151
|
Bigaeva E, van Doorn E, Liu H, Hak E. Meta-Analysis on Randomized Controlled Trials of Vaccines with QS-21 or ISCOMATRIX Adjuvant: Safety and Tolerability. PLoS One 2016; 11:e0154757. [PMID: 27149269 PMCID: PMC4858302 DOI: 10.1371/journal.pone.0154757] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/19/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND OBJECTIVES QS-21 shows in vitro hemolytic effect and causes side effects in vivo. New saponin adjuvant formulations with better toxicity profiles are needed. This study aims to evaluate the safety and tolerability of QS-21 and the improved saponin adjuvants (ISCOM, ISCOMATRIX and Matrix-M™) from vaccine trials. METHODS A systematic literature search was conducted from MEDLINE, EMBASE, Cochrane library and Clinicaltrials.gov. We selected for the meta-analysis randomized controlled trials (RCTs) of vaccines adjuvanted with QS-21, ISCOM, ISCOMATRIX or Matrix-M™, which included a placebo control group and reported safety outcomes. Pooled risk ratios (RRs) and their 95% confidence intervals (CIs) were calculated using a random-effects model. Jadad scale was used to assess the study quality. RESULTS Nine RCTs were eligible for the meta-analysis: six trials on QS-21-adjuvanted vaccines and three trials on ISCOMATRIX-adjuvanted, with 907 patients in total. There were no studies on ISCOM or Matrix-M™ adjuvanted vaccines matching the inclusion criteria. Meta-analysis identified an increased risk for diarrhea in patients receiving QS21-adjuvanted vaccines (RR 2.55, 95% CI 1.04-6.24). No increase in the incidence of the reported systemic AEs was observed for ISCOMATRIX-adjuvanted vaccines. QS-21- and ISCOMATRIX-adjuvanted vaccines caused a significantly higher incidence of injection site pain (RR 4.11, 95% CI 1.10-15.35 and RR 2.55, 95% CI 1.41-4.59, respectively). ISCOMATRIX-adjuvanted vaccines also increased the incidence of injection site swelling (RR 3.43, 95% CI 1.08-10.97). CONCLUSIONS Our findings suggest that vaccines adjuvanted with either QS-21 or ISCOMATRIX posed no specific safety concern. Furthermore, our results indicate that the use of ISCOMATRIX enables a better systemic tolerability profile when compared to the use of QS-21. However, no better local tolerance was observed for ISCOMATRIX-adjuvanted vaccines in immunized non-healthy subjects. This meta-analysis is limited by the relatively small number of individuals recruited in the included trials, especially in the control groups.
Collapse
Affiliation(s)
- Emilia Bigaeva
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Eva van Doorn
- Department of Pharmacy, Unit of PharmacoEpidemiology & PharmacoEconomics (PE2), University of Groningen, Groningen, The Netherlands
| | - Heng Liu
- Department of Pharmacy, Unit of PharmacoEpidemiology & PharmacoEconomics (PE2), University of Groningen, Groningen, The Netherlands
| | - Eelko Hak
- Department of Pharmacy, Unit of PharmacoEpidemiology & PharmacoEconomics (PE2), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
152
|
Huang Y, Liu Z, Bo R, Xing J, Luo L, Zhen S, Niu Y, Hu Y, Liu J, Wu Y, Wang D. The enhanced immune response of PCV-2 vaccine using Rehmannia glutinosa polysaccharide liposome as an adjuvant. Int J Biol Macromol 2016; 86:929-36. [DOI: 10.1016/j.ijbiomac.2016.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
|
153
|
Kawase O, Ohno O, Suenaga K, Xuan X. Immunological Adjuvant Activity of Pectinioside A, the Steroidal Saponin from the Starfish Patiria pectinifera. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The steroidal saponin, pectinioside A, was isolated from the starfish, Patiria pectinifera. When it was subcutaneously injected into mice with ovalbumin (OVA), it facilitated the production of OVA-specific total IgG and IgG1 but not IgG2a. To our knowledge, this is the first report suggesting that starfish saponin has the potential to be an immunological adjuvant, stimulating Th2 type immune response.
Collapse
Affiliation(s)
- Osamu Kawase
- Department of Biology, Premedical Sciences, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Osamu Ohno
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665–1 Nakano, Hachioji 192-0015, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Keio University, 3–14–1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223–8522, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi-2–13, Inada-cho, Obihiro, Hokkaido 080–8555, Japan
| |
Collapse
|
154
|
Yendo ACA, de Costa F, Cibulski SP, Teixeira TF, Colling LC, Mastrogiovanni M, Soulé S, Roehe PM, Gosmann G, Ferreira FA, Fett-Neto AG. A rabies vaccine adjuvanted with saponins from leaves of the soap tree (Quillaja brasiliensis) induces specific immune responses and protects against lethal challenge. Vaccine 2016; 34:2305-11. [DOI: 10.1016/j.vaccine.2016.03.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/16/2016] [Accepted: 03/21/2016] [Indexed: 12/18/2022]
|
155
|
Cibulski SP, Silveira F, Mourglia-Ettlin G, Teixeira TF, dos Santos HF, Yendo AC, de Costa F, Fett-Neto AG, Gosmann G, Roehe PM. Quillaja brasiliensis saponins induce robust humoral and cellular responses in a bovine viral diarrhea virus vaccine in mice. Comp Immunol Microbiol Infect Dis 2016; 45:1-8. [DOI: 10.1016/j.cimid.2016.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/16/2015] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
|
156
|
Wang Y, Wang X, Huang J, Li J. Adjuvant Effect of Quillaja saponaria Saponin (QSS) on Protective Efficacy and IgM Generation in Turbot (Scophthalmus maximus) upon Immersion Vaccination. Int J Mol Sci 2016; 17:325. [PMID: 26950114 PMCID: PMC4813187 DOI: 10.3390/ijms17030325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 12/16/2022] Open
Abstract
The adjuvant effect of Quillaja saponaria saponin (QSS) on protection of turbot fry was investigated with immersion vaccination of formalin-killed Vibrio anguillarum O1 and various concentrations of QSS (5, 25, 45 and 65 mg/L). Fish were challenged at days 7, 14 and 28 post-vaccination. Significantly high relative percent of survival (RPS) ((59.1 ± 13.6)%, (81.7 ± 8.2)%, (77.8 ± 9.6)%) were recorded in the fish that received bacterins immersion with QSS at 45 mg/L, which is comparable to the positive control group vaccinated by intraperitoneal injection (IP). Moreover, a remarkably higher serum antibody titer was also demonstrated after 28 days in the vaccinated fish with QSS (45 mg/L) than those vaccinated fish without QSS (p < 0.05), but lower than the IP immunized fish (p < 0.05). Significant upregulation of IgM gene expression has also been identified in the tissues of skin, gill, spleen and kidney from the immunized fish in comparison to the control fish. Taken together, the present study indicated that QSS was able to dramatically evoke systemic and mucosal immune responses in immunized fish. Therefore, QSS might be a promising adjuvant candidate for fish vaccination via an immersion administering route.
Collapse
Affiliation(s)
- Yujuan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Xiuhua Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Jun Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI 49783, USA.
| |
Collapse
|
157
|
Kucukkurt I, Akkol EK, Karabag F, Ince S, Süntar I, Eryavuz A, Sözbilir NB. Determination of the regulatory properties of Yucca schidigera extracts on the biochemical parameters and plasma hormone levels associated with obesity. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2015.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
158
|
Cruz MDFSJ, Pereira GM, Ribeiro MG, da Silva AM, Tinoco LW, da Silva BP, Parente JP. Ingasaponin, a complex triterpenoid saponin with immunological adjuvant activity from Inga laurina. Carbohydr Res 2016; 420:23-31. [DOI: 10.1016/j.carres.2015.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023]
|
159
|
Cibulski SP, Mourglia-Ettlin G, Teixeira TF, Quirici L, Roehe PM, Ferreira F, Silveira F. Novel ISCOMs from Quillaja brasiliensis saponins induce mucosal and systemic antibody production, T-cell responses and improved antigen uptake. Vaccine 2016; 34:1162-71. [PMID: 26826546 DOI: 10.1016/j.vaccine.2016.01.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/15/2015] [Accepted: 01/17/2016] [Indexed: 12/20/2022]
Abstract
In the last decades, significant efforts have been dedicated to the search for novel vaccine adjuvants. In this regard, saponins and its formulations as "immunostimulating complexes" (ISCOMs) have shown to be capable of stimulating potent humoral and cellular immune responses, enhanced cytokine production and activation of cytotoxic T cells. The immunological activity of ISCOMs formulated with a saponin fraction extracted from Quillaja brasiliensis (QB-90 fraction) as an alternative to classical ISCOMs based on Quil A(®) (IQA) is presented here. The ISCOMs prepared with QB-90, named IQB-90, typically consist of 40-50 nm, spherical, cage-like particles, built up by QB-90, cholesterol, phospholipids and antigen (ovalbumin, OVA). These nanoparticles were efficiently uptaken in vitro by murine bone marrow-derived dendritic cells. Subcutaneously inoculated IQB-90 induced strong serum antibody responses encompassing specific IgG1 and IgG2a, robust DTH reactions, significant T cell proliferation and increases in Th1 (IFN-γ and IL-2) cytokine responses. Intranasally delivered IQB-90 elicited serum IgG and IgG1, and mucosal IgA responses at distal systemic sites (nasal passages, large intestine and vaginal lumen). These results indicate that IQB-90 is a promising alternative to classic ISCOMs as vaccine adjuvants, capable of enhancing humoral and cellular immunity to levels comparable to those induced by ISCOMs manufactured with Quillaja saponaria saponins.
Collapse
Affiliation(s)
- Samuel Paulo Cibulski
- FEPAGRO Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Laboratório de Virologia, Eldorado do Sul, RS, Brazil; Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gustavo Mourglia-Ettlin
- Cátedra de Inmunología, Departamento de Biociencias, Facultad de Ciencias/Química, Universidad de la República (UdelaR), Av. Alfredo Navarro 3051, Montevideo CP. 11600, Uruguay
| | - Thais Fumaco Teixeira
- FEPAGRO Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor, Laboratório de Virologia, Eldorado do Sul, RS, Brazil
| | - Lenora Quirici
- Laboratorio de Carbohidratos y Glicoconjugados, Departamento de Desarrollo Biotecnológico, Facultad de Medicina. Universidad de la República (UdelaR), Av. Alfredo Navarro 3051, Montevideo CP. 11600, Uruguay
| | - Paulo Michel Roehe
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernando Ferreira
- Laboratorio de Carbohidratos y Glicoconjugados, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Av. Alfredo Navarro 3051, Montevideo CP. 11600, Uruguay
| | - Fernando Silveira
- Laboratorio de Carbohidratos y Glicoconjugados, Departamento de Desarrollo Biotecnológico, Facultad de Medicina. Universidad de la República (UdelaR), Av. Alfredo Navarro 3051, Montevideo CP. 11600, Uruguay.
| |
Collapse
|
160
|
Chen L, Zhang J, Sun H. Immunological adjuvant effect of the peptide fraction from the larvae of Musca domestica. Altern Ther Health Med 2015; 15:427. [PMID: 26630909 PMCID: PMC4668601 DOI: 10.1186/s12906-015-0951-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 11/26/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND The larvae of Musca domestica (Diptera: Muscidae) have been used traditionally for malnutritional stagnation, decubital necrosis, osteomyelitis, ecthyma and lip scald and also to treat coma and gastric cancer in the traditional Chinese medicine. Its immunomodulatory effects in naïve mice in relation to the traditional uses were also reported. However, the immunological adjuvant potentials of this insect have not yet been studied. METHODS The peptide fraction from the larvae of Musca domestica L. (MDPF) was evaluated for its adjuvant potentials on the immune responses to ovalbumin (OVA) and avian influenza vaccine (rL-H5) by determining antigen-specific antibody titers, splenocyte proliferation, activity of natural killer (NK) cell, the secretion of cytokines from splenocytes in the immunized mice. RESULTS MDPF significantly enhanced not only the concanavalin A (Con A)-, lipopolysaccharide (LPS)- and antigen-stimulated splenocyte proliferation, but serum antigen-specific IgG, IgG1, IgG2a, and IgG2b antibody titers in the mice immunized with OVA and rL-H5. MDPF also remarkably promoted the killing activities of NK cells in splenocytes from the mice immunized with rL-H5. Furthermore, MDPF significantly promoted the production of Th1 (IL-2 and IFN-γ) and Th2 (IL-10) cytokines from splenocytes in the immunized mice. CONCLUSIONS The results indicated that MDPF had a potential to increase both cellular and humoral immune responses and elicit a balanced Th1/Th2 response, and that MDPF may be a safe and efficacious vaccine adjuvant candidate.
Collapse
|
161
|
Greatrex BW, Daines AM, Hook S, Lenz DH, McBurney W, Rades T, Rendle PM. Synthesis, Formulation, and Adjuvanticity of Monodesmosidic Saponins with Olenanolic Acid, Hederagenin and Gypsogenin Aglycones, and some C-28 Ester Derivatives. ChemistryOpen 2015; 4:740-55. [PMID: 27308200 PMCID: PMC4906508 DOI: 10.1002/open.201500149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/20/2015] [Indexed: 11/06/2022] Open
Abstract
In an attempt to discover a new synthetic vaccine adjuvant, the glycosylation of hederagenin, gypsogenin, and oleanolic acid acceptors with di- and trisaccharide donors to generate a range of mimics of natural product QS-21 was carried out. The saponins were formulated with phosphatidylcholine and cholesterol, and the structures analyzed by transmission electron microscopy. 3-O-(Manp(1→3)Glcp)hederagenin was found to produce numerous ring-like micelles when formulated, while C-28 choline ester derivatives preferred self-assembly and did not interact with the liposomes. When alone and in the presence of cholesterol and phospholipid, the choline ester derivatives produced nanocrystalline rods or helical micelles. The effects of modifying sugar stereochemistry and the aglycone on the immunostimulatory effects of the saponins was then evaluated using the activation markers MHC class II and CD86 in murine bone marrow dendritic cells. The most active saponin, 3-O-(Manp(1→3)Glcp)hederagenin, was stimulatory at high concentrations in cell culture, but this did not translate to strong responses in vivo.
Collapse
Affiliation(s)
- Ben W. Greatrex
- Ferrier Research InstituteVictoria University of WellingtonGracefield RdLower Hutt5010New Zealand
- School of Science & TechnologyUniversity of New EnglandArmidaleNSW2351Australia
| | - Alison M. Daines
- Ferrier Research InstituteVictoria University of WellingtonGracefield RdLower Hutt5010New Zealand
| | - Sarah Hook
- School of PharmacyUniversity of OtagoDunedin9016New Zealand
| | - Dirk H. Lenz
- Ferrier Research InstituteVictoria University of WellingtonGracefield RdLower Hutt5010New Zealand
| | | | - Thomas Rades
- School of PharmacyUniversity of OtagoDunedin9016New Zealand
| | - Phillip M. Rendle
- Ferrier Research InstituteVictoria University of WellingtonGracefield RdLower Hutt5010New Zealand
| |
Collapse
|
162
|
Sarkhel S. Evaluation of the anti-inflammatory activities of Quillaja saponaria Mol. saponin extract in mice. Toxicol Rep 2015; 3:1-3. [PMID: 28959520 PMCID: PMC5615419 DOI: 10.1016/j.toxrep.2015.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/07/2015] [Accepted: 11/14/2015] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Quillaja saponaria bark contains a high percentage of triterpene saponins and has been used for centuries as antiinflammatory and analgesic agent in Chilean folk medicine. In the Present study the anti-inflammatory activities of the aqueous extract of commercially partially purified saponin from Quillaja saponaria Mol. in in vivo animal models. METHODS & MATERIALS Aqueous extract of the plant material was prepared by cold maceration. The anti-inflammatory activity of a commercial Quillaja saponaria Mol. (QS) saponin extract was investigated by carragenan induced mice paw edema model for acute inflammation (Winter, 1962) [16]. RESULTS The anti-inflammatory activity was evaluated by carragenan in paw edema model in swiss albino mice (18-20 g). The anti-inflammatory activity was found to be dose dependent in carragenan induced paw edema. QS was found to significantly (p < 0.05) reduce the carragenan induced mice paw edema (38.59%; 20 mg/kg bw) as compared to carragenan control. The percentage inhibition of standard anti-inflammatory drug indomethacin was (55%; 10 mg/kg, bw). CONCLUSION The results of the present study demonstrate that the aqueous extract of Quillaja saponaria saponins (QS) possess significant anti-inflammatory activity.
Collapse
|
163
|
Jiang J, Zheng Z, Wang K, Wang J, He Y, Wang E, Chen D, Ouyang P, Geng Y, Huang X. Adjuvant Immune Enhancement of Subunit Vaccine Encoding pSCPI of Streptococcus iniae in Channel Catfish (Ictalurus punctatus). Int J Mol Sci 2015; 16:28001-13. [PMID: 26602918 PMCID: PMC4691029 DOI: 10.3390/ijms161226082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 02/08/2023] Open
Abstract
Channel catfish (Ictalurus punctatus) is an important agricultural fish that has been plagued by Streptococcus iniae (S. iniae) infections in recent years, some of them severe. C5a peptidase is an important virulent factor of S. iniae. In this study, the subunit vaccine containing the truncated part of C5a peptidase (pSCPI) was mixed with aluminum hydroxide gel (AH), propolis adjuvant (PA), and Freund's Incomplete Adjuvant (FIA). The immunogenicity of the pSCPI was detected by Western-blot in vitro. The relative percent survival (RPS), lysozyme activity, antibody titers, and the expression of the related immune genes were monitored in vivo to evaluate the immune effects of the three different adjuvants. The results showed that pSCPI exerted moderate immune protection (RPS = 46.43%), whereas each of the three adjuvants improved the immune protection of pSCPI. The immunoprotection of pSCPI + AH, pSCPI + PA, and pSCPI + FIA was characterized by RPS values of 67.86%, 75.00% and, 85.71%, respectively. Further, each of the three different adjuvanted pSCPIs stimulated higher levels of lysozyme activity and antibody titers than the unadjuvanted pSCPI and/or PBS buffer. In addition, pSCPI + FIA and pSCPI + PA induced expression of the related immune genes under investigation, which was substantially higher than the levels stimulated by PBS. pSCPI + AH significantly stimulated the induction of MHC II β, CD4-L2, and IFN-γ, while it induced slightly higher production of TNF-α and even led to a decrease in the levels of IL-1β, MHC I α, and CD8 α. Therefore, we conclude that compared with the other two adjuvants, FIA combined with pSCPI is a more promising candidate adjuvant against S. iniae in channel catfish.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
| | - Zonglin Zheng
- Department of Aquaculture, Rongchang Campus, Southwest University, Chongqing 402460, China.
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
| | - Jun Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
| | - Yang He
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
| | - Erlong Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
| | - Defang Chen
- Department of Aquaculture, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
- Department of Aquaculture, Rongchang Campus, Southwest University, Chongqing 402460, China.
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
- Department of Aquaculture, Rongchang Campus, Southwest University, Chongqing 402460, China.
| | - Xiaoli Huang
- Department of Aquaculture, Sichuan Agricultural University, Wenjiang District Huimin Road No. 211, Chengdu 611130, China.
| |
Collapse
|
164
|
|
165
|
Foroughi-Parvar F, Hatam GR, Sarkari B, Kamali-Sarvestani E. Leishmania infantum FML pulsed-dendritic cells induce a protective immune response in murine visceral leishmaniasis. Immunotherapy 2015; 7:3-12. [PMID: 25572475 DOI: 10.2217/imt.14.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To investigate the efficacy of FML loaded dendritic cells (DCs) in protection against visceral leishmaniasis. MATERIALS & METHODS Mice were immunized with FML- or soluble Leishmania antigen-loaded DCs as well as FML or soluble Leishmania antigen in saponin and challenged with parasite. The levels of cytokines before and after challenge were detected by ELISA. Parasite burden (total Leishman-Donovan unit) was determined after parasite challenge. RESULTS FML-saponin induced the highest IFN-γ/IL-4 ratio among vaccinated groups, though this ratio was higher in FML-loaded DCs group subsequent to challenge with Leishmania infantum. Moreover, the greatest reduction in parasite number was detected in mice vaccinated with FML-loaded DCs compared with phosphate-buffered saline-treated mice (p = 0.002). CONCLUSION FML-loaded DCs are one of the promising tools for protection against murine visceral leishmaniasis.
Collapse
Affiliation(s)
- Faeze Foroughi-Parvar
- Departmant of Parasitology & Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | |
Collapse
|
166
|
Hu J, Qiu L, Wang X, Zou X, Lu M, Yin J. Carbohydrate-based vaccine adjuvants - discovery and development. Expert Opin Drug Discov 2015; 10:1133-44. [PMID: 26372693 DOI: 10.1517/17460441.2015.1067198] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION The addition of a suitable adjuvant to a vaccine can generate significant effective adaptive immune responses. There is an urgent need for the development of novel po7tent and safe adjuvants for human vaccines. Carbohydrate molecules are promising adjuvants for human vaccines due to their high biocompatibility and good tolerability in vivo. AREAS COVERED The present review covers a few promising carbohydrate-based adjuvants, lipopolysaccharide, trehalose-6,6'-dibehenate, QS-21 and inulin as examples, which have been extensively studied in human vaccines in a number of preclinical and clinical studies. The authors discuss the current status, applications and strategies of development of each adjuvant and different adjuvant formulation systems. This information gives insight regarding the exciting prospect in the field of carbohydrate-based adjuvant research. EXPERT OPINION Carbohydrate-based adjuvants are promising candidates as an alternative to the Alum salts for human vaccines development. Furthermore, combining two or more adjuvants in one formulation is one of the effective strategies in adjuvant development. However, further research efforts are needed to study and develop novel adjuvants systems, which can be more stable, potent and safe. The development of synthetic carbohydrate chemistry can improve the study of carbohydrate-based adjuvants.
Collapse
Affiliation(s)
- Jing Hu
- a 1 Jiangnan University, Wuxi Medical School , Lihu Avenue 1800, 214122, Wuxi, China
| | - Liying Qiu
- a 1 Jiangnan University, Wuxi Medical School , Lihu Avenue 1800, 214122, Wuxi, China
| | - Xiaoli Wang
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| | - Xiaopeng Zou
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| | - Mengji Lu
- c 3 University Hospital Essen, Institute of Virology , Hufelandstr, 55, 45122 Essen, Germany +49 2 017 233 530 ; +49 2 017 235 929 ;
| | - Jian Yin
- b 2 Jiangnan University, The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Lihu Avenue 1800, 214122, Wuxi, China +86 51 085 328 229 ; +86 51 085 328 229 ;
| |
Collapse
|
167
|
Affiliation(s)
- Daming Zhu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 5640 Fishers Lane, Rockville, MD 20852, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
168
|
Abstract
Saponins are a large family of amphiphilic glycosides of steroids and triterpenes found in plants and some marine organisms. By expressing a large diversity of structures on both sugar chains and aglycones, saponins exhibit a wide range of biological and pharmacological properties and serve as major active principles in folk medicines, especially in traditional Chinese medicines. Isolation of saponins from natural sources is usually a formidable task due to the microheterogeneity of saponins in Nature. Chemical synthesis can provide access to large amounts of natural saponins as well as congeners for understanding their structure-activity relationships and mechanisms of action. This article presents a comprehensive account on chemical synthesis of saponins. First highlighted are general considerations on saponin synthesis, including preparation of aglycones and carbohydrate building blocks, assembly strategies, and protecting-group strategies. Next described is the state of the art in the synthesis of each type of saponins, with an emphasis on those representative saponins having sophisticated structures and potent biological activities.
Collapse
Affiliation(s)
- You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China.
| | - Stephane Laval
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China
| | - Biao Yu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
169
|
Lorent JH, Quetin-Leclercq J, Mingeot-Leclercq MP. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells. Org Biomol Chem 2015; 12:8803-22. [PMID: 25295776 DOI: 10.1039/c4ob01652a] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Saponins, amphiphiles of natural origin with numerous biological activities, are widely used in the cosmetic and pharmaceutical industry. Some saponins exhibit relatively selective cytotoxic effects on cancer cells but the tendency of saponins to induce hemolysis limits their anticancer potential. This review focused on the effects of saponin activity on membranes and consequent implications for red blood and cancer cells. This activity seems to be strongly related to the amphiphilic character of saponins that gives them the ability to self-aggregate and interact with membrane components such as cholesterol and phospholipids. Membrane interactions of saponins with artificial membrane models, red blood and cancer cells are reviewed with respect to their molecular structures. The review considered the mechanisms of these membrane interactions and their consequences including the modulation of membrane dynamics, interaction with membrane rafts, and membrane lysis. We summarized current knowledge concerning the mechanisms involved in the interactions of saponins with membrane lipids and examined the structure activity relationship of saponins regarding hemolysis and cancer cell death. A critical analysis of these findings speculates on their potential to further develop new anticancer compounds.
Collapse
Affiliation(s)
- Joseph H Lorent
- Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology (FACM), Avenue Mounier 73, B1.73.05, B-1200 Brussels, Belgium.
| | | | | |
Collapse
|
170
|
Comparative and quantitative analysis of antioxidant and scavenging potential of Indigofera tinctoria Linn. extracts. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2015; 13:269-78. [DOI: 10.1016/s2095-4964(15)60183-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
171
|
Electrophoretic mobility as a tool to separate immune adjuvant saponins from Quillaja saponaria Molina. Int J Pharm 2015; 487:39-48. [DOI: 10.1016/j.ijpharm.2015.03.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 11/18/2022]
|
172
|
Sokolova V, Westendorf AM, Buer J, Überla K, Epple M. The potential of nanoparticles for the immunization against viral infections. J Mater Chem B 2015; 3:4767-4779. [PMID: 32262665 DOI: 10.1039/c5tb00618j] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vaccination has a great impact on the prevention and control of infectious diseases. However, there are still many infectious diseases for which an effective vaccine is missing. Thirty years after the discovery of the AIDS-pathogen (human immunodeficiency virus, HIV) and intensive research, there is still no protective immunity against the HIV infection. Over the past decade, nanoparticulate systems such as virus-like particles, liposomes, polymers and inorganic nanoparticles have received attention as potential delivery vehicles which can be loaded or functionalized with active biomolecules (antigens and adjuvants). Here we compare the properties of different nanoparticulate systems and assess their potential for the development of new vaccines against a range of viral infections.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany.
| | | | | | | | | |
Collapse
|
173
|
Thakur A, Kaur H, Kaur S. Studies on the protective efficacy of freeze thawed promastigote antigen of Leishmania donovani along with various adjuvants against visceral leishmaniasis infection in mice. Immunobiology 2015; 220:1031-8. [PMID: 26001730 DOI: 10.1016/j.imbio.2015.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/21/2015] [Accepted: 05/01/2015] [Indexed: 11/26/2022]
Abstract
Visceral leishmaniasis (VL) caused by Leishmania donovani persists as a major public health issue in tropical and subtropical areas of the world. Current treatment of this disease relies on use of drugs. It is doubtful that chemotherapy can alone eradicate the disease, so there is a need for an effective vaccine. Killed antigen candidates remain a good prospect considering their ease of formulation, stability, low cost and safety. To enhance the efficacy of killed vaccines suitable adjuvant and delivery system are needed. Therefore, the current study was conducted to determine the protective efficacy of freeze-thawed L. donovani antigen in combination with different adjuvants against experimental infection of VL. For this, BALB/c mice were immunized thrice at an interval of two weeks. Challenge infection was given two weeks after last immunization. Mice were sacrificed after last immunization and on different post challenge/infection days. Immunized mice showed significant reduction in parasite burden, enhanced DTH responses with increased levels of Th1 cytokines and lower levels of Th2 cytokines, thus indicating the development of a protective Th1 response. Maximum protection was achieved with liposome encapsulated freeze thawed promastigote (FTP) antigen of L. donovani and it was followed by group immunized with FTP+MPL-A, FTP+saponin, FTP+alum and FTP antigen (alone). The present study highlights greater efficacy of freeze thawed promastigote antigen as a potential vaccine candidate along with effective adjuvant formulations against experimental VL infection.
Collapse
Affiliation(s)
- Ankita Thakur
- Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Harpreet Kaur
- Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Sukhbir Kaur
- Department of Zoology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
174
|
Wang S, Liu H, Zhang X, Qian F. Intranasal and oral vaccination with protein-based antigens: advantages, challenges and formulation strategies. Protein Cell 2015; 6:480-503. [PMID: 25944045 PMCID: PMC4491048 DOI: 10.1007/s13238-015-0164-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/10/2015] [Indexed: 02/06/2023] Open
Abstract
Most pathogens initiate their infections at the human mucosal surface. Therefore, mucosal vaccination, especially through oral or intranasal administration routes, is highly desired for infectious diseases. Meanwhile, protein-based antigens provide a safer alternative to the whole pathogen or DNA based ones in vaccine development. However, the unique biopharmaceutical hurdles that intranasally or orally delivered protein vaccines need to overcome before they reach the sites of targeting, the relatively low immunogenicity, as well as the low stability of the protein antigens, require thoughtful and fine-tuned mucosal vaccine formulations, including the selection of immunostimulants, the identification of the suitable vaccine delivery system, and the determination of the exact composition and manufacturing conditions. This review aims to provide an up-to-date survey of the protein antigen-based vaccine formulation development, including the usage of immunostimulants and the optimization of vaccine delivery systems for intranasal and oral administrations.
Collapse
Affiliation(s)
- Shujing Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | | | | | | |
Collapse
|
175
|
Dhama K, Saminathan M, Jacob SS, Singh M, Karthik K, . A, Tiwari R, Sunkara LT, Malik YS, Singh RK. Effect of Immunomodulation and Immunomodulatory Agents on Health with some Bioactive Principles, Modes of Action and Potent Biomedical Applications. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.253.290] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
176
|
Rosales-Mendoza S, Govea-Alonso DO. The potential of plants for the production and delivery of human papillomavirus vaccines. Expert Rev Vaccines 2015; 14:1031-41. [PMID: 25882610 DOI: 10.1586/14760584.2015.1037744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The available vaccines against human papillomavirus have some limitations such as low coverage due to their high cost, reduced immune coverage and the lack of therapeutic effects. Recombinant vaccines produced in plants (genetically engineered using stable or transient expression systems) offer the possibility to obtain low cost, efficacious and easy to administer vaccines. The status on the development of plant-based vaccines against human papillomavirus is analyzed and placed in perspective in this review. Some candidates have been characterized at a preclinical level with interesting outcomes. However, there is a need to perform the immunological characterization of several vaccine prototypes, especially through the oral administration route, as well as develop new candidates based on new chimeric designs intended to provide broader immunoprotection and therapeutic activity.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México, USA
| | | |
Collapse
|
177
|
Lee G, Na YJ, Yang BG, Choi JP, Seo YB, Hong CP, Yun CH, Kim DH, Sohn EJ, Kim JH, Sung YC, Kim YK, Jang MH, Hwang I. Oral immunization of haemaggulutinin H5 expressed in plant endoplasmic reticulum with adjuvant saponin protects mice against highly pathogenic avian influenza A virus infection. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:62-72. [PMID: 25065685 DOI: 10.1111/pbi.12235] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/26/2014] [Indexed: 06/03/2023]
Abstract
Pandemics in poultry caused by the highly pathogenic avian influenza (HPAI) A virus occur too frequently globally, and there is growing concern about the HPAI A virus due to the possibility of a pandemic among humans. Thus, it is important to develop a vaccine against HPAI suitable for both humans and animals. Various approaches are underway to develop such vaccines. In particular, an edible vaccine would be a convenient way to vaccinate poultry because of the behaviour of the animals. However, an edible vaccine is still not available. In this study, we developed a strategy of effective vaccination of mice by the oral administration of transgenic Arabidopsis plants (HA-TG) expressing haemagglutinin (HA) in the endoplasmic reticulum (ER). Expression of HA in the ER resulted in its high-level accumulation, N-glycosylation, protection from proteolytic degradation and long-term stability. Oral administration of HA-TG with saponin elicited high levels of HA-specific systemic IgG and mucosal IgA responses in mice, which resulted in protection against a lethal influenza virus infection with attenuated inflammatory symptoms. Based on these results, we propose that oral administration of freeze-dried leaf powders from transgenic plants expressing HA in the ER together with saponin is an attractive strategy for vaccination against influenza A virus.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Administration, Oral
- Animals
- Antibody Formation/drug effects
- Antibody Formation/immunology
- Antibody Specificity/drug effects
- Antibody Specificity/immunology
- Antigens, Viral/immunology
- Arabidopsis/genetics
- Dose-Response Relationship, Immunologic
- Endoplasmic Reticulum/metabolism
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunity, Humoral/drug effects
- Immunity, Mucosal/drug effects
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Mice, Inbred C57BL
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Plants, Genetically Modified
- Pneumonia/immunology
- Pneumonia/pathology
- Pneumonia/prevention & control
- Pneumonia/virology
- Recombinant Fusion Proteins/metabolism
- Saponins/immunology
- Vaccination
Collapse
Affiliation(s)
- Goeun Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea; Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
A vaccine formulation combining rhoptry proteins NcROP40 and NcROP2 improves pup survival in a pregnant mouse model of neosporosis. Vet Parasitol 2015; 207:203-15. [DOI: 10.1016/j.vetpar.2014.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 11/23/2022]
|
179
|
Weathers PJ, Towler M, Hassanali A, Lutgen P, Engeu PO. Dried-leaf Artemisia annua: A practical malaria therapeutic for developing countries? World J Pharmacol 2014; 3:39-55. [PMID: 25678989 PMCID: PMC4323188 DOI: 10.5497/wjp.v3.i4.39] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/09/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023] Open
Abstract
Artemisinin from the plant Artemisia annua (A. annua) L., and used as artemisinin combination therapy (ACT), is the current best therapeutic for treating malaria, a disease that hits children and adults especially in developing countries. Traditionally, A. annua was used by the Chinese as a tea to treat “fever”. More recently, investigators have shown that tea infusions and oral consumption of the dried leaves of the plant have prophylactic and therapeutic efficacy. The presence of a complex matrix of chemicals within the leaves seems to enhance both the bioavailability and efficacy of artemisinin. Although about 1000-fold less potent than artemisinin in their antiplasmodial activity, these plant chemicals are mainly small molecules that include other artemisinic compounds, terpenes (mainly mono and sesqui), flavonoids, and polyphenolic acids. In addition, polysaccharide constituents of A. annua may enhance bioavailability of artemisinin. Rodent pharmacokinetics showed longer T½ and Tmax and greater Cmax and AUC in Plasmodium chabaudi-infected mice treated with A. annua dried leaves than in healthy mice. Pharmacokinetics of deoxyartemisinin, a liver metabolite of artemisinin, was more inhibited in infected than in healthy mice. In healthy mice, artemisinin serum levels were > 40-fold greater in dried leaf fed mice than those fed with pure artemisinin. Human trial data showed that when delivered as dried leaves, 40-fold less artemisinin was required to obtain a therapeutic response compared to pure artemisinin. ACTs are still unaffordable for many malaria patients, and cost estimates for A. annua dried leaf tablet production are orders of magnitude less than for ACT, despite improvements in the production capacity. Considering that for > 2000 years this plant was used in traditional Chinese medicine for treatment of fever with no apparent appearance of artemisinin drug resistance, the evidence argues for inclusion of affordable A. annua dried leaf tablets into the arsenal of drugs to combat malaria and other artemisinin-susceptible diseases.
Collapse
|
180
|
Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems. Eur J Pharm Biopharm 2014; 89:74-81. [PMID: 25481034 DOI: 10.1016/j.ejpb.2014.11.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/19/2014] [Accepted: 11/26/2014] [Indexed: 01/06/2023]
Abstract
Thermoresponsive, particle-loaded, Poloxamer 407 (P407)-Pluronic-R® (25R4) or chitosan-methyl cellulose (MC) formulations were developed as single-dose, sustained release vaccines. The sol-gels, loaded either with a particulate vaccine (cubosomes) or soluble antigen (ovalbumin) and adjuvants (Quil A and monophosphoryl lipid A), were free-flowing liquids at room temperature and formed stable gels at physiological temperatures. Rheological results showed that both systems meet the criteria of being thermoresponsive gels. The P407-25R4 sol-gels did not significantly sustain the release of antigen in vivo while the chitosan-MC sol-gels sustained the release of antigen up to at least 14 days after administration. The chitosan-MC sol-gels stimulated both cellular and humoral responses. The inclusion of cubosomes in the sol-gels did not provide a definitive beneficial effect. Further analysis of the formulations with small-angle X-ray scattering (SAXS) revealed that while cubosomes were stable in chitosan-MC gels they were not stable in P407-25R4 formulations. The reason for the mixed response to cubosome-loaded vehicles requires more investigation, however it appears that the cubosomes did not facilitate synchronous vaccine release and may in fact retard release, reducing efficacy in some cases. From these results, chitosan-MC sol-gels show potential as sustained release vaccine delivery systems, as compared to the P407-25R4 system that had a limited ability to sustain antigen release.
Collapse
|
181
|
Preparation of selectively protected protoescigenin derivatives for synthesis of escin analogs and neoglycoconjugates. OPEN CHEM 2014. [DOI: 10.2478/s11532-014-0572-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractProtoescigenin, the main aglycone of horse chestnut saponin mixture known as escin, was selected as substrate for exploratory chemistry towards selective protection, followed by propargyl ether formation and subsequent condensation with azido-monosaccharides, to obtain novel triazole linked conjugates of the triterpene.
Collapse
|
182
|
Tong Q, Qing Y, Wu Y, Hu X, Jiang L, Wu X. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways. Toxicol Appl Pharmacol 2014; 281:166-73. [DOI: 10.1016/j.taap.2014.07.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 07/15/2014] [Accepted: 07/31/2014] [Indexed: 02/02/2023]
|
183
|
Xiao XH, Yuan ZQ, Li GK. Separation and purification of steroidal saponins from Paris polyphylla by microwave-assisted extraction coupled with countercurrent chromatography using evaporative light scattering detection. J Sep Sci 2014; 37:635-41. [PMID: 24772456 DOI: 10.1002/jssc.201301341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A method of microwave-assisted extraction coupled with countercurrent chromatography using evaporative light scattering detection was successfully developed for the separation and purification of steroidal saponins from Paris polyphylla. The main extraction conditions including microwave power, liquid/solid ratio, irradiation time, and extraction temperature were optimized using an orthogonal array design method. A suitable two-phase solvent system consisting of n-heptane/n-butanol/acetonitrile/water (10:19:6:20, v/v/v/v) was employed in the separation and purification of the extracts of P. polyphylla. A total of 7.1 mg polyphyllin VII, 4.3 mg gracillin, 9.2 mg dioscin, and 10.2 mg polyphyllin I were obtained from 1.5 g P. polyphylla in less than 300 min, the purities of which determined by HPLC were 96.7, 97.3, 98.7, and 98.6%, respectively. The identification and characterization of these compounds were performed by LC-ESI-MS and 1H NMR spectroscopy. The results demonstrated that the proposed method is feasible, economical and efficient for the extraction, separation and purification of effective compounds from natural products.
Collapse
|
184
|
|
185
|
Sun T, Yan X, Guo W, Zhao D. Evaluation of cytotoxicity and immune modulatory activities of soyasaponin Ab: an in vitro and in vivo study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1759-66. [PMID: 25444444 DOI: 10.1016/j.phymed.2014.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/02/2014] [Accepted: 09/13/2014] [Indexed: 06/04/2023]
Abstract
To improve the immune efficacy of protein subunit vaccines, novel adjuvants are needed to elicit a suitable protective immune response and to promote long term immunologic memory. In this work, soyasaponin Ab, a major constituent among group A soyasaponins in soybeans was purified and prepared from soy hypocotyls. The immunomodulatory effects of soyasaponin Ab both in vitro and in vivo were investigated, and its pro-immunomodulatory molecular mechanism was also studied. For in vitro assays, with mouse macrophage cell line RAW264.7 as the studying model, both cytotoxicity and immune stimulatory activity were investigated to evaluate the potential of soyasaponin Ab as the vaccine adjuvant. The results indicated that soyasaponin Ab could be significantly safer than Quillaja saponins (QS). Soyasaponin Ab showed no toxicities over the tested concentration ranges compared to QS. Soyasaponin Ab was proved able to promote releases of inflammatory cytokines like TNFα and IL-1β in a dose-dependent manner. Furthermore, NF-κB signalling was also activated by soyasaponin Ab effectively. In addition, with TLR4 gene expression of RAW264.7 cell inhibited by RNA interference, immune stimulatory effects by soyasaponin Ab dropped down significantly. On the other hand, the in vivo experiment results showed that anti-ovalbumin (OVA) IgG, IgG1, IgG2a, IgG2b were significantly enhanced by the soyasaponin Ab and QS groups (p<0.05 or p<0.01). The results suggested that compared to QS, soyasaponin Ab may represent a viable candidate for effective vaccine adjuvant. TLR4 receptor dependent pathway may be involved in immune stimulatory effects of soyasaponin Ab.
Collapse
Affiliation(s)
- Tao Sun
- Department of Animal Science, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Municipal Veterinary Key Laboratory, 800 Dongchuan Road, Shanghai 200240, China
| | - Xinbin Yan
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenxiu Guo
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dayun Zhao
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
186
|
Costas B, Couto A, Azeredo R, Machado M, Krogdahl A, Oliva-Teles A. Gilthead seabream (Sparus aurata) immune responses are modulated after feeding with purified antinutrients. FISH & SHELLFISH IMMUNOLOGY 2014; 41:70-79. [PMID: 24924098 DOI: 10.1016/j.fsi.2014.05.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/24/2014] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
The present study aimed to evaluate the effects of two purified antinutrients, soy saponins and phytosterols, in an important species for Mediterranean aquaculture. For this purpose, gilthead seabream (Sparus aurata) were fed six experimental diets containing two levels of those antinutrients, alone or in combination, and a control diet, to apparent visual satiation under controlled conditions. Blood and head-kidney were collected at 7, 15 and 48 days following first feeding in order to assess immune parameters and the expression of immune-related genes. Plasma bactericidal and alternative complement pathway activities increased in fish fed antinutrients compared to fish fed the control diet during the course of the experiment, with more important changes at 7 and 48 days for bactericidal activity and at 7 and 15 days for complement values. In contrast, plasma total immunoglobulins (Ig) increased in fish fed antinutrients only at 48 days. Caspase 1 (casp1), interleukin 18 (il18), colony-stimulating factor-1 receptor (csfr) and hepcidin (hep) presented similar patterns of expression with more important changes at 7 and 48 days, while interleukin 10 (il10) and β-defensin (def) were mainly up-regulated in fish fed antinutrients at 48 days. The level of expression of IgM increased already at 7 days in fish fed the low concentration of both saponins and phytosterols while a general up-regulation was observed at 48 days compared to fish fed the control diet. Results suggest that feeding seabream a diet with purified saponins and phytosterols, alone or in combination, induces a number of changes that are related to the development of inflammation, with most important changes in fish fed the lower phytosterols concentration.
Collapse
Affiliation(s)
- Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - Ana Couto
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), 4169-007 Porto, Portugal
| | - Rita Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), 4169-007 Porto, Portugal
| | - Marina Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ashild Krogdahl
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, P.O. Box 8146 Dep., N-0033 Oslo, Norway
| | - Aires Oliva-Teles
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto (FCUP), 4169-007 Porto, Portugal
| |
Collapse
|
187
|
Moses T, Papadopoulou KK, Osbourn A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 2014; 49:439-62. [PMID: 25286183 PMCID: PMC4266039 DOI: 10.3109/10409238.2014.953628] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 01/11/2023]
Abstract
Saponins are widely distributed plant natural products with vast structural and functional diversity. They are typically composed of a hydrophobic aglycone, which is extensively decorated with functional groups prior to the addition of hydrophilic sugar moieties, to result in surface-active amphipathic compounds. The saponins are broadly classified as triterpenoids, steroids or steroidal glycoalkaloids, based on the aglycone structure from which they are derived. The saponins and their biosynthetic intermediates display a variety of biological activities of interest to the pharmaceutical, cosmetic and food sectors. Although their relevance in industrial applications has long been recognized, their role in plants is underexplored. Recent research on modulating native pathway flux in saponin biosynthesis has demonstrated the roles of saponins and their biosynthetic intermediates in plant growth and development. Here, we review the literature on the effects of these molecules on plant physiology, which collectively implicate them in plant primary processes. The industrial uses and potential of saponins are discussed with respect to structure and activity, highlighting the undoubted value of these molecules as therapeutics.
Collapse
Affiliation(s)
- Tessa Moses
- Department of Metabolic Biology, John Innes CentreColney Lane, NorwichUK
| | | | - Anne Osbourn
- Department of Metabolic Biology, John Innes CentreColney Lane, NorwichUK
| |
Collapse
|
188
|
He Y, Wang KY, Xiao D, Chen DF, Huang L, Liu T, Wang J, Geng Y, Wang EL, Yang Q. A recombinant truncated surface immunogenic protein (tSip) plus adjuvant FIA confers active protection against Group B streptococcus infection in tilapia. Vaccine 2014; 32:7025-7032. [PMID: 25446833 DOI: 10.1016/j.vaccine.2014.08.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 11/19/2022]
Abstract
PURPOSE Tilapia is an important agricultural fish that has been plagued by Group B streptococcus (GBS) infections in recent years, some of them severe. It is well-known that surface immunogenicity protein (Sip) is an effective vaccine against GBS. EXPERIMENTAL DESIGN Since Sip was not expressed in either E. coli BL21 or E. coli Rosetta, we removed the N-terminal signal peptide and LysM of the virus to produce purified truncated Sip (tSip(1)), which multiplied easily in an E. coli host. The antibody's ability to recognize and combine with GBS was determined by Western-blot and specific staining in vitro. The relative percentage of survival (RPS), antibody titers, bacterial recovery, and pathologic morphology were monitored in vivo to evaluate the immune effects. Freund's incomplete adjuvant (FIA) plus tSip and aluminum hydroxide gel (AH) plus tSip were also evaluated. RESULTS It revealed that tSip mixed with FIA was an effective vaccine against GBS in tilapia, while AH is toxic to tilapia.
Collapse
Affiliation(s)
- Yang He
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Ya'an 625014, Sichuan, PR China
| | - Kai-Yu Wang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Ya'an 625014, Sichuan, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, PR China.
| | - Dan Xiao
- Animal Health Research Institute of Tongwei Co., Ltd., Chengdu 610041, Sichuan, PR China
| | - De-Fang Chen
- Department of Aquaculture, College of Animal Science& Technology, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - Lingyuan Huang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Ya'an 625014, Sichuan, PR China
| | - Tianqiang Liu
- Animal Health Research Institute of Tongwei Co., Ltd., Chengdu 610041, Sichuan, PR China
| | - Jun Wang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Ya'an 625014, Sichuan, PR China
| | - Yi Geng
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Ya'an 625014, Sichuan, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Ya'an 625014, Sichuan, PR China
| | - Er-Long Wang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Ya'an 625014, Sichuan, PR China
| | - Qian Yang
- Department of Basic Veterinary, Veterinary Medicine College, Sichuan Agricultural University, Ya'an 625014, Sichuan, PR China
| |
Collapse
|
189
|
Thakur A, Kaur H, Kaur S. Evaluation of the immunoprophylactic potential of a killed vaccine candidate in combination with different adjuvants against murine visceral leishmaniasis. Parasitol Int 2014; 64:70-8. [PMID: 25316605 DOI: 10.1016/j.parint.2014.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 01/13/2023]
Abstract
Despite a large number of field trials, till date no prophylactic antileishmanial vaccine exists for human use. Killed antigen formulations offer the advantage of being safe but they have limited immunogenicity. Recent research has documented that efforts to develop effective Leishmania vaccine have been limited due to the lack of an appropriate adjuvant. Addition of adjuvants to vaccines boosts and directs the immunogenicity of antigens. So, the present study was done to evaluate the effectiveness of four adjuvants i.e. alum, saponin, cationic liposomes and monophosphoryl lipid-A in combination with Autoclaved Leishmania donovani (ALD) antigen against murine visceral leishmaniasis (VL). BALB/c mice were immunized thrice with respective vaccine formulation. Two weeks after last booster, challenge infection was given. Mice were sacrificed 15 days after last immunization and on 30, 60 and 90 post infection/challenge days. A considerable protective efficacy was shown by all vaccine formulations. It was evident from significant reduction in parasite load, profound delayed type hypersensitivity responses (DTH), increased IgG2a titres and high levels of Th1 cytokines (IFN-γ, IL-12) as compared to the infected controls. However, level of protection varied with the type of adjuvant used. Maximum protection was achieved with the use of liposome encapsulated ALD antigen and it was closely followed by group immunized with ALD+MPL-A. Significant results were also obtained with ALD+saponin, ALD+alum and ALD antigen (alone) but the protective efficacy was reduced as compared to other immunized groups. The present study reveals greater efficacy of two vaccine formulations i.e. ALD+liposome and ALD+MPL-A against murine VL.
Collapse
Affiliation(s)
- Ankita Thakur
- Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Harpreet Kaur
- Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Sukhbir Kaur
- Department of Zoology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
190
|
Sun H, He S, Shi M. Adjuvant-active fraction from Albizia julibrissin saponins improves immune responses by inducing cytokine and chemokine at the site of injection. Int Immunopharmacol 2014; 22:346-55. [DOI: 10.1016/j.intimp.2014.07.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/28/2014] [Accepted: 07/16/2014] [Indexed: 11/26/2022]
|
191
|
Khan N, Woodruff TM, Smith MT. Establishment and characterization of an optimized mouse model of multiple sclerosis-induced neuropathic pain using behavioral, pharmacologic, histologic and immunohistochemical methods. Pharmacol Biochem Behav 2014; 126:13-27. [PMID: 25223977 DOI: 10.1016/j.pbb.2014.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/25/2014] [Accepted: 09/06/2014] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) that causes debilitating central neuropathic pain in many patients. Although mouse models of experimental autoimmune encephalomyelitis (EAE) have provided insight on the pathobiology of MS-induced neuropathic pain, concurrent severe motor impairments confound quantitative assessment of pain behaviors over the disease course. To address this issue, we have established and characterized an optimized EAE-mouse model of MS-induced neuropathic pain. Briefly, C57BL/6 mice were immunized with MOG35-55 (200μg) and adjuvants comprising Quil A (45μg) and pertussis toxin (2×250ng). The traditionally used Freund's Complete Adjuvant (FCA) was replaced with Quil A, as FCA itself induces CNS neuroinflammation. Herein, EAE-mice exhibited a mild relapsing-remitting clinical disease course with temporal development of mechanical allodynia in the bilateral hindpaws. Mechanical allodynia was fully developed by 28-30days post-immunization (p.i.) and was maintained until study completion (52-60days p.i.), in the absence of confounding motor deficits. Single bolus doses of amitriptyline (1-7mg/kg), gabapentin (10-50mg/kg) and morphine (0.1-2mg/kg) evoked dose-dependent analgesia in the bilateral hindpaws of EAE-mice; the corresponding ED50s were 1.5, 20 and 1mg/kg respectively. At day 39 p.i. in EAE-mice exhibiting mechanical allodynia in the hindpaws, there was marked demyelination and gliosis in the brain and lumbar spinal cord, mirroring these pathobiologic hallmark features of MS in humans. Our optimized EAE-mouse model of MS-associated neuropathic pain will be invaluable for future investigation of the pathobiology of MS-induced neuropathic pain and for efficacy profiling of novel molecules as potential new analgesics for improved relief of this condition.
Collapse
MESH Headings
- Amines/therapeutic use
- Amitriptyline/therapeutic use
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Brain/pathology
- Cyclohexanecarboxylic Acids/therapeutic use
- Demyelinating Diseases/pathology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Gabapentin
- Gait
- Gliosis/pathology
- Hyperalgesia/chemically induced
- Hyperalgesia/complications
- Hyperalgesia/drug therapy
- Mice
- Morphine/therapeutic use
- Multiple Sclerosis/complications
- Multiple Sclerosis/drug therapy
- Myelin-Oligodendrocyte Glycoprotein
- Neuralgia/complications
- Neuralgia/drug therapy
- Peptide Fragments
- Pertussis Toxin
- Quillaja Saponins
- gamma-Aminobutyric Acid/therapeutic use
Collapse
Affiliation(s)
- Nemat Khan
- The University of Queensland, Center for Integrated Preclinical Drug Development, St Lucia Campus, Brisbane, Queensland 4072, Australia; School of Pharmacy, The University of Queensland, Pharmacy Australia Center of Excellence, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Trent M Woodruff
- The School of Biomedical Sciences, University of Queensland, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Maree T Smith
- The University of Queensland, Center for Integrated Preclinical Drug Development, St Lucia Campus, Brisbane, Queensland 4072, Australia; School of Pharmacy, The University of Queensland, Pharmacy Australia Center of Excellence, Woolloongabba, Brisbane, Queensland 4102, Australia.
| |
Collapse
|
192
|
Abstract
Most infectious diseases are caused by pathogenic infiltrations from the mucosal tract. Therefore, vaccines delivered to the mucosal tissues can mimic natural infections and provide protection at the first site of infection. Thus, mucosal, especially, oral delivery is becoming the most preferred mode of vaccination. However, oral vaccines have to overcome several barriers such as the extremely low pH of the stomach, the presence of proteolytic enzymes and bile salts as well as low permeability in the intestine. Several formulations based on nanoparticle strategies are currently being explored to prepare stable oral vaccine formulations. This review briefly discusses several molecular mechanisms involved in intestinal immune cell activation and various aspects of oral nanoparticle-based vaccine design that should be considered for improved mucosal and systemic immune responses.
Collapse
Affiliation(s)
- Nirmal Marasini
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | | |
Collapse
|
193
|
Alternative inactivated poliovirus vaccines adjuvanted with Quillaja brasiliensis or Quil-a saponins are equally effective in inducing specific immune responses. PLoS One 2014; 9:e105374. [PMID: 25148077 PMCID: PMC4141792 DOI: 10.1371/journal.pone.0105374] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/19/2014] [Indexed: 12/04/2022] Open
Abstract
Inactivated polio vaccines (IPV) have an important role at the final stages of poliomyelitis eradication programs, reducing the risks associated with the use of attenuated polio vaccine (OPV). An affordable option to enhance vaccine immunogenicity and reduce costs of IPV may be the use of an effective and renewable adjuvant. In the present study, the adjuvant activity of aqueous extract (AE) and saponin fraction QB-90 from Quillaja brasiliensis using poliovirus antigen as model were analyzed and compared to a preparation adjuvanted with Quil-A, a well-known saponin-based commercial adjuvant. Experimental vaccines were prepared with viral antigen plus saline (control), Quil-A (50 µg), AE (400 µg) or QB-90 (50 µg). Sera from inoculated mice were collected at days 0, 28, 42 and 56 post-inoculation of the first dose of vaccine. Serum levels of specific IgG, IgG1 and IgG2a were significantly enhanced by AE, QB-90 and Quil-A compared to control group on day 56. The magnitude of enhancement was statistically equivalent for QB-90 and Quil-A. The cellular response was evaluated through DTH and analysis of IFN-γ and IL-2 mRNA levels using in vitro reestimulated splenocytes. Results indicated that AE and QB-90 were capable of stimulating the generation of Th1 cells against the administered antigen to the same extent as Quil-A. Mucosal immune response was enhanced by the vaccine adjuvanted with QB-90 as demonstrated by increases of specific IgA titers in bile, feces and vaginal washings, yielding comparable or higher titers than Quil-A. The results obtained indicate that saponins from Q. brasiliensis are potent adjuvants of specific cellular and humoral immune responses and represent a viable option to Quil-A.
Collapse
|
194
|
Dehghan S, Tafaghodi M, Bolourieh T, Mazaheri V, Torabi A, Abnous K, Tavassoti Kheiri M. Rabbit nasal immunization against influenza by dry-powder form of chitosan nanospheres encapsulated with influenza whole virus and adjuvants. Int J Pharm 2014; 475:1-8. [PMID: 25148732 DOI: 10.1016/j.ijpharm.2014.08.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 08/14/2014] [Accepted: 08/17/2014] [Indexed: 11/26/2022]
Abstract
Influenza virus is one of the main causes of respiratory diseases in human. Although different vaccines have been produced during past decades, there is still a huge demand for a safe influenza vaccine with the ability to induce mucosal immune responses and sufficient protection, especially in elderly patients. In this study, chitosan nanospheres were employed as the drug delivery system. Influenza virus, CpG oligodeoxynucleotide (CpG ODN) and Quillaja saponins (QS) were incorporated in this nanospheric system. Three doses of dry powder nanosphere vaccine were nasally administered to rabbits on days 0, 45 and 60, followed by a final booster injection on day 75. Both humoral and cellular immune responses were investigated. Hemagglutination inhibition (HI) antibody titer was elevated in all groups compared to the control group at the end of vaccination in rabbits receiving nanospheres loaded with virus and CpG, CH(WV+CpG) (P<0.001). Rabbit serum IgG raised significantly in all the vaccinated groups, with the highest responses in CH(WV+CpG) group. CH(WV+CpG) and CH(WV) induced significant sIgA titers (P<0.001). CpG adjuvant also showed a prominent role in the stimulation and secretion of of IL-2 and IFN-γ cytokines (3 and 3.5 fold increase, respectively). Finally, as CH(WV+CpG) depicted to be effective in induction of humoral and cellular immune responses after nasal administration, this nanoparticulate adjuvant could be identified as an efficient adjuvant/delivery system for mucosal immunization against influenza virus.
Collapse
Affiliation(s)
- Solmaz Dehghan
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Influenza Research Lab, Pasteur Institute of Iran, No. 358, 12th Farvardin Street, Jomhoori Avenue, Tehran 13169-43551, Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tina Bolourieh
- Influenza Research Lab, Pasteur Institute of Iran, No. 358, 12th Farvardin Street, Jomhoori Avenue, Tehran 13169-43551, Iran
| | - Vahideh Mazaheri
- Influenza Research Lab, Pasteur Institute of Iran, No. 358, 12th Farvardin Street, Jomhoori Avenue, Tehran 13169-43551, Iran
| | - Ali Torabi
- Influenza Research Lab, Pasteur Institute of Iran, No. 358, 12th Farvardin Street, Jomhoori Avenue, Tehran 13169-43551, Iran
| | - Khalil Abnous
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Tavassoti Kheiri
- Influenza Research Lab, Pasteur Institute of Iran, No. 358, 12th Farvardin Street, Jomhoori Avenue, Tehran 13169-43551, Iran.
| |
Collapse
|
195
|
Parks CG, Miller FW, Pollard KM, Selmi C, Germolec D, Joyce K, Rose NR, Humble MC. Expert panel workshop consensus statement on the role of the environment in the development of autoimmune disease. Int J Mol Sci 2014; 15:14269-97. [PMID: 25196523 PMCID: PMC4159850 DOI: 10.3390/ijms150814269] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 12/20/2022] Open
Abstract
Autoimmune diseases include 80 or more complex disorders characterized by self-reactive, pathologic immune responses in which genetic susceptibility is largely insufficient to determine disease onset. In September 2010, the National Institute of Environmental Health Sciences (NIEHS) organized an expert panel workshop to evaluate the role of environmental factors in autoimmune diseases, and the state of the science regarding relevant mechanisms, animal models, and human studies. The objective of the workshop was to analyze the existing data to identify conclusions that could be drawn regarding environmental exposures and autoimmunity and to identify critical knowledge gaps and areas of uncertainty for future study. This consensus document summarizes key findings from published workshop monographs on areas in which “confident” and “likely” assessments were made, with recommendations for further research. Transcribed notes and slides were reviewed to synthesize an overview on exposure assessment and questions addressed by interdisciplinary panels. Critical advances in the field of autoimmune disease research have been made in the past decade. Collaborative translational and interdisciplinary research is needed to elucidate the role of environmental factors in autoimmune diseases. A focus on exposure assessment methodology is needed to improve the effectiveness of human studies, and more experimental studies are needed to focus on causal mechanisms underlying observed associations of environmental factors with autoimmune disease in humans.
Collapse
Affiliation(s)
- Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC 27709, USA.
| | | | - Kenneth Michael Pollard
- Department of Molecular and Experimental Medicine, the Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Carlo Selmi
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA.
| | - Dori Germolec
- National Toxicology Program, NIEHS, NIH, Morrisville, NC 27560, USA.
| | - Kelly Joyce
- Department of History and Politics, Drexel University, Philadelphia, PA 19104, USA.
| | - Noel R Rose
- John Hopkins Center for Autoimmune Disease Research, Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Michael C Humble
- Division of Extramural Research and Training, NIEHS, NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
196
|
Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Sautès-Fridman C, Cremer I, Henrik ter Meulen J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Toll-like receptor agonists in oncological indications. Oncoimmunology 2014; 3:e29179. [PMID: 25083332 PMCID: PMC4091055 DOI: 10.4161/onci.29179] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptors (TLRs) are an evolutionarily conserved group of enzymatically inactive, single membrane-spanning proteins that recognize a wide panel of exogenous and endogenous danger signals. Besides constituting a crucial component of the innate immune response to bacterial and viral pathogens, TLRs appear to play a major role in anticancer immunosurveillance. In line with this notion, several natural and synthetic TLR ligands have been intensively investigated for their ability to boost tumor-targeting immune responses elicited by a variety of immunotherapeutic and chemotherapeutic interventions. Three of these agents are currently approved by the US Food and Drug Administration (FDA) or equivalent regulatory agencies for use in cancer patients: the so-called bacillus Calmette-Guérin, monophosphoryl lipid A, and imiquimod. However, the number of clinical trials testing the therapeutic potential of both FDA-approved and experimental TLR agonists in cancer patients is stably decreasing, suggesting that drug developers and oncologists are refocusing their interest on alternative immunostimulatory agents. Here, we summarize recent findings on the use of TLR agonists in cancer patients and discuss how the clinical evaluation of FDA-approved and experimental TLR ligands has evolved since the publication of our first Trial Watch dealing with this topic.
Collapse
Affiliation(s)
- Fernando Aranda
- Gustave Roussy; Villejuif, France
- INSERM, UMRS1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris-Sud/Paris XI; Paris, France
| | - Erika Vacchelli
- Gustave Roussy; Villejuif, France
- INSERM, UMRS1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris-Sud/Paris XI; Paris, France
| | - Florine Obrist
- Gustave Roussy; Villejuif, France
- INSERM, UMRS1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris-Sud/Paris XI; Paris, France
| | | | - Jérôme Galon
- INSERM, UMRS1138; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
- Laboratory of Integrative Cancer Immunology, Centre de Recherche des Cordeliers; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, UMRS1138; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Isabelle Cremer
- INSERM, UMRS1138; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | | | - Laurence Zitvogel
- Gustave Roussy; Villejuif, France
- INSERM, U1015; CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, UMRS1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Villejuif, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité; Paris, France
| |
Collapse
|
197
|
Yang H, Han S, Zhao D, Wang G. Adjuvant effect of polysaccharide from fruits of Physalis alkekengi L. in DNA vaccine against systemic candidiasis. Carbohydr Polym 2014; 109:77-84. [DOI: 10.1016/j.carbpol.2014.03.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/28/2014] [Accepted: 03/20/2014] [Indexed: 01/15/2023]
|
198
|
Malik B, Gupta RK, Rath G, Goyal AK. Development of pH responsive novel emulsion adjuvant for oral immunization and in vivo evaluation. Eur J Pharm Biopharm 2014; 87:589-97. [DOI: 10.1016/j.ejpb.2014.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 01/23/2023]
|
199
|
Nyakudya E, Jeong JH, Lee NK, Jeong YS. Platycosides from the Roots of Platycodon grandiflorum and Their Health Benefits. Prev Nutr Food Sci 2014; 19:59-68. [PMID: 25054103 PMCID: PMC4103729 DOI: 10.3746/pnf.2014.19.2.059] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/10/2014] [Indexed: 11/06/2022] Open
Abstract
The extracts and pure saponins from the roots of Platycodon grandiflorum (PG) are reported to have a wide range of health benefits. Platycosides (saponins) from the roots of PG are characterized by a structure containing a triterpenoid aglycone and two sugar chains. Saponins are of commercial significance, and their applications are increasing with increasing evidence of their health benefits. The biological effects of saponins include cytotoxic effects against cancer cells, neuroprotective activity, antiviral activity, and cholesterol lowering effects. Saponins with commercial value range from crude plant extracts, which can be used for their foaming properties, to high purity saponins such as platycodin D, which can be used for its health applications (e.g., as a vaccine adjuvant). This review reveals that platycosides have many health benefits and have the potential to be used as a remedy against many of the major health hazards (e.g., cancer, obesity, alzheimer's) faced by populations around the world. Methods of platycoside purification and analysis are also covered in this review.
Collapse
Affiliation(s)
- Elijah Nyakudya
- Research Center for Industrial Development of Biofood Materials, Chonbuk National University, Jeonbuk 561-756, Korea ; Department of Food Science and Technology, Chonbuk National University, Jeonbuk 561-756, Korea
| | - Jong Hoon Jeong
- Research Center for Industrial Development of Biofood Materials, Chonbuk National University, Jeonbuk 561-756, Korea
| | - Nam Keun Lee
- Research Center for Industrial Development of Biofood Materials, Chonbuk National University, Jeonbuk 561-756, Korea
| | - Yong-Seob Jeong
- Department of Food Science and Technology, Chonbuk National University, Jeonbuk 561-756, Korea
| |
Collapse
|
200
|
Mahony D, Cavallaro AS, Mody KT, Xiong L, Mahony TJ, Qiao SZ, Mitter N. In vivo delivery of bovine viral diahorrea virus, E2 protein using hollow mesoporous silica nanoparticles. NANOSCALE 2014; 6:6617-26. [PMID: 24811899 DOI: 10.1039/c4nr01202j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Our work focuses on the application of mesoporous silica nanoparticles as a combined delivery vehicle and adjuvant for vaccine applications. Here we present results using the viral protein, E2, from bovine viral diarrhoea virus (BVDV). BVDV infection occurs in the target species of cattle and sheep herds worldwide and is therefore of economic importance. E2 is a major immunogenic determinant of BVDV and is an ideal candidate for the development of a subunit based nanovaccine using mesoporous silica nanoparticles. Hollow type mesoporous silica nanoparticles with surface amino functionalisation (termed HMSA) were characterised and assessed for adsorption and desorption of E2. A codon-optimised version of the E2 protein (termed Opti-E2) was produced in Escherichia coli. HMSA (120 nm) had an adsorption capacity of 80 μg Opti-E2 per mg HMSA and once bound E2 did not dissociate from the HMSA. Immunisation studies in mice with a 20 μg dose of E2 adsorbed to 250 μg HMSA was compared to immunisation with Opti-E2 (50 μg) together with the traditional adjuvant Quillaja saponaria Molina tree saponins (QuilA, 10 μg). The humoral responses with the Opti-E2/HMSA nanovaccine although slightly lower than those obtained for the Opti-E2 + QuilA group demonstrated that HMSA particles are an effective adjuvant that stimulated E2-specific antibody responses. Importantly the cell-mediated immune responses were consistently high in all mice immunised with Opti-E2/HMSA nanovaccine formulation. Therefore we have shown the Opti-E2/HMSA nanoformulation acts as an excellent adjuvant that gives both T-helper 1 and T-helper 2 mediated responses in a small animal model. This study has provided proof-of-concept towards the development of an E2 subunit nanoparticle based vaccine.
Collapse
Affiliation(s)
- D Mahony
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|