151
|
Kumar R, Taylor JC, Jain A, Jung SY, Garza V, Xu Y. Modulation of the extracellular matrix by Streptococcus gallolyticus subsp. gallolyticus and importance in cell proliferation. PLoS Pathog 2022; 18:e1010894. [PMID: 36191045 PMCID: PMC9560553 DOI: 10.1371/journal.ppat.1010894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/13/2022] [Accepted: 09/22/2022] [Indexed: 11/15/2022] Open
Abstract
Streptococcus gallolyticus subspecies gallolyticus (Sgg) has a strong clinical association with colorectal cancer (CRC) and actively promotes the development of colon tumors. Previous work showed that this organism stimulates CRC cells proliferation and tumor growth. However, the molecular mechanisms underlying these activities are not well understood. Here, we found that Sgg upregulates the expression of several type of collagens in HT29 and HCT116 cells, with type VI collagen (ColVI) being the highest upregulated type. Knockdown of ColVI abolished the ability of Sgg to induce cell proliferation and reduced the adherence of Sgg to CRC cells. The extracellular matrix (ECM) is an important regulator of cell proliferation. Therefore, we further examined the role of decellularized matrix (dc-matrix), which is free of live bacteria or cells, in Sgg-induced cell proliferation. Dc-matrix prepared from Sgg-treated cells showed a significantly higher pro-proliferative activity than that from untreated cells or cells treated with control bacteria. On the other hand, dc-matrix from Sgg-treated ColVI knockdown cells showed no difference in the capacity to support cell proliferation compared to that from untreated ColVI knockdown cells, suggesting that the ECM by itself is a mediator of Sgg-induced cell proliferation. Furthermore, Sgg treatment of CRC cells but not ColVI knockdown CRC cells resulted in significantly larger tumors in vivo, suggesting that ColVI is important for Sgg to promote tumor growth in vivo. These results highlight a dynamic bidirectional interplay between Sgg and the ECM, where Sgg upregulates collagen expression. The Sgg-modified ECM in turn affects the ability of Sgg to adhere to host cells and more importantly, acts as a mediator for Sgg-induced CRC cell proliferation. Taken together, our results reveal a novel mechanism in which Sgg stimulates CRC proliferation through modulation of the ECM.
Collapse
Affiliation(s)
- Ritesh Kumar
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - John Culver Taylor
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Antrix Jain
- MS Proteomics Core, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Victor Garza
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Yi Xu
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, College Station, Texas, United States of America
- Department of Microbiology and Molecular Genetics, McGovern Medical School, UT Health, Houston, Texas, United States of America
| |
Collapse
|
152
|
Quazi S. Anti-cancer activity of human gastrointestinal bacteria. Med Oncol 2022; 39:220. [PMID: 36175586 DOI: 10.1007/s12032-022-01771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/14/2022] [Indexed: 06/16/2023]
Abstract
Malignant neoplasm is one of the most incurable diseases among inflammatory diseases. Researchers have been studying for decades to win over this lethal disease and provide the light of hope to humankind. The gastrointestinal bacteria of human hold a complex ecosystem and maintain homeostasis. One hundred trillion microbes are residing in the gastrointestinal tract of human. Disturbances in the microbiota of human's gastrointestinal tract can create immune response against inflammation and also can develop diseases, including cancer. The bacteria of the gastrointestinal tract of human can secrete a variety of metabolites and bioproducts which aid in the preservation of homeostasis in the host and gut. During pathogenic dysbiosis, on the other hand, numerous microbiota subpopulations may increase and create excessive levels of toxins, which can cause inflammation and cancer. Furthermore, the immune system of host and the epithelium cell can be influenced by gut microbiota. Probiotics, which are bacteria that live in the gut, have been protected against tumor formation. Probiotics are now studied to see if they can help fight dysbiosis in cancer patients undergoing chemotherapy or radiotherapy because of their capacity to maintain gut homeostasis. Countless numbers of gut bacteria have demonstrated anti-cancer efficiency in cancer treatment, prevention, and boosting the efficiency of immunotherapy. The review article has briefly explained the anti-cancer immunity of gut microbes and their application in treating a variety of cancer. This review paper also highlights the pre-clinical studies of probiotics against cancer and the completed and ongoing clinical trials on cancers with the two most common and highly effective probiotics Lactobacillus and Bacillus spp.
Collapse
Affiliation(s)
- Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore, 560043, Karnataka, India.
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge, UK.
| |
Collapse
|
153
|
Siddiqui R, Mungroo MR, Alharbi AM, Alfahemi H, Khan NA. The Use of Gut Microbial Modulation Strategies as Interventional Strategies for Ageing. Microorganisms 2022; 10:microorganisms10091869. [PMID: 36144471 PMCID: PMC9506335 DOI: 10.3390/microorganisms10091869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Gut microbial composition codevelops with the host from birth and is influenced by several factors, including drug use, radiation, psychological stress, dietary changes and physical stress. Importantly, gut microbial dysbiosis has been clearly associated with several diseases, including cancer, rheumatoid arthritis and Clostridium difficile-associated diarrhoea, and is known to affect human health and performance. Herein, we discuss that a shift in the gut microbiota with age and reversal of age-related modulation of the gut microbiota could be a major contributor to the incidence of numerous age-related diseases or overall human performance. In addition, it is suggested that the gut microbiome of long-lived animals such as reptiles should be investigated for their unique properties and contribution to the potent defense system of these species could be extrapolated for the benefit of human health. A range of techniques can be used to modulate the gut microbiota to have higher abundance of “beneficial” microbes that have been linked with health and longevity.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Mohammad Ridwane Mungroo
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Correspondence:
| |
Collapse
|
154
|
The Role of the Microbiome in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14184479. [PMID: 36139638 PMCID: PMC9496841 DOI: 10.3390/cancers14184479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Pancreatic cancer is deadly cancer characterized by dense stroma creating an immunosuppressive tumor microenvironment. Accumulating evidences indicate that the microbiome plays an important role in pancreatic cancer development and progression via the local and systemic inflammation and immune responses. The alteration of the microbiome modulates the tumor microenvironment and immune system in pancreatic cancer, which affects the efficacy of chemotherapies including immune-targeted therapies. Understanding the role of microbiome and underlying mechanisms may lead to novel biomarkers and therapeutic strategies for pancreatic cancer. This review summarizes the current evidence on the role of the microbiome in pancreatic cancer. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with little improvement in outcomes in recent decades, although the molecular and phenotypic characterization of PDAC has contributed to advances in tailored therapies. PDAC is characterized by dense stroma surrounding tumor cells, which limits the efficacy of treatment due to the creation of a physical barrier and immunosuppressive environment. Emerging evidence regarding the microbiome in PDAC implies its potential role in the initiation and progression of PDAC. However, the underlying mechanisms of how the microbiome affects the local tumor microenvironment (TME) as well as the systemic immune system have not been elucidated in PDAC. In addition, therapeutic strategies based on the microbiome have not been established. In this review, we summarize the current evidence regarding the role of the microbiome in the development of PDAC and discuss a possible role for the microbiome in the early detection of PDAC in relation to premalignant pancreatic diseases, such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). In addition, we discuss the potential role of the microbiome in the treatment of PDAC, especially in immunotherapy, although the biomarkers used to predict the efficacy of immunotherapy in PDAC are still unknown. A comprehensive understanding of tumor-associated immune responses, including those involving the microbiome, holds promise for new treatments in PDAC.
Collapse
|
155
|
Xu H, Cao C, Ren Y, Weng S, Liu L, Guo C, Wang L, Han X, Ren J, Liu Z. Antitumor effects of fecal microbiota transplantation: Implications for microbiome modulation in cancer treatment. Front Immunol 2022; 13:949490. [PMID: 36177041 PMCID: PMC9513044 DOI: 10.3389/fimmu.2022.949490] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Fecal microbiome transplantation (FMT) from healthy donors is one of the techniques for restoration of the dysbiotic gut, which is increasingly being used to treat various diseases. Notably, mounting evidence in recent years revealed that FMT has made a breakthrough in the oncology treatment area, especially by improving immunotherapy efficacy to achieve antitumor effects. However, the mechanism of FMT in enhancing antitumor effects of immune checkpoint blockers (ICBs) has not yet been fully elucidated. This review systematically summarizes the role of microbes and their metabolites in the regulation of tumor immunity. We highlight the mechanism of action of FMT in the treatment of refractory tumors as well as in improving the efficacy of immunotherapy. Furthermore, we summarize ongoing clinical trials combining FMT with immunotherapy and further focus on refined protocols for the practice of FMT in cancer treatment, which could guide future directions and priorities of FMT scientific development.
Collapse
Affiliation(s)
- Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Chenxi Cao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
- *Correspondence: Xinwei Han, ; Jianzhuang Ren, ; Zaoqu Liu,
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xinwei Han, ; Jianzhuang Ren, ; Zaoqu Liu,
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
- *Correspondence: Xinwei Han, ; Jianzhuang Ren, ; Zaoqu Liu,
| |
Collapse
|
156
|
Kapsetaki SE, Marquez Alcaraz G, Maley CC, Whisner CM, Aktipis A. Diet, Microbes, and Cancer Across the Tree of Life: a Systematic Review. Curr Nutr Rep 2022; 11:508-525. [PMID: 35704266 PMCID: PMC9197725 DOI: 10.1007/s13668-022-00420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW Cancers are a leading cause of death in humans and for many other species. Diet has often been associated with cancers, and the microbiome is an essential mediator between diet and cancers. Here, we review the work on cancer and the microbiome across species to search for broad patterns of susceptibility associated with different microbial species. RECENT FINDINGS Some microbes, such as Helicobacter bacteria, papillomaviruses, and the carnivore-associated Fusobacteria, consistently induce tumorigenesis in humans and other species. Other microbes, such as the milk-associated Lactobacillus, consistently inhibit tumorigenesis in humans and other species. We systematically reviewed over a thousand published articles and identified links between diet, microbes, and cancers in several species of mammals, birds, and flies. Future work should examine a larger variety of host species to discover new model organisms for human preclinical trials, to better understand the observed variance in cancer prevalence across species, and to discover which microbes and diets are associated with cancers across species. Ultimately, this could help identify microbial and dietary interventions to diagnose, prevent, and treat cancers in humans as well as other animals.
Collapse
Affiliation(s)
- Stefania E Kapsetaki
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, USA.
| | - Gissel Marquez Alcaraz
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, USA
| | - Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Athena Aktipis
- Arizona Cancer Evolution Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
157
|
White MG, Wargo JA. The Microbiome in Gastrointestinal Cancers. Gastroenterol Clin North Am 2022; 51:667-680. [PMID: 36153116 PMCID: PMC11833749 DOI: 10.1016/j.gtc.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The human microbiome has been recognized as increasingly important to health and disease. This is especially prescient in the development of various cancers, their progression, and the microbiome's modulation of various anticancer therapeutics. Mechanisms behind these interactions have been increasingly well described through modulation of the host immune system as well as induction of genetic changes and local inactivation of cancer therapeutics. Here, we review these associations for a variety of gastrointestinal malignancies as well as contemporary strategies proposed to leverage these associations to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Michael G White
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1484, Houston, TX 77030, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1484, Houston, TX 77030, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1484, Houston, TX 77030, USA.
| |
Collapse
|
158
|
Colorectal Cancer in Ulcerative Colitis: Mechanisms, Surveillance and Chemoprevention. Curr Oncol 2022; 29:6091-6114. [PMID: 36135048 PMCID: PMC9498229 DOI: 10.3390/curroncol29090479] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Patients with ulcerative colitis (UC) are at a two- to three-fold increased risk of developing colorectal cancer (CRC) than the general population based on population-based data. UC-CRC has generated a series of clinical problems, which are reflected in its worse prognosis and higher mortality than sporadic CRC. Chronic inflammation is a significant contributor to the development of UC-CRC, so comprehending the relationship between the proinflammatory factors and epithelial cells together with downstream signaling pathways is the core to elucidate the mechanisms involved in developing of CRC. Clinical studies have shown the importance of early prevention, detection and management of CRC in patients with UC, and colonoscopic surveillance at regular intervals with multiple biopsies is considered the most effective way. The use of endoscopy with targeted biopsies of visible lesions has been supported in most populations. In contrast, random biopsies in patients with high-risk characteristics have been suggested during surveillance. Some of the agents used to treat UC are chemopreventive, the effects of which will be examined in cancers in UC in a population-based setting. In this review, we outline the current state of potential risk factors and chemopreventive recommendations in UC-CRC, with a specific focus on the proinflammatory mechanisms in promoting CRC and evidence for personalized surveillance.
Collapse
|
159
|
Structure of human spermine oxidase in complex with a highly selective allosteric inhibitor. Commun Biol 2022; 5:787. [PMID: 35931745 PMCID: PMC9355956 DOI: 10.1038/s42003-022-03735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Human spermine oxidase (hSMOX) plays a central role in polyamine catabolism. Due to its association with several pathological processes, including inflammation and cancer, hSMOX has garnered interest as a possible therapeutic target. Therefore, determination of the structure of hSMOX is an important step to enable drug discovery and validate hSMOX as a drug target. Using insights from hydrogen/deuterium exchange mass spectrometry (HDX-MS), we engineered a hSMOX construct to obtain the first crystal structure of hSMOX bound to the known polyamine oxidase inhibitor MDL72527 at 2.4 Å resolution. While the overall fold of hSMOX is similar to its homolog, murine N1-acetylpolyamine oxidase (mPAOX), the two structures contain significant differences, notably in their substrate-binding domains and active site pockets. Subsequently, we employed a sensitive biochemical assay to conduct a high-throughput screen that identified a potent and selective hSMOX inhibitor, JNJ-1289. The co-crystal structure of hSMOX with JNJ-1289 was determined at 2.1 Å resolution, revealing that JNJ-1289 binds to an allosteric site, providing JNJ-1289 with a high degree of selectivity towards hSMOX. These results provide crucial insights into understanding the substrate specificity and enzymatic mechanism of hSMOX, and for the design of highly selective inhibitors. Rational engineering of human spermine oxidase yields crystallizable structures and the design of an allosteric inhibitor.
Collapse
|
160
|
Xing C, Du Y, Duan T, Nim K, Chu J, Wang HY, Wang RF. Interaction between microbiota and immunity and its implication in colorectal cancer. Front Immunol 2022; 13:963819. [PMID: 35967333 PMCID: PMC9373904 DOI: 10.3389/fimmu.2022.963819] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death in the world. Besides genetic causes, colonic inflammation is one of the major risk factors for CRC development, which is synergistically regulated by multiple components, including innate and adaptive immune cells, cytokine signaling, and microbiota. The complex interaction between CRC and the gut microbiome has emerged as an important area of current CRC research. Metagenomic profiling has identified a number of prominent CRC-associated bacteria that are enriched in CRC patients, linking the microbiota composition to colitis and cancer development. Some microbiota species have been reported to promote colitis and CRC development in preclinical models, while a few others are identified as immune modulators to induce potent protective immunity against colitis and CRC. Mechanistically, microbiota regulates the activation of different immune cell populations, inflammation, and CRC via crosstalk between innate and adaptive immune signaling pathways, including nuclear factor kappa B (NF-κB), type I interferon, and inflammasome. In this review, we provide an overview of the potential interactions between gut microbiota and host immunity and how their crosstalk could synergistically regulate inflammation and CRC, thus highlighting the potential roles and mechanisms of gut microbiota in the development of microbiota-based therapies to prevent or alleviate colitis and CRC.
Collapse
Affiliation(s)
- Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kelly Nim
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Junjun Chu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y. Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
161
|
Qin H, Yuan B, Huang W, Wang Y. Utilizing Gut Microbiota to Improve Hepatobiliary Tumor Treatments: Recent Advances. Front Oncol 2022; 12:924696. [PMID: 35924173 PMCID: PMC9339707 DOI: 10.3389/fonc.2022.924696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatobiliary tumors, which include cholangiocarcinoma, hepatocellular carcinoma (HCC), and gallbladder cancer, are common cancers that have high morbidity and mortality rates and poor survival outcomes. In humans, the microbiota is comprised of symbiotic microbial cells (10-100 trillion) that belong to the bacterial ecosystem mainly residing in the gut. The gut microbiota is a complicated group that can largely be found in the intestine and has a dual role in cancer occurrence and progression. Previous research has focused on the crucial functions of the intestinal microflora as the main pathophysiological mechanism in HCC development. Intestinal bacteria produce a broad range of metabolites that exhibit a variety of pro- and anticarcinogenic effects on HCC. Therefore, probiotic alteration of the gut microflora could promote gut flora balance and help prevent the occurrence of HCC. Recent evidence from clinical and translational studies suggests that fecal microbiota transplant is one of the most successful therapies to correct intestinal bacterial imbalance. We review the literature describing the effects and mechanisms of the microbiome in the gut in the context of HCC, including gut bacterial metabolites, probiotics, antibiotics, and the transplantation of fecal microbiota, and discuss the potential influence of the microbiome environment on cholangiocarcinoma and gallbladder cancer. Our findings are expected to reveal therapeutic targets for the prevention of hepatobiliary tumors, and the development of clinical treatment strategies, by emphasizing the function of the gut microbiota.
Collapse
Affiliation(s)
- Hao Qin
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baowen Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- *Correspondence: Wei Huang, ; Yan Wang,
| |
Collapse
|
162
|
Polyamines and Their Metabolism: From the Maintenance of Physiological Homeostasis to the Mediation of Disease. MEDICAL SCIENCES (BASEL, SWITZERLAND) 2022; 10:medsci10030038. [PMID: 35893120 PMCID: PMC9326668 DOI: 10.3390/medsci10030038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022]
Abstract
The polyamines spermidine and spermine are positively charged aliphatic molecules. They are critical in the regulation of nucleic acid and protein structures, protein synthesis, protein and nucleic acid interactions, oxidative balance, and cell proliferation. Cellular polyamine levels are tightly controlled through their import, export, de novo synthesis, and catabolism. Enzymes and enzymatic cascades involved in polyamine metabolism have been well characterized. This knowledge has been used for the development of novel compounds for research and medical applications. Furthermore, studies have shown that disturbances in polyamine levels and their metabolic pathways, as a result of spontaneous mutations in patients, genetic engineering in mice or experimentally induced injuries in rodents, are associated with multiple maladaptive changes. The adverse effects of altered polyamine metabolism have also been demonstrated in in vitro models. These observations highlight the important role these molecules and their metabolism play in the maintenance of physiological normalcy and the mediation of injury. This review will attempt to cover the extensive and diverse knowledge of the biological role of polyamines and their metabolism in the maintenance of physiological homeostasis and the mediation of tissue injury.
Collapse
|
163
|
The Tissue-Associated Microbiota in Colorectal Cancer: A Systematic Review. Cancers (Basel) 2022; 14:cancers14143385. [PMID: 35884445 PMCID: PMC9317273 DOI: 10.3390/cancers14143385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Growing evidence shows a close relationship between the microbiome and colorectal cancer, but most studies analyze fecal samples. However, solid information on the microbial community that is present locally in the intestinal tumor tissues is lacking. Therefore, the aim of this systematic review was to compile evidence on the relationship between tissue-associated microbiota and colorectal cancer. Among 5080 screened publications, 39 were eligible and included in the analysis. Despite the heterogeneity in methodologies and reporting between studies, 12 groups of bacteria with strong positive and 18 groups of bacteria with strong negative associations with colorectal cancer were identified. Such knowledge may ultimately be used in novel strategies that aim to prevent, detect, and treat colorectal cancer in the upcoming years. Abstract The intestinal microbiome is associated with colorectal cancer. Although the mucosal microbiota better represents an individual’s local microbiome, studies on the colorectal cancer microbiota mainly reflect knowledge obtained from fecal samples. This systematic review aimed to summarize the current evidence on the relationship between the mucosal-associated bacterial microbiota and colorectal cancer. Searches were conducted in PubMed and Web of Science databases for publications comparing the mucosal microbiome of colorectal cancer patients with that of healthy controls, or with that of non-cancerous mucosal tissues. The primary outcomes were differences in microbial diversity and taxonomy. The Newcastle-Ottawa Scale was used to assess the quality of the included studies. Of the 5080 studies identified, 39 were eligible and included in the systematic review. No consistent results were identified for the α- and β-diversity, due to high heterogeneity in reporting and to differences in metrics and statistical approaches, limiting study comparability. Qualitative synthesis of microbial taxonomy identified 12 taxa with strong positive and 18 taxa with strong negative associations with colorectal cancer. Fusobacterium, Campylobacter, Parvimonas, Peptostreptococcus, Streptococcus, and Granulicatella were defined as enriched in colorectal cancer. Despite the methodological limitations of the studies, consistent evidence on bacterial taxa associated with colorectal cancer was identified. Prospective studies in large and well-characterized patient populations will be crucial to validate these findings.
Collapse
|
164
|
Sadrekarimi H, Gardanova ZR, Bakhshesh M, Ebrahimzadeh F, Yaseri AF, Thangavelu L, Hasanpoor Z, Zadeh FA, Kahrizi MS. Emerging role of human microbiome in cancer development and response to therapy: special focus on intestinal microflora. Lab Invest 2022; 20:301. [PMID: 35794566 PMCID: PMC9258144 DOI: 10.1186/s12967-022-03492-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
In recent years, there has been a greater emphasis on the impact of microbial populations inhabiting the gastrointestinal tract on human health and disease. According to the involvement of microbiota in modulating physiological processes (such as immune system development, vitamins synthesis, pathogen displacement, and nutrient uptake), any alteration in its composition and diversity (i.e., dysbiosis) has been linked to a variety of pathologies, including cancer. In this bidirectional relationship, colonization with various bacterial species is correlated with a reduced or elevated risk of certain cancers. Notably, the gut microflora could potentially play a direct or indirect role in tumor initiation and progression by inducing chronic inflammation and producing toxins and metabolites. Therefore, identifying the bacterial species involved and their mechanism of action could be beneficial in preventing the onset of tumors or controlling their advancement. Likewise, the microbial community affects anti-cancer approaches’ therapeutic potential and adverse effects (such as immunotherapy and chemotherapy). Hence, their efficiency should be evaluated in the context of the microbiome, underlining the importance of personalized medicine. In this review, we summarized the evidence revealing the microbiota's involvement in cancer and its mechanism. We also delineated how microbiota could predict colon carcinoma development or response to current treatments to improve clinical outcomes.
Collapse
|
165
|
Chen F, Dai X, Zhou CC, Li KX, Zhang YJ, Lou XY, Zhu YM, Sun YL, Peng BX, Cui W. Integrated analysis of the faecal metagenome and serum metabolome reveals the role of gut microbiome-associated metabolites in the detection of colorectal cancer and adenoma. Gut 2022; 71:1315-1325. [PMID: 34462336 PMCID: PMC9185821 DOI: 10.1136/gutjnl-2020-323476] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 08/12/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To profile gut microbiome-associated metabolites in serum and investigate whether these metabolites could distinguish individuals with colorectal cancer (CRC) or adenoma from normal healthy individuals. DESIGN Integrated analysis of untargeted serum metabolomics by liquid chromatography-mass spectrometry and metagenome sequencing of paired faecal samples was applied to identify gut microbiome-associated metabolites with significantly altered abundance in patients with CRC and adenoma. The ability of these metabolites to discriminate between CRC and colorectal adenoma was tested by targeted metabolomic analysis. A model based on gut microbiome-associated metabolites was established and evaluated in an independent validation cohort. RESULTS In total, 885 serum metabolites were significantly altered in both CRC and adenoma, including eight gut microbiome-associated serum metabolites (GMSM panel) that were reproducibly detected by both targeted and untargeted metabolomics analysis and accurately discriminated CRC and adenoma from normal samples. A GMSM panel-based model to predict CRC and colorectal adenoma yielded an area under the curve (AUC) of 0.98 (95% CI 0.94 to 1.00) in the modelling cohort and an AUC of 0.92 (83.5% sensitivity, 84.9% specificity) in the validation cohort. The GMSM model was significantly superior to the clinical marker carcinoembryonic antigen among samples within the validation cohort (AUC 0.92 vs 0.72) and also showed promising diagnostic accuracy for adenomas (AUC=0.84) and early-stage CRC (AUC=0.93). CONCLUSION Gut microbiome reprogramming in patients with CRC is associated with alterations of the serum metabolome, and GMSMs have potential applications for CRC and adenoma detection.
Collapse
Affiliation(s)
- Feng Chen
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xudong Dai
- Dept of Clinical Research, Precogify Pharmaceutical Co, Ltd, Beijing, China
| | - Chang-Chun Zhou
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ke-Xin Li
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yu-Juan Zhang
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiao-Ying Lou
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuan-Min Zhu
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Yan-Lai Sun
- Department of Gastrointestinal Cancer Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bao-Xiang Peng
- Clinical Laboratory, Linyi Cancer Hospital, Linyi, China
| | - Wei Cui
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
166
|
Scott N, Whittle E, Jeraldo P, Chia N. A systemic review of the role of enterotoxic Bacteroides fragilis in colorectal cancer. Neoplasia 2022; 29:100797. [PMID: 35461079 PMCID: PMC9046963 DOI: 10.1016/j.neo.2022.100797] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) has received significant attention for a possible association with, or causal role in, colorectal cancer (CRC). The goal of this review was to assess the status of the published evidence supporting (i) the association between ETBF and CRC and (ii) the causal role of ETBF in CRC. PubMed and Scopus searches were performed in August 2021 to identify human, animal, and cell studies pertaining to the role of ETBF in CRC. Inclusion criteria included the use of cell lines, mice, exposure to BFT or ETBF, and detection of bft. Review studies were excluded, and studies were limited to the English language. Quality of study design and risk of bias analysis was performed on the cell, animal, and human studies using ToxRTools, SYRCLE, and NOS, respectively. Ninety-five eligible studies were identified, this included 22 human studies, 24 animal studies, 43 cell studies, and 6 studies that included both cells and mice studies. We found that a large majority of studies supported an association or causal role of ETBF in CRC, as well as high levels of study bias was detected in the in vitro and in vivo studies. The high-level heterogeneity in study design and reporting made it difficult to synthesize these findings into a unified conclusion, suggesting that the need for future studies that include improved mechanistic models, longitudinal in vitro and in vivo evidence, and appropriate control of confounding factors will be required to confirm whether ETBF has a direct role in CRC etiopathogenesis.
Collapse
Affiliation(s)
- Nancy Scott
- Bioinformatics and Computational Biology, University of Minnesota, 111 South Broadway, Rochester, MN 55904, USA
| | - Emma Whittle
- Department of Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Patricio Jeraldo
- Department of Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA; Microbiome Program, Center for Individualized Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Nicholas Chia
- Department of Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA; Microbiome Program, Center for Individualized Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.
| |
Collapse
|
167
|
Koyande N, Gangopadhyay M, Thatikonda S, Rengan AK. The role of gut microbiota in the development of colorectal cancer: a review. Int J Colorectal Dis 2022; 37:1509-1523. [PMID: 35704091 DOI: 10.1007/s00384-022-04192-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE Colorectal cancer (CRC) is the cancer of the colon and rectum. Recent research has found a link between CRC and human gut microbiota. This review explores the effect of gut microbiota on colorectal carcinogenesis and the development of chemoresistance. METHODS A literature overview was performed to identify the gut microbiota species that showed altered abundance in CRC patients and the mechanisms by which some of them aid in the development of chemoresistance. RESULTS Types of gut microbiota present and methods of analyzing them were discussed. We observed that numerous microbiota showed altered abundance in CRC patients and could act as a biomarker for CRC diagnosis and treatment. Further, it was demonstrated that microbes also have a role in the development of chemoresistance by mechanisms like immune system activation, drug modification, and autophagy modulation. Finally, the key issue of the growing global problem of antimicrobial resistance and its relationship with CRC was highlighted. CONCLUSION This review discussed the role of gut microbiota dysbiosis on colorectal cancer progression and the development of chemoresistance.
Collapse
Affiliation(s)
- Navami Koyande
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy- 502284, India
| | - Madhusree Gangopadhyay
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy- 502284, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy- 502284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy- 502284, India.
| |
Collapse
|
168
|
Allen J, Rosendahl Huber A, Pleguezuelos-Manzano C, Puschhof J, Wu S, Wu X, Boot C, Saftien A, O’Hagan HM, Wang H, van Boxtel R, Clevers H, Sears CL. Colon Tumors in Enterotoxigenic Bacteroides fragilis (ETBF)-Colonized Mice Do Not Display a Unique Mutational Signature but Instead Possess Host-Dependent Alterations in the APC Gene. Microbiol Spectr 2022; 10:e0105522. [PMID: 35587635 PMCID: PMC9241831 DOI: 10.1128/spectrum.01055-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022] Open
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) is consistently found at higher frequency in individuals with sporadic and hereditary colorectal cancer (CRC) and induces tumorigenesis in several mouse models of CRC. However, whether specific mutations induced by ETBF lead to colon tumor formation has not been investigated. To determine if ETBF-induced mutations impact the Apc gene, and other tumor suppressors or proto-oncogenes, we performed whole-exome sequencing and whole-genome sequencing on tumors isolated after ETBF and sham colonization of Apcmin/+ and Apcmin/+Msh2fl/flVC mice, as well as whole-genome sequencing of organoids cocultured with ETBF. Our results indicate that ETBF-induced tumor formation results from loss of heterozygosity (LOH) of Apc, unless the mismatch repair system is disrupted, in which case, tumor formation results from new acquisition of protein-truncating mutations in Apc. In contrast to polyketide synthase-positive Escherichia coli (pks+ E. coli), ETBF does not produce a unique mutational signature; instead, ETBF-induced tumors arise from errors in DNA mismatch repair and homologous recombination DNA damage repair, established pathways of tumor formation in the colon, and the same genetic mechanism accounting for sham tumors in these mouse models. Our analysis informs how this procarcinogenic bacterium may promote tumor formation in individuals with inherited predispositions to CRC, such as Lynch syndrome or familial adenomatous polyposis (FAP). IMPORTANCE Many studies have shown that microbiome composition in both the mucosa and the stool differs in individuals with sporadic and hereditary colorectal cancer (CRC). Both human and mouse models have established a strong association between particular microbes and colon tumor induction. However, the genetic mechanisms underlying putative microbe-induced colon tumor formation are not well established. In this paper, we applied whole-exome sequencing and whole-genome sequencing to investigate the impact of ETBF-induced genetic changes on tumor formation. Additionally, we performed whole-genome sequencing of human colon organoids exposed to ETBF to validate the mutational patterns seen in our mouse models and begin to understand their relevance in human colon epithelial cells. The results of this study highlight the importance of ETBF colonization in the development of sporadic CRC and in individuals with hereditary tumor conditions, such as Lynch syndrome and familial adenomatous polyposis (FAP).
Collapse
Affiliation(s)
- Jawara Allen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Axel Rosendahl Huber
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Cayetano Pleguezuelos-Manzano
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Shaoguang Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xinqun Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charelle Boot
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
| | - Aurelia Saftien
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
| | - Heather M. O’Hagan
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
- Cell, Molecular and Cancer Biology Program, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Hao Wang
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine Institutions, Baltimore, Maryland, USA
| | - Ruben van Boxtel
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Cynthia L. Sears
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins Medicine Institutions, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine Institutions, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine Institutions, Baltimore, Maryland, USA
| |
Collapse
|
169
|
Stella GM, Scialò F, Bortolotto C, Agustoni F, Sanci V, Saddi J, Casali L, Corsico AG, Bianco A. Pragmatic Expectancy on Microbiota and Non-Small Cell Lung Cancer: A Narrative Review. Cancers (Basel) 2022; 14:cancers14133131. [PMID: 35804901 PMCID: PMC9264919 DOI: 10.3390/cancers14133131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
It is well known that lung cancer relies on a number of genes aberrantly expressed because of somatic lesions. Indeed, the lungs, based on their anatomical features, are organs at a high risk of development of extremely heterogeneous tumors due to the exposure to several environmental toxic agents. In this context, the microbiome identifies the whole assemblage of microorganisms present in the lungs, as well as in distant organs, together with their structural elements and metabolites, which actively interact with normal and transformed cells. A relevant amount of data suggest that the microbiota plays a role not only in cancer disease predisposition and risk but also in its initiation and progression, with an impact on patients’ prognosis. Here, we discuss the mechanistic insights of the complex interaction between lung cancer and microbiota as a relevant component of the microenvironment, mainly focusing on novel diagnostic and therapeutic objectives.
Collapse
Affiliation(s)
- Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (V.S.); (A.G.C.)
- Unit of Respiratory Diseases IRCCS Policlinico San Matteo Foundation, Department of Medical Sciences and Infective Diseases, 27100 Pavia, Italy
- Correspondence:
| | - Filippo Scialò
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.S.); (A.B.)
- Ceinge Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Chandra Bortolotto
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia Medical School, 27100 Pavia, Italy;
- Unit of Radiology, Department of Intensive Medicine, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Francesco Agustoni
- Unit of Oncology, Department of Medical Sciences and Infective Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Vincenzo Sanci
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (V.S.); (A.G.C.)
- Unit of Respiratory Diseases IRCCS Policlinico San Matteo Foundation, Department of Medical Sciences and Infective Diseases, 27100 Pavia, Italy
| | - Jessica Saddi
- Radiation Therapy IRCCS Unit, Department of Medical Sciences and Infective Diseases, Policlinico San Matteo Foundation, 27100 Pavia, Italy;
- University of Milano-Bicocca, 20900 Monza, Italy
| | - Lucio Casali
- Honorary Consultant Student Support and Services, University of Pavia, 27100 Pavia, Italy;
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (V.S.); (A.G.C.)
- Unit of Respiratory Diseases IRCCS Policlinico San Matteo Foundation, Department of Medical Sciences and Infective Diseases, 27100 Pavia, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (F.S.); (A.B.)
| |
Collapse
|
170
|
Li J, Zhu Y, Yang L, Wang Z. Effect of gut microbiota in the colorectal cancer and potential target therapy. Discov Oncol 2022; 13:51. [PMID: 35749000 PMCID: PMC9232688 DOI: 10.1007/s12672-022-00517-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
The symbiotic interaction between gut microbiota and the digestive tract is an important factor in maintaining the intestinal environment balance. Colorectal cancer (CRC) is a complex disease involving the interaction between tumour cells and a large number of microorganisms. The microbiota is involved in the occurrence, development and prognosis of colorectal cancer. Several microbiota species have been studied, such as Fusobacterium nucleatum (F. nucleatum), Enterotoxigenic Bacteroides fragilis (ETBF), Streptococcus bovis (S. bovis), Lactobacillus, and Bifidobacterium. Studies about the interaction between microbiota and CRC were retrieved from Embase, PubMed, Ovid and Web of Science up to 21 Oct 2021. This review expounded on the effect of microbiota on CRC, especially the dysregulation of bacteria and carcinogenicity. The methods of gut microbiota modifications representing novel prognostic markers and innovative therapeutic strategies were also described.
Collapse
Affiliation(s)
- Junchuan Li
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yuzhou Zhu
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Lie Yang
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Ziqiang Wang
- Gastrointestinal Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
171
|
Guo Q, Qin H, Liu X, Zhang X, Chen Z, Qin T, Chang L, Zhang W. The Emerging Roles of Human Gut Microbiota in Gastrointestinal Cancer. Front Immunol 2022; 13:915047. [PMID: 35784372 PMCID: PMC9240199 DOI: 10.3389/fimmu.2022.915047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
The gut microbiota is composed of a large number of microorganisms with a complex structure. It participates in the decomposition, digestion, and absorption of nutrients; promotes the development of the immune system; inhibits the colonization of pathogens; and thus modulates human health. In particular, the relationship between gut microbiota and gastrointestinal tumor progression has attracted widespread concern. It was found that the gut microbiota can influence gastrointestinal tumor progression in independent ways. Here, we focused on the distribution of gut microbiota in gastrointestinal tumors and further elaborated on the impact of gut microbiota metabolites, especially short-chain fatty acids, on colorectal cancer progression. Additionally, the effects of gut microbiota on gastrointestinal tumor therapy are outlined. Finally, we put forward the possible problems in gut microbiota and the gastrointestinal oncology field and the efforts we need to make.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Qianqian Guo, ; Wenzhou Zhang,
| | - Hai Qin
- Department of Clinical Laboratory, Guizhou Provincial Orthopedic Hospital, Guiyang City, China
| | - Xueling Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xinxin Zhang
- The Second Clinical Medical School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Province Engineering Research Center of Artificial Intelligence and Internet of Things Wise Medical, Zhengzhou, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Linlin Chang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Qianqian Guo, ; Wenzhou Zhang,
| |
Collapse
|
172
|
Liu J, Zhang Y. Intratumor microbiome in cancer progression: current developments, challenges and future trends. Biomark Res 2022; 10:37. [PMID: 35642013 PMCID: PMC9153132 DOI: 10.1186/s40364-022-00381-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a complicated disease attributed to multifactorial changes, which causes difficulties with treatment strategies. Various factors have been regarded as the main contributors, and infectious etiological factors have recently attracted interest. Several microbiomes contribute to carcinogenesis, cancer progression, and modulating cancer treatment by inducing cancerous epithelial cells and chronic inflammation. Most of our knowledge on the role of microbiota in tumor oncogenesis and clinical efficiency is associated with the intestinal microbiome. However, compelling evidence has also confirmed the contribution of the intratumor microbiome in cancer. Indeed, the findings of clinical tumor samples, animal models, and studies in vitro have revealed that many intratumor microbiomes promote tumorigenesis and immune evasion. In addition, the intratumor microbiome participates in regulating the immune response and even affects the outcomes of cancer treatment. This review summarizes the interplay between the intratumor microbiota and cancer, focusing on the contribution and mechanism of intratumor microbiota in cancer initiation, progression, and potential applications to cancer therapy.
Collapse
Affiliation(s)
- Jinyan Liu
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan, China.
| |
Collapse
|
173
|
Dey P, Ray Chaudhuri S. Cancer-Associated Microbiota: From Mechanisms of Disease Causation to Microbiota-Centric Anti-Cancer Approaches. BIOLOGY 2022; 11:757. [PMID: 35625485 PMCID: PMC9138768 DOI: 10.3390/biology11050757] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection is the only well-established bacterial cause of cancer. However, due to the integral role of tissue-resident commensals in maintaining tissue-specific immunometabolic homeostasis, accumulated evidence suggests that an imbalance of tissue-resident microbiota that are otherwise considered as commensals, can also promote various types of cancers. Therefore, the present review discusses compelling evidence linking tissue-resident microbiota (especially gut bacteria) with cancer initiation and progression. Experimental evidence supporting the cancer-causing role of gut commensal through the modulation of host-specific processes (e.g., bile acid metabolism, hormonal effects) or by direct DNA damage and toxicity has been discussed. The opportunistic role of commensal through pathoadaptive mutation and overcoming colonization resistance is discussed, and how chronic inflammation triggered by microbiota could be an intermediate in cancer-causing infections has been discussed. Finally, we discuss microbiota-centric strategies, including fecal microbiota transplantation, proven to be beneficial in preventing and treating cancers. Collectively, this review provides a comprehensive understanding of the role of tissue-resident microbiota, their cancer-promoting potentials, and how beneficial bacteria can be used against cancers.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh 160036, India;
| |
Collapse
|
174
|
Xing J, Fang Y, Zhang W, Zhang H, Tang D, Wang D. Bacterial driver-passenger model in biofilms: a new mechanism in the development of colorectal cancer. Clin Transl Oncol 2022; 24:784-795. [PMID: 35000132 DOI: 10.1007/s12094-021-02738-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a heterogeneous disease of the intestinal epithelium and ranks the third largest diagnosed malignancy in the world. Many studies have shown that the high risk of CRC is believed to be related to the formation of biofilms. To prove causation, it will be significant to decipher which specific bacteria in biofilms initiate and maintain CRC and fully describe their underlying mechanisms. Here we introduce a bacterial driver-passenger model. This model added a novel and compelling angle to the role of microorganisms, putting more emphasis on the transformation of bacterial composition in biofilms which play different roles in the development of CRC. In this model, bacterial drivers can initiate the formation of CRC through genotoxicity, while bacterial passengers maintain the CRC process through metabolites. On the basis of these pathogens, we further turned our attention to strategies that can inhibit and eradicate these pathogenic biofilms, with the aim of finding new ways to hinder colorectal carcinogenesis.
Collapse
Affiliation(s)
- J Xing
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| | - Y Fang
- Department of Clinical Medical College, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - W Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| | - H Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, People's Republic of China
| | - D Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| | - D Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China
| |
Collapse
|
175
|
Microbiome in cancer: Role in carcinogenesis and impact in therapeutic strategies. Biomed Pharmacother 2022; 149:112898. [PMID: 35381448 DOI: 10.1016/j.biopha.2022.112898] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is the world's second-leading cause of death, and the involvement of microbes in a range of diseases, including cancer, is well established. The gut microbiota is known to play an important role in the host's health and physiology. The gut microbiota and its metabolites may activate immunological and cellular pathways that kill invading pathogens and initiate a cancer-fighting immune response. Cancer is a multiplex illness, characterized by the persistence of several genetic and physiological anomalies in malignant tissue, complicating disease therapy and control. Humans have coevolved with a complex bacterial, fungal, and viral microbiome over millions of years. Specific long-known epidemiological links between certain bacteria and cancer have recently been grasped at the molecular level. Similarly, advances in next-generation sequencing technology have enabled detailed research of microbiomes, such as the human gut microbiome, allowing for the finding of taxonomic and metabolomic linkages between the microbiome and cancer. These investigations have found causative pathways for both microorganisms within tumors and bacteria in various host habitats far from tumors using direct and immunological procedures. Anticancer diagnostic and therapeutic solutions could be developed using this review to tackle the threat of anti-cancer medication resistance as well through the wide-ranging involvement of the microbiota in regulating host metabolic and immunological homeostasis. We reviewed the significance of gut microbiota in cancer initiation as well as cancer prevention. We look at certain microorganisms that may play a role in the development of cancer. Several bacteria with probiotic qualities may be employed as bio-therapeutic agents to re-establish the microbial population and trigger a strong immune response to remove malignancies, and further study into this should be conducted.
Collapse
|
176
|
Liu L, Shah K. The Potential of the Gut Microbiome to Reshape the Cancer Therapy Paradigm: A Review. JAMA Oncol 2022; 8:1059-1067. [PMID: 35482355 DOI: 10.1001/jamaoncol.2022.0494] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance The gut microbiome, home to the vast kingdom of diverse commensal bacteria and other microorganisms residing within the gut, was once thought to only have roles primarily centered on digestive functions. However, recent advances in sequencing technology have elucidated intricate roles of the gut microbiome in cancer development and efficacy of therapeutic response that need to be comprehensively addressed from a clinically translational angle. Observations This review aims to highlight the current understanding of the association of the gut microbiome with the therapeutic response to immunotherapy, chemotherapy, radiotherapy, cancer surgery, and more, while also contextualizing possible synergistic strategies with the microbiome for tackling some of the most challenging tumors. It also provides insights on contemporary methods that target the microbiota and the current progression of findings being translated from bench to bedside. Conclusions and Relevance Ultimately, the importance of gut bacteria in cancer therapy cannot be overstated in its potential for ushering in a new era of cancer treatments. With the understanding that the microbiome may play critical roles in the tumor microenvironment, holistic approaches that integrate microbiome-modulating treatments with biological, immune, cell-based, and surgical cancer therapies should be explored.
Collapse
Affiliation(s)
- Longsha Liu
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, Massachusetts.,Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
177
|
Tepper AWJW, Chu G, Klaren VNA, Kalin JH, Molina-Ortiz P, Impagliazzo A. Development and characterization of rabbit monoclonal antibodies that recognize human spermine oxidase and application to immunohistochemistry of human cancer tissues. PLoS One 2022; 17:e0267046. [PMID: 35452470 PMCID: PMC9032377 DOI: 10.1371/journal.pone.0267046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/31/2022] [Indexed: 11/20/2022] Open
Abstract
The enzyme spermine oxidase (SMOX) is involved in polyamine catabolism and converts spermine to spermidine. The enzymatic reaction generates reactive hydrogen peroxide and aldehydes as by-products that can damage DNA and other biomolecules. Increased expression of SMOX is frequently found in lung, prostate, colon, stomach and liver cancer models, and the enzyme also appears to play a role in neuronal dysfunction and vascular retinopathy. Because of growing evidence that links SMOX activity with DNA damage, inflammation, and carcinogenesis, the enzyme has come into view as a potential drug target. A major challenge in cancer research is the lack of characterization of antibodies used for identification of target proteins. To overcome this limitation, we generated a panel of high-affinity rabbit monoclonal antibodies against various SMOX epitopes and selected antibodies for use in immunoblotting, SMOX quantification assays, immunofluorescence microscopy and immunohistochemistry. Immunohistochemistry analysis with the antibody SMAB10 in normal and transformed tissues confirms that SMOX is upregulated in several different cancers. Together, the panel of antibodies generated herein adds to the toolbox of high-quality reagents to study SMOX biology and to facilitate SMOX drug development.
Collapse
Affiliation(s)
| | - Gerald Chu
- Janssen Research & Development, Spring House, PA, United States of America
| | | | - Jay H Kalin
- Janssen Research & Development, Spring House, PA, United States of America
| | | | | |
Collapse
|
178
|
Pratt M, Forbes JD, Knox NC, Van Domselaar G, Bernstein CN. Colorectal Cancer Screening in Inflammatory Bowel Diseases-Can Characterization of GI Microbiome Signatures Enhance Neoplasia Detection? Gastroenterology 2022; 162:1409-1423.e1. [PMID: 34998802 DOI: 10.1053/j.gastro.2021.12.287] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/28/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Current noninvasive methods for colorectal cancer (CRC) screening are not optimized for persons with inflammatory bowel diseases (IBDs), requiring patients to undergo frequent interval screening via colonoscopy. Although colonoscopy-based screening reduces CRC incidence in IBD patients, rates of interval CRC remain relatively high, highlighting the need for more targeted approaches. In recent years, the discovery of disease-specific microbiome signatures for both IBD and CRC has begun to emerge, suggesting that stool-based biomarker detection using metagenomics and other culture-independent technologies may be useful for personalized, early, noninvasive CRC screening in IBD patients. Here we discuss the utility of the stool microbiome as a noninvasive CRC screening tool. Comparing the performance of multiple microbiome-based CRC classifiers, including several multi-cohort meta-analyses, we find that noninvasive detection of colorectal adenomas and carcinomas from microbial biomarkers is an active area of study with promising early results.
Collapse
Affiliation(s)
- Molly Pratt
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jessica D Forbes
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Natalie C Knox
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Gary Van Domselaar
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada; National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Charles N Bernstein
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; University of Manitoba IBD Clinical and Research Centre, Winnipeg, Manitoba, Canada.
| |
Collapse
|
179
|
Zhou Y, Feng Y, Cen R, Hou X, Yu H, Sun J, Zhou L, Ji Q, Zhao L, Wang Y, Li Q. San-Wu-Huang-Qin decoction attenuates tumorigenesis and mucosal barrier impairment in the AOM/DSS model by targeting gut microbiome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153966. [PMID: 35158238 DOI: 10.1016/j.phymed.2022.153966] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/07/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND A classic herbal formula San-Wu-Huang-Qin (SWHQ) decoction has been widely used in clinical practices to prevent and treat colorectal cancer (CRC) for years, but its anti-tumorigenic properties and the underlying mechanisms remain undetermined. PURPOSE The present study used a CRC mouse model to clarify whether and how SWHQ suppresses tumorigenesis. METHODS Different doses of SWHQ were gavaged to the AOM/DSS model mice to examine its anti-tumor efficacy in comparison with the positive control drug Aspirin. The underlying microbiota-driven anti-tumor action of SWHQ was proven with bacterial manipulations by fecal microbial transplantation (FMT) in vivo and anaerobic culturing in vitro. RESULTS SWHQ decoction dose-dependently reduced colonic tumor numbers/loads of AOM/DSS models and suppressed their disease activity index scores. SWHQ also recovered epithelial MUC2 secretion and colonic tight junction protein (ZO-1 and claudin1) expression in the mouse model. Such inhibitory impact on tumorigenesis and mucosal barrier impairment was found to be associated with modulation of gut dysbiosis, particularly for suppressing lipopolysaccharide (LPS) producers. The FMT experiment confirmed the substantial contribution of SWHQ-reshaped microbiota to anti-tumor function and mucosal barrier protection. Moreover, LPS-activated TLR4/NF-κB signaling and its downstream pro-inflammatory factors were significantly suppressed in the colon of SWHQ-treated models and SWHQ-reshaped microbiota recipients. CONCLUSIONS We demonstrated that the SWHQ effectively inhibited tumorigenesis and protect mucosal barrier in CRC at least partially by targeting gut microbiota. This study provides scientific basis for the clinical usage of SWHQ in CRC intervention and prevention.
Collapse
Affiliation(s)
- Yelu Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanyuan Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rong Cen
- Endoscopy center of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinxin Hou
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Yu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian Sun
- Laboratory Department of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
180
|
McDowell R, Perrott S, Murchie P, Cardwell C, Hughes C, Samuel L. Oral antibiotic use and early-onset colorectal cancer: findings from a case-control study using a national clinical database. Br J Cancer 2022; 126:957-967. [PMID: 34921228 PMCID: PMC8927122 DOI: 10.1038/s41416-021-01665-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Antibiotic-induced gut dysbiosis has been associated with colorectal cancer (CRC) in older adults. This study will investigate whether an association exists between antibiotic usage and early-onset colorectal cancer (CRC), and also evaluate this in later-onset CRC for comparison. METHODS A case-control study was conducted using primary care data from 1999-2011. Analysis were conducted separately in early-onset CRC cases (diagnosed < 50 years) and later-onset cases (diagnosed ≥ 50 years). Conditional logistic regression was used to calculate odds ratios and 95% confidence intervals (CI) for the associations between antibiotic exposure and CRC by tumour location, adjusting for comorbidities. RESULTS Seven thousands nine hundred and three CRC cases (445 aged <50 years) and 30,418 controls were identified. Antibiotic consumption was associated with colon cancer in both age-groups, particularly in the early-onset CRC cohort (<50 years: adjusted Odds Ratio (ORadj) 1.49 (95% CI 1.07, 2.07), p = 0·018; ≥50 years (ORadj (95% CI) 1.09 (1.01, 1.18), p = 0·029). Antibiotics were not associated with rectal cancer (<50 years: ORadj (95% CI) 1.17 (0.75, 1.84), p = 0.493; ≥50 years: ORadj (95% CI) 1.07 (0.96, 1.19), p = 0.238). CONCLUSION Our findings suggest antibiotics may have a role in colon tumour formation across all age-groups.
Collapse
Affiliation(s)
- Ronald McDowell
- Centre for Public Health, School of Medicine, Dentistry & Biomedical Science, Queen's University, Belfast, Northern Ireland
| | - Sarah Perrott
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland
| | - Peter Murchie
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland
| | - Christopher Cardwell
- Centre for Public Health, School of Medicine, Dentistry & Biomedical Science, Queen's University, Belfast, Northern Ireland
| | - Carmel Hughes
- School of Pharmacy, Queen's University, Belfast, Scotland
| | - Leslie Samuel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland.
- Department of Clinical Oncology, Aberdeen Royal Infirmary, NHS Grampian, Aberdeen, Scotland.
| |
Collapse
|
181
|
Bacteroides fragilis Toxin Induces Intestinal Epithelial Cell Secretion of Interleukin-8 by the E-Cadherin/β-Catenin/NF-κB Dependent Pathway. Biomedicines 2022; 10:biomedicines10040827. [PMID: 35453577 PMCID: PMC9032310 DOI: 10.3390/biomedicines10040827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) has emerged as a gut microbiome pathogen that can promote colitis associated cancer in humans. ETBF secretes the metalloprotease, B. fragilis toxin (BFT), which can induce ectodomain cleavage of E-cadherin and IL-8 secretion through the β-catenin, NF-κB, and MAPK pathways in intestinal epithelial cells. However, it is still unclear whether E-cadherin cleavage is required for BFT induced IL-8 secretion and the relative contribution of these signaling pathways to IL-8 secretion. Using siRNA knockdown and CRISPR knockout studies, we found that E-cadherin cleavage is required for BFT mediated IL-8 secretion. In addition, genetic ablation of β-catenin indicates that β-catenin is required for the BFT induced increase in transcriptional activity of NF-κB, p65 nuclear localization and early IL-8 secretion. These results suggest that BFT induced β-catenin signaling is upstream of NF-κB activation. However, despite β-catenin gene disruption, BFT still activated the MAPK pathway, suggesting that the BFT induced activation of the MAPK signaling pathway is independent from the E-cadherin/β-catenin/NF-κB pathway. These findings show that E-cadherin and β-catenin play a critical role in acute inflammation following ETBF infection through the inflammatory response to BFT in intestinal epithelial cells.
Collapse
|
182
|
Nouri R, Hasani A, Asgharzadeh M, Sefidan FY, Hemmati F, Rezaee MA. Roles of gut microbiota in colorectal carcinogenesis providing a perspective for early diagnosis and treatment. Curr Pharm Biotechnol 2022; 23:1569-1580. [PMID: 35255786 DOI: 10.2174/1389201023666220307112413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/02/2022]
Abstract
Colorectal cancer (CRC) is the third most prevalent malignant neoplasm in the world. CRC is influenced by both environmental and genetic factors. Through toxin-mediated DNA damage and promotion of persistent dysregulated inflammation, the gut microbiota plays a crucial role in the development of CRC. In this review, we discussed the correlation between the bacterial microbiota and CRC carcinogenesis as well as the mechanism by which Streptococcus bovis/gallolyticus, Fusobacterium nucleatum, Bacteroides fragilis, and Escherichia coli can cause CRC.
Collapse
Affiliation(s)
- Roghayeh Nouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Yeganeh Sefidan
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Hemmati
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ahangarzadeh Rezaee
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit of Children Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
183
|
Cass SH, Ajami NJ, White MG. The Microbiome: the Link to Colorectal Cancer and Research Opportunities. Curr Treat Options Oncol 2022; 23:631-644. [PMID: 35254596 DOI: 10.1007/s11864-022-00960-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 12/24/2022]
Abstract
OPINION STATEMENT In recent years, we have seen an increase in the study and interest of the role of the microbiome in the development of malignancies, their progression, and evasion of therapies. This has been particularly fruitful in the case of colorectal cancer; multiple investigators have described correlative observations as well as hypotheses strengthened in preclinical studies that have begun to elucidate the critical role the gut and tumoral microbiome plays in carcinogenesis. Furthermore, these landmark studies lay the groundwork in describing the microbiome's role in carcinogenesis and provide a rich field of future study. Here, we review contemporary understandings of these observations and proposed mechanisms behind them.
Collapse
Affiliation(s)
- Samuel H Cass
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1484 PO Box 301402, Houston, TX, 77230, USA
| | - Nadim J Ajami
- Program for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael G White
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1484 PO Box 301402, Houston, TX, 77230, USA. .,Department of Colon and Rectal Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
184
|
Abstract
Accumulating evidence demonstrates that the oral pathobiont Fusobacterium nucleatum is involved in the progression of an increasing number of tumors types. Thus far, the mechanisms underlying tumor exacerbation by F. nucleatum include the enhancement of proliferation, establishment of a tumor‐promoting immune environment, induction of chemoresistance, and the activation of immune checkpoints. This review focuses on the mechanisms that mediate tumor‐specific colonization by fusobacteria. Elucidating the mechanisms mediating fusobacterial tumor tropism and promotion might provide new insights for the development of novel approaches for tumor detection and treatment.
Collapse
Affiliation(s)
- Tamar Alon-Maimon
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Ofer Mandelboim
- The Concern Foundation Laboratories, Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
185
|
Gobert AP, Latour YL, Asim M, Barry DP, Allaman MM, Finley JL, Smith TM, McNamara KM, Singh K, Sierra JC, Delgado AG, Luis PB, Schneider C, Washington MK, Piazuelo MB, Zhao S, Coburn LA, Wilson KT. Protective Role of Spermidine in Colitis and Colon Carcinogenesis. Gastroenterology 2022; 162:813-827.e8. [PMID: 34767785 PMCID: PMC8881368 DOI: 10.1053/j.gastro.2021.11.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Because inflammatory bowel disease is increasing worldwide and can lead to colitis-associated carcinoma (CAC), new interventions are needed. We have shown that spermine oxidase (SMOX), which generates spermidine (Spd), regulates colitis. Here we determined whether Spd treatment reduces colitis and carcinogenesis. METHODS SMOX was quantified in human colitis and associated dysplasia using quantitative reverse-transcription polymerase chain reaction and immunohistochemistry. We used wild-type (WT) and Smox-/- C57BL/6 mice treated with dextran sulfate sodium (DSS) or azoxymethane (AOM)-DSS as models of colitis and CAC, respectively. Mice with epithelial-specific deletion of Apc were used as a model of sporadic colon cancer. Animals were supplemented or not with Spd in the drinking water. Colonic polyamines, inflammation, tumorigenesis, transcriptomes, and microbiomes were assessed. RESULTS SMOX messenger RNA levels were decreased in human ulcerative colitis tissues and inversely correlated with disease activity, and SMOX protein was reduced in colitis-associated dysplasia. DSS colitis and AOM-DSS-induced dysplasia and tumorigenesis were worsened in Smox-/- vs WT mice and improved in both genotypes with Spd. Tumor development caused by Apc deletion was also reduced by Spd. Smox deletion and AOM-DSS treatment were both strongly associated with increased expression of α-defensins, which was reduced by Spd. A shift in the microbiome, with reduced abundance of Prevotella and increased Proteobacteria and Deferribacteres, occurred in Smox-/- mice and was reversed with Spd. CONCLUSIONS Loss of SMOX is associated with exacerbated colitis and CAC, increased α-defensin expression, and dysbiosis of the microbiome. Spd supplementation reverses these phenotypes, indicating that it has potential as an adjunctive treatment for colitis and chemopreventive for colon carcinogenesis.
Collapse
Affiliation(s)
- Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biolog Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yvonne L Latour
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel P Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jordan L Finley
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thaddeus M Smith
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kara M McNamara
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biolog Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kshipra Singh
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Johanna C Sierra
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alberto G Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paula B Luis
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Claus Schneider
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biolog Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biolog Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee.
| |
Collapse
|
186
|
Roviello G, Iannone LF, Bersanelli M, Mini E, Catalano M. The gut microbiome and efficacy of cancer immunotherapy. Pharmacol Ther 2022; 231:107973. [PMID: 34453999 DOI: 10.1016/j.pharmthera.2021.107973] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/07/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022]
Abstract
Cancer treatment has been deeply changed by immunotherapy, achieving unprecedented improvement in overall and progression-free survival in several advanced and metastatic cancers. Currently, immune checkpoint inhibitor (ICI) antibodies against cytotoxic T-lymphocyte antigen (CTLA-4) and programmed death/ligand 1 (PD-1/PD-L1) are being tested and approved for different tumors, ranging from melanoma to lung carcinoma. However, only a subgroup of patients can reach treatment benefits and long-term responses, and reliable biomarkers that can accurately predict clinical responses to immunotherapy are still unidentified. In the last decade, accumulating evidence seems to suggest the gut microbiota as one of the modulators that can alter the efficacy and toxicity of immunotherapy drugs (as well as chemotherapeutics), mainly acting through the local and systemic immune system. Herein, we reviewed the highly dynamic and complex microbiome-immune system interface, its bidirectional relationship with cancer immunotherapies, and explored the future possibilities and risks in manipulating the gut microbiome.
Collapse
Affiliation(s)
- Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy.
| | | | - Melissa Bersanelli
- Medical Oncology, University Hospital of Parma and Medicine and Surgery Department, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Enrico Mini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Martina Catalano
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| |
Collapse
|
187
|
Tortora SC, Bodiwala VM, Quinn A, Martello LA, Vignesh S. Microbiome and colorectal carcinogenesis: Linked mechanisms and racial differences. World J Gastrointest Oncol 2022; 14:375-395. [PMID: 35317317 PMCID: PMC8918999 DOI: 10.4251/wjgo.v14.i2.375] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Various studies have shown the interplay between the intestinal microbiome, environmental factors, and genetic changes in colorectal cancer (CRC) development. In this review, we highlight the various gut and oral microbiota associated with CRC and colorectal adenomas, and their proposed molecular mechanisms in relation to the processes of “the hallmarks of cancer”, and differences in microbial diversity and abundance between race/ethnicity. Patients with CRC showed increased levels of Bacteroides, Prevotella, Escherichia coli, enterotoxigenic Bacteroides fragilis, Streptococcus gallolyticus, Enterococcus faecalis, Fusobacterium nucleatum (F. nucleatum) and Clostridium difficile. Higher levels of Bacteroides have been found in African American (AA) compared to Caucasian American (CA) patients. Pro-inflammatory bacteria such as F. nucleatum and Enterobacter species were significantly higher in AAs. Also, AA patients have been shown to have decreased microbial diversity compared to CA patients. Some studies have shown that using microbiome profiles in conjunction with certain risk factors such as age, race and body mass index may help predict healthy colon vs one with adenomas or carcinomas. Periodontitis is one of the most common bacterial infections in humans and is more prevalent in Non-Hispanic-Blacks as compared to Non-Hispanic Whites. This condition causes increased systemic inflammation, immune dysregulation, gut microbiota dysbiosis and thereby possibly influencing colorectal carcinogenesis. Periodontal-associated bacteria such as Fusobacterium, Prevotella, Bacteroides and Porphyromonas have been found in CRC tissues and in feces of CRC patients. Therefore, a deeper understanding of the association between oral and gastrointestinal bacterial profile, in addition to identifying prevalent bacteria in patients with CRC and the differences observed in ethnicity/race, may play a pivotal role in predicting incidence, prognosis, and lead to the development of new treatments.
Collapse
Affiliation(s)
- Sofia C Tortora
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Vimal M Bodiwala
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Andrew Quinn
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Laura A Martello
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Shivakumar Vignesh
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| |
Collapse
|
188
|
Alfarhan M, Liu F, Shan S, Pichavaram P, Somanath PR, Narayanan SP. Pharmacological Inhibition of Spermine Oxidase Suppresses Excitotoxicity Induced Neuroinflammation in Mouse Retina. Int J Mol Sci 2022; 23:2133. [PMID: 35216248 PMCID: PMC8875684 DOI: 10.3390/ijms23042133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Polyamine oxidation plays a major role in neurodegenerative diseases. Previous studies from our laboratory demonstrated that spermine oxidase (SMOX, a member of the polyamine oxidase family) inhibition using MDL 72527 reduced neurodegeneration in models of retinal excitotoxicity and diabetic retinopathy. However, the mechanisms behind the neuroprotection offered by SMOX inhibition are not completely studied. Utilizing the experimental model of retinal excitotoxicity, the present study determined the impact of SMOX blockade in retinal neuroinflammation. Our results demonstrated upregulation in the number of cells positive for Iba-1 (ionized calcium-binding adaptor molecule 1), CD (Cluster Differentiation) 68, and CD16/32 in excitotoxicity-induced retinas, while MDL 72527 treatment reduced these changes, along with increases in the number of cells positive for Arginase1 and CD206. When retinal excitotoxicity upregulated several pro-inflammatory genes, MDL 72527 treatment reduced many of them and increased anti-inflammatory genes. Furthermore, SMOX inhibition upregulated antioxidant signaling (indicated by elevated Nrf2 and HO-1 levels) and reduced protein-conjugated acrolein in excitotoxic retinas. In vitro studies using C8-B4 cells showed changes in cellular morphology and increased reactive oxygen species formation in response to acrolein (a product of SMOX activity) treatment. Overall, our findings indicate that the inhibition SMOX pathway reduced neuroinflammation and upregulated antioxidant signaling in the retina.
Collapse
Affiliation(s)
- Moaddey Alfarhan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fang Liu
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| | - Shengshuai Shan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| | | | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics Program, Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA 30912, USA; (M.A.); (F.L.); (S.S.); (P.R.S.)
- Research Division, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
189
|
Abstract
The importance of the microbiota in the development of colorectal cancer (CRC) is increasingly evident, but identifying specific microbial features that influence CRC initiation and progression remains a central task for investigators. Studies determining the microbial mechanisms that directly contribute to CRC development or progression are revealing bacterial factors such as toxins that contribute to colorectal carcinogenesis. However, even when investigators have identified bacteria that express toxins, questions remain about the host determinants of a toxin's cancer-potentiating effects. For other cancer-correlating bacteria that lack toxins, the challenge is to define cancer-relevant virulence factors. Herein, we evaluate three CRC-correlating bacteria, colibactin-producing Escherichia coli, enterotoxigenic Bacteroides fragilis, and Fusobacterium nucleatum, for their virulence features relevant to CRC. We also consider the beneficial bioactivity of gut microbes by highlighting a microbial metabolite that may enhance CRC antitumor immunity. In doing so, we aim to elucidate unique and shared mechanisms underlying the microbiota's contributions to CRC and to accelerate investigation from target validation to CRC therapeutic discovery.
Collapse
Affiliation(s)
- Slater L. Clay
- Department of Immunology and Infectious Diseases and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
| | - Diogo Fonseca-Pereira
- Department of Immunology and Infectious Diseases and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
| | - Wendy S. Garrett
- Department of Immunology and Infectious Diseases and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
190
|
Behrouzi A, Katebi A, Riazi-Rad F, Mazaheri H, Ajdary S. The role of microbiota and immune system crosstalk in cancer development and therapy. Acta Microbiol Immunol Hung 2022; 69:1-12. [PMID: 35080506 DOI: 10.1556/030.2022.01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/06/2022] [Indexed: 11/19/2022]
Abstract
Cancer is a multifactorial disease that is the second leading cause of death after cardiovascular disease in the world. In recent years, microbiota's role in the regulation and homeostasis of the immune system has been considered. Moreover, the immune system can affect the microbiota content. These interactions are critical to the functioning of the immune system. Numerous studies in animal and human models have shown the association of changes in microbiota components with the formation of an inhibitory microenvironment in the tumor and its escape from the immune system. Microbiota also plays a crucial role in the success of various anti-tumor treatments, and its modification leads to success in cancer treatment. The success of anti-tumor therapies that directly target the immune system, such as immune checkpoint blockade and T cell therapy, is also affected by the patient's microbiota composition. It seems that in addition to examining the patient's genetics, precision medicine should pay attention to the patient's microbiota in choosing the appropriate treatment method, and together with usual anti-tumor therapies, microbiota may be modified. This review discusses various aspects of the relationship between microbiota and anti-tumor immunity and its successful treatment.
Collapse
Affiliation(s)
- Ava Behrouzi
- 1 Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- 2 Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Asal Katebi
- 3 Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Farhad Riazi-Rad
- 3 Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Hoora Mazaheri
- 4 Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Soheila Ajdary
- 3 Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
191
|
A bioanalytical screening method for Enterococcus faecalis RNPP-type quorum sensing peptides in murine feces. Bioanalysis 2022; 14:151-167. [PMID: 35014887 DOI: 10.4155/bio-2021-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Bacteria coordinate their behavior as a group via communication with their peers, known as 'quorum sensing'. Enterococcus faecalis employs quorum sensing via RNPP-peptides which were not yet reported to be present in mammalian biofluids. Results: Solid phase extraction of murine feces was performed, followed by ultra high performance liquid chromatography (UHPLC-MS/MS) in multiple reaction monitoring (MRM) mode (in total <90 min/sample) for the nine known RNPP peptides. Limits of detection ranged between 0.045 and 52 nM. Adequate identification criteria allowed detection of RNPP quorum sensing peptides in 2/20 wild-type murine feces samples (i.e., cAM373 and cOB1). Conclusion: A fit-for-purpose UHPLC-MS/MS method detected these RNPP peptides in wild-type murine feces samples.
Collapse
|
192
|
Microenvironmental Metabolites in the Intestine: Messengers between Health and Disease. Metabolites 2022; 12:metabo12010046. [PMID: 35050167 PMCID: PMC8778376 DOI: 10.3390/metabo12010046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
The intestinal mucosa is a highly absorptive organ and simultaneously constitutes the physical barrier between the host and a complex outer ecosystem. Intestinal epithelial cells (IECs) represent a special node that receives signals from the host and the environment and translates them into corresponding responses. Specific molecular communication systems such as metabolites are known to transmit information across the intestinal boundary. The gut microbiota or food-derived metabolites are extrinsic factors that influence the homeostasis of the intestinal epithelium, while mitochondrial and host-derived cellular metabolites determine the identity, fitness, and regenerative capacity of IECs. Little is known, however, about the role of intrinsic and extrinsic metabolites of IECs in the initiation and progression of pathological processes such as inflammatory bowel disease and colorectal cancer as well as about their impact on intestinal immunity. In this review, we will highlight the most recent contributions on the modulatory effects of intestinal metabolites in gut pathophysiology, with a particular focus on metabolites in promoting intestinal inflammation or colorectal tumorigenesis. In addition, we will provide a perspective on the role of newly identified oncometabolites from the commensal and opportunistic microbiota in shaping response and resistance to antitumor therapy.
Collapse
|
193
|
Abstract
Colorectal cancer (CRC) is a significant public health problem accounting for about 10% of all new cancer cases globally. Though genetic and epigenetic factors influence CRC, the gut microbiota acts as a significant component of the disease's etiology. Further research is still needed to clarify the specific roles and identify more bacteria related to CRC development. This review aims to provide an overview of the "driver-passenger" model of CRC. The colonization and active invasion of the "driver(s)" bacteria cause damages allowing other commensals, known as "passengers," or their by-products, i.e., metabolites, to pass through the epithelium . This review will not only focus on the species of bacteria implicated in this model but also on their biological functions implicated in the occurrence of CRC, such as forming biofilms, mucus, penetration and production of enterotoxins and genotoxins.
Collapse
Affiliation(s)
- Marion Avril
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - R. William DePaolo
- Department of Medicine, University of Washington, Seattle, WA, USA,Department of Medicine, Center for Microbiome Sciences & Therapeutics, University of Washington, Seattle, WA, USA,CONTACT R. William DePaolo Department of Medicine, University of Washington, 1959 NE Pacific Avenue, Seattle, WA98195, USA
| |
Collapse
|
194
|
Ivanov AV, Khomutov AR. Biogenic Polyamines and Related Metabolites. Biomolecules 2021; 12:14. [PMID: 35053162 PMCID: PMC8773558 DOI: 10.3390/biom12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
The specific regulation of cell metabolism is one of cornerstones of biochemistry [...].
Collapse
Affiliation(s)
- Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alex R. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
195
|
Sędzikowska A, Szablewski L. Human Gut Microbiota in Health and Selected Cancers. Int J Mol Sci 2021; 22:13440. [PMID: 34948234 PMCID: PMC8708499 DOI: 10.3390/ijms222413440] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
The majority of the epithelial surfaces of our body, and the digestive tract, respiratory and urogenital systems, are colonized by a vast number of bacteria, archaea, fungi, protozoans, and viruses. These microbiota, particularly those of the intestines, play an important, beneficial role in digestion, metabolism, and the synthesis of vitamins. Their metabolites stimulate cytokine production by the human host, which are used against potential pathogens. The composition of the microbiota is influenced by several internal and external factors, including diet, age, disease, and lifestyle. Such changes, called dysbiosis, may be involved in the development of various conditions, such as metabolic diseases, including metabolic syndrome, type 2 diabetes mellitus, Hashimoto's thyroidis and Graves' disease; they can also play a role in nervous system disturbances, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and depression. An association has also been found between gut microbiota dysbiosis and cancer. Our health is closely associated with the state of our microbiota, and their homeostasis. The aim of this review is to describe the associations between human gut microbiota and cancer, and examine the potential role of gut microbiota in anticancer therapy.
Collapse
Affiliation(s)
| | - Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, ul. Chalubinskiego 5, 02-004 Warsaw, Poland;
| |
Collapse
|
196
|
Mohammadi M, Mirzaei H, Motallebi M. The role of anaerobic bacteria in the development and prevention of colorectal cancer: A review study. Anaerobe 2021; 73:102501. [PMID: 34906686 DOI: 10.1016/j.anaerobe.2021.102501] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most frequently diagnosed cancer in both males and females in the Unites States. Colonoscopy is considered a safe method for screening this disorder; however, it can be challenging for patients. As research on microbiota, especially anaerobic microbiota, has expanded substantially, new links have been determined between anaerobic bacteria and CRC progression. These associations can be useful in screening CRC in the near future. This review discusses current research investigating the presence of anaerobic bacteria, including Bacteroides fragilis, Peptostreptococcus anaerobius, Clostridium septicum, Porphyromonas gingivalis, Fusobacterium nucleatum, and Parvimonas micra in CRC and presents an overview about their mechanisms of action. We also discuss the current anaerobic probiotics used for the treatment and prevention of CRC.
Collapse
Affiliation(s)
- Mehrdad Mohammadi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mitra Motallebi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
197
|
Banavar G, Ogundijo O, Toma R, Rajagopal S, Lim YK, Tang K, Camacho F, Torres PJ, Gline S, Parks M, Kenny L, Perlina A, Tily H, Dimitrova N, Amar S, Vuyisich M, Punyadeera C. The salivary metatranscriptome as an accurate diagnostic indicator of oral cancer. NPJ Genom Med 2021; 6:105. [PMID: 34880265 PMCID: PMC8654845 DOI: 10.1038/s41525-021-00257-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Despite advances in cancer treatment, the 5-year mortality rate for oral cancers (OC) is 40%, mainly due to the lack of early diagnostics. To advance early diagnostics for high-risk and average-risk populations, we developed and evaluated machine-learning (ML) classifiers using metatranscriptomic data from saliva samples (n = 433) collected from oral premalignant disorders (OPMD), OC patients (n = 71) and normal controls (n = 171). Our diagnostic classifiers yielded a receiver operating characteristics (ROC) area under the curve (AUC) up to 0.9, sensitivity up to 83% (92.3% for stage 1 cancer) and specificity up to 97.9%. Our metatranscriptomic signature incorporates both taxonomic and functional microbiome features, and reveals a number of taxa and functional pathways associated with OC. We demonstrate the potential clinical utility of an AI/ML model for diagnosing OC early, opening a new era of non-invasive diagnostics, enabling early intervention and improved patient outcomes.
Collapse
Affiliation(s)
- Guruduth Banavar
- Viome Research Institute, Viome Life Sciences, Inc., New York City, USA.
| | - Oyetunji Ogundijo
- Viome Research Institute, Viome Life Sciences, Inc., New York City, USA
| | - Ryan Toma
- Viome Research Institute, Viome Life Sciences, Inc., Seattle, USA
| | | | - Yen Kai Lim
- The Saliva and Liquid Biopsy Translational Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
- The Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Kai Tang
- The Saliva and Liquid Biopsy Translational Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
- The Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia
| | - Francine Camacho
- Viome Research Institute, Viome Life Sciences, Inc., New York City, USA
| | - Pedro J Torres
- Viome Research Institute, Viome Life Sciences, Inc., New York City, USA
| | - Stephanie Gline
- Viome Research Institute, Viome Life Sciences, Inc., New York City, USA
| | - Matthew Parks
- Viome Research Institute, Viome Life Sciences, Inc., New York City, USA
| | - Liz Kenny
- The School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Ally Perlina
- Viome Research Institute, Viome Life Sciences, Inc., Seattle, USA
| | - Hal Tily
- Viome Research Institute, Viome Life Sciences, Inc., New York City, USA
| | | | | | | | - Chamindie Punyadeera
- The Saliva and Liquid Biopsy Translational Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia.
- The Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia.
| |
Collapse
|
198
|
Kovács T, Mikó E, Ujlaki G, Yousef H, Csontos V, Uray K, Bai P. The involvement of oncobiosis and bacterial metabolite signaling in metastasis formation in breast cancer. Cancer Metastasis Rev 2021; 40:1223-1249. [PMID: 34967927 PMCID: PMC8825384 DOI: 10.1007/s10555-021-10013-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer, the most frequent cancer in women, is characterized by pathological changes to the microbiome of breast tissue, the tumor, the gut, and the urinary tract. Changes to the microbiome are determined by the stage, grade, origin (NST/lobular), and receptor status of the tumor. This year is the 50th anniversary of when Hill and colleagues first showed that changes to the gut microbiome can support breast cancer growth, namely that the oncobiome can reactivate excreted estrogens. The currently available human and murine data suggest that oncobiosis is not a cause of breast cancer, but can support its growth. Furthermore, preexisting dysbiosis and the predisposition to cancer are transplantable. The breast's and breast cancer's inherent microbiome and the gut microbiome promote breast cancer growth by reactivating estrogens, rearranging cancer cell metabolism, bringing about a more inflammatory microenvironment, and reducing the number of tumor-infiltrating lymphocytes. Furthermore, the gut microbiome can produce cytostatic metabolites, the production of which decreases or blunts breast cancer. The role of oncobiosis in the urinary tract is largely uncharted. Oncobiosis in breast cancer supports invasion, metastasis, and recurrence by supporting cellular movement, epithelial-to-mesenchymal transition, cancer stem cell function, and diapedesis. Finally, the oncobiome can modify the pharmacokinetics of chemotherapeutic drugs. The microbiome provides novel leverage on breast cancer that should be exploited for better management of the disease.
Collapse
Affiliation(s)
- Tünde Kovács
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Ujlaki
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Heba Yousef
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Viktória Csontos
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Karen Uray
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Peter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
199
|
Fang Y, Yan C, Zhao Q, Xu J, Liu Z, Gao J, Zhu H, Dai Z, Wang D, Tang D. The roles of microbial products in the development of colorectal cancer: a review. Bioengineered 2021; 12:720-735. [PMID: 33618627 PMCID: PMC8806273 DOI: 10.1080/21655979.2021.1889109] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
A large number of microbes exist in the gut and they have the ability to process and utilize ingested food. It has been reported that their products are involved in colorectal cancer development. The molecular mechanisms which underlie the relationship between gut microbial products and CRC are still not fully understood. The role of some microbial products in CRC is particularly controversial. Elucidating the effects of gut microbiota products on CRC and their possible mechanisms is vital for CRC prevention and treatment. In this review, recent studies are examined in order to describe the contribution metabolites and toxicants which are produced by gut microbes make to CRC, primarily focusing on the involved molecular mechanisms.Abbreviations: CRC: colorectal cancer; SCFAs: short chain fatty acids; HDAC: histone deacetylase; TCA cycle: tricarboxylic acid cycle; CoA: cytosolic acyl coenzyme A; SCAD: short chain acyl CoA dehydrogenase; HDAC: histone deacetylase; MiR-92a: microRNA-92a; KLF4: kruppel-like factor; PTEN: phosphatase and tensin homolog; PI3K: phosphoinositide 3-kinase; PIP2: phosphatidylinositol 4, 5-biphosphate; PIP3: phosphatidylinositol-3,4,5-triphosphate; Akt1: protein kinase B subtype α; ERK1/2: extracellular signal-regulated kinases 1/2; EMT: epithelial-to-mesenchymal transition; NEDD9: neural precursor cell expressed developmentally down-regulated9; CAS: Crk-associated substrate; JNK: c-Jun N-terminal kinase; PRMT1: protein arginine methyltransferase 1; UDCA: ursodeoxycholic acid; BA: bile acids; CA: cholic acid; CDCA: chenodeoxycholic acid; DCA: deoxycholic acid; LCA: lithocholic acid; CSCs: cancer stem cells; MHC: major histocompatibility; NF-κB: NF-kappaB; GPR: G protein-coupled receptors; ROS: reactive oxygen species; RNS: reactive nitrogen substances; BER: base excision repair; DNA: deoxyribonucleic acid; EGFR: epidermal growth factor receptor; MAPK: mitogen activated protein kinase; ERKs: extracellular signal regulated kinases; AKT: protein kinase B; PA: phosphatidic acid; TMAO: trimethylamine n-oxide; TMA: trimethylamine; FMO3: flavin-containing monooxygenase 3; H2S: Hydrogen sulfide; SRB: sulfate-reducing bacteria; IBDs: inflammatory bowel diseases; NSAID: non-steroidal anti-inflammatory drugs; BFT: fragile bacteroides toxin; ETBF: enterotoxigenic fragile bacteroides; E-cadherin: extracellular domain of intercellular adhesive protein; CEC: colonic epithelial cells; SMOX: spermine oxidase; SMO: smoothened; Stat3: signal transducer and activator of transcription 3; Th17: T helper cell 17; IL17: interleukin 17; AA: amino acid; TCF: transcription factor; CDT: cytolethal distending toxin; PD-L1: programmed cell death 1 ligand 1.
Collapse
Affiliation(s)
- Yongkun Fang
- Department of Clinical Medical College, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Cheng Yan
- Department of Clinical Medical College, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Qi Zhao
- Department of Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| | - Jiaming Xu
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhuangzhuang Liu
- Department of Clinical Medical College, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Jin Gao
- Department of Clinical Medical College, Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Hanjian Zhu
- Department of Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| | - Zhujiang Dai
- Department of Clinical Medical College, Yangzhou University, Yangzhou, P.R. China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
200
|
Current status of intratumour microbiome in cancer and engineered exogenous microbiota as a promising therapeutic strategy. Biomed Pharmacother 2021; 145:112443. [PMID: 34847476 DOI: 10.1016/j.biopha.2021.112443] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Research on the relationship between microbiome and cancer has made significant progress in the past few decades. It is now known that the gut microbiome has multiple effects on tumour biology. However, the relationship between intratumoral bacteria and cancers remains unclear. Growing evidence suggests that intratumoral bacteria are important components of the microenvironment in several types of cancers. Furthermore, several studies have demonstrated that intratumoral bacteria may directly influence tumorigenesis, progression and responses to treatment. Limited studies have been conducted on intratumoral bacteria, and using intratumoral bacteria to treat tumours remains a challenge. Bacteria have been studied as anticancer therapeutics since the 19th century when William B. Coley successfully treated patients with inoperable sarcomas using Streptococcus pyogenes. With the development of synthetic biological approaches, several bacterial species have been genetically engineered to increase their applicability for cancer treatment. Genetically engineered bacteria for cancer therapy have unique properties compared to other treatment methods. They can specifically accumulate within tumours and inhibit cancer growth. In addition, genetically engineered bacteria may be used as a vector to deliver antitumour agents or combined with radiation and chemotherapy to synergise the effectiveness of cancer treatment. However, various problems in treating tumours with genetically engineered bacteria need to be addressed. In this review, we focus on the role of intratumoral bacteria on tumour initiation, progression and responses to chemotherapy or immunotherapy. Moreover, we summarised the recent progress in the treatment of tumours with genetically engineered bacteria.
Collapse
|