151
|
Sharma R, Jiang H, Zhong L, Tseng J, Gow A. Minimal role for activating transcription factor 3 in the oligodendrocyte unfolded protein response in vivo. J Neurochem 2007; 102:1703-1712. [PMID: 17697053 DOI: 10.1111/j.1471-4159.2007.04646.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To further our goal of identifying and characterizing the functions of major components of the unfolded protein response (UPR) in oligodendrocytes, the gene encoding the activator of transcription factor 3 protein (ATF3) has been ablated in mice expressing mutant forms of the Proteolipid protein 1 (Plp1) gene and the phenotype of double mutants characterized at several levels. Mature oligodendrocytes in Plp1 mutant mice undergo UPR-induced cell stress, induce ATF3 expression and exhibit a greater propensity to die by apoptosis, which is consistent with pro-death function of ATF3 proposed from in vitro studies. However, we find that the absence of ATF3 has no effect on the levels of apoptosis in Plp1 mutants. Furthermore, we find that oligodendrocyte function appears normal in Atf3(-/-) mice and that motor coordination and neural communication are similarly unaffected. Accordingly, we conclude that ATF3, at best, plays a minor role in UPR signaling and its expression is more likely induced by the UPR as a secondary event in oligodendrocytes that is unrelated to cell death.
Collapse
Affiliation(s)
- Ramaswamy Sharma
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USACarman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USADepartment of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - HuiYuan Jiang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USACarman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USADepartment of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Laura Zhong
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USACarman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USADepartment of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - James Tseng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USACarman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USADepartment of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Alexander Gow
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USACarman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USADepartment of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
152
|
Murphy EF, Hooiveld GJ, Muller M, Calogero RA, Cashman KD. Conjugated linoleic acid alters global gene expression in human intestinal-like Caco-2 cells in an isomer-specific manner. J Nutr 2007; 137:2359-65. [PMID: 17951470 DOI: 10.1093/jn/137.11.2359] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conjugated linoleic acid (CLA) exhibits isomer-specific effects on transepithelial calcium (Ca) transport as well as on cell growth in human intestinal-like Caco-2 cells. However, the molecular mechanisms of action are still unclear. Therefore, this study used a transcriptomic approach to help elucidate the molecular mechanisms underlying such isomer-specific effects. Caco-2 cells were treated with 80 micromol/L linoleic acid (control), 80 micromol/L trans-10, cis-12 CLA, or 80 micromol/L cis-9, trans-11 CLA for 12 d. Ca transport was measured radio-isotopically. RNA was isolated from the cells, labeled, and hybridized to the Affymetrix U133 2.0 Plus arrays (n = 3). Data and functional analysis was preformed using Bioconductor. Using a minimum fold-change criterion of 1.6 and a false discovery rate criterion of P-value <or= 0.05, trans-10, cis-12 CLA altered the expression of 918 genes, whereas, cis-9, trans-11 CLA had no effect on gene expression. Gene ontology analysis revealed that trans-10, cis-12 CLA strongly modulated a number of processes inherently related to carcinogenesis, such as cell cycle, cell proliferation, and DNA metabolism. Trans-10, cis-12 CLA, but not cis-9, trans-11 CLA, increased transepithelial Ca transport in Caco-2 cells, which corresponded to changes in molecular mediators of paracellular (including claudin 2 and 4) and transcellular (calbindin D(9)k and vitamin D receptor) Ca transport. This microarray-based study highlighted a number of gene expression patterns of relevance to 2 important intestinal processes (carcinogenesis and Ca transport), which were modulated by trans-10, cis-12 CLA. These may help our mechanistic understanding of the role of CLA in promoting gut function and health.
Collapse
Affiliation(s)
- Eileen F Murphy
- Department of Food and Nutritional Sciences, University College, Cork, Ireland
| | | | | | | | | |
Collapse
|
153
|
Morgan R, Pirard PM, Shears L, Sohal J, Pettengell R, Pandha HS. Antagonism of HOX/PBX dimer formation blocks the in vivo proliferation of melanoma. Cancer Res 2007; 67:5806-13. [PMID: 17575148 DOI: 10.1158/0008-5472.can-06-4231] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant melanoma is a cancer that arises from melanocyte cells in a complex but well-studied process, and which can only be successfully treated prior to metastasis as it is highly resistant to conventional therapies. A number of recent reports have indicated that members of the HOX family of homeodomain-containing transcription factors are deregulated in melanoma, and may actually be required to maintain proliferation. In this report, we describe the use of a novel, cell-permeable antagonist of the interaction between HOX proteins and PBX, a second homeodomain-containing transcription factor that modifies HOX activity. This antagonist can block the growth of murine B16 cells and trigger apoptosis both in vitro and in vivo when administered to mice with flank tumors.
Collapse
Affiliation(s)
- Richard Morgan
- Postgraduate Medical School, University of Surrey, Guildford, United Kingdom.
| | | | | | | | | | | |
Collapse
|
154
|
Thin TH, Li L, Chung TK, Sun H, Taneja R. Stra13 is induced by genotoxic stress and regulates ionizing-radiation-induced apoptosis. EMBO Rep 2007; 8:401-7. [PMID: 17347673 PMCID: PMC1852750 DOI: 10.1038/sj.embor.7400912] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 12/22/2006] [Accepted: 01/12/2007] [Indexed: 11/09/2022] Open
Abstract
In response to a number of genotoxic stimuli that induce DNA damage in cells, the tumour suppressor p53 is activated resulting in cell cycle arrest or apoptosis. In this study, we have identified stimulated with retinoic acid 13 (Stra13), a basic helix-loop-helix transcription factor, as a regulator of ionizing-radiation-induced apoptosis. We show that Stra13 is induced in response to several DNA-damaging agents in a p53-independent manner. Stra13-/- thymocytes show impaired apoptosis in response to ionizing radiation, and consistently, p53 levels and also expression of its key transcriptional targets Puma and Noxa are reduced in the mutant thymocytes. In vitro, Stra13 regulates p53 levels in a mouse double mutant 2 (Mdm2)-dependent manner by physically interacting with p53 and preventing Mdm2-mediated ubiquitination and nuclear export. Together, our studies provide evidence that Stra13 is involved in DNA-damage-induced apoptosis and indicate its role in tumorigenesis.
Collapse
Affiliation(s)
- Tin Htwe Thin
- Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, New York 10029, USA
| | - Li Li
- Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, New York 10029, USA
| | - Teng-Kai Chung
- Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, New York 10029, USA
| | - Hong Sun
- Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, New York 10029, USA
| | - Reshma Taneja
- Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, New York 10029, USA
- Tel: +1 212 241 9413; Fax: +1 212 860 9279; E-mail:
| |
Collapse
|
155
|
Buganim Y, Kalo E, Brosh R, Besserglick H, Nachmany I, Rais Y, Stambolsky P, Tang X, Milyavsky M, Shats I, Kalis M, Goldfinger N, Rotter V. Mutant p53 protects cells from 12-O-tetradecanoylphorbol-13-acetate-induced death by attenuating activating transcription factor 3 induction. Cancer Res 2006; 66:10750-9. [PMID: 17108111 DOI: 10.1158/0008-5472.can-06-0916] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in p53 are ubiquitous in human tumors. Some p53 mutations not only result in loss of wild-type (WT) activity but also grant additional functions, termed "gain of function." In this study, we explore how the status of p53 affects the immediate response gene activating transcription factor 3 (ATF3) in the 12-O-tetradecanoylphorbol-13-acetate (TPA)-protein kinase C (PKC) pathway. We show that high doses of TPA induce ATF3 in a WT p53-independent manner correlating with PKCs depletion and cell death. We show that cells harboring mutant p53 have attenuated ATF3 induction and are less sensitive to TPA-induced death compared with their p53-null counterparts. Mutagenesis analysis of the ATF3 promoter identified the regulatory motifs cyclic AMP-responsive element binding protein/ATF and MEF2 as being responsible for the TPA-induced activation of ATF3. Moreover, we show that mutant p53 attenuates ATF3 expression by two complementary mechanisms. It interacts with the ATF3 promoter and influences its activity via the MEF2 site, and additionally, it attenuates transcriptional expression of the ATF3 activator MEF2D. These data provide important insights into the molecular mechanisms that underlie mutant p53 gain of function.
Collapse
Affiliation(s)
- Yosef Buganim
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Underhill-Day N, Heath JK. Oncostatin M (OSM) cytostasis of breast tumor cells: characterization of an OSM receptor beta-specific kernel. Cancer Res 2006; 66:10891-901. [PMID: 17108126 DOI: 10.1158/0008-5472.can-06-1766] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interleukin-6 cytokine oncostatin M (OSM) induces potent growth-inhibitory and morphogenic responses in several different tumor cell types, highlighting the importance of OSM signaling mechanisms as targets for therapeutic intervention. The specific molecular pathways involved are not well understood, as OSM can signal through two separate heterodimeric receptor complexes, glycoprotein 130 (gp130)/leukemia inhibitory factor receptor (LIFR) alpha and gp130/OSM receptor beta (OSMRbeta). In this investigation, we used a LIFR antagonist to help resolve signaling responses and identify patterns of gene expression elicited by the different receptor complexes. OSM-induced biological effects on breast tumor-derived cell lines were specifically mediated through the gp130/OSMRbeta complex. Each cytokine tested exhibited differential signaling capability and manifested both shared and unique patterns of gene activation, emphasizing compositional differences in activator protein-1 transcription factor activity and expression. In particular, OSM strongly activated the c-Jun NH(2)-terminal kinase (JNK) serine/threonine kinase and downstream components, including activating transcription factor (ATF)/cyclic AMP-responsive element binding protein family member, ATF3. JNK/stress-activated protein kinase kinase inhibition abrogated cell morphogenesis induced by OSM, indicating an important role for this pathway in OSM specificity. These findings identify a core signaling/transcriptional mechanism specific to the OSMRbeta in breast tumor cells.
Collapse
Affiliation(s)
- Nicholas Underhill-Day
- Cancer Research UK Growth Factor Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom.
| | | |
Collapse
|
157
|
García MA, Gil J, Ventoso I, Guerra S, Domingo E, Rivas C, Esteban M. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 2006; 70:1032-60. [PMID: 17158706 PMCID: PMC1698511 DOI: 10.1128/mmbr.00027-06] [Citation(s) in RCA: 620] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The double-stranded RNA-dependent protein kinase PKR is a critical mediator of the antiproliferative and antiviral effects exerted by interferons. Not only is PKR an effector molecule on the cellular response to double-stranded RNA, but it also integrates signals in response to Toll-like receptor activation, growth factors, and diverse cellular stresses. In this review, we provide a detailed picture on how signaling downstream of PKR unfolds and what are the ultimate consequences for the cell fate. PKR activation affects both transcription and translation. PKR phosphorylation of the alpha subunit of eukaryotic initiation factor 2 results in a blockade on translation initiation. However, PKR cannot avoid the translation of some cellular and viral mRNAs bearing special features in their 5' untranslated regions. In addition, PKR affects diverse transcriptional factors such as interferon regulatory factor 1, STATs, p53, activating transcription factor 3, and NF-kappaB. In particular, how PKR triggers a cascade of events involving IKK phosphorylation of IkappaB and NF-kappaB nuclear translocation has been intensively studied. At the cellular and organism levels PKR exerts antiproliferative effects, and it is a key antiviral agent. A point of convergence in both effects is that PKR activation results in apoptosis induction. The extent and strength of the antiviral action of PKR are clearly understood by the findings that unrelated viral proteins of animal viruses have evolved to inhibit PKR action by using diverse strategies. The case for the pathological consequences of the antiproliferative action of PKR is less understood, but therapeutic strategies aimed at targeting PKR are beginning to offer promising results.
Collapse
Affiliation(s)
- M A García
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
158
|
Zhong S, Fields CR, Su N, Pan YX, Robertson KD. Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer. Oncogene 2006; 26:2621-34. [PMID: 17043644 DOI: 10.1038/sj.onc.1210041] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths in the United States due, in large part, to the lack of early detection methods. Lung cancer arises from a complex series of genetic and epigenetic changes leading to uncontrolled cell growth and metastasis. Unlike genetic changes, epigenetic changes, such as DNA methylation and histone acetylation, are reversible with currently available pharmaceuticals and are early events in lung tumorigenesis detectable by non-invasive methods. In order to better understand how epigenetic changes contribute to lung cancer, and to identify new disease biomarkers, we combined pharmacologic inhibition of DNA methylation and histone deacetylation in non-small cell lung cancer (NSCLC) cell lines, with genome-wide expression profiling. Of the more than 200 genes upregulated by these treatments, three of these, neuronatin, metallothionein 3 and cystatin E/M, were frequently hypermethylated and transcriptionally downregulated in NSCLC cell lines and tumors. Interestingly, four other genes, cylindromatosis, CD9, activating transcription factor 3 and oxytocin receptor, were dominantly regulated by histone deacetylation and were also frequently downregulated in lung tumors. The majority of these genes also suppressed NSCLC growth in culture when ectopically expressed. This study therefore reveals new putative NSCLC growth regulatory genes and epigenetic disease biomarkers that may enhance early detection strategies and serve as therapeutic targets.
Collapse
MESH Headings
- Acetylation
- Adenocarcinoma/drug therapy
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Biomarkers, Tumor
- Carcinoma, Large Cell/drug therapy
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Chromatin Immunoprecipitation
- Colony-Forming Units Assay
- DNA Methylation/drug effects
- Enzyme Inhibitors/pharmacology
- Epigenesis, Genetic/drug effects
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Histone Deacetylase Inhibitors
- Humans
- Hydroxamic Acids/pharmacology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Oligonucleotide Array Sequence Analysis
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- S Zhong
- Department of Biochemistry & Molecular Biology, UF-Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology and Genetics Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
159
|
Concannon CG, Koehler BF, Reimertz C, Murphy BM, Bonner C, Thurow N, Ward MW, Villunger A, Strasser A, Kögel D, Prehn JHM. Apoptosis induced by proteasome inhibition in cancer cells: predominant role of the p53/PUMA pathway. Oncogene 2006; 26:1681-92. [PMID: 16983338 DOI: 10.1038/sj.onc.1209974] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The proteasome has emerged as a novel target for antineoplastic treatment of hematological malignancies and solid tumors, including those of the central nervous system. To identify cell death pathways activated in response to inhibition of the proteasome system in cancer cells, we treated human SH-SY5Y neuroblastoma cells with the selective proteasome inhibitor (PI) epoxomicin (Epoxo). Prolonged exposure to Epoxo was associated with increased levels of poly-ubiquitinylated proteins and p53, release of cytochrome c from the mitochondria, and activation of caspases. Analysis of global gene expression using high-density oligonucleotide microarrays revealed that Epoxo triggered transcriptional activation of the two Bcl-2-homology domain-3-only (BH3-only) genes p53 upregulated modulator of apoptosis (PUMA) and Bim. Subsequent studies in PUMA- and Bim-deficient cells indicated that Epoxo-induced caspase activation and apoptosis was predominantly PUMA-dependent. Further characterization of the transcriptional response to Epoxo in HCT116 human colon cancer cells demonstrated that PUMA induction was p53-dependent; with deficiency in either p53 or PUMA significantly protected HCT116 cells against Epoxo-induced apoptosis. Our data suggest that p53 activation and the transcriptional induction of its target gene PUMA play an important role in the sensitivity of cancer cells to apoptosis induced by proteasome inhibition, and imply that antineoplastic therapies with PIs might be especially useful in cancers with functional p53.
Collapse
Affiliation(s)
- C G Concannon
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Avivi A, Brodsky L, Nevo E, Band MR. Differential expression profiling of the blind subterranean mole rat Spalax ehrenbergi superspecies: bioprospecting for hypoxia tolerance. Physiol Genomics 2006; 27:54-64. [PMID: 16788006 DOI: 10.1152/physiolgenomics.00001.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The blind subterranean mole rat of the Spalax ehrenbergi superspecies, living underground and exposed to fluctuating oxygen and carbon dioxide levels, is an excellent model of hypoxic tolerance. Unique structural and functional adaptations of the cardiovascular and respiratory systems allow these underground mammals to survive at severely reduced oxygen tension. Elucidation of the natural variation and evolutionary changes under hypoxia within this superspecies may have biomedical applications in ischemic syndromes and cancer. In this study, we have compared expression profiles of muscle tissue at normoxic (21%) and hypoxic (3%) levels of oxygen concentration between two allospecies of the S. ehrenbergi superspecies exhibiting differential hypoxia tolerance in accordance with their ecological regimes. Profiling was performed by cross-species hybridization using a mouse cDNA array containing 15,000 gene elements. Results uncover species-specific responses to hypoxic stress among numerous genes involved in angiogenesis, apoptosis, and oxidative stress management. Among the most striking results are differential expressions of cardiac ankyrin repeat protein ( Carp), activating transcription factor 3 ( Atf3), LIM and cysteine-rich domains 1 ( Lmcd1), cysteine and glycine-rich protein 2 ( Csrp2), and ras homolog gene family, member B ( RhoB). These findings support the hypothesis that allospecies of the S. ehrenbergi superspecies are variably adapted to fluctuating oxygen tension. Differences may involve specific metabolic pathways and functional adaptations at the structural and molecular levels.
Collapse
Affiliation(s)
- Aaron Avivi
- Institute of Evolution, University of Haifa, Haifa, Israel
| | | | | | | |
Collapse
|
161
|
Shringarpure R, Catley L, Bhole D, Burger R, Podar K, Tai YT, Kessler B, Galardy P, Ploegh H, Tassone P, Hideshima T, Mitsiades C, Munshi NC, Chauhan D, Anderson KC. Gene expression analysis of B-lymphoma cells resistant and sensitive to bortezomib. Br J Haematol 2006; 134:145-56. [PMID: 16846475 DOI: 10.1111/j.1365-2141.2006.06132.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The proteasome inhibitor bortezomib has shown impressive clinical activity alone and in combination with conventional and other novel agents for the treatment of multiple myeloma (MM). Although bortezomib is known to be a selective proteasome inhibitor, the downstream mechanisms of cytotoxicity and drug resistance are poorly understood. However, resistance to bortezomib as a single agent develops in the majority of patients, and activity in other malignancies has been less impressive. To elucidate mechanisms of bortezomib resistance, we compared differential gene expression profiles of bortezomib-resistant SUDHL-4 and bortezomib-sensitive SUDHL-6 diffuse large B-cell lymphoma lines in response to bortezomib. At concentrations that effectively inhibited proteasome activity, bortezomib induced apoptosis in SUDHL-6 cells, but not in SUDHL-4 cells. We showed that overexpression of activating transcription factor 3 (ATF3), ATF4, ATF5, c-Jun, JunD and caspase-3 is associated with sensitivity to bortezomib-induced apoptosis, whereas overexpression of heat shock protein (HSP)27, HSP70, HSP90 and T-cell factor 4 is associated with bortezomib resistance.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Boronic Acids/pharmacology
- Bortezomib
- Caspase 3
- Caspases/metabolism
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/genetics
- Gene Expression Profiling/methods
- Humans
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Polymerase Chain Reaction/methods
- Proteasome Inhibitors
- Pyrazines/pharmacology
- TCF Transcription Factors/biosynthesis
- TCF Transcription Factors/genetics
- Transcription Factor 7-Like 2 Protein
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Reshma Shringarpure
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Milkiewicz M, Kelland C, Colgan S, Haas TL. Nitric oxide and p38 MAP kinase mediate shear stress-dependent inhibition of MMP-2 production in microvascular endothelial cells. J Cell Physiol 2006; 208:229-37. [PMID: 16575906 DOI: 10.1002/jcp.20658] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic exposure of the skeletal muscle microcirculation to elevated shear stress-induces angiogenesis. Previous studies observed that shear stress-induced capillary growth involves luminal sprouting, or internal division, of the capillaries, which is characterized by a minimal proliferative response and the retention of an intact basement membrane. Matrix metalloproteinases (MMPs) are associated with the process of abluminal sprouting angiogenesis, but may not be required for the process of luminal division during capillary growth. We analyzed the production of MMP-2, using both the in vivo model of prazosin-induced angiogenesis in rat skeletal muscle, and cultured microvascular endothelial cells exposed to laminar shear stress. We found that MMP-2 was not elevated in capillaries of shear stress-stimulated skeletal muscle, despite a significant increase in capillary number in response to a shear stress stimulus. In cultured microvascular endothelial cells, MMP-2 mRNA and protein levels were attenuated significantly in response to shear stress exposure. This effect on MMP-2 was reversed by nitric oxide (NO) synthase inhibition using LNNA. In contrast, exposure of static cultures of endothelial cells to NO donors significantly reduced MMP-2 production. Shear stress exposure and NO donors both modified phosphorylation levels of several members of the MAPK family. Treatment of shear stress-exposed cells with the p38 MAPK inhibitor, SB203580, abolished the shear stress-mediated reduction in MMP-2 mRNA. Thus, our data provide strong evidence that elevated shear stress inhibits MMP-2 production in microvascular endothelial cells, an effect that is mediated by signal pathways involving both production of NO and activation of p38 MAPK.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cells, Cultured
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Endothelial Cells/physiology
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Enzyme Inhibitors/pharmacology
- Hemodynamics/drug effects
- Hemodynamics/physiology
- Imidazoles/pharmacology
- Male
- Matrix Metalloproteinase 2/analysis
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Neovascularization, Physiologic/drug effects
- Nitric Acid/metabolism
- Nitric Oxide Donors/pharmacology
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitroarginine/pharmacology
- Phosphorylation
- Prazosin/pharmacology
- Pyridines/pharmacology
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Stress, Mechanical
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/physiology
Collapse
Affiliation(s)
- Malgorzata Milkiewicz
- School of Kinesiology and Health Sciences, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
163
|
Ameri K, Hammond EM, Culmsee C, Raida M, Katschinski DM, Wenger RH, Wagner E, Davis RJ, Hai T, Denko N, Harris AL. Induction of activating transcription factor 3 by anoxia is independent of p53 and the hypoxic HIF signalling pathway. Oncogene 2006; 26:284-9. [PMID: 16847457 DOI: 10.1038/sj.onc.1209781] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Solid tumors often have an inadequate blood supply, which results in large regions that are subjected to hypoxic or anoxic stress. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that regulates much of the transcriptional response of cells to hypoxia. Activating transcription factor 3 (ATF3) is another transcription factor that responds to a variety of stresses and is often upregulated in cancer. We investigated the regulation of ATF3 by oxygen deprivation. ATF3 induction occurred most robustly under anoxia, is common, and it is not dependent on presence of HIF-1 or p53, but is sensitive to the inhibition of c-Jun NH2-terminal kinase activation and the antioxidant N-acetylcystein. ATF3 could also be induced by desferrioxamine but not by the mitochondrial poison cyanide or the nonspecific 2-oxoglutarate dioxygenase inhibitor dimethyloxalylglycine. We also show that anoxic ATF3 mRNA is more stable than normoxic mRNA providing a mechanism for this induction. Thus, this study demonstrates that the regulation of ATF3 under anoxia is independent of 2-oxoglutarate dioxygenase, HIF-1 and p53, presumably involving multiple regulatory pathways.
Collapse
Affiliation(s)
- K Ameri
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Guerra S, López-Fernández LA, García MA, Zaballos A, Esteban M. Human Gene Profiling in Response to the Active Protein Kinase, Interferon-induced Serine/threonine Protein Kinase (PKR), in Infected Cells. J Biol Chem 2006; 281:18734-45. [PMID: 16613840 DOI: 10.1074/jbc.m511983200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The interferon-induced serine/threonine protein kinase (PKR) has an essential role in cell survival and cell death after viral infection and under stress conditions, but the host genes involved in these processes are not well defined. We used human cDNA microarrays to identify, in infected cells, genes differentially expressed after PKR expression and analyzed the requirement of catalytic activity of the enzyme. To express PKR, we used vaccinia virus (VV) recombinants producing wild type PKR (VV-PKR) and the catalytically inactive mutant K296R (VV-PKR-K296R). Most regulated genes were classified according to biological function, including apoptosis, stress, defense, and immune response. Transcriptional changes detected by microarray analysis were confirmed for selected genes by quantitative real time reverse transcription PCR. A total of 111 genes were regulated specifically by PKR catalytic activity. Of these, 97 were up-regulated, and 14 were down-regulated. The ATF-3 transcription factor, involved in stress-induced beta-cell apoptosis, was up-regulated. Activation of endogenous PKR with a VV mutant lacking the viral protein E3L (VVDeltaE3L), a PKR inhibitor, triggered an increase in ATF-3 expression that was not observed in PKR(-/-) cells. Using null cells for ATF-3 and for the p65 subunit of NF-kappaB, we showed that induction of apoptosis by PKR at late times of infection was dependent on ATF-3 expression and regulated by NF-kappaB activation. Here, we identified human genes selectively induced by expression of active PKR in infected cells and linked ATF-3 to a novel mechanism used by PKR to induce apoptosis.
Collapse
Affiliation(s)
- Susana Guerra
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Ciudad Universitaria de Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
165
|
Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, Kennedy K, Hai T, Bolouri H, Aderem A. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 2006; 441:173-8. [PMID: 16688168 DOI: 10.1038/nature04768] [Citation(s) in RCA: 635] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 03/29/2006] [Indexed: 11/09/2022]
Abstract
The innate immune system is absolutely required for host defence, but, uncontrolled, it leads to inflammatory disease. This control is mediated, in part, by cytokines that are secreted by macrophages. Immune regulation is extraordinarily complex, and can be best investigated with systems approaches (that is, using computational tools to predict regulatory networks arising from global, high-throughput data sets). Here we use cluster analysis of a comprehensive set of transcriptomic data derived from Toll-like receptor (TLR)-activated macrophages to identify a prominent group of genes that appear to be regulated by activating transcription factor 3 (ATF3), a member of the CREB/ATF family of transcription factors. Network analysis predicted that ATF3 is part of a transcriptional complex that also contains members of the nuclear factor (NF)-kappaB family of transcription factors. Promoter analysis of the putative ATF3-regulated gene cluster demonstrated an over-representation of closely apposed ATF3 and NF-kappaB binding sites, which was verified by chromatin immunoprecipitation and hybridization to a DNA microarray. This cluster included important cytokines such as interleukin (IL)-6 and IL-12b. ATF3 and Rel (a component of NF-kappaB) were shown to bind to the regulatory regions of these genes upon macrophage activation. A kinetic model of Il6 and Il12b messenger RNA expression as a function of ATF3 and NF-kappaB promoter binding predicted that ATF3 is a negative regulator of Il6 and Il12b transcription, and this hypothesis was validated using Atf3-null mice. ATF3 seems to inhibit Il6 and Il12b transcription by altering chromatin structure, thereby restricting access to transcription factors. Because ATF3 is itself induced by lipopolysaccharide, it seems to regulate TLR-stimulated inflammatory responses as part of a negative-feedback loop.
Collapse
Affiliation(s)
- Mark Gilchrist
- Institute for Systems Biology, Seattle, Washington 98103, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Roe JS, Kim H, Lee SM, Kim ST, Cho EJ, Youn HD. p53 stabilization and transactivation by a von Hippel-Lindau protein. Mol Cell 2006; 22:395-405. [PMID: 16678111 DOI: 10.1016/j.molcel.2006.04.006] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 11/20/2005] [Accepted: 04/03/2006] [Indexed: 11/26/2022]
Abstract
von Hippel-Lindau (VHL) disease is a rare autosomal dominant cancer syndrome. Although hypoxia-inducible factor-alpha (HIFalpha) is a well-documented substrate of von Hippel-Lindau tumor suppressor protein (pVHL), it remains unclear whether the dysregulation of HIF is sufficient to account for de novo tumorigenesis in VHL-deleted cells. Here we found that pVHL directly associates with and stabilizes p53 by suppressing Mdm2-mediated ubiquitination and nuclear export of p53. Moreover, upon genotoxic stress, pVHL invoked an interaction between p53 and p300 and the acetylation of p53, which ultimately led to an increase in p53 transcriptional activity and p53-mediated cell cycle arrest and apoptosis. These results suggest that the tumor suppressor pVHL has an unexpected function to upregulate the tumor suppressor p53.
Collapse
Affiliation(s)
- Jae-Seok Roe
- Department of Biochemistry and Molecular Biology, Cancer Research Institute, Interdisciplinary Program in Genetic Engineering, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | | | | | | | | | | |
Collapse
|
167
|
Lee SH, Yamaguchi K, Kim JS, Eling TE, Safe S, Park Y, Baek SJ. Conjugated linoleic acid stimulates an anti-tumorigenic protein NAG-1 in an isomer specific manner. Carcinogenesis 2006; 27:972-981. [PMID: 16286461 DOI: 10.1093/carcin/bgi268] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Conjugated linoleic acids (CLAs), naturally occurring fatty acids in ruminant food products, have anti-tumorigenic and pro-apoptotic properties in animal as well as in vitro models of cancer. However, the cellular mechanism has not been fully understood. NAG-1 (non-steroidal anti-inflammatory drug-activated gene-1) is induced by several dietary compounds and belongs to a TGF-beta superfamily gene associated with pro-apoptotic and anti-tumorigenic activities. The present study was performed to elucidate the molecular mechanism by which CLA stimulates anti-tumorigenic activity in human colorectal cancer (CRC) cells. The trans-10, cis-12-CLA (t10,c12-CLA) repressed cell proliferation and induced apoptosis, whereas linoleic acid or c9,t11-CLA showed no effect on cell proliferation and apoptosis. We also found that t10,c12-CLA induced the expression of a pro-apoptotic gene, NAG-1, in human CRC cells. Inhibition of NAG-1 expression by small interference RNA (siRNA) results in repression of t10,c12-CLA-induced apoptosis. Microarray analysis using t10,c12-CLA-treated HCT-116 cells revealed that activating transcription factor 3 (ATF3) was induced and its expression was confirmed by western analysis. The t10,c12-CLA treatment followed by the overexpression of ATF3 increased NAG-1 promoter activity in HCT-116 cells. We further provide the evidence that t10,c12-CLA inhibited the phosphorylation of AKT and the blockage of GSK-3 by siRNA abolished t10,c12-CLA-induced ATF3 and NAG-1 expression. The current study demonstrates that t10,c12-CLA stimulates ATF3/NAG-1 expression and subsequently induces apoptosis in an isomer specific manner. These effects may be through inhibition of AKT/GSK-3beta pathway in human CRC cells.
Collapse
Affiliation(s)
- Seong-Ho Lee
- Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | | | |
Collapse
|
168
|
Lu D, Wolfgang CD, Hai T. Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. J Biol Chem 2006; 281:10473-81. [PMID: 16469745 DOI: 10.1074/jbc.m509278200] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ATF3 is a stress-inducible gene that encodes a member of the ATF/CREB family of transcription factors. Current literature indicates that ATF3 affects cell death and cell cycle progression. However, controversies exist, because it has been demonstrated to be a negative or positive regulator of these processes. We sought to study the roles of ATF3 in both cell death and cell cycle regulation in the same cell type using mouse fibroblasts. We show that ATF3 promotes apoptosis and cell cycle arrest. Fibroblasts deficient in ATF3 (ATF3(-/-)) were partially protected from UV-induced apoptosis, and fibroblasts ectopically expressing ATF3(-/-) under the tet-off system exhibited features characteristic of apoptosis upon ATF3 induction. Furthermore, ATF3(-/-) fibroblasts transitioned from G(2) to S phase more efficiently than the ATF3(+/+) fibroblasts, suggesting a growth arrest role of ATF3. Consistent with the growth arrest and pro-apoptotic roles of ATF3, ATF3(-) fibroblasts upon Ras transformation exhibited higher growth rate, produced more colonies in soft agar, and formed larger tumor upon xenograft injection than the ATF3(+/+) counterparts. ATF3(-/-) cells, either with or without Ras transformation, had increased Rb phosphorylation and higher levels of various cyclins. Significantly, ATF3 bound to the cyclin D1 promoter as shown by chromatin immunoprecipitation (ChIP) assay and repressed its transcription by a transcription assay. Taken together, our results indicate that ATF3 promotes cell death and cell arrest, and suppresses Ras-mediated tumorigenesis. Potential explanations for the controversy about the roles of ATF3 in cell cycle and cell death are discussed.
Collapse
Affiliation(s)
- Dan Lu
- Ohio State Biochemistry Program, Department of Molecular and Cellular Biochemistry and Center for Molecular Neurobiology, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
169
|
Saban MR, Hellmich HL, Turner M, Nguyen NB, Vadigepalli R, Dyer DW, Hurst RE, Centola M, Saban R. The inflammatory and normal transcriptome of mouse bladder detrusor and mucosa. BMC PHYSIOLOGY 2006; 6:1. [PMID: 16420690 PMCID: PMC1382248 DOI: 10.1186/1472-6793-6-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 01/18/2006] [Indexed: 11/22/2022]
Abstract
Background An organ such as the bladder consists of complex, interacting set of tissues and cells. Inflammation has been implicated in every major disease of the bladder, including cancer, interstitial cystitis, and infection. However, scanty is the information about individual detrusor and urothelium transcriptomes in response to inflammation. Here, we used suppression subtractive hybridizations (SSH) to determine bladder tissue- and disease-specific genes and transcriptional regulatory elements (TRE)s. Unique TREs and genes were assembled into putative networks. Results It was found that the control bladder mucosa presented regulatory elements driving genes such as myosin light chain phosphatase and calponin 1 that influence the smooth muscle phenotype. In the control detrusor network the Pax-3 TRE was significantly over-represented. During development, the Pax-3 transcription factor (TF) maintains progenitor cells in an undifferentiated state whereas, during inflammation, Pax-3 was suppressed and genes involved in neuronal development (synapsin I) were up-regulated. Therefore, during inflammation, an increased maturation of neural progenitor cells in the muscle may underlie detrusor instability. NF-κB was specifically over-represented in the inflamed mucosa regulatory network. When the inflamed detrusor was compared to control, two major pathways were found, one encoding synapsin I, a neuron-specific phosphoprotein, and the other an important apoptotic protein, siva. In response to LPS-induced inflammation, the liver X receptor was over-represented in both mucosa and detrusor regulatory networks confirming a role for this nuclear receptor in LPS-induced gene expression. Conclusion A new approach for understanding bladder muscle-urothelium interaction was developed by assembling SSH, real time PCR, and TRE analysis results into regulatory networks. Interestingly, some of the TREs and their downstream transcripts originally involved in organogenesis and oncogenesis were also activated during inflammation. The latter represents an additional link between inflammation and cancer. The regulatory networks represent key targets for development of novel drugs targeting bladder diseases.
Collapse
Affiliation(s)
- Marcia R Saban
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Helen L Hellmich
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, USA
| | - Mary Turner
- Oklahoma Medical Research Foundation (OMRF), Arthritis and Immunology Research Program, Microarray Core Facility, Oklahoma City, USA
| | - Ngoc-Bich Nguyen
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, USA
- Cellular & Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology. Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, USA
| | - David W Dyer
- Department of Microbiology and Immunology, Laboratory for Genomics and Bioinformatics, Oklahoma University Health Sciences Center, Oklahoma City, USA
| | - Robert E Hurst
- Department of Urology, The University Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Michael Centola
- Oklahoma Medical Research Foundation (OMRF), Arthritis and Immunology Research Program, Microarray Core Facility, Oklahoma City, USA
| | - Ricardo Saban
- Department of Physiology, The University Oklahoma Health Sciences Center, Oklahoma City, USA
| |
Collapse
|
170
|
Wei Y, Jiang J, Sun M, Chen X, Wang H, Gu J. ATF5 increases cisplatin-induced apoptosis through up-regulation of cyclin D3 transcription in HeLa cells. Biochem Biophys Res Commun 2005; 339:591-6. [PMID: 16300731 DOI: 10.1016/j.bbrc.2005.11.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 11/10/2005] [Indexed: 10/25/2022]
Abstract
ATF5 transcription factor plays an essential role in hematopoietic and glioma cell survival and neuronal cell differentiation. Here, we report for the first time the pro-apoptosis role of ATF5 and identify Cyclin D3 as an ATF5-targeted apoptosis-related gene. The ectopic expression of ATF5 in HeLa cells could markedly increase cisplatin-induced apoptosis and the cleavage of Caspase-3, and induce Cyclin D3 mRNA expression via cooperation with E2F1 transcription factor. Moreover, the interference of Cyclin D3 expression by transfection with Cyclin D3 RNAi could protect cells from ATF5-mediated apoptosis induced by cisplatin, indicating the contribution of Cyclin D3 in ATF5-mediated apoptosis. Taken together, these results suggest that ATF5 increases cisplatin-induced apoptosis through up-regulation of Cyclin D3 transcription, which elicits survival signals in HeLa cells.
Collapse
Affiliation(s)
- Yuanyan Wei
- State Key Laboratory of Genetic Engineering and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032, People's Republic of China
| | | | | | | | | | | |
Collapse
|
171
|
Lum CT, Yang ZF, Li HY, Wai-Yin Sun R, Fan ST, Poon RTP, Lin MCM, Che CM, Kung HF. Gold(III) compound is a novel chemocytotoxic agent for hepatocellular carcinoma. Int J Cancer 2005; 118:1527-38. [PMID: 16206274 DOI: 10.1002/ijc.21484] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recently, a series of gold(III) meso-tetraarylporphyrins that are stable against demetallation in physiological conditions have been synthesized. In the present study, the antitumor effects of one of these compounds, gold(III) meso-tetraarylporphyrin 1a (gold-1a) was investigated in an orthotopic rat hepatocellular carcinoma (HCC) model as well as using a HCC cell line. The rat HCC model was induced by injection of rat hepatoma cells, McA-RH7777, into the left lobe of the liver. Seven days after tumor cell inoculation, gold-1a was injected directly into the tumor nodule at different doses, followed by the same doses via intraperitoneal injection twice a week. Gold-1a administration significantly prolonged the survival of HCC-bearing rats. Importantly, gold-1a induced necrosis as well as apoptosis in the tumor tissues, but not in the normal liver tissues. Furthermore, gold-1a treatment neither caused significant drop in body weight of the rats nor affected plasma aspartate aminotransferase level. In the in vitro studies, we observed that gold-1a treatment inhibited the proliferation of McA-RH7777 cells. Gold-1a upregulated genes that increase apoptosis, stabilize p53, decrease proliferation and downregulated genes playing roles in angiogenesis, invasion, and metabolism, as demonstrated by microarray. In particular, the compound upregulated 2 members of the growth arrest and DNA damage (Gadd) inducible gene family, Gadd34 and Gadd153. Suppression of Gadd34 and Gadd153 in McA-RH7777 cells by small hairpin RNA reduced the gold-1a-induced apoptosis and growth inhibition, indicating that gold-1a mediated its effects via upregulation of Gadd34 and Gadd153. Results from our study demonstrated that gold-1a might be a novel promising chemocytotoxic agent for treating HCC.
Collapse
Affiliation(s)
- Ching Tung Lum
- Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Hong Kong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|