151
|
Wuliangye Baijiu but not ethanol reduces cardiovascular disease risks in a zebrafish thrombosis model. NPJ Sci Food 2022; 6:55. [PMID: 36470888 PMCID: PMC9723178 DOI: 10.1038/s41538-022-00170-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Understanding how Baijiu facilitates blood circulation and prevents blood stasis is crucial for revealing the mechanism of Baijiu for cardiovascular disease (CVD) risk reduction. Here we established a zebrafish thrombosis model induced using arachidonic acid (AA) to quantitatively evaluate the antithrombotic effect of Wuliangye Baijiu. The prevention and reduction effects of aspirin, Wuliangye, and ethanol on thrombosis were compared using imaging and molecular characterization. Wuliangye Baijiu reduces thrombotic risks and oxidative stress in the AA-treated zebrafish, while ethanol with the same concentration has no similar effect. The prevention and reduction effects of Wuliangye on thrombosis are attributed to the change in the metabolic and signaling pathways related to platelet aggregation and adhesion, oxidative stress and inflammatory response.
Collapse
|
152
|
Cheng Y, Zhang H, Zhu W, Li Q, Meng R, Yang K, Guo Z, Zhai Y, Zhang H, Ji R, Peng H, Dou D, Jing M. Ferroptosis induced by the biocontrol agent Pythium oligandrum enhances soybean resistance to Phytophthora sojae. Environ Microbiol 2022; 24:6267-6278. [PMID: 36250814 DOI: 10.1111/1462-2920.16248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/13/2022] [Indexed: 01/12/2023]
Abstract
Ferroptosis is a newly discovered form of cell death accompanied by iron accumulation and lipid peroxidation. Both biotic and abiotic stresses can induce ferroptosis in plant cells. In the case of plant interactions with pathogenic Phytophthora oomycetes, the roles of ferroptosis are still largely unknown. Here, we performed transcriptome analysis on soybean plants treated with the biocontrol agent Pythium oligandrum, a soilborne and non-pathogenic oomycete capable of inducing plant resistance against Phytophthora sojae infection. Expression of homologous soybean genes involved in ferroptosis and resistance was reprogrammed upon P. oligandrum treatment. Typical hallmarks for characterizing ferroptosis were detected in soybean hypocotyl cells, including decreased glutathione (GSH) level, accumulation of ferric ions, and lipid peroxidation by reactive oxygen species (ROS). Meanwhile, ferroptosis-like cell death was triggered by P. oligandrum to suppress P. sojae infection in soybean. Protection provided by P. oligandrum could be attenuated by the ferroptosis inhibitor ferrostatin-1 (Fer-1), suggesting the critical role of ferroptosis in soybean resistance against P. sojae. Taken together, these results demonstrate that ferroptosis is a P. oligandrum-inducible defence mechanism against oomycete infection in soybean.
Collapse
Affiliation(s)
- Yang Cheng
- Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Huanxin Zhang
- Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Wenyi Zhu
- Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Qing Li
- Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Rui Meng
- Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Kun Yang
- Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ziqian Guo
- Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - Haijing Zhang
- Rongcheng Agricultural and Rural Services Centre, Weihai, China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Hao Peng
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - Daolong Dou
- Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Maofeng Jing
- Key Laboratory of Biological Interaction and Crop Health, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
153
|
Fludioxonil, a phenylpyrrol pesticide, induces Cytoskeleton disruption, DNA damage and apoptosis via oxidative stress on rat glioma cells. Food Chem Toxicol 2022; 170:113464. [DOI: 10.1016/j.fct.2022.113464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
154
|
Fu J, Xu Y, Arts EJ, Bai Z, Chen Z, Zheng Y. Viral disinfection using nonthermal plasma: A critical review and perspectives on the plasma-catalysis system. CHEMOSPHERE 2022; 309:136655. [PMID: 36191766 DOI: 10.1016/j.chemosphere.2022.136655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The transmission of viral infections via aerosol has become a serious threat to public health. This has produced an ever-increasing demand for effective forms of viral inactivation technology/processes. Plasma technology is rising in popularity and gaining interest for viral disinfection use. Due to its highly effectively disinfection and flexible operation, non-thermal plasma (NTP) is a promising technology in decontaminating bacteria or virus from air or surfaces. This review discusses the fundamentals of non-thermal plasma and the disinfection mechanisms of the biocidal agents produced in plasma, including ultraviolet (UV) photons, reactive oxygen species, and reactive nitrogen species. Perspectives on the role of catalysts and its potential applications in cold plasma disinfection are discussed.
Collapse
Affiliation(s)
- Jile Fu
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Fine Chemicals Green Manufacturing, Henan Normal University, Xinxiang, 453007, China; Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada
| | - Yiyi Xu
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada
| | - Eric J Arts
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Fine Chemicals Green Manufacturing, Henan Normal University, Xinxiang, 453007, China.
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| | - Ying Zheng
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada.
| |
Collapse
|
155
|
dos Santos Lopes D, dos Santos Abreu D, Ando RA, Corio P. Regioselective Plasmon-Driven Decarboxylation of Mercaptobenzoic Acids Triggered by Distinct Reactive Oxygen Species. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Douglas dos Santos Lopes
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, Sao Paulo 05508000, Brazil
| | - Dieric dos Santos Abreu
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, Sao Paulo 05508000, Brazil
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara, Campus Pici, Fortaleza, Ceara 60455-970, Brazil
| | - Rômulo Augusto Ando
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, Sao Paulo 05508000, Brazil
| | - Paola Corio
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, Sao Paulo 05508000, Brazil
| |
Collapse
|
156
|
Santamarina SC, Heredia DA, Durantini AM, Durantini EN. Porphyrin Polymers Bearing N, N'-Ethylene Crosslinkers as Photosensitizers against Bacteria. Polymers (Basel) 2022; 14:polym14224936. [PMID: 36433062 PMCID: PMC9696963 DOI: 10.3390/polym14224936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
The appearance of microbes resistant to antibiotics requires the development of alternative therapies for the treatment of infectious diseases. In this work two polymers, PTPPF16-EDA and PZnTPPF16-EDA, were synthesized by the nucleophilic aromatic substitution of 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin and its Zn(II) complex with ethylenediamine, respectively. In these structures, the tetrapyrrolic macrocycles were N,N'-ethylene crosslinked, which gives them greater mobility. The absorption spectra of the polymers showed a bathochromic shift of the Soret band of ~10 nm with respect to the monomers. This effect was also found in the red fluorescence emission peaks. Furthermore, both polymeric materials produced singlet molecular oxygen with high quantum yields. In addition, they were capable of generating superoxide anion radicals. Photodynamic inactivation sensitized by these polymers was tested in Staphylococcus aureus and Escherichia coli bacteria. A decrease in cell viability greater than 7 log (99.9999%) was observed in S. aureus incubated with 0.5 μM photosensitizer upon 30 min of irradiation. Under these conditions, a low inactivation of E. coli (0.5 log) was found. However, when the cells were treated with KI, the elimination of the Gram-negative bacteria was achieved. Therefore, these polymeric structures are interesting antimicrobial photosensitizing materials for the inactivation of pathogens.
Collapse
|
157
|
Russo C, Piccioni M, Lorenzini ML, Catalano C, Ambrogi V, Pagiotti R, Pietrella D. Bud-Poplar-Extract-Embedded Chitosan Films as Multifunctional Wound Healing Dressing. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227757. [PMID: 36431858 PMCID: PMC9695786 DOI: 10.3390/molecules27227757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022]
Abstract
Wounds represent a major global health challenge. Acute and chronic wounds are sensitive to bacterial infection. The wound environment facilitates the development of microbial biofilms, delays healing, and promotes chronic inflammation processes. The aim of the present work is the development of chitosan films embedded with bud poplar extract (BPE) to be used as wound dressing for avoiding biofilm formation and healing delay. Chitosan is a polymer with antimicrobial and hydrating properties used in wound dressing, while BPE has antibacterial, antioxidative, and anti-inflammatory properties. Chitosan-BPE films showed good antimicrobial and antibiofilm properties against Gram-positive bacteria and the yeast Candida albicans. BPE extract induced an immunomodulatory effect on human macrophages, increasing CD36 expression and TGFβ production during M1/M2 polarization, as observed by means of cytofluorimetric analysis and ELISA assay. Significant antioxidant activity was revealed in a cell-free test and in a human neutrophil assay. Moreover, the chitosan-BPE films induced a good regenerative effect in human fibroblasts by in vitro cell migration assay. Our results suggest that chitosan-BPE films could be considered a valid plant-based antimicrobial material for advanced dressings focused on the acceleration of wound repair.
Collapse
Affiliation(s)
- Carla Russo
- Medical Microbiology Unit, Department of Medicine and Surgery, University of Perugia, Piazzale Sereni, Building D, 4th Floor, 06129 Perugia, Italy
| | - Miranda Piccioni
- Biochemical Sciences and Health Unit, Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Maria Laura Lorenzini
- Pharmaceutical Technology Unit, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Chiara Catalano
- Biochemical Sciences and Health Unit, Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Valeria Ambrogi
- Pharmaceutical Technology Unit, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Rita Pagiotti
- Biochemical Sciences and Health Unit, Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Donatella Pietrella
- Medical Microbiology Unit, Department of Medicine and Surgery, University of Perugia, Piazzale Sereni, Building D, 4th Floor, 06129 Perugia, Italy
- Correspondence:
| |
Collapse
|
158
|
Lu D, Wang H, Feng C, Bai T, Xu B, Wei Y, Shen L, Lin Q. Spin-Coating-Based Facile Annular Photodynamic Intraocular Lens Fabrication for Efficient and Safer Posterior Capsular Opacification Prevention. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48341-48355. [PMID: 36255103 DOI: 10.1021/acsami.2c09612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Posterior capsular opacification (PCO) is the most common complication after cataract surgery, which is primarily caused by the proliferation of the residual lens epithelial cells (LECs) in the lens capsule. Previous studies have demonstrated that a drug-eluting intraocular lens (IOL), aimed to in situ eliminate LECs, are an effective and promising way to prevent PCO. However, because of the potential toxicities of the antiproliferative drugs to the adjacent tissues, the safety of such drug-eluting IOLs is still a highly important issue to be solved. In this investigation, a facile photodynamic coating-modified IOL was developed for effective and safer PCO prevention. An annular poly(lactide-co-glycolic acid) (PLGA) coating loaded with photosensitizer chlorin e6 (Ce6) was prepared by a spin-coating technique. The optical property investigations showed that the Ce6@PLGA coating was particularly suitable for the IOL surface modification. The in vitro cell culture investigation showed that Ce6@PLGA coating-modified IOLs effectively eliminated LECs when treated with light illumination, whereas it appeared to have good cytocompatibility without irradiation. The investigation of the cell elimination mechanism showed that the apoptosis of HLECs may be associated with the cytomembrane disruption induced by ROS, which is generated by the photodynamic coating during light illumination. The in vivo implantation experiments confirmed the desired PCO prevention effect, as well as the safety to and biocompatibility with the surrounding tissues. Thus, the facile Ce6@PLGA coating will provide an effective yet safe alternative of IOL surface modification for PCO prevention.
Collapse
Affiliation(s)
- Duoduo Lu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Hui Wang
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Chulei Feng
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Ting Bai
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Baoqi Xu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Youfei Wei
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Liangliang Shen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Quankui Lin
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, P. R. China
| |
Collapse
|
159
|
Soragni C, Rabussier G, Lanz HL, Bircsak KM, de Windt LJ, Trietsch SJ, Murdoch CE, Ng CP. A versatile multiplexed assay to quantify intracellular ROS and cell viability in 3D on-a-chip models. Redox Biol 2022; 57:102488. [PMID: 36201911 PMCID: PMC9535429 DOI: 10.1016/j.redox.2022.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
Reactive oxygen species (ROS) have different properties and biological functions. They contribute to cell signaling and, in excessive amounts, to oxidative stress (OS). Although ROS is pivotal in a wide number of physiological systems and pathophysiological processes, direct quantification in vivo is quite challenging and mainly limited to in vitro studies. Even though advanced in vitro cell culture techniques, like on-a-chip culture, have overcome the lack of crucial in vivo-like physiological aspects in 2D culture, the majority of in vitro ROS quantification studies are generally performed in 2D. Here we report the development, application, and validation of a multiplexed assay to quantify ROS and cell viability in organ-on-a-chip models. The assay utilizes three dyes to stain live cells for ROS, dead cells, and DNA. Confocal images were analyzed to quantify ROS probes and determine the number of nuclei and dead cells. We found that, in contrast to what has been reported with 2D cell culture, on-a-chip models are more prone to scavenge ROS rather than accumulate them. The assay is sensitive enough to distinguish between different phenotypes of endothelial cells (ECs) based on the level of OS to detect higher level in tumor than normal cells. Our results indicate that the use of physiologically relevant models and this assay could help unravelling the mechanisms behind OS and ROS accumulation. A further step could be taken in data analysis by implementing AI in the pipeline to also analyze images for morphological changes to have an even broader view of OS mechanism.
Collapse
Affiliation(s)
- Camilla Soragni
- MIMETAS BV, Leiden, the Netherlands; Department of Cardiology, Maastricht University, Maastricht, the Netherlands.
| | - Gwenaëlle Rabussier
- MIMETAS BV, Leiden, the Netherlands; Department of Cardiology, Maastricht University, Maastricht, the Netherlands
| | | | | | - Leon J de Windt
- Department of Cardiology, Maastricht University, Maastricht, the Netherlands
| | | | - Colin E Murdoch
- Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | | |
Collapse
|
160
|
Zhang Y, Fan W, Li X, Wang WX, Liu S. Enhanced Removal of Free Radicals by Aqueous Hydrogen Nanobubbles and Their Role in Oxidative Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15096-15107. [PMID: 36099323 DOI: 10.1021/acs.est.2c03707] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Elevated levels of reactive oxygen radicals caused by environmental stress are the key triggers of inflammation, aging, and disease; thus, it is critical to develop novel reactive oxygen radical scavenging methods with high efficiency and low toxicity. As a result of their selective reactive oxygen radical removal, hydrogen molecules are strong candidates, but their application is limited by the small hydrogen supply and short duration of action. In this study, we for the first time combined nanobubble (NB) technology and hydrogen water to remove reactive oxygen species (ROS) using copper ions as a representative environmental pollutant and Tetrahymena thermophila as a model organism. Hydrogen NBs displayed a remarkable capability of removing H2O2 and O2•- at molar ratios of 8:1 and 240:1, respectively, which were unable to be removed by dissolved hydrogen molecules only. During the oxidative defense phase, hydrogen NB water either directly removed ROS or increased the activity and relative expression of glutathione peroxidase (GSH-Px). During the oxidative inhibition phase, hydrogen NB water exerted antioxidant effects mainly by increasing the activities of superoxide dismutase and GSH-Px as well as the expression of the corresponding genes. Our results provide an important theoretical support for the wide application of hydrogen NBs in empowering the antioxidant defense system.
Collapse
Affiliation(s)
- You Zhang
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, China
| | - Wenhong Fan
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Xiaomin Li
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Shu Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, China
| |
Collapse
|
161
|
Damle VG, Wu K, Arouri DJ, Schirhagl R. Detecting free radicals post viral infections. Free Radic Biol Med 2022; 191:8-23. [PMID: 36002131 DOI: 10.1016/j.freeradbiomed.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
Free radical generation plays a key role in viral infections. While free radicals have an antimicrobial effect on bacteria or fungi, their interplay with viruses is complicated and varies greatly for different types of viruses as well as different radical species. In some cases, radical generation contributes to the defense against the viruses and thus reduces the viral load. In other cases, radical generation induces mutations or damages the host tissue and can increase the viral load. This has led to antioxidants being used to treat viral infections. Here we discuss the roles that radicals play in virus pathology. Furthermore, we critically review methods that facilitate the detection of free radicals in vivo or in vitro in viral infections.
Collapse
Affiliation(s)
- V G Damle
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - K Wu
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - D J Arouri
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - R Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
162
|
Das S, Patra L, Pratim Das P, Ghoshal K, Gharami S, Walton JW, Bhattacharyya M, Mondal TK. A new ratiometric switch "two-way" detects hydrazine and hypochlorite via a "dye-release" mechanism with a PBMC bioimaging study. Phys Chem Chem Phys 2022; 24:20941-20952. [PMID: 36053209 DOI: 10.1039/d2cp02482a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new ratiometric fluorescent probe (E)-2-(benzo[d]thiazol-2-yl)-3-(8-methoxyquinolin-2-yl)acrylonitrile (HQCN) was synthesised by the perfect blending of quinoline and a 2-benzothiazoleacetonitrile unit. In a mixed aqueous solution, HQCN reacts with hydrazine (N2H4) to give a new product 2-(hydrazonomethyl)-8-methoxyquinoline along with the liberation of the 2-benzothiazoleacetonitrile moiety. In contrast, the reaction of hypochlorite ions (OCl-) with the probe gives 8-methoxyquinoline-2-carbaldehyde. In both cases, the chemodosimetric approaches of hydrazine and hypochlorite selectively occur at the olefinic carbon but give two different products with two different outputs, as observed from the fluorescence study exhibiting signals at 455 nm and 500 nm for hydrazine and hypochlorite, respectively. A UV-vis spectroscopy study also depicts a distinct change in the spectrum of HQCN in the presence of hydrazine and hypochlorite. The hydrazinolysis of HQCN exhibits a prominent chromogenic as well as ratiometric fluorescence change with a 165 nm left-shift in the fluorescence spectrum. Similarly, the probe in hand (HQCN) can selectively detect hypochlorite in a ratiometric manner with a shift of 120 nm, as observed from the fluorescence emission spectra. HQCN can detect hydrazine and OCl- as low as 2.25 × 10-8 M and 3.46 × 10-8 M, respectively, as evaluated from the fluorescence experiments again. The excited state behaviour of the probe HQCN and the chemodosimetric products with hydrazine and hypochlorite are studied by the nanosecond time-resolved fluorescence technique. Computational studies (DFT and TDDFT) with the probe and the hydrazine and hypochlorite products were also performed. The observations made in the fluorescence imaging studies with human blood cells manifest that HQCN can be employed to monitor hydrazine and OCl- in human peripheral blood mononuclear cells (PBMCs). It is indeed a rare case that the single probe HQCN is found to be successfully able to detect hydrazine and hypochlorite in PBMCs, with two different outputs.
Collapse
Affiliation(s)
- Sangita Das
- Department of Chemistry, Jadavpur University, Kolkata-700032, India. .,Department of Chemistry, Durham University, Durham, DH1 3LE, UK. .,KIST Europe Forschungsgesellschaft mbH, Campus E71, 66123 Saarbrücken, Germany
| | - Lakshman Patra
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| | - Partha Pratim Das
- Center for Novel States of Complex Materials Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Kakali Ghoshal
- Department of Biochemistry, University of Calcutta, Kolkata-700019, India
| | - Saswati Gharami
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| | - James W Walton
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| | | | | |
Collapse
|
163
|
Wu B, Zhou C, Zhao G, Wang J, Dai H, Liu T, Zheng X, Chen B, Chu C. Enhanced photochemical production of reactive intermediates at the wetland soil-water interface. WATER RESEARCH 2022; 223:118971. [PMID: 35977437 DOI: 10.1016/j.watres.2022.118971] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Photochemically produced reactive intermediates (PPRIs) formed by sunlight-irradiation of natural photosensitizers play critical roles in accelerating biogeochemical cycles on earth surface. Existing PPRI studies mostly focus on bulk phase reactions (e.g., bulk water), with PPRI processes at the environmental interfaces largely unexplored. Here, we report the wetland soil-water interface (SWI) as a widespread but previously unappreciated hotspot for PPRI productions. Massive productions of four important PPRI species (i.e., triplet-state excited organic matter (3OM*), singlet oxygen (1O2), hydrogen peroxide (H2O2), and hydroxyl radical (•OH)) were observed at the SWI. All four PPRI species exhibited higher productions at the SWI than those in bulk water, where •OH production was largely elevated by up to one order of magnitude. The enhanced PPRI productions at the SWI were caused by intensified photon absorption and vibrant Fe-mediated redox processes, where the light absorption by less- or non-photoactive soil substances partially offset the enhancement on PPRI productions. Nationwide wetland investigations demonstrate that the SWI was a ubiquitous hotspot for PPRI productions. Simulations on PPRIs-mediated reactions suggest that the enhanced PPRI productions could greatly affect the kinetics and transformation pathways of nutrients and pollutants. Given that the SWI also acts a hotspot for nutrient and pollutant accumulation, incorporating the SWI enhanced PPRI productions into biogeochemical process assessments is pivotal for advancing our understandings on the element cycles and pollutant dynamics in wetlands.
Collapse
Affiliation(s)
- Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chong Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Guoqiang Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jingyi Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Hengyi Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Tian Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshan Zheng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
164
|
Gong CH, Sun ZB, Cao M, Luo XM, Wu J, Wang QY, Zang SQ, Mak TCW. Phosphate anion-induced silver-chalcogenide cluster-based metal organic frameworks as dual-functional catalysts for detoxifying chemical warfare agent simulants. Chem Commun (Camb) 2022; 58:9806-9809. [PMID: 35971910 DOI: 10.1039/d2cc03120e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two porphyrinic silver-chalcogenide cluster-based MOFs were achieved using a phosphate anionic template strategy, and the highly photoactive organic building modules combined with Lewis acidic silver clusters allow both SCC-MOFs to be used as versatile catalysts for the simultaneous degradation of sulfur mustard and nerve agent simulants.
Collapse
Affiliation(s)
- Chun-Hua Gong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhi-Bing Sun
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Man Cao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xi-Ming Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jie Wu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Qian-You Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Thomas C W Mak
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
165
|
Dandapani H, Kankaanpää P, Jones PR, Kallio P. A Plasmid-Based Fluorescence Reporter System for Monitoring Oxidative Damage in E. coli. SENSORS (BASEL, SWITZERLAND) 2022; 22:6334. [PMID: 36080791 PMCID: PMC9459809 DOI: 10.3390/s22176334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Quantitating intracellular oxidative damage caused by reactive oxygen species (ROS) is of interest in many fields of biological research. The current systems primarily rely on supplemented oxygen-sensitive substrates that penetrate the target cells, and react with ROS to produce signals that can be monitored with spectroscopic or imaging techniques. The objective here was to design a new non-invasive analytical strategy for measuring ROS-induced damage inside living cells by taking advantage of the native redox sensor system of E. coli. The developed plasmid-based sensor relies on an oxygen-sensitive transcriptional repressor IscR that controls the expression of a fluorescent marker in vivo. The system was shown to quantitatively respond to oxidative stress induced by supplemented H2O2 and lowered cultivation temperatures. Comparative analysis with fluorescence microscopy further demonstrated that the specificity of the reporter system was equivalent to the commercial chemical probe (CellROX). The strategy introduced here is not dependent on chemical probes, but instead uses a fluorescent expression system to detect enzyme-level oxidative damage in microbial cells. This provides a cheap and simple means for analysing enzyme-level oxidative damage in a biological context in E. coli.
Collapse
Affiliation(s)
- Hariharan Dandapani
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Pasi Kankaanpää
- Turku BioImaging and Turku Bioscience Centre, University of Turku, FI-20014 Turku, Finland
- Turku BioImaging and Turku Bioscience Centre, Åbo Akademi University, FI-20500 Turku, Finland
| | - Patrik R. Jones
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2BX, UK
| | - Pauli Kallio
- Molecular Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
166
|
Peralta DR, Farizano JV, Bulacio Gil N, Corbalán NS, Pomares MF, Vincent PA, Adler C. Less is more: Enterobactin concentration dependency in copper tolerance and toxicity. Front Mol Biosci 2022; 9:961917. [PMID: 36052165 PMCID: PMC9426971 DOI: 10.3389/fmolb.2022.961917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
The ability of siderophores to play roles beyond iron acquisition has been recently proven for many of them and evidence continues to grow. An earlier work showed that the siderophore enterobactin is able to increase copper toxicity by reducing Cu2+ to Cu+, a form of copper that is more toxic to cells. Copper toxicity is multifaceted. It involves the formation of reactive oxygen species (ROS), mismetallation of enzymes and possibly other mechanisms. Given that we previously reported on the capacity of enterobactin to alleviate oxidative stress caused by various stressors other than copper, we considered the possibility that the siderophore could play a dual role regarding copper toxicity. In this work, we show a bimodal effect of enterobactin on copper toxicity (protective and harmful) which depends on the siderophore concentration. We found that the absence of enterobactin rendered Escherichia coli cells more sensitive to copper, due to the reduced ability of those cells to cope with the metal-generated ROS. Consistently, addition of low concentrations of the siderophore had a protective effect by reducing ROS levels. We observed that in order to achieve this protection, enterobactin had to enter cells and be hydrolyzed in the cytoplasm. Further supporting the role of enterobactin in oxidative stress protection, we found that both oxygen and copper, induced the expression of the siderophore and also found that copper strongly counteracted the well-known downregulation effect of iron on enterobactin synthesis. Interestingly, when enterobactin was present in high concentrations, cells became particularly sensitive to copper most likely due to the Cu2+ to Cu+ reduction, which increased the metal toxicity leading to cell death.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Conrado Adler
- *Correspondence: Paula Andrea Vincent, ; Conrado Adler,
| |
Collapse
|
167
|
Rjiba-Touati K, Ayed-Boussema I, Hamdi H, Azzebi A, Abid S. Bromuconazole fungicide induces cell cycle arrest and apoptotic cell death in cultured human colon carcinoma cells (HCT116) via oxidative stress process. Biomarkers 2022; 27:659-670. [PMID: 35968645 DOI: 10.1080/1354750x.2022.2098378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Bromuconazole, a fungicide belonging to the triazole family, is a plant protection product used to control, repel or destroy fungi that may develop on crops. We investigated the pro-apoptotic effect of bromuconazole and the role of oxidative stress in the death mechanism induced by this fungicide in this study. METHODS The human colon HCT116 cell line was treated with Bromuconazole (IC50/4, IC50/2, and IC50) for 24 h. Cells were collected and analysed for biomarkers of apoptotic cell death and oxidative stress as well as for the assessment of genotoxic damage. RESULTS Our study showed that bromuconazole caused a concentration-dependent increase in cell mortality with an IC50 of 180 µM. Bromuconazole induced cell cycle arrest in the G0/G1 phase and DNA synthesis inhibition. The Comet assay showed that bromuconazole caused DNA damage in a concentration-dependent manner. Bromuconazole-induced apoptosis was observed by, Annexin-V/FITC-PI and BET/AO staining, by mitochondrial membrane depolarisation, and by increased caspase-3 activity. In addition, bromuconazole induced a significant increase in ROS and lipid peroxidation levels and a disruption in SOD and CAT activities. N-acetylcysteine (NAC) strongly prevents cytotoxic and genotoxic damage caused by bromuconazole. CONCLUSION Bromuconazole toxicity was through the oxidative stress process, which causes DNA damage and mitochondrial dysfunction, leading to cell cycle arrest and apoptotic death of HCT116 cells.
Collapse
Affiliation(s)
- Karima Rjiba-Touati
- Faculty of Dentistry, Laboratory of Research on Biologically Compatible Compounds, Monastir, Tunisia.,Faculty of Sciences of Gafsa, University Campus, Gafsa, Tunisia
| | - Imen Ayed-Boussema
- Faculty of Dentistry, Laboratory of Research on Biologically Compatible Compounds, Monastir, Tunisia.,Faculty of Sciences of Gafsa, University Campus, Gafsa, Tunisia
| | - Hiba Hamdi
- Faculty of Dentistry, Laboratory of Research on Biologically Compatible Compounds, Monastir, Tunisia
| | - Awatef Azzebi
- Department of Nephrology, Dialysis, and Transplant, University Hospital of Sahloul, Sousse, Tunisia
| | - Salwa Abid
- Faculty of Dentistry, Laboratory of Research on Biologically Compatible Compounds, Monastir, Tunisia
| |
Collapse
|
168
|
Mandal S, Tarai SK, Pan A, Bhaduri R, Biswas P, Moi SC. Cytotoxic effects of Pd(II) complexes on cancer and normal cells: Their DNA & BSA adduct formation and theoretical approaches. Bioorg Chem 2022; 128:106093. [PMID: 35985157 DOI: 10.1016/j.bioorg.2022.106093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 12/12/2022]
Abstract
Herein, we report the synthesis and characterisation of a series of Pd(II) complexes: Pd(TEEDA)Cl2, C-1; [Pd(TEEDA)(OH2)2](NO3)2, C-2; [Pd(TEEDA)(l-cys)](NO3)2, C-3; [Pd(TEEDA)(NALC)], C-4; [Pd(TEEDA)(Meth)](NO3)2, C-5; and [Pd(TEEDA)(GSH)], C-6 (where TEEDA = N,N,N'-Triethylenediamine, l-cys = l-cysteine, NALC = N-acetyl-l-cysteine, Meth = dl-methionine and GSH = glutathione). UV-Vis spectroscopic characterisation was supported by TD-DFT theoretical simulation using Gaussian09 software. Different reactivity parameters were calculated from the energy difference between HOMO and LUMO of the complexes by DFT. The bonding mode of the labile ligands was confirmed by NBO analysis. Interaction of the complexes with DNA has been observed by gel electrophoresis experiment. DNA binding nature as well as binding constants of the complexes were measured with UV-Vis and fluorescence spectroscopic method. The binding nature of the complexes with DNA was confirmed by viscometric titration. Interaction of the complexes with BSA was investigated by UV-Vis and fluorescence titration method. Cytotoxic activity of the Pd(II) complexes was evaluated on A549 (lung carcinoma epithelial cells), HCT116(Colorectal Carcinoma) and HEK293 (Human embryonic kidney cells) cell lines. The ROS generation in the presence of the complexes was tested both on cancer cell lines A549 and HCT116 as well as human normal cell HEK293.
Collapse
Affiliation(s)
- Saikat Mandal
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur- 713209, West Bengal, India
| | - Swarup Kumar Tarai
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur- 713209, West Bengal, India
| | - Angana Pan
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur- 713209, West Bengal, India
| | - Rituparna Bhaduri
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur- 713209, West Bengal, India
| | - Pritam Biswas
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur- 713209, West Bengal, India
| | - Sankar Chandra Moi
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur- 713209, West Bengal, India.
| |
Collapse
|
169
|
Downregulation of krüppel-like factor 6 expression modulates extravillous trophoblast cell behavior by increasing reactive oxygen species. Placenta 2022; 127:62-72. [PMID: 35973366 DOI: 10.1016/j.placenta.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Placental extravillous trophoblasts play a crucial role in the establishment of a healthy pregnancy. Reactive oxygen species (ROS) may contribute to their differentiation and function as mediators in signaling processes or might cause oxidative stress resulting in trophoblast dysfunction. The krüppel-like transcription factor 6 (KLF6) regulates many genes involved in essential cell processes where ROS are also involved. However, whether KLF6 regulates ROS levels has not been previously investigated. MATERIALS AND METHODS KLF6 was silenced by siRNAs in HTR8-SV/neo cells, an extravillous trophoblast model. Total and mitochondrial ROS levels, as well as mitochondrial membrane potential and apoptosis were analyzed by flow cytometry. The expression of genes and proteins of interest were analyzed by qRT-PCR and Western blot, respectively. Cell response to oxidative stress, proliferation, viability, morphology, and migration were evaluated. RESULTS KLF6 downregulation led to an increase in ROS and NOX4 mRNA levels, accompanied by reduced cell proliferation and increased p21 protein expression. Catalase activity, 2-Cys peroxiredoxin protein levels, Nrf2 cytoplasmic localization and hemoxygenase 1 expression, as well as mitochondrial membrane potential and cell apoptosis were not altered suggesting that ROS increase is not associated with cellular damage. Instead, KLF6 silencing induced cytoskeleton modifications and increased cell migration in a ROS-dependent manner. DISCUSSION Present data reveal a novel role of KLF6 on ROS balance and signaling demonstrating that KLF6 downregulation induces an increase in ROS levels that contribute to extravillous trophoblast cell migration.
Collapse
|
170
|
Photo-Protective and Anti-Inflammatory Effects of Antidesma thwaitesianum Müll. Arg. Fruit Extract against UVB-Induced Keratinocyte Cell Damage. Molecules 2022; 27:molecules27155034. [PMID: 35956984 PMCID: PMC9370488 DOI: 10.3390/molecules27155034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The main cause of most skin cancers is damage from UVB from sunlight, which penetrate the skin surface and induce inflammation. For this reason, this study aims to identify natural products with photo-protection properties and their mode of action by using the UVB-irradiated HaCaT keratinocyte model. Antidesma thwaitesianum fruit extracts at 25, 50, and 100 µg/mL recovered cell viability following UVB exposure in a dose-dependent manner. Cell survival was associated with the reduction in intracellular ROS and NO. In addition, we showed that the pre-treatment with the fruit extract lowered the phosphorylation level of two MAPK-signaling pathways: p38 MAPKs and JNKs. The resulting lower MAPK activation decreased their downstream pro-inflammatory cascade through COX-2 expression and subsequently reduced the PGE2 proinflammatory mediator level. The photoprotective effects of the fruit extract were correlated with the presence of polyphenolic compounds, including cyanidin, ferulic acid, caffeic acid, vanillic acid, and protocatechuic acid, which have been previously described as antioxidant and anti-inflammation. Together, we demonstrated that the pre-treatment with the fruit extract had photo-protection by inhibiting oxidative stress and subsequently lowered stress-induced MAPK responses. Therefore, this fresh fruit is worthy of investigation to be utilized as a skincare ingredient for preventing UVB-induced skin damage.
Collapse
|
171
|
Miazek K, Beton K, Śliwińska A, Brożek-Płuska B. The Effect of β-Carotene, Tocopherols and Ascorbic Acid as Anti-Oxidant Molecules on Human and Animal In Vitro/In Vivo Studies: A Review of Research Design and Analytical Techniques Used. Biomolecules 2022; 12:biom12081087. [PMID: 36008981 PMCID: PMC9406122 DOI: 10.3390/biom12081087] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Prolonged elevated oxidative stress (OS) possesses negative effect on cell structure and functioning, and is associated with the development of numerous disorders. Naturally occurred anti-oxidant compounds reduce the oxidative stress in living organisms. In this review, antioxidant properties of β-carotene, tocopherols and ascorbic acid are presented based on in vitro, in vivo and populational studies. Firstly, environmental factors contributing to the OS occurrence and intracellular sources of Reactive Oxygen Species (ROS) generation, as well as ROS-mediated cellular structure degradation, are introduced. Secondly, enzymatic and non-enzymatic mechanism of anti-oxidant defence against OS development, is presented. Furthermore, ROS-preventing mechanisms and effectiveness of β-carotene, tocopherols and ascorbic acid as anti-oxidants are summarized, based on studies where different ROS-generating (oxidizing) agents are used. Oxidative stress biomarkers, as indicators on OS level and prevention by anti-oxidant supplementation, are presented with a focus on the methods (spectrophotometric, fluorometric, chromatographic, immuno-enzymatic) of their detection. Finally, the application of Raman spectroscopy and imaging as a tool for monitoring the effect of anti-oxidant (β-carotene, ascorbic acid) on cell structure and metabolism, is proposed. Literature data gathered suggest that β-carotene, tocopherols and ascorbic acid possess potential to mitigate oxidative stress in various biological systems. Moreover, Raman spectroscopy and imaging can be a valuable technique to study the effect of oxidative stress and anti-oxidant molecules in cell studies.
Collapse
Affiliation(s)
- Krystian Miazek
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
- Correspondence:
| | - Karolina Beton
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Beata Brożek-Płuska
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
172
|
Esworthy RS, Doroshow JH, Chu FF. The beginning of GPX2 and 30 years later. Free Radic Biol Med 2022; 188:419-433. [PMID: 35803440 PMCID: PMC9341242 DOI: 10.1016/j.freeradbiomed.2022.06.232] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
We published the first paper to characterize GPX2 (aka GSHPx-GI) as a selenoenzyme with glutathione peroxidase activity in 1993. Among the four Se-GPX isozymes, GPX1-4, GPX1 and GPX2 are closely related in terms of structure, substrate specificities, and subcellular localization. What sets them apart are distinct patterns of gene regulation, tissue distribution and response to selenium. While we identified the digestive tract epithelium as the main site of GPX2 expression, later work has shown GPX2 is found more widely in epithelial tissues with concentration of expression in stem cell and proliferative compartments. GPX2 expression is regulated over a wide range of levels by many pathways, including NRF2, WNT, p53, RARE and this often results in attaching undue significance to GPX2 as GPX2 is only a part of a system of hydroperoxidase activities, including GPX1, peroxiredoxins and catalase. These other activities may play equal or greater roles, particularly in cell lines cultured without selenium supplementation and often with very low GPX2 levels. This could be assessed by examining levels of mRNA and protein among these various peroxidases at the outset of studies. As an example, it was found that GPX1 responds to the absence of GPX2 in mouse ileum and colon epithelium with higher expression. As such, both Gpx1 and Gpx2 had to be knocked out in mice to produce ileocolitis. However, we note that the actual role of GPX1 and GPX2 in relation to peroxiredoxin function is unclear. There may be an interdependence that requires only low amounts of GPX1 and/or GPX2 in a supporting role to maintain proper peroxiredoxin function. GPX2 levels may be prognostic for cancer progression in colon, breast, prostate and liver, however, there is no consistent trend for higher or lower levels to be favorable.
Collapse
Affiliation(s)
- R Steven Esworthy
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute of City of Hope. Duarte, California, USA, 91010.
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Fong-Fong Chu
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute of City of Hope. Duarte, California, USA, 91010.
| |
Collapse
|
173
|
Pheophorbide A and SN38 conjugated hyaluronan nanoparticles for photodynamic- and cascadic chemotherapy of cancer stem-like ovarian cancer. Carbohydr Polym 2022; 289:119455. [DOI: 10.1016/j.carbpol.2022.119455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 01/02/2023]
|
174
|
Saha M, Singha S, Ghosh D, Kumar S, Karmakar P, Das S. A CobaltII/CobaltIII complex of alizarin that was analyzed from the stand point of binding with DNA, for ROS generation and anticancer drug prospecting was identified as an analogue of anthracyclines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
175
|
de Haan LR, Reiniers MJ, Reeskamp LF, Belkouz A, Ao L, Cheng S, Ding B, van Golen RF, Heger M. Experimental Conditions That Influence the Utility of 2′7′-Dichlorodihydrofluorescein Diacetate (DCFH2-DA) as a Fluorogenic Biosensor for Mitochondrial Redox Status. Antioxidants (Basel) 2022; 11:antiox11081424. [PMID: 35892626 PMCID: PMC9329753 DOI: 10.3390/antiox11081424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress has been causally linked to various diseases. Electron transport chain (ETC) inhibitors such as rotenone and antimycin A are frequently used in model systems to study oxidative stress. Oxidative stress that is provoked by ETC inhibitors can be visualized using the fluorogenic probe 2′,7′-dichlorodihydrofluorescein-diacetate (DCFH2-DA). Non-fluorescent DCFH2-DA crosses the plasma membrane, is deacetylated to 2′,7′-dichlorodihydrofluorescein (DCFH2) by esterases, and is oxidized to its fluorescent form 2′,7′-dichlorofluorescein (DCF) by intracellular ROS. DCF fluorescence can, therefore, be used as a semi-quantitative measure of general oxidative stress. However, the use of DCFH2-DA is complicated by various protocol-related factors that mediate DCFH2-to-DCF conversion independently of the degree of oxidative stress. This study therefore analyzed the influence of ancillary factors on DCF formation in the context of ETC inhibitors. It was found that ETC inhibitors trigger DCF formation in cell-free experiments when they are co-dissolved with DCFH2-DA. Moreover, the extent of DCF formation depended on the type of culture medium that was used, the pH of the assay system, the presence of fetal calf serum, and the final DCFH2-DA solvent concentration. Conclusively, experiments with DCFH2-DA should not discount the influence of protocol-related factors such as medium and mitochondrial inhibitors (and possibly other compounds) on the DCFH2-DA-DCF reaction and proper controls should always be built into the assay protocol.
Collapse
Affiliation(s)
- Lianne R. de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (L.R.d.H.); (M.J.R.); (L.A.); (B.D.)
- Laboratory for Experimental Oncology, Department of Pathology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Megan J. Reiniers
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (L.R.d.H.); (M.J.R.); (L.A.); (B.D.)
- Department of Surgery, Haaglanden Medisch Centrum, 2262 BA The Hague, The Netherlands
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Laurens F. Reeskamp
- Department of Vascular Medicine, Amsterdam University Medical Centers, Location AMC, 1105 AZ Amsterdam, The Netherlands;
| | - Ali Belkouz
- Department of Medical Oncology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Lei Ao
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (L.R.d.H.); (M.J.R.); (L.A.); (B.D.)
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, The Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, China;
| | - Baoyue Ding
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (L.R.d.H.); (M.J.R.); (L.A.); (B.D.)
| | - Rowan F. van Golen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (L.R.d.H.); (M.J.R.); (L.A.); (B.D.)
- Laboratory for Experimental Oncology, Department of Pathology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: or ; Tel.: +31-6-2448-3083 or +31-30-2533-966
| |
Collapse
|
176
|
Vesco G, Brambati M, Scapinello L, Penoni A, Mella M, Masson M, Gaware V, Maspero A, Nardo L. Asymmetric Phenyl Substitution: An Effective Strategy to Enhance the Photosensitizing Potential of Curcuminoids. Pharmaceuticals (Basel) 2022; 15:843. [PMID: 35890142 PMCID: PMC9321223 DOI: 10.3390/ph15070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Curcumin has been demonstrated to exhibit photosensitized bactericidal activity. However, the full exploitation of curcumin as a photo-pharmaceutical active principle is hindered by fast deactivation of the excited state through the transfer of the enol proton to the keto oxygen. Introducing an asymmetry in the molecular structure through acting on the phenyl substituents is expected to be a valuable strategy to impair this undesired de-excitation mechanism competing with the therapeutically relevant ones. In this study, two asymmetric curcumin analogs were synthesized and characterized as to their electronic-state transition spectroscopic properties. Fluorescence decay distributions were also reconstructed. Their analysis confirmed the substantial stabilization of the fluorescent state with respect to the parent compound. Nuclear magnetic resonance experiments were performed with the aim of determining the structural features of the keto-enol ring and the strength of the keto-enol hydrogen bond. Electronic structure calculations were also undertaken to elucidate the effects of substitution on the features of the keto-enol semi-aromatic system and the proneness to proton transfer. Finally, their singlet oxygen-generation efficiency was compared to that of curcumin through the 9,10-dimethylanthracene fluorescent assay.
Collapse
Affiliation(s)
- Guglielmo Vesco
- Department of Science and High Technology, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (G.V.); (M.B.); (L.S.); (A.P.); (M.M.)
| | - Martino Brambati
- Department of Science and High Technology, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (G.V.); (M.B.); (L.S.); (A.P.); (M.M.)
| | - Luca Scapinello
- Department of Science and High Technology, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (G.V.); (M.B.); (L.S.); (A.P.); (M.M.)
| | - Andrea Penoni
- Department of Science and High Technology, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (G.V.); (M.B.); (L.S.); (A.P.); (M.M.)
| | - Massimo Mella
- Department of Science and High Technology, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (G.V.); (M.B.); (L.S.); (A.P.); (M.M.)
| | - Màr Masson
- School of Health Sciences, University of Iceland, Saemundargata 2, 102 Reykjavìk, Iceland; (M.M.); (V.G.)
| | - Vivek Gaware
- School of Health Sciences, University of Iceland, Saemundargata 2, 102 Reykjavìk, Iceland; (M.M.); (V.G.)
| | - Angelo Maspero
- Department of Science and High Technology, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (G.V.); (M.B.); (L.S.); (A.P.); (M.M.)
| | - Luca Nardo
- Department of Science and High Technology, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (G.V.); (M.B.); (L.S.); (A.P.); (M.M.)
| |
Collapse
|
177
|
Zou J, Fei W, Qiao Y, Yang Y, He Z, Feng L, Li MB, Wu Z. Combined synthesis of interconvertible Au11Cd and Au26Cd5 for photocatalytic oxidations involving singlet oxygen. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
178
|
Duan X, Xie Z, Ma L, Jin X, Zhang M, Xu Y, Liu Y, Lou H, Chang W. Selective Metal Chelation by a Thiosemicarbazone Derivative Interferes with Mitochondrial Respiration and Ribosome Biogenesis in Candida albicans. Microbiol Spectr 2022; 10:e0195121. [PMID: 35412374 PMCID: PMC9241695 DOI: 10.1128/spectrum.01951-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/04/2022] [Indexed: 11/20/2022] Open
Abstract
Metal chelation is generally considered as a promising antifungal approach but its specific mechanisms are unclear. Here, we identify 13 thiosemicarbazone derivatives that exert broad-spectrum antifungal activity with potency comparable or superior to that of fluconazole in vitro by screening a small compound library comprising 89 thiosemicarbazone derivatives as iron chelators. Among the hits, 19ak exhibits minimal cytotoxicity and potent activity against either azole-sensitive or azole-resistant fungal pathogens. Mechanism investigations reveal that 19ak inhibits mitochondrial respiration mainly by retarding mitochondrial respiratory chain complex I activity through iron chelation, and further reduces mitochondrial membrane potential and ATP synthesis in Candida albicans. In addition, 19ak inhibits fungal ribosome biogenesis mainly by disrupting intracellular zinc homeostasis. 19ak also stimulates the activities of antioxidant enzymes and decreases reactive oxygen species formation in C. albicans, resulting in an increase in detrimental intracellular reductive stress. However, 19ak has minor effects on mammalian cells in depleting intracellular iron and zinc. Moreover, 19ak exhibits low capacity to induce drug resistance and in vivo efficacy in a Galleria mellonella infection model. These findings uncover retarded fungal mitochondrial respiration and ribosome biogenesis as downstream effects of disruption of iron and zinc homeostasis in C. albicans and provide a basis for the thiosemicarbazone 19ak in antifungal application. IMPORTANCE The increasing incidence of fungal infections and resistance to existing antifungals call for the development of broad-spectrum antifungals with novel mechanisms of action. In this study, we demonstrate that a thiosemicarbazone derivative 19ak selectively inhibits mitochondrial respiration mainly by retarding mitochondrial respiratory chain complex I activity through iron chelation and inhibits ribosome biogenesis mainly by disrupting intracellular zinc homeostasis in C. albicans. In addition, 19ak exhibits low capacity to induce fungal resistance, minimal cytotoxicity, and in vivo antifungal efficacy. This study provides the basis of thiosemicarbazone derivative 19ak as a metal chelator for the treatment of fungal infections.
Collapse
Affiliation(s)
- Ximeng Duan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Zhiyu Xie
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan, People’s Republic of China
| | - Liying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueyang Jin
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ming Zhang
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuliang Xu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yue Liu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
179
|
Son HB, Bae WB, Jhee KH. Enhanced Antibacterial Activity of Sodium Hypochlorite under Acidic pH Condition. MICROBIOLOGY AND BIOTECHNOLOGY LETTERS 2022; 50:211-217. [DOI: 10.48022/mbl.2204.04014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 09/01/2023]
Affiliation(s)
- Hyeon-Bin Son
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Won-Bin Bae
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Kwang-Hwan Jhee
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| |
Collapse
|
180
|
Shen M, Ding T, Tan C, Rackers WH, Zhang D, Lew MD, Sadtler B. In Situ Imaging of Catalytic Reactions on Tungsten Oxide Nanowires Connects Surface-Ligand Redox Chemistry with Photocatalytic Activity. NANO LETTERS 2022; 22:4694-4701. [PMID: 35674669 DOI: 10.1021/acs.nanolett.2c00674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Semiconductor nanocrystals are promising candidates for generating chemical feedstocks through photocatalysis. Understanding the role of ligands used to prepare colloidal nanocrystals in catalysis is challenging due to the complexity and heterogeneity of nanocrystal surfaces. We use in situ single-molecule fluorescence imaging to map the spatial distribution of active regions along individual tungsten oxide nanowires before and after functionalizing them with ascorbic acid. Rather than blocking active sites, we observed a significant enhancement in activity for photocatalytic water oxidation after treatment with ascorbic acid. While the initial nanowires contain inactive regions dispersed along their length, the functionalized nanowires show high uniformity in their photocatalytic activity. Spatial colocalization of the active regions with their surface chemical properties shows that oxidation of ascorbic acid during photocatalysis generates new oxygen vacancies along the nanowire surface. We demonstrate that controlling surface-ligand redox chemistry during photocatalysis can enhance the active site concentration on nanocrystal catalysts.
Collapse
Affiliation(s)
- Meikun Shen
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Tianben Ding
- Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Che Tan
- Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - William H Rackers
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Dongyan Zhang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Matthew D Lew
- Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130, United States
- Institute of Materials Science and Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Bryce Sadtler
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
- Institute of Materials Science and Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
181
|
Flow Cytometric Analysis of Oxidative Stress in Escherichia coli B Strains Deficient in Genes of the Antioxidant Defence. Int J Mol Sci 2022; 23:ijms23126537. [PMID: 35742981 PMCID: PMC9223410 DOI: 10.3390/ijms23126537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
The detection of reactive oxygen species (ROS) and the analysis of oxidative stress are frequent applications of functional flow cytometry. Identifying and quantifying the ROS species generated during oxidative stress are crucial steps for the investigation of molecular mechanisms underlying stress responses. Currently, there is a wide availability of fluorogenic substrates for such purposes, but limitations in their specificity and sensitivity may affect the accuracy of the analysis. The aim of our work was to validate a new experimental model based in different strains of Escherichia coli B deficient in key genes for antioxidant defense, namely oxyR, sodA and sodB. We applied this model to systematically assess issues of specificity in fluorescent probes and the involvement of different ROS in a bacterial model of oxidative stress, as the probes can react with a variety of oxidants and free radical species. Our results confirm the higher sensitivity and specificity of the fluorescent probe mitochondrial peroxy yellow 1 (MitoPY1) for the detection of H2O2, and its very low capacity for organic hydroperoxides, thus extending MitoPY1's specificity for H2O2 in mammalian cells to a bacterial model. On the contrary, the fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA) is more sensitive to organic peroxides than to H2O2, confirming the lack of selectivity of H2DCF-DA to H2O2. Treatment with organic peroxides and H2O2 suggests a superoxide-independent oxidation of the fluorescent probe Hydroethidine (HE). We found a positive correlation between the lipophilicity of the peroxides and their toxicity to E. coli, suggesting greater quantitative importance of the peroxidative effects on the bacterial membrane and/or greater efficiency of the protection systems against the intracellular effects of H2O2 than against the membrane oxidative stress induced by organic peroxides. Altogether, our results may aid in preventing or minimizing experimental errors and providing recommendations for the proper design of cytometric studies of oxidative stress, in accordance with current recommendations and guidelines.
Collapse
|
182
|
Rodríguez-Martín D, Murciano A, Herráiz M, de Francisco P, Amaro F, Gutiérrez JC, Martín-González A, Díaz S. Arsenate and arsenite differential toxicity in Tetrahymena thermophila. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128532. [PMID: 35248958 DOI: 10.1016/j.jhazmat.2022.128532] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
A comparative analysis of toxicities of both arsenic forms (arsenite and arsenate) in the model eukaryotic microorganism Tetrahymena thermophila (ciliate protozoa) has shown the presence of various detoxification mechanisms and cellular effects comparable to those of animal cells under arsenic stress. In the wild type strain SB1969 arsenate is almost 2.5 times more toxic than arsenite. According to the concentration addition model used in binary metallic mixtures their toxicities show an additive effect. Using fluorescent assays and flow cytometry, it has been detected that As(V) generates elevated levels of ROS/RNS compared to As(III). Both produce the same levels of superoxide anion, but As(V) also causes greater increases in hydrogen peroxide and peroxynitrite. The mitochondrial membrane potential is affected by both As(V) and As(III), and electron microscopy has also revealed that mitochondria are the main target of both arsenic ionic forms. Fusion/fission and swelling mitochondrial and mitophagy, together with macroautophagy, vacuolization and mucocyst extruction are mainly associated to As(V) toxicity, while As(III) induces an extensive lipid metabolism dysfunction (adipotropic effect). Quantitative RT-PCR analysis of some genes encoding antioxidant proteins or enzymes has shown that glutathione and thioredoxin metabolisms are involved in the response to arsenic stress. Likewise, the function of metallothioneins seems to be crucial in arsenic detoxification processes, after using both metallothionein knockout and knockdown strains and cells overexpressing metallothionein genes from this ciliate. The analysis of the differential toxicity of As(III) and As(V) shown in this study provides cytological and molecular tools to be used as biomarkers for each of the two arsenic ionic forms.
Collapse
Affiliation(s)
- Daniel Rodríguez-Martín
- Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28130 Madrid, Spain.
| | - Antonio Murciano
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Marta Herráiz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | | | - Francisco Amaro
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Juan Carlos Gutiérrez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Silvia Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| |
Collapse
|
183
|
Yadav B, Roopesh M. Synergistically enhanced Salmonella Typhimurium reduction by sequential treatment of organic acids and atmospheric cold plasma and the mechanism study. Food Microbiol 2022; 104:103976. [DOI: 10.1016/j.fm.2021.103976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 12/25/2022]
|
184
|
Kim H, An HJ, Park J, Lee Y, Kim MS, Lee S, Kim ND, Song J, Choi I. Ultrasensitive and real-time optical detection of cellular oxidative stress using graphene-covered tunable plasmonic interfaces. NANO CONVERGENCE 2022; 9:23. [PMID: 35604511 PMCID: PMC9127018 DOI: 10.1186/s40580-022-00315-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 05/31/2023]
Abstract
Reactive oxygen species (ROS) regulate various physiological and pathological conditions in cells by interacting with signaling molecules and inducing oxidative stress. Therefore, sensitive monitoring of ROS levels in living cells is important to track cellular state and study the complex role of ROS in the development of various pathologies. Herein, we present an optically tunable plasmonic interface covered with graphene to monitor cellular ROS levels with superior sensitivity and cellular comfortability. As a sensing principle, we employed plasmon resonance energy transfer (PRET)-based spectral quenching dips modulated by redox-active cytochrome c for real-time monitoring. By transferring graphene layers to plasmonic nanoparticles immobilized on a glass substrate, the scattering profiles of the nanoprobes were adjusted in terms of the position, width, and intensity of the peaks to determine the optimal conditions for measuring the PRET signal. Using the optimized graphene-covered plasmonic nanoprobe, we obtained calibration curves over a wide concentration range from femtomoles to millimoles for hydrogen peroxide based on the change in the PRET signal. Before monitoring cellular ROS, we confirmed that a high density of cells adhered well to the graphene-covered plasmonic interface by observing immunofluorescence images of the cytoskeleton of the immobilized cells. Finally, we monitored the real-time ROS generated by the cells under oxidative stress conditions by directly measuring the spectral changes of the probes around the cells. We believe that the proposed graphene-covered tunable plasmonic interface has versatile applicability for investigating cellular stress and disease progression by monitoring ROS levels under various cellular conditions.
Collapse
Affiliation(s)
- Hakchun Kim
- Department of Life Science, University of Seoul, Seoul, 02054, Republic of Korea
| | - Hyun Ji An
- Department of Life Science, University of Seoul, Seoul, 02054, Republic of Korea
| | - Junhee Park
- Department of Life Science, University of Seoul, Seoul, 02054, Republic of Korea
| | - Yohan Lee
- Department of Mechanical Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Min Seob Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Bongdong-eup, Wanju-gun, Jeollabuk-do, 55324, Republic of Korea
| | - Seungki Lee
- Department of Life Science, University of Seoul, Seoul, 02054, Republic of Korea
| | - Nam Dong Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Bongdong-eup, Wanju-gun, Jeollabuk-do, 55324, Republic of Korea
| | - Jihwan Song
- Department of Mechanical Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea.
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul, 02054, Republic of Korea.
| |
Collapse
|
185
|
Poljak M, Wohlrábová L, Palao E, Nociarová J, Míšek J, Slanina T, Klán P. Chalcogen-based ratiometric reversible BODIPY redox sensors for the determination of enantioselective methionine sulfoxide reductase activity. Chem Commun (Camb) 2022; 58:6389-6392. [PMID: 35543358 DOI: 10.1039/d2cc02016e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many serious diseases are associated with degenerative changes caused by oxidative stress triggered by elevated concentrations of reactive oxygen species (ROS) in cells. Therefore, the development of suitable probes for monitoring such processes is of great importance. Here, we introduce a series of sulfur- and selenium-substituted BODIPY derivatives as reversible redox sensors for ROS and enzymatic redox processes. Significant differences in emission maxima and fluorescence quantum yields between the reduced and oxidized forms make them excellent ratiometric turn-on/off probes. Installation of polar sulfonate groups improved their aqueous solubility while retaining their sensing properties, which allowed the probes to monitor the enzymatic activity of enantioselective methionine sulfoxide reductase.
Collapse
Affiliation(s)
- Michal Poljak
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic. .,RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lucie Wohlrábová
- Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 542, 160 00 Prague, Czech Republic.
| | - Eduardo Palao
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic. .,RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jela Nociarová
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic. .,RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Míšek
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry, Flemingovo náměstí 542, 160 00 Prague, Czech Republic.
| | - Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic. .,RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
186
|
Amara I, Timoumi R, Annabi E, Ben Othmène Y, Abid-Essefi S. The protective effects of thymol and carvacrol against di (2-ethylhexyl) phthalate-induced cytotoxicity in HEK-293 cells. J Biochem Mol Toxicol 2022; 36:e23092. [PMID: 35521929 DOI: 10.1002/jbt.23092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 12/23/2022]
Abstract
The protective effects of thymol and carvacrol, two phenolic monoterpenes with a wide spectrum of pharmacological effects, against the oxidative stress produced by the di (2-ethylhexyl) phthalate (DEHP) in human embryonic kidney cells 293 cells (HEK-293 cells) were investigated in this study. The cytotoxicity was monitored by cell viability, while oxidative stress generation was assessed by reactive oxygen species (ROS) quantification, antioxidant enzyme activities measurement, glutathione concentration, and malondialdehyde (MDA) quantification. The genotoxicity was evaluated by the measurement of DNA fragmentation through the Comet assay. Our results demonstrated that the pretreatment of HEK-293 cells with thymol or carvacrol, 2 h before DEHP exposure, significantly increased the cell viability, decreased the ROS overproduction, modulated catalase (CAT), and superoxide dismutase (SOD) activities, restored the reduced glutathione content, and reduced the MDA level. The DNA fragmentation was also decreased by thymol and carvacrol pretreatment. These findings suggest that thymol and carvacrol could protect HEK-293 cells from DEHP-induced oxidative stress.
Collapse
Affiliation(s)
- Ines Amara
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Rim Timoumi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Emna Annabi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Yosra Ben Othmène
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| |
Collapse
|
187
|
Recent Approaches to Determine Static and Dynamic Redox State-Related Parameters. Antioxidants (Basel) 2022; 11:antiox11050864. [PMID: 35624728 PMCID: PMC9137989 DOI: 10.3390/antiox11050864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress refers to an imbalance between oxidant and antioxidant molecules, which is usually associated with oxidative damage to biomolecules and mitochondrial malfunction. Redox state-related parameters include (1) the direct measurement of ROS, (2) the assessment of the antioxidant defense status, and (3) the analysis of the resulting oxidative damage to molecules. Directly measuring ROS appears to be the preferred method among scientists, but most ROS are extremely unstable and difficult to measure. The processes of determining both the oxidative damage to biomolecules and the antioxidant system status, although both are indirect approaches, provide a reliable method to measure oxidative stress on a given sample. Recently, the Seahorse XF and the Oroboros O2k systems have provided new insights into the redox state from a more dynamic point of view. These techniques assess mitochondrial oxidative phosphorylation function and bioenergetics on isolated mitochondria, cultured cells, or specific tissues such as permeabilized fibers. This review describes a range of methodologies to measure redox state-related parameters, their strengths, and their limitations. In conclusion, all these techniques are valid and none of them can be replaced by another. Indeed, they have the potential to complement each other for a complete evaluation of the redox state of a given sample.
Collapse
|
188
|
The influence of deposition time on electrochemical performance of Prussian blue-modified submicron-structured gold electrodes for hydrogen peroxide sensing. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02212-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
189
|
Sun M, Jiao H, Wang X, Li H, Zhou Y, Zhao J, Lin H. The regulating pathway of creatine on muscular protein metabolism depends on the energy state. Am J Physiol Cell Physiol 2022; 322:C1022-C1035. [PMID: 35417269 DOI: 10.1152/ajpcell.00447.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Creatine (Cr) is beneficial for increasing muscle mass and preventing muscle atrophy via involving in energy metabolism through the Cr and phosphocreatine (PCr) system. This study aimed to evaluate the supplemental effect of Cr on protein metabolism under normal and starvation conditions. The primary myoblasts were obtained from the breast muscle of chicks. The mammalian target of rapamycin (mTOR)/P70S6 kinase (P70S6K), ubiquitin proteasome (UP) pathways, and mitochondrial function of myotubes were evaluated at normal or starvation state and with or without glucose supplementation. Under normal condition, Cr supplementation enhanced protein synthesis rate as well as upregulated the total and phosphorylated P70S6K expressions. Cr had little influence on protein catabolism, and mitochondrial function. In a starvation state, however, Cr alleviated myotube atrophy and enhanced protein accretion by inhibiting Atrogin1 and myostatin (MSTN) expression. Furthermore, Cr treatment upregulated the transcriptional coactivators peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression, and decreased reactive oxygen species (ROS) accumulation under starvation condition. In the presence of glucose, however, the favorable effect of Cr on protein content and myotube diameter did not occur under starvation condition. The present result indicates that at normal state, Cr stimulated protein synthesis via the mTOR/P70S6K pathway. In a starvation state, Cr mainly take a favorable effect on protein accumulation via suppression of UP pathway and mediated mitochondrial function mainly by serving as an energy supplier. The result highlights the potential clinical application for the modulation of muscle mass under different nutritional conditions.
Collapse
Affiliation(s)
- Mingfa Sun
- Department of Animal Science, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, China
| | - Hongchao Jiao
- Department of Animal Science, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, China
| | - Xiaojuan Wang
- Department of Animal Science, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Jingpeng Zhao
- Department of Animal Science, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, China
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, China
| |
Collapse
|
190
|
Zhu A, Zheng F, Zhang W, Li L, Li Y, Hu H, Wu Y, Bao W, Li G, Wang Q, Li H. Oxidation and Antioxidation of Natural Products in the Model Organism Caenorhabditiselegans. Antioxidants (Basel) 2022; 11:antiox11040705. [PMID: 35453390 PMCID: PMC9029379 DOI: 10.3390/antiox11040705] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
Natural products are small molecules naturally produced by multiple sources such as plants, animals, fungi, bacteria and archaea. They exert both beneficial and detrimental effects by modulating biological targets and pathways involved in oxidative stress and antioxidant response. Natural products’ oxidative or antioxidative properties are usually investigated in preclinical experimental models, including virtual computing simulations, cell and tissue cultures, rodent and nonhuman primate animal models, and human studies. Due to the renewal of the concept of experimental animals, especially the popularization of alternative 3R methods for reduction, replacement and refinement, many assessment experiments have been carried out in new alternative models. The model organism Caenorhabditis elegans has been used for medical research since Sydney Brenner revealed its genetics in 1974 and has been introduced into pharmacology and toxicology in the past two decades. The data from C. elegans have been satisfactorily correlated with traditional experimental models. In this review, we summarize the advantages of C. elegans in assessing oxidative and antioxidative properties of natural products and introduce methods to construct an oxidative damage model in C. elegans. The biomarkers and signaling pathways involved in the oxidative stress of C. elegans are summarized, as well as the oxidation and antioxidation in target organs of the muscle, nervous, digestive and reproductive systems. This review provides an overview of the oxidative and antioxidative properties of natural products based on the model organism C. elegans.
Collapse
Affiliation(s)
- An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
| | - Wenjing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
| | - Yajiao Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Wenqiang Bao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (Y.W.); (W.B.)
- Department of Pathogen Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Guojun Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
- School of Public Health, Capital Medical University, Beijing 100069, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (L.L.); (Y.L.)
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China; (F.Z.); (H.H.)
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Correspondence: (A.Z.); (G.L.); (Q.W.); (H.L.)
| |
Collapse
|
191
|
Efficiency of antioxidant Avenanthramide-C on high-dose methotrexate-induced ototoxicity in mice. PLoS One 2022; 17:e0266108. [PMID: 35353852 PMCID: PMC8967015 DOI: 10.1371/journal.pone.0266108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
Methotrexate (MTX) has been used in treating various types of cancers but can also cause damage to normal organs and cell types. Folinic acid (FA) is a well-known MTX antidote that protects against toxicity caused by the drug and has been used for decades. Since hearing loss caused by MTX treatment is not well studied, herein we aimed to investigate the efficiency of the antioxidant Avenanthramide-C (AVN-C) on high-dose MTX (HDMTX) toxicity in the ear and provide insights into the possible mechanism involved in MTX-induced hearing loss in normal adult C57Bl/6 mice and HEI-OC1 cells. Our results show that the levels of MTX increased in the serum and perilymph 30 minutes after systemic administration. MTX increased hearing thresholds in mice, whereas AVN-C and FA preserved hearing within the normal range. MTX also caused a decrease in wave I amplitude, while AVN-C and FA maintained it at higher levels. MTX considerably damaged the cochlear synapses and neuronal integrity, and both AVN-C and FA rescued the synapses. MTX reduced the cell viability and increased the reactive oxygen species (ROS) level in HEI-OC1 cells, but AVN-C and FA reversed these changes. Apoptosis- and ROS-related genes were significantly upregulated in MTX-treated HEI-OC1 cells; however, they were downregulated by AVN-C and FA treatment. We show that MTX can cause severe hearing loss; it can cross the blood–labyrinth barrier and cause damage to the cochlear neurons and outer hair cells (OHCs). The antioxidant AVN-C exerts a strong protective effect against MTX-induced ototoxicity and preserved the inner ear structures (synapses, neurons, and OHCs) from MTX-induced damage. The mechanism of AVN-C against MTX suggests that ROS is involved in HDMTX-induced ototoxicity.
Collapse
|
192
|
Wu L, Wen W, Wang X, Huang D, Cao J, Qi X, Shen S. Ultrasmall iron oxide nanoparticles cause significant toxicity by specifically inducing acute oxidative stress to multiple organs. Part Fibre Toxicol 2022; 19:24. [PMID: 35351185 PMCID: PMC8962100 DOI: 10.1186/s12989-022-00465-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/17/2022] [Indexed: 01/21/2023] Open
Abstract
Background Iron oxide nanoparticles have been approved by food and drug administration for clinical application as magnetic resonance imaging (MRI) and are considered to be a biocompatible material. Large iron oxide nanoparticles are usually used as transversal (T2) contrast agents to exhibit dark contrast in MRI. In contrast, ultrasmall iron oxide nanoparticles (USPIONs) (several nanometers) showed remarkable advantage in longitudinal (T1)-weighted MRI due to the brighten effect. The study of the toxicity mainly focuses on particles with size of tens to hundreds of nanometers, while little is known about the toxicity of USPIONs. Results We fabricated Fe3O4 nanoparticles with diameters of 2.3, 4.2, and 9.3 nm and evaluated their toxicity in mice by intravenous injection. The results indicate that ultrasmall iron oxide nanoparticles with small size (2.3 and 4.2 nm) were highly toxic and were lethal at a dosage of 100 mg/kg. In contrast, no obvious toxicity was observed for iron oxide nanoparticles with size of 9.3 nm. The toxicity of small nanoparticles (2.3 and 4.2 nm) could be reduced when the total dose was split into 4 doses with each interval for 5 min. To study the toxicology, we synthesized different-sized SiO2 and gold nanoparticles. No significant toxicity was observed for ultrasmall SiO2 and gold nanoparticles in the mice. Hence, the toxicity of the ultrasmall Fe3O4 nanoparticles should be attributed to both the iron element and size. In the in vitro experiments, all the ultrasmall nanoparticles (< 5 nm) of Fe3O4, SiO2, and gold induced the generation of the reactive oxygen species (ROS) efficiently, while no obvious ROS was observed in larger nanoparticles groups. However, the ·OH was only detected in Fe3O4 group instead of SiO2 and gold groups. After intravenous injection, significantly elevated ·OH level was observed in heart, serum, and multiple organs. Among these organs, heart showed highest ·OH level due to the high distribution of ultrasmall Fe3O4 nanoparticles, leading to the acute cardiac failure and death. Conclusion Ultrasmall Fe3O4 nanoparticles (2.3 and 4.2 nm) showed high toxicity in vivo due to the distinctive capability in inducing the generation of ·OH in multiple organs, especially in heart. The toxicity was related to both the iron element and size. These findings provide novel insight into the toxicology of ultrasmall Fe3O4 nanoparticles, and also highlight the need of comprehensive evaluation for their clinic application. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00465-y.
Collapse
|
193
|
Castelôa M, Moreira-Pinto B, Benfeito S, Borges F, Fonseca BM, Rebelo I. In Vitro Effects of Mitochondria-Targeted Antioxidants in a Small-Cell Carcinoma of the Ovary of Hypercalcemic Type and in Type 1 and Type 2 Endometrial Cancer. Biomedicines 2022; 10:biomedicines10040800. [PMID: 35453550 PMCID: PMC9030827 DOI: 10.3390/biomedicines10040800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Small-cell carcinoma of the ovary of hypercalcemic type (SCCOHT) and endometrial cancer from type 1 and type 2 are gynecological tumors that affect women worldwide. The treatment encompasses the use of cytotoxic drugs that are nonspecific and inefficient. “Mitocans”, a family of drugs that specifically target tumor cells’ mitochondria, might be a solution, as they conjugate compounds, such as antioxidants, with carriers, such as lipophilic cations, that direct them to the mitochondria. In this study, caffeic acid was conjugated with triphenylphosphonium (TPP), 4-picolinium, or isoquinolinium, forming 3 new compounds (Mito6_TPP, Mito6_picol., and Mito6_isoq.) that were tested on ovarian (COV434) and endometrial (Hec50co and Ishikawa) cancer cells. The results of MTT and neutral red assays suggested a time- and concentration-dependent decrease in cell viability in all tumor cell lines. The presence of apoptosis was indicated by the Giemsa and Höechst staining and by the decrease in mitochondrial membrane potential. The measurement of intracellular reactive oxygen species demonstrated the antioxidant properties of these compounds, which might be related to cell death. Generally, Mito6_TPP was more active at lower concentrations than Mito6_picol. or Mito6_isoq., but was accompanied by more cytotoxic effects, as shown by the lactate dehydrogenase release. Non-tumorous cells (HFF-1) showed no changes after treatment. This study assessed the potential of these compounds as anticancer agents, although further investigation is needed.
Collapse
Affiliation(s)
- Mariana Castelôa
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal; (M.C.); (S.B.); (F.B.)
| | - Beatriz Moreira-Pinto
- UCIBIO, Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Laboratory of Biochemistry, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sofia Benfeito
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal; (M.C.); (S.B.); (F.B.)
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal; (M.C.); (S.B.); (F.B.)
| | - Bruno M. Fonseca
- UCIBIO, Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Laboratory of Biochemistry, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Correspondence: (B.M.F.); (I.R.)
| | - Irene Rebelo
- UCIBIO, Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Laboratory of Biochemistry, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Correspondence: (B.M.F.); (I.R.)
| |
Collapse
|
194
|
The Antimicrobial Photoinactivation Effect on Escherichia coli through the Action of Inverted Cationic Porphyrin-Cyclodextrin Conjugates. Microorganisms 2022; 10:microorganisms10040718. [PMID: 35456769 PMCID: PMC9026372 DOI: 10.3390/microorganisms10040718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Photodynamic action has been used for diverse biomedical applications, such as treating a broad range of bacterial infections. Based on the combination of light, dioxygen, and photosensitizer (PS), the photodynamic inactivation (PDI) approach led to the formation of reactive oxygen species (ROS) and represented a non-invasive, non-toxic, repeatable procedure for pathogen photoinactivation. To this end, different tetrapyrrolic macrocycles, such as porphyrin (Por) dyes, have been used as PSs for PDI against microorganisms, mainly bacteria. Still, there is significant room for improvement, especially new PS molecules. Herein, unsymmetrical new pyridinone (3−5) and thiopyridyl Pors (7) were prepared with α-, β-, or γ-cyclodextrin (CD) units, following their quaternization to perform the corresponding free-base Pors (3a−5a and 7a), and were compared with the already-known Pors 6a and 8a, both bearing thiopyridinium and CD units. These water-soluble porphyrins were evaluated as PSs, and their photophysical and photochemical properties and photodynamic effects on E. coli were assessed. The presence of one CD unit and three positive charges on the Por structure (3a−5a and 7a) enhanced their aqueous solubility. The photoactivity of the cationic Pors 3a−5a and 6a−8a ensured their potential against the Gram-negative bacterium E. coli. Within each series of methoxypyridinium vs thiopyridinium dyes, the best PDI efficiency was achieved for 5a with a bacterial viability reduction of 3.5 log10 (50 mW cm−2, 60 min of light irradiation) and for 8a with a total bacterial viability reduction (>8 log10, 25 mW cm−2, 30 min of light irradiation). Here, the presence of the methoxypyridinium units is less effective against E. coli when compared with the thiopyridinium moieties. This study allows for the conclusion that the peripheral charge position, quaternized substituent type/CD unit, and affinity to the outer bacterial structures play an important role in the photoinactivation efficiency of E. coli, evidencing that these features should be further addressed in the pursuit for optimised PS for the antimicrobial PDI of pathogenic microorganisms.
Collapse
|
195
|
Trayford C, Crosbie D, Rademakers T, van Blitterswijk C, Nuijts R, Ferrari S, Habibovic P, LaPointe V, Dickman M, van Rijt S. Mesoporous Silica-Coated Gold Nanoparticles for Multimodal Imaging and Reactive Oxygen Species Sensing of Stem Cells. ACS APPLIED NANO MATERIALS 2022; 5:3237-3251. [PMID: 35372794 PMCID: PMC8961743 DOI: 10.1021/acsanm.1c03640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Stem cell (SC)-based therapies hold the potential to revolutionize therapeutics by enhancing the body's natural repair processes. Currently, there are only three SC therapies with marketing authorization within the European Union. To optimize outcomes, it is important to understand the biodistribution and behavior of transplanted SCs in vivo. A variety of imaging agents have been developed to trace SCs; however, they mostly lack the ability to simultaneously monitor the SC function and biodistribution at high resolutions. Here, we report the synthesis and application of a nanoparticle (NP) construct consisting of a gold NP core coated with rhodamine B isothiocyanate (RITC)-doped mesoporous silica (AuMS). The MS layer further contained a thiol-modified internal surface and an amine-modified external surface for dye conjugation. Highly fluorescent AuMS of three different sizes were successfully synthesized. The NPs were non-toxic and efficiently taken up by limbal epithelial SCs (LESCs). We further showed that we can functionalize AuMS with a reactive oxygen species (ROS)-sensitive fluorescent dye using two methods, loading the probe into the mesopores, with or without additional capping by a lipid bilayer, and by covalent attachment to surface and/or mesoporous-functionalized thiol groups. All four formulations displayed a ROS concentration-dependent increase in fluorescence. Further, in an ex vivo SC transplantation model, a combination of optical coherence tomography and fluorescence microscopy was used to synergistically identify AuMS-labeled LESC distribution at micrometer resolution. Our AuMS constructs allow for multimodal imaging and simultaneous ROS sensing of SCs and represent a promising tool for in vivo SC tracing.
Collapse
Affiliation(s)
- Chloe Trayford
- MERLN
Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Darragh Crosbie
- MERLN
Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Timo Rademakers
- MERLN
Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Clemens van Blitterswijk
- MERLN
Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Rudy Nuijts
- Department
of Ophthalmology, University Eye Clinic
Maastricht, University Medical Center+, P. Debyelaan 25, 6202 AZ Maastricht, The Netherlands
| | - Stefano Ferrari
- Fondazione
Banca degli Occhi del Veneto, Via Paccagnella 11, 30174 Venice, Italy
| | - Pamela Habibovic
- MERLN
Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Vanessa LaPointe
- MERLN
Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Mor Dickman
- MERLN
Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
- Department
of Ophthalmology, University Eye Clinic
Maastricht, University Medical Center+, P. Debyelaan 25, 6202 AZ Maastricht, The Netherlands
| | - Sabine van Rijt
- MERLN
Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| |
Collapse
|
196
|
He B, Huang J, Zhang J, Sung HHY, Lam JWY, Zhang Z, Yan S, Wang D, Zhang J, Tang BZ. Novel Quinolizine AIE System: Visualization of Molecular Motion and Elaborate Tailoring for Biological Application. Angew Chem Int Ed Engl 2022; 61:e202117709. [PMID: 35023243 DOI: 10.1002/anie.202117709] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Molecular motions are ubiquitous in nature and they immutably play intrinsic roles in all actions. However, exploring appropriate models to decipher molecular motions is an extremely important but very challenging task for researchers. Considering aggregation-induced emission (AIE) luminogens possess their unique merits to visualize molecular motions, it is particularly fascinating to construct new AIE systems as models to study molecular motion. Herein, a novel quinolizine (QLZ) AIE system was constructed based on the restriction intramolecular vibration (RIV) mechanism. It was demonstrated that QLZ could act as an ideal model to visualize single-molecule motion and macroscopic molecular motion via fluorescence change. Additionally, further elaborate tailoring of this impressive core achieved highly efficient reactive oxygen species production and realized fluorescence imaging-guided photodynamic therapy applications, which confirms the great application potential of this new AIE-active QLZ core. Therefore, this work not only provides an ideal model to visualize molecular motion but also opens a new way for the application of AIEgens.
Collapse
Affiliation(s)
- Benzhao He
- Center for Advanced Materials Research, Science and Technology Experimental Platform, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519085, China
| | - Jiachang Huang
- Center for Advanced Materials Research, Science and Technology Experimental Platform, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519085, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Saisai Yan
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jing Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang District, Shenzhen, 518172, China
| |
Collapse
|
197
|
Platelets in Fetal Growth Restriction: Role of Reactive Oxygen Species, Oxygen Metabolism, and Aggregation. Cells 2022; 11:cells11040724. [PMID: 35203373 PMCID: PMC8870240 DOI: 10.3390/cells11040724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022] Open
Abstract
Fetal growth restriction (FGR) is mainly caused by failure of the uteroplacental unit. The exact pathogenesis remains unclear. The cause is thought to be related to abnormal platelet activation, which may result in microthrombus formation in the small vessels of the placenta. Reactive oxygen species (ROS) may initiate the pathological process of platelet activation. This study aimed to evaluate selected platelet parameters in pregnancy complicated by FGR and relate them to the severity of hemodynamic abnormalities. A total of 135 women (pregnant with FGR, with an uncomplicated pregnancy, and non-pregnant) were enrolled to study different platelet parameters: count (PLT), mean volume (MPV), ROS levels, intracellular oxygen level, oxygen consumption, and aggregation indices. No abnormalities in PLT and MPV were found in the FGR group, although it revealed increased ROS levels in platelets, lower platelet oxygen consumption, and intraplatelet deprivation. Aggregation parameters were similar as in uncomplicated pregnancy. No significant relationships were observed between hemodynamic abnormalities and the studied parameters. Platelets in pregnancies complicated by FGR may reveal an impaired oxidative metabolism, which may, in turn, lead to oxidative stress and, consequently, to an impaired platelet function. This study adds to the understanding of the role of platelets in the etiology of FGR.
Collapse
|
198
|
Valentovičová K, Demecsová L, Liptáková Ľ, Zelinová V, Tamás L. Inhibition of peroxidases and oxidoreductases is crucial for avoiding false-positive reactions in the localization of reactive oxygen species in intact barley root tips. PLANTA 2022; 255:69. [PMID: 35174422 DOI: 10.1007/s00425-022-03850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
NBT and HE may be efficiently used for the detection of superoxide, while DCDHF-DA and DHR123 for the detection of peroxynitrite in intact barley root tips, only if PRXs and oxidoreductases are inhibited to avoid false-positive reactions. Strong peroxidase (PRX) and oxidoreductase activities were observed in the barley root tips that were markedly inhibited by NaN3. Rapid and strong nitro-blue tetrazolium chloride (NBT) reduction is associated mainly with the vital functions of root cells but not with superoxide formation. In turn, the inhibition of root surface redox activity by NaN3 strongly reduced the formation of formazan, but its slight accumulation, observed in the root elongation zone, was a result of NADPH oxidase-mediated apoplastic superoxide formation. A longer staining time period with NBT was required for the detection of antimycin A-mediated superoxide formation inside the cells. This antimycin A-induced superoxide was clearly detectable by hydroethidine (HE) after the inhibition of PRXs by NaN3, and it was restricted into the root transition zone. TEMPOL, a superoxide scavenger, strongly inhibited both NBT reduction and HE oxidation in the presence of NaN3. Similarly, the DCDHF-DA and DHR123 oxidation was markedly reduced after the inhibition of apoplastic PRXs by NaN3 and was detectable mainly in the root transition zone. This fluorescence signal was not influenced by the application of pyruvate but was strongly reduced by urea, a peroxynitrite scavenger. The presented results suggest that if the root PRXs and oxidoreductases are inhibited, both NBT and HE detect mainly superoxide, whereas both DCDHF-DA and DHR123 may be efficiently used for the detection of peroxynitrite in intact barley root tips. The inhibition of PRXs and oxidoreductases is crucial for avoiding false-positive reactions in the localization of reactive oxygen species in the intact barley root tip.
Collapse
Affiliation(s)
- Katarína Valentovičová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Loriana Demecsová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Ľubica Liptáková
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Veronika Zelinová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Ladislav Tamás
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic.
| |
Collapse
|
199
|
Kiselevsky DB, Il'ina AV, Lunkov AP, Varlamov VP, Samuilov VD. Investigation of the Antioxidant Properties of the Quaternized Chitosan Modified with a Gallic Acid Residue Using Peroxidase that Produces Reactive Oxygen Species. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:141-149. [PMID: 35508903 DOI: 10.1134/s0006297922020067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Chitosan modified with a (2-hydroxy-3-trimethylammonium) propyl group and gallic acid residue, or quaternized chitosan with gallic acid (QCG), was synthesized. Antioxidant properties of the produced QCG have been investigated. Peroxidase in combination with NADH and salicyl hydroxamate (SHAM) caused consumption of oxygen and production of H2O2 in aqueous solution as a result of O2 reduction in the peroxidase-oxidase reactions. The rates of O2 consumption and H2O2 generation were reduced in the presence of QCG. The antioxidant propyl gallate (PG) and superoxide dismutase (SOD) had the same effect, but not the quaternized chitosan (QC) without gallic acid. The effect of chitosan derivatives on the production of reactive oxygen species (ROS) in the cells of pea leaf epidermis and on the cell death detected by the destruction of cell nuclei, was investigated. QCG, QC, and SOD had no effect, while PG decreased the rate of ROS generation in the cells of the epidermis, which was induced by NADH with SHAM or by menadione. QCG and QC prevented destruction of the guard cell nuclei in the pea leaf epidermis that was caused by NADH with SHAM or by KCN. SOD had no effect on the destruction of nuclei, while the effect of PG depended on the inducer of the cell death. Suppression of the destruction of guard cell nuclei by chitosan derivatives was associated not with their antioxidant effect, but with the disruption of the plasma membrane of the cells. The results obtained have shown that QCG exhibits antioxidant properties in solutions, but does not prevent generation of ROS in the plant cells. The mechanism of antioxidant effect of QCG is similar to that of PG and SOD.
Collapse
Affiliation(s)
- Dmitry B Kiselevsky
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Alla V Il'ina
- Laboratory of Biopolymer Engineering, Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Alexey P Lunkov
- Laboratory of Biopolymer Engineering, Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Valery P Varlamov
- Laboratory of Biopolymer Engineering, Skryabin Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Vitaly D Samuilov
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
200
|
Precek M, Kubelik P, Vysin L, Schmidhammer U, Larbre JP, Demarque A, Jeunesse P, Mostafavi M, Juha L. Dose Rate Effects in Fluorescence Chemical Dosimeters Exposed to Picosecond Electron Pulses: An Accurate Measurement of Low Doses at High Dose Rates. Radiat Res 2022; 197:131-148. [PMID: 34614193 DOI: 10.1667/rade-20-00292.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/07/2021] [Indexed: 11/03/2022]
Abstract
The development of ultra-intense electron pulse for applications needs to be accompanied by the implementation of a practical dosimetry system. In this study four different systems were investigated as dosimeters for low doses with a very high-dose-rate source. First, the effects of ultra-short pulses were investigated for the yields of the Fricke dosimeter based on acidic solutions of ferrous sulfate; it was established that the yields were not significantly affected by the high dose rates, so the Fricke dosimeter system was used as a reference. Then, aqueous solutions of three compounds as fluorescence chemical dosimeters were utilized, each operated at a different solution pH: terephthalic acid - basic, trimesic acid - acidic, and coumarin-3-carboxylic acid (C3CA) - neutral. Fluorescence chemical dosimeters offer an attractive alternative to chemical dosimeters based on optical absorption for measuring biologically relevant low doses because of their higher sensitivity. The effects of very intense dose rate (TGy/ s) from pulses of fast electrons generated by a picosecond linear accelerator on the chemical yields of fluorescence chemical dosimeters were investigated at low peak doses (<20 Gy) and compared with yields determined under low-dose-rate irradiation from a 60 Co gamma-ray source (mGy/s). For the terephthalate and the trimesic acid dosimeters changes in the yields were not detected within the estimated (∼10%) precision of the experiments, but, due to the complexity of the mechanism of the hydroxyl radical initiated reactions in solutions of the relevant aromatic compounds, significant reductions of the chemical yield (-60%) were observed when the C3CA dosimeter was irradiated with the ultra-short pulses.
Collapse
Affiliation(s)
- Martin Precek
- ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, 252 41 Dolní Břežany, Czech Republic
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 18221 Prague, Czech Republic
| | - Petr Kubelik
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 18221 Prague, Czech Republic
- Department of Spectroscopy, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Ludek Vysin
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 18221 Prague, Czech Republic
| | - Uli Schmidhammer
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Jean-Philippe Larbre
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Alexandre Demarque
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Pierre Jeunesse
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Mehran Mostafavi
- Institut de Chimie Physique/ELYSE, CNRS UMR 8000, Université Paris-Saclay, 91400 Orsay, France
| | - Libor Juha
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 18221 Prague, Czech Republic
- Laser Plasma Department, Institute of Plasma Physics, Czech Academy of Sciences, Za Slovankou 1782/3, 18200 Prague, Czech Republic
| |
Collapse
|