151
|
Pearton DJ, Smith CS, Redgate E, van Leeuwen J, Donnison M, Pfeffer PL. Elf5 counteracts precocious trophoblast differentiation by maintaining Sox2 and 3 and inhibiting Hand1 expression. Dev Biol 2014; 392:344-57. [PMID: 24859262 DOI: 10.1016/j.ydbio.2014.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
In mice the transcription factor Elf5 is necessary for correct trophoblast development. Upon knockdown of Elf5, TS cells display neither a decrease in proliferation nor an increase in cell death but rather an increased propensity to differentiate. Such cells rapidly lose Sox2 and 3 expression, while transiently upregulating the giant cell differentiation determinant gene Hand1. Other genes affected within 24h of Elf5 knock-down, many of which have not previously been implicated in trophoblast development, exhibited in vivo expression domains and in vitro expression responses consistent with Elf5 having a role in counteracting trophoblast differentiation. In an ES to TS differentiation assay using Cdx2 overexpression with Elf5 loss of function cell lines, it was shown that Elf5 is necessary to prevent terminal trophoblast differentiation. This data thus suggest that Elf5 is a gatekeeper for the TS to differentiated trophoblast transition thereby preventing the precocious differentiation of the undifferentiated extraembryonic ectoderm.
Collapse
Affiliation(s)
- David J Pearton
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand.
| | - Craig S Smith
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand.
| | - Emma Redgate
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand.
| | - Jessica van Leeuwen
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand; Department of Biological Sciences, University of Waikato, Hamilton 3214, New Zealand
| | - Martyn Donnison
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand
| | - Peter L Pfeffer
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand; School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| |
Collapse
|
152
|
Campolo F, Gori M, Favaro R, Nicolis S, Pellegrini M, Botti F, Rossi P, Jannini EA, Dolci S. Essential role of Sox2 for the establishment and maintenance of the germ cell line. Stem Cells 2014; 31:1408-21. [PMID: 23553930 DOI: 10.1002/stem.1392] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/28/2013] [Accepted: 02/13/2013] [Indexed: 01/04/2023]
Abstract
Sox2 is a pluripotency-conferring gene expressed in primordial germ cells (PGCs) and postnatal oocytes, but the role it plays during germ cell development and early embryogenesis is unknown. Since Sox2 ablation causes early embryonic lethality shortly after blastocyst implantation, we generated mice bearing Sox2-conditional deletion in germ cells at different stages of their development through the Cre/loxP recombination system. Embryos lacking Sox2 in PGCs show a dramatic decrease of germ cell numbers at the time of their specification. At later stages, we found that Sox2 is strictly required for PGC proliferation. On the contrary, Sox2 deletion in meiotic oocytes does not impair postnatal oogenesis and early embryogenesis, indicating that it is not essential for oocyte maturation or for zygotic development. We also show that Sox2 regulates Kit expression in PGCs and binds to discrete transcriptional regulatory sequences of this gene, which is known to be important for PGCs survival and proliferation. Sox2 also stimulates the expression of Zfp148, which is required for normal development of fetal germ cells, and Rif1, a potential regulator of PGC pluripotency.
Collapse
Affiliation(s)
- Federica Campolo
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Torvergata, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Klaric TS, Thomas PQ, Dottori M, Leong WK, Koblar SA, Lewis MD. A reduction in Npas4 expression results in delayed neural differentiation of mouse embryonic stem cells. Stem Cell Res Ther 2014; 5:64. [PMID: 24887558 PMCID: PMC4076635 DOI: 10.1186/scrt453] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/11/2014] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Npas4 is a calcium-dependent transcription factor expressed within neurons of the brain where it regulates the expression of several genes that are important for neuronal survival and synaptic plasticity. It is known that in the adult brain Npas4 plays an important role in several key aspects of neurobiology including inhibitory synapse formation, neuroprotection and memory, yet very little is known about the role of Npas4 during neurodevelopment. The aim of this study was to examine the expression and function of Npas4 during nervous system development by using a combination of in vivo experiments in the developing mouse embryo and neural differentiation of embryonic stem cells (ESCs) as an in vitro model of the early stages of embryogenesis. METHODS Two different neural differentiation paradigms were used to investigate Npas4 expression during neurodevelopment in vitro; adherent monolayer differentiation of mouse ESCs in N2B27 medium and Noggin-induced differentiation of human ESCs. This work was complemented by direct analysis of Npas4 expression in the mouse embryo. The function of Npas4 in the context of neurodevelopment was investigated using loss-of-function experiments in vitro. We created several mouse ESC lines in which Npas4 expression was reduced during neural differentiation through RNA interference and we then analyzed the ability of these Npas4 knockdown mouse ESCs lines to undergo neural differentiation. RESULTS We found that while Npas4 is not expressed in undifferentiated ESCs, it becomes transiently up-regulated during neural differentiation of both mouse and human ESCs at a stage of differentiation that is characterized by proliferation of neural progenitor cells. This was corroborated by analysis of Npas4 expression in the mouse embryo where the Npas4 transcript was detected specifically in the developing forebrain beginning at embryonic day 9.5. Finally, knockdown of Npas4 expression in mouse ESCs undergoing neural differentiation affected their ability to differentiate appropriately, resulting in delayed neural differentiation. CONCLUSIONS Here we provide the first evidence that Npas4 is expressed during embryonic development and that it may have a developmental role that is unrelated to its function in the adult brain.
Collapse
|
154
|
Tsakiridis A, Huang Y, Blin G, Skylaki S, Wymeersch F, Osorno R, Economou C, Karagianni E, Zhao S, Lowell S, Wilson V. Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors. Development 2014; 141:1209-21. [PMID: 24595287 PMCID: PMC3943179 DOI: 10.1242/dev.101014] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During gastrulation, epiblast cells are pluripotent and their fate is thought to be constrained principally by their position. Cell fate is progressively restricted by localised signalling cues from areas including the primitive streak. However, it is unknown whether this restriction accompanies, at the individual cell level, a reduction in potency. Investigation of these early transition events in vitro is possible via the use of epiblast stem cells (EpiSCs), self-renewing pluripotent cell lines equivalent to the postimplantation epiblast. Strikingly, mouse EpiSCs express gastrulation stage regional markers in self-renewing conditions. Here, we examined the differentiation potential of cells expressing such lineage markers. We show that undifferentiated EpiSC cultures contain a major subfraction of cells with reversible early primitive streak characteristics, which is mutually exclusive to a neural-like fraction. Using in vitro differentiation assays and embryo grafting we demonstrate that primitive streak-like EpiSCs are biased towards mesoderm and endoderm fates while retaining pluripotency. The acquisition of primitive streak characteristics by self-renewing EpiSCs is mediated by endogenous Wnt signalling. Elevation of Wnt activity promotes restriction towards primitive streak-associated lineages with mesendodermal and neuromesodermal characteristics. Collectively, our data suggest that EpiSC pluripotency encompasses a range of reversible lineage-biased states reflecting the birth of pioneer lineage precursors from a pool of uncommitted EpiSCs similar to the earliest cell fate restriction events taking place in the gastrula stage epiblast.
Collapse
Affiliation(s)
- Anestis Tsakiridis
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Abstract
SoxB1 sub-family of transcriptional regulators are expressed in progenitor (NP) cells throughout the neuroaxis and are generally downregulated during neuronal differentiation. Gain- and loss-of-function studies indicate that Sox1, Sox2 and Sox3 are key regulators of NP differentiation and that their roles in CNS development are largely redundant. Nevertheless, mutation of each SoxB1 individually results in a different array of CNS defects, raising the possibility that SoxB1 proteins have subtly different functions in NP cells. To explore the mechanism of SOXB1 functional redundancy, and to identify genes that are most sensitive to loss of the Sox3 gene, we performed genome wide expression profiling of Sox3 null NP cells. Nineteen genes with abnormal expression were identified, including the homeobox gene Dbx1. Analysis of Sox3 null embryos revealed that Dbx1 was significantly reduced in the neural tube and developing brain and that SOX3 bound directly to conserved elements associated with this gene in cultured NP cells and in vivo. These data define Dbx1 as a direct SOX3 target gene whose expression, intriguingly, is not fully rescued by other SOXB1 transcription factors, suggesting that there are inherent differences in SOXB1 protein activity.
Collapse
|
156
|
Bauters M, Frints SG, Van Esch H, Spruijt L, Baldewijns MM, de Die-Smulders CEM, Fryns JP, Marynen P, Froyen G. Evidence for increased SOX3 dosage as a risk factor for X-linked hypopituitarism and neural tube defects. Am J Med Genet A 2014; 164A:1947-52. [PMID: 24737742 DOI: 10.1002/ajmg.a.36580] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 03/24/2014] [Indexed: 11/09/2022]
Abstract
Genomic duplications of varying lengths at Xq26-q27 involving SOX3 have been described in families with X-linked hypopituitarism. Using array-CGH we detected a 1.1 Mb microduplication at Xq27 in a large family with three males suffering from X-linked hypopituitarism. The duplication was mapped from 138.7 to 139.8 Mb, harboring only two annotated genes, SOX3 and ATP11C, and was shown to be a direct tandem copy number gain. Unexpectedly, the microduplication did not fully segregate with the disease in this family suggesting that SOX3 duplications have variable penetrance for X-linked hypopituitarism. In the same family, a female fetus presenting with a neural tube defect was also shown to carry the SOX3 copy number gain. Since we also demonstrated increased SOX3 mRNA levels in amnion cells derived from an unrelated t(X;22)(q27;q11) female fetus with spina bifida, we propose that increased levels of SOX3 could be a risk factor for neural tube defects.
Collapse
Affiliation(s)
- Marijke Bauters
- Human Genome Laboratory, Department of Human Genetics, KU Leuven, Leuven, Belgium; Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Popovic J, Stanisavljevic D, Schwirtlich M, Klajn A, Marjanovic J, Stevanovic M. Expression analysis of SOX14 during retinoic acid induced neural differentiation of embryonal carcinoma cells and assessment of the effect of its ectopic expression on SOXB members in HeLa cells. PLoS One 2014; 9:e91852. [PMID: 24637840 PMCID: PMC3956720 DOI: 10.1371/journal.pone.0091852] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/17/2014] [Indexed: 12/01/2022] Open
Abstract
SOX14 is a member of the SOXB2 subgroup of transcription factors implicated in neural development. Although the first SOX14 gene in vertebrates was cloned and characterized more than a decade ago and its expression profile during development was revealed in various animal model systems, the role of this gene during neural development is largely unknown. In the present study we analyzed the expression of SOX14 in human NT2/D1 and mouse P19 pluripotent embryonal carcinoma cells. We demonstrated that it is expressed in both cell lines and upregulated during retinoic acid induced neural differentiation. We showed that SOX14 was expressed in both neuronal and non-neuronal differentiated derivatives, as revealed by immunocytochemistry. Since it was previously proposed that increased SOXB2 proteins level interfere with the activity of SOXB1 counteracting partners, we compared expression patterns of SOXB members during retinoic acid induction of embryonal carcinoma cells. We revealed that upregulation of SOX14 expression is accompanied by alterations in the expression patterns of SOXB1 members. In order to analyze the potential cross-talk between them, we generated SOX14 expression construct. The ectopic expression of SOX14 was demonstrated at the mRNA level in NT2/D1, P19 and HeLa cells, while an increased level of SOX14 protein was detected in HeLa cells only. By transient transfection experiments in HeLa cells we showed for the first time that ectopic expression of SOX14 repressed SOX1 expression, whereas no significant effect on SOX2, SOX3 and SOX21 was observed. Data presented here provide an insight into SOX14 expression during in vitro neural differentiation of embryonal carcinoma cells and demonstrate the effect of its ectopic expression on protein levels of SOXB members in HeLa cells. Obtained results contribute to better understanding the role of one of the most conserved SOX proteins.
Collapse
Affiliation(s)
- Jelena Popovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- * E-mail:
| | - Danijela Stanisavljevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Schwirtlich
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Andrijana Klajn
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Marjanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
158
|
Zhao Y, Matsuo-Takasaki M, Tsuboi I, Kimura K, Salazar GT, Yamashita T, Ohneda O. Dual functions of hypoxia-inducible factor 1 alpha for the commitment of mouse embryonic stem cells toward a neural lineage. Stem Cells Dev 2014; 23:2143-55. [PMID: 24236637 DOI: 10.1089/scd.2013.0278] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Embryonic stem (ES) cells are useful for elucidating the molecular mechanisms of cell fate decision in the early development of mammals. It has been shown that aggregate culture of ES cells efficiently induces neuroectoderm differentiation. However, the molecular mechanism that leads to selective neural differentiation in aggregate culture is not fully understood. Here, we demonstrate that the oxygen-sensitive hypoxia-inducible transcription factor, Hif-1α, is an essential regulator for neural commitment of ES cells. We found that a hypoxic environment is spontaneously established in differentiating ES cell aggregates within 3 days, and that this time window coincides with Hif-1α activation. In ES cells in adherent culture under hypoxic conditions, Hif-1α activation was correlated with significantly greater expression of neural progenitor-specific gene Sox1 compared with ES cells in adherent culture under normoxic conditions. In contrast, Hif-1α-depleted ES cell aggregates showed severe reduction in Sox1 expression and maintained high expression of undifferentiated ES cell marker genes and epiblast marker gene Fgf5 on day 4. Notably, chromatin immune precipitation assay and luciferase assay showed that Hif-1α might directly activate Sox1 expression. Of additional importance is our finding that attenuation of Hif-1α resulted in an increase of BMP4, a potent inhibitor of neural differentiation, and led to a high level of phosphorylated Smad1. Thus, our results indicate that Hif-1α acts as a positive regulator of neural commitment by promoting the transition of ES cell differentiation from the epiblast into the neuroectoderm state via direct activation of Sox1 expression and suppressing endogenous BMP signaling.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Tsukuba, Japan
| | | | | | | | | | | | | |
Collapse
|
159
|
Kurokawa D, Ohmura T, Sakurai Y, Inoue K, Suda Y, Aizawa S. Otx2 expression in anterior neuroectoderm and forebrain/midbrain is directed by more than six enhancers. Dev Biol 2014; 387:203-13. [PMID: 24457099 DOI: 10.1016/j.ydbio.2014.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 01/12/2014] [Accepted: 01/14/2014] [Indexed: 11/25/2022]
Abstract
Otx2 plays essential roles in each site at each step of head development. We previously identified the AN1 enhancer at 91kb 5' upstream for the Otx2 expressions in anterior neuroectoderm (AN) at neural plate stage before E8.5, and the FM1 enhancer at 75kb 5' upstream and the FM2 enhancer at 122kb 3' downstream for the expression in forebrain/midbrain (FM) at brain vesicle stage after E8.5. The present study identified a second AN enhancer (AN2) at 88kb 5' upstream; the AN2 enhancer also recapitulates the endogenous Otx2 expression in choroid plexus, cortical hem and choroidal roof. However, the enhancer mutants indicated the presence of another AN enhancer. The study also identified a third FM enhancer (FM3) at 153kb 5' upstream. Thus, the Otx2 expressions in anterior neuroectoderm and forebrain/midbrain are regulated by more than six enhancers located far from the coding region. The enhancers identified are differentially conserved among vertebrates; none of the AN enhancers has activities in caudal forebrain and midbrain at brain vesicle stage after E8.5, nor do any of the FM enhancers in anterior neuroectoderm at neural plate stage before E8.5.
Collapse
Affiliation(s)
- Daisuke Kurokawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, 2-2-3 Minatojima Minami-machi, Chuo-Ku, Kobe, Hyogo 650-0047, Japan; Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa 238-0225, Japan
| | - Tomomi Ohmura
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, 2-2-3 Minatojima Minami-machi, Chuo-Ku, Kobe, Hyogo 650-0047, Japan
| | - Yusuke Sakurai
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, 2-2-3 Minatojima Minami-machi, Chuo-Ku, Kobe, Hyogo 650-0047, Japan
| | - Kenichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, 2-2-3 Minatojima Minami-machi, Chuo-Ku, Kobe, Hyogo 650-0047, Japan
| | - Yoko Suda
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, 2-2-3 Minatojima Minami-machi, Chuo-Ku, Kobe, Hyogo 650-0047, Japan
| | - Shinichi Aizawa
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology (CDB), RIKEN Kobe, 2-2-3 Minatojima Minami-machi, Chuo-Ku, Kobe, Hyogo 650-0047, Japan; Laboratory for Animal Resources and Genetic Engineering, Center for Developmental Biology (CDB), RIKEN Kobe, 2-2-3 Minatojima Minami-machi, Chuo-Ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
160
|
Kamachi Y, Kondoh H. Sox proteins: regulators of cell fate specification and differentiation. Development 2013; 140:4129-44. [PMID: 24086078 DOI: 10.1242/dev.091793] [Citation(s) in RCA: 446] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sox transcription factors play widespread roles during development; however, their versatile funtions have a relatively simple basis: the binding of a Sox protein alone to DNA does not elicit transcriptional activation or repression, but requires binding of a partner transcription factor to an adjacent site on the DNA. Thus, the activity of a Sox protein is dependent upon the identity of its partner factor and the context of the DNA sequence to which it binds. In this Primer, we provide an mechanistic overview of how Sox family proteins function, as a paradigm for transcriptional regulation of development involving multi-transcription factor complexes, and we discuss how Sox factors can thus regulate diverse processes during development.
Collapse
Affiliation(s)
- Yusuke Kamachi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
161
|
Whitmore C, Fernandez-Fuente M, Booler H, Parr C, Kavishwar M, Ashraf A, Lacey E, Kim J, Terry R, Ackroyd MR, Wells KE, Muntoni F, Wells DJ, Brown SC. The transgenic expression of LARGE exacerbates the muscle phenotype of dystroglycanopathy mice. Hum Mol Genet 2013; 23:1842-55. [PMID: 24234655 DOI: 10.1093/hmg/ddt577] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in fukutin-related protein (FKRP) underlie a group of muscular dystrophies associated with the hypoglycosylation of α-dystroglycan (α-DG), a proportion of which show central nervous system involvement. Our original FKRP knock-down mouse (FKRP(KD)) replicated many of the characteristics seen in patients at the severe end of the dystroglycanopathy spectrum but died perinatally precluding its full phenotyping and use in testing potential therapies. We have now overcome this by crossing FKRP(KD) mice with those expressing Cre recombinase under the Sox1 promoter. Owing to our original targeting strategy, this has resulted in the restoration of Fkrp levels in the central nervous system but not the muscle, thereby generating a new model (FKRP(MD)) which develops a progressive muscular dystrophy resembling what is observed in limb girdle muscular dystrophy. Like-acetylglucosaminyltransferase (LARGE) is a bifunctional glycosyltransferase previously shown to hyperglycosylate α-DG. To investigate the therapeutic potential of LARGE up-regulation, we have now crossed the FKRP(MD) line with one overexpressing LARGE and show that, contrary to expectation, this results in a worsening of the muscle pathology implying that any future strategies based upon LARGE up-regulation require careful management.
Collapse
Affiliation(s)
- Charlotte Whitmore
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Lee RTH, Nagai H, Nakaya Y, Sheng G, Trainor PA, Weston JA, Thiery JP. Cell delamination in the mesencephalic neural fold and its implication for the origin of ectomesenchyme. Development 2013; 140:4890-902. [PMID: 24198279 PMCID: PMC4074292 DOI: 10.1242/dev.094680] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neural crest is a transient structure unique to vertebrate embryos that gives rise to multiple lineages along the rostrocaudal axis. In cranial regions, neural crest cells are thought to differentiate into chondrocytes, osteocytes, pericytes and stromal cells, which are collectively termed ectomesenchyme derivatives, as well as pigment and neuronal derivatives. There is still no consensus as to whether the neural crest can be classified as a homogenous multipotent population of cells. This unresolved controversy has important implications for the formation of ectomesenchyme and for confirmation of whether the neural fold is compartmentalized into distinct domains, each with a different repertoire of derivatives. Here we report in mouse and chicken that cells in the neural fold delaminate over an extended period from different regions of the cranial neural fold to give rise to cells with distinct fates. Importantly, cells that give rise to ectomesenchyme undergo epithelial-mesenchymal transition from a lateral neural fold domain that does not express definitive neural markers, such as Sox1 and N-cadherin. Additionally, the inference that cells originating from the cranial neural ectoderm have a common origin and cell fate with trunk neural crest cells prompted us to revisit the issue of what defines the neural crest and the origin of the ectomesenchyme.
Collapse
Affiliation(s)
- Raymond Teck Ho Lee
- Institute of Molecular Cell Biology, ASTAR, 61 Biopolis Drive, 138673, Singapore
| | | | | | | | | | | | | |
Collapse
|
163
|
Karnavas T, Mandalos N, Malas S, Remboutsika E. SoxB, cell cycle and neurogenesis. Front Physiol 2013; 4:298. [PMID: 24146653 PMCID: PMC3797971 DOI: 10.3389/fphys.2013.00298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/29/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Theodoros Karnavas
- Stem Cell Biology Laboratory, Biomedical Sciences Research Centre "Alexander Fleming" Vari-Attica, Greece
| | | | | | | |
Collapse
|
164
|
Adachi K, Nikaido I, Ohta H, Ohtsuka S, Ura H, Kadota M, Wakayama T, Ueda HR, Niwa H. Context-dependent wiring of Sox2 regulatory networks for self-renewal of embryonic and trophoblast stem cells. Mol Cell 2013; 52:380-92. [PMID: 24120664 DOI: 10.1016/j.molcel.2013.09.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/08/2013] [Accepted: 08/29/2013] [Indexed: 01/03/2023]
Abstract
Sox2 is a transcription factor required for the maintenance of pluripotency. It also plays an essential role in different types of multipotent stem cells, raising the possibility that Sox2 governs the common stemness phenotype. Here we show that Sox2 is a critical downstream target of fibroblast growth factor (FGF) signaling, which mediates self-renewal of trophoblast stem cells (TSCs). Sustained expression of Sox2 together with Esrrb or Tfap2c can replace FGF dependency. By comparing genome-wide binding sites of Sox2 in embryonic stem cells (ESCs) and TSCs combined with inducible knockout systems, we found that, despite the common role in safeguarding the stem cell state, Sox2 regulates distinct sets of genes with unique functions in these two different yet developmentally related types of stem cells. Our findings provide insights into the functional versatility of transcription factors during embryogenesis, during which they can be recursively utilized in a variable manner within discrete network structures.
Collapse
Affiliation(s)
- Kenjiro Adachi
- Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 6500047, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Holland LZ, Carvalho JE, Escriva H, Laudet V, Schubert M, Shimeld SM, Yu JK. Evolution of bilaterian central nervous systems: a single origin? EvoDevo 2013; 4:27. [PMID: 24098981 PMCID: PMC3856589 DOI: 10.1186/2041-9139-4-27] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/14/2013] [Indexed: 12/21/2022] Open
Abstract
The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once - in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position - either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates + echinoderms, or one of the two hemichordate nerve cords is homologous to the CNS of protostomes and chordates. In any event, the presence of part of the genetic machinery for the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer in invertebrate chordates together with similar morphology indicates that these organizers were present, at least in part, at the base of the chordates and were probably elaborated upon in the vertebrate lineage.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0202, USA
| | - João E Carvalho
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009 – CNRS/UPMC), Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, B.P. 28, 06230 Villefranche-sur-Mer, France
| | - Hector Escriva
- CNRS, UMR 7232, BIOM, Université Pierre et Marie Curie Paris 06, Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon (CNRS UMR5242, UCBL, ENS, INRA 1288), Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (UMR 7009 – CNRS/UPMC), Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, B.P. 28, 06230 Villefranche-sur-Mer, France
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
166
|
Ladran I, Tran N, Topol A, Brennand KJ. Neural stem and progenitor cells in health and disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:701-15. [PMID: 24068527 DOI: 10.1002/wsbm.1239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/17/2013] [Accepted: 07/18/2013] [Indexed: 01/01/2023]
Abstract
Neural stem/progenitor cells (NSPCs) have the potential to differentiate into neurons, astrocytes, and/or oligodendrocytes. Because these cells can be expanded in culture, they represent a vast source of neural cells. With the recent discovery that patient fibroblasts can be reprogrammed directly into induced NSPCs, the regulation of NSPC fate and function, in the context of cell-based disease models and patient-specific cell-replacement therapies, warrants review.
Collapse
Affiliation(s)
- Ian Ladran
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
167
|
Lee B, Song H, Rizzoti K, Son Y, Yoon J, Baek K, Jeong Y. Genomic code for Sox2 binding uncovers its regulatory role in Six3 activation in the forebrain. Dev Biol 2013; 381:491-501. [PMID: 23792023 DOI: 10.1016/j.ydbio.2013.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/09/2013] [Accepted: 06/12/2013] [Indexed: 01/24/2023]
Abstract
The SRY-related HMG box transcription factor Sox2 plays critical roles throughout embryogenesis. Haploinsufficiency for SOX2 results in human developmental defects including anophthalmia, microphthalmia and septo-optic dysplasia, a congenital forebrain defect. To understand how Sox2 plays a role in neurogenesis, we combined genomic and in vivo transgenic approaches to characterize genomic regions occupied by Sox2 in the developing forebrain. Six3, a homeobox gene associated with holoprosencephaly, a forebrain midline defect, was identified as a Sox2 transcriptional target. This study shows that Sox2 directly regulates a previously unidentified long-range forebrain enhancer to activate Six3 expression in the rostral diencephalon. Further biochemical and genetic evidences indicated a direct regulatory link between Sox2 and Six3 during forebrain development, providing a better understanding of a common molecular mechanism underlying these forebrain defects.
Collapse
Affiliation(s)
- Bumwhee Lee
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si 446-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
168
|
Trott J, Martinez Arias A. Single cell lineage analysis of mouse embryonic stem cells at the exit from pluripotency. Biol Open 2013; 2:1049-56. [PMID: 24167715 PMCID: PMC3798188 DOI: 10.1242/bio.20135934] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 07/15/2013] [Indexed: 12/29/2022] Open
Abstract
Understanding how interactions between extracellular signalling pathways and transcription factor networks influence cellular decision making will be crucial for understanding mammalian embryogenesis and for generating specialised cell types in vitro. To this end, pluripotent mouse Embryonic Stem (mES) cells have proven to be a useful model system. However, understanding how transcription factors and signalling pathways affect decisions made by individual cells is confounded by the fact that measurements are generally made on groups of cells, whilst individual mES cells differentiate at different rates and towards different lineages, even in conditions that favour a particular lineage. Here we have used single-cell measurements of transcription factor expression and Wnt/β-catenin signalling activity to investigate their effects on lineage commitment decisions made by individual cells. We find that pluripotent mES cells exhibit differing degrees of heterogeneity in their expression of important regulators from pluripotency, depending on the signalling environment to which they are exposed. As mES cells differentiate, downregulation of Nanog and Oct4 primes cells for neural commitment, whilst loss of Sox2 expression primes cells for primitive streak commitment. Furthermore, we find that Wnt signalling acts through Nanog to direct cells towards a primitive streak fate, but that transcriptionally active β-catenin is associated with both neural and primitive streak commitment. These observations confirm and extend previous suggestions that pluripotency genes influence lineage commitment and demonstrate how their dynamic expression affects the direction of lineage commitment, whilst illustrating two ways in which the Wnt signalling pathway acts on this network during cell fate assignment.
Collapse
Affiliation(s)
- Jamie Trott
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge CB2 1QR, UK
- Present address: Institute of Medical Biology, 8A Biomedical Grove, No. 06-06 Immunos, Singapore 138648
| | | |
Collapse
|
169
|
Přikrylová T, Pacherník J, Kozubek S, Bártová E. Epigenetics and chromatin plasticity in embryonic stem cells. World J Stem Cells 2013; 5:73-85. [PMID: 23951389 PMCID: PMC3744133 DOI: 10.4252/wjsc.v5.i3.73] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/18/2013] [Accepted: 06/05/2013] [Indexed: 02/06/2023] Open
Abstract
The study of embryonic stem cells is in the spotlight in many laboratories that study the structure and function of chromatin and epigenetic processes. The key properties of embryonic stem cells are their capacity for self-renewal and their pluripotency. Pluripotent stem cells are able to differentiate into the cells of all three germ layers, and because of this property they represent a promising therapeutic tool in the treatment of diseases such as Parkinson's disease and diabetes, or in the healing of lesions after heart attack. As the basic nuclear unit, chromatin is responsible for the regulation of the functional status of cells, including pluripotency and differentiation. Therefore, in this review we discuss the functional changes in chromatin during differentiation and the correlation between epigenetics events and the differentiation potential of embryonic stem cells. In particular we focus on post-translational histone modification, DNA methylation and the heterochromatin protein HP1 and its unique function in mouse and human embryonic stem cells.
Collapse
Affiliation(s)
- Terézia Přikrylová
- Terézia Přikrylová, Stanislav Kozubek, Eva Bártová, Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic
| | | | | | | |
Collapse
|
170
|
Cattell MV, Garnett AT, Klymkowsky MW, Medeiros DM. A maternally established SoxB1/SoxF axis is a conserved feature of chordate germ layer patterning. Evol Dev 2013; 14:104-15. [PMID: 23016978 DOI: 10.1111/j.1525-142x.2011.00525.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite deep evolutionary roots in the metazoa, the gene regulatory network driving germ layer specification is surprisingly labile both between and within phyla. In Xenopus laevis, SoxB1- and SoxF-type transcription factors are intimately involved in germ-layer specification, in part through their regulation of Nodal signaling. However, it is unclear if X. laevis is representative of the ancestral vertebrate condition, as the precise roles of SoxF and SoxB1 in germ-layer specification vary among vertebrates, and there is no evidence that SoxF mediates germ-layer specification in any invertebrate. To better understand the evolution of germ-layer specification in the vertebrate lineage, we analyzed the expression of soxB1 and soxF genes in embryos and larvae of the basal vertebrate lamprey, and the basal chordate amphioxus. We find that both species maternally deposit soxB1 mRNA in the animal pole, soxF mRNA in the vegetal hemisphere, and zygotically express soxB1 and soxF throughout nascent ectoderm and mesendoderm, respectively. We also find that soxF is excluded from the vegetalmost blastomeres in lamprey and that, in contrast to vertebrates, amphioxus does not express soxF in the oral epithelium. In the context of recent work, our results suggest that a maternally established animal/vegetal Sox axis is a deeply conserved feature of chordate development that predates the role of Nodal in vertebrate germ-layer specification. Furthermore, exclusion of this axis from the vegetal pole in lamprey is consistent with the presence of an extraembryonic yolk mass, as has been previously proposed. Finally, conserved expression of SoxF in the forming mouth across the vertebrates, but not in amphioxus, lends support to the idea that the larval amphioxus mouth is nonhomologous to the vertebrate mouth.
Collapse
Affiliation(s)
- Maria V Cattell
- Ecology and Evolutionary Biology, University of Colorado-Boulder, CO 80309-0334, USA
| | | | | | | |
Collapse
|
171
|
Sarkar A, Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 2013; 12:15-30. [PMID: 23290134 DOI: 10.1016/j.stem.2012.12.007] [Citation(s) in RCA: 717] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sox family transcription factors are well-established regulators of cell fate decisions during development. Accumulating evidence documents that they play additional roles in adult tissue homeostasis and regeneration. Remarkably, forced expression of Sox factors, in combination with other synergistic factors, reprograms differentiated cells into somatic or pluripotent stem cells. Dysregulation of Sox factors has been further implicated in diseases including cancer. Here, we review molecular and functional evidence linking Sox proteins with stem cell biology, cellular reprogramming, and disease with an emphasis on Sox2.
Collapse
Affiliation(s)
- Abby Sarkar
- Howard Hughes Medical Institute at Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA
| | | |
Collapse
|
172
|
Arima N, Uchida Y, Yu R, Nakayama K, Nishina H. Acetylcholine receptors regulate gene expression that is essential for primitive streak formation in murine embryoid bodies. Biochem Biophys Res Commun 2013; 435:447-53. [PMID: 23665324 DOI: 10.1016/j.bbrc.2013.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
Abstract
Muscarinic acetylcholine receptors (mAchRs) are critical components of the cholinergic system, which is the key regulator of both the central and peripheral nervous systems in mammals. Interestingly, several components of the cholinergic system, including mAchRs and choline acetyltransferase (ChAT), have recently been found to be expressed in mouse embryonic stem (ES) cells and human placenta. These results raise the intriguing possibility that mAchRs play physiological roles in the regulation of early embryogenesis. Early embryogenesis can be mimicked in vitro using an ES cell-based culture system in which the cells form a primitive streak-like structure and efficiently develop into mesodermal progenitors. Here we report that chemical inhibitors specifically targeting mAchRs suppressed the expression of genes essential for primitive streak formation, including Wnt3, and thereby blocked mesodermal progenitor differentiation. Interestingly, mAchR inhibitors also reduced the expression of Cyp26a1, an enzyme involved in the catabolism of retinoic acid (RA). RA is an important regulator of Wnt3 signaling. Our study presents evidence indicating that mAchRs influence RA signaling necessary for the induction of the primitive streak. To our knowledge, this is the first report showing that mAchRs have important functions not only in adult mammals but also during early mammalian embryogenesis.
Collapse
Affiliation(s)
- Norie Arima
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Tokyo 113-8510, Japan
| | | | | | | | | |
Collapse
|
173
|
Rogers N, Cheah PS, Szarek E, Banerjee K, Schwartz J, Thomas P. Expression of the murine transcription factor SOX3 during embryonic and adult neurogenesis. Gene Expr Patterns 2013; 13:240-8. [PMID: 23665444 DOI: 10.1016/j.gep.2013.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 11/18/2022]
Abstract
Previous studies have shown that Sox3 is expressed in nascent neuroprogenitor cells and is functionally required in mammals for development of the dorsal telencephalon and hypothalamus. However, Sox3 expression during embryonic and adult neurogenesis has not been examined in detail. Using a SOX3-specific antibody, we show that murine SOX3 expression is maintained throughout telencephalic neurogenesis and is restricted to progenitor cells with neuroepithelial and radial glial morphologies. We also demonstrate that SOX3 is expressed within the adult neurogenic regions and is coexpressed extensively with the neural stem cell marker SOX2 indicating that it is a lifelong marker of neuroprogenitor cells. In contrast to the telencephalon, Sox3 expression within the developing hypothalamus is upregulated in developing neurons and is maintained in a subset of differentiated hypothalamic cells through to adulthood. Together, these data show that Sox3 regulation is region-specific, consistent with it playing distinct biological roles in the dorsal telencephalon and hypothalamus.
Collapse
Affiliation(s)
- Nicholas Rogers
- Discipline of Biochemistry, School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
174
|
Khan MAF, Soto-Jimenez LM, Howe T, Streit A, Sosinsky A, Stern CD. Computational tools and resources for prediction and analysis of gene regulatory regions in the chick genome. Genesis 2013; 51:311-24. [PMID: 23355428 PMCID: PMC3664090 DOI: 10.1002/dvg.22375] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 11/07/2022]
Abstract
The discovery of cis-regulatory elements is a challenging problem in bioinformatics, owing to distal locations and context-specific roles of these elements in controlling gene regulation. Here we review the current bioinformatics methodologies and resources available for systematic discovery of cis-acting regulatory elements and conserved transcription factor binding sites in the chick genome. In addition, we propose and make available, a novel workflow using computational tools that integrate CTCF analysis to predict putative insulator elements, enhancer prediction, and TFBS analysis. To demonstrate the usefulness of this computational workflow, we then use it to analyze the locus of the gene Sox2 whose developmental expression is known to be controlled by a complex array of cis-acting regulatory elements. The workflow accurately predicts most of the experimentally verified elements along with some that have not yet been discovered. A web version of the CTCF tool, together with instructions for using the workflow can be accessed from http://toolshed.g2.bx.psu.edu/view/mkhan1980/ctcf_analysis. For local installation of the tool, relevant Perl scripts and instructions are provided in the directory named "code" in the supplementary materials.
Collapse
Affiliation(s)
- Mohsin A F Khan
- Department of Cell & Developmental Biology, University College London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
175
|
Suflita MT, Pfaltzgraff ER, Mundell NA, Pevny LH, Labosky PA. Ground-state transcriptional requirements for skin-derived precursors. Stem Cells Dev 2013; 22:1779-88. [PMID: 23316968 DOI: 10.1089/scd.2012.0501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Skin-derived precursors (SKPs) are an attractive stem cell model for cell-based therapies. SKPs can be readily generated from embryonic and adult mice and adult humans, exhibit a high degree of multipotency, and have the potential to serve as a patient autologous stem cell. The advancement of these cells toward therapeutic use depends on the ability to control precisely the self-renewal and differentiation of SKPs. Here we show that two well-known stem cell factors, Foxd3 and Sox2, are critical regulators of the stem cell properties of SKPs. Deletion of Foxd3 completely abolishes the sphere-forming potential of these cells. In the absence of Sox2, SKP spheres can be formed, but with reduced size and frequency. Our results provide entry points into the gene regulatory networks dictating SKP behavior, and pave the way for future studies on a therapeutically relevant stem cell.
Collapse
Affiliation(s)
- Michael T Suflita
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
176
|
Schmidt R, Strähle U, Scholpp S. Neurogenesis in zebrafish - from embryo to adult. Neural Dev 2013; 8:3. [PMID: 23433260 PMCID: PMC3598338 DOI: 10.1186/1749-8104-8-3] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/17/2013] [Indexed: 01/19/2023] Open
Abstract
Neurogenesis in the developing central nervous system consists of the induction and proliferation of neural progenitor cells and their subsequent differentiation into mature neurons. External as well as internal cues orchestrate neurogenesis in a precise temporal and spatial way. In the last 20 years, the zebrafish has proven to be an excellent model organism to study neurogenesis in the embryo. Recently, this vertebrate has also become a model for the investigation of adult neurogenesis and neural regeneration. Here, we summarize the contributions of zebrafish in neural development and adult neurogenesis.
Collapse
Affiliation(s)
- Rebecca Schmidt
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, 76021, Karlsruhe, Germany
| | | | | |
Collapse
|
177
|
Davies O, Lin CY, Radzisheuskaya A, Zhou X, Taube J, Blin G, Waterhouse A, Smith A, Lowell S. Tcf15 primes pluripotent cells for differentiation. Cell Rep 2013; 3:472-84. [PMID: 23395635 PMCID: PMC3607254 DOI: 10.1016/j.celrep.2013.01.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/04/2013] [Accepted: 01/15/2013] [Indexed: 02/02/2023] Open
Abstract
The events that prime pluripotent cells for differentiation are not well understood. Inhibitor of DNA binding/differentiation (Id) proteins, which are inhibitors of basic helix-loop-helix (bHLH) transcription factor activity, contribute to pluripotency by blocking sequential transitions toward differentiation. Using yeast-two-hybrid screens, we have identified Id-regulated transcription factors that are expressed in embryonic stem cells (ESCs). One of these, Tcf15, is also expressed in the embryonic day 4.5 embryo and is specifically associated with a novel subpopulation of primed ESCs. An Id-resistant form of Tcf15 rapidly downregulates Nanog and accelerates somatic lineage commitment. We propose that because Tcf15 can be held in an inactive state through Id activity, it may prime pluripotent cells for entry to somatic lineages upon downregulation of Id. We also find that Tcf15 expression is dependent on fibroblast growth factor (FGF) signaling, providing an explanation for how FGF can prime for differentiation without driving cells out of the pluripotent state.
Collapse
Affiliation(s)
- Owen R. Davies
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Chia-Yi Lin
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Aliaksandra Radzisheuskaya
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Xinzhi Zhou
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jessica Taube
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Anna Waterhouse
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Andrew J.H. Smith
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
178
|
Gallicano GI. Modeling to optimize terminal stem cell differentiation. SCIENTIFICA 2013; 2013:574354. [PMID: 24278782 PMCID: PMC3820305 DOI: 10.1155/2013/574354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/18/2012] [Indexed: 06/02/2023]
Abstract
Embryonic stem cell (ESC), iPCs, and adult stem cells (ASCs) all are among the most promising potential treatments for heart failure, spinal cord injury, neurodegenerative diseases, and diabetes. However, considerable uncertainty in the production of ESC-derived terminally differentiated cell types has limited the efficiency of their development. To address this uncertainty, we and other investigators have begun to employ a comprehensive statistical model of ESC differentiation for determining the role of intracellular pathways (e.g., STAT3) in ESC differentiation and determination of germ layer fate. The approach discussed here applies the Baysian statistical model to cell/developmental biology combining traditional flow cytometry methodology and specific morphological observations with advanced statistical and probabilistic modeling and experimental design. The final result of this study is a unique tool and model that enhances the understanding of how and when specific cell fates are determined during differentiation. This model provides a guideline for increasing the production efficiency of therapeutically viable ESCs/iPSCs/ASC derived neurons or any other cell type and will eventually lead to advances in stem cell therapy.
Collapse
Affiliation(s)
- G. Ian Gallicano
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
179
|
Peng X, Gao H, Wang Y, Yang B, Liu T, Sun Y, Jin H, Jiang L, Li L, Wu M, Qian Q. Conversion of rat embryonic stem cells into neural precursors in chemical-defined medium. Biochem Biophys Res Commun 2013; 431:783-7. [PMID: 23321306 DOI: 10.1016/j.bbrc.2013.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/07/2013] [Indexed: 11/17/2022]
Abstract
Rat embryonic stem (ES) cells hold great interest for the research of neurodevelopment and neurodegenerative diseases. However, neural conversion of rat ES cells in vitro has proven to be a challenge owing to the proliferation arrest and apoptosis. Here we report that rat ES cells can commit efficiently to a neural fate in the presence of CHIR99021 and Y-27632 (CY medium). In addition, CHIR99021 is crucial for maintaining the metabolic activity of differentiated rat ES cells, while Y-27632 facilitates the neural differentiation of rat ES cells by inhibiting bone morphogenetic protein expression. The chemical-defined CY medium also provides a platform for exploring the mechanism of neural commitment and optimizing the production efficiency of neural precursor from rat ES cells.
Collapse
Affiliation(s)
- Xinrong Peng
- Laboratory of Viral and Gene Therapy, Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Abstract
Hearing loss is becoming an increasingly prevalent problem affecting more than 250 million people worldwide. During development, fibroblast growth factors (FGFs) are required for inner ear development as well as hair cell formation in the mammalian cochlea and thus make attractive therapeutic candidates for the regeneration of sensory cells. Previous findings showed that Fgfr1 conditional knock out mice exhibited hair cell and support cell formation defects. Immunoblocking with Fgf20 antibody in vitro produced a similar phenotype. While hair cell differentiation in mice starts at embryonic day (E)14.5, beginning with the inner hair cells, Fgf20 expression precedes hair cell differentiation at E13.5 in the cochlea. This suggests a potential role for Fgf20 in priming the sensory epithelium for hair cell formation. Treatment of explants with a gamma-secretase inhibitor, DAPT, decreased Fgf20 mRNA, suggesting that Notch is upstream of Fgf20. Notch signaling also plays an early role in prosensory formation during cochlear development. In this report we show that during development, Notch-mediated regulation of prosensory formation in the cochlea occurs via Fgf20. Addition of exogenous FGF20 compensated for the block in Notch signaling and rescued Sox2, a prosensory marker, and Gfi1, an early hair cell marker in explant cultures. We hypothesized that Fgf20 plays a role in specification, amplification, or maintenance of Sox2 expression in prosensory progenitors of the developing mammalian cochlea.
Collapse
|
181
|
A Systematic Survey and Characterization of Enhancers that Regulate Sox3 in Neuro-Sensory Development in Comparison with Sox2 Enhancers. BIOLOGY 2012; 1:714-35. [PMID: 24832516 PMCID: PMC4009812 DOI: 10.3390/biology1030714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/06/2012] [Accepted: 11/09/2012] [Indexed: 11/17/2022]
Abstract
Development of neural and sensory primordia at the early stages of embryogenesis depends on the activity of two B1 Sox transcription factors, Sox2 and Sox3. The embryonic expression patterns of the Sox2 and Sox3 genes are similar, yet they show gene-unique features. We screened for enhancers of the 231-kb genomic region encompassing Sox3 of chicken, and identified 13 new enhancers that showed activity in different domains of the neuro-sensory primordia. Combined with the three Sox3-proximal enhancers determined previously, at least 16 enhancers were involved in Sox3 regulation. Starting from the NP1 enhancer, more enhancers with different specificities are activated in sequence, resulting in complex overlapping patterns of enhancer activities. NP1 was activated in the caudal lateral epiblast adjacent to the posterior growing end of neural plate, and by the combined action of Wnt and Fgf signaling, similar to the Sox2 N1 enhancer involved in neural/mesodermal dichotomous cell lineage segregation. The Sox3 D5 enhancer and Sox2 N3 enhancer were also activated similarly in the diencephalon, optic vesicle and lens placode, suggesting analogies in their regulation. In general, however, the specificities of the enhancers were not identical between Sox3 and Sox2, including the cases of the NP1 and D5 enhancers.
Collapse
|
182
|
Iwafuchi-Doi M, Matsuda K, Murakami K, Niwa H, Tesar PJ, Aruga J, Matsuo I, Kondoh H. Transcriptional regulatory networks in epiblast cells and during anterior neural plate development as modeled in epiblast stem cells. Development 2012; 139:3926-37. [DOI: 10.1242/dev.085936] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Somatic development initiates from the epiblast in post-implantation mammalian embryos. Recent establishment of epiblast stem cell (EpiSC) lines has opened up new avenues of investigation of the mechanisms that regulate the epiblast state and initiate lineage-specific somatic development. Here, we investigated the role of cell-intrinsic core transcriptional regulation in the epiblast and during derivation of the anterior neural plate (ANP) using a mouse EpiSC model. Cells that developed from EpiSCs in one day in the absence of extrinsic signals were found to represent the ANP of ~E7.5 embryos. We focused on transcription factors that are uniformly expressed in the E6.5 epiblast but in a localized fashion within or external to the ANP at E7.5, as these are likely to regulate the epiblast state and ANP development depending on their balance. Analyses of the effects of knockdown and overexpression of these factors in EpiSCs on the levels of downstream transcription factors identified the following regulatory functions: cross-regulation among Zic, Otx2, Sox2 and Pou factors stabilizes the epiblastic state; Zic, Otx2 and Pou factors in combination repress mesodermal development; Zic and Sox2 factors repress endodermal development; and Otx2 represses posterior neural plate development. All of these factors variably activate genes responsible for neural plate development. The direct interaction of these factors with enhancers of Otx2, Hesx1 and Sox2 genes was demonstrated. Thus, a combination of regulatory processes that suppresses non-ANP lineages and promotes neural plate development determines the ANP.
Collapse
Affiliation(s)
- Makiko Iwafuchi-Doi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazunari Matsuda
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuhiro Murakami
- RIKEN Center for Developmental Biology (CDB), Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hitoshi Niwa
- RIKEN Center for Developmental Biology (CDB), Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Paul J. Tesar
- Department of Genetics and Center for Stem Cell and Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jun Aruga
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Isao Matsuo
- Osaka Medical Center and Research Institute for Maternal and Child Health, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Hisato Kondoh
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
183
|
Venere M, Han YG, Bell R, Song JS, Alvarez-Buylla A, Blelloch R. Sox1 marks an activated neural stem/progenitor cell in the hippocampus. Development 2012; 139:3938-49. [PMID: 22992951 DOI: 10.1242/dev.081133] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dentate gyrus of the hippocampus continues generating new neurons throughout life. These neurons originate from radial astrocytes within the subgranular zone (SGZ). Here, we find that Sox1, a member of the SoxB1 family of transcription factors, is expressed in a subset of radial astrocytes. Lineage tracing using Sox1-tTA;tetO-Cre;Rosa26 reporter mice shows that the Sox1-expressing cells represent an activated neural stem/progenitor population that gives rise to most if not all newly born granular neurons, as well as a small number of mature hilar astrocytes. Furthermore, a subpopulation of Sox1-marked cells have long-term neurogenic potential, producing new neurons 3 months after inactivation of tetracycline transactivator. Remarkably, after 8 weeks of labeling and a 12-week chase, as much as 44% of all granular neurons in the dentate gyrus were derived from Sox1 lineage-traced adult neural stem/progenitor cells. The fraction of Sox1-positive cells within the radial astrocyte population decreases with age, correlating with a decrease in neurogenesis. However, expression profiling shows that these cells are transcriptionally stable throughout the lifespan of the mouse. These results demonstrate that Sox1 is expressed in an activated stem/progenitor population whose numbers decrease with age while maintaining a stable molecular program.
Collapse
Affiliation(s)
- Monica Venere
- Department of Urology, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
184
|
Salewski RP, Buttigieg J, Mitchell RA, van der Kooy D, Nagy A, Fehlings MG. The generation of definitive neural stem cells from PiggyBac transposon-induced pluripotent stem cells can be enhanced by induction of the NOTCH signaling pathway. Stem Cells Dev 2012; 22:383-96. [PMID: 22889305 DOI: 10.1089/scd.2012.0218] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cell-based therapies using neural stem cells (NSCs) have shown positive outcomes in various models of neurological injury and disease. Induced pluripotent stem cells (iPSCs) address many problems associated with NSCs from various sources, including the immune response and cell availability. However, due to inherent differences between embryonic stem cells (ESCs) and iPSCs, detailed characterization of the iPS-derived NSCs will be required before translational experiments can be performed. Murine piggyBac transposon iPSCs were clonally expanded in floating sphere colonies to generate primitive NSCs initially with serum-free media (SFM) containing the leukemia inhibitory factor and followed by SFM with the fibroblast growth factor-2 (FGF2) to form colonies of definitive NSCs (dNSCs). Primitive and definitive clonally derived neurospheres were successfully generated using the default conditions from iPSCs and ESCs. However, the iPSC-dNSCs expressed significantly higher levels of pluripotency and nonectoderm lineage genes compared to equivalent ESC-dNSCs. The addition of the bone morphogenetic proteins antagonist, Noggin, to the media significantly increased primary neurosphere generation from the iPSC lines, but did not affect the dNSC sphere colonies generated. The induction of the NOTCH pathway by the Delta-like ligand 4 (DLL4) improved the generation and quality of dNSCs, as demonstrated by a reduction in pluripotency and nonectodermal markers, while maintaining NSC-specific gene expression. The iPS-dNSCs (+DLL4) showed functional neural differentiation by immuncytochemical staining and electrophysiology. This study suggests the intrinsic differences between ESCs and iPSCs in their ability to acquire a dNSC fate that can be overcome by inducing the NOTCH pathway.
Collapse
Affiliation(s)
- Ryan P Salewski
- Division of Genetics and Development, Toronto Western Research Institute, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
185
|
Ostrakhovitch EA, Semenikhin OA. The role of redox environment in neurogenic development. Arch Biochem Biophys 2012; 534:44-54. [PMID: 22910298 DOI: 10.1016/j.abb.2012.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/19/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
Abstract
The dynamic changes of cellular redox elements during neurogenesis allow the control of specific programs for selective lineage progression. There are many redox couples that influence the cellular redox state. The shift from a reduced to an oxidized state and vice versa may act as a cellular switch mechanism of stem cell mode of action from proliferation to differentiation. The redox homeostasis ensures proper functioning of redox-sensitive signaling pathways through oxidation/reduction of critical cysteine residues on proteins involved in signal transduction. This review presents the current knowledge on the relation between changes in the cellular redox environment and stem cell programming in the course of commitment to a restricted neural lineage, focusing on in vivo neurogenesis and in vitro neuronal differentiation. The first two sections outline the main systems that control the intracellular redox environment and make it more oxidative or reductive. The last section provides the background on redox-sensitive signaling pathways that regulate neurogenesis.
Collapse
Affiliation(s)
- E A Ostrakhovitch
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7.
| | | |
Collapse
|
186
|
Cho LTY, Wamaitha SE, Tsai IJ, Artus J, Sherwood RI, Pedersen RA, Hadjantonakis AK, Niakan KK. Conversion from mouse embryonic to extra-embryonic endoderm stem cells reveals distinct differentiation capacities of pluripotent stem cell states. Development 2012; 139:2866-77. [PMID: 22791892 DOI: 10.1242/dev.078519] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The inner cell mass of the mouse pre-implantation blastocyst comprises epiblast progenitor and primitive endoderm cells of which cognate embryonic (mESCs) or extra-embryonic (XEN) stem cell lines can be derived. Importantly, each stem cell type retains the defining properties and lineage restriction of their in vivo tissue of origin. Recently, we demonstrated that XEN-like cells arise within mESC cultures. This raises the possibility that mESCs can generate self-renewing XEN cells without the requirement for gene manipulation. We have developed a novel approach to convert mESCs to XEN cells (cXEN) using growth factors. We confirm that the downregulation of the pluripotency transcription factor Nanog and the expression of primitive endoderm-associated genes Gata6, Gata4, Sox17 and Pdgfra are necessary for cXEN cell derivation. This approach highlights an important function for Fgf4 in cXEN cell derivation. Paracrine FGF signalling compensates for the loss of endogenous Fgf4, which is necessary to exit mESC self-renewal, but not for XEN cell maintenance. Our cXEN protocol also reveals that distinct pluripotent stem cells respond uniquely to differentiation promoting signals. cXEN cells can be derived from mESCs cultured with Erk and Gsk3 inhibitors (2i), and LIF, similar to conventional mESCs. However, we find that epiblast stem cells (EpiSCs) derived from the post-implantation embryo are refractory to cXEN cell establishment, consistent with the hypothesis that EpiSCs represent a pluripotent state distinct from mESCs. In all, these findings suggest that the potential of mESCs includes the capacity to give rise to both extra-embryonic and embryonic lineages.
Collapse
Affiliation(s)
- Lily T Y Cho
- The Anne McLaren Laboratory for Regenerative Medicine, Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 2012; 10:440-54. [PMID: 22482508 DOI: 10.1016/j.stem.2012.02.016] [Citation(s) in RCA: 411] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/12/2011] [Accepted: 02/16/2012] [Indexed: 01/03/2023]
Abstract
Nanog, Oct4, and Sox2 are the core regulators of mouse (m)ESC pluripotency. Although their basic importance in human (h)ESCs has been demonstrated, the mechanistic functions are not well defined. Here, we identify general and cell-line-specific requirements for NANOG, OCT4, and SOX2 in hESCs. We show that OCT4 regulates, and interacts with, the BMP4 pathway to specify four developmental fates. High levels of OCT4 enable self-renewal in the absence of BMP4 but specify mesendoderm in the presence of BMP4. Low levels of OCT4 induce embryonic ectoderm differentiation in the absence of BMP4 but specify extraembryonic lineages in the presence of BMP4. NANOG represses embryonic ectoderm differentiation but has little effect on other lineages, whereas SOX2 and SOX3 are redundant and repress mesendoderm differentiation. Thus, instead of being panrepressors of differentiation, each factor controls specific cell fates. Our study revises the view of how self-renewal is orchestrated in hESCs.
Collapse
|
188
|
Trask MC, Tremblay KD, Mager J. Yin-Yang1 is required for epithelial-to-mesenchymal transition and regulation of Nodal signaling during mammalian gastrulation. Dev Biol 2012; 368:273-82. [PMID: 22669107 DOI: 10.1016/j.ydbio.2012.05.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 05/14/2012] [Accepted: 05/22/2012] [Indexed: 12/15/2022]
Abstract
The ubiquitously expressed Polycomb Group protein Yin-Yang1 (YY1) is believed to regulate gene expression through direct binding to DNA elements found in promoters or enhancers of target loci. Additionally, YY1 contains diverse domains that enable a plethora of protein-protein interactions, including association with the Oct4/Sox2 pluripotency complex and Polycomb Group silencing complexes. To elucidate the in vivo role of YY1 during gastrulation, we generated embryos with an epiblast specific deletion of Yy1. Yy1 conditional knockout (cKO) embryos initiate gastrulation, but both primitive streak formation and ingression through the streak is severely impaired. These streak descendants fail to repress E-Cadherin and are unable to undergo an appropriate epithelial to mesenchymal transition (EMT). Intriguingly, overexpression of Nodal and concomitant reduction of Lefty2 are observed in Yy1 cKO embryos, suggesting that YY1 is normally required for proper Nodal regulation during gastrulation. Furthermore, definitive endoderm is specified but fails to properly integrate into the outer layer. Although anterior neuroectoderm is specified, mesoderm production is severely restricted. We show that YY1 directly binds to the Lefty2 locus in E7.5 embryos and that pharmacological inhibition of Nodal signaling partially restores mesoderm production in Yy1 cKO mutant embryos. Our results reveal critical requirements for YY1 during several important developmental processes, including EMT and regulation of Nodal signaling. These results are the first to elucidate the diverse role of YY1 during gastrulation in vivo.
Collapse
Affiliation(s)
- Mary C Trask
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, 661 North Pleasant Street, Amherst, MA 01003, United States
| | | | | |
Collapse
|
189
|
Lee C, Fotovati A, Triscott J, Chen J, Venugopal C, Singhal A, Dunham C, Kerr JM, Verreault M, Yip S, Wakimoto H, Jones C, Jayanthan A, Narendran A, Singh SK, Dunn SE. Polo-like kinase 1 inhibition kills glioblastoma multiforme brain tumor cells in part through loss of SOX2 and delays tumor progression in mice. Stem Cells 2012; 30:1064-75. [PMID: 22415968 DOI: 10.1002/stem.1081] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glioblastoma multiforme (GBM) ranks among the deadliest types of cancer and given these new therapies are urgently needed. To identify molecular targets, we queried a microarray profiling 467 human GBMs and discovered that polo-like kinase 1 (PLK1) was highly expressed in these tumors and that it clustered with the proliferative subtype. Patients with PLK1-high tumors were more likely to die from their disease suggesting that current therapies are inactive against such tumors. This prompted us to examine its expression in brain tumor initiating cells (BTICs) given their association with treatment failure. BTICs isolated from patients expressed 110-470 times more PLK1 than normal human astrocytes. Moreover, BTICs rely on PLK1 for survival because the PLK1 inhibitor BI2536 inhibited their growth in tumorsphere cultures. PLK1 inhibition suppressed growth, caused G(2) /M arrest, induced apoptosis, and reduced the expression of SOX2, a marker of neural stem cells, in SF188 cells. Consistent with SOX2 inhibition, the loss of PLK1 activity caused the cells to differentiate based on elevated levels of glial fibrillary acidic protein and changes in cellular morphology. We then knocked glial fibrillary acidic protein (GFAP) down SOX2 with siRNA and showed that it too inhibited cell growth and induced cell death. Likewise, in U251 cells, PLK1 inhibition suppressed cell growth, downregulated SOX2, and induced cell death. Furthermore, BI2536 delayed tumor growth of U251 cells in an orthotopic brain tumor model, demonstrating that the drug is active against GBM. In conclusion, PLK1 level is elevated in GBM and its inhibition restricts the growth of brain cancer cells.
Collapse
Affiliation(s)
- Cathy Lee
- Department of Pediatrics, Child and Family Research Institute, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
The mutation in Chd7 causes misexpression of Bmp4 and developmental defects in telencephalic midline. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:626-41. [PMID: 22658483 DOI: 10.1016/j.ajpath.2012.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 04/25/2012] [Accepted: 05/03/2012] [Indexed: 01/17/2023]
Abstract
Mutations in chromosome-helicase-DNA-binding protein 7 (CHD7) are identified as the main cause for CHARGE syndrome (coloboma, heart anomaly, choanal atresia, retardation, genital and ear anomalies). Most patients (55% to 85%) with CHARGE syndrome display developmental defects in the central nervous system (CNS), of which pathology and molecular mechanisms remain unclear. In this study, we report a novel mutant mouse strain carrying a nonsense mutation, COA1, in exon4 of Chd7 gene. Chd7(COA1/+) mice phenocopied human CHARGE syndrome and displayed developmental defects in the telencephalic midline, including dilated third and lateral ventricles, reduced cerebral cortex, and corpus callosum crossing failure. Programed cell death in the telencephalic midline zone of Chd7(COA1/+) embryos was impaired, consistent with the incomplete telencephalic medial invagination in Chd7(COA1/+) embryos. Interestingly, expression of Bmp4, a signal well known to induce forebrain midline cell fate and apoptosis, was down-regulated and also expanded in the forebrain of Chd7(COA1/+) embryos. Furthermore, in vitro studies suggested that CHD7 may directly regulate Bmp4 expression by binding with an enhancer element downstream of the Bmp4 locus. These studies provide novel insight into pathogenesis of CNS anomalies in CHARGE syndrome.
Collapse
|
191
|
Epigenetic control on cell fate choice in neural stem cells. Protein Cell 2012; 3:278-90. [PMID: 22549586 DOI: 10.1007/s13238-012-2916-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 03/31/2012] [Indexed: 10/28/2022] Open
Abstract
Derived from neural stem cells (NSCs) and progenitor cells originated from the neuroectoderm, the nervous system presents an unprecedented degree of cellular diversity, interwoven to ensure correct connections for propagating information and responding to environmental cues. NSCs and progenitor cells must integrate cell-intrinsic programs and environmental cues to achieve production of appropriate types of neurons and glia at appropriate times and places during development. These developmental dynamics are reflected in changes in gene expression, which is regulated by transcription factors and at the epigenetic level. From early commitment of neural lineage to functional plasticity in terminal differentiated neurons, epigenetic regulation is involved in every step of neural development. Here we focus on the recent advance in our understanding of epigenetic regulation on orderly generation of diverse neural cell types in the mammalian nervous system, an important aspect of neural development and regenerative medicine.
Collapse
|
192
|
Direct transcriptional regulation of Six6 is controlled by SoxB1 binding to a remote forebrain enhancer. Dev Biol 2012; 366:393-403. [PMID: 22561201 DOI: 10.1016/j.ydbio.2012.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/01/2012] [Accepted: 04/17/2012] [Indexed: 01/30/2023]
Abstract
Six6, a sine oculis homeobox protein, plays a crucial and conserved role in the development of the forebrain and eye. To understand how the expression of Six6 is regulated during embryogenesis, we screened ~250 kb of genomic DNA encompassing the Six6 locus for cis-regulatory elements capable of directing reporter gene expression to sites of Six6 transcription in transgenic mouse embryos. Here, we describe two novel enhancer elements, that are highly conserved in vertebrate species and whose activities recapitulate Six6 expression in the ventral forebrain and eye, respectively. Cross-species comparisons of the Six6 forebrain enhancer sequences revealed highly conserved binding sites matching the consensus for homeodomain and SoxB1 transcription factors. Deletion of either of the binding sites resulted in loss of the forebrain enhancer activity in the ventral forebrain. Moreover, our studies show that members of the SoxB1 family, including Sox2 and Sox3, are expressed in the overlapping region of the ventral forebrain with Six6 and can bind to the Six6 forebrain enhancer. Loss of function of SoxB1 genes in vivo further emphasizes their role in regulating Six6 forebrain enhancer activity. Thus, our data strongly suggest that SoxB1 transcription factors are direct activators of Six6 expression in the ventral forebrain.
Collapse
|
193
|
SOX2 hypomorphism disrupts development of the prechordal floor and optic cup. Mech Dev 2012; 129:1-12. [PMID: 22522080 DOI: 10.1016/j.mod.2012.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 12/19/2022]
Abstract
Haploinsufficiency for the HMG-box transcription factor SOX2 results in abnormalities of the human ventral forebrain and its derivative structures. These defects include anophthalmia (absence of eye), microphthalmia (small eye) and hypothalamic hamartoma (HH), an overgrowth of the ventral hypothalamus. To determine how Sox2 deficiency affects the morphogenesis of the ventral diencephalon and eye, we generated a Sox2 allelic series (Sox2(IR), Sox2(LP), and Sox2(EGFP)), allowing for the generation of mice that express germline hypomorphic levels (<40%) of SOX2 protein and that faithfully recapitulate SOX2 haploinsufficient human phenotypes. We find that Sox2 hypomorphism significantly disrupts the development of the posterior hypothalamus, resulting in an ectopic protuberance of the prechordal floor, an upregulation of Shh signaling, and abnormal hypothalamic patterning. In the anterior diencephalon, both the optic stalks and optic cups (OC) of Sox2 hypomorphic (Sox2(HYP)) embryos are malformed. Furthermore, Sox2(HYP) eyes exhibit a loss of neural potential and coloboma, a common phenotype in SOX2 haploinsufficient humans that has not been described in a mouse model of SOX2 deficiency. These results establish for the first time that germline Sox2 hypomorphism disrupts the morphogenesis and patterning of the hypothalamus, optic stalk, and the early OC, establishing a model of the development of the abnormalities that are observed in SOX2 haploinsufficient humans.
Collapse
|
194
|
Perez-Castro C, Renner U, Haedo MR, Stalla GK, Arzt E. Cellular and molecular specificity of pituitary gland physiology. Physiol Rev 2012; 92:1-38. [PMID: 22298650 DOI: 10.1152/physrev.00003.2011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The anterior pituitary gland has the ability to respond to complex signals derived from central and peripheral systems. Perception of these signals and their integration are mediated by cell interactions and cross-talk of multiple signaling transduction pathways and transcriptional regulatory networks that cooperate for hormone secretion, cell plasticity, and ultimately specific pituitary responses that are essential for an appropriate physiological response. We discuss the physiopathological and molecular mechanisms related to this integrative regulatory system of the anterior pituitary gland and how it contributes to modulate the gland functions and impacts on body homeostasis.
Collapse
Affiliation(s)
- Carolina Perez-Castro
- Laboratorio de Regulación de la Expresión Génica en el Crecimiento, Supervivencia y Diferenciación Celular,Departamento de Química Biológica, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
195
|
Soldati C, Bithell A, Johnston C, Wong KY, Teng SW, Beglopoulos V, Stanton LW, Buckley NJ. Repressor Element 1 Silencing Transcription Factor Couples Loss of Pluripotency with Neural Induction and Neural Differentiation. Stem Cells 2012; 30:425-34. [DOI: 10.1002/stem.1004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
196
|
Cajal M, Lawson KA, Hill B, Moreau A, Rao J, Ross A, Collignon J, Camus A. Clonal and molecular analysis of the prospective anterior neural boundary in the mouse embryo. Development 2012; 139:423-36. [PMID: 22186731 DOI: 10.1242/dev.075499] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the mouse embryo the anterior ectoderm undergoes extensive growth and morphogenesis to form the forebrain and cephalic non-neural ectoderm. We traced descendants of single ectoderm cells to study cell fate choice and cell behaviour at late gastrulation. In addition, we provide a comprehensive spatiotemporal atlas of anterior gene expression at stages crucial for anterior ectoderm regionalisation and neural plate formation. Our results show that, at late gastrulation stage, expression patterns of anterior ectoderm genes overlap significantly and correlate with areas of distinct prospective fates but do not define lineages. The fate map delineates a rostral limit to forebrain contribution. However, no early subdivision of the presumptive forebrain territory can be detected. Lineage analysis at single-cell resolution revealed that precursors of the anterior neural ridge (ANR), a signalling centre involved in forebrain development and patterning, are clonally related to neural ectoderm. The prospective ANR and the forebrain neuroectoderm arise from cells scattered within the same broad area of anterior ectoderm. This study establishes that although the segregation between non-neural and neural precursors in the anterior midline ectoderm is not complete at late gastrulation stage, this tissue already harbours elements of regionalisation that prefigure the later organisation of the head.
Collapse
Affiliation(s)
- Marieke Cajal
- Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, UMR7592 CNRS, F-75013 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Lee K, Tan J, Morris MB, Rizzoti K, Hughes J, Cheah PS, Felquer F, Liu X, Piltz S, Lovell-Badge R, Thomas PQ. Congenital hydrocephalus and abnormal subcommissural organ development in Sox3 transgenic mice. PLoS One 2012; 7:e29041. [PMID: 22291885 PMCID: PMC3266892 DOI: 10.1371/journal.pone.0029041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/18/2011] [Indexed: 12/24/2022] Open
Abstract
Congenital hydrocephalus (CH) is a life-threatening medical condition in which excessive accumulation of CSF leads to ventricular expansion and increased intracranial pressure. Stenosis (blockage) of the Sylvian aqueduct (Aq; the narrow passageway that connects the third and fourth ventricles) is a common form of CH in humans, although the genetic basis of this condition is unknown. Mouse models of CH indicate that Aq stenosis is associated with abnormal development of the subcommmissural organ (SCO) a small secretory organ located at the dorsal midline of the caudal diencephalon. Glycoproteins secreted by the SCO generate Reissner's fibre (RF), a thread-like structure that descends into the Aq and is thought to maintain its patency. However, despite the importance of SCO function in CSF homeostasis, the genetic program that controls SCO development is poorly understood. Here, we show that the X-linked transcription factor SOX3 is expressed in the murine SCO throughout its development and in the mature organ. Importantly, overexpression of Sox3 in the dorsal diencephalic midline of transgenic mice induces CH via a dose-dependent mechanism. Histological, gene expression and cellular proliferation studies indicate that Sox3 overexpression disrupts the development of the SCO primordium through inhibition of diencephalic roof plate identity without inducing programmed cell death. This study provides further evidence that SCO function is essential for the prevention of hydrocephalus and indicates that overexpression of Sox3 in the dorsal midline alters progenitor cell differentiation in a dose-dependent manner.
Collapse
Affiliation(s)
- Kristie Lee
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Jacqueline Tan
- Pituitary Research Unit, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Michael B. Morris
- Bosch Institute and Physiology, University of Sydney, Sydney, Australia
- Kolling Institute of Medical Research and Sydney Centre for Development and Regenerative Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Karine Rizzoti
- Division of Stem Cell Biology and Developmental Genetics, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - James Hughes
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Pike See Cheah
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang, Malaysia
| | - Fernando Felquer
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Xuan Liu
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Sandra Piltz
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Robin Lovell-Badge
- Division of Stem Cell Biology and Developmental Genetics, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Paul Q. Thomas
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| |
Collapse
|
198
|
Beccari L, Conte I, Cisneros E, Bovolenta P. Sox2-mediated differential activation of Six3.2 contributes to forebrain patterning. Development 2012; 139:151-64. [PMID: 22096077 DOI: 10.1242/dev.067660] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The vertebrate forebrain is patterned during gastrulation into telencephalic, retinal, hypothalamic and diencephalic primordia. Specification of each of these domains requires the concerted activity of combinations of transcription factors (TFs). Paradoxically, some of these factors are widely expressed in the forebrain, which raises the question of how they can mediate regional differences. To address this issue, we focused on the homeobox TF Six3.2. With genomic and functional approaches we demonstrate that, in medaka fish, Six3.2 regulates, in a concentration-dependent manner, telencephalic and retinal specification under the direct control of Sox2. Six3.2 and Sox2 have antagonistic functions in hypothalamic development. These activities are, in part, executed by Foxg1 and Rx3, which seem to be differentially and directly regulated by Six3.2 and Sox2. Together, these data delineate the mechanisms by which Six3.2 diversifies its activity in the forebrain and highlight a novel function for Sox2 as one of the main regulators of anterior forebrain development. They also demonstrate that graded levels of the same TF, probably operating in partially independent transcriptional networks, pattern the vertebrate forebrain along the anterior-posterior axis.
Collapse
Affiliation(s)
- Leonardo Beccari
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, c/Nicolas Cabrera 1, Madrid 28049, Spain
| | | | | | | |
Collapse
|
199
|
UY BENJAMINR, SIMOES-COSTA MARCOS, SAUKA-SPENGLER TATJANA, BRONNER MARIANNEE. Expression of Sox family genes in early lamprey development. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2012; 56:377-83. [PMID: 22811271 PMCID: PMC4118928 DOI: 10.1387/ijdb.113416bu] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Members of the Sox (Sry-related high mobility group box) family of transcription factors play a variety of roles during development of both vertebrates and invertebrates. A marked expansion in gene number occurred during the emergence of vertebrates, apparently via gene duplication events that are thought to have facilitated new functions. By screening a macroarrayed library as well as the lamprey genome, we have isolated genes of the Sox B, D, E and F subfamilies in the basal jawless vertebrate, lamprey. The expression patterns of all identified Sox genes were examined from gastrulation through early organogenesis (embryonic day 4-14), with particular emphasis on the neural crest, a vertebrate innovation. Coupled with phylogenetic analysis of these Sox genes, the results provide insight into gene duplication and di-vergence in paralog deployment occurring during early vertebrate evolution.
Collapse
Affiliation(s)
- BENJAMIN R. UY
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125 USA
| | - MARCOS SIMOES-COSTA
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125 USA
| | | | - MARIANNE E. BRONNER
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125 USA
| |
Collapse
|
200
|
Juliandi B, Abematsu M, Sanosaka T, Tsujimura K, Smith A, Nakashima K. Induction of superficial cortical layer neurons from mouse embryonic stem cells by valproic acid. Neurosci Res 2012; 72:23-31. [PMID: 22001759 DOI: 10.1016/j.neures.2011.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/13/2011] [Accepted: 09/29/2011] [Indexed: 10/16/2022]
Abstract
Within the developing mammalian cortex, neural progenitors first generate deep-layer neurons and subsequently more superficial-layer neurons, in an inside-out manner. It has been reported recently that mouse embryonic stem cells (mESCs) can, to some extent, recapitulate cortical development in vitro, with the sequential appearance of neurogenesis markers resembling that in the developing cortex. However, mESCs can only recapitulate early corticogenesis; superficial-layer neurons, which are normally produced in later developmental periods in vivo, are under-represented. This failure of mESCs to reproduce later corticogenesis in vitro implies the existence of crucial factor(s) that are absent or uninduced in existing culture systems. Here we show that mESCs can give rise to superficial-layer neurons efficiently when treated with valproic acid (VPA), a histone deacetylase inhibitor. VPA treatment increased the production of Cux1-positive superficial-layer neurons, and decreased that of Ctip2-positive deep-layer neurons. These results shed new light on the mechanisms of later corticogenesis.
Collapse
Affiliation(s)
- Berry Juliandi
- Laboratory of Molecular Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|