151
|
Nasioudis D, Latif NA, Ko EM, Cory L, Kim SH, Martin L, Simpkins F, Giuntoli R. Next generation sequencing reveals a high prevalence of pathogenic mutations in homologous recombination DNA damage repair genes among patients with uterine sarcoma. Gynecol Oncol 2023; 177:14-19. [PMID: 37611378 DOI: 10.1016/j.ygyno.2023.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE Investigate the incidence of homologous recombination DNA damage response (HR-DDR) genomic alterations among patients with uterine sarcoma. METHODS The American Association for Cancer Research GENIE v13.0 database was accessed and patients with uterine leiomyosarcoma, adenosarcoma, undifferentiated uterine sarcoma, high-grade endometrial stromal sarcoma, low-grade endometrial stromal sarcoma, and endometrial stromal sarcoma not otherwise specified were identified. We determined the incidence of pathogenic alterations in the following genes involved in HR-DDR: ATM, ARID1A, ATRX, BAP1, BARD1, BLM, BRCA2, BRCA1, BRIP1, CHEK2, CHEK1, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCL, MRE11, NBN, PALB2, RAD50, RAD51, RAD51B, RAD51C, RAD51D, WRN. Data from the OncoKB database, as provided by cBioPortal, was utilized to determine the presence of pathogenic genomic alterations. RESULTS A total of 509 patients contributing with 525 samples were identified. Median patient age at sample collection was 56 years while the majority were White (80.7%). The most common histologic subtype was leiomyosarcoma (63.8%) followed by adenosarcoma (12.3%). The overall incidence of HR-DDR genomic alterations was 28.2%. The most commonly altered genes were ATRX (18.2%), BRCA2 (4%), and RAD51B (2.6%). The highest incidence of HR-DDR genomic alterations was observed among patients with leiomyosarcoma (35.4%), adenosarcoma (27%) and undifferentiated uterine sarcoma (30%), while those with low-grade endometrial stromal sarcoma had the lowest (2.9%) incidence. CONCLUSIONS Approximately 1 in 3 patients with uterine sarcoma harbor a pathogenic alteration in HR-DDR genes. Incidence is high among patients with uterine leiomyosarcoma and adenosarcoma.
Collapse
Affiliation(s)
- Dimitrios Nasioudis
- Division of Gynecologic Oncology, University of Pennsylvania Health System, Philadelphia, PA, USA.
| | - Nawar A Latif
- Division of Gynecologic Oncology, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Emily M Ko
- Division of Gynecologic Oncology, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Lori Cory
- Division of Gynecologic Oncology, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Sarah H Kim
- Division of Gynecologic Oncology, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Lainie Martin
- Division of Gynecologic Oncology, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Fiona Simpkins
- Division of Gynecologic Oncology, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Robert Giuntoli
- Division of Gynecologic Oncology, University of Pennsylvania Health System, Philadelphia, PA, USA
| |
Collapse
|
152
|
Fanale D, Corsini LR, Pedone E, Randazzo U, Fiorino A, Di Piazza M, Brando C, Magrin L, Contino S, Piraino P, Bazan Russo TD, Cipolla C, Russo A, Bazan V. Potential agnostic role of BRCA alterations in patients with several solid tumors: One for all, all for one? Crit Rev Oncol Hematol 2023; 190:104086. [PMID: 37536445 DOI: 10.1016/j.critrevonc.2023.104086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023] Open
Abstract
Germline BRCA1/2 alterations in the Homologous Recombination (HR) pathway are considered as main susceptibility biomarkers to Hereditary Breast and Ovarian Cancers (HBOC). The modern molecular biology technologies allowed to characterize germline and somatic BRCA1/2 alterations in several malignancies, broadening the landscape of BRCA1/2-alterated tumors. In the last years, BRCA genetic testing, beyond the preventive value, also assumed a predictive and prognostic significance for patient management. The approval of molecules with agnostic indication is leading to a new clinical model, defined "mutational". Among these drugs, the Poly (ADP)-Ribose Polymerase inhibitors (PARPi) for BRCA1/2-deficient tumors were widely studied leading to increasing therapeutic implications. In this Review we provided an overview of the main clinical studies describing the association between BRCA-mutated tumors and PARPi response, focusing on the controversial evidence about the potential agnostic indication based on BRCA1/2 alterations in several solid tumors.
Collapse
Affiliation(s)
- Daniele Fanale
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Lidia Rita Corsini
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Erika Pedone
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Ugo Randazzo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessia Fiorino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Marianna Di Piazza
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Chiara Brando
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Luigi Magrin
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Silvia Contino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Paola Piraino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Calogero Cipolla
- Division of General and Oncological Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
153
|
Xu J, Bradley N, He Y. Structure and function of the apical PIKKs in double-strand break repair. Curr Opin Struct Biol 2023; 82:102651. [PMID: 37437397 PMCID: PMC10530350 DOI: 10.1016/j.sbi.2023.102651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
Members of the phosphatidylinositol 3' kinase (PI3K)-related kinases (PIKKs) family, including DNA-dependent protein kinase catalytic subunit (DNA-PKcs), ataxia telangiectasia mutated (ATM), ataxia-telangiectasia mutated and Rad3-related (ATR), mammalian target of rapamycin (mTOR), suppressor with morphological effect on genitalia 1 (SMG1), and transformation/transcription domain-associated protein 1 (TRRAP/Tra1), participate in a variety of physiological processes, such as cell-cycle control, metabolism, transcription, replication, and the DNA damage response. In eukaryotic cells, DNA-PKcs, ATM, and ATR-ATRIP are the main sensors and regulators of DNA double-strand break repair. The purpose of this review is to describe recent structures of DNA-PKcs, ATM, and ATR, as well as their functions in activation and phosphorylation in different DNA repair pathways.
Collapse
Affiliation(s)
- Jingfei Xu
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Noah Bradley
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
154
|
Sherapura A, Siddesh BM, Malojirao VH, Thirusangu P, Avin BRV, Kumari NS, Ramachandra YL, Prabhakar BT. Steroidal alkaloid solanidine impedes hypoxia-driven ATM phosphorylation to switch on anti-angiogenesis in lung adenocarcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154981. [PMID: 37531902 DOI: 10.1016/j.phymed.2023.154981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/14/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE The declined oxygen tension in the cancer cell leads to the hypoxic adaptive response and favors establishment of tumor micro environment [TEM]. The complex TME consists of interwoven hypoxic HIF-1α and DNA damage repair ATM signaling. The ATM/HIF-1α phosphorylation switch on angiogenesis and abort apoptosis. Targeting this signaling nexus would be a novel therapeutic strategy for the treatment of cancer. BACKGROUND Steroidal alkaloid solanidine is known for varied pharmacological role but with less molecular evidences. Our earlier findings on solanidine proven its anti-neoplastic activity by inducing apoptosis in lung cancer. In continued research, efforts have been made to establish the underlying molecular signaling in induction of DNA damage in prevailing hypoxic TME. METHODS The solanidine induced DNA damage was assessed trough alkali COMET assay; signaling nexus and gene expression profile analysis through IB, qRT-PCR, Gelatin Zymography, IHC, IF and ELISA. Pathophysiological modulations assessed through tube formation, migration, invasion assays. Anti-angiogenic studies through CAM, rat aorta, matrigel assays and corneal neovascularization assay. Anti-tumor activity through in-vivo DLA ascites tumor model and LLC model. RESULTS The results postulates, inhibition of hypoxia driven DDR proteins pATMser1981/pHIF-1αser696 by solanidine induces anti-angiogenesis. Systematic study of both non-tumorigenic and tumorigenic models in-vitro as well as in-vivo experimental system revealed the angio-regression mediated anticancer effect in lung cancer. These effects are due to the impeded expression of angiogenic mediators such as VEGF, MMP2&9 and inflammatory cytokines IL6 and TNFα to induce pathophysiological changes CONCLUSION: The study establishes new role of solanidine by targeting ATM/HIF-1α signaling to induce anti-angiogenesis for the first time. The study highlights the potentiality of plant based phytomedicine solanidine which can targets the multiple hallmarks of cancer by targeting interwoven signaling crosstalk. Such an approach through solanidine necessary to counteract heterogeneous complexity of cancer which could be nearly translated into drug.
Collapse
Affiliation(s)
- Ankith Sherapura
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India
| | - B M Siddesh
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India
| | - Vikas H Malojirao
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India; Division for DNA Repair Research, Department of Neurosurgery, Centre for Neuroregeneration, Houston Methodist, Fannin Street, Houston, TX, USA
| | - Prabhu Thirusangu
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India; Department of Experidmental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - B R Vijay Avin
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India; Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, 60612, USA
| | - N Suchetha Kumari
- Department of Biochemistry, K.S. Hegde Medical College, Nitte University, Mangalore, India
| | - Y L Ramachandra
- Postgraduate Department of Studies and Research in Biotechnology, Kuvempu University, Shankaraghatta, 577 451, Karnataka, India
| | - B T Prabhakar
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, 577203, Karnataka, India.
| |
Collapse
|
155
|
Wei Y, Lan C, Wang X, Zhou X, Liao X, Huang H, Wei Z, Li T, Peng T, Zhu G. RAD51AP1 as an Immune-Related Prognostic Biomarker and Therapeutic Response Predictor in Hepatocellular Carcinoma. Int J Gen Med 2023; 16:4377-4392. [PMID: 37789880 PMCID: PMC10543100 DOI: 10.2147/ijgm.s431206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Background RAD51 associated protein 1 (RAD51AP1) is shown to regulate cell proliferation and cancer progression. However, the immune-infiltrating correlation and the therapeutics guidance of RAD51AP1 in hepatocellular carcinoma (HCC) still need further investigation. Methods In this study, comprehensive bioinformatic analysis of RAD51AP1 on differential expression, clinicopathologic correlation, prognostic value, and function enrichment were performed in The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO; GSE14520 and GSE76427), and International Cancer Genome Consortium (ICGC) datasets. Besides, the Guangxi cohort containing 50 pairs HCC and adjacent non-cancerous samples from First Affiliated Hospital of Guangxi Medical University was served as validation cohort. Moreover, we explored the predictive value of RAD51AP1 to therapeutics response and its underlying correlation with HCC immunoinfiltration. Results RAD51AP1 was significantly overexpressed in HCC tissues and had a high diagnostic value of HCC. The shorter survival time and poorer clinical features were showed when RAD51AP1 upregulated, and then a nomogram featuring RAD51AP1 expression and other clinicopathologic factors was established to predict prognosis. In CIBERSORT analysis, higher T cells follicular helper but lower T cells CD4+ memory resting infiltration levels were exhibited when RAD51AP1 upregulated. The ssGSEA analysis demonstrated that high-RAD51AP1 expression subgroup had higher macrophages, Th2 and Treg cells infiltration levels, but lower type II IFN response function. Furthermore, high-RAD51AP1 expression subgroup exhibited the upregulated expression levels of immune-related checkpoint genes, but lower IPS and TIDE scores which suggested a possibly better immunotherapy response. The drug sensitivity analysis showed the high-expression subgroup may be more susceptible to Bexarotene, Doxorubicin, Gemcitabine and Tipifarnib. Conclusion Taken together, RAD51AP1 is a potential diagnostic and prognostic biomarker. It may be related to the immunosuppressive microenvironment and could be an underlying HCC treatment strategy. However, the conclusions still require further validation studies.
Collapse
Affiliation(s)
- Yongguang Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Chenlu Lan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Xiangkun Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Huasheng Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Zhongliu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Tianman Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| |
Collapse
|
156
|
Nemunaitis J, Stanbery L, Walter A, Rocconi R, Stephens P. Rationale for the Use of Homologous Recombination Proficient Molecular Profile as a Biomarker for Therapeutic Targeting in Ovarian Cancer. Oncol Rev 2023; 17:11471. [PMID: 37799595 PMCID: PMC10547877 DOI: 10.3389/or.2023.11471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Affiliation(s)
| | | | - Adam Walter
- Gradalis, Inc, Dallas, TX, United States
- ProMedica, Toledo, OH, United States
| | - Rodney Rocconi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Mobile, AL, United States
| | - Philip Stephens
- Gradalis, Inc, Dallas, TX, United States
- Naveris, Waltham, MA, United States
| |
Collapse
|
157
|
Chang HR. RNF126, 168 and CUL1: The Potential Utilization of Multi-Functional E3 Ubiquitin Ligases in Genome Maintenance for Cancer Therapy. Biomedicines 2023; 11:2527. [PMID: 37760968 PMCID: PMC10526535 DOI: 10.3390/biomedicines11092527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Ubiquitination is a post-translational modification (PTM) that is involved in proteolysis, protein-protein interaction, and signal transduction. Accumulation of mutations and genomic instability are characteristic of cancer cells, and dysfunction of the ubiquitin pathway can contribute to abnormal cell physiology. Because mutations can be critical for cells, DNA damage repair, cell cycle regulation, and apoptosis are pathways that are in close communication to maintain genomic integrity. Uncontrolled cell proliferation due to abnormal processes is a hallmark of cancer, and mutations, changes in expression levels, and other alterations of ubiquitination factors are often involved. Here, three E3 ubiquitin ligases will be reviewed in detail. RNF126, RNF168 and CUL1 are involved in DNA damage response (DDR), DNA double-strand break (DSB) repair, cell cycle regulation, and ultimately, cancer cell proliferation control. Their involvement in multiple cellular pathways makes them an attractive candidate for cancer-targeting therapy. Functional studies of these E3 ligases have increased over the years, and their significance in cancer is well reported. There are continuous efforts to develop drugs targeting the ubiquitin pathway for anticancer therapy, which opens up the possibility for these E3 ligases to be evaluated for their potential as a target protein for anticancer therapy.
Collapse
Affiliation(s)
- Hae Ryung Chang
- Department of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| |
Collapse
|
158
|
Shanmuganathan N, Wadham C, Shahrin N, Feng J, Thomson D, Wang P, Saunders V, Kok CH, King RM, Kenyon RR, Lin M, Pagani IS, Ross DM, Yong ASM, Grigg AP, Mills AK, Schwarer AP, Braley J, Altamura H, Yeung DT, Scott HS, Schreiber AW, Hughes TP, Branford S. Impact of additional genetic abnormalities at diagnosis of chronic myeloid leukemia for first-line imatinib-treated patients receiving proactive treatment intervention. Haematologica 2023; 108:2380-2395. [PMID: 36951160 PMCID: PMC10483360 DOI: 10.3324/haematol.2022.282184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
The BCR::ABL1 gene fusion initiates chronic myeloid leukemia (CML); however, evidence has accumulated from studies of highly selected cohorts that variants in other cancer-related genes are associated with treatment failure. Nevertheless, the true incidence and impact of additional genetic abnormalities (AGA) at diagnosis of chronic phase (CP)-CML is unknown. We sought to determine whether AGA at diagnosis in a consecutive imatinib-treated cohort of 210 patients enrolled in the TIDEL-II trial influenced outcome despite a highly proactive treatment intervention strategy. Survival outcomes including overall survival, progression-free survival, failure-free survival, and BCR::ABL1 kinase domain mutation acquisition were evaluated. Molecular outcomes were measured at a central laboratory and included major molecular response (MMR, BCR::ABL1 ≤0.1%IS), MR4 (BCR::ABL1 ≤0.01%IS), and MR4.5 (BCR::ABL1 ≤0.0032%IS). AGA included variants in known cancer genes and novel rearrangements involving the formation of the Philadelphia chromosome. Clinical outcomes and molecular response were assessed based on the patient's genetic profile and other baseline factors. AGA were identified in 31% of patients. Potentially pathogenic variants in cancer-related genes were detected in 16% of patients at diagnosis (including gene fusions and deletions) and structural rearrangements involving the Philadelphia chromosome (Ph-associated rearrangements) were detected in 18%. Multivariable analysis demonstrated that the combined genetic abnormalities plus the EUTOS long-term survival clinical risk score were independent predictors of lower molecular response rates and higher treatment failure. Despite a highly proactive treatment intervention strategy, first-line imatinib-treated patients with AGA had poorer response rates. These data provide evidence for the incorporation of genomically-based risk assessment for CML.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/therapeutic use
- Antineoplastic Agents/therapeutic use
- Philadelphia Chromosome
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myeloid, Chronic-Phase/drug therapy
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Naranie Shanmuganathan
- Department of Hematology, Royal Adelaide Hospital and SA Pathology, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australasian Leukemia and Lymphoma Group (ALLG).
| | - Carol Wadham
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Clinical and Health Sciences, University of South Australia, Adelaide
| | - NurHezrin Shahrin
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide
| | - Jinghua Feng
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide
| | - Daniel Thomson
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide
| | - Paul Wang
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide
| | - Verity Saunders
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide
| | - Chung Hoow Kok
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide
| | - Rob M King
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide
| | - Rosalie R Kenyon
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide
| | - Ming Lin
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide
| | - Ilaria S Pagani
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australasian Leukemia and Lymphoma Group (ALLG)
| | - David M Ross
- Department of Hematology, Royal Adelaide Hospital and SA Pathology, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Australasian Leukemia and Lymphoma Group (ALLG); Department of Hematology, Flinders University and Medical Centre, Adelaide
| | - Agnes S M Yong
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australasian Leukemia and Lymphoma Group (ALLG); The University of Western Australia Medical School, Western Australia
| | - Andrew P Grigg
- Australasian Leukemia and Lymphoma Group (ALLG); Department of Clinical Hematology, Austin Hospital and University of Melbourne, Melbourne
| | - Anthony K Mills
- Australasian Leukemia and Lymphoma Group (ALLG); Department of Hematology, Princess Alexandra Hospital, Brisbane
| | - Anthony P Schwarer
- Australasian Leukemia and Lymphoma Group (ALLG); Department of Hematology, Box Hill Hospital, Melbourne
| | - Jodi Braley
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide
| | - Haley Altamura
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide
| | - David T Yeung
- Department of Hematology, Royal Adelaide Hospital and SA Pathology, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australasian Leukemia and Lymphoma Group (ALLG)
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide
| | - Andreas W Schreiber
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, Australia; School of Biological Sciences, University of Adelaide, Adelaide
| | - Timothy P Hughes
- Department of Hematology, Royal Adelaide Hospital and SA Pathology, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australasian Leukemia and Lymphoma Group (ALLG)
| | - Susan Branford
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide
| |
Collapse
|
159
|
Zhou Z, Yang H, Liang X, Zhou T, Zhang T, Yang Y, Wang J, Wang W. C1orf112 teams up with FIGNL1 to facilitate RAD51 filament disassembly and DNA interstrand cross-link repair. Cell Rep 2023; 42:112907. [PMID: 37515771 DOI: 10.1016/j.celrep.2023.112907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
The recombinase RAD51 plays a core role in DNA repair by homologous recombination (HR). The assembly and disassembly of RAD51 filament need to be orderly regulated by mediators such as BRCA2 and anti-recombinases. To screen for potential regulators of RAD51, we perform RAD51 proximity proteomics and identify factor C1orf112. We further find that C1orf112 complexed with FIGNL1 facilitates RAD51 filament disassembly in the HR step of Fanconi anemia (FA) pathway. Specifically, C1orf112 physically interacts with FIGNL1 and enhances its protein stability. Meanwhile, the RAD51 filament disassembly activity of FIGNL1 is directly stimulated by C1orf112. BRCA2 directly interacts with C1orf112-FIGNL1 complex and functions upstream of this complex to protect RAD51 filament from premature disassembly. C1orf112- and FIGNL1-deficient cells are primarily sensitive to DNA interstrand cross-link (ICL) agents. Thus, these findings suggest an important function of C1orf112 in RAD51 regulation in the HR step of ICL repair by FA pathway.
Collapse
Affiliation(s)
- Zenan Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Han Yang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xinxin Liang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tao Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tao Zhang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yang Yang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
160
|
Lee SJ, Ahn SY, Oh HB, Kim SY, Song WS, Yoon SI. Structural and Biochemical Analysis of the Recombination Mediator Protein RecR from Campylobacter jejuni. Int J Mol Sci 2023; 24:12947. [PMID: 37629127 PMCID: PMC10454854 DOI: 10.3390/ijms241612947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The recombination mediator complex RecFOR, consisting of the RecF, RecO, and RecR proteins, is needed to initiate homologous recombination in bacteria by positioning the recombinase protein RecA on damaged DNA. Bacteria from the phylum Campylobacterota, such as the pathogen Campylobacter jejuni, lack the recF gene and trigger homologous recombination using only RecR and RecO. To elucidate the functional properties of C. jejuni RecR (cjRecR) in recombination initiation that differ from or are similar to those in RecF-expressing bacteria, we determined the crystal structure of cjRecR and performed structure-based binding analyses. cjRecR forms a rectangular ring-like tetrameric structure and coordinates a zinc ion using four cysteine residues, as observed for RecR proteins from RecF-expressing bacteria. However, the loop of RecR that has been shown to recognize RecO and RecF in RecF-expressing bacteria is substantially shorter in cjRecR as a canonical feature of Campylobacterota RecR proteins, indicating that cjRecR lost a part of the loop in evolution due to the lack of RecF and has a low RecO-binding affinity. Furthermore, cjRecR features a larger positive patch and exhibits substantially higher ssDNA-binding affinity than RecR from RecF-expressing bacteria. Our study provides a framework for a deeper understanding of the RecOR-mediated recombination pathway.
Collapse
Affiliation(s)
- Su-jin Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Si Yeon Ahn
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Han Byeol Oh
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung Yeon Kim
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wan Seok Song
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sung-il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
161
|
Hu R, Li X, Hu Y, Zhang R, Lv Q, Zhang M, Sheng X, Zhao F, Chen Z, Ding Y, Yuan H, Wu X, Xing S, Yan X, Bao F, Wan P, Xiao L, Wang X, Xiao W, Decker EL, van Gessel N, Renault H, Wiedemann G, Horst NA, Haas FB, Wilhelmsson PKI, Ullrich KK, Neumann E, Lv B, Liang C, Du H, Lu H, Gao Q, Cheng Z, You H, Xin P, Chu J, Huang CH, Liu Y, Dong S, Zhang L, Chen F, Deng L, Duan F, Zhao W, Li K, Li Z, Li X, Cui H, Zhang YE, Ma C, Zhu R, Jia Y, Wang M, Hasebe M, Fu J, Goffinet B, Ma H, Rensing SA, Reski R, He Y. Adaptive evolution of the enigmatic Takakia now facing climate change in Tibet. Cell 2023; 186:3558-3576.e17. [PMID: 37562403 DOI: 10.1016/j.cell.2023.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/23/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023]
Abstract
The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.
Collapse
Affiliation(s)
- Ruoyang Hu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuedong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Yong Hu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Runjie Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Qiang Lv
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Min Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xianyong Sheng
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Feng Zhao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Zhijia Chen
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Yuhan Ding
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Huan Yuan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xiaofeng Wu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Shuang Xing
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xiaoyu Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Fang Bao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Ping Wan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Lihong Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xiaoqin Wang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Hugues Renault
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Nelly A Horst
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; MetaSystems Hard & Software GmbH, 68804 Altlussheim, Germany
| | - Fabian B Haas
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | | | - Kristian K Ullrich
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Eva Neumann
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | - Bin Lv
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Chengzhi Liang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilong Du
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Hongwei Lu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiang Gao
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhukuan Cheng
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hanli You
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010031, China
| | - Yang Liu
- Department of Ecology and Evolutionary Biology, University of Connecticut, Unit 3043, Storrs, CT 06269, USA; Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518085, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fei Chen
- Sanya Nanfan Research Institute from Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Lei Deng
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Fuzhou Duan
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Wenji Zhao
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Zhongfeng Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Xingru Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Hengjian Cui
- School of Mathematical Sciences, CNU, Beijing 100048, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuan Ma
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruiliang Zhu
- Department of Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Jia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Meizhi Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Unit 3043, Storrs, CT 06269, USA
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Stefan A Rensing
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.
| | - Yikun He
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China.
| |
Collapse
|
162
|
Zhou Z, Yin H, Suye S, Ren Z, Yan L, Shi L, Fu C. Fance deficiency inhibits primordial germ cell proliferation associated with transcription-replication conflicts accumulate and DNA repair defects. J Ovarian Res 2023; 16:160. [PMID: 37563658 PMCID: PMC10416540 DOI: 10.1186/s13048-023-01252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Fanconi anemia (FA) gene mutations are critical components in the genetic etiology of premature ovarian insufficiency (POI). Fance-/- mice detected meiotic arrest of primordial germ cells (PGCs) as early as embryonic day (E) 13.5 and exhibited decreased ovarian reserve after birth. However, the mechanism of Fance defect leading to dysgenesis of PGCs is unclear. We aimed to explore the effect of Fance defects on mitotic proliferation of PGCs. Combined with transcriptomic sequencing and validation, we examined the effect of Fance defects on cell cycle, transcription-replication conflicts (TRCs), and multiple DNA repair pathways in PGCs during active DNA replication at E11.5 and E12.5. Results showed Fance defects cause decreased numbers of PGCs during rapid mitosis at E11.5 and E12.5. Mitotic cell cycle progression of Fance-/- PGCs was blocked at E11.5 and E12.5, shown by decreased cell proportions in S and G2 phases and increased cell proportions in M phase. RNA-seq suggested the mechanisms involved in DNA replication and repair. We found Fance-/- PGCs accumulate TRCs during active DNA replication at E11.5 and E12.5. Fance-/- PGCs down-regulate multiple DNA repair pathways at E11.5 and E12.5 including the FA pathway, homologous recombination (HR) pathway, and base excision repair (BER) pathway. In conclusion, Fance defect impaired the mitotic proliferation of PGCs leading to rapidly decreased numbers and abnormal cell cycle distribution. Proliferation inhibition of Fance-/- PGCs was associated with accumulated TRCs and down-regulation of FA, HR, BER pathways. These provided a theoretical basis for identifying the inherited etiology and guiding potential fertility management for POI.
Collapse
Affiliation(s)
- Zhixian Zhou
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Huan Yin
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Suye Suye
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Zhen Ren
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Lei Yan
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Liye Shi
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Chun Fu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, 410000, China.
| |
Collapse
|
163
|
Zheng C, Wei Y, Zhang Q, Sun M, Wang Y, Hou J, Zhang P, Lv X, Su D, Jiang Y, Gumin J, Sahni N, Hu B, Wang W, Chen X, McGrail DJ, Zhang C, Huang S, Xu H, Chen J, Lang FF, Hu J, Chen Y. Multiomics analyses reveal DARS1-AS1/YBX1-controlled posttranscriptional circuits promoting glioblastoma tumorigenesis/radioresistance. SCIENCE ADVANCES 2023; 9:eadf3984. [PMID: 37540752 PMCID: PMC10403220 DOI: 10.1126/sciadv.adf3984] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
The glioblastoma (GBM) stem cell-like cells (GSCs) are critical for tumorigenesis/therapeutic resistance of GBM. Mounting evidence supports tumor-promoting function of long noncoding RNAs (lncRNAs), but their role in GSCs remains poorly understood. By combining CRISPRi screen with orthogonal multiomics approaches, we identified a lncRNA DARS1-AS1-controlled posttranscriptional circuitry that promoted the malignant properties of GBM cells/GSCs. Depleting DARS1-AS1 inhibited the proliferation of GBM cells/GSCs and self-renewal of GSCs, prolonging survival in orthotopic GBM models. DARS1-AS1 depletion also impaired the homologous recombination (HR)-mediated double-strand break (DSB) repair and enhanced the radiosensitivity of GBM cells/GSCs. Mechanistically, DARS1-AS1 interacted with YBX1 to promote target mRNA binding and stabilization, forming a mixed transcriptional/posttranscriptional feed-forward loop to up-regulate expression of the key regulators of G1-S transition, including E2F1 and CCND1. DARS1-AS1/YBX1 also stabilized the mRNA of FOXM1, a master transcription factor regulating GSC self-renewal and DSB repair. Our findings suggest DARS1-AS1/YBX1 axis as a potential therapeutic target for sensitizing GBM to radiation/HR deficiency-targeted therapy.
Collapse
Affiliation(s)
- Caishang Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yanjun Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qiang Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ming Sun
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yunfei Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiakai Hou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peng Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiangdong Lv
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dan Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yujie Jiang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Statistics, Rice University, Houston, TX 77005, USA
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nidhi Sahni
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Program in Quantitative and Computational Biosciences (QCB), Baylor College of Medicine, Houston, TX 77030, USA
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Pediatric Neurosurgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- Molecular and Cellular Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel J. McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
- Lerner Research Institute, Cleveland, OH 44195, USA
| | - Chaolin Zhang
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, and Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Suyun Huang
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Han Xu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Frederick F. Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Neuroscience Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Quantitative Sciences Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
164
|
Shi M, Hou J, Liang W, Li Q, Shao S, Ci S, Shu C, Zhao X, Zhao S, Huang M, Wu C, Hu Z, He L, Guo Z, Pan F. GAPDH facilitates homologous recombination repair by stabilizing RAD51 in an HDAC1-dependent manner. EMBO Rep 2023; 24:e56437. [PMID: 37306047 PMCID: PMC10398663 DOI: 10.15252/embr.202256437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023] Open
Abstract
Homologous recombination (HR), a form of error-free DNA double-strand break (DSB) repair, is important for the maintenance of genomic integrity. Here, we identify a moonlighting protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), as a regulator of HR repair, which is mediated through HDAC1-dependent regulation of RAD51 stability. Mechanistically, in response to DSBs, Src signaling is activated and mediates GAPDH nuclear translocation. Then, GAPDH directly binds with HDAC1, releasing it from its suppressor. Subsequently, activated HDAC1 deacetylates RAD51 and prevents it from undergoing proteasomal degradation. GAPDH knockdown decreases RAD51 protein levels and inhibits HR, which is re-established by overexpression of HDAC1 but not SIRT1. Notably, K40 is an important acetylation site of RAD51, which facilitates stability maintenance. Collectively, our findings provide new insights into the importance of GAPDH in HR repair, in addition to its glycolytic activity, and they show that GAPDH stabilizes RAD51 by interacting with HDAC1 and promoting HDAC1 deacetylation of RAD51.
Collapse
Affiliation(s)
- Munan Shi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Jiajia Hou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Weichu Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Qianwen Li
- Department of Radiotherapy, Taikang Xianlin Drum Tower HospitalNanjing UniversityNanjingChina
| | - Shan Shao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Shusheng Ci
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
- School of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Chuanjun Shu
- Department of Bioinformatics, School of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingChina
| | - Xingqi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Shanmeizi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Miaoling Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Congye Wu
- Department of Oncology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
165
|
Boldinova EO, Makarova AV. Regulation of Human DNA Primase-Polymerase PrimPol. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1139-1155. [PMID: 37758313 DOI: 10.1134/s0006297923080084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 10/03/2023]
Abstract
Transmission of genetic information depends on successful completion of DNA replication. Genomic DNA is subjected to damage on a daily basis. DNA lesions create obstacles for DNA polymerases and can lead to the replication blockage, formation of DNA breaks, cell cycle arrest, and apoptosis. Cells have evolutionary adapted to DNA damage by developing mechanisms allowing elimination of lesions prior to DNA replication (DNA repair) and helping to bypass lesions during DNA synthesis (DNA damage tolerance). The second group of mechanisms includes the restart of DNA synthesis at the sites of DNA damage by DNA primase-polymerase PrimPol. Human PrimPol was described in 2013. The properties and functions of this enzyme have been extensively studied in recent years, but very little is known about the regulation of PrimPol and association between the enzyme dysfunction and diseases. In this review, we described the mechanisms of human PrimPol regulation in the context of DNA replication, discussed in detail interactions of PrimPol with other proteins, and proposed possible pathways for the regulation of human PrimPol activity. The article also addresses the association of PrimPol dysfunction with human diseases.
Collapse
Affiliation(s)
- Elizaveta O Boldinova
- Kurchatov Institute National Research Centre, Moscow, 123182, Russia.
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alena V Makarova
- Kurchatov Institute National Research Centre, Moscow, 123182, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
166
|
Thavaneswaran S, Kansara M, Lin F, Espinoza D, Grady JP, Lee CK, Ballinger ML, Sebastian L, Corpuz T, Qiu MR, Mundra P, Bailey CG, Schmitz U, Simes J, Joshua AM, Thomas DM. A signal-seeking Phase 2 study of olaparib and durvalumab in advanced solid cancers with homologous recombination repair gene alterations. Br J Cancer 2023; 129:475-485. [PMID: 37365284 PMCID: PMC10403555 DOI: 10.1038/s41416-023-02311-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/08/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
PURPOSE To determine the safety and efficacy of PARP plus PD-L1 inhibition (olaparib + durvalumab, O + D) in patients with advanced solid, predominantly rare cancers harbouring homologous recombination repair (HRR) defects. PATIENTS AND METHODS In total, 48 patients were treated with O + D, 16 with BRCA1/2 alterations (group 1) and 32 with other select HRR alterations (group 2). Overall, 32 (66%) patients had rare or less common cancers. The primary objective of this single-arm Phase II trial was a progression-free survival rate at 6 months (PFS6). Post hoc exploratory analyses were conducted on archival tumour tissue and serial bloods. RESULTS The PFS6 rate was 35% and 38% with durable objective tumour responses (OTR) in 3(19%) and 3(9%) in groups 1 and 2, respectively. Rare cancers achieving an OTR included cholangiocarcinoma, perivascular epithelioid cell (PEComa), neuroendocrine, gallbladder and endometrial cancer. O + D was safe, with five serious adverse events related to the study drug(s) in 3 (6%) patients. A higher proportion of CD38 high B cells in the blood and higher CD40 expression in tumour was prognostic of survival. CONCLUSIONS O + D demonstrated no new toxicity concerns and yielded a clinically meaningful PFS6 rate and durable OTRs across several cancers with HRR defects, including rare cancers.
Collapse
Affiliation(s)
- Subotheni Thavaneswaran
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia.
- The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia.
- Garvan Institute of Medical Research, Sydney, NSW, Australia.
| | - Maya Kansara
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Frank Lin
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Kinghorn Centre for Clinical Genomics, Sydney, NSW, Australia
| | - David Espinoza
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - John P Grady
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Chee Khoon Lee
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Mandy L Ballinger
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Lucille Sebastian
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Theresa Corpuz
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Min Ru Qiu
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia
- Department of Anatomical Pathology and Cancer Genetics, SydPath, St Vincent's Hospital, Sydney, NSW, Australia
| | - Piyushkumar Mundra
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Charles G Bailey
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Ulf Schmitz
- Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
- Computational Biomedicine Lab Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia
- Department of Molecular & Cell Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Townsville, QLD, Australia
| | - John Simes
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Anthony M Joshua
- The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - David M Thomas
- The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Biomedical Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
167
|
Hwang J, Shi X, Elliott A, Arnoff TE, McGrath J, Xiu J, Walker P, Bergom HE, Day A, Ahmed S, Tape S, Makovec A, Ali A, Shaker RM, Toye E, Passow R, Lozada JR, Wang J, Lou E, Mouw KW, Carneiro BA, Heath EI, McKay RR, Korn WM, Nabhan C, Ryan CJ, Antonarakis ES. Metastatic Prostate Cancers with BRCA2 versus ATM Mutations Exhibit Divergent Molecular Features and Clinical Outcomes. Clin Cancer Res 2023; 29:2702-2713. [PMID: 37126020 DOI: 10.1158/1078-0432.ccr-22-3394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/29/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE In patients with metastatic prostate cancer (mPC), ATM and BRCA2 mutations dictate differences in PARPi inhibitor response and other therapies. We interrogated the molecular features of ATM- and BRCA2-mutated mPC to explain the divergent clinical outcomes and inform future treatment decisions. EXPERIMENTAL DESIGN We examined a novel set of 1,187 mPCs after excluding microsatellite-instable (MSI) tumors. We stratified these based on ATM (n = 88) or BRCA2 (n = 98) mutations. As control groups, mPCs with mutations in 12 other homologous recombination repair (HRR) genes were considered non-BRCA2/ATM HRR-deficient (HRDother, n = 193), whereas lack of any HRR mutations were considered HRR-proficient (HRP; n = 808). Gene expression analyses were performed using Limma. Real-world overall survival was determined from insurance claims data. RESULTS In noncastrate mPCs, only BRCA2-mutated mPCs exhibited worse clinical outcomes to AR-targeted therapies. In castrate mPCs, both ATM and BRCA2 mutations exhibited worse clinical outcomes to AR-targeted therapies. ATM-mutated mPCs had reduced TP53 mutations and harbored coamplification of 11q13 genes, including CCND1 and genes in the FGF family. BRCA2-mutated tumors showed elevated genomic loss-of-heterozygosity scores and were often tumor mutational burden high. BRCA2-mutated mPCs had upregulation of cell-cycle genes and were enriched in cell-cycle signaling programs. This was distinct from ATM-mutated tumors. CONCLUSIONS Tumoral ATM and BRCA2 mutations are associated with differential clinical outcomes when patients are stratified by treatments, including hormonal or taxane therapies. ATM- and BRCA2-mutated tumors exhibited differences in co-occurring molecular features. These unique molecular features may inform therapeutic decisions and development of novel therapies.
Collapse
Affiliation(s)
- Justin Hwang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Xiaolei Shi
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | | | - Taylor E Arnoff
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | | | | | | | - Hannah E Bergom
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Abderrahman Day
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Shihab Ahmed
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Sydney Tape
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Allison Makovec
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Atef Ali
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Rami M Shaker
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Eamon Toye
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Rachel Passow
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - John R Lozada
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Jinhua Wang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Emil Lou
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Benedito A Carneiro
- Legorreta Cancer Center at Brown University, Lifespan Cancer Center, Providence, Rhode Island
| | | | | | - W Michael Korn
- Caris Life Sciences, Irving, Texas
- Division of Hematology/Oncology, UC San Francisco, San Francisco, California
| | | | - Charles J Ryan
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Prostate Cancer Foundation, Santa Monica, California
| | - Emmanuel S Antonarakis
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
168
|
Calheiros J, Corbo V, Saraiva L. Overcoming therapeutic resistance in pancreatic cancer: Emerging opportunities by targeting BRCAs and p53. Biochim Biophys Acta Rev Cancer 2023; 1878:188914. [PMID: 37201730 DOI: 10.1016/j.bbcan.2023.188914] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Pancreatic cancer (PC) is characterized by (epi)genetic and microenvironmental alterations that negatively impact the treatment outcomes. New targeted therapies have been pursued to counteract the therapeutic resistance in PC. Aiming to seek for new therapeutic options for PC, several attempts have been undertaken to exploit BRCA1/2 and TP53 deficiencies as promising actionable targets. The elucidation of the pathogenesis of PC highlighted the high prevalence of p53 mutations and their connection with the aggressiveness and therapeutic resistance of PC. Additionally, PC is associated with dysfunctions in several DNA repair-related genes, including BRCA1/2, which sensitize tumours to DNA-damaging agents. In this context, poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) were approved for mutant BRCA1/2 PC patients. However, acquired drug resistance has become a major drawback of PARPi. This review emphasizes the importance of targeting defective BRCAs and p53 pathways for advancing personalized PC therapy, with particular focus on how this approach may provide an opportunity to tackle PC resistance.
Collapse
Affiliation(s)
- Juliana Calheiros
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine (DIMI), University and Hospital Trust of Verona, Verona, Italy; ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
169
|
Buyuklyan JA, Zakalyukina YV, Osterman IA, Biryukov MV. Modern Approaches to the Genome Editing of Antibiotic Biosynthetic Clusters in Actinomycetes. Acta Naturae 2023; 15:4-16. [PMID: 37908767 PMCID: PMC10615194 DOI: 10.32607/actanaturae.23426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/19/2023] [Indexed: 11/02/2023] Open
Abstract
Representatives of the phylum Actinomycetota are one of the main sources of secondary metabolites, including antibiotics of various classes. Modern studies using high-throughput sequencing techniques enable the detection of dozens of potential antibiotic biosynthetic genome clusters in many actinomycetes; however, under laboratory conditions, production of secondary metabolites amounts to less than 5% of the total coding potential of producer strains. However, many of these antibiotics have already been described. There is a continuous "rediscovery" of known antibiotics, and new molecules become almost invisible against the general background. The established approaches aimed at increasing the production of novel antibiotics include: selection of optimal cultivation conditions by modifying the composition of nutrient media; co-cultivation methods; microfluidics, and the use of various transcription factors to activate silent genes. Unfortunately, these tools are non-universal for various actinomycete strains, stochastic in nature, and therefore do not always lead to success. The use of genetic engineering technologies is much more efficient, because they allow for a directed and controlled change in the production of target metabolites. One example of such technologies is mutagenesis-based genome editing of antibiotic biosynthetic clusters. This targeted approach allows one to alter gene expression, suppressing the production of previously characterized molecules, and thereby promoting the synthesis of other unknown antibiotic variants. In addition, mutagenesis techniques can be successfully applied both to new producer strains and to the genes of known isolates to identify new compounds.
Collapse
Affiliation(s)
- J A Buyuklyan
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
| | - Yu V Zakalyukina
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Lomonosov Moscow State University, Moscow, 119234 Russian Federation
| | - I A Osterman
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, 143025 Russian Federation
| | - M V Biryukov
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Lomonosov Moscow State University, Moscow, 119234 Russian Federation
| |
Collapse
|
170
|
Akinjiyan FA, Morecroft R, Phillipps J, Adeyelu T, Elliott A, Park SJ, Butt OH, Zhou AY, Ansstas G. Homologous Recombination Deficiency (HRD) in Cutaneous Oncology. Int J Mol Sci 2023; 24:10771. [PMID: 37445949 DOI: 10.3390/ijms241310771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Skin cancers, including basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (SCC), and melanoma, are the most common malignancies in the United States. Loss of DNA repair pathways in the skin plays a significant role in tumorigenesis. In recent years, targeting DNA repair pathways, particularly homologous recombination deficiency (HRD), has emerged as a potential therapeutic approach in cutaneous malignancies. This review provides an overview of DNA damage and repair pathways, with a focus on HRD, and discusses major advances in targeting these pathways in skin cancers. Poly(ADP-ribose) polymerase (PARP) inhibitors have been developed to exploit HRD in cancer cells. PARP inhibitors disrupt DNA repair mechanisms by inhibiting PARP enzymatic activity, leading to the accumulation of DNA damage and cell death. The concept of synthetic lethality has been demonstrated in HR-deficient cells, such as those with BRCA1/2 mutations, which exhibit increased sensitivity to PARP inhibitors. HRD assessment methods, including genomic scars, RAD51 foci formation, functional assays, and BRCA1/2 mutation analysis, are discussed as tools for identifying patients who may benefit from PARP inhibitor therapy. Furthermore, HRD has been implicated in the response to immunotherapy, and the combination of PARP inhibitors with immunotherapy has shown promising results. The frequency of HRD in melanoma ranges from 18% to 57%, and studies investigating the use of PARP inhibitors as monotherapy in melanoma are limited. Further research is warranted to explore the potential of PARP inhibition in melanoma treatment.
Collapse
Affiliation(s)
- Favour A Akinjiyan
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Renee Morecroft
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Jordan Phillipps
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | | | | | - Soo J Park
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Omar H Butt
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Alice Y Zhou
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - George Ansstas
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, St. Louis, MO 63130, USA
| |
Collapse
|
171
|
Cerqueira PG, Meyer D, Zhang L, Mallory B, Liu J, Hua Fu BX, Zhang X, Heyer WD. Saccharomyces cerevisiae DNA polymerase IV overcomes Rad51 inhibition of DNA polymerase δ in Rad52-mediated direct-repeat recombination. Nucleic Acids Res 2023; 51:5547-5564. [PMID: 37070185 PMCID: PMC10287921 DOI: 10.1093/nar/gkad281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
Saccharomyces cerevisiae DNA polymerase IV (Pol4) like its homolog, human DNA polymerase lambda (Polλ), is involved in Non-Homologous End-Joining and Microhomology-Mediated Repair. Using genetic analysis, we identified an additional role of Pol4 also in homology-directed DNA repair, specifically in Rad52-dependent/Rad51-independent direct-repeat recombination. Our results reveal that the requirement for Pol4 in repeat recombination was suppressed by the absence of Rad51, suggesting that Pol4 counteracts the Rad51 inhibition of Rad52-mediated repeat recombination events. Using purified proteins and model substrates, we reconstituted in vitro reactions emulating DNA synthesis during direct-repeat recombination and show that Rad51 directly inhibits Polδ DNA synthesis. Interestingly, although Pol4 was not capable of performing extensive DNA synthesis by itself, it aided Polδ in overcoming the DNA synthesis inhibition by Rad51. In addition, Pol4 dependency and stimulation of Polδ DNA synthesis in the presence of Rad51 occurred in reactions containing Rad52 and RPA where DNA strand-annealing was necessary. Mechanistically, yeast Pol4 displaces Rad51 from ssDNA independent of DNA synthesis. Together our in vitro and in vivo data suggest that Rad51 suppresses Rad52-dependent/Rad51-independent direct-repeat recombination by binding to the primer-template and that Rad51 removal by Pol4 is critical for strand-annealing dependent DNA synthesis.
Collapse
Affiliation(s)
- Paula G Cerqueira
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Damon Meyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Lilin Zhang
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Benjamin Mallory
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Becky Xu Hua Fu
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Xiaoping Zhang
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616-8665, USA
| |
Collapse
|
172
|
Wu Y, Song Y, Wang R, Wang T. Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer 2023; 22:96. [PMID: 37322433 PMCID: PMC10268375 DOI: 10.1186/s12943-023-01801-2] [Citation(s) in RCA: 158] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Cancer is the most prevalent cause of death globally, and radiotherapy is considered the standard of care for most solid tumors, including lung, breast, esophageal, and colorectal cancers and glioblastoma. Resistance to radiation can lead to local treatment failure and even cancer recurrence. MAIN BODY In this review, we have extensively discussed several crucial aspects that cause resistance of cancer to radiation therapy, including radiation-induced DNA damage repair, cell cycle arrest, apoptosis escape, abundance of cancer stem cells, modification of cancer cells and their microenvironment, presence of exosomal and non-coding RNA, metabolic reprogramming, and ferroptosis. We aim to focus on the molecular mechanisms of cancer radiotherapy resistance in relation to these aspects and to discuss possible targets to improve treatment outcomes. CONCLUSIONS Studying the molecular mechanisms responsible for radiotherapy resistance and its interactions with the tumor environment will help improve cancer responses to radiotherapy. Our review provides a foundation to identify and overcome the obstacles to effective radiotherapy.
Collapse
Affiliation(s)
- Yu Wu
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- School of Graduate, Dalian Medical University, Dalian, 116044 China
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
| | - Runze Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- School of Graduate, Dalian Medical University, Dalian, 116044 China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|
173
|
Spruijtenburg B, Rudramurthy SM, Meijer EFJ, van Haren MHI, Kaur H, Chakrabarti A, Meis JF, de Groot T. Application of Novel Short Tandem Repeat Typing for Wickerhamomyces anomalus Reveals Simultaneous Outbreaks within a Single Hospital. Microorganisms 2023; 11:1525. [PMID: 37375027 DOI: 10.3390/microorganisms11061525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Wickerhamomyces anomalus, previously known as Candida pelliculosa, occasionally causes candidemia in humans, primarily infecting neonates, and infants. The mortality rate of these invasive infections is high, and isolates with a reduced susceptibility to fluconazole have been reported. W. anomalus outbreaks are regularly reported in healthcare facilities, especially in neonatal intensive care units (NICUs). In order to rapidly genotype isolates with a high-resolution, we developed and applied a short tandem repeat (STR) typing scheme for W. anomalus. Six STR markers were selected and amplified in two multiplex PCRs, M3 and M6, respectively. In total, 90 W. anomalus isolates were typed, leading to the identification of 38 different genotypes. Four large clusters were found, unveiling simultaneous outbreak events spread across multiple units within the same hospital. STR typing results of 11 isolates were compared to whole-genome sequencing (WGS) single nucleotide polymorphism (SNP) calling, and the identified genotypic relationships were highly concordant. We performed antifungal susceptibility testing of these isolates, and a reduced susceptibility to fluconazole was found for two (2.3%) isolates. ERG11 genes of these two isolates were examined using WGS data, which revealed a novel I469L substitution in one isolate. By constructing a homology model for W. anomalus ERG11p, the substitution was found in close proximity to the fluconazole binding site. In summary, we showed multiple W. anomalus outbreak events by applying a novel STR genotyping scheme.
Collapse
Affiliation(s)
- Bram Spruijtenburg
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Centre of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Eelco F J Meijer
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Centre of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Merlijn H I van Haren
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Harsimran Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Centre of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Department I of Internal Medicine, University of Cologne, Excellence Center for Medical Mycology, 50931 Cologne, Germany
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Centre of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| |
Collapse
|
174
|
Kumar K, Kumar S, Datta K, Fornace AJ, Suman S. High-LET-Radiation-Induced Persistent DNA Damage Response Signaling and Gastrointestinal Cancer Development. Curr Oncol 2023; 30:5497-5514. [PMID: 37366899 DOI: 10.3390/curroncol30060416] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Ionizing radiation (IR) dose, dose rate, and linear energy transfer (LET) determine cellular DNA damage quality and quantity. High-LET heavy ions are prevalent in the deep space environment and can deposit a much greater fraction of total energy in a shorter distance within a cell, causing extensive DNA damage relative to the same dose of low-LET photon radiation. Based on the DNA damage tolerance of a cell, cellular responses are initiated for recovery, cell death, senescence, or proliferation, which are determined through a concerted action of signaling networks classified as DNA damage response (DDR) signaling. The IR-induced DDR initiates cell cycle arrest to repair damaged DNA. When DNA damage is beyond the cellular repair capacity, the DDR for cell death is initiated. An alternative DDR-associated anti-proliferative pathway is the onset of cellular senescence with persistent cell cycle arrest, which is primarily a defense mechanism against oncogenesis. Ongoing DNA damage accumulation below the cell death threshold but above the senescence threshold, along with persistent SASP signaling after chronic exposure to space radiation, pose an increased risk of tumorigenesis in the proliferative gastrointestinal (GI) epithelium, where a subset of IR-induced senescent cells can acquire a senescence-associated secretory phenotype (SASP) and potentially drive oncogenic signaling in nearby bystander cells. Moreover, DDR alterations could result in both somatic gene mutations as well as activation of the pro-inflammatory, pro-oncogenic SASP signaling known to accelerate adenoma-to-carcinoma progression during radiation-induced GI cancer development. In this review, we describe the complex interplay between persistent DNA damage, DDR, cellular senescence, and SASP-associated pro-inflammatory oncogenic signaling in the context of GI carcinogenesis.
Collapse
Affiliation(s)
- Kamendra Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Santosh Kumar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kamal Datta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
175
|
Kaimenyi D, Rij M, Wendland J. Improved gene-targeting efficiency upon starvation in Saccharomycopsis. Fungal Genet Biol 2023; 167:103809. [PMID: 37169215 DOI: 10.1016/j.fgb.2023.103809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Commonly used fungal transformation protocols rely on the use of either electroporation or the lithium acetate/single strand carrier DNA/Polyethylene glycol/heat shock method. We have used the latter method previously in establishing DNA-mediated transformation in Saccharomycopsis schoenii, a CTG-clade yeast that exhibits necrotrophic mycoparasitism. To elucidate the molecular mechanisms of predation by Saccharomycopsis we aim at gene-function analyses to identify virulence-related pathways and genes. However, in spite of a satisfactory transformation efficiency our efforts were crippled by high frequency of ectopic integration of disruption cassettes. Here, we show that overnight starvation of S. schoenii cells, while reducing the number of transformants, resulted in a substantial increase in gene-targeting via homologous recombination. To demonstrate this, we have deleted the S. schoenii CHS1, HIS3 and LEU2 genes and determined the required size of the flanking homology regions. Additionally, we complemented the S. schoenii leu2 mutant with heterologous LEU2 gene from Saccharomycopsis fermentans. To demonstrate the usefulness of our approach we also generated a S. fermentans leu2 strain, suggesting that this approach may have broader applicability.
Collapse
Affiliation(s)
- Davies Kaimenyi
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse, 1, 65366 Geisenheim, Germany
| | - Mareike Rij
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse, 1, 65366 Geisenheim, Germany
| | - Jürgen Wendland
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Strasse, 1, 65366 Geisenheim, Germany; Geisenheim Yeast Breeding Center, Hochschule Geisenheim University, Von-Lade-Strasse, 1, 65366 Geisenheim, Germany.
| |
Collapse
|
176
|
Feng C, Zhang Y, Wu F, Li J, Liu M, Lv W, Li C, Wang W, Tan Q, Xue X, Ma X, Zhang S. Relationship between homologous recombination deficiency and clinical features of breast cancer based on genomic scar score. Breast 2023; 69:392-400. [PMID: 37116400 PMCID: PMC10165146 DOI: 10.1016/j.breast.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Homologous recombination deficiency (HRD) phenotype will sensitize tumors to poly (ADP-ribose) polymerases inhibitors and platinum. However, previous studies did not focus on the prevalence of HRD among Chinese breast cancer (BC) patients. METHODS One hundred and forty-seven BC patients were included in this study. Their HRD status was assessed by Genomic Scar Score (GSS), which was determined according to the length, site, and type of copy number. HRD was defined as positive when a harmful BRCA1/2 mutation was detected or GSS ≥50. RESULTS Our data revealed that 9.5% of the 147 patients tested positive for BRCA1/2 mutation, while approximately 34.7% were HRD-positive. For triple negative BC (TNBC), HRD positivity rate (60.5%) was higher than Luminal A (5.3%), Luminal B (HER2-) (28.8%), and Luminal B (HER2+) (31.6%) subgroups. HRD-positive tumors were more likely to be ER/PR-negative and exhibited higher Ki-67 expression. 50.0% of the HRD-positive patients achieved pathologic complete remission (pCR) after neoadjuvant therapy. HRD-positive patients tended to have a higher risk for cancer recurrence or metastasis compared to HRD-negative patients (29.4% vs. 13.5%). CONCLUSION We investigated the HRD status among Chinese BC patients using an HRD detection tool developed based on the Chinese population. The clinical characteristics, pathological profile, family history pattern, neoadjuvant efficacy, and disease progression events of HRD-positive and negative patients were described and compared. Thus, our data provided an evidence-based basis for applying the original HRD assay in Chinese BC.
Collapse
Affiliation(s)
- Cong Feng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Yinbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Fei Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Jia Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Mengjie Liu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Wei Lv
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Chaofan Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Weiwei Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Qinghua Tan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Xiaoyu Xue
- Amoy Diagnostics Co. Ltd., Xi'an, Shanxi, China
| | - Xingcong Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China.
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China.
| |
Collapse
|
177
|
Liu G, Li J, He B, Yan J, Zhao J, Wang X, Zhao X, Xu J, Wu Y, Zhang S, Gan X, Zhou C, Li X, Zhang X, Chen X. Bre1/RNF20 promotes Rad51-mediated strand exchange and antagonizes the Srs2/FBH1 helicases. Nat Commun 2023; 14:3024. [PMID: 37230987 DOI: 10.1038/s41467-023-38617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Central to homologous recombination (HR) is the assembly of Rad51 recombinase on single-strand DNA (ssDNA), forming the Rad51-ssDNA filament. How the Rad51 filament is efficiently established and sustained remains partially understood. Here, we find that the yeast ubiquitin ligase Bre1 and its human homolog RNF20, a tumor suppressor, function as recombination mediators, promoting Rad51 filament formation and subsequent reactions via multiple mechanisms independent of their ligase activities. We show that Bre1/RNF20 interacts with Rad51, directs Rad51 to ssDNA, and facilitates Rad51-ssDNA filament assembly and strand exchange in vitro. In parallel, Bre1/RNF20 interacts with the Srs2 or FBH1 helicase to counteract their disrupting effect on the Rad51 filament. We demonstrate that the above functions of Bre1/RNF20 contribute to HR repair in cells in a manner additive to the mediator protein Rad52 in yeast or BRCA2 in human. Thus, Bre1/RNF20 provides an additional layer of mechanism to directly control Rad51 filament dynamics.
Collapse
Affiliation(s)
- Guangxue Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jimin Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Boxue He
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jiaqi Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jingyu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xuejie Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiaocong Zhao
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Jingyan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yeyao Wu
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Simin Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xiaoli Gan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chun Zhou
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangpan Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xinghua Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
178
|
Andriuskevicius T, Dubenko A, Makovets S. The Inability to Disassemble Rad51 Nucleoprotein Filaments Leads to Aberrant Mitosis and Cell Death. Biomedicines 2023; 11:1450. [PMID: 37239121 PMCID: PMC10216663 DOI: 10.3390/biomedicines11051450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The proper maintenance of genetic material is essential for the survival of living organisms. One of the main safeguards of genome stability is homologous recombination involved in the faithful repair of DNA double-strand breaks, the restoration of collapsed replication forks, and the bypass of replication barriers. Homologous recombination relies on the formation of Rad51 nucleoprotein filaments which are responsible for the homology-based interactions between DNA strands. Here, we demonstrate that without the regulation of these filaments by Srs2 and Rad54, which are known to remove Rad51 from single-stranded and double-stranded DNA, respectively, the filaments strongly inhibit damage-associated DNA synthesis during DNA repair. Furthermore, this regulation is essential for cell survival under normal growth conditions, as in the srs2Δ rad54Δ mutants, unregulated Rad51 nucleoprotein filaments cause activation of the DNA damage checkpoint, formation of mitotic bridges, and loss of genetic material. These genome instability features may stem from the problems at stalled replication forks as the lack of Srs2 and Rad54 in the presence of Rad51 nucleoprotein filaments impedes cell recovery from replication stress. This study demonstrates that the timely and efficient disassembly of recombination machinery is essential for genome maintenance and cell survival.
Collapse
Affiliation(s)
| | | | - Svetlana Makovets
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| |
Collapse
|
179
|
Zhao LY, Mei JX, Yu G, Lei L, Zhang WH, Liu K, Chen XL, Kołat D, Yang K, Hu JK. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther 2023; 8:201. [PMID: 37179402 PMCID: PMC10183032 DOI: 10.1038/s41392-023-01406-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
In the past period, due to the rapid development of next-generation sequencing technology, accumulating evidence has clarified the complex role of the human microbiota in the development of cancer and the therapeutic response. More importantly, available evidence seems to indicate that modulating the composition of the gut microbiota to improve the efficacy of anti-cancer drugs may be feasible. However, intricate complexities exist, and a deep and comprehensive understanding of how the human microbiota interacts with cancer is critical to realize its full potential in cancer treatment. The purpose of this review is to summarize the initial clues on molecular mechanisms regarding the mutual effects between the gut microbiota and cancer development, and to highlight the relationship between gut microbes and the efficacy of immunotherapy, chemotherapy, radiation therapy and cancer surgery, which may provide insights into the formulation of individualized therapeutic strategies for cancer management. In addition, the current and emerging microbial interventions for cancer therapy as well as their clinical applications are summarized. Although many challenges remain for now, the great importance and full potential of the gut microbiota cannot be overstated for the development of individualized anti-cancer strategies, and it is necessary to explore a holistic approach that incorporates microbial modulation therapy in cancer.
Collapse
Affiliation(s)
- Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Xin Mei
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Frontier Innovation Center for Dental Medicine Plus, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
180
|
Vias M, Morrill Gavarró L, Sauer CM, Sanders DA, Piskorz AM, Couturier DL, Ballereau S, Hernando B, Schneider MP, Hall J, Correia-Martins F, Markowetz F, Macintyre G, Brenton JD. High-grade serous ovarian carcinoma organoids as models of chromosomal instability. eLife 2023; 12:e83867. [PMID: 37166279 PMCID: PMC10174694 DOI: 10.7554/elife.83867] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most genomically complex cancer, characterized by ubiquitous TP53 mutation, profound chromosomal instability, and heterogeneity. The mutational processes driving chromosomal instability in HGSOC can be distinguished by specific copy number signatures. To develop clinically relevant models of these mutational processes we derived 15 continuous HGSOC patient-derived organoids (PDOs) and characterized them using bulk transcriptomic, bulk genomic, single-cell genomic, and drug sensitivity assays. We show that HGSOC PDOs comprise communities of different clonal populations and represent models of different causes of chromosomal instability including homologous recombination deficiency, chromothripsis, tandem-duplicator phenotype, and whole genome duplication. We also show that these PDOs can be used as exploratory tools to study transcriptional effects of copy number alterations as well as compound-sensitivity tests. In summary, HGSOC PDO cultures provide validated genomic models for studies of specific mutational processes and precision therapeutics.
Collapse
Affiliation(s)
- Maria Vias
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Lena Morrill Gavarró
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
- The MRC Weatherall Institute of Molecular MedicineOxfordUnited Kingdom
| | - Carolin M Sauer
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Deborah A Sanders
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Anna M Piskorz
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | | | - Stéphane Ballereau
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Bárbara Hernando
- Centro Nacional de Investigaciones Oncológicas, C/Melchor Fernández AlmagroMadridSpain
| | - Michael P Schneider
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - James Hall
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Filipe Correia-Martins
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| | - Geoff Macintyre
- Centro Nacional de Investigaciones Oncológicas, C/Melchor Fernández AlmagroMadridSpain
| | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing CentreCambridgeUnited Kingdom
| |
Collapse
|
181
|
Islam F, Purkait D, Mishra PP. Insights into the Dynamics and Helicase Activity of RecD2 of Deinococcus radiodurans during DNA Repair: A Single-Molecule Perspective. J Phys Chem B 2023; 127:4351-4363. [PMID: 37163679 DOI: 10.1021/acs.jpcb.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
While the double helix is the most stable conformation of DNA inside cells, its transient unwinding and subsequent partial separation of the two complementary strands yields an intermediate single-stranded DNA (ssDNA). The ssDNA is involved in all major DNA transactions such as replication, transcription, recombination, and repair. The process of DNA unwinding and translocation is shouldered by helicases that transduce the chemical energy derived from nucleotide triphosphate (NTP) hydrolysis to mechanical energy and utilize it to destabilize hydrogen bonds between complementary base pairs. Consequently, a comprehensive understanding of the molecular mechanisms of these enzymes is essential. In the last few decades, a combination of single-molecule techniques (force-based manipulation and visualization) have been employed to study helicase action. These approaches have allowed researchers to study the single helicase-DNA complex in real-time and the free energy landscape of their interaction together with the detection of conformational intermediates and molecular heterogeneity during the course of helicase action. Furthermore, the unique ability of these techniques to resolve helicase motion at nanometer and millisecond spatial and temporal resolutions, respectively, provided surprising insights into their mechanism of action. This perspective outlines the contribution of single-molecule methods in deciphering molecular details of helicase activities. It also exemplifies how each technique was or can be used to study the helicase action of RecD2 in recombination DNA repair.
Collapse
Affiliation(s)
- Farhana Islam
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Debayan Purkait
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Padmaja Prasad Mishra
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
182
|
Yu C, Hou L, Huang Y, Cui X, Xu S, Wang L, Yan S. The multi-BRCT domain protein DDRM2 promotes the recruitment of RAD51 to DNA damage sites to facilitate homologous recombination. THE NEW PHYTOLOGIST 2023; 238:1073-1084. [PMID: 36727295 DOI: 10.1111/nph.18787] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
DNA double-strand breaks (DSBs) are the most toxic form of DNA damage in cells. Homologous recombination (HR) is an error-free repair mechanism for DSBs as well as a basis for gene targeting using genome-editing techniques. Despite the importance of HR, the HR mechanism in plants is poorly understood. Through genetic screens for DNA damage response mutants (DDRMs), we find that the Arabidopsis ddrm2 mutant is hypersensitive to DSB-inducing reagents. DDRM2 encodes a protein with four BRCA1 C-terminal (BRCT) domains and is highly conserved in plants including bryophytes, the earliest land plant lineage. The plant-specific transcription factor SOG1 binds to the promoter of DDRM2 and activates its expression. In consistence, the expression of DDRM2 is induced by DSBs in a SOG1-dependent manner. In support, genetic analysis suggests that DDRM2 functions downstream of SOG1. Similar to the sog1 mutant, the ddrm2 mutant shows dramatically reduced HR efficiency. Mechanistically, DDRM2 interacts with the core HR protein RAD51 and is required for the recruitment of RAD51 to DSB sites. Our study reveals that SOG1-DDRM2-RAD51 is a novel module for HR, providing a potential target for improving the efficiency of gene targeting.
Collapse
Affiliation(s)
- Chen Yu
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Longhui Hou
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yongchi Huang
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Xiaoyu Cui
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Shijun Xu
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Lili Wang
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Shunping Yan
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| |
Collapse
|
183
|
Mohanty SK, Lobo A, Mishra SK, Cheng L. Precision Medicine in Bladder Cancer: Present Challenges and Future Directions. J Pers Med 2023; 13:jpm13050756. [PMID: 37240925 DOI: 10.3390/jpm13050756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Bladder cancer (BC) is characterized by significant histopathologic and molecular heterogeneity. The discovery of molecular pathways and knowledge of cellular mechanisms have grown exponentially and may allow for better disease classification, prognostication, and development of novel and more efficacious noninvasive detection and surveillance strategies, as well as selection of therapeutic targets, which can be used in BC, particularly in a neoadjuvant or adjuvant setting. This article outlines recent advances in the molecular pathology of BC with a better understanding and deeper focus on the development and deployment of promising biomarkers and therapeutic avenues that may soon make a transition into the domain of precision medicine and clinical management for patients with BC.
Collapse
Affiliation(s)
- Sambit K Mohanty
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute and CORE Diagnostics, Gurgaon 122016, India
| | - Anandi Lobo
- Department of Pathology and Laboratory Medicine, Kapoor Center for Pathology and Urology, Raipur 490042, India
| | - Sourav K Mishra
- Department of Medical Oncology, All India Institute of Medical Sciences, Bhubaneswar 750017, India
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Brown University Warren Alpert Medical School, Lifespan Academic Medical Center, and the Legorreta Cancer Center at Brown University, 593 Eddy Street, APC 12-105, Providence, RI 02903, USA
| |
Collapse
|
184
|
Nirwal S, Czarnocki-Cieciura M, Chaudhary A, Zajko W, Skowronek K, Chamera S, Figiel M, Nowotny M. Mechanism of RecF-RecO-RecR cooperation in bacterial homologous recombination. Nat Struct Mol Biol 2023; 30:650-660. [PMID: 37081315 DOI: 10.1038/s41594-023-00967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/15/2023] [Indexed: 04/22/2023]
Abstract
In bacteria, one type of homologous-recombination-based DNA-repair pathway involves RecFOR proteins that bind at the junction between single-stranded (ss) and double-stranded (ds) DNA. They facilitate the replacement of SSB protein, which initially covers ssDNA, with RecA, which mediates the search for homologous sequences. However, the molecular mechanism of RecFOR cooperation remains largely unknown. We used Thermus thermophilus proteins to study this system. Here, we present a cryo-electron microscopy structure of the RecF-dsDNA complex, and another reconstruction that shows how RecF interacts with two different regions of the tetrameric RecR ring. Lower-resolution reconstructions of the RecR-RecO subcomplex and the RecFOR-DNA assembly explain how RecO is positioned to interact with ssDNA and SSB, which is proposed to lock the complex on a ssDNA-dsDNA junction. Our results integrate the biochemical data available for the RecFOR system and provide a framework for its complete understanding.
Collapse
Affiliation(s)
- Shivlee Nirwal
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Anuradha Chaudhary
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Weronika Zajko
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Krzysztof Skowronek
- Biophysics and Bioanalytics Facility, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Sebastian Chamera
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Małgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
185
|
Maimaiti A, Liu Y, Abulaiti A, Wang X, Feng Z, Wang J, Mijiti M, Turhon M, Alimu N, Wang Y, Liang W, Jiang L, Pei Y. Genomic Profiling of Lower-Grade Gliomas Subtype with Distinct Molecular and Clinicopathologic Characteristics via Altered DNA-Damage Repair Features. J Mol Neurosci 2023; 73:269-286. [PMID: 37067735 DOI: 10.1007/s12031-023-02116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
Lower WHO grade II and III gliomas (LGGs) exhibit significant genetic and transcriptional heterogeneity, and the heterogeneity of DNA damage repair (DDR) and its relationship to tumor biology, transcriptome, and tumor microenvironment (TME) remains poorly understood. In this study, we conducted multi-omics data integration to investigate DDR alterations in LGG. Based on clinical parameters and molecular characteristics, LGG patients were categorized into distinct DDR subtypes, namely, DDR-activated and DDR-suppressed subtypes. We compared gene mutation, immune spectrum, and immune cell infiltration between the two subtypes. DDR scores were generated to classify LGG patients based on DDR subtype features, and the results were validated using a multi-layer data cohort. We found that DDR activation was associated with poorer overall survival and that clinicopathological features of advanced age and higher grade were more common in the DDR-activated subtype. DDR-suppressed subtypes exhibited more frequent mutations in IDH1. In addition, we observed significant upregulation of activated immune cells in the DDR-activated subgroup, which suggests that immune cell infiltration significantly influences tumor progression and immunotherapeutic responses. Furthermore, we constructed a DDR signature for LGG using six DDR genes, which allowed for the division of patients into low- and high-risk groups. Quantitative real-time PCR results showed that CDK1, CDK2, TYMS, SMC4, and WEE1 were significantly upregulated in LGG samples compared to normal brain tissue samples. Overall, our study sheds light on DDR heterogeneity in LGG and provides insight into the molecular pathways of DDR involved in LGG development.
Collapse
Affiliation(s)
- Aierpati Maimaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Yanwen Liu
- Department of Medical Laboratory, Xinjiang Production and Construction Corps Hospital, 830002, Urumqi, Xinjiang, China
| | - Aimitaji Abulaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Xixian Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Zhaohai Feng
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Jiaming Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Maimaitili Mijiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Mirzat Turhon
- Department of Neurointerventional Surgery, Beijing Neurosurgical Institute, Capital Medical University, 100070, Beijing, China
- Department of Neurointerventional Surgery, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Nilipaer Alimu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Yongxin Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China
| | - Wenbao Liang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Xinjiang Medical University, No. 116, Huanghe Road, Shaibak District, 830000, Urumqi, Xinjiang, China.
| | - Lei Jiang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China.
| | - Yinan Pei
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, 830054, Urumqi, Xinjiang, China.
| |
Collapse
|
186
|
Shadfar S, Parakh S, Jamali MS, Atkin JD. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl Neurodegener 2023; 12:18. [PMID: 37055865 PMCID: PMC10103468 DOI: 10.1186/s40035-023-00350-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 04/15/2023] Open
Abstract
Redox homeostasis refers to the balance between the production of reactive oxygen species (ROS) as well as reactive nitrogen species (RNS), and their elimination by antioxidants. It is linked to all important cellular activities and oxidative stress is a result of imbalance between pro-oxidants and antioxidant species. Oxidative stress perturbs many cellular activities, including processes that maintain the integrity of DNA. Nucleic acids are highly reactive and therefore particularly susceptible to damage. The DNA damage response detects and repairs these DNA lesions. Efficient DNA repair processes are therefore essential for maintaining cellular viability, but they decline considerably during aging. DNA damage and deficiencies in DNA repair are increasingly described in age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Furthermore, oxidative stress has long been associated with these conditions. Moreover, both redox dysregulation and DNA damage increase significantly during aging, which is the biggest risk factor for neurodegenerative diseases. However, the links between redox dysfunction and DNA damage, and their joint contributions to pathophysiology in these conditions, are only just emerging. This review will discuss these associations and address the increasing evidence for redox dysregulation as an important and major source of DNA damage in neurodegenerative disorders. Understanding these connections may facilitate a better understanding of disease mechanisms, and ultimately lead to the design of better therapeutic strategies based on preventing both redox dysregulation and DNA damage.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Sonam Parakh
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
187
|
Tang H, Kulkarni S, Peters C, Eddison J, Al-Ani M, Madhusudan S. The Current Status of DNA-Repair-Directed Precision Oncology Strategies in Epithelial Ovarian Cancers. Int J Mol Sci 2023; 24:7293. [PMID: 37108451 PMCID: PMC10138422 DOI: 10.3390/ijms24087293] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Survival outcomes for patients with advanced ovarian cancer remain poor despite advances in chemotherapy and surgery. Platinum-based systemic chemotherapy can result in a response rate of up to 80%, but most patients will have recurrence and die from the disease. Recently, the DNA-repair-directed precision oncology strategy has generated hope for patients. The clinical use of poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA germ-line-deficient and/or platinum-sensitive epithelial ovarian cancers has improved survival. However, the emergence of resistance is an ongoing clinical challenge. Here, we review the current clinical state of PARP inhibitors and other clinically viable targeted approaches in epithelial ovarian cancers.
Collapse
Affiliation(s)
- Hiu Tang
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Sanat Kulkarni
- Department of Medicine, Sandwell and West Birmingham Hospitals, Lyndon, West Bromwich B71 4HJ, UK
| | - Christina Peters
- Department of Oncology, Sussex Cancer Centre, University Hospitals Sussex NHS Foundation Trust, Brighton BN2 5BD, UK
| | - Jasper Eddison
- College of Medical & Dental Sciences, University of Birmingham Medical School, Birmingham B15 2TT, UK
| | - Maryam Al-Ani
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| |
Collapse
|
188
|
Kwon S, Jung S, Baek SH. Combination Therapy of Radiation and Hyperthermia, Focusing on the Synergistic Anti-Cancer Effects and Research Trends. Antioxidants (Basel) 2023; 12:antiox12040924. [PMID: 37107299 PMCID: PMC10136118 DOI: 10.3390/antiox12040924] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Despite significant therapeutic advances, the toxicity of conventional therapies remains a major obstacle to their application. Radiation therapy (RT) is an important component of cancer treatment. Therapeutic hyperthermia (HT) can be defined as the local heating of a tumor to 40-44 °C. Both RT and HT have the advantage of being able to induce and regulate oxidative stress. Here, we discuss the effects and mechanisms of RT and HT based on experimental research investigations and summarize the results by separating them into three phases. Phase (1): RT + HT is effective and does not provide clear mechanisms; phase (2): RT + HT induces apoptosis via oxygenation, DNA damage, and cell cycle arrest; phase (3): RT + HT improves immunological responses and activates immune cells. Overall, RT + HT is an effective cancer modality complementary to conventional therapy and stimulates the immune response, which has the potential to improve cancer treatments, including immunotherapy, in the future.
Collapse
Affiliation(s)
- Seeun Kwon
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Sumin Jung
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| |
Collapse
|
189
|
Planas‐Paz L, Pliego‐Mendieta A, Hagedorn C, Aguilera‐Garcia D, Haberecker M, Arnold F, Herzog M, Bankel L, Guggenberger R, Steiner S, Chen Y, Kahraman A, Zoche M, Rubin MA, Moch H, Britschgi C, Pauli C. Unravelling homologous recombination repair deficiency and therapeutic opportunities in soft tissue and bone sarcoma. EMBO Mol Med 2023; 15:e16863. [PMID: 36779660 PMCID: PMC10086583 DOI: 10.15252/emmm.202216863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/14/2023] Open
Abstract
Defects in homologous recombination repair (HRR) in tumors correlate with poor prognosis and metastases development. Determining HRR deficiency (HRD) is of major clinical relevance as it is associated with therapeutic vulnerabilities and remains poorly investigated in sarcoma. Here, we show that specific sarcoma entities exhibit high levels of genomic instability signatures and molecular alterations in HRR genes, while harboring a complex pattern of chromosomal instability. Furthermore, sarcomas carrying HRDness traits exhibit a distinct SARC-HRD transcriptional signature that predicts PARP inhibitor sensitivity in patient-derived sarcoma cells. Concomitantly, HRDhigh sarcoma cells lack RAD51 nuclear foci formation upon DNA damage, further evidencing defects in HRR. We further identify the WEE1 kinase as a therapeutic vulnerability for sarcomas with HRDness and demonstrate the clinical benefit of combining DNA damaging agents and inhibitors of DNA repair pathways ex vivo and in the clinic. In summary, we provide a personalized oncological approach to treat sarcoma patients successfully.
Collapse
Affiliation(s)
- Lara Planas‐Paz
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Alicia Pliego‐Mendieta
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Catherine Hagedorn
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Domingo Aguilera‐Garcia
- Molecular Tumor Profiling Laboratory, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Martina Haberecker
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Fabian Arnold
- Molecular Tumor Profiling Laboratory, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Marius Herzog
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Lorenz Bankel
- Department of Medical Oncology and HaematologyUniversity Hospital ZurichZurichSwitzerland
| | - Roman Guggenberger
- Diagnostic and Interventional RadiologyUniversity Hospital ZurichZurichSwitzerland
| | - Sabrina Steiner
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Yanjiang Chen
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Abdullah Kahraman
- Molecular Tumor Profiling Laboratory, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Martin Zoche
- Molecular Tumor Profiling Laboratory, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Mark A Rubin
- Precision Oncology Laboratory, Department for Biomedical ResearchBern Center for Precision MedicineBernSwitzerland
| | - Holger Moch
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
| | - Christian Britschgi
- Department of Medical Oncology and HaematologyUniversity Hospital ZurichZurichSwitzerland
| | - Chantal Pauli
- Laboratory for Systems Pathology and Functional Tumor Pathology, Department of Pathology and Molecular PathologyUniversity Hospital ZurichZurichSwitzerland
- Medical FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
190
|
Pan Y, Xie N, Zhang X, Yang S, Lv S. Computational Insights into the Dynamic Structural Features and Binding Characteristics of Recombinase UvsX Compared with RecA. Molecules 2023; 28:molecules28083363. [PMID: 37110596 PMCID: PMC10144138 DOI: 10.3390/molecules28083363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
RecA family recombinases are the core enzymes in the process of homologous recombination, and their normal operation ensures the stability of the genome and the healthy development of organisms. The UvsX protein from bacteriophage T4 is a member of the RecA family recombinases and plays a central role in T4 phage DNA repair and replication, which provides an important model for the biochemistry and genetics of DNA metabolism. UvsX shares a high degree of structural similarity and function with RecA, which is the most deeply studied member of the RecA family. However, the detailed molecular mechanism of UvsX has not been resolved. In this study, a comprehensive all-atom molecular dynamics simulation of the UvsX protein dimer complex was carried out in order to investigate the conformational and binding properties of UvsX in combination with ATP and DNA, and the simulation of RecA was synchronized with the property comparison learning for UvsX. This study confirmed the highly conserved molecular structure characteristics and catalytic centers of RecA and UvsX, and also discovered differences in regional conformation, volatility and the ability to bind DNA between the two proteins at different temperatures, which would be helpful for the subsequent understanding and application of related recombinases.
Collapse
Affiliation(s)
- Yue Pan
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ningkang Xie
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xin Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Shuo Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Shaowu Lv
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Bioarchaeology Laboratory, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
191
|
Yang Y, Cai Y, Guo J, Dai K, Liu L, Chen Z, Wang F, Deng M. Knockdown of KDM5B Leads to DNA Damage and Cell Cycle Arrest in Granulosa Cells via MTF1. Curr Issues Mol Biol 2023; 45:3219-3237. [PMID: 37185734 PMCID: PMC10136914 DOI: 10.3390/cimb45040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
KDM5B is essential for early embryo development, which is under the control of maternal factors in oocytes. Granulosa cells (GCs) play a critical role during oocyte mature. However, the role of KDM5B in GCs remains to be elucidated. In the current study, we found that KDM5B expressed highly in the ovaries and located in goat GCs. Using an RNA sequence, we identified 1353 differentially expressed genes in the KDM5B knockdown GCs, which were mainly enriched in cell cycle, cell division, DNA replication and the cellular oxidative phosphorylation regulation pathway. Moreover, we reported a decrease in the percentage of proliferated cells but an increase in the percentage of apoptotic cells in the KDM5B knockdown GCs. In addition, in the KDM5B knockdown GCs, the percentage of GCs blocked at the S phase was increased compared to the NC group, suggesting a critical role of KDM5B in the cell cycle. Moreover, in the KDM5B knockdown GCs, the reactive oxygen species level, the mitochondrial depolarization ratio, and the expression of intracellular phosphorylated histone H2AX (γH2AX) increased, suggesting that knockdown of KDM5B leads to DNA damage, primarily in the form of DNA double-strand breaks (DSBs). Interestingly, we found a down-regulation of MTF1 in the KDM5B knockdown GCs, and the level of cell proliferation, as well as the cell cycle block in the S phase, was improved. In contrast, in the group with both KDM5B knockdown and MTF1 overexpression, the level of ROS, the expression of γH2AX and the number of DNA DSB sites decreased. Taken together, our results suggest that KDM5B inhibits DNA damage and promotes the cell cycle in GCs, which might occur through the up-regulation of MTF1.
Collapse
Affiliation(s)
- Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinjing Guo
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Keke Dai
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Liu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Zili Chen
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
192
|
Arif T, Farooq A, Ahmad FJ, Akhtar M, Choudhery MS. Prime editing: A potential treatment option for β-thalassemia. Cell Biol Int 2023; 47:699-713. [PMID: 36480796 DOI: 10.1002/cbin.11972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
The potential to therapeutically alter the genome is one of the remarkable scientific developments in recent years. Genome editing technologies have provided an opportunity to precisely alter genomic sequence(s) in eukaryotic cells as a treatment option for various genetic disorders. These technologies allow the correction of harmful mutations in patients by precise nucleotide editing. Genome editing technologies such as CRISPR (clustered regularly interspaced short palindromic repeat) and base editors have greatly contributed to the practical applications of gene editing. However, these technologies have certain limitations, including imperfect editing, undesirable mutations, off-target effects, and lack of potential to simultaneously edit multiple loci. Recently, prime editing (PE) has emerged as a new gene editing technology with the potential to overcome the above-mentioned limitations. Interestingly, PE not only has higher specificity but also does not require double-strand breaks. In addition, a minimum possibility of potential off-target mutant sites makes PE a preferred choice for therapeutic gene editing. Furthermore, PE has the potential to introduce insertion and deletions of all 12 single-base mutations at target sequences. Considering its potential, PE has been applied as a treatment option for genetic diseases including hemoglobinopathies. β-Thalassemia, for example, one of the most significant blood disorders characterized by reduced levels of functional hemoglobin, could potentially be treated using PE. Therapeutic reactivation of the γ-globin gene in adult β-thalassemia patients through PE technology is considered a promising therapeutic strategy. The current review aims to briefly discuss the genome editing strategies and potential applications of PE for the treatment of β-thalassemia. In addition, the review will also focus on challenges associated with the use of PE.
Collapse
Affiliation(s)
- Taqdees Arif
- Department of Human Genetics and Molecular Biology, University of Health Sciences Lahore, Lahore, Punjab, Pakistan
| | - Aroosa Farooq
- Department of Human Genetics and Molecular Biology, University of Health Sciences Lahore, Lahore, Punjab, Pakistan
| | - Fridoon Jawad Ahmad
- Department of Human Genetics and Molecular Biology, University of Health Sciences Lahore, Lahore, Punjab, Pakistan
| | - Muhammad Akhtar
- School of Biological Sciences, University of Punjab Lahore, Lahore, Punjab, Pakistan
| | - Mahmood S Choudhery
- Department of Human Genetics and Molecular Biology, University of Health Sciences Lahore, Lahore, Punjab, Pakistan
| |
Collapse
|
193
|
Gao B, Voskoboynik M, Cooper A, Wilkinson K, Hoon S, Hsieh CY, Cai S, Tian YE, Bao J, Ma N, Wang C, Zhang M, Li B, Guo M, Zhou R, Wang X, Xu C, de Souza P. A phase 1 dose-escalation study of the poly(ADP-ribose) polymerase inhibitor senaparib in Australian patients with advanced solid tumors. Cancer 2023; 129:1041-1050. [PMID: 36718624 DOI: 10.1002/cncr.34662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Senaparib is a novel, selective poly(ADP-ribose) polymerase-1/2 inhibitor with strong antitumor activity in preclinical studies. This first-in-human, phase 1, dose-escalation study examined the safety and preliminary efficacy of senaparib in patients with advanced solid tumors. METHODS Patients with advanced solid tumors were enrolled from three centers in Australia, using a conventional 3 + 3 design. Dose-escalation cohorts continued until the maximum tolerated dose or a recommended phase 2 dose was determined. Patients received one dose of oral senaparib and, if no dose-limiting toxicity occurred within 7 days, they received senaparib once daily in 3-week cycles. The primary end points were safety and tolerability. RESULTS Thirty-nine patients were enrolled at 10 dose levels ranging from 2 to 150 mg. No dose-limiting toxicities were observed in any cohort. Most treatment-emergent adverse events were grade 1-2 (91%). Seven patients (17.9%) reported hematologic treatment-emergent adverse events. Treatment-related adverse events occurred in eight patients (20.5%), and the most frequent was nausea (7.7%). Two deaths were reported after the end of study treatment, one of which was considered a complication from senaparib-related bone marrow failure. Pharmacokinetic analysis indicated that senaparib the accumulation index was 1.06-1.67, and absorption saturation was 80-150 mg daily. In 22 patients with evaluable disease, the overall response rate was 13.6%, and the disease control rate was 81.8%. The overall response rate was 33.3% for the BRCA mutation-positive subgroup and 6.3% for the nonmutated subgroup. CONCLUSIONS Senaparib was well tolerated in Australian patients with advanced solid tumors, with encouraging signals of antitumor activity. The recommended phase 2 dose for senaparib was determined to be 100 mg daily. CLINICALTRIALS GOV ID NCT03507543.
Collapse
Affiliation(s)
- Bo Gao
- Department of Medical Oncology, Blacktown Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Mark Voskoboynik
- Medical Oncology, Nucleus Network, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Adam Cooper
- Western Sydney University Medical School, Campbelltown, New South Wales, Australia
| | - Kate Wilkinson
- Western Sydney University Medical School, Campbelltown, New South Wales, Australia
| | - Siao Hoon
- Department of Medical Oncology, Blacktown Hospital and University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | - Jun Bao
- IMPACT Therapeutics Inc., Shanghai, China
| | - Ning Ma
- IMPACT Therapeutics Inc., Shanghai, China
| | - Chen Wang
- IMPACT Therapeutics Inc., Shanghai, China
| | - Ming Zhang
- IMPACT Therapeutics Inc., Shanghai, China
| | - Baoyue Li
- IMPACT Therapeutics Inc., Shanghai, China
| | | | - Ruiyu Zhou
- IMPACT Therapeutics Inc., Shanghai, China
| | | | - Cong Xu
- IMPACT Therapeutics Inc., Shanghai, China
| | - Paul de Souza
- Western Sydney University Medical School, Campbelltown, New South Wales, Australia
| |
Collapse
|
194
|
Fochtman TJ, Oza JP. Established and Emerging Methods for Protecting Linear DNA in Cell-Free Expression Systems. Methods Protoc 2023; 6:mps6020036. [PMID: 37104018 PMCID: PMC10146267 DOI: 10.3390/mps6020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Cell-free protein synthesis (CFPS) is a method utilized for producing proteins without the limits of cell viability. The plug-and-play utility of CFPS is a key advantage over traditional plasmid-based expression systems and is foundational to the potential of this biotechnology. A key limitation of CFPS is the varying stability of DNA types, limiting the effectiveness of cell-free protein synthesis reactions. Researchers generally rely on plasmid DNA for its ability to support robust protein expression in vitro. However, the overhead required to clone, propagate, and purify plasmids reduces the potential of CFPS for rapid prototyping. While linear templates overcome the limits of plasmid DNA preparation, linear expression templates (LETs) were under-utilized due to their rapid degradation in extract based CFPS systems, limiting protein synthesis. To reach the potential of CFPS using LETs, researchers have made notable progress toward protection and stabilization of linear templates throughout the reaction. The current advancements range from modular solutions, such as supplementing nuclease inhibitors and genome engineering to produce strains lacking nuclease activity. Effective application of LET protection techniques improves expression yields of target proteins to match that of plasmid-based expression. The outcome of LET utilization in CFPS is rapid design–build–test–learn cycles to support synthetic biology applications. This review describes the various protection mechanisms for linear expression templates, methodological insights for implementation, and proposals for continued efforts that may further advance the field.
Collapse
|
195
|
Liu J, Cao Y, Hu B, Li T, Zhang W, Zhang Z, Gao J, Niu H, Ding T, Wu J, Chen Y, Zhang P, Ma R, Su S, Wang C, Wang PG, Ma J, Xie S. Older but Stronger: Development of Platinum-Based Antitumor Agents and Research Advances in Tumor Immunity. INORGANICS 2023. [DOI: 10.3390/inorganics11040145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
Platinum (Pt) drugs have developed rapidly in clinical applications because of their broad and highly effective antitumor effects. In recent years, with the rapid development of immunotherapy, Pt-based antitumor agents have gained new challenges and opportunities. Since the discovery of their pharmacological effects in immunotherapy and tumor microenvironment regulation, research into Pt drugs has progressed to multi-ligand and multi-functional Pt precursors and their own shortcomings have been further highlighted. With the development of antitumor immunotherapy and the rise of combination therapy, the development of Pt-based drugs has started to move in the direction of multi-targeting, nanocarrier modification, immunotherapy and photodynamic therapy. In this paper, we first overview the recent applications of Pt-based drugs in antitumor inorganic chemistry, with a focus on summarizing the application of Pt-based drugs and their precursors in the anticancer immune response. The paper also provides a reasonable outlook on the future development of Pt-based drugs from the chemical and immunological perspectives, relying on the existing content and problems of Pt-based drug development. On the basis of the gathered information, joint multidisciplinary programs on implementing comprehensive immune analyses for the future development of novel anticancer metal compounds should be initiated.
Collapse
|
196
|
Lacuna K, Bose S, Ingham M, Schwartz G. Therapeutic advances in leiomyosarcoma. Front Oncol 2023; 13:1149106. [PMID: 36969049 PMCID: PMC10031121 DOI: 10.3389/fonc.2023.1149106] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Leiomyosarcoma is an aggressive mesenchymal malignancy and represents one of the most common subtypes of soft tissue sarcomas. It is characterized by significant disease heterogeneity with variable sites of origin and diverse genomic profiles. As a result, the treatment of advanced leiomyosarcoma is challenging. First-line therapy for metastatic and/or unresectable leiomyosarcoma includes anthracycline or gemcitabine based regimens, which provide a median progression-free survival time of about 5 months and overall survival time between 14-16 months. Effective later-line therapies are limited. Molecular profiling has enhanced our knowledge of the pathophysiology driving leiomyosarcoma, providing potential targets for treatment. In this review, we explore recent advances in our understanding of leiomyosarcoma tumor biology and implications for novel therapeutics. We describe the development of clinical trials based on such findings and discuss available published results. To date, the most promising approaches for advanced leiomyosarcoma include targeting DNA damage repair pathways and aberrant metabolism associated with oncogenesis, as well as novel chemotherapy combinations. This review highlights the recent progress made in the treatment of advanced leiomyosarcoma. Ongoing progress is contingent upon further development of clinical trials based on molecular findings, with careful consideration for clinical trial design, strong academic collaborations, and prospective correlative analyses.
Collapse
Affiliation(s)
- Kristine Lacuna
- Division of Hematology and Medical Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | | | | | | |
Collapse
|
197
|
Xu Y, Nowsheen S, Deng M. DNA Repair Deficiency Regulates Immunity Response in Cancers: Molecular Mechanism and Approaches for Combining Immunotherapy. Cancers (Basel) 2023; 15:cancers15051619. [PMID: 36900418 PMCID: PMC10000854 DOI: 10.3390/cancers15051619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Defects in DNA repair pathways can lead to genomic instability in multiple tumor types, which contributes to tumor immunogenicity. Inhibition of DNA damage response (DDR) has been reported to increase tumor susceptibility to anticancer immunotherapy. However, the interplay between DDR and the immune signaling pathways remains unclear. In this review, we will discuss how a deficiency in DDR affects anti-tumor immunity, highlighting the cGAS-STING axis as an important link. We will also review the clinical trials that combine DDR inhibition and immune-oncology treatments. A better understanding of these pathways will help exploit cancer immunotherapy and DDR pathways to improve treatment outcomes for various cancers.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Somaira Nowsheen
- Department of Dermatology, University of California San Diego, San Diego, CA 92122, USA
- Correspondence: (S.N.); (M.D.)
| | - Min Deng
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.N.); (M.D.)
| |
Collapse
|
198
|
Amgalan B, Wojtowicz D, Kim YA, Przytycka TM. Influence network model uncovers relations between biological processes and mutational signatures. Genome Med 2023; 15:15. [PMID: 36879282 PMCID: PMC9987115 DOI: 10.1186/s13073-023-01162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND There has been a growing appreciation recently that mutagenic processes can be studied through the lenses of mutational signatures, which represent characteristic mutation patterns attributed to individual mutagens. However, the causal links between mutagens and observed mutation patterns as well as other types of interactions between mutagenic processes and molecular pathways are not fully understood, limiting the utility of mutational signatures. METHODS To gain insights into these relationships, we developed a network-based method, named GENESIGNET that constructs an influence network among genes and mutational signatures. The approach leverages sparse partial correlation among other statistical techniques to uncover dominant influence relations between the activities of network nodes. RESULTS Applying GENESIGNET to cancer data sets, we uncovered important relations between mutational signatures and several cellular processes that can shed light on cancer-related processes. Our results are consistent with previous findings, such as the impact of homologous recombination deficiency on clustered APOBEC mutations in breast cancer. The network identified by GENESIGNET also suggest an interaction between APOBEC hypermutation and activation of regulatory T Cells (Tregs), as well as a relation between APOBEC mutations and changes in DNA conformation. GENESIGNET also exposed a possible link between the SBS8 signature of unknown etiology and the Nucleotide Excision Repair (NER) pathway. CONCLUSIONS GENESIGNET provides a new and powerful method to reveal the relation between mutational signatures and gene expression. The GENESIGNET method was implemented in python, and installable package, source codes and the data sets used for and generated during this study are available at the Github site https://github.com/ncbi/GeneSigNet.
Collapse
Affiliation(s)
- Bayarbaatar Amgalan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, 20894, Bethesda, USA
| | - Damian Wojtowicz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, 20894, Bethesda, USA.,Current address: Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, ul. Banacha 2, 02-097, Warszawa, Poland
| | - Yoo-Ah Kim
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, 20894, Bethesda, USA
| | - Teresa M Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, 20894, Bethesda, USA.
| |
Collapse
|
199
|
Liu C, Li Y, Chen Y, Chen XX, Huang J, Rokas A, Shen XX. How has horizontal gene transfer shaped the evolution of insect genomes? Environ Microbiol 2023; 25:642-645. [PMID: 36511824 PMCID: PMC10153070 DOI: 10.1111/1462-2920.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
As the most diverse group of animals on Earth, insects are key organisms in ecosystems. Horizontal gene transfer (HGT) refers to the transfer of genetic material between species by non-reproductive means. HGT is a major evolutionary force in prokaryotic genome evolution, but its importance in different eukaryotic groups, such as insects, has only recently begun to be understood. Genomic data from hundreds of insect species have enabled the detection of large numbers of HGT events and the elucidation of the functions of some of these foreign genes. Although quantification of the extent of HGT in insects broadens our understanding of its role in insect evolution, the scope of its influence and underlying mechanism(s) of its occurrence remain open questions for the field.
Collapse
Affiliation(s)
- Chao Liu
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Lab, Hangzhou 311121, China
| | - Yang Li
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | - Yun Chen
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | - Xue-xin Chen
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Huang
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Xing-Xing Shen
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Lab, Hangzhou 311121, China
| |
Collapse
|
200
|
Dhoonmoon A, Nicolae CM. Mono-ADP-ribosylation by PARP10 and PARP14 in genome stability. NAR Cancer 2023; 5:zcad009. [PMID: 36814782 PMCID: PMC9940457 DOI: 10.1093/narcan/zcad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/09/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
ADP-ribosylation is a post-translational modification involved in a variety of processes including DNA damage repair, transcriptional regulation, and cellular proliferation. Depending on the number of ADP moieties transferred to target proteins, ADP-ribosylation can be classified either as mono-ADP-ribosylation (MARylation) or poly-ADP-ribosylation (PARylation). This post-translational modification is catalyzed by enzymes known as ADP-ribosyltransferases (ARTs), which include the poly (ADP-ribose)-polymerase (PARP) superfamily of proteins. Certain members of the PARP family including PARP1 and PARP2 have been extensively studied and assessed as therapeutic targets. However, the other members of the PARP family of protein are not as well studied but have gained attention in recent years given findings suggesting their roles in an increasing number of cellular processes. Among these other members are PARP10 and PARP14, which have gradually emerged as key players in maintenance of genomic stability and carcinogenesis. PARP10 and PARP14 catalyze the transfer of a single ADP moiety to target proteins. Here, we summarize the current knowledge on MARylation in DNA repair and cancer, focusing on PARP10 and PARP14. We highlight the roles of PARP10 and PARP14 in cancer progression and response to chemotherapeutics and briefly discuss currently known PARP10 and PARP14 inhibitors.
Collapse
Affiliation(s)
- Ashna Dhoonmoon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|