, Njunge JM, Mwongeli Ngoi J, Mutunga MN, Chege T, Gicheru ET, Gardiner EM, Gwela A, Green CA, Drysdale SB, Berkley JA, Nokes DJ, Pollard AJ. Airway response to respiratory syncytial virus has incidental antibacterial effects. Nat Commun 2019; 10:2218. [PMID: 31101811 PMCID: PMC6525170 DOI: 10.1038/s41467-019-10222-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/26/2019] [Indexed: 01/01/2023] Open
Abstract
RSV infection is typically associated with secondary bacterial infection. We hypothesise that the local airway immune response to RSV has incidental antibacterial effects. Using coordinated proteomics and metagenomics analysis we simultaneously analysed the microbiota and proteomes of the upper airway and determined direct antibacterial activity in airway secretions of RSV-infected children. Here, we report that the airway abundance of Streptococcus was higher in samples collected at the time of RSV infection compared with samples collected one month later. RSV infection is associated with neutrophil influx into the airway and degranulation and is marked by overexpression of proteins with known antibacterial activity including BPI, EPX, MPO and AZU1. Airway secretions of children infected with RSV, have significantly greater antibacterial activity compared to RSV-negative controls. This RSV-associated, neutrophil-mediated antibacterial response in the airway appears to act as a regulatory mechanism that modulates bacterial growth in the airways of RSV-infected children.
Collapse
Affiliation(s)
- Charles J Sande
- KEMRI-Wellcome Trust Research Programme, Bofa Rd, Kilifi, - P.O. Box 230 - 80108, Kenya.
- Oxford Vaccine Group, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, Oxford, OX3 7LE, UK.
| | - James M Njunge
- KEMRI-Wellcome Trust Research Programme, Bofa Rd, Kilifi, - P.O. Box 230 - 80108, Kenya
| | - Joyce Mwongeli Ngoi
- KEMRI-Wellcome Trust Research Programme, Bofa Rd, Kilifi, - P.O. Box 230 - 80108, Kenya
| | - Martin N Mutunga
- KEMRI-Wellcome Trust Research Programme, Bofa Rd, Kilifi, - P.O. Box 230 - 80108, Kenya
| | - Timothy Chege
- KEMRI-Wellcome Trust Research Programme, Bofa Rd, Kilifi, - P.O. Box 230 - 80108, Kenya
| | - Elijah T Gicheru
- KEMRI-Wellcome Trust Research Programme, Bofa Rd, Kilifi, - P.O. Box 230 - 80108, Kenya
| | - Elizabeth M Gardiner
- KEMRI-Wellcome Trust Research Programme, Bofa Rd, Kilifi, - P.O. Box 230 - 80108, Kenya
| | - Agnes Gwela
- KEMRI-Wellcome Trust Research Programme, Bofa Rd, Kilifi, - P.O. Box 230 - 80108, Kenya
| | - Christopher A Green
- Oxford Vaccine Group, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, Oxford, OX3 7LE, UK
| | - Simon B Drysdale
- Oxford Vaccine Group, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, Oxford, OX3 7LE, UK
| | - James A Berkley
- KEMRI-Wellcome Trust Research Programme, Bofa Rd, Kilifi, - P.O. Box 230 - 80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, Oxford, UK
- The Childhood Acute Illness & Nutrition (CHAIN) Network, Nairobi, - P.O. Box 43640-00100, Kenya
| | - D James Nokes
- KEMRI-Wellcome Trust Research Programme, Bofa Rd, Kilifi, - P.O. Box 230 - 80108, Kenya
- School of Life Sciences and Zeeman Institute (SBIDER), University of Warwick, CV4 7AL, Coventry, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, Oxford, OX3 7LE, UK
| |
Collapse
|
180
|
Wnorowska U, Piktel E, Durnaś B, Fiedoruk K, Savage PB, Bucki R. Use of ceragenins as a potential treatment for urinary tract infections. BMC Infect Dis 2019; 19:369. [PMID: 31046689 PMCID: PMC6498624 DOI: 10.1186/s12879-019-3994-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) are one of the most common bacterial infections. High recurrence rates and the increasing antibiotic resistance among uropathogens constitute a large social and economic problem in current public health. We assumed that combination of treatment that includes the administration ceragenins (CSAs), will reinforce the effect of antimicrobial LL-37 peptide continuously produced by urinary tract epithelial cells. Such treatment might be an innovative approach to enhance innate antibacterial activity against multidrug-resistant E. coli. METHODS Antibacterial activity measured using killing assays. Biofilm formation was assessed using crystal violet staining. Viability of bacteria and bladder epithelial cells subjected to incubation with tested agents was determined using MTT assays. We investigated the effects of chosen molecules, both alone and in combinations against four clinical strains of E. coli, obtained from patients diagnosed with recurrent UTI. RESULTS We observed that the LL-37 peptide, whose concentration increases at sites of urinary infection, exerts increased bactericidal effect against E. coli when combined with ceragenins CSA-13 and CSA-131. CONCLUSION We suggest that the employment of combination of natural peptide LL-37 with synthetic analogs might be a potential solution to treat urinary tract infections caused by drug-resistant bacteria.
Collapse
Affiliation(s)
- Urszula Wnorowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Bonita Durnaś
- Department of Microbiology and Immunology, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, 25-001, Kielce, Poland
| | - Krzysztof Fiedoruk
- Department of Microbiology, Medical University of Bialystok, Bialystok, Poland
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland.
| |
Collapse
|
181
|
Jasper AE, McIver WJ, Sapey E, Walton GM. Understanding the role of neutrophils in chronic inflammatory airway disease. F1000Res 2019; 8. [PMID: 31069060 PMCID: PMC6489989 DOI: 10.12688/f1000research.18411.1] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
Airway neutrophilia is a common feature of many chronic inflammatory lung diseases and is associated with disease progression, often regardless of the initiating cause. Neutrophils and their products are thought to be key mediators of the inflammatory changes in the airways of patients with chronic obstructive pulmonary disease (COPD) and have been shown to cause many of the pathological features associated with disease, including emphysema and mucus hypersecretion. Patients with COPD also have high rates of bacterial colonisation and recurrent infective exacerbations, suggesting that neutrophil host defence mechanisms are impaired, a concept supported by studies showing alterations to neutrophil migration, degranulation and reactive oxygen species production in cells isolated from patients with COPD. Although the role of neutrophils is best described in COPD, many of the pathological features of this disease are not unique to COPD and also feature in other chronic inflammatory airway diseases, including asthma, cystic fibrosis, alpha-1 anti-trypsin deficiency, and bronchiectasis. There is increasing evidence for immune cell dysfunction contributing to inflammation in many of these diseases, focusing interest on the neutrophil as a key driver of pulmonary inflammation and a potential therapeutic target than spans diseases. This review discusses the evidence for neutrophilic involvement in COPD and also considers their roles in alpha-1 anti-trypsin deficiency, bronchiectasis, asthma, and cystic fibrosis. We provide an in-depth assessment of the role of the neutrophil in each of these conditions, exploring recent advances in understanding, and finally discussing the possibility of common mechanisms across diseases.
Collapse
Affiliation(s)
- Alice E Jasper
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - William J McIver
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| | - Georgia M Walton
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, UK, Birmingham, B15 2TT, UK
| |
Collapse
|
182
|
Kegerreis BJ, Catalina MD, Geraci NS, Bachali P, Lipsky PE, Grammer AC. Genomic Identification of Low-Density Granulocytes and Analysis of Their Role in the Pathogenesis of Systemic Lupus Erythematosus. THE JOURNAL OF IMMUNOLOGY 2019; 202:3309-3317. [PMID: 31019061 DOI: 10.4049/jimmunol.1801512] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/20/2019] [Indexed: 12/30/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of low-density granulocytes (LDGs) with a heightened capacity for spontaneous NETosis, but the contribution of LDGs to SLE pathogenesis remains unclear. To characterize LDGs in human SLE, gene expression profiles derived from isolated LDGs were characterized by weighted gene coexpression network analysis, and a 92-gene module was identified. The LDG gene signature was enriched in genes related to neutrophil degranulation and cell cycle regulation. This signature was assessed in gene expression datasets from two large-scale SLE clinical trials to study associations between LDG enrichment, SLE manifestations, and treatment regimens. LDG enrichment in the blood was associated with corticosteroid treatment as well as anti-dsDNA, low serum complement, renal manifestations, and vasculitis, but the latter two of these associations were dependent on concomitant corticosteroid treatment. In addition, LDG enrichment was associated with enrichment of gene signatures induced by type I IFN and TNF irrespective of corticosteroid treatment. Notably, LDG enrichment was not found in numerous tissues affected by SLE. Comparison with relevant reference datasets indicated that LDG enrichment is likely reflective of increased granulopoiesis in the bone marrow and not peripheral neutrophil activation. The results have uncovered important determinants of the appearance of LDGs in SLE and have emphasized the likely role of LDGs in specific aspects of lupus pathogenesis.
Collapse
Affiliation(s)
- Brian J Kegerreis
- RILITE Research Institute, Charlottesville, VA 22902; and AMPEL BioSolutions, Charlottesville, VA 22902
| | - Michelle D Catalina
- RILITE Research Institute, Charlottesville, VA 22902; and AMPEL BioSolutions, Charlottesville, VA 22902
| | - Nicholas S Geraci
- RILITE Research Institute, Charlottesville, VA 22902; and AMPEL BioSolutions, Charlottesville, VA 22902
| | - Prathyusha Bachali
- RILITE Research Institute, Charlottesville, VA 22902; and AMPEL BioSolutions, Charlottesville, VA 22902
| | - Peter E Lipsky
- RILITE Research Institute, Charlottesville, VA 22902; and AMPEL BioSolutions, Charlottesville, VA 22902
| | - Amrie C Grammer
- RILITE Research Institute, Charlottesville, VA 22902; and AMPEL BioSolutions, Charlottesville, VA 22902
| |
Collapse
|
183
|
Boskabady MH, Kaveh M, Shakeri F, Mohammadian Roshan N, Rezaee R. Alpha-linolenic acid ameliorates bronchial asthma features in ovalbumin-sensitized rats. ACTA ACUST UNITED AC 2019; 71:1089-1099. [PMID: 30993723 DOI: 10.1111/jphp.13094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/16/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Effect of alpha-linolenic acid (ALA) against ovalbumin (OVA)-induced inflammation, oxidant/antioxidant imbalance and pathological features was examined in rat. METHODS Total and differential WBC count and oxidant/antioxidant levels in BALF (bronchoalveolar lavage fluid) as well as lung pathological features were investigated in five groups of rats including controls (group C), rats sensitized with OVA (group S) and S treated with either ALA (0.2 and 0.4 mg/ml) or dexamethasone. KEY FINDINGS As compared to group C, in OVA-sensitized rats, increases in WBC counts, levels of oxidant biomarkers and most pathological scores were observed while lymphocyte percentage and antioxidants levels decreased. Treatment with ALA (0.2 and 0.4 mg/ml) significantly reduced total WBC, NO2 and NO3 levels, interstitial fibrosis and emphysema compared to sensitized group. The higher dose of ALA also significantly decreased neutrophil, eosinophil, and monocyte counts, MDA levels and interstitial inflammation but increased lymphocyte counts, as well as antioxidants levels, compared to sensitized group. Dexamethasone administration led to a significant improvement of most factors compared to group S but had no effects on total WBC count, bleeding and epithelial damage. CONCLUSIONS Alpha-linolenic acid suppressed inflammation and oxidative stress, making it a potential therapeutic candidate for treatment of airway inflammatory diseases such as bronchial asthma.
Collapse
Affiliation(s)
- Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Kaveh
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nama Mohammadian Roshan
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
184
|
Khan MA, Ali ZS, Sweezey N, Grasemann H, Palaniyar N. Progression of Cystic Fibrosis Lung Disease from Childhood to Adulthood: Neutrophils, Neutrophil Extracellular Trap (NET) Formation, and NET Degradation. Genes (Basel) 2019; 10:genes10030183. [PMID: 30813645 PMCID: PMC6471578 DOI: 10.3390/genes10030183] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic defects in cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene cause CF. Infants with CFTR mutations show a peribronchial neutrophil infiltration prior to the establishment of infection in their lung. The inflammatory response progressively increases in children that include both upper and lower airways. Infectious and inflammatory response leads to an increase in mucus viscosity and mucus plugging of small and medium-size bronchioles. Eventually, neutrophils chronically infiltrate the airways with biofilm or chronic bacterial infection. Perpetual infection and airway inflammation destroy the lungs, which leads to increased morbidity and eventual mortality in most of the patients with CF. Studies have now established that neutrophil cytotoxins, extracellular DNA, and neutrophil extracellular traps (NETs) are associated with increased mucus clogging and lung injury in CF. In addition to opportunistic pathogens, various aspects of the CF airway milieux (e.g., airway pH, salt concentration, and neutrophil phenotypes) influence the NETotic capacity of neutrophils. CF airway milieu may promote the survival of neutrophils and eventual pro-inflammatory aberrant NETosis, rather than the anti-inflammatory apoptotic death in these cells. Degrading NETs helps to manage CF airway disease; since DNAse treatment release cytotoxins from the NETs, further improvements are needed to degrade NETs with maximal positive effects. Neutrophil-T cell interactions may be important in regulating viral infection-mediated pulmonary exacerbations in patients with bacterial infections. Therefore, clarifying the role of neutrophils and NETs in CF lung disease and identifying therapies that preserve the positive effects of neutrophils, while reducing the detrimental effects of NETs and cytotoxic components, are essential in achieving innovative therapeutic advances.
Collapse
Affiliation(s)
- Meraj A Khan
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Zubair Sabz Ali
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
| | - Neil Sweezey
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Hartmut Grasemann
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, and University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
185
|
Mollinedo F. Neutrophil Degranulation, Plasticity, and Cancer Metastasis. Trends Immunol 2019; 40:228-242. [PMID: 30777721 DOI: 10.1016/j.it.2019.01.006] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
Abstract
Neutrophils are the first responders to inflammation and infection. Recently, an elevated neutrophil-to-lymphocyte ratio has generally become a prognostic indicator of poor overall survival in cancer. Accordingly, heterogeneous ill-defined neutrophil-like populations have been increasingly recognized as important players in cancer development. In addition, neutrophil granule proteins released upon cell activation have been associated with tumor progression; this differential granule mobilization may allow neutrophils - and possibly associated cancer cells - to leave the bloodstream and enter inflamed/infected tissues. This review discusses and proposes how granule mobilization may facilitate neutrophil-mediated transport of cancer cells into different tissues as well as leading to different cellular phenotypes that underlie remarkable neutrophil plasticity. This concept might inform novel neutrophil-centered approaches to putative cancer therapies.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| |
Collapse
|
186
|
Allergic Airway-Induced Hypersensitivity Is Attenuated by Bergapten in Murine Models of Inflammation. Adv Pharmacol Sci 2019; 2019:6097349. [PMID: 30863445 PMCID: PMC6378071 DOI: 10.1155/2019/6097349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/13/2018] [Indexed: 12/02/2022] Open
Abstract
Bergapten (5-methoxypsoralen, 5-MOP) is a plant-derived furocoumarin with demonstrated anti-inflammatory action. The present study investigated its effects on allergic inflammation in two related pathways of mast cell degranulation. Compound 48/80 and lipopolysaccharide (LPS) were used to activate the IgE-independent pathway while bovine serum albumin (BSA) was used as allergen for the IgE-dependent pathway. The modulatory effect of bergapten on mast cell degranulation, neutrophil extravasation, protein concentration, lung histopathology, and oxidative stress was assessed. Bergapten at 10, 30, and 100 μg/ml for 15 min stabilized mast cells in rat mesenteric tissue from disruption in vitro and when administered in vivo at 3, 10, and 30 mg kg−1 for 1 h protected mice from fatal anaphylaxis induced by compound 48/80. Similarly, treatment of LPS-challenged mice with bergapten (3, 10, and 30 mg kg−1) for 24 h significantly decreased neutrophil infiltration into bronchoalveolar lavage fluid, mean protein concentration, and inflammatory cell infiltration of pulmonary tissues when compared to the saline-treated LPS-challenged control. In addition, lung histology of the bergapten-treated LPS-challenged mice showed significantly less oedema, congestion, and alveolar septa thickening when compared to the saline-treated LPS-challenged disease control. LPS-induced oxidative stress was significantly reduced through increased tissue activities of catalase and superoxide dismutase and reduced malondialdehyde levels on treatment with bergapten. In the triple antigen-induced active anaphylaxis, daily administration of bergapten at 3, 10, and 30 mg kg−1 for 10 days, respectively, protected previously sensitized and challenged mice against anaphylactic shock. Overall, our study demonstrates the ability of bergapten to attenuate allergic airway-induced hypersensitivity in murine models of inflammation, suggesting its possible therapeutic benefit in this condition.
Collapse
|
187
|
A Novel Supplementation Approach to Enhance Host Response to Sublingual Vaccination. Sci Rep 2019; 9:715. [PMID: 30679470 PMCID: PMC6346055 DOI: 10.1038/s41598-018-36370-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
Sublingual immunization is emerging as an alternative to nasal immunization and induction of mucosal IgA responses. Using Bacillus anthracis edema toxin (EdTx) as an adjuvant, we previously showed that innate responses triggered after sublingual immunization could limit generation of IgA responses. We tested whether co-administration of a neutrophil elastase inhibitor (NEI) could rescue the ability of EdTx to induce broad antibody responses, including mucosal IgA. NEI supplementation of sublingual vaccines containing EdTx promoted antigen-specific serum IgA responses but also enhanced serum IgG1, and IgG2b responses. This enhancing effect of NEI did not extend to all antibody isotypes and IgG sublclasses, since NEI reduced serum IgE responses and did not affect IgG2a/c and IgG3 responses. NEI supplementation also promoted anti-Bacillus anthracis protective antigen (PA) neutralizing antibodies and enhanced high affinity IgG1 and IgA antibodies. In addition to serum IgA, NEI supplementation stimulated antigen-specific mucosal IgA responses in the GI tract, and enhanced antigen-specific IgG responses in vaginal washes. Analysis of CD4+ T helper cell responses revealed that co-administration of NEI broadened the profile of cytokine responses, by stimulating Th1, Th2, Th17, and Tfh cytokines. We also noted that NEI had a higher stimulatory effect on IL-5, IL-10, IL-17 responses.
Collapse
|
188
|
Abstract
The mechanisms that underlie superficial erosion, a cause of coronary thrombosis distinct from plaque rupture, have garnered recent interest. In an era of improved control of traditional risk factors, such as LDL (low-density lipoprotein), plaque erosion may assume greater clinical importance. Plaques complicated by erosion tend to be matrix-rich, lipid-poor, and usually lack prominent macrophage collections, unlike plaques that rupture, which characteristically have thin fibrous caps, large lipid pools, and abundant foam cells. Thrombi that complicate superficial erosion seem more platelet-rich than the fibrinous clots precipitated by plaque rupture. The pathogenesis of plaque rupture probably does not pertain to superficial erosion, a process heretofore little understood mechanistically. We review here data that support a substantial shift in the mechanisms of the thrombotic complications of atherosclerosis. We further consider pathophysiologic processes recently implicated in the mechanisms of erosion. Multiple processes likely predispose plaques to superficial erosion, including experiencing disturbed flow, basement membrane breakdown, endothelial cell death, and detachment potentiated by innate immune activation mediated through pattern-recognition receptors and endothelial-to-mesenchymal transition. Monocytes/macrophages predominate in the pathogenesis of plaque rupture and consequent thrombosis, but polymorphonuclear leukocytes likely promote endothelial damage during superficial erosion. The formation of neutrophil extracellular traps probably perpetuates and propagates intimal injury and potentiates thrombosis due to superficial erosion. These considerations have profound clinical implications. Acute coronary syndromes because of erosion may not require immediate invasive therapy. Understanding the biological bases of erosion points to novel therapies for acute coronary syndrome caused by erosion. Future research should probe further the mechanisms of superficial erosion, and develop point-of-care tests to distinguish acute coronary syndromes provoked by erosion versus rupture that may direct more precision management. Future clinical investigations should evaluate intervening on the targets that have emerged from experimental studies and the management strategies that they inform.
Collapse
Affiliation(s)
- Peter Libby
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | | | - Filippo Crea
- F. Policlinico Gemelli – IRCCS, Università Cattolica del Sacro Cuore, Roma
| | - Ik-Kyung Jang
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
189
|
Miralda I, Vashishta A, Uriarte SM. Neutrophil Interaction with Emerging Oral Pathogens: A Novel View of the Disease Paradigm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:165-178. [PMID: 31732941 DOI: 10.1007/978-3-030-28524-1_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Periodontitis is a multifactorial chronic inflammatory infectious disease that compromises the integrity of tooth-supporting tissues. The disease progression depends on the disruption of host-microbe homeostasis in the periodontal tissue. This disruption is marked by a shift in the composition of the polymicrobial oral community from a symbiotic to a dysbiotic, more complex community that is capable of evading killing while promoting inflammation. Neutrophils are the main phagocytic cell in the periodontal pocket, and the outcome of the interaction with the oral microbiota is an important determinant of oral health. Novel culture-independent techniques have facilitated the identification of new bacterial species at periodontal lesions and induced a reappraisal of the microbial etiology of periodontitis. In this chapter, we discuss how neutrophils interact with two emerging oral pathogens, Filifactor alocis and Peptoanaerobacter stomatis, and the different strategies deploy by these organisms to modulate neutrophil effector functions, with the goal to outline a new paradigm in our knowledge about neutrophil responses to putative periodontal pathogens and their contribution to disease progression.
Collapse
Affiliation(s)
- Irina Miralda
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA.,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Aruna Vashishta
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Silvia M Uriarte
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA. .,Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
190
|
Bisso PW, Gaglione S, Guimarães PPG, Mitchell MJ, Langer R. Nanomaterial Interactions with Human Neutrophils. ACS Biomater Sci Eng 2018; 4:4255-4265. [PMID: 31497639 PMCID: PMC6731026 DOI: 10.1021/acsbiomaterials.8b01062] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neutrophils are the most abundant circulating leukocyte and the first point of contact between many drug delivery formulations and human cells. Despite their prevalence and implication in a range of immune functions, little is known about how human neutrophils respond to synthetic particulates. Here, we describe how ex vivo human neutrophils respond to particles which vary in both size (5 nm to 2 μm) and chemistry (lipids, poly(styrene), poly(lactic-co-glycolic acid), and gold). In particular, we show that (i) particle uptake is rapid, typically plateauing within 15 min; (ii) for a given particle chemistry, neutrophils preferentially take up larger particles at the nanoscale, up to 200 nm in size; (iii) uptake of nanoscale poly(styrene) and liposomal particles at concentrations of up to 5 μg/mL does not enhance apoptosis, activation, or cell death; (iv) particle-laden neutrophils retain the ability to degranulate normally in response to chemical stimulation; and (v) ingested particles reside in intracellular compartments that are retained during activation and degranulation. Aside from the implications for design of intravenously delivered particulate formulations in general, we expect these observations to be of particular use for targeting nanoparticles to circulating neutrophils, their clearance site (bone marrow), or distal sites of active inflammation.
Collapse
Affiliation(s)
- Paul W. Bisso
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephanie Gaglione
- Department of Chemical Engineering, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Pedro P. G. Guimarães
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
191
|
Gadolinium chloride attenuates acetic acid-evoked colitis in mice by reducing neutrophil infiltration and pro-oxidative enzyme activity. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:299-311. [PMID: 30483861 DOI: 10.1007/s00210-018-1592-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/22/2018] [Indexed: 12/19/2022]
Abstract
This study investigated the potential of gadolinium chloride (GdCl3), an inhibitor of kupffer cells on the myeloperoxidase (MPO) function, both in vivo on colon inflammation model and in vitro on thioglycollate-elicited peritoneal neutrophils. Colon inflammation was induced in mice (n = 7) by 4% acetic acid (AA) enema. GdCl3 (10 mg/kg) treatment was given 24 h before AA challenge. Clinical changes during the protocol were scored. Colons were segmented into distal and proximal parts for histological and biochemical assessment. Furthermore, myeloperoxidase (MPO) enzymes were extracted and analyzed by western blot. Short-term GdCl3 treatment inhibited dose-dependently superoxide anion (O2·-), alkaline phosphatase (ALP), and MPO release and promoted neutrophil apoptosis. In vivo, low-dose GdCl3 improved colitis scores and inhibited acute phagocyte recruitment and colon damage within the mucosa as revealed by the decrease in MPO, nitric oxide (NO), and malondialdehyde (MDA) levels. At the same time, GdCl3 restored catalase (CAT), superoxide dismutase (SOD) activities, and reduced glutathione (GSH) levels, thus reversing the MDA/GSH ratio in both distal and proximal colons. Compared to proximal, distal colon was more altered and displayed higher pathological manifestations. Lastly, the induction of apoptosis and regulation of the major nitrosative and oxidative functions of neutrophils by GdCl3 suggests its consideration as a beneficial tool in attenuating colon inflammation.
Collapse
|
192
|
Weisgrau KL, Vosler LJ, Pomplun NL, Hayes JM, Simmons HA, Friedrichs KR, Rakasz EG. Neutrophil progenitor populations of rhesus macaques. J Leukoc Biol 2018; 105:113-121. [PMID: 30395351 DOI: 10.1002/jlb.1ta1117-431rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 09/24/2018] [Accepted: 10/13/2018] [Indexed: 01/06/2023] Open
Abstract
Captive-bred rhesus macaques of Indian origin represent one of the most important large animal models for infectious disease, solid organ transplantation, and stem cell research. There is a dearth of information defining hematopoietic development, including neutrophil leukocyte differentiation in this species using multicolor flow cytometry. In the current study, we sought to identify cell surface markers that delineate neutrophil progenitor populations with characteristic immunophenotypes. We defined four different postmitotic populations based on their CD11b and CD87 expression pattern, and further refined their immunophenotypes using CD32, CD64, lactoferrin, and myeloperoxidase as antigenic markers. The four subsets contained myelocyte, metamyelocyte, band, and segmented neutrophil populations. We compared our flow cytometry-based classification with the classical nuclear morphology-based classification. We found overlap of immunological phenotype between populations of different nuclear morphology and identified phenotypically different subsets within populations of similar nuclear morphology. We assessed the responsiveness of these populations to stimulatory signals, such as LPS, fMLP, or PMA, and demonstrated significant differences between human and rhesus macaque neutrophil progenitors. In this study, we provided evidence for species-specific features of granulopoiesis that ultimately manifested in the divergent immunophenotypes of the fully differentiated segmented neutrophils of humans and rhesus macaques. Additionally, we found functional markers that can be used to accurately quantify neutrophil progenitors by flow cytometry. Although these markers do not coincide with the classical nuclear-morphology-based grading, they enable us to perform functional studies monitoring immunophenotypic markers.
Collapse
Affiliation(s)
- Kim L Weisgrau
- Immunology Services Unit, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Logan J Vosler
- Immunology Services Unit, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nicholas L Pomplun
- Immunology Services Unit, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jennifer M Hayes
- Clinical Pathology Unit, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Heather A Simmons
- Clinical Pathology Unit, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kristen R Friedrichs
- Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eva G Rakasz
- Immunology Services Unit, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
193
|
Lee EH, Shin JH, Kim SS, Lee H, Yang S, Seo SR. Laurus nobilis
leaf extract controls inflammation by suppressing NLRP3 inflammasome activation. J Cell Physiol 2018; 234:6854-6864. [DOI: 10.1002/jcp.27434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Eun Hye Lee
- Department of Molecular Bioscience College of Biomedical Science, Institute of Bioscience and Biotechnology, Kangwon National University Chuncheon Republic of Korea
| | - Jin Hak Shin
- Department of Molecular Bioscience College of Biomedical Science, Institute of Bioscience and Biotechnology, Kangwon National University Chuncheon Republic of Korea
| | - Seon Sook Kim
- Department of Molecular Bioscience College of Biomedical Science, Institute of Bioscience and Biotechnology, Kangwon National University Chuncheon Republic of Korea
| | - Hanbyeol Lee
- Department of Thoracic and Cardiovascular Surgery School of Medicine, Kangwon National University Chuncheon Republic of Korea
| | - Se‐Ran Yang
- Department of Thoracic and Cardiovascular Surgery School of Medicine, Kangwon National University Chuncheon Republic of Korea
| | - Su Ryeon Seo
- Department of Molecular Bioscience College of Biomedical Science, Institute of Bioscience and Biotechnology, Kangwon National University Chuncheon Republic of Korea
| |
Collapse
|
194
|
Li H, Feng D, Cai Y, Liu Y, Xu M, Xiang X, Zhou Z, Xia Q, Kaplan MJ, Kong X, Gao B. Hepatocytes and neutrophils cooperatively suppress bacterial infection by differentially regulating lipocalin-2 and neutrophil extracellular traps. Hepatology 2018; 68:1604-1620. [PMID: 29633303 PMCID: PMC6173649 DOI: 10.1002/hep.29919] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/19/2018] [Accepted: 03/30/2018] [Indexed: 12/12/2022]
Abstract
UNLABELLED Lipocalin-2 (LCN2), also known as neutrophil gelatinase-associated lipocalin (NGAL), a key antibacterial protein, is highly elevated in patients with end-stage liver disease that is often associated with bacterial infection. LCN2 is expressed at high levels in both hepatocytes and neutrophils; however, how hepatocyte-derived and neutrophil-derived LCN2 cooperate to combat bacterial infection remains unclear. Here, by studying hepatocyte-specific and myeloid-specific Lcn2 knockout mice in two models of systemic and local Klebsiella pneumoniae infections, we demonstrated that hepatocytes played a critical role in controlling systemic infection by secreting LCN2 protein into the circulation following intraperitoneal injection of bacteria, whereas neutrophils were more important in combating local lung infection by carrying LCN2 in their specific granules to the local infection site following intratracheal intubation of bacteria. Both hepatocyte-derived and myeloid cell-derived LCN2 were required against bacterial infection in the peritoneal cavity and liver necrotic areas following intraperitoneal injection of Klebsiella pneumoniae. LCN2/NGAL protein was detected in neutrophil extracellular traps (NETs) in activated neutrophils from mice and humans. Disruption of the Lcn2 gene in neutrophils abolished LCN2 on NETs, whereas deletion of this gene in hepatocytes did not affect LCN2 protein on NETs. Genetic deletion of the Lcn2 gene globally or specifically in neutrophils did not affect NET formation but reduced the bactericidal effect of NETs in vitro. Finally, NGAL-positive NETs were detected in the liver from patients with various types of liver diseases. CONCLUSION Both hepatocytes and neutrophils combat bacterial infection through the production of LCN2; extracellular LCN2 secreted by hepatocytes limits systemic bacterial infection, whereas neutrophils carry LCN2 protein to the local site and against local bacterial infection through NETs. (Hepatology 2018).
Collapse
Affiliation(s)
- Hongjie Li
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China,Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yan Cai
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yudong Liu
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mingjiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaogang Xiang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhou Zhou
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaoni Kong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
195
|
Davies LC, Rice CM, McVicar DW, Weiss JM. Diversity and environmental adaptation of phagocytic cell metabolism. J Leukoc Biol 2018; 105:37-48. [PMID: 30247792 PMCID: PMC6334519 DOI: 10.1002/jlb.4ri0518-195r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/29/2022] Open
Abstract
Phagocytes are cells of the immune system that play important roles in phagocytosis, respiratory burst and degranulation—key components of innate immunity and response to infection. This diverse group of cells includes monocytes, macrophages, dendritic cells, neutrophils, eosinophils, and basophils—heterogeneous cell populations possessing cell and tissue‐specific functions of which cellular metabolism comprises a critical underpinning. Core functions of phagocytic cells are diverse and sensitive to alterations in environmental‐ and tissue‐specific nutrients and growth factors. As phagocytic cells adapt to these extracellular cues, cellular processes are altered and may contribute to pathogenesis. The considerable degree of functional heterogeneity among monocyte, neutrophil, and other phagocytic cell populations necessitates diverse metabolism. As we review our current understanding of metabolism in phagocytic cells, gaps are focused on to highlight the need for additional studies that hopefully enable improved cell‐based strategies for counteracting cancer and other diseases.
Collapse
Affiliation(s)
- Luke C Davies
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA.,Division of Infection & Immunity, School of Medicine, Cardiff University, Heath Park, UK
| | - Christopher M Rice
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| | - Daniel W McVicar
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| | - Jonathan M Weiss
- Cancer & Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
196
|
Thunström Salzer A, Niemiec MJ, Hosseinzadeh A, Stylianou M, Åström F, Röhm M, Ahlm C, Wahlin A, Ermert D, Urban CF. Assessment of Neutrophil Chemotaxis Upon G-CSF Treatment of Healthy Stem Cell Donors and in Allogeneic Transplant Recipients. Front Immunol 2018; 9:1968. [PMID: 30254629 PMCID: PMC6141688 DOI: 10.3389/fimmu.2018.01968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are crucial for the human innate immunity and constitute the majority of leukocytes in circulation. Thus, blood neutrophil counts serve as a measure for the immune system's functionality. Hematological patients often have low neutrophil counts due to disease or chemotherapy. To increase neutrophil counts and thereby preventing infections in high-risk patients, recombinant G-CSF is widely used as adjunct therapy to stimulate the maturation of neutrophils. In addition, G-CSF is utilized to recruit stem cells (SCs) into the peripheral blood of SC donors. Still, the actual functionality of neutrophils resulting from G-CSF treatment remains insufficiently understood. We tested the ex vivo functionality of neutrophils isolated from blood of G-CSF-treated healthy SC donors. We quantified chemotaxis, oxidative burst, and phagocytosis before and after treatment and detected significantly reduced chemotactic activity upon G-CSF treatment. Similarly, in vitro treatment of previously untreated neutrophils with G-CSF led to reduced chemotactic activity. In addition, we revealed that this effect persists in the allogeneic SC recipients up to 4 weeks after neutrophil engraftment. Our data indicates that neutrophil quantity, as a sole measure of immunocompetence in high-risk patients should be considered cautiously as neutrophil functionality might be affected by the primary treatment.
Collapse
Affiliation(s)
- Anna Thunström Salzer
- Department of Radiation Sciences, University of Umeå, Umeå, Sweden.,Department of Clinical Microbiology & Laboratory of Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Maria J Niemiec
- Department of Clinical Microbiology & Laboratory of Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Ava Hosseinzadeh
- Department of Clinical Microbiology & Laboratory of Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Marios Stylianou
- Department of Clinical Microbiology & Laboratory of Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Fredrik Åström
- Department of Radiation Sciences, University of Umeå, Umeå, Sweden
| | - Marc Röhm
- Department of Clinical Microbiology & Laboratory of Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology & Laboratory of Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Anders Wahlin
- Department of Radiation Sciences, University of Umeå, Umeå, Sweden
| | - David Ermert
- Department of Clinical Microbiology & Laboratory of Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Constantin F Urban
- Department of Clinical Microbiology & Laboratory of Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
197
|
Stock AJ, Kasus-Jacobi A, Pereira HA. The role of neutrophil granule proteins in neuroinflammation and Alzheimer's disease. J Neuroinflammation 2018; 15:240. [PMID: 30149799 PMCID: PMC6112130 DOI: 10.1186/s12974-018-1284-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023] Open
Abstract
Neutrophils are the innate immune system’s first line of defense. Neutrophils play a critical role in protecting the host against infectious pathogens, resolving sterile injuries, and mediating inflammatory responses. The granules of neutrophils and their constituent proteins are central to these functions. Although neutrophils may exert a protective role upon acute inflammatory conditions or insults, continued activity of neutrophils in chronic inflammatory diseases can contribute to tissue damage. Neutrophil granule proteins are involved in a number of chronic inflammatory conditions and diseases. However, the functions of these proteins in neuroinflammation and chronic neuroinflammatory diseases, including Alzheimer’s disease (AD), remain to be elucidated. In this review, we discuss recent findings from our lab and others that suggest possible functions for neutrophils and the neutrophil granule proteins, CAP37, neutrophil elastase, and cathepsin G, in neuroinflammation, with an emphasis on AD. These findings reveal that neutrophil granule proteins may exert both neuroprotective and neurotoxic effects. Further research should determine whether neutrophil granule proteins are valid targets for therapeutic interventions in chronic neuroinflammatory diseases.
Collapse
Affiliation(s)
- Amanda J Stock
- The Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd., BRC Rm 06B121, Baltimore, MD, 21224, USA.,Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA
| | - Anne Kasus-Jacobi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA
| | - H Anne Pereira
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA. .,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, 1105 N. Stonewall, Robert M. Bird Library, Rm 258, Oklahoma City, OK, 73117, USA. .,Department of Pathology, University of Oklahoma Health Sciences Center, 1105 N. Stonewall, Robert M. Bird Library, Rm 258, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
198
|
Mårtensson J, Holdfeldt A, Sundqvist M, Gabl M, Kenakin TP, Björkman L, Forsman H, Dahlgren C. Neutrophil priming that turns natural FFA2R agonists into potent activators of the superoxide generating NADPH‐oxidase. J Leukoc Biol 2018; 104:1117-1132. [DOI: 10.1002/jlb.2a0318-130rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/04/2018] [Accepted: 08/04/2018] [Indexed: 01/16/2023] Open
Affiliation(s)
- Jonas Mårtensson
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska AcademyUniversity of Gothenburg Göteborg Sweden
- Unit of RheumatologySahlgrenska University Hospital Gothenburg Sweden
| | - André Holdfeldt
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska AcademyUniversity of Gothenburg Göteborg Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska AcademyUniversity of Gothenburg Göteborg Sweden
| | - Michael Gabl
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska AcademyUniversity of Gothenburg Göteborg Sweden
| | - Terry P. Kenakin
- Department of PharmacologyUNC‐Chapel Hill Chapel Hill North Carolina USA
| | - Lena Björkman
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska AcademyUniversity of Gothenburg Göteborg Sweden
- Unit of RheumatologySahlgrenska University Hospital Gothenburg Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska AcademyUniversity of Gothenburg Göteborg Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation ResearchInstitute of MedicineSahlgrenska AcademyUniversity of Gothenburg Göteborg Sweden
| |
Collapse
|
199
|
Ito S, Ishimori K, Ishikawa S. Effects of repeated cigarette smoke extract exposure over one month on human bronchial epithelial organotypic culture. Toxicol Rep 2018; 5:864-870. [PMID: 30167377 PMCID: PMC6111042 DOI: 10.1016/j.toxrep.2018.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/03/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoke is a known risk factor for inflammatory diseases in the respiratory tract, and inflammatory exacerbation is considered pivotal to the pathogenesis of these diseases. Here, we performed two repeated exposure studies in which we exposed human bronchial epithelial tissues in an organotypic culture model to cigarette smoke extract (CSE); the first study was conducted over a four-day period to determine the suitable dose range for the extended exposure period, and the second was a one-month exposure study to elucidate the exposure-by-exposure effects in bronchial tissues. We focused on matrix metalloproteinase (MMP)-9 and -1/3 and the inflammatory cytokines interleukin (IL)-8 and growth factor related oncogene to evaluate the transition into an inflammatory state. Even at CSE doses with no or low toxicity for a single exposure, the repetition of exposure induced cumulative effects on both the inflammatory responses, specifically the IL-8 and MMPs levels, and tissue morphology. Interestingly, untreated controls initially had relatively high baseline levels of these secreted proteins; these levels gradually declined, after which they showed periodic level changes, suggesting an acclimation period may be needed for this system. These results demonstrate the usability of this system for the elucidation of sub-chronic effects in vitro.
Collapse
Key Words
- COPD, chronic obstructive pulmonary disease
- CS, cigarette smoke
- Cigarette smoke extract
- GRO, growth factor related oncogene
- IL, interleukin
- IP-10, interferon gamma-induced protein-10
- MCP-1, monocyte chemotactic protein-1
- MIP-1β, macrophage inflammatory protein-1β
- MMP, metalloproteinase
- Organotypic culture
- RANTES, regulated on activation normal T cell expressed and secreted
- Repeated exposure
- SDF-1α, stromal cell-derived factor-1α
Collapse
Affiliation(s)
- Shigeaki Ito
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2, Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Kanae Ishimori
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2, Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Shinkichi Ishikawa
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2, Umegaoka, Aoba-ku, Yokohama, Kanagawa, 227-8512, Japan
| |
Collapse
|
200
|
Palmer A, Criss AK. Gonococcal Defenses against Antimicrobial Activities of Neutrophils. Trends Microbiol 2018; 26:1022-1034. [PMID: 30115561 DOI: 10.1016/j.tim.2018.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
Neisseria gonorrhoeae initiates a strong local immune response that is characterized by copious recruitment of neutrophils to the site of infection. Neutrophils neutralize microbes by mechanisms that include phagocytosis, extracellular trap formation, production of reactive oxygen species, and the delivery of antimicrobial granular contents. However, neutrophils do not clear infection with N. gonorrhoeae. N. gonorrhoeae not only expresses factors that defend against neutrophil bactericidal components, but it also manipulates neutrophil production and release of these components. In this review, we highlight the numerous approaches used by N. gonorrhoeae to survive exposure to neutrophils both intracellularly and extracellularly. These approaches reflect the exquisite adaptation of N. gonorrhoeae to its obligate human host.
Collapse
Affiliation(s)
- Allison Palmer
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA.
| |
Collapse
|