151
|
Arzika II, Lobo NF, Lamine MM, Tidjani IA, Sandrine H, Sarrasin-Hubert V, Mahamadou A, Adehossi E, Sarr D, Mahmud O, Maman Laminou I. Plasmodium falciparum kelch13 polymorphisms identified after treatment failure with artemisinin-based combination therapy in Niger. Malar J 2023; 22:142. [PMID: 37127669 PMCID: PMC10150466 DOI: 10.1186/s12936-023-04571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/24/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Artemisinin-based combination therapy (ACT) is the most effective treatment for malaria, and has significantly reduced morbimortality. Polymorphisms associated with the Plasmodium falciparum Kelch gene (Pfkelch13) have been associated with delayed parasite clearance even with ACT treatment. METHODS The Pfkelch13 gene was sequenced from P. falciparum infected patients (n = 159) with uncomplicated malaria in Niger. An adequate clinical and parasitological response (ACPR) was reported in 155 patients. Four (n = 4) patients had treatment failure (TF) that were not reinfections-two of which had late parasitological failures (LPF) and two had late clinical failures (LCF). RESULTS Thirteen single nucleotide polymorphisms (SNPs) were identified of which seven were non-synonymous (C469R, T508S, R515T, A578S, I465V, I437V, F506L,), and three were synonymous (P443P, P715P, L514L). Three SNP (C469R, F506L, P715P) were present before ACT treatment, while seven mutations (C469R, T508S, R515T, L514L, P443P, I437V, I465V) were selected by artemether/lumefantrine (AL)-five of which were non-synonymous (C469R, T508S, R515T, I437V, I465V). Artesunate/amodiaquine (ASAQ) has selected any mutation. One sample presented three cumulatively non-synonymous SNPs-C469R, T508S, R515T. CONCLUSIONS This study demonstrates intra-host selection of Pfkelch13 gene by AL. The study highlights the importance of LCF and LPF parasites in the selection of resistance to ACT. Further studies using gene editing are required to confirm the potential implication of resistance to ACT with the most common R515T and T508S mutations. It would also be important to elucidate the role of cumulative mutations.
Collapse
Affiliation(s)
| | | | - Mahaman Moustapha Lamine
- Centre de Recherche Médicale et Sanitaire de Niamey, Niamey, Niger.
- Université André Salifou de Zinder, Zinder, Niger.
| | | | - Houzé Sandrine
- Centre National de Référence du Paludisme, Paris, France
| | | | | | | | | | | | | |
Collapse
|
152
|
Kirby R, Giesbrecht D, Karema C, Watson O, Lewis S, Munyaneza T, Butera JDD, Juliano JJ, Bailey JA, Mazarati JB. Examining the Early Distribution of the Artemisinin-Resistant Plasmodium falciparum kelch13 R561H Mutation in Areas of Higher Transmission in Rwanda. Open Forum Infect Dis 2023; 10:ofad149. [PMID: 37096145 PMCID: PMC10122489 DOI: 10.1093/ofid/ofad149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/15/2023] [Indexed: 04/26/2023] Open
Abstract
Background Artemisinin resistance mutations in Plasmodium falciparum kelch13 (Pfk13) have begun to emerge in Africa, with Pfk13-R561H being the first reported in Rwanda in 2014, but limited sampling left questions about its early distribution and origin. Methods We genotyped P. falciparum positive dried blood spot (DBS) samples from a nationally representative 2014-2015 Rwanda Demographic Health Surveys (DHS) HIV study. DBS were subsampled from DHS sampling clusters with >15% P. falciparum prevalence, as determined by rapid testing or microscopy done during the DHS study (n clusters = 67, n samples = 1873). Results We detected 476 parasitemias among 1873 residual blood spots from a 2014-2015 Rwanda Demographic Health Survey. We sequenced 351 samples: 341/351 were wild-type (97.03% weighted), and 4 samples (1.34% weighted) harbored R561H that were significantly spatially clustered. Other nonsynonymous mutations found were V555A (3), C532W (1), and G533A (1). Conclusions Our study better defines the early distribution of R561H in Rwanda. Previous studies only observed the mutation in Masaka as of 2014, but our study indicates its presence in higher-transmission regions in the southeast of the country at that time.
Collapse
Affiliation(s)
| | | | - Corine Karema
- Quality Equity Health Care, Kigali, Rwanda
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Oliver Watson
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
153
|
Taylor WR, Olupot-Olupot P, Onyamboko MA, Peerawaranun P, Weere W, Namayanja C, Onyas P, Titin H, Baseke J, Muhindo R, Kayembe DK, Ndjowo PO, Basara BB, Bongo GS, Okalebo CB, Abongo G, Uyoga S, Williams TN, Taya C, Dhorda M, Tarning J, Dondorp AM, Waithira N, Fanello C, Maitland K, Mukaka M, Day NJP. Safety of age-dosed, single low-dose primaquine in children with glucose-6-phosphate dehydrogenase deficiency who are infected with Plasmodium falciparum in Uganda and the Democratic Republic of the Congo: a randomised, double-blind, placebo-controlled, non-inferiority trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:471-483. [PMID: 36462528 DOI: 10.1016/s1473-3099(22)00658-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND WHO recommends gametocytocidal, single low-dose primaquine for blocking the transmission of Plasmodium falciparum; however, safety concerns have hampered the implementation of this strategy in sub-Saharan Africa. We aimed to investigate the safety of age-dosed, single low-dose primaquine in children from Uganda and the Democratic Republic of the Congo. METHODS We conducted this randomised, double-blind, placebo-controlled, non-inferiority trial at the Mbale Regional Referral Hospital, Mbale, Uganda, and the Kinshasa Mahidol Oxford Research Unit, Kinshasa, Democratic Republic of the Congo. Children aged between 6 months and 11 years with acute uncomplicated P falciparum infection and haemoglobin concentrations of at least 6 g/dL were enrolled. Patients were excluded if they had a comorbid illness requiring inpatient treatment, were taking haemolysing drugs for glucose-6-phosphate dehydrogenase (G6PD) deficiency, were allergic to the study drugs, or were enrolled in another clinical trial. G6PD status was defined by genotyping for the G6PD c.202T allele, the cause of the G6PD-deficient A- variant. Participants were randomly assigned (1:1) to receive single low-dose primaquine combined with either artemether-lumefantrine or dihydroartemisinin-piperaquine, dosed by bodyweight. Randomisation was stratified by age and G6PD status. The primary endpoint was the development of profound (haemoglobin <4 g/dL) or severe (haemoglobin <5 g/dL) anaemia with severity features, within 21 days of treatment. Analysis was by intention to treat. The sample size assumed an incidence of 1·5% in the placebo group and a 3% non-inferiority margin. The trial is registered at ISRCTN, 11594437, and is closed to new participants. FINDINGS Participants were recruited at the Mbale Regional Referral Hospital between Dec 18, 2017, and Oct 7, 2019, and at the Kinshasa Mahidol Oxford Research Unit between July 17, 2017, and Oct 5, 2019. 4620 patients were assessed for eligibility. 3483 participants were excluded, most owing to negative rapid diagnostic test or negative malaria slide (n=2982). 1137 children with a median age of 5 years were enrolled and randomly assigned (286 to the artemether-lumefantrine plus single low-dose primaquine group, 286 to the artemether-lumefantrine plus placebo group, 283 to the dihydroartemisinin-piperaquine plus single low-dose primaquine group, and 282 to the dihydroartemisinin-piperaquine plus placebo group). Genotyping of G6PD identified 239 G6PD-c.202T hemizygous males and 45 G6PD-c.202T homozygous females (defining the G6PD-deficient group), 119 heterozygous females, 418 G6PD-c.202C normal males and 299 G6PD-c.202C normal females (defining the non-G6PD-deficient group), and 17 children of unknown status. 67 patients were lost to follow-up and four patients withdrew during the study-these numbers were similar between groups. No participants developed profound anaemia and three developed severe anaemia: from the G6PD-deficient group, none (0%) of 133 patients who received placebo and one (0·66%) of 151 patients who received primaquine (difference -0·66%, 95% CI -1·96 to 0·63; p=0·35); and from the non-G6PD-deficient group, one (0·23%) of 430 patients who received placebo and one (0·25%) of 407 patients who received primaquine (-0·014%, -0·68 to 0·65; p=0·97). INTERPRETATION Gametocytocidal, age-dosed, single low-dose primaquine was well tolerated in children from Uganda and the Democratic Republic of the Congo who were infected with P falciparum, and the safety profile of this treatment was similar to that of the placebo. These data support the wider implementation of single low-dose primaquine in Africa. FUNDING UK Government Department for International Development, UK Medical Research Council, UK National Institute for Health Research, and the Wellcome Trust Joint Global Health Trials Scheme.
Collapse
Affiliation(s)
- Walter R Taylor
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Peter Olupot-Olupot
- Mbale Clinical Research Institute, Mbale, Uganda; Department of Public Health, Busitema University, Mbale, Uganda
| | - Marie A Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Pimnara Peerawaranun
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand
| | | | | | - Peter Onyas
- Mbale Clinical Research Institute, Mbale, Uganda
| | | | - Joy Baseke
- Department of Public Health, Busitema University, Mbale, Uganda
| | - Rita Muhindo
- Mbale Clinical Research Institute, Mbale, Uganda
| | - Daddy K Kayembe
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Pauline O Ndjowo
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Benjamin B Basara
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Georgette S Bongo
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | - Grace Abongo
- Mbale Clinical Research Institute, Mbale, Uganda
| | - Sophie Uyoga
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Institute of Global Health Innovation, Imperial College London, London, UK
| | - Chiraporn Taya
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Naomi Waithira
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Caterina Fanello
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kathryn Maitland
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Institute of Global Health Innovation, Imperial College London, London, UK
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J P Day
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
154
|
Ong HW, Adderley J, Tobin AB, Drewry DH, Doerig C. Parasite and host kinases as targets for antimalarials. Expert Opin Ther Targets 2023; 27:151-169. [PMID: 36942408 DOI: 10.1080/14728222.2023.2185511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The deployment of Artemisinin-based combination therapies and transmission control measures led to a decrease in the global malaria burden over the recent decades. Unfortunately, this trend is now reversing, in part due to resistance against available treatments, calling for the development of new drugs against untapped targets to prevent cross-resistance. AREAS COVERED In view of their demonstrated druggability in noninfectious diseases, protein kinases represent attractive targets. Kinase-focussed antimalarial drug discovery is facilitated by the availability of kinase-targeting scaffolds and large libraries of inhibitors, as well as high-throughput phenotypic and biochemical assays. We present an overview of validated Plasmodium kinase targets and their inhibitors, and briefly discuss the potential of host cell kinases as targets for host-directed therapy. EXPERT OPINION We propose priority research areas, including (i) diversification of Plasmodium kinase targets (at present most efforts focus on a very small number of targets); (ii) polypharmacology as an avenue to limit resistance (kinase inhibitors are highly suitable in this respect); and (iii) preemptive limitation of resistance through host-directed therapy (targeting host cell kinases that are required for parasite survival) and transmission-blocking through targeting sexual stage-specific kinases as a strategy to protect curative drugs from the spread of resistance.
Collapse
Affiliation(s)
- Han Wee Ong
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC USA
| | - Jack Adderley
- Department of Laboratory Medicine, School of Health and Biomedical Sciences, Rmit University, Bundoora VIC Australia
| | - Andrew B Tobin
- Advanced Research Centre, University of Glasgow, Glasgow, UK
| | - David H Drewry
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC USA
| | - Christian Doerig
- Department of Laboratory Medicine, School of Health and Biomedical Sciences, Rmit University, Bundoora VIC Australia
| |
Collapse
|
155
|
Ong HW, Truong A, Kwarcinski F, de Silva C, Avalani K, Havener TM, Chirgwin M, Galal KA, Willis C, Krämer A, Liu S, Knapp S, Derbyshire ER, Zutshi R, Drewry DH. Discovery of potent Plasmodium falciparum protein kinase 6 (PfPK6) inhibitors with a type II inhibitor pharmacophore. Eur J Med Chem 2023; 249:115043. [PMID: 36736152 PMCID: PMC10052868 DOI: 10.1016/j.ejmech.2022.115043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
Malaria is a devastating disease that causes significant global morbidity and mortality. The rise of drug resistance against artemisinin-based combination therapy demonstrates the necessity to develop alternative antimalarials with novel mechanisms of action. We report the discovery of Ki8751 as an inhibitor of essential kinase PfPK6. 79 derivatives were designed, synthesized and evaluated for PfPK6 inhibition and antiplasmodial activity. Using group efficiency analyses, we established the importance of key groups on the scaffold consistent with a type II inhibitor pharmacophore. We highlight modifications on the tail group that contribute to antiplasmodial activity, cumulating in the discovery of compound 67, a PfPK6 inhibitor (IC50 = 13 nM) active against the P. falciparum blood stage (EC50 = 160 nM), and compound 79, a PfPK6 inhibitor (IC50 < 5 nM) with dual-stage antiplasmodial activity against P. falciparum blood stage (EC50 = 39 nM) and against P. berghei liver stage (EC50 = 220 nM).
Collapse
Affiliation(s)
- Han Wee Ong
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anna Truong
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Frank Kwarcinski
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Chandi de Silva
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Krisha Avalani
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Tammy M Havener
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michael Chirgwin
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Kareem A Galal
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caleb Willis
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Andreas Krämer
- Structural Genomics Consortium, Institute of Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC, 27599-3420, USA; Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599-3420, USA
| | - Stefan Knapp
- Structural Genomics Consortium, Institute of Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC, 27710, USA.
| | - Reena Zutshi
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA.
| | - David H Drewry
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
156
|
Kay K, Goodwin J, Ehrlich H, Ou J, Freeman T, Wang K, Li F, Wade M, French J, Huang L, Aweeka F, Mwebaza N, Kajubi R, Riggs M, Ruiz-Garcia A, Parikh S. Impact of Drug Exposure on Resistance Selection Following Artemether-Lumefantrine Treatment for Malaria in Children With and Without HIV in Uganda. Clin Pharmacol Ther 2023; 113:660-669. [PMID: 36260349 PMCID: PMC9981240 DOI: 10.1002/cpt.2768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Artemisinin-based combination therapies (ACTs) are the primary treatment for malaria. It is essential to characterize the pharmacokinetics (PKs) and pharmacodynamics (PDs) of ACTs in vulnerable populations at risk of suboptimal dosing. We developed a population PK/PD model using data from our previous study of artemether-lumefantrine in HIV-uninfected and HIV-infected children living in a high-transmission region of Uganda. HIV-infected children were on efavirenz-, nevirapine-, or lopinavir-ritonavir-based antiretroviral regimens, with daily trimethoprim-sulfamethoxazole prophylaxis. We assessed selection for resistance in two key parasite transporters, pfcrt and pfmdr1, over 42-day follow-up and incorporated genotyping into a time-to-event model to ascertain how resistance genotype in relation to drug exposure impacts recurrence risk. Two hundred seventy-seven children contributed 364 episodes to the model (186 HIV-uninfected and 178 HIV-infected), with recurrent microscopy-detectable parasitemia detected in 176 episodes by day 42. The final model was a two-compartment model with first-order absorption and an estimated age effect on bioavailability. Systemic lumefantrine exposure was highest with lopinavir-ritonavir, lowest with efavirenz, and equivalent with nevirapine and HIV-uninfected children. HIV status and lumefantrine concentration were significant factors associated with recurrence risk. Significant selection was demonstrated for pfmdr1 N86 and pfcrt K76 in recurrent infections, with no evidence of selection for pfmdr1 Y184F. Less sensitive parasites were able to tolerate lumefantrine concentrations ~ 3.5-fold higher than more sensitive parasites. This is the first population PK model of lumefantrine in HIV-infected children and demonstrates selection for reduced lumefantrine susceptibility, a concern as we confront the threat to ACTs posed by emerging artemisinin resistance in Africa.
Collapse
Affiliation(s)
- Katherine Kay
- Metrum Research Group, Tariffville, Connecticut, USA
| | - Justin Goodwin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Hanna Ehrlich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Joyce Ou
- Yale University, New Haven, Connecticut, USA
| | | | - Kaicheng Wang
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Martina Wade
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | | | - Liusheng Huang
- University of California, San Francisco, San Francisco, California, USA
| | - Francesca Aweeka
- University of California, San Francisco, San Francisco, California, USA
| | - Norah Mwebaza
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Richard Kajubi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Matthew Riggs
- Metrum Research Group, Tariffville, Connecticut, USA
| | | | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
157
|
Altharawi A, Riadi Y, Tahir Ul Qamar M. An in silico quest for next-generation antimalarial drugs by targeting Plasmodium falciparum hexose transporter protein: a multi-pronged approach. J Biomol Struct Dyn 2023; 41:14450-14459. [PMID: 36812293 DOI: 10.1080/07391102.2023.2181635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/12/2023] [Indexed: 02/24/2023]
Abstract
The emergence of artemisinin resistance by malaria parasites is a major challenge in the fight against malaria, thus posing serious threat to the public health across the world. To tackle this, antimalarial drugs with unconventional mechanisms are therefore urgently needed. It has been reported that selective starvation of Plasmodium falciparum by blocking the function of hexose transporter 1 (PfHT1) protein, the only known transporter for glucose uptake in P. falciparum, could provide an alternative approach to fight the drug resistant malaria parasites. In this study, three high affinity molecules (BBB_25784317, BBB_26580136 and BBB_26580144) that have shown the best docked conformation and least binding energy with PfHT1 were shortlisted. The docking energy of BBB_25784317, BBB_26580136 and BBB_26580144 with PfHT1 were -12.5, -12.1 and -12.0 kcal/mol, respectively. In the follow up simulation studies, the protein 3D structure maintains considerable stability in the presence of the compounds. It was also observed that the compounds produced a number of hydrophilic and hydrophobic interactions with the protein allosteric site residues. This demonstrates strong intermolecular interaction guided by close distance hydrogen bonds of compounds with Ser45, Asn48, Thr49, Asn52, Ser317, Asn318, Ile330 and Ser334. Revalidation of compounds binding affinity was conducted by more appropriate simulation based binding free energy techniques (MM-GB/PBSA and WaterSwap). Additionally, entropy assay was performed that further strengthen the predictions. In silico pharmacokinetics confirmed that the compounds would be suitable candidates for oral delivery due to their high gastrointestinal absorption and less toxic reaction. Overall, the predicted compounds are promising and could be further sought as antimalarial leads and subjected to thorough experimental investigations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Muhammad Tahir Ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| |
Collapse
|
158
|
Ahorhorlu SY, Quashie NB, Jensen RW, Kudzi W, Nartey ET, Duah-Quashie NO, Zoiku F, Dzudzor B, Wang CW, Hansson H, Alifrangis M, Adjei GO. Assessment of artemisinin tolerance in Plasmodium falciparum clinical isolates in children with uncomplicated malaria in Ghana. Malar J 2023; 22:58. [PMID: 36803541 PMCID: PMC9938975 DOI: 10.1186/s12936-023-04482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/04/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Artemisinin-based combination therapy (ACT) is the first-line treatment for uncomplicated malaria in Ghana. Artemisinin (ART) tolerance in Plasmodium falciparum has arisen in Southeast Asia and recently, in parts of East Africa. This is ascribed to the survival of ring-stage parasites post treatment. The present study sought to assess and characterize correlates of potential ART tolerance based on post-treatment parasite clearance, ex vivo and in vitro drug sensitivity, and molecular markers of drug resistance in P. falciparum isolates from children with uncomplicated malaria in Ghana. METHODS Six months to fourteen years old children presenting with acute uncomplicated malaria (n = 115) were enrolled in two hospitals and a Health Centre in Ghana's Greater Accra region and treated with artemether-lumefantrine (AL) according to body weight. Pre- and post-treatment parasitaemia (day 0 and day 3) was confirmed by microscopy. The ex vivo ring-stage survival assay (RSA) was used to detect percent ring survival while the 72 h SYBR Green I assay was used to measure the 50% inhibition concentration (IC50s) of ART and its derivatives and partner drugs. Genetic markers of drug tolerance /resistance were evaluated using selective whole genome sequencing. RESULTS Of the total of 115 participants, 85 were successfully followed up on day 3 post-treatment and 2/85 (2.4%) had parasitaemia. The IC50 values of ART, artesunate (AS), artemether (AM), dihydroartemisinin (DHA), amodiaquine (AQ), and lumefantrine (LUM) were not indicative of drug tolerance. However, 7/90 (7.8%) pre-treatment isolates had > 10% ring survival rates against DHA. Of the four isolates (2 RSA positive and 2 RSA negative) with high genomic coverage, P. falciparum (Pf) kelch 13 K188* and Pfcoronin V424I mutations were only present in the two RSA positive isolates with > 10% ring survival rates. CONCLUSIONS The observed low proportion of participants with day-3 post-treatment parasitaemia is consistent with rapid ART clearance. However, the increased rates of survival observed in the ex vivo RSA against DHA, maybe a pointer of an early start of ART tolerance. Furthermore, the role of two novel mutations in PfK13 and Pfcoronin genes, harboured by the two RSA positive isolates that had high ring survival in the present study, remains to be elucidated.
Collapse
Affiliation(s)
- Samuel Yao Ahorhorlu
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, P.O. Box 4236, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Neils Ben Quashie
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, P.O. Box 4236, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Rasmus Weisel Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - William Kudzi
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, P.O. Box 4236, Accra, Ghana
| | - Edmund Tetteh Nartey
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, P.O. Box 4236, Accra, Ghana
| | - Nancy Odurowah Duah-Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Felix Zoiku
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Bartholomew Dzudzor
- Department of Medical Biochemistry, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Christian William Wang
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Helle Hansson
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - George Obeng Adjei
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, P.O. Box 4236, Accra, Ghana.
| |
Collapse
|
159
|
B-Cell Epitope Mapping of the Plasmodium falciparum Malaria Vaccine Candidate GMZ2.6c in a Naturally Exposed Population of the Brazilian Amazon. Vaccines (Basel) 2023; 11:vaccines11020446. [PMID: 36851323 PMCID: PMC9966924 DOI: 10.3390/vaccines11020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The GMZ2.6c malaria vaccine candidate is a multi-stage P. falciparum chimeric protein that contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, an asexual-stage vaccine construction consisting of the N-terminal region of the glutamate-rich protein (GLURP) and the C-terminal region of the merozoite surface protein-3 (MSP-3). Previous studies showed that GMZ2.6c is widely recognized by antibodies from Brazilian exposed individuals and that its components are immunogenic in natural infection by P. falciparum. In addition, anti-GMZ2.6c antibodies increase with exposure to infection and may contribute to parasite immunity. Therefore, identifying epitopes of proteins recognized by antibodies may be an important tool for understanding protective immunity. Herein, we identify and validate the B-cell epitopes of GMZ2.6c as immunogenic and immunodominant in individuals exposed to malaria living in endemic areas of the Brazilian Amazon. Specific IgG antibodies and subclasses against MSP-3, GLURP, and Pfs48/45 epitopes were detected by ELISA using synthetic peptides corresponding to B-cell epitopes previously described for MSP-3 and GLURP or identified by BepiPred for Pfs48/45. The results showed that the immunodominant epitopes were P11 from GLURP and MSP-3c and DG210 from MSP-3. The IgG1 and IgG3 subclasses were preferentially induced against these epitopes, supporting previous studies that these proteins are targets for cytophilic antibodies, important for the acquisition of protective immunity. Most individuals presented detectable IgG antibodies against Pfs48/45a and/or Pfs48/45b, validating the prediction of linear B-cell epitopes. The higher frequency and antibody levels against different epitopes from GLURP, MSP-3, and Pfs48/45 provide additional information that may suggest the relevance of GMZ2.6c as a multi-stage malaria vaccine candidate.
Collapse
|
160
|
Whalen ME, Kajubi R, Goodwin J, Orukan F, Colt M, Huang L, Richards K, Wang K, Li F, Mwebaza N, Aweeka FT, Parikh S. The Impact of Extended Treatment With Artemether-lumefantrine on Antimalarial Exposure and Reinfection Risks in Ugandan Children With Uncomplicated Malaria: A Randomized Controlled Trial. Clin Infect Dis 2023; 76:443-452. [PMID: 36130191 PMCID: PMC9907485 DOI: 10.1093/cid/ciac783] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Artemether-lumefantrine (AL) is the most widely used artemisinin-based combination therapy in Sub-Saharan Africa and is threatened by the emergence of artemisinin resistance. Dosing is suboptimal in young children. We hypothesized that extending AL duration will improve exposure and reduce reinfection risks. METHODS We conducted a prospective, randomized, open-label pharmacokinetic/pharmacodynamic study of extended duration AL in children with malaria in high-transmission rural Uganda. Children received 3-day (standard 6-dose) or 5-day (10-dose) AL with sampling for artemether, dihydroartemisinin, and lumefantrine over 42-day clinical follow-up. Primary outcomes were (1) comparative pharmacokinetic parameters between regimens and (2) recurrent parasitemia analyzed as intention-to-treat. RESULTS A total of 177 children aged 16 months to 16 years were randomized, contributing 227 total episodes. Terminal median lumefantrine concentrations were significantly increased in the 5-day versus 3-day regimen on days 7, 14, and 21 (P < .001). A predefined day 7 lumefantrine threshold of 280 ng/mL was strongly predictive of recurrence risk at 28 and 42 days (P < .001). Kaplan-Meier estimated 28-day (51% vs 40%) and 42-day risk (75% vs 68%) did not significantly differ between 3- and 5-day regimens. No significant toxicity was seen with the extended regimen. CONCLUSIONS Extending the duration of AL was safe and significantly enhanced overall drug exposure in young children but did not lead to significant reductions in recurrent parasitemia risk in our high-transmission setting. However, day 7 levels were strongly predictive of recurrent parasitemia risk, and those in the lowest weight-band were at higher risk of underdosing with the standard 3-day regimen. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov number NCT03453840.
Collapse
Affiliation(s)
- Meghan E Whalen
- Department of Clinical Pharmacy, University of California-San Francisco, San Francisco General Hospital, San Francisco, California, USA
| | - Richard Kajubi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Justin Goodwin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Francis Orukan
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - McKenzie Colt
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Liusheng Huang
- Department of Clinical Pharmacy, University of California-San Francisco, San Francisco General Hospital, San Francisco, California, USA
| | - Kacey Richards
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Kaicheng Wang
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Fangyong Li
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Norah Mwebaza
- Infectious Disease Research Collaboration, Kampala, Uganda.,Department of Pharmacology and Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda
| | - Francesca T Aweeka
- Department of Clinical Pharmacy, University of California-San Francisco, San Francisco General Hospital, San Francisco, California, USA
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
161
|
Yade MS, Dièye B, Coppée R, Mbaye A, Diallo MA, Diongue K, Bailly J, Mama A, Fall A, Thiaw AB, Ndiaye IM, Ndiaye T, Gaye A, Tine A, Diédhiou Y, Mbaye AM, Doderer-Lang C, Garba MN, Bei AK, Ménard D, Ndiaye D. Ex vivo RSA and Pfkelch13 targeted-amplicon deep sequencing reveal parasites susceptibility to artemisinin in Senegal, 2017. RESEARCH SQUARE 2023:rs.3.rs-2538775. [PMID: 36798264 PMCID: PMC9934778 DOI: 10.21203/rs.3.rs-2538775/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Malaria control is highly dependent on the effectiveness of artemisinin-based combination therapies (ACTs), the current frontline malaria curative treatments. Unfortunately, the emergence and spread of parasites resistant to artemisinin (ART) derivatives in Southeast Asia and South America, and more recently in Rwanda and Uganda (East Africa), compromise their long-term use in Sub-Saharan Africa where most malaria deaths occur. METHODS Here, we evaluated ex vivo susceptibility to dihydroartemisinin (DHA) from 38 P. falciparum isolates collected in 2017 in Thiès (Senegal) expressed with the Ring-stage Survival Assay (RSA). We explored major and minor variants in the full Pfkelch13 gene, the main determinant of ART resistance using a targeted-amplicon deep sequencing (TADS) approach. RESULTS All samples tested in the ex vivo RSA were found to be susceptible to DHA. Both non-synonymous mutations K189T and K248R were observed each in one isolate, as major (99%) or minor (5%) variants, respectively. CONCLUSION Altogether, investigations combining ex vivo RSA and TADS are a useful approach for monitoring ART resistance in Africa.
Collapse
Affiliation(s)
- Mamadou Samb Yade
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Baba Dièye
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Romain Coppée
- Université Paris Cité and Sorbone Paris Nord, Inserm, IAME
| | - Aminata Mbaye
- Centre for Research and Training in Infectiology of Guinea (CRTIG)
| | - Mamadou Alpha Diallo
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | | | | | | | - Awa Fall
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Alphonse Birane Thiaw
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences
| | - Ibrahima Mbaye Ndiaye
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Tolla Ndiaye
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Amy Gaye
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Abdoulaye Tine
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Younouss Diédhiou
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | - Amadou Mactar Mbaye
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | | | - Mamane Nassirou Garba
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| | | | - Didier Ménard
- Université de Strasbourg, UR7292 Dynamics of Host-Pathogen Interactions
| | - Daouda Ndiaye
- Centre International de Recherche et de Formation en Génomique Appliquée, et de Surveillance Sanitaire (CIGASS), Cheikh Anta Diop University of Dakar
| |
Collapse
|
162
|
Sauer LM, Canovas R, Roche D, Shams-Eldin H, Ravel P, Colinge J, Schwarz RT, Ben Mamoun C, Rivals E, Cornillot E. FT-GPI, a highly sensitive and accurate predictor of GPI-anchored proteins, reveals the composition and evolution of the GPI proteome in Plasmodium species. Malar J 2023; 22:27. [PMID: 36698187 PMCID: PMC9876418 DOI: 10.1186/s12936-022-04430-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Protozoan parasites are known to attach specific and diverse group of proteins to their plasma membrane via a GPI anchor. In malaria parasites, GPI-anchored proteins (GPI-APs) have been shown to play an important role in host-pathogen interactions and a key function in host cell invasion and immune evasion. Because of their immunogenic properties, some of these proteins have been considered as malaria vaccine candidates. However, identification of all possible GPI-APs encoded by these parasites remains challenging due to their sequence diversity and limitations of the tools used for their characterization. METHODS The FT-GPI software was developed to detect GPI-APs based on the presence of a hydrophobic helix at both ends of the premature peptide. FT-GPI was implemented in C ++and applied to study the GPI-proteome of 46 isolates of the order Haemosporida. Using the GPI proteome of Plasmodium falciparum strain 3D7 and Plasmodium vivax strain Sal-1, a heuristic method was defined to select the most sensitive and specific FT-GPI software parameters. RESULTS FT-GPI enabled revision of the GPI-proteome of P. falciparum and P. vivax, including the identification of novel GPI-APs. Orthology- and synteny-based analyses showed that 19 of the 37 GPI-APs found in the order Haemosporida are conserved among Plasmodium species. Our analyses suggest that gene duplication and deletion events may have contributed significantly to the evolution of the GPI proteome, and its composition correlates with speciation. CONCLUSION FT-GPI-based prediction is a useful tool for mining GPI-APs and gaining further insights into their evolution and sequence diversity. This resource may also help identify new protein candidates for the development of vaccines for malaria and other parasitic diseases.
Collapse
Affiliation(s)
- Lena M. Sauer
- Institute for Virology, Hans-Meerwein-Straße, 35043 Marburg, Germany
- Computational Biology Institute, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
- Present Address: GRN-Klinik Sinsheim, Alte Waibstadter Straße 2a, 74889 Sinsheim, Germany
| | - Rodrigo Canovas
- Computational Biology Institute, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
- grid.121334.60000 0001 2097 0141LIRMM, CNRS, Université de Montpellier, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
| | - Daniel Roche
- Computational Biology Institute, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
- grid.121334.60000 0001 2097 0141LIRMM, CNRS, Université de Montpellier, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
| | - Hosam Shams-Eldin
- Institute for Virology, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Patrice Ravel
- grid.121334.60000 0001 2097 0141Institut de Recherche en Cancérologie de Montpellier INSERM U1094, ICM, Université de Montpellier, Campus Val d’Aurelle, 208 Avenue Des Apothicaires, 34298 Montpellier, France
| | - Jacques Colinge
- grid.121334.60000 0001 2097 0141Institut de Recherche en Cancérologie de Montpellier INSERM U1094, ICM, Université de Montpellier, Campus Val d’Aurelle, 208 Avenue Des Apothicaires, 34298 Montpellier, France
| | - Ralph T. Schwarz
- Institute for Virology, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Choukri Ben Mamoun
- grid.47100.320000000419368710Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT 06520 USA
| | - Eric Rivals
- Computational Biology Institute, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
- grid.121334.60000 0001 2097 0141LIRMM, CNRS, Université de Montpellier, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
- grid.510302.5Institut Français de Bioinformatique, CNRS UAR 3601, 2, rue Gaston Crémieux, 91057 Évry, France
| | - Emmanuel Cornillot
- Computational Biology Institute, Campus Saint Priest, 161 Rue Ada, 34095 Montpellier, France
- grid.121334.60000 0001 2097 0141Institut de Recherche en Cancérologie de Montpellier INSERM U1094, ICM, Université de Montpellier, Campus Val d’Aurelle, 208 Avenue Des Apothicaires, 34298 Montpellier, France
- Wespran SAS, 13 Rue de Penthièvre, 75008 Paris, France
| |
Collapse
|
163
|
Gubae K, Mohammed H, Sime H, Hailgiorgis H, Mare AK, Gidey B, Haile M, Assefa G, Bekele W, Tasew G, Abay SM, Assefa A. Safety and therapeutic efficacy of artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria at Shecha health centre, Arba Minch, Ethiopia. Malar J 2023; 22:9. [PMID: 36611179 PMCID: PMC9824982 DOI: 10.1186/s12936-022-04436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In 2004, Ethiopia adopted artemether-lumefantrine (AL, Coartem®) as first-line treatment for the management of uncomplicated Plasmodium falciparum malaria. Continuous monitoring of AL therapeutic efficacy is crucial in Ethiopia, as per the World Health Organization (WHO) recommendation. This study aimed to assess the therapeutic efficacy of AL in the treatment of uncomplicated P. falciparum infection. METHODS A 28 day onearm, prospective evaluation of the clinical and parasitological response to AL was conducted at Shecha Health Centre, Arba Minch town, Southern Ethiopia. Patients were treated with six-dose regimen of AL over three days and monitored for 28 days with clinical and laboratory assessments. Participant recruitment and outcome classification was done in accordance with the 2009 WHO methods for surveillance of anti-malarial drug efficacy guidelines. RESULTS A total of 88 study participants were enrolled and 69 of them completed the study with adequate clinical and parasitological response. Two late parasitological failures were observed, of which one was classified as a recrudescence by polymerase chain reaction (PCR). The PCRcorrected cure rate was 98.6% (95% CI 92.3-100). AL demonstrated a rapid parasite and fever clearance with no parasitaemia on day 2 and febrile cases on day 3. Gametocyte clearance was complete by day three. No serious adverse events were reported during the 28 days follow-up. CONCLUSION The study demonstrated high therapeutic efficacy and good safety profile of AL. This suggests the continuation of AL as the first-line drug for the treatment of uncomplicated P. falciparum malaria in Ethiopia. Periodic therapeutic efficacy studies and monitoring of markers of resistance are recommended for early detection of resistant parasites.
Collapse
Affiliation(s)
- Kale Gubae
- grid.449044.90000 0004 0480 6730Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia ,grid.7123.70000 0001 1250 5688Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hussein Mohammed
- grid.452387.f0000 0001 0508 7211Malaria and Other Parasitological and Entomological Research Team, Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Heven Sime
- grid.452387.f0000 0001 0508 7211Malaria and Other Parasitological and Entomological Research Team, Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Henok Hailgiorgis
- grid.452387.f0000 0001 0508 7211Malaria and Other Parasitological and Entomological Research Team, Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Anteneh Kassahun Mare
- grid.7123.70000 0001 1250 5688Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Bokretsion Gidey
- grid.452387.f0000 0001 0508 7211Malaria and Other Parasitological and Entomological Research Team, Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Mebrahtom Haile
- grid.414835.f0000 0004 0439 6364Ethiopian Ministry of Health, Addis Ababa, Ethiopia
| | - Gudissa Assefa
- grid.414835.f0000 0004 0439 6364Ethiopian Ministry of Health, Addis Ababa, Ethiopia
| | - Worku Bekele
- World Health Organization, Addis Ababa, Ethiopia
| | - Geremew Tasew
- grid.452387.f0000 0001 0508 7211Malaria and Other Parasitological and Entomological Research Team, Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Solomon Mequanente Abay
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Ashenafi Assefa
- grid.452387.f0000 0001 0508 7211Malaria and Other Parasitological and Entomological Research Team, Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia ,grid.10698.360000000122483208Institute of Infectious Disease and Global Health, University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
164
|
Gansane A, Lingani M, Yeka A, Nahum A, Bouyou-Akotet M, Mombo-Ngoma G, Kaguthi G, Barceló C, Laurijssens B, Cantalloube C, Macintyre F, Djeriou E, Jessel A, Bejuit R, Demarest H, Marrast AC, Debe S, Tinto H, Kibuuka A, Nahum D, Mawili-Mboumba DP, Zoleko-Manego R, Mugenya I, Olewe F, Duparc S, Ogutu B. Randomized, open-label, phase 2a study to evaluate the contribution of artefenomel to the clinical and parasiticidal activity of artefenomel plus ferroquine in African patients with uncomplicated Plasmodium falciparum malaria. Malar J 2023; 22:2. [PMID: 36597076 PMCID: PMC9809015 DOI: 10.1186/s12936-022-04420-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The contribution of artefenomel to the clinical and parasiticidal activity of ferroquine and artefenomel in combination in uncomplicated Plasmodium falciparum malaria was investigated. METHODS This Phase 2a, randomized, open-label, parallel-group study was conducted from 11th September 2018 to 6th November 2019 across seven centres in Benin, Burkina Faso, Gabon, Kenya, and Uganda. Patients aged ≥ 14-69 years with microscopically confirmed infection (≥ 3000 to ≤ 50,000 parasites/µL blood) were randomized 1:1:1:1 to 400 mg ferroquine, or 400 mg ferroquine plus artefenomel 300, 600, or 1000 mg, administered as a single oral dose. The primary efficacy analysis was a logistic regression evaluating the contribution of artefenomel exposure to Day 28 PCR-adjusted adequate clinical and parasitological response (ACPR). Safety was also evaluated. RESULTS The randomized population included 140 patients. For the primary analysis in the pharmacokinetic/pharmacodynamic efficacy population (N = 121), the contribution of artefenomel AUC0-∞ to Day 28 PCR-adjusted ACPR was not demonstrated when accounting for ferroquine AUC0-d28, baseline parasitaemia, and other model covariates: odds ratio 1.1 (95% CI 0.98, 1.2; P = 0.245). In the per-protocol population, Day 28 PCR-adjusted ACPR was 80.8% (21/26; 95% CI 60.6, 93.4) with ferroquine alone and 90.3% (28/31; 95% CI 74.2, 98.0), 90.9% (30/33; 95% CI 75.7, 98.1) and 87.1% (27/31; 95% CI 70.2, 96.4) with 300, 600, and 1000 mg artefenomel, respectively. Median time to parasite clearance (Kaplan-Meier) was 56.1 h with ferroquine, more rapid with artefenomel, but similar for all doses (30.0 h). There were no deaths. Adverse events (AEs) of any cause occurred in 51.4% (18/35) of patients with ferroquine 400 mg alone, and 58.3% (21/36), 66.7% (24/36), and 72.7% (24/33) with 300, 600, and 1000 mg artefenomel, respectively. All AEs were of mild-to-moderate severity, and consistent with the known profiles of the compounds. Vomiting was the most reported AE. There were no cases of QTcF prolongation ≥ 500 ms or > 60 ms from baseline. CONCLUSION The contribution of artefenomel exposure to the clinical and parasitological activity of ferroquine/artefenomel could not be demonstrated in this study. Parasite clearance was faster with ferroquine/artefenomel versus ferroquine alone. All treatments were well tolerated. TRIAL REGISTRATION ClinicalTrials.gov, NCT03660839 (7 September, 2018).
Collapse
Affiliation(s)
- Adama Gansane
- grid.507461.10000 0004 0413 3193Centre National de Recherche et de Formation sur le Paludisme (CNRFP), 01 BP 220801 BP 2208 Ouagadougou, Burkina Faso
| | - Moussa Lingani
- grid.457337.10000 0004 0564 0509Institut de Recherche en Science de la Santé - Unité de Recherche Clinique de Nanoro (IRSS-URCN), Ouagadougou, Burkina Faso
| | - Adoke Yeka
- grid.463352.50000 0004 8340 3103Infectious Diseases Research Collaboration (IDRC), Kampala, Uganda
| | - Alain Nahum
- Centre de Recherches Entomologique de Cotonou (CREC), Cotonou, Benin
| | - Marielle Bouyou-Akotet
- grid.502965.dDépartement de Parasitologie-Mycologie-Médecine Tropicale, Faculté de Médecine – Université des Sciences de la Santé, Libreville, Gabon
| | - Ghyslain Mombo-Ngoma
- grid.452268.fCentre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon ,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, and University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.10392.390000 0001 2190 1447Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Grace Kaguthi
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute-Centre for Respiratory Diseases Research (KEMRI-CRDR), Nairobi, Kenya
| | - Catalina Barceló
- grid.452605.00000 0004 0432 5267Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | - Fiona Macintyre
- grid.452605.00000 0004 0432 5267Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | | | - Helen Demarest
- grid.452605.00000 0004 0432 5267Medicines for Malaria Venture, Geneva, Switzerland
| | - Anne Claire Marrast
- grid.452605.00000 0004 0432 5267Medicines for Malaria Venture, Geneva, Switzerland
| | - Siaka Debe
- grid.507461.10000 0004 0413 3193Centre National de Recherche et de Formation sur le Paludisme (CNRFP), 01 BP 220801 BP 2208 Ouagadougou, Burkina Faso
| | - Halidou Tinto
- grid.457337.10000 0004 0564 0509Institut de Recherche en Science de la Santé - Unité de Recherche Clinique de Nanoro (IRSS-URCN), Ouagadougou, Burkina Faso
| | - Afizi Kibuuka
- grid.463352.50000 0004 8340 3103Infectious Diseases Research Collaboration (IDRC), Kampala, Uganda
| | - Diolinda Nahum
- Centre de Recherches Entomologique de Cotonou (CREC), Cotonou, Benin
| | - Denise Patricia Mawili-Mboumba
- grid.502965.dDépartement de Parasitologie-Mycologie-Médecine Tropicale, Faculté de Médecine – Université des Sciences de la Santé, Libreville, Gabon
| | - Rella Zoleko-Manego
- grid.452268.fCentre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon ,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, and University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.10392.390000 0001 2190 1447Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Irene Mugenya
- grid.33058.3d0000 0001 0155 5938Kenya Medical Research Institute-Centre for Respiratory Diseases Research (KEMRI-CRDR), Nairobi, Kenya
| | - Frederick Olewe
- grid.33058.3d0000 0001 0155 5938Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya ,grid.442494.b0000 0000 9430 1509Centre for Research in Therapeutic Sciences (CREATES), Strathmore University, Nairobi, Kenya
| | - Stephan Duparc
- grid.452605.00000 0004 0432 5267Medicines for Malaria Venture, Geneva, Switzerland
| | - Bernhards Ogutu
- grid.33058.3d0000 0001 0155 5938Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya ,grid.442494.b0000 0000 9430 1509Centre for Research in Therapeutic Sciences (CREATES), Strathmore University, Nairobi, Kenya
| |
Collapse
|
165
|
Kojom Foko LP, Hawadak J, Verma V, Belle Ebanda Kedi P, Eboumbou Moukoko CE, Kamaraju R, Pande V, Singh V. Phytofabrication and characterization of Alchornea cordifolia silver nanoparticles and evaluation of antiplasmodial, hemocompatibility and larvicidal potential. Front Bioeng Biotechnol 2023; 11:1109841. [PMID: 36926684 PMCID: PMC10011455 DOI: 10.3389/fbioe.2023.1109841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023] Open
Abstract
Purpose: The recent emergence of Plasmodium falciparum (Pf) parasites resistant to current artemisinin-based combination therapies in Africa justifies the need to develop new strategies for successful malaria control. We synthesized, characterized and evaluated medical applications of optimized silver nanoparticles using Alchornea cordifolia (AC-AgNPs), a plant largely used in African and Asian traditional medicine. Methods: Fresh leaves of A. cordifolia were used to prepare aqueous crude extract, which was mixed with silver nitrate for AC-AgNPs synthesis and optimization. The optimized AC-AgNPs were characterized using several techniques including ultraviolet-visible spectrophotometry (UV-Vis), scanning/transmission electron microscopy (SEM/TEM), powder X-ray diffraction (PXRD), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX), Fourier transformed infrared spectroscopy (FTIR), dynamic light scattering (DLS) and Zeta potential. Thereafter, AC-AgNPs were evaluated for their hemocompatibility and antiplasmodial activity against Pf malaria strains 3D7 and RKL9. Finally, lethal activity of AC-AgNPs was assessed against mosquito larvae of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti which are vectors of neglected diseases such as dengue, filariasis and chikungunya. Results: The AC-AgNPs were mostly spheroidal, polycrystalline (84.13%), stable and polydispersed with size of 11.77 ± 5.57 nm. FTIR revealed the presence of several peaks corresponding to functional chemical groups characteristics of alkanoids, terpenoids, flavonoids, phenols, steroids, anthraquonones and saponins. The AC-AgNPs had a high antiplasmodial activity, with IC50 of 8.05 μg/mL and 10.31 μg/mL against 3D7 and RKL9 Plasmodium falciparum strains. Likewise, high larvicidal activity of AC-AgNPs was found after 24 h- and 48 h-exposure: LC50 = 18.41 μg/mL and 8.97 μg/mL (Culex quinquefasciatus), LC50 = 16.71 μg/mL and 7.52 μg/mL (Aedes aegypti) and LC50 = 10.67 μg/mL and 5.85 μg/mL (Anopheles stephensi). The AC-AgNPs were highly hemocompatible (HC50 > 500 μg/mL). Conclusion: In worrying context of resistance of parasite and mosquitoes, green nanotechnologies using plants could be a cutting-edge alternative for drug/insecticide discovery and development.
Collapse
Affiliation(s)
- Loick Pradel Kojom Foko
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Joseph Hawadak
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Vaishali Verma
- Vector Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Philippe Belle Ebanda Kedi
- Department of Animal Organisms, Faculty of Sciences, The University of Douala, Douala, Cameroon.,Nanosciences African Network, iThemba LABS-National Research Foundation, Cape Town, South Africa.,Laboratory of Innovative Nanostructured Material (NANO: C), Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, Douala, Cameroon
| | - Carole Else Eboumbou Moukoko
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, Douala, Cameroon.,Malaria Research Unit, Centre Pasteur Cameroon, Yaoundé, Cameroon.,Laboratory of Parasitology, Mycology and Virology, Postgraduate Training Unit for Health Sciences, Postgraduate School for Pure and Applied Sciences, The University of Douala, Douala, Cameroon
| | - Raghavendra Kamaraju
- Vector Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Vineeta Singh
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
166
|
Mambwe D, Korkor CM, Mabhula A, Ngqumba Z, Cloete C, Kumar M, Barros PL, Leshabane M, Coertzen D, Taylor D, Gibhard L, Njoroge M, Lawrence N, Reader J, Moreira DR, Birkholtz LM, Wittlin S, Egan TJ, Chibale K. Novel 3-Trifluoromethyl-1,2,4-oxadiazole Analogues of Astemizole with Multi-stage Antiplasmodium Activity and In Vivo Efficacy in a Plasmodium berghei Mouse Malaria Infection Model. J Med Chem 2022; 65:16695-16715. [PMID: 36507890 DOI: 10.1021/acs.jmedchem.2c01516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iterative medicinal chemistry optimization of an ester-containing astemizole (AST) analogue 1 with an associated metabolic instability liability led to the identification of a highly potent 3-trifluoromethyl-1,2,4-oxadiazole analogue 23 (PfNF54 IC50 = 0.012 μM; PfK1 IC50 = 0.040 μM) displaying high microsomal metabolic stability (HLM CLint < 11.6 μL·min-1·mg-1) and > 1000-fold higher selectivity over hERG compared to AST. In addition to asexual blood stage activity, the compound also shows activity against liver and gametocyte life cycle stages and demonstrates in vivo efficacy in Plasmodium berghei-infected mice at 4 × 50 mg·kg-1 oral dose. Preliminary interrogation of the mode of action using live-cell microscopy and cellular heme speciation revealed that 23 could be affecting multiple processes in the parasitic digestive vacuole, with the possibility of a novel target at play in the organelles associated with it.
Collapse
Affiliation(s)
- Dickson Mambwe
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Constance M Korkor
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Amanda Mabhula
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Zama Ngqumba
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Cleavon Cloete
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Malkeet Kumar
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Paula Ladeia Barros
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Instituto Gonçalo Moniz, CEP 40296-710 Salvador, Brazil
| | - Meta Leshabane
- Department of Biochemistry, Genetics & Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Dina Coertzen
- Department of Biochemistry, Genetics & Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Dale Taylor
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Liezl Gibhard
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Nina Lawrence
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics & Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Diogo Rodrigo Moreira
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Instituto Gonçalo Moniz, CEP 40296-710 Salvador, Brazil
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics & Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland.,University of Basel, 4003 Basel, Switzerland
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
167
|
Kojom Foko LP, Hawadak J, Kouemo Motse FD, Eboumbou Moukoko CE, Kamgain Mawabo L, Pande V, Singh V. Non-falciparum species and submicroscopic infections in three epidemiological malaria facets in Cameroon. BMC Infect Dis 2022; 22:900. [PMID: 36460990 PMCID: PMC9718470 DOI: 10.1186/s12879-022-07901-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND There are growing reports on the prevalence of non-falciparum species and submicroscopic infections in sub-Saharan African countries but little information is available from Cameroon. METHODS A hospital-based cross-sectional study was carried out in four towns (Douala, Maroua, Mayo-Oulo, and Pette) from three malaria epidemiological strata (Forest, Sahelian, and Soudanian) of Cameroon. Malaria parasites were detected by Giemsa light microscopy and polymerase chain reaction (PCR) assay. Non-falciparum isolates were characterized and their 18S gene sequences were BLASTed for confirmatory diagnosis. RESULTS PCR assay detected malaria parasites in 82.4% (98/119) patients, among them 12.2% (12/98) were asymptomatic cases. Three Plasmodium species viz. P. falciparum, P. ovale curtisi and P. vivax, and two co-infection types (P. falciparum + P. vivax and P. falciparum + P. ovale curtisi) were found. The remaining infections were mono-infections with either P. falciparum or P. ovale curtisi. All non-falciparum infections were symptomatic and microscopic. The overall proportion of submicroscopic infections was 11.8% (14/119). Most asymptomatic and submicroscopic infection cases were self-medicated with antimalarial drugs and/or medicinal plants. On analysis, P. ovale curtisi sequences were found to be phylogenetically closer to sequences from India while P. vivax isolates appeared closer to those from Nigeria, India, and Cameroon. No G6PD-d case was found among non-falciparum infections. CONCLUSIONS This study confirms our previous work on circulation of P. vivax and P. ovale curtisi and the absence of P. knowlesi in Cameroon. More studies are needed to address non-falciparum malaria along with submicroscopic infections for effective malaria management and control in Cameroon.
Collapse
Affiliation(s)
- Loick Pradel Kojom Foko
- ICMR-National Institute of Malaria Research, Dwarka, New-Delhi, 110077, India
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, 263001, India
| | - Joseph Hawadak
- ICMR-National Institute of Malaria Research, Dwarka, New-Delhi, 110077, India
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, 263001, India
| | | | - Carole Else Eboumbou Moukoko
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, The University of Douala, 24157, Douala, Cameroon
- Malaria Research Unit, Centre Pasteur Cameroon, 1274, Yaoundé, Cameroon
- Laboratory of Parasitology, Mycology and Virology, Postgraduate Training Unit for Health Sciences, Postgraduate School for Pure and Applied Sciences, The University of Douala, 24157, Douala, Cameroon
| | | | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, 263001, India
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research, Dwarka, New-Delhi, 110077, India.
| |
Collapse
|
168
|
Seifu GW, Birhan YS, Beshay BY, Hymete A, Bekhit AA. Synthesis, antimalarial, antileishmanial evaluation, and molecular docking study of some 3-aryl-2-styryl substituted-4(3H)-quinazolinone derivatives. BMC Chem 2022; 16:107. [PMID: 36461074 PMCID: PMC9716151 DOI: 10.1186/s13065-022-00903-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Quinazolinones are a diverse group of nitrogen-containing heterocyclic compounds with promising antimalarial and antileishmanial activities. Herein, some 3-aryl-2-styryl substituted-4(3H)-quinazolinones were synthesized via cyclization, condensation, and hydrolysis reactions. 1H NMR, FTIR and elemental microanalysis was used to verify the structures of the synthesized compounds. The in vivo antimalarial and in vitro antileishmanial activities of the target compounds were investigated using mice infected with Plasmodium berghi ANKA and Leishmania donovani strain, respectively. Among the test compounds, 8 and 10 showed better antimalarial activities with percent suppression of 70.01 and 74.18, respectively. In addition, (E)-2-(4-nitrostyryl)-3-phenylquinazolin-4(3H)-one (6) showed promising antileishmanial activity (IC50 = 0.0212 µg/mL). It is two and 150 times more active than the standard drugs amphotericin B deoxycholate (IC50 = 0.0460 µg/mL) and miltefosine (IC 50 = 3.1911 µg/mL), respectively. Its superior in vitro antileishmanial activity was supported by a molecular docking study conducted in the active site of Lm-PTR1. Overall, the synthesized 3-aryl-2-styryl substituted-4(3H)-quinazolinones showed promising antileishmanial and antimalarial activities and are desirable scaffolds for the synthesis of different antileishmanial and antimalarial agents.
Collapse
Affiliation(s)
- Girma Worku Seifu
- grid.449044.90000 0004 0480 6730Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | - Yihenew Simegniew Birhan
- grid.449044.90000 0004 0480 6730Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | - Botros Youssef Beshay
- grid.442567.60000 0000 9015 5153Department of Pharmaceutical Chemistry, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, 21913 Egypt
| | - Ariaya Hymete
- grid.7123.70000 0001 1250 5688Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Adnan Ahmed Bekhit
- grid.7155.60000 0001 2260 6941Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21215 Egypt ,grid.413060.00000 0000 9957 3191Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Manama, Kingdom of Bahrain
| |
Collapse
|
169
|
Chheda PR, Nieto N, Kaur S, Beck JM, Beck JR, Honzatko R, Kerns RJ, Nelson SW. Promising antimalarials targeting apicoplast DNA polymerase from Plasmodium falciparum. Eur J Med Chem 2022; 243:114751. [DOI: 10.1016/j.ejmech.2022.114751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 09/04/2022] [Indexed: 11/25/2022]
|
170
|
Kaur S, Nieto NS, McDonald P, Beck JR, Honzatko RB, Roy A, Nelson SW. Discovery of small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase. J Enzyme Inhib Med Chem 2022; 37:1320-1326. [PMID: 35514163 PMCID: PMC9090415 DOI: 10.1080/14756366.2022.2070909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/01/2022] Open
Abstract
Malaria is caused by infection with protozoan parasites of the Plasmodium genus, which is part of the phylum Apicomplexa. Most organisms in this phylum contain a relic plastid called the apicoplast. The apicoplast genome is replicated by a single DNA polymerase (apPOL), which is an attractive target for anti-malarial drugs. We screened small-molecule libraries (206,504 compounds) using a fluorescence-based high-throughput DNA polymerase assay. Dose/response analysis and counter-screening identified 186 specific apPOL inhibitors. Toxicity screening against human HepaRG human cells removed 84 compounds and the remaining were subjected to parasite killing assays using chloroquine resistant P. falciparum parasites. Nine compounds were potent inhibitors of parasite growth and may serve as lead compounds in efforts to discover novel malaria drugs.
Collapse
Affiliation(s)
- Supreet Kaur
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Nicholas S. Nieto
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Peter McDonald
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS, USA
| | - Josh R. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Richard B. Honzatko
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS, USA
| | - Scott W. Nelson
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
171
|
Wicht KJ, Small-Saunders JL, Hagenah LM, Mok S, Fidock DA. Mutant PfCRT Can Mediate Piperaquine Resistance in African Plasmodium falciparum With Reduced Fitness and Increased Susceptibility to Other Antimalarials. J Infect Dis 2022; 226:2021-2029. [PMID: 36082431 PMCID: PMC9704436 DOI: 10.1093/infdis/jiac365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Additional therapeutic strategies could benefit efforts to reverse the recent increase in malaria cases in sub-Saharan Africa, which mostly affects young children. A primary candidate is dihydroartemisinin + piperaquine (DHA + PPQ), which is effective for uncomplicated malaria treatment, seasonal malaria chemoprevention, and intermittent preventive treatment. In Southeast Asia, Plasmodium falciparum parasites acquired PPQ resistance, mediated primarily by mutations in the P falciparum chloroquine resistance transporter PfCRT. The recent emergence in Africa of DHA-resistant parasites creates an imperative to assess whether PPQ resistance could emerge in African parasites with distinct PfCRT isoforms. METHODS We edited 2 PfCRT mutations known to mediate high-grade PPQ resistance in Southeast Asia into GB4 parasites from Gabon. Gene-edited clones were profiled in antimalarial concentration-response and fitness assays. RESULTS The PfCRT F145I mutation mediated moderate PPQ resistance in GB4 parasites but with a substantial fitness cost. No resistance was observed with the PfCRT G353V mutant. Both edited clones became significantly more susceptible to amodiaquine, chloroquine, and quinine. CONCLUSIONS A single PfCRT mutation can mediate PPQ resistance in GB4 parasites, but with a growth defect that may preclude its spread without further genetic adaptations. Our findings support regional use of drug combinations that exert opposing selective pressures on PfCRT.
Collapse
Affiliation(s)
- Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer L Small-Saunders
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimalarial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York , New York, USA
| | - Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimalarial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York , New York, USA
| |
Collapse
|
172
|
Plasmodium cynomolgi in humans: current knowledge and future directions of an emerging zoonotic malaria parasite. Infection 2022; 51:623-640. [PMID: 36401673 PMCID: PMC9676733 DOI: 10.1007/s15010-022-01952-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022]
Abstract
Plasmodium cynomolgi (Pcy), a simian malaria parasite, is a recent perfect example of emerging zoonotic transfer in human. This review summarizes the current knowledge on the epidemiology of natural Pcy infections in humans, mosquitoes and monkeys, along with its biological, clinical and drug sensitivity patterns. Knowledge gaps and further studies on Pcy in humans are also discussed. This parasite currently seems to be geographically limited in South-East Asia (SEA) with a global prevalence in human ranging from 0 to 1.4%. The Pcy infections were reported in local SEA populations and European travelers, and range from asymptomatic carriage to mild/moderate attacks with no evidence of pathognomonic clinical and laboratory patterns but with Pcy strain-shaped clinical differences. Geographical distribution and competence of suitable mosquito vectors and non-primate hosts, globalization, climate change, and increased intrusion of humans into the habitat of monkeys are key determinants to emergence of Pcy parasites in humans, along with its expansion outside SEA. Sensitization/information campaigns coupled with training and assessment sessions of microscopists and clinicians on Pcy are greatly needed to improve data on the epidemiology and management of human Pcy infection. There is a need for development of sensitive and specific molecular tools for individual diagnosis and epidemiological studies. The development of safe and efficient anti-hypnozoite drugs is the main therapeutic challenge for controlling human relapsing malaria parasites. Experience gained from P. knowlesi malaria, development of integrated measures and strategies—ideally with components related to human, monkeys, mosquito vectors, and environment—could be very helpful to prevent emergence of Pcy malaria in humans through disruption of transmission chain from monkeys to humans and ultimately contain its expansion in SEA and potential outbreaks in a context of malaria elimination.
Collapse
|
173
|
Wakoli DM, Ondigo BN, Ochora DO, Amwoma JG, Okore W, Mwakio EW, Chemwor G, Juma J, Okoth R, Okudo C, Yeda R, Opot BH, Cheruiyot AC, Juma D, Roth A, Ogutu BR, Boudreaux D, Andagalu B, Akala HM. Impact of parasite genomic dynamics on the sensitivity of Plasmodium falciparum isolates to piperaquine and other antimalarial drugs. BMC Med 2022; 20:448. [PMID: 36397090 PMCID: PMC9673313 DOI: 10.1186/s12916-022-02652-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dihydroartemisinin-piperaquine (DHA-PPQ) is an alternative first-line antimalarial to artemether-lumefantrine in Kenya. However, recent reports on the emergence of PPQ resistance in Southeast Asia threaten its continued use in Kenya and Africa. In line with the policy on continued deployment of DHA-PPQ, it is imperative to monitor the susceptibility of Kenyan parasites to PPQ and other antimalarials. METHODS Parasite isolates collected between 2008 and 2021 from individuals with naturally acquired P. falciparum infections presenting with uncomplicated malaria were tested for in vitro susceptibility to piperaquine, dihydroartemisinin, lumefantrine, artemether, and chloroquine using the malaria SYBR Green I method. A subset of the 2019-2021 samples was further tested for ex vivo susceptibility to PPQ using piperaquine survival assay (PSA). Each isolate was also characterized for mutations associated with antimalarial resistance in Pfcrt, Pfmdr1, Pfpm2/3, Pfdhfr, and Pfdhps genes using real-time PCR and Agena MassARRAY platform. Associations between phenotype and genotype were also determined. RESULTS The PPQ median IC50 interquartile range (IQR) remained stable during the study period, 32.70 nM (IQR 20.2-45.6) in 2008 and 27.30 nM (IQR 6.9-52.8) in 2021 (P=0.1615). The median ex vivo piperaquine survival rate (IQR) was 0% (0-5.27) at 95% CI. Five isolates had a PSA survival rate of ≥10%, consistent with the range of PPQ-resistant parasites, though they lacked polymorphisms in Pfmdr1 and Plasmepsin genes. Lumefantrine and artemether median IC50s rose significantly to 62.40 nM (IQR 26.9-100.8) (P = 0.0201); 7.00 nM (IQR 2.4-13.4) (P = 0.0021) in 2021 from 26.30 nM (IQR 5.1-64.3); and 2.70 nM (IQR 1.3-10.4) in 2008, respectively. Conversely, chloroquine median IC50s decreased significantly to 10.30 nM (IQR 7.2-20.9) in 2021 from 15.30 nM (IQR 7.6-30.4) in 2008, coinciding with a decline in the prevalence of Pfcrt 76T allele over time (P = 0.0357). The proportions of piperaquine-resistant markers including Pfpm2/3 and Pfmdr1 did not vary significantly. A significant association was observed between PPQ IC50 and Pfcrt K76T allele (P=0.0026). CONCLUSIONS Circulating Kenyan parasites have remained sensitive to PPQ and other antimalarials, though the response to artemether (ART) and lumefantrine (LM) is declining. This study forms a baseline for continued surveillance of current antimalarials for timely detection of resistance.
Collapse
Affiliation(s)
- Dancan M Wakoli
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton-Njoro, Kenya. .,Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.
| | - Bartholomew N Ondigo
- Department of Biochemistry and Molecular Biology, Egerton University, Egerton-Njoro, Kenya.,Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Douglas O Ochora
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Joseph G Amwoma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.,Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Winnie Okore
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.,Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Edwin W Mwakio
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Gladys Chemwor
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Jackeline Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Raphael Okoth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Charles Okudo
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Redemptah Yeda
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Benjamin H Opot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Agnes C Cheruiyot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Dennis Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Amanda Roth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Benhards R Ogutu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Daniel Boudreaux
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Ben Andagalu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya
| | - Hoseah M Akala
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/ Walter Reed Project, Kisumu, Kenya.
| |
Collapse
|
174
|
Emmanuel Chimeh E, Nicodemus Emeka N, Florence Nkechi N, Amaechi Linda O, Oka Samon A, Emmanuel Chigozie A, Parker Elijah J, Barine Innocent N, Ezike Tobechukwu C, Nwachukwu Philip A, Hope Chimbuezie N, Chidimma Peace E, Onyinye Mary-Jane O, Godspower Chima N, Theresa Chinyere E, Alotaibi Saqer S, Albogami Sarah M, Gaber El-Saber B. Bioactive Compounds, anti-inflammatory, anti-nociceptive and antioxidant potentials of ethanolic leaf fraction of Sida linifolia L. (Malvaceae). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
175
|
Duffy S, Avery VM. Naturally Acquired Kelch13 Mutations in Plasmodium falciparum Strains Modulate In Vitro Ring-Stage Artemisinin-Based Drug Tolerance and Parasite Survival in Response to Hyperoxia. Microbiol Spectr 2022; 10:e0128221. [PMID: 36094220 PMCID: PMC9602862 DOI: 10.1128/spectrum.01282-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/25/2022] [Indexed: 12/30/2022] Open
Abstract
The ring-stage survival assay was utilized to assess the impact of physiological hyperoxic stress on dihydroartemisinin (DHA) tolerance for a panel of Plasmodium falciparum strains with and without Kelch13 mutations. Strains without naturally acquired Kelch13 mutations or the postulated genetic background associated with delayed parasite clearance time demonstrated reduced proliferation under hyperoxic conditions in the subsequent proliferation cycle. Dihydroartemisinin tolerance in three isolates with naturally acquired Kelch13 mutations but not two genetically manipulated laboratory strains was modulated by in vitro hyperoxic stress exposure of early-ring-stage parasites in the cycle before drug exposure. Reduced parasite tolerance to additional derivatives, including artemisinin, artesunate, and OZ277, was observed within the second proliferation cycle. OZ439 and epoxomicin completely prevented parasite survival under both hyperoxia and normoxic in vitro culture conditions, highlighting the unique relationship between DHA tolerance and Kelch13 mutation-associated genetic background. IMPORTANCE Artemisinin-based combination therapy (ACT) for treating malaria is under intense scrutiny following treatment failures in the Greater Mekong subregion of Asia. This is further compounded by the potential for extensive loss of life if treatment failures extend to the African continent. Although Plasmodium falciparum has become resistant to all antimalarial drugs, artemisinin "resistance" does not present in the same way as resistance to other antimalarial drugs. Instead, a partial resistance or tolerance is demonstrated, associated with the parasite's genetic profile and linked to a molecular marker referred to as K13. It is suggested that parasites may have adapted to drug treatment, as well as the presence of underlying population health issues such as hemoglobinopathies, and/or environmental pressures, resulting in parasite tolerance to ACT. Understanding parasite evolution and control of artemisinin tolerance will provide innovative approaches to mitigate the development of artemisinin tolerance and thereby artemisinin-based drug treatment failure and loss of life globally to malaria infections.
Collapse
Affiliation(s)
- Sandra Duffy
- Discovery Biology, Griffith University, Nathan, Queensland, Australia
| | - Vicky M. Avery
- Discovery Biology, Griffith University, Nathan, Queensland, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
176
|
Decreased susceptibility of Plasmodium falciparum to both dihydroartemisinin and lumefantrine in northern Uganda. Nat Commun 2022; 13:6353. [PMID: 36289202 PMCID: PMC9605985 DOI: 10.1038/s41467-022-33873-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/06/2022] [Indexed: 12/25/2022] Open
Abstract
Artemisinin partial resistance may facilitate selection of Plasmodium falciparum resistant to combination therapy partner drugs. We evaluated 99 P. falciparum isolates collected in 2021 from northern Uganda, where resistance-associated PfK13 C469Y and A675V mutations have emerged, and eastern Uganda, where these mutations are uncommon. With the ex vivo ring survival assay, isolates with the 469Y mutation (median survival 7.3% for mutant, 2.5% mixed, and 1.4% wild type) and/or mutations in Pfcoronin or falcipain-2a, had significantly greater survival; all isolates with survival >5% had mutations in at least one of these proteins. With ex vivo growth inhibition assays, susceptibility to lumefantrine (median IC50 14.6 vs. 6.9 nM, p < 0.0001) and dihydroartemisinin (2.3 vs. 1.5 nM, p = 0.003) was decreased in northern vs. eastern Uganda; 14/49 northern vs. 0/38 eastern isolates had lumefantrine IC50 > 20 nM (p = 0.0002). Targeted sequencing of 819 isolates from 2015-21 identified multiple polymorphisms associated with altered drug susceptibility, notably PfK13 469Y with decreased susceptibility to lumefantrine (p = 6 × 10-8) and PfCRT mutations with chloroquine resistance (p = 1 × 10-20). Our results raise concern regarding activity of artemether-lumefantrine, the first-line antimalarial in Uganda.
Collapse
|
177
|
Mohring F, van Schalkwyk DA, Henrici RC, Blasco B, Leroy D, Sutherland CJ, Moon RW. Cation ATPase (ATP4) Orthologue Replacement in the Malaria Parasite Plasmodium knowlesi Reveals Species-Specific Responses to ATP4-Targeting Drugs. mBio 2022; 13:e0117822. [PMID: 36190127 PMCID: PMC9600963 DOI: 10.1128/mbio.01178-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Several unrelated classes of antimalarial compounds developed against Plasmodium falciparum target a parasite-specific P-type ATP-dependent Na+ pump, PfATP4. We have previously shown that other malaria parasite species infecting humans are less susceptible to these compounds. Here, we generated a series of transgenic Plasmodium knowlesi orthologue replacement (OR) lines in which the endogenous pkatp4 locus was replaced by a recodonized P. knowlesi atp4 (pkatp4) coding region or the orthologous coding region from P. falciparum, Plasmodium malariae, Plasmodium ovale subsp. curtisi, or Plasmodium vivax. Each OR transgenic line displayed a similar growth pattern to the parental P. knowlesi line. We found significant orthologue-specific differences in parasite susceptibility to three chemically unrelated ATP4 inhibitors, but not to comparator drugs, among the P. knowlesi OR lines. The PfATP4OR transgenic line of P. knowlesi was significantly more susceptible than our control PkATP4OR line to three ATP4 inhibitors: cipargamin, PA21A092, and SJ733. The PvATP4OR and PmATP4OR lines were similarly susceptible to the control PkATP4OR line, but the PocATP4OR line was significantly less susceptible to all ATP4 inhibitors than the PkATP4OR line. Cipargamin-induced inhibition of Na+ efflux was also significantly greater with the P. falciparum orthologue of ATP4. This confirms that species-specific susceptibility differences previously observed in ex vivo studies of human isolates are partly or wholly enshrined in the primary amino acid sequences of the respective ATP4 orthologues and highlights the need to monitor efficacy of investigational malaria drugs against multiple species. P. knowlesi is now established as an important in vitro model for studying drug susceptibility in non-falciparum malaria parasites. IMPORTANCE Effective drugs are vital to minimize the illness and death caused by malaria. Development of new drugs becomes ever more urgent as drug resistance emerges. Among promising compounds now being developed to treat malaria are several unrelated molecules that each inhibit the same protein in the malaria parasite-ATP4. Here, we exploited the genetic tractability of P. knowlesi to replace its own ATP4 genes with orthologues from five human-infective species to understand the drug susceptibility differences among these parasites. We previously estimated the susceptibility to ATP4-targeting drugs of each species using clinical samples from malaria patients. These estimates closely matched those of the corresponding "hybrid" P. knowlesi parasites carrying introduced ATP4 genes. Thus, species-specific ATP4 inhibitor efficacy is directly determined by the sequence of the gene. Our novel approach to understanding cross-species susceptibility/resistance can strongly support the effort to develop antimalarials that effectively target all human malaria parasite species.
Collapse
Affiliation(s)
- Franziska Mohring
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Donelly A. van Schalkwyk
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ryan C. Henrici
- Center for Global Health, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Colin J. Sutherland
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- UK Health Security Agency Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robert W. Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
178
|
Zhao W, Li X, Yang Q, Zhou L, Duan M, Pan M, Qin Y, Li X, Wang X, Zeng W, Zhao H, Sun K, Zhu W, Afrane Y, Amoah LE, Abuaku B, Duah-Quashie NO, Huang Y, Cui L, Yang Z. In vitro susceptibility profile of Plasmodium falciparum clinical isolates from Ghana to antimalarial drugs and polymorphisms in resistance markers. Front Cell Infect Microbiol 2022; 12:1015957. [PMID: 36310880 PMCID: PMC9614232 DOI: 10.3389/fcimb.2022.1015957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
Drug resistance in Plasmodium falciparum compromises the effectiveness of antimalarial therapy. This study aimed to evaluate the extent of drug resistance in parasites obtained from international travelers returning from Ghana to guide the management of malaria cases. Eighty-two clinical parasite isolates were obtained from patients returning from Ghana in 2016-2018, of which 29 were adapted to continuous in vitro culture. Their geometric mean IC50 values to a panel of 11 antimalarial drugs, assessed using the standard SYBR Green-I drug sensitivity assay, were 2.1, 3.8, 1.0, 2.7, 17.2, 4.6, 8.3, 8.3, 19.6, 55.1, and 11,555 nM for artemether, artesunate, dihydroartemisinin, lumefantrine, mefloquine, piperaquine, naphthoquine, pyronaridine, chloroquine, quinine, and pyrimethamine, respectively. Except for chloroquine and pyrimethamine, the IC50 values for other tested drugs were below the resistance threshold. The mean ring-stage survival assay value was 0.8%, with four isolates exceeding 1%. The mean piperaquine survival assay value was 2.1%, all below 10%. Mutations associated with chloroquine resistance (pfcrt K76T and pfmdr1 N86Y) were scarce, consistent with the discontinuation of chloroquine a decade ago. Instead, the pfmdr1 86N-184F-1246D haplotype was predominant, suggesting selection by the extensive use of artemether-lumefantrine. No mutations in the pfk13 propeller domain were detected. The pfdhfr/pfdhps quadruple mutant IRNGK associated with resistance to sulfadoxine-pyrimethamine reached an 82% prevalence. In addition, five isolates had pfgch1 gene amplification but, intriguingly, increased susceptibilities to pyrimethamine. This study showed that parasites originating from Ghana were susceptible to artemisinins and the partner drugs of artemisinin-based combination therapies. Genotyping drug resistance genes identified the signature of selection by artemether-lumefantrine. Parasites showed substantial levels of resistance to the antifolate drugs. Continuous resistance surveillance is necessary to guide timely changes in drug policy.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Xinxin Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Qi Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Longcan Zhou
- Department of Infectious Diseases, Shanglin County People’s Hospital, Guangxi, China
| | - Mengxi Duan
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Maohua Pan
- Department of Infectious Diseases, Shanglin County People’s Hospital, Guangxi, China
| | - Yucheng Qin
- Department of Infectious Diseases, Shanglin County People’s Hospital, Guangxi, China
| | - Xiaosong Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Xun Wang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Hui Zhao
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Kemin Sun
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Wenya Zhu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yaw Afrane
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Benjamin Abuaku
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Nancy Odurowah Duah-Quashie
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Yaming Huang
- Department of Protozoan Diseases, Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Nanning, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| |
Collapse
|
179
|
Rogier E, McCaffery JN, Mohamed MA, Herman C, Nace D, Daniels R, Lucchi N, Jones S, Goldman I, Aidoo M, Cheng Q, Kemenang EA, Udhayakumar V, Cunningham J. Plasmodium falciparum pfhrp2 and pfhrp3 Gene Deletions and Relatedness to Other Global Isolates, Djibouti, 2019-2020. Emerg Infect Dis 2022; 28:2043-2050. [PMID: 36148905 PMCID: PMC9514350 DOI: 10.3201/eid2810.220695] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deletions of pfhrp2 and paralogue pfhrp3 (pfhrp2/3) genes threaten Plasmodium falciparum diagnosis by rapid diagnostic test. We examined 1,002 samples from suspected malaria patients in Djibouti City, Djibouti, to investigate pfhrp2/3 deletions. We performed assays for Plasmodium antigen carriage, pfhrp2/3 genotyping, and sequencing for 7 neutral microsatellites to assess relatedness. By PCR assay, 311 (31.0%) samples tested positive for P. falciparum infection, and 296 (95.2%) were successfully genotyped; 37 (12.5%) samples were pfhrp2+/pfhrp3+, 51 (17.2%) were pfhrp2+/pfhrp3-, 5 (1.7%) were pfhrp2-/pfhrp3+, and 203 (68.6%) were pfhrp2-/pfhrp3-. Histidine-rich protein 2/3 antigen concentrations were reduced with corresponding gene deletions. Djibouti P. falciparum is closely related to Ethiopia and Eritrea parasites (pairwise GST 0.68 [Ethiopia] and 0.77 [Eritrea]). P. falciparum with deletions in pfhrp2/3 genes were highly prevalent in Djibouti City in 2019-2020; they appear to have arisen de novo within the Horn of Africa and have not been imported.
Collapse
|
180
|
Ward KE, Fidock DA, Bridgford JL. Plasmodium falciparum resistance to artemisinin-based combination therapies. Curr Opin Microbiol 2022; 69:102193. [PMID: 36007459 PMCID: PMC9847095 DOI: 10.1016/j.mib.2022.102193] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023]
Abstract
Multidrug-resistant Plasmodium falciparum parasites are a major threat to public health in intertropical regions. Understanding the mechanistic basis, origins, and spread of resistance can inform strategies to mitigate its impact and reduce the global burden of malaria. The recent emergence in Africa of partial resistance to artemisinins, the core component of first-line combination therapies, is particularly concerning. Here, we review recent advances in elucidating the mechanistic basis of artemisinin resistance, driven primarily by point mutations in P. falciparum Kelch13, a key regulator of hemoglobin endocytosis and parasite response to artemisinin-induced stress. We also review resistance to partner drugs, including piperaquine and mefloquine, highlighting a key role for plasmepsins 2/3 and the drug and solute transporters P. falciparum chloroquine-resistance transporter and P. falciparum multidrug-resistance protein-1.
Collapse
Affiliation(s)
- Kurt E Ward
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Jessica L Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
181
|
Hanboonkunupakarn B, Tarning J, Pukrittayakamee S, Chotivanich K. Artemisinin resistance and malaria elimination: Where are we now? Front Pharmacol 2022; 13:876282. [PMID: 36210819 PMCID: PMC9538393 DOI: 10.3389/fphar.2022.876282] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
The emergence of artemisinin resistance is a major obstacle to the global malaria eradication/elimination programs. Artemisinin is a very fast-acting antimalarial drug and is the most important drug in the treatment of severe and uncomplicated malaria. For the treatment of acute uncomplicated falciparum malaria, artemisinin derivatives are combined with long half-life partner drugs and widely used as artemisinin-based combination therapies (ACTs). Some ACTs have shown decreased efficacy in the Southeast Asian region. Fortunately, artemisinin has an excellent safety profile and resistant infections can still be treated successfully by modifying the ACT. This review describes the pharmacological properties of ACTs, mechanisms of artemisinin resistance and the potential changes needed in the treatment regimens to overcome resistance. The suggested ACT modifications are extension of the duration of the ACT course, alternating use of different ACT regimens, and addition of another antimalarial drug to the standard ACTs (Triple-ACT). Furthermore, a malaria vaccine (e.g., RTS,S vaccine) could be added to mass drug administration (MDA) campaigns to enhance the treatment efficacy and to prevent further artemisinin resistance development. This review concludes that artemisinin remains the most important antimalarial drug, despite the development of drug-resistant falciparum malaria.
Collapse
Affiliation(s)
- Borimas Hanboonkunupakarn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sasithon Pukrittayakamee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- The Royal Society of Thailand, Bangkok, Thailand
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- The Royal Society of Thailand, Bangkok, Thailand
- *Correspondence: Kesinee Chotivanich,
| |
Collapse
|
182
|
Persistence of Residual Submicroscopic P. falciparum Parasitemia following Treatment of Artemether-Lumefantrine in Ethio-Sudan Border, Western Ethiopia. Antimicrob Agents Chemother 2022; 66:e0000222. [PMID: 35993723 PMCID: PMC9487599 DOI: 10.1128/aac.00002-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of artemisinin-resistant parasites in Africa has had a devastating impact, causing most malaria cases and related deaths reported on the continent. In Ethiopia, artemether-lumefantrine (AL) is the first-line drug for the treatment of uncomplicated falciparum malaria. This study is one of the earliest evaluations of artemether-lumefantrine (AL) efficacy in western Ethiopia, 17 years after the introduction of this drug in the study area. This study aimed at assessing PCR- corrected clinical and parasitological responses at 28 days following AL treatment. Sixty uncomplicated falciparum malaria patients were enrolled, treated with standard doses of AL, and monitored for 28 days with clinical and parasitological assessments from September 15 to December 15, 2020. Microscopy was used for patient recruitment and molecular diagnosis of P. falciparum was performed by Var gene acidic terminal sequence (varATS) real-time PCR on dried blood spots collected from each patient from day 0 and on follow-up days 1, 2, 3, 7, 14, 21, and 28. MspI and msp2 genotyping was done to confirm occurrence of recrudescence. Data entry and analysis were done by using the WHO-designed Excel spreadsheet and SPSS version 20 for Windows. A P value of less or equal to 0.05 was considered significant. From a total of 60 patients enrolled in this efficacy study, 10 were lost to follow-up; the results were analyzed for 50 patients. All the patients were fever-free on day 3. The asexual parasite positivity rate on day 3 was zero. However; 60% of the patients were PCR positive on day 3. PCR positivity on day 3 was more common among patients <15 years old as compared with those ≥15 years old (AOR = 6.44, P = 0.027). Only two patients met the case definition of treatment failure. These patients were classified as a late clinical failure as they showed symptoms of malaria and asexual stages of the parasite detected by microscopy on day 14 of their follow-ups. Hence, the Kaplan-Meier analysis of PCR- corrected adequate clinical and parasitological response (ACPR) rate of AL among study participants was 96% (95% CI: 84.9-99). In seven patients, the residual submicroscopic parasitemia persists from day 0 to day 28 of the follow-up. In addition, 16% (8/50) of patients were PCR- and then turned PCR+ after day 7 of the follow-up. AL remains efficacious for the treatment of uncomplicated falciparum malaria in the study area. However, the persistence of PCR-detected residual submicroscopic parasitemia following AL might compromise this treatment and need careful monitoring.
Collapse
|
183
|
Efficacy of Artemether-Lumefantrine and Dihydroartemisinin-Piperaquine for the Treatment of Uncomplicated Plasmodium falciparum Malaria among Children in Western Kenya, 2016 to 2017. Antimicrob Agents Chemother 2022; 66:e0020722. [PMID: 36036611 PMCID: PMC9487560 DOI: 10.1128/aac.00207-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimalarial resistance threatens global malaria control efforts. The World Health Organization (WHO) recommends routine antimalarial efficacy monitoring through a standardized therapeutic efficacy study (TES) protocol. From June 2016 to March 2017, children with uncomplicated P. falciparum mono-infection in Siaya County, Kenya were enrolled into a standardized TES and randomized (1:1 ratio) to a 3-day course of artemether-lumefantrine (AL) or dihydroartemisinin-piperaquine (DP). Efficacy outcomes were measured at 28 and 42 days. A total of 340 children were enrolled. All but one child cleared parasites by day 3. PCR-corrected adequate clinical and parasitological response (ACPR) was 88.5% (95% CI: 80.9 to 93.3%) at day 28 for AL and 93.0% (95% CI: 86.9 to 96.4%) at day 42 for DP. There were 9.6 times (95% CI: 3.4 to 27.2) more reinfections in the AL arm compared to the DP arm at day 28, and 3.1 times (95% CI: 1.9 to 4.9) more reinfections at day 42. Both AL and DP were efficacious (per WHO 90% cutoff in the confidence interval) and well tolerated for the treatment of uncomplicated malaria in western Kenya, but AL efficacy appears to be waning. Further efficacy monitoring for AL, including pharmacokinetic studies, is recommended.
Collapse
|
184
|
Edgar RCS, Siddiqui G, Hjerrild K, Malcolm TR, Vinh NB, Webb CT, Holmes C, MacRaild CA, Chernih HC, Suen WW, Counihan NA, Creek DJ, Scammells PJ, McGowan S, de Koning-Ward TF. Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway. eLife 2022; 11:e80813. [PMID: 36097817 PMCID: PMC9470162 DOI: 10.7554/elife.80813] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum, the causative agent of malaria, remains a global health threat as parasites continue to develop resistance to antimalarial drugs used throughout the world. Accordingly, drugs with novel modes of action are desperately required to combat malaria. P. falciparum parasites infect human red blood cells where they digest the host's main protein constituent, hemoglobin. Leucine aminopeptidase PfA-M17 is one of several aminopeptidases that have been implicated in the last step of this digestive pathway. Here, we use both reverse genetics and a compound specifically designed to inhibit the activity of PfA-M17 to show that PfA-M17 is essential for P. falciparum survival as it provides parasites with free amino acids for growth, many of which are highly likely to originate from hemoglobin. We further show that loss of PfA-M17 results in parasites exhibiting multiple digestive vacuoles at the trophozoite stage. In contrast to other hemoglobin-degrading proteases that have overlapping redundant functions, we validate PfA-M17 as a potential novel drug target.
Collapse
Affiliation(s)
- Rebecca CS Edgar
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | | | - Tess R Malcolm
- Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityMelbourneAustralia
| | - Natalie B Vinh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Chaille T Webb
- Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityMelbourneAustralia
| | - Clare Holmes
- CSIRO Australian Centre for Disease PreparednessGeelongAustralia
| | - Christopher A MacRaild
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Hope C Chernih
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Willy W Suen
- CSIRO Australian Centre for Disease PreparednessGeelongAustralia
| | - Natalie A Counihan
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash UniversityParkvilleAustralia
| | - Sheena McGowan
- Biomedicine Discovery Institute and Department of Microbiology, Monash UniversityClaytonAustralia
- Centre to Impact AMR, Monash UniversityMelbourneAustralia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin UniversityGeelongAustralia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin UniversityGeelongAustralia
| |
Collapse
|
185
|
Temporal trends in molecular markers of drug resistance in Plasmodium falciparum in human blood and profiles of corresponding resistant markers in mosquito oocysts in Asembo, western Kenya. Malar J 2022; 21:265. [PMID: 36100912 PMCID: PMC9472345 DOI: 10.1186/s12936-022-04284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the last two decades, the scale-up of vector control and changes in the first-line anti-malarial, from chloroquine (CQ) to sulfadoxine-pyrimethamine (SP) and then to artemether-lumefantrine (AL), have resulted in significant decreases in malaria burden in western Kenya. This study evaluated the long-term effects of control interventions on molecular markers of Plasmodium falciparum drug resistance using parasites obtained from humans and mosquitoes at discrete time points. METHODS Dried blood spot samples collected in 2012 and 2017 community surveys in Asembo, Kenya were genotyped by Sanger sequencing for markers associated with resistance to SP (Pfdhfr, Pfdhps), CQ, AQ, lumefantrine (Pfcrt, Pfmdr1) and artemisinin (Pfk13). Temporal trends in the prevalence of these markers, including data from 2012 to 2017 as well as published data from 1996, 2001, 2007 from same area, were analysed. The same markers from mosquito oocysts collected in 2012 were compared with results from human blood samples. RESULTS The prevalence of SP dhfr/dhps quintuple mutant haplotype C50I51R59N108I164/S436G437E540A581A613 increased from 19.7% in 1996 to 86.0% in 2012, while an increase in the sextuple mutant haplotype C50I51R59N108I164/H436G437E540A581A613 containing Pfdhps-436H was found from 10.5% in 2012 to 34.6% in 2017. Resistant Pfcrt-76 T declined from 94.6% in 2007 to 18.3% in 2012 and 0.9% in 2017. Mutant Pfmdr1-86Y decreased across years from 74.8% in 1996 to zero in 2017, mutant Pfmdr1-184F and wild Pfmdr1-D1246 increased from 17.9% to 58.9% in 2007 to 55.9% and 90.1% in 2017, respectively. Pfmdr1 haplotype N86F184S1034N1042D1246 increased from 11.0% in 2007 to 49.6% in 2017. No resistant mutations in Pfk13 were found. Prevalence of Pfdhps-436H was lower while prevalence of Pfcrt-76 T was higher in mosquitoes than in human blood samples. CONCLUSION This study showed an increased prevalence of dhfr/dhps resistant markers over 20 years with the emergence of Pfdhps-436H mutant a decade ago in Asembo. The reversal of Pfcrt from CQ-resistant to CQ-sensitive genotype occurred following 19 years of CQ withdrawal. No Pfk13 markers associated with artemisinin resistance were detected, but the increased haplotype of Pfmdr1 N86F184S1034N1042D1246 was observed. The differences in prevalence of Pfdhps-436H and Pfcrt-76 T SNPs between two hosts and the role of mosquitoes in the transmission of drug resistant parasites require further investigation.
Collapse
|
186
|
Ethical considerations in deploying triple artemisinin-based combination therapies for malaria: An analysis of stakeholders’ perspectives in Burkina Faso and Nigeria. PLoS One 2022; 17:e0273249. [PMID: 36083995 PMCID: PMC9462557 DOI: 10.1371/journal.pone.0273249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Background Artemisinin-based combination therapies (ACTs) are the recommended treatment for uncomplicated Plasmodium falciparum malaria in all malaria endemic countries. Artemisinin resistance, partner drug resistance, and subsequent ACT failure are widespread in Southeast Asia. The more recent independent emergence of artemisinin resistance in Africa is alarming. In response, triple artemisinin-based combination therapies (TACTs) are being developed to mitigate the risks associated with increasing drug resistance. Since ACTs are still effective in Africa, where malaria is mainly a paediatric disease, the potential deployment of TACTs raises important ethical questions. This paper presents an analysis of stakeholders’ perspectives regarding key ethical considerations to be considered in the deployment of TACTs in Africa provided they are found to be safe, well-tolerated and effective for the treatment of uncomplicated malaria. Methods We conducted a qualitative study in Burkina Faso and Nigeria assessing stakeholders’ (policy makers, suppliers and end-users) perspectives on ethical issues regarding the potential future deployment of TACTs through 68 in-depth interviews and 11 focus group discussions. Findings Some respondents suggested that there should be evidence of local artemisinin resistance before they consider deploying TACTs, while others suggested that TACTs should be deployed to protect the efficacy of current ACTs. Respondents suggested that additional side effects of TACTs compared to ACTs should be minimal and the cost of TACTs to end-users should not be higher than the cost of current ACTs. There was some disagreement among respondents regarding whether patients should have a choice of treatment options between ACTs and TACTs or only have TACTs available, while ACTs are still effective. The study also suggests that community, public and stakeholder engagement activities are essential to support the introduction and effective uptake of TACTs. Conclusion Addressing ethical issues regarding TACTs and engaging early with stakeholders will be important for their potential deployment in Africa.
Collapse
|
187
|
Valenciano AL, Gomez-Lorenzo MG, Vega-Rodríguez J, Adams JH, Roth A. In vitro models for human malaria: targeting the liver stage. Trends Parasitol 2022; 38:758-774. [PMID: 35780012 PMCID: PMC9378454 DOI: 10.1016/j.pt.2022.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
The Plasmodium liver stage represents a vulnerable therapeutic target to prevent disease progression as the parasite resides in the liver before clinical representation caused by intraerythrocytic development. However, most antimalarial drugs target the blood stage of the parasite's life cycle, and the few drugs that target the liver stage are lethal to patients with a glucose-6-phosphate dehydrogenase deficiency. Furthermore, implementation of in vitro liver models to study and develop novel therapeutics against the liver stage of human Plasmodium species remains challenging. In this review, we focus on the progression of in vitro liver models developed for human Plasmodium spp. parasites, provide a brief review on important assay requirements, and lastly present recommendations to improve models to enhance the discovery process of novel preclinical therapeutics.
Collapse
Affiliation(s)
- Ana Lisa Valenciano
- Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA; Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Maria G Gomez-Lorenzo
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Joel Vega-Rodríguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
188
|
Nana RRD, Bayengue SSB, Mogtomo MLK, Ngane ARN, Singh V. Anti-folate quintuple mutations in Plasmodium falciparum asymptomatic infections in Yaoundé, Cameroon. Parasitol Int 2022; 92:102657. [PMID: 36038059 DOI: 10.1016/j.parint.2022.102657] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/07/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
Abstract
A major challenge in the fight to effectively control malaria is the emergence of resistant parasite to drugs used in therapy as well as for chemoprevention. In this study, single nucleotide polymorphisms (SNPs) associated with Plasmodium falciparum resistance to sulfadoxine-pyrimethamine (SP), one of the partner drugs in artemisinin-based therapies (ACTs) were studied in asymptomatic P. falciparum isolates from Cameroon. Dried Blood spots were collected from children with asymptomatic malaria enrolled during a household survey. The P. falciparum dihydrofolate reductase (Pfdhfr), dihydropteroate synthase (Pfdhps) and Kelch 13 genes were amplified and point mutations in these gene sequences were analyzed by sequencing. Among a total of 234 samples collected, 51 showed parasitaemia after microscopic examination of which 47 were P. falciparum mono-infections. Molecular analysis revealed 97.3% of mutant alleles at codons 51I, 59R and 108 N in Pfdhfr gene. In Pfdhps gene the most common mutation was 437G (83.3%); followed by 436A (47.6%) and 436F (28.6%). The association of mutations in the two genes (dhfr + dhps) showed 11 different haplotypes including three sextuple mutants (IRNI + AGKGA, IRNI + AAKGS, IRNI + AGKAS) and one septuple mutant (IRNI + AGKGS). For K13 gene no SNPs were seen in the studied asymptomatic malaria samples. The findings revealed presence of SP-resistant alleles in asymptomatic infected individuals with presence of sextuples and septuple SNPs. This emphasizes that regular profiling of antimalarial drugs resistance markers in such population is essential for malaria control and elimination programmes.
Collapse
Affiliation(s)
- Rodrigue Roman Dongang Nana
- Institute of Medical Research and Medicinal Plants studies, PO Box 13033, Yaoundé, Cameroon; ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New Delhi 110077, India
| | | | | | - Anne Rosalie Ngono Ngane
- Department of Biochemistry, Faculty of Science, University of Douala, PO Box 24157, Douala, Cameroon
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research, Dwarka, Sector 8, New Delhi 110077, India.
| |
Collapse
|
189
|
Tandoh KZ, Hagan OC, Wilson MD, Quashie NB, Duah-Quashie NO. Transcriptome-module phenotype association study implicates extracellular vesicles biogenesis in Plasmodium falciparum artemisinin resistance. Front Cell Infect Microbiol 2022; 12:886728. [PMID: 36061874 PMCID: PMC9437462 DOI: 10.3389/fcimb.2022.886728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Plasmodium falciparum malaria is still an important disease in sub-Saharan Africa (sSA). Great strides have been made in its control spear-headed by artemisinin (ART)-based combination therapies (ACTs). However, concerns about the imminent spread of ART-resistant (ARTr) malaria parasites to sSA threaten gains already made. Attempts to mitigate this risk have highlighted the need to discover novel P. falciparum drug targets. Therefore, studies to deepen our understanding of the biology of P. falciparum are needed. The role of extracellular vesicles (EVs) in the biology of malaria parasites is not fully understood. Recently, the ART resistance-associated transcriptional profile has been reported to involve several biological processes connected to vesicular trafficking, proteotoxic stress, erythrocyte remodelling, and mitochondrial metabolism. We explored a role for EVs in developing the P. falciparum ARTr phenotype using bulk RNA sequencing of unsynchronized parasite cultures under untreated, 0.1% dimethyl sulfoxide and 700nM dihydroartemisinin treated conditions for six hours. As pathway and gene ontology analysis is limited in its curated knowledge repertoire on EVs biogenesis in P. falciparum, we used a modular (gene set) analysis approach to explore whether an EVs biogenesis module is associated with the ARTr phenotype in P. falciparum. We first generated well-defined EVs modules of interest and used statistical tools to determine differences in their expression among the parasite and treatment conditions. Then we used gene set enrichment analysis to determine the strength of the association between each EVs module of interest and the ARTr phenotype. This transcriptome-module phenotype association study (TMPAS) represents a well-powered approach to making meaningful discoveries out of bulk gene expression data. We identified four EVs module of interest and report that one module representing gene sets with correlated expression to PF3D7_1441800 – involved with EVs biogenesis in P. falciparum - is associated with the ARTr phenotype (R539T_DHA_treated versus R539T_untreated: normalized enrichment score (NES) = 1.1830174, FDR q-value < 0.25; C580R_DHA_treated versus C580R_untreated: NES = 1.2457103, FDR q-value < 0.25). PF3D7_1441800 has been reported to reduce EVs production when knocked out in P. falciparum. Altogether, our findings suggest a role for EVs in developing ART resistance and warrant further studies interrogating this association.
Collapse
Affiliation(s)
- Kwesi Z. Tandoh
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- *Correspondence: Nancy O. Duah-Quashie, ; Kwesi Z. Tandoh,
| | - Oheneba C. Hagan
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell, and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Neils B. Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- Centre for Tropical Clinical Pharmacology and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Nancy O. Duah-Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- *Correspondence: Nancy O. Duah-Quashie, ; Kwesi Z. Tandoh,
| |
Collapse
|
190
|
Han KT, Han ZY, Zainabadi K. Developing Molecular Surveillance Capacity for Asymptomatic and Drug-Resistant Malaria in a Resource-Limited Setting-Experiences and Lessons Learned. Am J Trop Med Hyg 2022; 107:222-230. [PMID: 35895423 PMCID: PMC9393433 DOI: 10.4269/ajtmh.21-0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/15/2021] [Indexed: 08/03/2023] Open
Abstract
The COVID-19 pandemic has highlighted the important role molecular surveillance plays in public health. Such capacity however is either weak or nonexistent in many low-income countries. This article outlines a 2-year effort to establish two high-throughput molecular surveillance laboratories in Myanmar for tracking asymptomatic and drug resistant Plasmodium falciparum malaria. The lessons learned from this endeavor may prove useful for others seeking to establish similar molecular surveillance capacity in other resource-limited settings.
Collapse
Affiliation(s)
- Kay Thwe Han
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Zay Yar Han
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Kayvan Zainabadi
- Center for Global Health, Weill Cornell Medicine, New York, New York
| |
Collapse
|
191
|
Komatsuya K, Sakura T, Shiomi K, Ōmura S, Hikosaka K, Nozaki T, Kita K, Inaoka DK. Siccanin Is a Dual-Target Inhibitor of Plasmodium falciparum Mitochondrial Complex II and Complex III. Pharmaceuticals (Basel) 2022; 15:ph15070903. [PMID: 35890202 PMCID: PMC9319939 DOI: 10.3390/ph15070903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
Plasmodium falciparum contains several mitochondrial electron transport chain (ETC) dehydrogenases shuttling electrons from the respective substrates to the ubiquinone pool, from which electrons are consecutively transferred to complex III, complex IV, and finally to the molecular oxygen. The antimalarial drug atovaquone inhibits complex III and validates this parasite’s ETC as an attractive target for chemotherapy. Among the ETC dehydrogenases from P. falciparum, dihydroorotate dehydrogenase, an essential enzyme used in de novo pyrimidine biosynthesis, and complex III are the two enzymes that have been characterized and validated as drug targets in the blood-stage parasite, while complex II has been shown to be essential for parasite survival in the mosquito stage; therefore, these enzymes and complex II are considered candidate drug targets for blocking parasite transmission. In this study, we identified siccanin as the first (to our knowledge) nanomolar inhibitor of the P. falciparum complex II. Moreover, we demonstrated that siccanin also inhibits complex III in the low-micromolar range. Siccanin did not inhibit the corresponding complexes from mammalian mitochondria even at high concentrations. Siccanin inhibited the growth of P. falciparum with IC50 of 8.4 μM. However, the growth inhibition of the P. falciparum blood stage did not correlate with ETC inhibition, as demonstrated by lack of resistance to siccanin in the yDHODH-3D7 (EC50 = 10.26 μM) and Dd2-ELQ300 strains (EC50 = 18.70 μM), suggesting a third mechanism of action that is unrelated to mitochondrial ETC inhibition. Hence, siccanin has at least a dual mechanism of action, being the first potent and selective inhibitor of P. falciparum complexes II and III over mammalian enzymes and so is a potential candidate for the development of a new class of antimalarial drugs.
Collapse
Affiliation(s)
- Keisuke Komatsuya
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takaya Sakura
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan;
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
| | - Kazuro Shiomi
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan;
| | - Satoshi Ōmura
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo 108-8641, Japan;
| | - Kenji Hikosaka
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
- Correspondence: (K.K.); (D.K.I.); Tel.: +81-95-819-7575 (K.K.); +81-95-819-7230 (D.K.I.)
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan;
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Correspondence: (K.K.); (D.K.I.); Tel.: +81-95-819-7575 (K.K.); +81-95-819-7230 (D.K.I.)
| |
Collapse
|
192
|
Lyons FMT, Gabriela M, Tham WH, Dietrich MH. Plasmodium 6-Cysteine Proteins: Functional Diversity, Transmission-Blocking Antibodies and Structural Scaffolds. Front Cell Infect Microbiol 2022; 12:945924. [PMID: 35899047 PMCID: PMC9309271 DOI: 10.3389/fcimb.2022.945924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
The 6-cysteine protein family is one of the most abundant surface antigens that are expressed throughout the Plasmodium falciparum life cycle. Many members of the 6-cysteine family have critical roles in parasite development across the life cycle in parasite transmission, evasion of the host immune response and host cell invasion. The common feature of the family is the 6-cysteine domain, also referred to as s48/45 domain, which is conserved across Aconoidasida. This review summarizes the current approaches for recombinant expression for 6-cysteine proteins, monoclonal antibodies against 6-cysteine proteins that block transmission and the growing collection of crystal structures that provide insights into the functional domains of this protein family.
Collapse
Affiliation(s)
- Frankie M. T. Lyons
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Mikha Gabriela
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Melanie H. Dietrich
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
193
|
Masserey T, Lee T, Golumbeanu M, Shattock AJ, Kelly SL, Hastings IM, Penny MA. The influence of biological, epidemiological, and treatment factors on the establishment and spread of drug-resistant Plasmodium falciparum. eLife 2022; 11:e77634. [PMID: 35796430 PMCID: PMC9262398 DOI: 10.7554/elife.77634] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
The effectiveness of artemisinin-based combination therapies (ACTs) to treat Plasmodium falciparum malaria is threatened by resistance. The complex interplay between sources of selective pressure-treatment properties, biological factors, transmission intensity, and access to treatment-obscures understanding how, when, and why resistance establishes and spreads across different locations. We developed a disease modelling approach with emulator-based global sensitivity analysis to systematically quantify which of these factors drive establishment and spread of drug resistance. Drug resistance was more likely to evolve in low transmission settings due to the lower levels of (i) immunity and (ii) within-host competition between genotypes. Spread of parasites resistant to artemisinin partner drugs depended on the period of low drug concentration (known as the selection window). Spread of partial artemisinin resistance was slowed with prolonged parasite exposure to artemisinin derivatives and accelerated when the parasite was also resistant to the partner drug. Thus, to slow the spread of partial artemisinin resistance, molecular surveillance should be supported to detect resistance to partner drugs and to change ACTs accordingly. Furthermore, implementing more sustainable artemisinin-based therapies will require extending parasite exposure to artemisinin derivatives, and mitigating the selection windows of partner drugs, which could be achieved by including an additional long-acting drug.
Collapse
Affiliation(s)
- Thiery Masserey
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Tamsin Lee
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Monica Golumbeanu
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Andrew J Shattock
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Sherrie L Kelly
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Ian M Hastings
- Liverpool School of Tropical MedicineLiverpoolUnited Kingdom
| | - Melissa A Penny
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
194
|
Kagoro FM, Allen E, Mabuza A, Workman L, Magagula R, Kok G, Davies C, Malatje G, Guérin PJ, Dhorda M, Maude RJ, Raman J, Barnes KI. Making data map-worthy-enhancing routine malaria data to support surveillance and mapping of Plasmodium falciparum anti-malarial resistance in a pre-elimination sub-Saharan African setting: a molecular and spatiotemporal epidemiology study. Malar J 2022; 21:207. [PMID: 35768869 PMCID: PMC9244181 DOI: 10.1186/s12936-022-04224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/29/2022] [Indexed: 11/15/2022] Open
Abstract
Background Independent emergence and spread of artemisinin-resistant Plasmodium falciparum malaria have recently been confirmed in Africa, with molecular markers associated with artemisinin resistance increasingly detected. Surveillance to promptly detect and effectively respond to anti-malarial resistance is generally suboptimal in Africa, especially in low transmission settings where therapeutic efficacy studies are often not feasible due to recruitment challenges. However, these communities may be at higher risk of anti-malarial resistance. Methods From March 2018 to February 2020, a sequential mixed-methods study was conducted to evaluate the feasibility of the near-real-time linkage of individual patient anti-malarial resistance profiles with their case notifications and treatment response reports, and map these to fine scales in Nkomazi sub-district, Mpumalanga, a pre-elimination area in South Africa. Results Plasmodium falciparum molecular marker resistance profiles were linked to 55.1% (2636/4787) of notified malaria cases, 85% (2240/2636) of which were mapped to healthcare facility, ward and locality levels. Over time, linkage of individual malaria case demographic and molecular data increased to 75.1%. No artemisinin resistant validated/associated Kelch-13 mutations were detected in the 2385 PCR positive samples. Almost all 2812 samples assessed for lumefantrine susceptibility carried the wildtype mdr86ASN and crt76LYS alleles, potentially associated with decreased lumefantrine susceptibility. Conclusion Routine near-real-time mapping of molecular markers associated with anti-malarial drug resistance on a fine spatial scale provides a rapid and efficient early warning system for emerging resistance. The lessons learnt here could inform scale-up to provincial, national and regional malaria elimination programmes, and may be relevant for other antimicrobial resistance surveillance. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04224-4.
Collapse
Affiliation(s)
- Frank M Kagoro
- Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town (UCT), Cape Town, South Africa.,Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,WorldWide Antimalarial Resistance Network (WWARN), Southern African Regional Hub, Division of Clinical Pharmacology, Department of Medicine, UCT, Mbombela, South Africa.,Infectious Diseases Data Observatory (IDDO), Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth Allen
- Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town (UCT), Cape Town, South Africa.,WorldWide Antimalarial Resistance Network (WWARN), Southern African Regional Hub, Division of Clinical Pharmacology, Department of Medicine, UCT, Mbombela, South Africa.,Infectious Diseases Data Observatory (IDDO), Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aaron Mabuza
- Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town (UCT), Cape Town, South Africa.,WorldWide Antimalarial Resistance Network (WWARN), Southern African Regional Hub, Division of Clinical Pharmacology, Department of Medicine, UCT, Mbombela, South Africa
| | - Lesley Workman
- Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town (UCT), Cape Town, South Africa.,WorldWide Antimalarial Resistance Network (WWARN), Southern African Regional Hub, Division of Clinical Pharmacology, Department of Medicine, UCT, Mbombela, South Africa.,Infectious Diseases Data Observatory (IDDO), Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ray Magagula
- Mpumalanga Provincial Malaria Elimination Programme, Mbombela, Mpumalanga, South Africa
| | - Gerdalize Kok
- Mpumalanga Provincial Malaria Elimination Programme, Mbombela, Mpumalanga, South Africa
| | - Craig Davies
- Malaria Programme, Clinton Health Access Initiative, Pretoria, South Africa
| | - Gillian Malatje
- Mpumalanga Provincial Malaria Elimination Programme, Mbombela, Mpumalanga, South Africa
| | - Philippe J Guérin
- WorldWide Antimalarial Resistance Network (WWARN), Southern African Regional Hub, Division of Clinical Pharmacology, Department of Medicine, UCT, Mbombela, South Africa.,Infectious Diseases Data Observatory (IDDO), Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Infectious Diseases Data Observatory (IDDO), Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Richard J Maude
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA.,The Open University, Milton Keynes, UK
| | - Jaishree Raman
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Disease, Johannesburg, Gauteng, South Africa.,Wits Research Institute for Malaria, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.,UP Institute for Sustainable Malaria Control, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Karen I Barnes
- Collaborating Centre for Optimising Antimalarial Therapy (CCOAT), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town (UCT), Cape Town, South Africa. .,WorldWide Antimalarial Resistance Network (WWARN), Southern African Regional Hub, Division of Clinical Pharmacology, Department of Medicine, UCT, Mbombela, South Africa. .,Infectious Diseases Data Observatory (IDDO), Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
195
|
Cutts JC, O'Flaherty K, Zaloumis SG, Ashley EA, Chan JA, Onyamboko MA, Fanello C, Dondorp AM, Day NP, Phyo AP, Dhorda M, Imwong M, Fairhurst RM, Lim P, Amaratunga C, Pukrittayakamee S, Hien TT, Htut Y, Mayxay M, Abdul Faiz M, Takashima E, Tsuboi T, Beeson JG, Nosten F, Simpson JA, White NJ, Fowkes FJI. Comparison of antibody responses and parasite clearance in artemisinin therapeutic efficacy studies in Democratic Republic of Congo and Asia. J Infect Dis 2022; 226:324-331. [PMID: 35703955 PMCID: PMC9400417 DOI: 10.1093/infdis/jiac232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/12/2022] [Indexed: 12/05/2022] Open
Abstract
Background Understanding the effect of immunity on Plasmodium falciparum clearance is essential for interpreting therapeutic efficacy studies designed to monitor emergence of artemisinin drug resistance. In low-transmission areas of Southeast Asia, where resistance has emerged, P. falciparum antibodies confound parasite clearance measures. However, variation in naturally acquired antibodies across Asian and sub-Saharan African epidemiological contexts and their impact on parasite clearance re yet to be quantified. Methods In an artemisinin therapeutic efficacy study, antibodies to 12 pre-erythrocytic and erythrocytic P. falciparum antigens were measured in 118 children with uncomplicated P. falciparum malaria in the Democratic Republic of Congo (DRC) and compared with responses in patients from Asian sites, described elsewhere. Results Parasite clearance half-life was shorter in DRC patients (median, 2 hours) compared with most Asian sites (median, 2–7 hours), but P. falciparum antibody levels and seroprevalences were similar. There was no evidence for an association between antibody seropositivity and parasite clearance half-life (mean difference between seronegative and seropositive, −0.14 to +0.40 hour) in DRC patients. Conclusions In DRC, where artemisinin remains highly effective, the substantially shorter parasite clearance time compared with Asia was not explained by differences in the P. falciparum antibody responses studied.
Collapse
Affiliation(s)
- Julia C Cutts
- Burnet Institute, Melbourne, Victoria 3004, Australia.,Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | | | - Sophie G Zaloumis
- Centre for Epidemiology and Biostatistics, Melbourne, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Elizabeth A Ashley
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Mahosot Hospital, Vientiane, Lao PDR
| | - Jo Anne Chan
- Burnet Institute, Melbourne, Victoria 3004, Australia.,Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.,Department of Immunology, Monash University, Melbourne Australia
| | - Marie A Onyamboko
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo
| | - Caterina Fanello
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Nicholas P Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | | | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,Worldwide Antimalarial Resistance Network, Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Pharath Lim
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Chanaki Amaratunga
- Worldwide Antimalarial Resistance Network, Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | | | - Tran Tinh Hien
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Ye Htut
- Department of Medical Research, Yangon, Myanmar
| | - Mayfong Mayxay
- Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,Institute of Research and Education Development, University of Health Sciences, Vientiane, Lao PDR.,Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Mahosot Hospital, Vientiane, Lao PDR
| | - M Abdul Faiz
- Malaria Research Group & Dev Care Foundation, Chittagong, Bangladesh
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria 3004, Australia.,Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.,Department of Immunology, Monash University, Melbourne Australia
| | - Francois Nosten
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,Shoklo Malaria Research Unit, Mae Sot, Thailand
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Freya J I Fowkes
- Burnet Institute, Melbourne, Victoria 3004, Australia.,Centre for Epidemiology and Biostatistics, Melbourne, School of Population and Global Health, The University of Melbourne, Melbourne, Australia.,Department of Infectious Diseases and Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
196
|
Wagner MP, Formaglio P, Gorgette O, Dziekan JM, Huon C, Berneburg I, Rahlfs S, Barale JC, Feinstein SI, Fisher AB, Ménard D, Bozdech Z, Amino R, Touqui L, Chitnis CE. Human peroxiredoxin 6 is essential for malaria parasites and provides a host-based drug target. Cell Rep 2022; 39:110923. [PMID: 35705035 DOI: 10.1016/j.celrep.2022.110923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/30/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
The uptake and digestion of host hemoglobin by malaria parasites during blood-stage growth leads to significant oxidative damage of membrane lipids. Repair of lipid peroxidation damage is crucial for parasite survival. Here, we demonstrate that Plasmodium falciparum imports a host antioxidant enzyme, peroxiredoxin 6 (PRDX6), during hemoglobin uptake from the red blood cell cytosol. PRDX6 is a lipid-peroxidation repair enzyme with phospholipase A2 (PLA2) activity. Inhibition of PRDX6 with a PLA2 inhibitor, Darapladib, increases lipid-peroxidation damage in the parasite and disrupts transport of hemoglobin-containing vesicles to the food vacuole, causing parasite death. Furthermore, inhibition of PRDX6 synergistically reduces the survival of artemisinin-resistant parasites following co-treatment of parasite cultures with artemisinin and Darapladib. Thus, PRDX6 is a host-derived drug target for development of antimalarial drugs that could help overcome artemisinin resistance.
Collapse
Affiliation(s)
- Matthias Paulus Wagner
- Institut Pasteur, Université de Paris, Malaria Parasite Biology and Vaccines Unit, Paris, France
| | - Pauline Formaglio
- Institut Pasteur, Université de Paris, Malaria Infection and Immunity Unit, Paris, France
| | - Olivier Gorgette
- Institut Pasteur, Department of Cell Biology and Infection, Centre for Innovation and Technological Research, Ultrastructural Bioimaging Unit, Paris, France
| | - Jerzy Michal Dziekan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Christèle Huon
- Institut Pasteur, Université de Paris, Malaria Parasite Biology and Vaccines Unit, Paris, France
| | - Isabell Berneburg
- Biochemistry and Molecular Biology, Interdisciplinary Research Centre, Justus Liebig University Giessen, Giessen, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Centre, Justus Liebig University Giessen, Giessen, Germany
| | - Jean-Christophe Barale
- Institut Pasteur, Université de Paris, CNRS UMR 3528, Structural Microbiology Unit, Paris, France; Institut Pasteur, Pasteur International Unit, Pasteur International Network, Malaria Translational Research Unit, Phnom Penh, Cambodia and Paris, France
| | | | - Aron B Fisher
- Peroxitech, Inc., Philadelphia, PA, USA; Institute for Environmental Medicine, Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Didier Ménard
- Institut Pasteur, Université de Paris, INSERM U1201, Malaria Genetics and Resistance Unit, Paris, France; Dynamics of Host-Pathogen Interactions, EA 7292, IPPTS, Strasbourg University, Strasbourg, France
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rogerio Amino
- Institut Pasteur, Université de Paris, Malaria Infection and Immunity Unit, Paris, France
| | - Lhousseine Touqui
- Cystic Fibrosis, Physiopathology and Phenogenomics, INSERM Unit 938, Saint-Antoine, Paris, France; Institut Pasteur, Université de Paris, Laboratory of Cystic Fibrosis and Chronic Bronchopathies, Paris, France
| | - Chetan E Chitnis
- Institut Pasteur, Université de Paris, Malaria Parasite Biology and Vaccines Unit, Paris, France.
| |
Collapse
|
197
|
Keats EC, Kajjura RB, Ataullahjan A, Islam M, Cheng B, Somaskandan A, Charbonneau KD, Confreda E, Jardine R, Oh C, Waiswa P, Bhutta ZA. Malaria reduction drives childhood stunting decline in Uganda: a mixed-methods country case study. Am J Clin Nutr 2022; 115:1559-1568. [PMID: 35157012 PMCID: PMC9170463 DOI: 10.1093/ajcn/nqac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Uganda has achieved a considerable reduction in childhood stunting over the past 2 decades, although accelerated action will be needed to achieve 2030 targets. OBJECTIVES This study assessed the national, community, household, and individual-level drivers of stunting decline since 2000, along with direct and indirect nutrition policies and programs that have contributed to nutrition change in Uganda. METHODS This mixed-methods study used 4 different approaches to determine the drivers of stunting change over time: 1) a scoping literature review; 2) quantitative data analyses, including Oaxaca-Blinder decomposition and difference-in-difference multivariable hierarchical modeling; 3) national- and community-level qualitative data collection and analysis; and 4) analysis of key direct and indirect nutrition policies, programs, and initiatives. RESULTS Stunting prevalence declined by 14% points from 2000 to 2016, although geographical, wealth, urban/rural, and education-based inequalities persist. Child growth curves demonstrated substantial improvements in child height-for-age z-scores (HAZs) at birth, reflecting improved maternal nutrition and intrauterine growth. The decomposition analysis explained 82% of HAZ change, with increased coverage of insecticide-treated mosquito nets (ITNs; 35%), better maternal nutrition (19%), improved maternal education (14%), and improved maternal and newborn healthcare (11%) being the most critical factors. The qualitative analysis supported these findings, and also pointed to wealth, women's empowerment, cultural norms, water and sanitation, dietary intake/diversity, and reduced childhood illness as important. The 2011 Uganda Nutrition Action Plan was an essential multisectoral strategy that shifted nutrition out of health and mainstreamed it across related sectors. CONCLUSIONS Uganda's success in stunting reduction was multifactorial, but driven largely through indirect nutrition strategies delivered outside of health. To further improve stunting, it will be critical to prioritize malaria-control strategies, including ITN distribution campaigns and prevention/treatment approaches for mothers and children, and deliberately target the poor, least educated, and rural populations along with high-burden districts.
Collapse
Affiliation(s)
- Emily C Keats
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Anushka Ataullahjan
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Muhammad Islam
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Breagh Cheng
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ahalya Somaskandan
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Erica Confreda
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rachel Jardine
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christina Oh
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter Waiswa
- Makerere University School of Public Health, Kampala, Uganda
| | - Zulfiqar A Bhutta
- Centre for Global Child Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Centre of Excellence in Women and Child Health, the Aga Khan University, Karachi, Pakistan
| |
Collapse
|
198
|
Chotsiri P, White NJ, Tarning J. Pharmacokinetic considerations in seasonal malaria chemoprevention. Trends Parasitol 2022; 38:673-682. [DOI: 10.1016/j.pt.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/16/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
199
|
Paton DG, Probst AS, Ma E, Adams KL, Shaw WR, Singh N, Bopp S, Volkman SK, Hien DFS, Paré PSL, Yerbanga RS, Diabaté A, Dabiré RK, Lefèvre T, Wirth DF, Catteruccia F. Using an antimalarial in mosquitoes overcomes Anopheles and Plasmodium resistance to malaria control strategies. PLoS Pathog 2022; 18:e1010609. [PMID: 35687594 PMCID: PMC9223321 DOI: 10.1371/journal.ppat.1010609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/23/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
The spread of insecticide resistance in Anopheles mosquitoes and drug resistance in Plasmodium parasites is contributing to a global resurgence of malaria, making the generation of control tools that can overcome these roadblocks an urgent public health priority. We recently showed that the transmission of Plasmodium falciparum parasites can be efficiently blocked when exposing Anopheles gambiae females to antimalarials deposited on a treated surface, with no negative consequences on major components of mosquito fitness. Here, we demonstrate this approach can overcome the hurdles of insecticide resistance in mosquitoes and drug resistant in parasites. We show that the transmission-blocking efficacy of mosquito-targeted antimalarials is maintained when field-derived, insecticide resistant Anopheles are exposed to the potent cytochrome b inhibitor atovaquone, demonstrating that this drug escapes insecticide resistance mechanisms that could potentially interfere with its function. Moreover, this approach prevents transmission of field-derived, artemisinin resistant P. falciparum parasites (Kelch13 C580Y mutant), proving that this strategy could be used to prevent the spread of parasite mutations that induce resistance to front-line antimalarials. Atovaquone is also highly effective at limiting parasite development when ingested by mosquitoes in sugar solutions, including in ongoing infections. These data support the use of mosquito-targeted antimalarials as a promising tool to complement and extend the efficacy of current malaria control interventions. Effective control of malaria is hampered by resistance to vector-targeted insecticides and parasite-targeted drugs. This situation is exacerbated by a critical lack of chemical diversity in both interventions and, as such, new interventions are urgently needed. Recent laboratory studies have shown that an alternative approach based on treating Anopheles mosquitoes directly with antimalarial compounds can make mosquitoes incapable of transmitting the Plasmodium parasites that cause malaria. While promising, showing that mosquito-targeted antimalarials remain effective against wild parasites and mosquitoes, including drug- and insecticide-resistant populations in malaria-endemic countries, is crucial to the future viability of this approach. In this study, carried out in the US and Burkina Faso, we show that insecticide-resistance mechanisms found in highly resistant, natural Anopheles mosquito populations do not interfere with the transmission blocking activity of tarsal exposure to the antimalarial atovaquone, and that mosquito-targeted antimalarial exposure can block transmission of parasites resistant to the main therapeutic antimalarial drug artemisinin. By combining lab, and field-based studies in this way we have demonstrated that this novel approach can be effective in areas where conventional control measures are no longer as effective.
Collapse
Affiliation(s)
- Douglas G. Paton
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
- * E-mail: (DGP); (FC)
| | - Alexandra S. Probst
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Erica Ma
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Kelsey L. Adams
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - W. Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Naresh Singh
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Selina Bopp
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Sarah K. Volkman
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Domombele F. S. Hien
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Prislaure S. L. Paré
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Rakiswendé S. Yerbanga
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Abdoullaye Diabaté
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Roch K. Dabiré
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Thierry Lefèvre
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | - Dyann F. Wirth
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
- * E-mail: (DGP); (FC)
| |
Collapse
|
200
|
Peto TJ, Tripura R, Callery JJ, Lek D, Nghia HDT, Nguon C, Thuong NTH, van der Pluijm RW, Dung NTP, Sokha M, Van Luong V, Long LT, Sovann Y, Duanguppama J, Waithira N, Hoglund RM, Chotsiri P, Chau NH, Ruecker A, Amaratunga C, Dhorda M, Miotto O, Maude RJ, Rekol H, Chotivanich K, Tarning J, von Seidlein L, Imwong M, Mukaka M, Day NPJ, Hien TT, White NJ, Dondorp AM. Triple therapy with artemether-lumefantrine plus amodiaquine versus artemether-lumefantrine alone for artemisinin-resistant, uncomplicated falciparum malaria: an open-label, randomised, multicentre trial. THE LANCET. INFECTIOUS DISEASES 2022; 22:867-878. [PMID: 35276064 PMCID: PMC9132777 DOI: 10.1016/s1473-3099(21)00692-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Late treatment failures after artemisinin-based combination therapies (ACTs) for falciparum malaria have increased in the Greater Mekong subregion in southeast Asia. Addition of amodiaquine to artemether-lumefantrine could provide an efficacious treatment for multidrug-resistant infections. METHODS We conducted an open-label, randomised trial at five hospitals or health centres in three locations (western Cambodia, eastern Cambodia, and Vietnam). Eligible participants were male and female patients aged 2-65 years with uncomplicated Plasmodium falciparum malaria. Patients were randomly allocated (1:1 in blocks of eight to 12) to either artemether-lumefantrine alone (dosed according to WHO guidelines) or artemether-lumefantrine plus amodiaquine (10 mg base per kg/day), both given orally as six doses over 3 days. All received a single dose of primaquine (0·25 mg/kg) 24 h after the start of study treatment to limit transmission of the parasite. Parasites were genotyped, identifying artemisinin resistance. The primary outcome was Kaplan-Meier 42-day PCR-corrected efficacy against recrudescence of the original parasite, assessed by intent-to-treat. Safety was a secondary outcome. This completed trial is registered at ClinicalTrials.gov (NCT03355664). FINDINGS Between March 18, 2018, and Jan 30, 2020, 310 patients received randomly allocated treatment; 154 received artemether-lumefantrine alone and 156 received artemether-lumefantrine plus amodiaquine. Parasites from 305 of these patients were genotyped. 42-day PCR-corrected treatment efficacy was noted in 151 (97%, 95% CI 92-99) of 156 patients with artemether-lumefantrine plus amodiaquine versus 146 (95%, 89-97) of 154 patients with artemether-lumefantrine alone; hazard ratio (HR) for recrudescence 0·6 (95% CI 0·2-1·9, p=0·38). Of the 13 recrudescences, 12 were in 174 (57%) of 305 infections with pfkelch13 mutations indicating artemisinin resistance, for which 42-day efficacy was noted in 89 (96%) of 93 infections with artemether-lumefantrine plus amodiaquine versus 73 (90%) of 81 infections with artemether-lumefantrine alone; HR for recrudescence 0·44 (95% CI 0·14-1·40, p=0·17). Artemether-lumefantrine plus amodiaquine was generally well tolerated, but the number of mild (grade 1-2) adverse events, mainly gastrointestinal, was greater in this group compared with artemether-lumefantrine alone (vomiting, 12 [8%] with artemether-lumefantrine plus amodiaquine vs three [2%] with artemether-lumefantrine alone, p=0·03; and nausea, 11 [7%] with artemether-lumefantrine plus amodiaquine vs three [2%] with artemether-lumefantrine alone, p=0·05). Early vomiting within 1 h of treatment, requiring retreatment, occurred in no patients of 154 with artemether-lumefantrine alone versus five (3%) of 156 with artemether-lumefantrine plus amodiaquine, p=0·06. Bradycardia (≤54 beats/min) of any grade was noted in 59 (38%) of 154 patients with artemether-lumefantrine alone and 95 (61%) of 156 with artemether-lumefantrine plus amodiaquine, p=0·0001. INTERPRETATION Artemether-lumefantrine plus amodiaquine provides an alternative to artemether-lumefantrine alone as first-line treatment for multidrug-resistant P falciparum malaria in the Greater Mekong subregion, and could prolong the therapeutic lifetime of artemether-lumefantrine in malaria-endemic populations. FUNDING Bill & Melinda Gates Foundation, Wellcome Trust.
Collapse
Affiliation(s)
- Thomas J Peto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - James J Callery
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia; School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
| | - Ho Dang Trung Nghia
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam; Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Chea Nguon
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Nguyen Thi Huyen Thuong
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Rob W van der Pluijm
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nguyen Thi Phuong Dung
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Meas Sokha
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vo Van Luong
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Le Thanh Long
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Yok Sovann
- Pailin Provincial Health Department, Pailin, Cambodia
| | | | - Naomi Waithira
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Richard M Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Palang Chotsiri
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nguyen Hoang Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Andrea Ruecker
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Chanaki Amaratunga
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; WorldWide Antimalarial Resistance Network, Asia-Pacific Regional Centre, Bangkok, Thailand
| | - Olivo Miotto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Wellcome Trust Sanger Institute, Hinxton, UK
| | - Richard J Maude
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Harvard T H Chan School of Public Health, Harvard University, Boston, MA, USA; The Open University, Milton Keynes, UK
| | - Huy Rekol
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Kesinee Chotivanich
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Clinical Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|