151
|
Torraco A, Peralta S, Iommarini L, Diaz F. Mitochondrial Diseases Part I: mouse models of OXPHOS deficiencies caused by defects in respiratory complex subunits or assembly factors. Mitochondrion 2015; 21:76-91. [PMID: 25660179 DOI: 10.1016/j.mito.2015.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/22/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
Mitochondrial disorders are the most common inborn errors of metabolism affecting the oxidative phosphorylation system (OXPHOS). Because of the poor knowledge of the pathogenic mechanisms, a cure for these disorders is still unavailable and all the treatments currently in use are supportive more than curative. Therefore, in the past decade a great variety of mouse models have been developed to assess the in vivo function of several mitochondrial proteins involved in human diseases. Due to the genetic and physiological similarity to humans, mice represent reliable models to study the pathogenic mechanisms of mitochondrial disorders and are precious to test new therapeutic approaches. Here we summarize the features of several mouse models of mitochondrial diseases directly related to defects in subunits of the OXPHOS complexes or in assembly factors. We discuss how these models recapitulate many human conditions and how they have contributed to the understanding of mitochondrial function in health and disease.
Collapse
Affiliation(s)
- Alessandra Torraco
- Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 15-00146 Rome, Italy.
| | - Susana Peralta
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | - Francisca Diaz
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
152
|
Abstract
Most neurodegenerative diseases that afflict humans are associated with the intracytoplasmic deposition of aggregate-prone proteins in neurons. Autophagy is a powerful process for removing such proteins. In this Review, we consider how certain neurodegenerative diseases may be associated with impaired autophagy and how this may affect pathology. We also discuss how autophagy induction may be a plausible therapeutic strategy for some conditions and review studies in various models that support this hypothesis. Finally, we briefly describe some of the signaling pathways that may be amenable to therapeutic targeting for these goals.
Collapse
|
153
|
|
154
|
Baker MJ, Palmer CS, Stojanovski D. Mitochondrial protein quality control in health and disease. Br J Pharmacol 2014; 171:1870-89. [PMID: 24117041 DOI: 10.1111/bph.12430] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/28/2013] [Accepted: 09/01/2013] [Indexed: 12/13/2022] Open
Abstract
Progressive mitochondrial dysfunction is linked with the onset of many age-related pathologies and neurological disorders. Mitochondrial damage can come in many forms and be induced by a variety of cellular insults. To preserve organelle function during biogenesis or times of stress, multiple surveillance systems work to ensure the persistence of a functional mitochondrial network. This review provides an overview of these processes, which collectively contribute to the maintenance of a healthy mitochondrial population, which is critical for cell physiology and survival.
Collapse
Affiliation(s)
- Michael J Baker
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia; ARC Centre of Excellence for Coherent X-ray Science, Melbourne, VIC, Australia
| | | | | |
Collapse
|
155
|
Van Laar VS, Roy N, Liu A, Rajprohat S, Arnold B, Dukes AA, Holbein CD, Berman SB. Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy. Neurobiol Dis 2014; 74:180-93. [PMID: 25478815 DOI: 10.1016/j.nbd.2014.11.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022] Open
Abstract
Disruption of the dynamic properties of mitochondria (fission, fusion, transport, degradation, and biogenesis) has been implicated in the pathogenesis of neurodegenerative disorders, including Parkinson's disease (PD). Parkin, the product of gene PARK2 whose mutation causes familial PD, has been linked to mitochondrial quality control via its role in regulating mitochondrial dynamics, including mitochondrial degradation via mitophagy. Models using mitochondrial stressors in numerous cell types have elucidated a PINK1-dependent pathway whereby Parkin accumulates on damaged mitochondria and targets them for mitophagy. However, the role Parkin plays in regulating mitochondrial homeostasis specifically in neurons has been less clear. We examined whether a stressor linked to neurodegeneration, glutamate excitotoxicity, elicits Parkin-mitochondrial translocation and mitophagy in neurons. We found that brief, acute exposure to glutamate causes Parkin translocation to mitochondria in neurons, in a calcium- and N-methyl-d-aspartate (NMDA) receptor-dependent manner. In addition, we found that Parkin accumulates on endoplasmic reticulum (ER) and mitochondrial/ER junctions following excitotoxicity, supporting a role for Parkin in mitochondrial-ER crosstalk in mitochondrial homeostasis. Despite significant Parkin-mitochondria translocation, however, we did not observe mitophagy under these conditions. To further investigate, we examined the role of glutamate-induced oxidative stress in Parkin-mitochondria accumulation. Unexpectedly, we found that glutamate-induced accumulation of Parkin on mitochondria was promoted by the antioxidant N-acetyl cysteine (NAC), and that co-treatment with NAC facilitated Parkin-associated mitophagy. These results suggest the possibility that mitochondrial depolarization and oxidative damage may have distinct pathways associated with Parkin function in neurons, which may be critical in understanding the role of Parkin in neurodegeneration.
Collapse
Affiliation(s)
- Victor S Van Laar
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nikita Roy
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA; School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Annie Liu
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA; School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Swati Rajprohat
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Beth Arnold
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - April A Dukes
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Cory D Holbein
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarah B Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
156
|
Song L, Cortopassi G. Mitochondrial complex I defects increase ubiquitin in substantia nigra. Brain Res 2014; 1594:82-91. [PMID: 25446449 DOI: 10.1016/j.brainres.2014.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/16/2014] [Accepted: 11/07/2014] [Indexed: 11/18/2022]
Abstract
Parkinson׳s disease (PD) is the second most common neurodegenerative disorder in the developed world, and is characterized by the loss of dopaminergic (DA) neurons in the substantia nigra (SN) of midbrain. Mitochondrial complex I dysfunction has been implicated in PD pathophysiology, yet the molecular mechanism by which complex I defects may cause DA neurodegeneration remain unclear. Using Ndufs4 mouse model of mitochondrial complex I deficiency, we observed a remarkable ubiquitin protein increase in SN of Ndufs4-/- (KO) mice. By contrast, neurofilaments were significantly decreased in SN of KO mice. Furthermore, mass spectrometry and co-immunoprecipitation (Co-IP) analysis indicated an increase in ubiquitinated neurofilaments in midbrain of KO mice, whereas 20S proteasome activities were decreased, which could potentially explain the buildup of ubiquitin protein. Collectively, these data suggest that mitochondrial complex I defects cause proteasome inhibition, a consequent increase in ubiquitinated neurofilaments and other proteins, and decrease the expression of neurofilaments that could be relevant to the mechanism of DA neuronal death in PD.
Collapse
Affiliation(s)
- Lanying Song
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA
| | - Gino Cortopassi
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
157
|
Rappold PM, Cui M, Grima JC, Fan RZ, de Mesy-Bentley KL, Chen L, Zhuang X, Bowers WJ, Tieu K. Drp1 inhibition attenuates neurotoxicity and dopamine release deficits in vivo. Nat Commun 2014; 5:5244. [PMID: 25370169 PMCID: PMC4223875 DOI: 10.1038/ncomms6244] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/10/2014] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction has been reported in both familial and sporadic Parkinson's disease (PD). However, effective therapy targeting this pathway is currently inadequate. Recent studies suggest that manipulating the processes of mitochondrial fission and fusion has considerable potential for treating human diseases. To determine the therapeutic impact of targeting these pathways on PD, we used two complementary mouse models of mitochondrial impairments as seen in PD. We show here that blocking mitochondrial fission is neuroprotective in the PTEN-induced putative kinase-1 deletion (PINK1(-/-)) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse models. Specifically, we show that inhibition of the mitochondrial fission GTPase dynamin-related protein-1 (Drp1) using gene-based and small-molecule approaches attenuates neurotoxicity and restores pre-existing striatal dopamine release deficits in these animal models. These results suggest Drp1 inhibition as a potential treatment for PD.
Collapse
Affiliation(s)
- Phillip M Rappold
- Department of Environmental Medicine, Center for Translational Neuromedicine, University of Rochester School of Medicine, 575 Elmwood Avenue, Rochester, New York 14642, USA
| | - Mei Cui
- Department of Environmental Medicine, Center for Translational Neuromedicine, University of Rochester School of Medicine, 575 Elmwood Avenue, Rochester, New York 14642, USA
| | - Jonathan C Grima
- Department of Environmental Medicine, Center for Translational Neuromedicine, University of Rochester School of Medicine, 575 Elmwood Avenue, Rochester, New York 14642, USA
| | - Rebecca Z Fan
- Department of Clinical Neurobiology and Institute of Translational and Stratified Medicine, Plymouth University, John Bull Building, Plymouth PL6 8BU, UK
| | - Karen L de Mesy-Bentley
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642, USA
| | - Linan Chen
- Department of Neurobiology, University of Chicago, 947 E. 58th Street, Chicago, Illinois 60637, USA
| | - Xiaoxi Zhuang
- Department of Neurobiology, University of Chicago, 947 E. 58th Street, Chicago, Illinois 60637, USA
| | - William J Bowers
- Department of Neurology, Center for Neural Development and Disease, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, New York 14642, USA
| | - Kim Tieu
- 1] Department of Environmental Medicine, Center for Translational Neuromedicine, University of Rochester School of Medicine, 575 Elmwood Avenue, Rochester, New York 14642, USA [2] Department of Clinical Neurobiology and Institute of Translational and Stratified Medicine, Plymouth University, John Bull Building, Plymouth PL6 8BU, UK
| |
Collapse
|
158
|
Purnell PR, Fox HS. Efavirenz induces neuronal autophagy and mitochondrial alterations. J Pharmacol Exp Ther 2014; 351:250-8. [PMID: 25161171 PMCID: PMC4201278 DOI: 10.1124/jpet.114.217869] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/25/2014] [Indexed: 12/26/2022] Open
Abstract
Efavirenz (EFV) is a non-nucleoside reverse-transcriptase inhibitor in wide use for the treatment of human immunodeficiency virus infection. Although EFV is generally well tolerated, neuropsychiatric toxicity has been well documented. The toxic effects of EFV in hepatocytes and keratinocytes have been linked to mitochondrial perturbations and changes in autophagy. Here, we studied the effect of EFV on mitochondria and autophagy in neuronal cell lines and primary neurons. In SH-SY5Y cells, EFV induced a drop in ATP production, which coincided with increased autophagy, mitochondrial fragmentation, and mitochondrial depolarization. EFV-induced mitophagy was also detected by colocalization of mitochondria and autophagosomes and use of an outer mitochondrial membrane tandem fluorescent vector. Pharmacologic inhibition of autophagy with 3-methyladenine increased the cytotoxic effect of EFV, suggesting that autophagy promotes cell survival. EFV also reduces ATP production in primary neurons, induces autophagy, and changes mitochondrial morphology. Overall, EFV is able to acutely induce autophagy and mitochondrial changes in neurons. These changes may be involved in the mechanism leading to central nervous system toxicity observed in clinical EFV use.
Collapse
Affiliation(s)
- Phillip R Purnell
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
159
|
Affiliation(s)
- Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94321, USA.
| |
Collapse
|
160
|
Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease. Proc Natl Acad Sci U S A 2014; 111:E3631-40. [PMID: 25136135 DOI: 10.1073/pnas.1402449111] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Defective mitochondrial distribution in neurons is proposed to cause ATP depletion and calcium-buffering deficiencies that compromise cell function. However, it is unclear whether aberrant mitochondrial motility and distribution alone are sufficient to cause neurological disease. Calcium-binding mitochondrial Rho (Miro) GTPases attach mitochondria to motor proteins for anterograde and retrograde transport in neurons. Using two new KO mouse models, we demonstrate that Miro1 is essential for development of cranial motor nuclei required for respiratory control and maintenance of upper motor neurons required for ambulation. Neuron-specific loss of Miro1 causes depletion of mitochondria from corticospinal tract axons and progressive neurological deficits mirroring human upper motor neuron disease. Although Miro1-deficient neurons exhibit defects in retrograde axonal mitochondrial transport, mitochondrial respiratory function continues. Moreover, Miro1 is not essential for calcium-mediated inhibition of mitochondrial movement or mitochondrial calcium buffering. Our findings indicate that defects in mitochondrial motility and distribution are sufficient to cause neurological disease.
Collapse
|
161
|
Campbell GR, Worrall JT, Mahad DJ. The central role of mitochondria in axonal degeneration in multiple sclerosis. Mult Scler 2014; 20:1806-13. [DOI: 10.1177/1352458514544537] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neurodegeneration in multiple sclerosis (MS) is related to inflammation and demyelination. In acute MS lesions and experimental autoimmune encephalomyelitis focal immune attacks damage axons by injuring axonal mitochondria. In progressive MS, however, axonal damage occurs in chronically demyelinated regions, myelinated regions and also at the active edge of slowly expanding chronic lesions. How axonal energy failure occurs in progressive MS is incompletely understood. Recent studies show that oligodendrocytes supply lactate to myelinated axons as a metabolic substrate for mitochondria to generate ATP, a process which will be altered upon demyelination. In addition, a number of studies have identified mitochondrial abnormalities within neuronal cell bodies in progressive MS, leading to a deficiency of mitochondrial respiratory chain complexes or enzymes. Here, we summarise the mitochondrial abnormalities evident within neurons and discuss how these grey matter mitochondrial abnormalities may increase the vulnerability of axons to degeneration in progressive MS. Although neuronal mitochondrial abnormalities will culminate in axonal degeneration, understanding the different contributions of mitochondria to the degeneration of myelinated and demyelinated axons is an important step towards identifying potential therapeutic targets for progressive MS.
Collapse
Affiliation(s)
| | | | - Don J Mahad
- Centre for Neuroregeneration /Centre for Clinical Brain Sciences, University of Edinburgh, UK
| |
Collapse
|
162
|
Abstract
Selective autophagy is a quality control pathway through which cellular components are sequestered into double-membrane vesicles and delivered to specific intracellular compartments. This process requires autophagy receptors that link cargo to growing autophagosomal membranes. Selective autophagy is also implicated in various membrane trafficking events. Here we discuss the current view on how cargo selection and transport are achieved during selective autophagy, and point out molecular mechanisms that are congruent between autophagy and vesicle trafficking pathways.
Collapse
|
163
|
Charan RA, Johnson BN, Zaganelli S, Nardozzi JD, LaVoie MJ. Inhibition of apoptotic Bax translocation to the mitochondria is a central function of parkin. Cell Death Dis 2014; 5:e1313. [PMID: 24991765 PMCID: PMC4123072 DOI: 10.1038/cddis.2014.278] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/21/2014] [Accepted: 05/21/2014] [Indexed: 11/09/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, affecting 1–3% of the population over 65. Mutations in the ubiquitin E3 ligase parkin are the most common cause of autosomal recessive PD. The parkin protein possesses potent cell-protective properties and has been mechanistically linked to both the regulation of apoptosis and the turnover of damaged mitochondria. Here, we explored these two functions of parkin and the relative scale of these processes in various cell types. While biochemical analyses and subcellular fractionation were sufficient to observe robust parkin-dependent mitophagy in immortalized cells, higher resolution techniques appear to be required for primary culture systems. These approaches, however, did affirm a critical role for parkin in the regulation of apoptosis in primary cultured neurons and all other cells studied. Our prior work demonstrated that parkin-dependent ubiquitination of endogenous Bax inhibits its mitochondrial translocation and can account for the anti-apoptotic effects of parkin. Having found a central role for parkin in the regulation of apoptosis, we further investigated the parkin-Bax interaction. We observed that the BH3 domain of Bax is critical for its recognition by parkin, and identified two lysines that are crucial for parkin-dependent regulation of Bax translocation. Last, a disease-linked mutation in parkin failed to influence Bax translocation to mitochondria after apoptotic stress. Taken together, our data suggest that regulation of apoptosis by the inhibition of Bax translocation is a prevalent physiological function of parkin regardless of the kind of cell stress, preventing overt cell death and supporting cell viability during mitochondrial injury and repair.
Collapse
Affiliation(s)
- R A Charan
- 1] Harvard Medical School, Boston, MA, USA [2] Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - B N Johnson
- 1] Harvard Medical School, Boston, MA, USA [2] Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - S Zaganelli
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - J D Nardozzi
- 1] Harvard Medical School, Boston, MA, USA [2] Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M J LaVoie
- 1] Harvard Medical School, Boston, MA, USA [2] Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
164
|
Morán M, Delmiro A, Blázquez A, Ugalde C, Arenas J, Martín MA. Bulk autophagy, but not mitophagy, is increased in cellular model of mitochondrial disease. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:1059-70. [PMID: 24704045 DOI: 10.1016/j.bbadis.2014.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
Abstract
Oxidative phosphorylation system (OXPHOS) deficiencies are rare diseases but constitute the most frequent inborn errors of metabolism. We analyzed the autophagy route in 11 skin fibroblast cultures derived from patients with well characterized and distinct OXPHOS defects. Mitochondrial membrane potential determination revealed a tendency to decrease in 5 patients' cells but reached statistical significance only in 2 of them. The remaining cells showed either no change or a slight increase in this parameter. Colocalization analysis of mitochondria and autophagosomes failed to show evidence of increased selective elimination of mitochondria but revealed more intense autophagosome staining in patients' fibroblasts compared with controls. Despite the absence of increased mitophagy, Parkin recruitment to mitochondria was detected in both controls' and patients' cells and was slightly higher in cells harboring complex I defects. Western blot analysis of the autophagosome marker LC3B, confirmed significantly higher levels of the protein bound to autophagosomes, LC3B-II, in patients' cells, suggesting an increased bulk autophagy in OXPHOS defective fibroblasts. Inhibition of lysosomal proteases caused significant accumulation of LC3B-II in control cells, whereas in patients' cells this phenomenon was less pronounced. Electron microscopy studies showed higher content of late autophagic vacuoles and lysosomes in OXPHOS defective cells, accompanied by higher levels of the lysosomal marker LAMP-1. Our findings suggest that in OXPHOS deficient fibroblasts autophagic flux could be partially hampered leading to an accumulation of autophagic vacuoles and lysosomes.
Collapse
Affiliation(s)
- María Morán
- Mitochondrial and Neuromuscular Diseases Laboratory, Hospital Universitario 12 de Octubre Research Institute (i+12), Madrid, Spain; Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Spain.
| | - Aitor Delmiro
- Mitochondrial and Neuromuscular Diseases Laboratory, Hospital Universitario 12 de Octubre Research Institute (i+12), Madrid, Spain; Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Spain
| | - Alberto Blázquez
- Mitochondrial and Neuromuscular Diseases Laboratory, Hospital Universitario 12 de Octubre Research Institute (i+12), Madrid, Spain; Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Spain
| | - Cristina Ugalde
- Mitochondrial and Neuromuscular Diseases Laboratory, Hospital Universitario 12 de Octubre Research Institute (i+12), Madrid, Spain; Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Spain
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Diseases Laboratory, Hospital Universitario 12 de Octubre Research Institute (i+12), Madrid, Spain
| | - Miguel A Martín
- Mitochondrial and Neuromuscular Diseases Laboratory, Hospital Universitario 12 de Octubre Research Institute (i+12), Madrid, Spain; Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Spain
| |
Collapse
|
165
|
Damiano M, Gautier CA, Bulteau AL, Ferrando-Miguel R, Gouarne C, Paoli MG, Pruss R, Auchère F, L'Hermitte-Stead C, Bouillaud F, Brice A, Corti O, Lombès A. Tissue- and cell-specific mitochondrial defect in Parkin-deficient mice. PLoS One 2014; 9:e99898. [PMID: 24959870 PMCID: PMC4069072 DOI: 10.1371/journal.pone.0099898] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/20/2014] [Indexed: 11/19/2022] Open
Abstract
Loss of Parkin, encoded by PARK2 gene, is a major cause of autosomal recessive Parkinson's disease. In Drosophila and mammalian cell models Parkin has been shown in to play a role in various processes essential to maintenance of mitochondrial quality, including mitochondrial dynamics, biogenesis and degradation. However, the relevance of altered mitochondrial quality control mechanisms to neuronal survival in vivo is still under debate. We addressed this issue in the brain of PARK2-/- mice using an integrated mitochondrial evaluation, including analysis of respiration by polarography or by fluorescence, respiratory complexes activity by spectrophotometric assays, mitochondrial membrane potential by rhodamine 123 fluorescence, mitochondrial DNA content by real time PCR, and oxidative stress by total glutathione measurement, proteasome activity, SOD2 expression and proteins oxidative damage. Respiration rates were lowered in PARK2-/- brain with high resolution but not standard respirometry. This defect was specific to the striatum, where it was prominent in neurons but less severe in astrocytes. It was present in primary embryonic cells and did not worsen in vivo from 9 to 24 months of age. It was not associated with any respiratory complex defect, including complex I. Mitochondrial inner membrane potential in PARK2-/- mice was similar to that of wild-type mice but showed increased sensitivity to uncoupling with ageing in striatum. The presence of oxidative stress was suggested in the striatum by increased mitochondrial glutathione content and oxidative adducts but normal proteasome activity showed efficient compensation. SOD2 expression was increased only in the striatum of PARK2-/- mice at 24 months of age. Altogether our results show a tissue-specific mitochondrial defect, present early in life of PARK2-/- mice, mildly affecting respiration, without prominent impact on mitochondrial membrane potential, whose underlying mechanisms remain to be elucidated, as complex I defect and prominent oxidative damage were ruled out.
Collapse
Affiliation(s)
- Maria Damiano
- Inserm, U 975, CRICM, Hôpital de la Pitié-Salpêtrière, Paris, France
- UPMC Université Paris 06, UMR_S975, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Clément A. Gautier
- Inserm, U 975, CRICM, Hôpital de la Pitié-Salpêtrière, Paris, France
- UPMC Université Paris 06, UMR_S975, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Anne-Laure Bulteau
- Inserm U 1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris 05, UMR_S1016, Paris, France
| | - Rosa Ferrando-Miguel
- Inserm, U 975, CRICM, Hôpital de la Pitié-Salpêtrière, Paris, France
- UPMC Université Paris 06, UMR_S975, Paris, France
- CNRS, UMR 7225, Paris, France
| | | | | | - Rebecca Pruss
- Trophos, SA Parc Scientifique de Luminy Case, Marseille, France
| | - Françoise Auchère
- Laboratoire Mitochondries, Métaux et Stress Oxydatif, Département de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, Université Paris-Diderot/CNRS, Paris, France
| | - Caroline L'Hermitte-Stead
- Inserm U 1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris 05, UMR_S1016, Paris, France
| | - Frédéric Bouillaud
- Inserm U 1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris 05, UMR_S1016, Paris, France
| | - Alexis Brice
- Inserm, U 975, CRICM, Hôpital de la Pitié-Salpêtrière, Paris, France
- UPMC Université Paris 06, UMR_S975, Paris, France
- CNRS, UMR 7225, Paris, France
- AP-HP, Hôpital de la Salpêtrière, Department of Genetics and Cytogenetics, Paris, France
| | - Olga Corti
- Inserm, U 975, CRICM, Hôpital de la Pitié-Salpêtrière, Paris, France
- UPMC Université Paris 06, UMR_S975, Paris, France
- CNRS, UMR 7225, Paris, France
| | - Anne Lombès
- Inserm U 1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris 05, UMR_S1016, Paris, France
- * E-mail:
| |
Collapse
|
166
|
Zhang Q, Tamura Y, Roy M, Adachi Y, Iijima M, Sesaki H. Biosynthesis and roles of phospholipids in mitochondrial fusion, division and mitophagy. Cell Mol Life Sci 2014; 71:3767-78. [PMID: 24866973 DOI: 10.1007/s00018-014-1648-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/18/2022]
Abstract
Mitochondria move, fuse and divide in cells. The dynamic behavior of mitochondria is central to the control of their structure and function. Three conserved mitochondrial dynamin-related GTPases (i.e., mitofusin, Opa1 and Drp1 in mammals and Fzo1, Mgm1 and Dnm1 in yeast) mediate mitochondrial fusion and division. In addition to dynamins, recent studies demonstrated that phospholipids in mitochondria also play key roles in mitochondrial dynamics by interacting with dynamin GTPases and by directly changing the biophysical properties of the mitochondrial membranes. Changes in phospholipid composition also promote mitophagy, which is a selective mitochondrial degradation process that is mechanistically coupled to mitochondrial division. In this review, we will discuss the biogenesis and function of mitochondrial phospholipids.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
167
|
Calcium signaling in Parkinson's disease. Cell Tissue Res 2014; 357:439-54. [PMID: 24781149 DOI: 10.1007/s00441-014-1866-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/06/2014] [Indexed: 12/16/2022]
Abstract
Calcium (Ca(2+)) is an almost universal second messenger that regulates important activities of all eukaryotic cells. It is of critical importance to neurons, which have developed extensive and intricate pathways to couple the Ca(2+) signal to their biochemical machinery. In particular, Ca(2+) participates in the transmission of the depolarizing signal and contributes to synaptic activity. During aging and in neurodegenerative disease processes, the ability of neurons to maintain an adequate energy level can be compromised, thus impacting on Ca(2+) homeostasis. In Parkinson's disease (PD), many signs of neurodegeneration result from compromised mitochondrial function attributable to specific effects of toxins on the mitochondrial respiratory chain and/or to genetic mutations. Despite these effects being present in almost all cell types, a distinguishing feature of PD is the extreme selectivity of cell loss, which is restricted to the dopaminergic neurons in the ventral portion of the substantia nigra pars compacta. Many hypotheses have been proposed to explain such selectivity, but only recently it has been convincingly shown that the innate autonomous activity of these neurons, which is sustained by their specific Cav1.3 L-type channel pore-forming subunit, is responsible for the generation of basal metabolic stress that, under physiological conditions, is compensated by mitochondrial buffering. However, when mitochondria function becomes even partially compromised (because of aging, exposure to environmental factors or genetic mutations), the metabolic stress overwhelms the protective mechanisms, and the process of neurodegeneration is engaged. The characteristics of Ca(2+) handling in neurons of the substantia nigra pars compacta and the possible involvement of PD-related proteins in the control of Ca(2+) homeostasis will be discussed in this review.
Collapse
|
168
|
Scarffe LA, Stevens DA, Dawson VL, Dawson TM. Parkin and PINK1: much more than mitophagy. Trends Neurosci 2014; 37:315-24. [PMID: 24735649 DOI: 10.1016/j.tins.2014.03.004] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/12/2014] [Accepted: 03/18/2014] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease that causes a debilitating movement disorder. Although most cases of PD appear to be sporadic, rare Mendelian forms have provided tremendous insight into disease pathogenesis. Accumulating evidence suggests that impaired mitochondria underpin PD pathology. In support of this theory, data from multiple PD models have linked Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and parkin, two recessive PD genes, in a common pathway impacting mitochondrial health, prompting a flurry of research to identify their mitochondrial targets. Recent work has focused on the role of PINK1 and parkin in mediating mitochondrial autophagy (mitophagy); however, emerging evidence casts parkin and PINK1 as key players in multiple domains of mitochondrial health and quality control.
Collapse
Affiliation(s)
- Leslie A Scarffe
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA
| | - Daniel A Stevens
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA 70130-2685, USA.
| |
Collapse
|
169
|
Green DR, Levine B. To be or not to be? How selective autophagy and cell death govern cell fate. Cell 2014; 157:65-75. [PMID: 24679527 PMCID: PMC4020175 DOI: 10.1016/j.cell.2014.02.049] [Citation(s) in RCA: 547] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 12/15/2022]
Abstract
The health of metazoan organisms requires an effective response to organellar and cellular damage either by repair of such damage and/or by elimination of the damaged parts of the cells or the damaged cell in its entirety. Here, we consider the progress that has been made in the last few decades in determining the fates of damaged organelles and damaged cells through discrete, but genetically overlapping, pathways involving the selective autophagy and cell death machinery. We further discuss the ways in which the autophagy machinery may impact the clearance and consequences of dying cells for host physiology. Failure in the proper removal of damaged organelles and/or damaged cells by selective autophagy and cell death processes is likely to contribute to developmental abnormalities, cancer, aging, inflammation, and other diseases.
Collapse
Affiliation(s)
- Douglas R Green
- Department of Immunology, St. Jude's Children's Research Hospital, Memphis, TN 38205, USA.
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, Department of Microbiology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
170
|
O'Donnell KC, Lulla A, Stahl MC, Wheat ND, Bronstein JM, Sagasti A. Axon degeneration and PGC-1α-mediated protection in a zebrafish model of α-synuclein toxicity. Dis Model Mech 2014; 7:571-82. [PMID: 24626988 PMCID: PMC4007408 DOI: 10.1242/dmm.013185] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
α-synuclein (aSyn) expression is implicated in neurodegenerative processes, including Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). In animal models of these diseases, axon pathology often precedes cell death, raising the question of whether aSyn has compartment-specific toxic effects that could require early and/or independent therapeutic intervention. The relevance of axonal pathology to degeneration can only be addressed through longitudinal, in vivo monitoring of different neuronal compartments. With current imaging methods, dopaminergic neurons do not readily lend themselves to such a task in any vertebrate system. We therefore expressed human wild-type aSyn in zebrafish peripheral sensory neurons, which project elaborate superficial axons that can be continuously imaged in vivo. Axonal outgrowth was normal in these neurons but, by 2 days post-fertilization (dpf), many aSyn-expressing axons became dystrophic, with focal varicosities or diffuse beading. Approximately 20% of aSyn-expressing cells died by 3 dpf. Time-lapse imaging revealed that focal axonal swelling, but not overt fragmentation, usually preceded cell death. Co-expressing aSyn with a mitochondrial reporter revealed deficits in mitochondrial transport and morphology even when axons appeared overtly normal. The axon-protective protein Wallerian degeneration slow (WldS) delayed axon degeneration but not cell death caused by aSyn. By contrast, the transcriptional coactivator PGC-1α, which has roles in the regulation of mitochondrial biogenesis and reactive-oxygen-species detoxification, abrogated aSyn toxicity in both the axon and the cell body. The rapid onset of axonal pathology in this system, and the relatively moderate degree of cell death, provide a new model for the study of aSyn toxicity and protection. Moreover, the accessibility of peripheral sensory axons will allow effects of aSyn to be studied in different neuronal compartments and might have utility in screening for novel disease-modifying compounds.
Collapse
Affiliation(s)
- Kelley C O'Donnell
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
171
|
Escobar-Henriques M, Langer T. Dynamic survey of mitochondria by ubiquitin. EMBO Rep 2014; 15:231-43. [PMID: 24569520 PMCID: PMC3989689 DOI: 10.1002/embr.201338225] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 12/27/2022] Open
Abstract
Ubiquitin is a post-translational modifier with proteolytic and non-proteolytic roles in many biological processes. At mitochondria, it performs regulatory homeostatic functions and contributes to mitochondrial quality control. Ubiquitin is essential for mitochondrial fusion, regulates mitochondria-ER contacts, and participates in maternal mtDNA inheritance. Under stress, mitochondrial dysfunction induces ubiquitin-dependent responses that involve mitochondrial proteome remodeling and culminate in organelle removal by mitophagy. In addition, many ubiquitin-dependent mechanisms have been shown to regulate innate immune responses and xenophagy. Here, we review the emerging roles of ubiquitin at mitochondria.
Collapse
Affiliation(s)
- Mafalda Escobar-Henriques
- Institute for Genetics, Centre for Molecular Medicine (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of CologneCologne, Germany
| | - Thomas Langer
- Institute for Genetics, Centre for Molecular Medicine (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of CologneCologne, Germany
- Max-Planck-Institute for the Biology of AgingCologne, Germany
| |
Collapse
|
172
|
Ageing and Parkinson's disease: why is advancing age the biggest risk factor? Ageing Res Rev 2014; 14:19-30. [PMID: 24503004 PMCID: PMC3989046 DOI: 10.1016/j.arr.2014.01.004] [Citation(s) in RCA: 594] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/06/2014] [Accepted: 01/24/2014] [Indexed: 12/15/2022]
Abstract
Review of age related processes occurring within substantia nigra neurons. Discussion of why these neurons seem to be susceptible to loss with age. Review of why SN neurons are particularly sensitive to mitochondrial dysfunction. Review of why SN neurons are sensitive to changes in protein degradation pathways. Discussion of relevance to Parkinson's disease pathology.
As the second most common age related neurodegenerative disease after Alzheimer's disease, the health, social and economic impact resulting from Parkinson's disease will continue to increase alongside the longevity of the population. Ageing remains the biggest risk factor for developing idiopathic Parkinson's disease. Although research into the mechanisms leading to cell death in Parkinson's disease has shed light on many aspects of the pathogenesis of this disorder, we still cannot answer the fundamental question, what specific age related factors predispose some individuals to develop this common neurodegenerative disease. In this review we focus specifically on the neuronal population associated with the motor symptoms of Parkinson's disease, the dopaminergic neurons of the substantia nigra, and try to understand how ageing puts these neurons at risk to the extent that a slight change in protein metabolism or mitochondrial function can push the cells over the edge leading to catastrophic cell death and many of the symptoms seen in Parkinson's disease. We review the evidence that ageing is important for the development of Parkinson's disease and how age related decline leads to the loss of neurons within this disease, before describing exactly how advancing age may lead to substantia nigra neuronal loss and Parkinson's disease in some individuals.
Collapse
|
173
|
Amadoro G, Corsetti V, Florenzano F, Atlante A, Bobba A, Nicolin V, Nori SL, Calissano P. Morphological and bioenergetic demands underlying the mitophagy in post-mitotic neurons: the pink-parkin pathway. Front Aging Neurosci 2014; 6:18. [PMID: 24600391 PMCID: PMC3927396 DOI: 10.3389/fnagi.2014.00018] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/27/2014] [Indexed: 01/12/2023] Open
Abstract
Evidence suggests a striking causal relationship between changes in quality control of neuronal mitochondria and numerous devastating human neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Contrary to replicating mammalian cells with a metabolism essentially glycolytic, post-mitotic neurons are distinctive owing to (i) their exclusive energetic dependence from mitochondrial metabolism and (ii) their polarized shape, which entails compartmentalized and distinct energetic needs. Here, we review the recent findings on mitochondrial dynamics and mitophagy in differentiated neurons focusing on how the exceptional characteristics of neuronal populations in their morphology and bioenergetics needs make them quite different to other cells in controlling the intracellular turnover of these organelles.
Collapse
Affiliation(s)
- Giuseppina Amadoro
- Institute of Translational Pharmacology - National Research Council Rome, Italy ; European Brain Research Institute Rome, Italy
| | - Veronica Corsetti
- Institute of Translational Pharmacology - National Research Council Rome, Italy
| | | | - Anna Atlante
- Institute of Biomembrane and Bioenergetics - National Research Council Bari, Italy
| | - Antonella Bobba
- Institute of Biomembrane and Bioenergetics - National Research Council Bari, Italy
| | - Vanessa Nicolin
- Clinical Department of Medical, Surgical and Health Science, University of Trieste Trieste, Italy
| | - Stefania L Nori
- Department of Medicine and Surgery, University of Salerno Baronissi, Italy
| | | |
Collapse
|
174
|
Gaweda-Walerych K, Zekanowski C. The impact of mitochondrial DNA and nuclear genes related to mitochondrial functioning on the risk of Parkinson's disease. Curr Genomics 2014; 14:543-59. [PMID: 24532986 PMCID: PMC3924249 DOI: 10.2174/1389202914666131210211033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/30/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are the major factors implicated in Parkinson’s disease (PD)
pathogenesis. The maintenance of healthy mitochondria is a very complex process coordinated bi-genomically. Here, we
review association studies on mitochondrial haplogroups and subhaplogroups, discussing the underlying molecular
mechanisms. We also focus on variation in the nuclear genes (NDUFV2, PGC-1alpha, HSPA9, LRPPRC, MTIF3,
POLG1, and TFAM encoding NADH dehydrogenase (ubiquinone) flavoprotein 2, peroxisome proliferator-activated receptor
gamma coactivator 1-alpha, mortalin, leucine-rich pentatricopeptide repeat containing protein, translation initiation
factor 3, mitochondrial DNA polymerase gamma, and mitochondrial transcription factor A, respectively) primarily linked
to regulation of mitochondrial functioning that recently have been associated with PD risk. Possible interactions between
mitochondrial and nuclear genetic variants and related proteins are discussed.
Collapse
Affiliation(s)
- Katarzyna Gaweda-Walerych
- Laboratory of Neurogenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 str., 02-106 Warszawa, Poland
| | - Cezary Zekanowski
- Laboratory of Neurogenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 str., 02-106 Warszawa, Poland
| |
Collapse
|
175
|
Chai C, Lim KL. Genetic insights into sporadic Parkinson's disease pathogenesis. Curr Genomics 2014; 14:486-501. [PMID: 24532982 PMCID: PMC3924245 DOI: 10.2174/1389202914666131210195808] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 09/09/2013] [Accepted: 10/22/2013] [Indexed: 12/23/2022] Open
Abstract
Intensive research over the last 15 years has led to the identification of several autosomal recessive and dominant
genes that cause familial Parkinson’s disease (PD). Importantly, the functional characterization of these genes has
shed considerable insights into the molecular mechanisms underlying the etiology and pathogenesis of PD. Collectively;
these studies implicate aberrant protein and mitochondrial homeostasis as key contributors to the development of PD, with
oxidative stress likely acting as an important nexus between the two pathogenic events. Interestingly, recent genome-wide
association studies (GWAS) have revealed variations in at least two of the identified familial PD genes (i.e. α-synuclein
and LRRK2) as significant risk factors for the development of sporadic PD. At the same time, the studies also uncovered
variability in novel alleles that is associated with increased risk for the disease. Additionally, in-silico meta-analyses of
GWAS data have allowed major steps into the investigation of the roles of gene-gene and gene-environment interactions
in sporadic PD. The emergent picture from the progress made thus far is that the etiology of sporadic PD is multi-factorial
and presumably involves a complex interplay between a multitude of gene networks and the environment. Nonetheless,
the biochemical pathways underlying familial and sporadic forms of PD are likely to be shared.
Collapse
Affiliation(s)
- Chou Chai
- Duke-NUS Graduate Medical School, Singapore
| | - Kah-Leong Lim
- Duke-NUS Graduate Medical School, Singapore ; Department of Physiology, National University of Singapore, Singapore ; Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore
| |
Collapse
|
176
|
Friedman JR, Nunnari J. Mitochondrial form and function. Nature 2014; 505:335-43. [PMID: 24429632 DOI: 10.1038/nature12985] [Citation(s) in RCA: 1273] [Impact Index Per Article: 115.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/22/2013] [Indexed: 02/08/2023]
Abstract
Mitochondria are one of the major ancient endomembrane systems in eukaryotic cells. Owing to their ability to produce ATP through respiration, they became a driving force in evolution. As an essential step in the process of eukaryotic evolution, the size of the mitochondrial chromosome was drastically reduced, and the behaviour of mitochondria within eukaryotic cells radically changed. Recent advances have revealed how the organelle's behaviour has evolved to allow the accurate transmission of its genome and to become responsive to the needs of the cell and its own dysfunction.
Collapse
Affiliation(s)
- Jonathan R Friedman
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616, USA
| | - Jodi Nunnari
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616, USA
| |
Collapse
|
177
|
Raimundo N. Mitochondrial pathology: stress signals from the energy factory. Trends Mol Med 2014; 20:282-92. [PMID: 24508276 DOI: 10.1016/j.molmed.2014.01.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/16/2022]
Abstract
Mitochondria are undergoing a renaissance. The cellular power plant is now recognized as a key cellular signaling platform. The signals released by mitochondria are currently an area of intense research. A complex network is emerging involving metabolic intermediates, the roles of the mitochondrial unfolded protein response, and the interaction of mitochondria with other organelles and with the cellular autophagic system. Despite the diversity of the perturbations leading to mitochondrial diseases, some emerging trends are apparent. The long-held notion that mitochondrial diseases result from decreased mitochondrial energy output has been challenged by new data showing that mitochondrial pathological signaling can cause disease irrespective of the energy output. This review proposes a novel integrative view of mitochondrial signaling in physiology and disease.
Collapse
Affiliation(s)
- Nuno Raimundo
- University Medical Center Goettingen, Institute for Cellular Biochemistry, Humboldtallee 23, Room 01.423, 37073 Goettingen, Germany.
| |
Collapse
|
178
|
Winklhofer KF. Parkin and mitochondrial quality control: toward assembling the puzzle. Trends Cell Biol 2014; 24:332-41. [PMID: 24485851 DOI: 10.1016/j.tcb.2014.01.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/02/2014] [Accepted: 01/06/2014] [Indexed: 12/14/2022]
Abstract
Parkin is an E3 ubiquitin ligase associated with autosomal-recessive Parkinsonism. Moreover, parkin inactivation has been found in sporadic Parkinson's disease (PD), suggesting a wider pathogenic impact than initially predicted. Beyond its role in PD, parkin has also been implicated in innate immune responses. Since its discovery, mounting evidence indicates that parkin can mediate degradative as well as nondegradative ubiquitination. Here we review recent insights into the structure of parkin, the mechanism of its E3 ligase activity, and its functional versatility in an attempt to merge controversial aspects into a more comprehensive picture of this multifaceted E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Konstanze F Winklhofer
- Molecular Cell Biology, Institute of Physiological Chemistry, Ruhr University Bochum, Bochum, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
179
|
Abstract
Mitochondria are the power houses of the cell, but unlike the static structures portrayed in textbooks, they are dynamic organelles that move about the cell to deliver energy to locations in need. These organelles fuse with each other then split apart; some appear anchored and others more free to move around, and when damaged they are engulfed by autophagosomes. Together, these processes—mitochondrial trafficking, fusion and fission, and mitophagy—are best described by the term “mitochondrial dynamics”. The molecular machineries behind these events are relatively well known yet the precise dynamics in neurons remains under debate. Neurons pose a peculiar logistical challenge to mitochondria; how do these energy suppliers manage to traffic down long axons to deliver the requisite energy supply to distant parts of the cell? To date, the majority of neuronal mitochondrial dynamics studies have used cultured neurons, Drosophila larvae, zebrafish embryos, with occasional experiments in resting mouse nerves. However, a new study in this issue of PLOS Biology from Marija Sajic and colleagues provides an in vivo look at mitochondrial dynamics along resting and electrically active neurons of live anaesthetized mice.
Collapse
Affiliation(s)
- Dzhamilja Safiulina
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Allen Kaasik
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
180
|
Sesaki H, Adachi Y, Kageyama Y, Itoh K, Iijima M. In vivo functions of Drp1: lessons learned from yeast genetics and mouse knockouts. Biochim Biophys Acta Mol Basis Dis 2013; 1842:1179-85. [PMID: 24326103 DOI: 10.1016/j.bbadis.2013.11.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 01/19/2023]
Abstract
Mitochondria grow, divide, and fuse in cells. Mitochondrial division is critical for the maintenance of the structure and function of mitochondria. Alterations in this process have been linked to many human diseases, including peripheral neuropathies and aging-related neurological disorders. In this review, we discuss recent progress in mitochondrial division by focusing on molecular and in vivo analyses of the evolutionarily conserved, central component of mitochondrial division, dynamin-related protein 1 (Drp1), in the yeast and mouse model organisms.
Collapse
Affiliation(s)
- Hiromi Sesaki
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yoshihiro Adachi
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yusuke Kageyama
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kie Itoh
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miho Iijima
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
181
|
Moisoi N, Fedele V, Edwards J, Martins LM. Loss of PINK1 enhances neurodegeneration in a mouse model of Parkinson's disease triggered by mitochondrial stress. Neuropharmacology 2013; 77:350-7. [PMID: 24161480 PMCID: PMC3878764 DOI: 10.1016/j.neuropharm.2013.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/12/2013] [Accepted: 10/07/2013] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) shows a complex etiology, where both genetic and environmental factors contribute to initiation and advance of pathology. Mitochondrial dysfunction and mutation of genes implicated in mitochondria quality control are recognized contributors to etiopathology and progression of PD. Here we report the development and characterization of a genetic mouse model of PD with a combined etiology comprising: 1) induction of mitochondrial stress achieved through the expression of a mitochondrial matrix protein that accumulates in an unfolded state and 2) deletion of PINK1 gene. Using this model we address the role of PINK1 in mitochondrial quality control and disease progression. To induce mitochondrial stress specifically in catecholaminergic neurons we generated transgenic animals where the conditional expression of mitochondrial unfolded ornithine transcarbamylase (dOTC) is achieved under the tyrosine hydroxylase (Th) promoter. The mice were characterized in terms of survival, growth and motor behaviour. The characterization was followed by analysis of cell death induced in dopaminergic neurons and responsiveness to l-dopa. We demonstrate that accumulation of dOTC in dopaminergic neurons causes neurodegeneration and motor behaviour impairment that illustrates a parkinsonian phenotype. This associates with l-dopa responsiveness validating the model as a model of PD. The combined transgenic model where dOTC is overexpressed in PINK1 KO background presents increased neurodegeneration as compared to dOTC transgenic in wild-type background. Moreover, this combined model does not show responsiveness to l-dopa. Our in vivo data show that loss of PINK1 accelerates neurodegenerative phenotypes induced by mitochondrial stress triggered by the expression of an unfolded protein in this organelle.
Collapse
Affiliation(s)
- Nicoleta Moisoi
- Cell Physiology and Pharmacology Department, University of Leicester, Maurice Shock Building, University Road, Leicester LE1 9HN, UK.
| | - Valentina Fedele
- Cell Death Regulation Laboratory, MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Jennifer Edwards
- Cell Death Regulation Laboratory, MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - L Miguel Martins
- Cell Death Regulation Laboratory, MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK.
| |
Collapse
|
182
|
Cationic antioxidants as a powerful tool against mitochondrial oxidative stress. Biochem Biophys Res Commun 2013; 441:275-9. [PMID: 24161394 DOI: 10.1016/j.bbrc.2013.10.063] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 01/08/2023]
Abstract
This review describes evidence that mitochondrial reactive oxygen species (mROS) are of great importance under many physiological and pathological conditions. The most demonstrative indications favoring this conclusion originate from recent discoveries of the in vivo effects of mitochondria-targeted antioxidants (MitoQ and SkQs). The latter compounds look promising in treating several incurable pathologies as well as aging.
Collapse
|
183
|
Ekholm-Reed S, Goldberg MS, Schlossmacher MG, Reed SI. Parkin-dependent degradation of the F-box protein Fbw7β promotes neuronal survival in response to oxidative stress by stabilizing Mcl-1. Mol Cell Biol 2013; 33:3627-43. [PMID: 23858059 PMCID: PMC3753862 DOI: 10.1128/mcb.00535-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/28/2013] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is characterized by progressive loss of midbrain dopaminergic neurons resulting in motor dysfunction. While most PD is sporadic in nature, a significant subset can be linked to either dominant or recessive germ line mutations. PARK2, encoding the ubiquitin ligase parkin, is the most frequently mutated gene in hereditary Parkinson's disease. Here, we present evidence for a neuronal ubiquitin ligase cascade involving parkin and the multisubunit ubiquitin ligase SCF(Fbw7β). Specifically, parkin targets the SCF substrate adapter Fbw7β for proteasomal degradation. Furthermore, we show that the physiological role of parkin-mediated regulation of Fbw7β levels is the stabilization of the mitochondrial prosurvival factor Mcl-1, an SCF(Fbw7β) target in neurons. We show that neurons depleted of parkin become acutely sensitive to oxidative stress due to an inability to maintain adequate levels of Mcl-1. Therefore, loss of parkin function through biallelic mutation of PARK2 may lead to death of dopaminergic neurons through unregulated SCF(Fbw7β)-mediated ubiquitylation-dependent proteolysis of Mcl-1.
Collapse
Affiliation(s)
- Susanna Ekholm-Reed
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Matthew S. Goldberg
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Michael G. Schlossmacher
- Division of Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Steven I. Reed
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
184
|
Grenier K, McLelland GL, Fon EA. Parkin- and PINK1-Dependent Mitophagy in Neurons: Will the Real Pathway Please Stand Up? Front Neurol 2013; 4:100. [PMID: 23882257 PMCID: PMC3715719 DOI: 10.3389/fneur.2013.00100] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 07/08/2013] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is characterized by massive degeneration of dopaminergic neurons in the substantia nigra. Whereas the majority of PD cases are sporadic, about 5-10% of cases are familial and associated with genetic factors. The loss of parkin or PINK1, two such factors, leads to an early onset form of PD. Importantly, recent studies have shown that parkin functions downstream of PINK1 in a common genetic pathway affecting mitochondrial homeostasis. More precisely, parkin has been shown to mediate the autophagy of damaged mitochondria (mitophagy) in a PINK1-dependent manner. However, much of the work characterizing this pathway has been carried out in immortalized cell lines overexpressing high levels of parkin. In contrast, whether or how endogenous parkin and PINK1 contribute to mitophagy in neurons is much less clear. Here we review recent work addressing the role of parkin/PINK1-dependent mitophagy in neurons. Clearly, it appears that mitophagy pathways differ spatially and kinetically in neurons and immortalized cells, and therefore might diverge in their ultimate outcome and function. While evidence suggests that parkin can translocate to mitochondria in neurons, the function and mechanism of mitophagy downstream of parkin recruitment in neurons remains to be clarified. Moreover, it is noteworthy that most work has focused on the downstream signaling events in parkin/PINK1 mitophagy, whereas the upstream signaling pathways remain comparatively poorly characterized. Identifying the upstream signaling mechanisms that trigger parkin/PINK1 mitophagy will help to explain the nature of the insults affecting mitochondrial function in PD, and a better understanding of these pathways in neurons will be the key in identifying new therapeutic targets in PD.
Collapse
Affiliation(s)
- Karl Grenier
- McGill Parkinson Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University , Montreal, QC , Canada
| | | | | |
Collapse
|
185
|
Feng D, Liu L, Zhu Y, Chen Q. Molecular signaling toward mitophagy and its physiological significance. Exp Cell Res 2013; 319:1697-1705. [DOI: 10.1016/j.yexcr.2013.03.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/23/2013] [Accepted: 03/25/2013] [Indexed: 12/21/2022]
|
186
|
Palin EJH, Paetau A, Suomalainen A. Mesencephalic complex I deficiency does not correlate with parkinsonism in mitochondrial DNA maintenance disorders. ACTA ACUST UNITED AC 2013; 136:2379-92. [PMID: 23811324 DOI: 10.1093/brain/awt160] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genetic evidence from recessively inherited Parkinson's disease has indicated a clear causative role for mitochondrial dysfunction in Parkinson's disease. This role has long been discussed based on findings that toxic inhibition of mitochondrial respiratory complex I caused parkinsonism and that tissues of patients with Parkinson's disease show complex I deficiency. Disorders of mitochondrial DNA maintenance are a common cause of inherited neurodegenerative disorders, and lead to mitochondrial DNA deletions or depletion and respiratory chain defect, including complex I deficiency. However, parkinsonism associates typically with defects of catalytic domain of mitochondrial DNA polymerase gamma. Surprisingly, however, not all mutations affecting DNA polymerase gamma manifest as parkinsonism, but, for example, spacer region mutations lead to spinocerebellar ataxia and/or severe epilepsy. Furthermore, defective Twinkle helicase, a close functional companion of DNA polymerase gamma in mitochondrial DNA replication, results in infantile-onset spinocerebellar ataxia, epilepsy or adult-onset mitochondrial myopathy, but not typically parkinsonism. Here we sought for clues for this specificity in the neurological manifestations of mitochondrial DNA maintenance disorders by studying mesencephalic neuropathology of patients with DNA polymerase gamma or Twinkle defects, with or without parkinsonism. We show here that all patients with mitochondrial DNA maintenance disorders had neuronopathy in substantia nigra, most severe in DNA polymerase gamma-associated parkinsonism. The oculomotor nucleus was also affected, but less severely. In substantia nigra, all patients had a considerable decrease of respiratory chain complex I, but other respiratory chain enzymes were not affected. Complex I deficiency did not correlate with parkinsonism, age, affected gene or inheritance. We conclude that the cell number in substantia nigra correlated well with parkinsonism in DNA polymerase gamma and Twinkle defects. However, complex I defect is a general consequence of mitochondrial DNA maintenance defects, and does not explain manifestation of parkinsonism or degree of mesencephalic cell death in patients with mitochondrial DNA maintenance disorders.
Collapse
Affiliation(s)
- Eino J H Palin
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
187
|
Koyano F, Okatsu K, Ishigaki S, Fujioka Y, Kimura M, Sobue G, Tanaka K, Matsuda N. The principal PINK1 and Parkin cellular events triggered in response to dissipation of mitochondrial membrane potential occur in primary neurons. Genes Cells 2013; 18:672-81. [PMID: 23751051 PMCID: PMC3842116 DOI: 10.1111/gtc.12066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 04/16/2013] [Indexed: 12/17/2022]
Abstract
PINK1 and PARKIN are causal genes for hereditary Parkinsonism. Recent studies have shown that PINK1 and Parkin play a pivotal role in the quality control of mitochondria, and dysfunction of either protein likely results in the accumulation of low-quality mitochondria that triggers early-onset familial Parkinsonism. As neurons are destined to degenerate in PINK1/Parkin-associated Parkinsonism, it is imperative to investigate the function of PINK1 and Parkin in neurons. However, most studies investigating PINK1/Parkin have used non-neuronal cell lines. Here we show that the principal PINK1 and Parkin cellular events that have been documented in non-neuronal lines in response to mitochondrial damage also occur in primary neurons. We found that dissipation of the mitochondrial membrane potential triggers phosphorylation of both PINK1 and Parkin and that, in response, Parkin translocates to depolarized mitochondria. Furthermore, Parkin's E3 activity is re-established concomitant with ubiquitin-ester formation at Cys431 of Parkin. As a result, mitochondrial substrates in neurons become ubiquitylated. These results underscore the relevance of the PINK1/Parkin-mediated mitochondrial quality control pathway in primary neurons and shed further light on the underlying mechanisms of the PINK1 and Parkin pathogenic mutations that predispose Parkinsonism in vivo.
Collapse
Affiliation(s)
- Fumika Koyano
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Abstract
Mitochondrial dysfunction is not only a hallmark of rare inherited mitochondrial disorders but also implicated in age-related diseases, including those that affect the metabolic and nervous system, such as type 2 diabetes and Parkinson's disease. Numerous pathways maintain and/or restore proper mitochondrial function, including mitochondrial biogenesis, mitochondrial dynamics, mitophagy and the mitochondrial unfolded protein response. New and powerful phenotypic assays in cell-based models as well as multicellular organisms have been developed to explore these different aspects of mitochondrial function. Modulating mitochondrial function has therefore emerged as an attractive therapeutic strategy for several diseases, which has spurred active drug discovery efforts in this area.
Collapse
|
189
|
Melser S, Chatelain EH, Lavie J, Mahfouf W, Jose C, Obre E, Goorden S, Priault M, Elgersma Y, Rezvani HR, Rossignol R, Bénard G. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab 2013; 17:719-30. [PMID: 23602449 DOI: 10.1016/j.cmet.2013.03.014] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/09/2013] [Accepted: 03/13/2013] [Indexed: 12/18/2022]
Abstract
Mitophagy has been recently described as a mechanism of elimination of damaged organelles. Although the regulation of the amount of mitochondria is a core issue concerning cellular energy homeostasis, the relationship between mitochondrial degradation and energetic activity has not yet been considered. Here, we report that the stimulation of mitochondrial oxidative phosphorylation enhances mitochondrial renewal by increasing its degradation rate. Upon high oxidative phosphorylation activity, we found that the small GTPase Rheb is recruited to the mitochondrial outer membrane. This mitochondrial localization of Rheb promotes mitophagy through a physical interaction with the mitochondrial autophagic receptor Nix and the autophagosomal protein LC3-II. Thus, Rheb-dependent mitophagy contributes to the maintenance of optimal mitochondrial energy production. Our data suggest that mitochondrial degradation contributes to a bulk renewal of the organelle in order to prevent mitochondrial aging and to maintain the efficiency of oxidative phosphorylation.
Collapse
Affiliation(s)
- Su Melser
- EA4576, Maladies Rares: Génétique et Métabolisme, 33000 Bordeaux Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Lim KL, Zhang CW. Molecular events underlying Parkinson's disease - an interwoven tapestry. Front Neurol 2013; 4:33. [PMID: 23580245 PMCID: PMC3619247 DOI: 10.3389/fneur.2013.00033] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/25/2013] [Indexed: 12/21/2022] Open
Abstract
Although a subject of intense research, the mechanisms underlying dopaminergic neurodegeneration in Parkinson’s disease (PD) remains poorly understood. However, a broad range of studies conducted over the past few decades, including epidemiological, genetic, and post-mortem analysis, as well as in vitro and in vivo modeling, have contributed significantly to our understanding of the pathogenesis of the disease. In particular, the recent identification and functional characterization of several genes, including α-synuclein, parkin, DJ-1, PINK1, and LRRK2, whose mutations are causative of rare familial forms of PD have provided tremendous insights into the molecular pathways underlying dopaminergic neurodegeneration. Collectively, these studies implicate aberrant mitochondrial and protein homeostasis as key contributors to the development of PD, with oxidative stress likely acting as an important nexus between the two pathogenic events. Aberrations in homeostatic processes leading to protein aggregation and mitochondrial dysfunction may arise intrinsically in substantia nigra pars compacta dopaminergic neurons as a result of impairments in the ubiquitin-proteasome system, failure in autophagy-mediated clearance, alterations of mitochondrial dynamics, redox imbalance, iron mishandling, dopamine dysregulation, or simply from the chronic pace-making activity of nigra-localized L-type calcium channels, or extrinsically from non-autonomous sources of stress. Given the myriad of culprits implicated, the pathogenesis of PD necessarily involves an intricate network of interwoven pathways rather than a linear sequence of events. Obviously, understanding how the various disease-associated pathways interact with and influence each other is of mechanistic and therapeutic importance. Here, we shall discuss some key PD-related pathways and how they are interwoven together into a tapestry of events.
Collapse
Affiliation(s)
- Kah-Leong Lim
- National Neuroscience Institute Singapore, Singapore ; Duke-National University of Singapore Graduate Medical School Singapore, Singapore ; Department of Physiology, National University of Singapore Singapore, Singapore
| | | |
Collapse
|
191
|
The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc Natl Acad Sci U S A 2013; 110:6400-5. [PMID: 23509287 DOI: 10.1073/pnas.1221132110] [Citation(s) in RCA: 361] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The accumulation of damaged mitochondria has been proposed as a key factor in aging and the pathogenesis of many common age-related diseases, including Parkinson disease (PD). Recently, in vitro studies of the PD-related proteins Parkin and PINK1 have found that these factors act in a common pathway to promote the selective autophagic degradation of damaged mitochondria (mitophagy). However, whether Parkin and PINK1 promote mitophagy under normal physiological conditions in vivo is unknown. To address this question, we used a proteomic approach in Drosophila to compare the rates of mitochondrial protein turnover in parkin mutants, PINK1 mutants, and control flies. We found that parkin null mutants showed a significant overall slowing of mitochondrial protein turnover, similar to but less severe than the slowing seen in autophagy-deficient Atg7 mutants, consistent with the model that Parkin acts upstream of Atg7 to promote mitophagy. By contrast, the turnover of many mitochondrial respiratory chain (RC) subunits showed greater impairment in parkin than Atg7 mutants, and RC turnover was also selectively impaired in PINK1 mutants. Our findings show that the PINK1-Parkin pathway promotes mitophagy in vivo and, unexpectedly, also promotes selective turnover of mitochondrial RC subunits. Failure to degrade damaged RC proteins could account for the RC deficits seen in many PD patients and may play an important role in PD pathogenesis.
Collapse
|
192
|
Haynes CM, Fiorese CJ, Lin YF. Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. Trends Cell Biol 2013; 23:311-8. [PMID: 23489877 DOI: 10.1016/j.tcb.2013.02.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/27/2013] [Accepted: 02/11/2013] [Indexed: 12/21/2022]
Abstract
During development and cellular differentiation, tissue- and cell-specific programs mediate mitochondrial biogenesis to meet physiological needs. However, environmental and disease-associated factors can perturb mitochondrial activities, requiring cells to adapt to protect mitochondria and maintain cellular homeostasis. Several mitochondrion-to-nucleus signaling pathways, or retrograde responses, have been described, but the mechanisms by which mitochondrial stress or dysfunction is sensed to coordinate precisely the appropriate response has only recently begun to be understood. Recent studies of the mitochondrial unfolded-protein response (UPRmt) indicate that the cell monitors mitochondrial protein import efficiency as an indicator of mitochondrial function. Here, we review how the cell evaluates mitochondrial function and regulates transcriptional induction of the UPRmt, adapts protein-synthesis rates and activates mitochondrial autophagy to promote mitochondrial function and cell survival during stress.
Collapse
Affiliation(s)
- Cole M Haynes
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | |
Collapse
|
193
|
Lee KY, Russell SJ, Ussar S, Boucher J, Vernochet C, Mori MA, Smyth G, Rourk M, Cederquist C, Rosen ED, Kahn BB, Kahn CR. Lessons on conditional gene targeting in mouse adipose tissue. Diabetes 2013; 62:864-74. [PMID: 23321074 PMCID: PMC3581196 DOI: 10.2337/db12-1089] [Citation(s) in RCA: 286] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Conditional gene targeting has been extensively used for in vivo analysis of gene function in adipocyte cell biology but often with debate over the tissue specificity and the efficacy of inactivation. To directly compare the specificity and efficacy of different Cre lines in mediating adipocyte specific recombination, transgenic Cre lines driven by the adipocyte protein 2 (aP2) and adiponectin (Adipoq) gene promoters, as well as a tamoxifen-inducible Cre driven by the aP2 gene promoter (iaP2), were bred to the Rosa26R (R26R) reporter. All three Cre lines demonstrated recombination in the brown and white fat pads. Using different floxed loci, the individual Cre lines displayed a range of efficacy to Cre-mediated recombination that ranged from no observable recombination to complete recombination within the fat. The Adipoq-Cre exhibited no observable recombination in any other tissues examined, whereas both aP2-Cre lines resulted in recombination in endothelial cells of the heart and nonendothelial, nonmyocyte cells in the skeletal muscle. In addition, the aP2-Cre line can lead to germline recombination of floxed alleles in ~2% of spermatozoa. Thus, different "adipocyte-specific" Cre lines display different degrees of efficiency and specificity, illustrating important differences that must be taken into account in their use for studying adipose biology.
Collapse
Affiliation(s)
- Kevin Y. Lee
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Steven J. Russell
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Siegfried Ussar
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Jeremie Boucher
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Cecile Vernochet
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Marcelo A. Mori
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Graham Smyth
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Michael Rourk
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Carly Cederquist
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Evan D. Rosen
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Barbara B. Kahn
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - C. Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
- Corresponding author: C. Ronald Kahn,
| |
Collapse
|
194
|
Jose C, Melser S, Benard G, Rossignol R. Mitoplasticity: adaptation biology of the mitochondrion to the cellular redox state in physiology and carcinogenesis. Antioxid Redox Signal 2013; 18:808-49. [PMID: 22989324 DOI: 10.1089/ars.2011.4357] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adaptation and transformation biology of the mitochondrion to redox status is an emerging domain of physiology and pathophysiology. Mitochondrial adaptations occur in response to accidental changes in cellular energy demand or supply while mitochondrial transformations are a part of greater program of cell metamorphosis. The possible role of mitochondrial adaptations and transformations in pathogenesis remains unexplored, and it has become critical to decipher the stimuli and the underlying molecular pathways. Immediate activation of mitochondrial function was described during acute exercise, respiratory chain injury, Endoplasmic Reticulum stress, genotoxic stress, or environmental toxic insults. Delayed adaptations of mitochondrial form, composition, and functions were evidenced for persistent changes in redox status as observed in endurance training, in fibroblasts grown in presence of respiratory chain inhibitors or in absence of glucose, in the smooth muscle of patients with severe asthma, or in the skeletal muscle of patients with a mitochondrial disease. Besides, mitochondrial transformations were observed in the course of human cell differentiation, during immune response activation, or in cells undergoing carcinogenesis. Little is known on the signals and downstream pathways that govern mitochondrial adaptations and transformations. Few adaptative loops, including redox sensors, kinases, and transcription factors were deciphered, but their implication in physiology and pathology remains elusive. Mitoplasticity could play a protective role against aging, diabetes, cancer, or neurodegenerative diseases. Research on adaptation and transformation could allow the design of innovative therapies, notably in cancer.
Collapse
Affiliation(s)
- Caroline Jose
- University Bordeaux, Maladies Rares: Génétique et Métabolisme, France
| | | | | | | |
Collapse
|
195
|
Affiliation(s)
- Augustine M K Choi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
196
|
Soubannier V, Rippstein P, Kaufman BA, Shoubridge EA, McBride HM. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLoS One 2012; 7:e52830. [PMID: 23300790 PMCID: PMC3530470 DOI: 10.1371/journal.pone.0052830] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/22/2012] [Indexed: 11/18/2022] Open
Abstract
The mechanisms that ensure the removal of damaged mitochondrial proteins and lipids are critical for the health of the cell, and errors in these pathways are implicated in numerous degenerative diseases. We recently uncovered a new pathway for the selective removal of proteins mediated by mitochondrial derived vesicular carriers (MDVs) that transit to the lysosome. However, it was not determined whether these vesicles were selectively enriched for oxidized, or damaged proteins, and the extent to which the complexes of the electron transport chain and the mtDNA-containing nucloids may have been incorporated. In this study, we have developed a cell-free mitochondrial budding reaction in vitro in order to better dissect the pathway. Our data confirm that MDVs are stimulated upon various forms of mitochondrial stress, and the vesicles incorporated quantitative amounts of cargo, whose identity depended upon the nature of the stress. Under the conditions examined, MDVs did not incorporate complexes I and V, nor were any nucleoids present, demonstrating the specificity of cargo incorporation. Stress-induced MDVs are selectively enriched for oxidized proteins, suggesting that conformational changes induced by oxidation may initiate their incorporation into the vesicles. Ultrastructural analyses of MDVs isolated on sucrose flotation gradients revealed the formation of both single and double membranes vesicles of unique densities and uniform diameter. This work provides a framework for a reductionist approach towards a detailed examination of the mechanisms of MDV formation and cargo incorporation, and supports the emerging concept that MDVs are critical contributors to mitochondrial quality control.
Collapse
Affiliation(s)
- Vincent Soubannier
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Peter Rippstein
- Lipoproteins and Atherosclerosis Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Brett A. Kaufman
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eric A. Shoubridge
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Heidi M. McBride
- Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
197
|
Palikaras K, Tavernarakis N. Mitophagy in neurodegeneration and aging. Front Genet 2012; 3:297. [PMID: 23267366 PMCID: PMC3525948 DOI: 10.3389/fgene.2012.00297] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/30/2012] [Indexed: 12/02/2022] Open
Abstract
Macroautophagy is a cellular catabolic process that involves the sequestration of cytoplasmic constituents into double-membrane vesicles known as autophagosomes, which subsequently fuse with lysosomes, where they deliver their cargo for degradation. The main physiological role of autophagy is to recycle intracellular components, under conditions of nutrient deprivation, so as to supply cells with vital materials and energy. Selective autophagy also takes place in nutrient-rich conditions to rid the cell of damaged organelles or protein aggregates that would otherwise compromise cell viability. Mitophagy is a selective type of autophagy, whereby damaged or superfluous mitochondria are eliminated to maintain proper mitochondrial numbers and quality control. While mitophagy shares key regulatory factors with the general macroautophagy pathway, it also involves distinct steps, specific for mitochondrial elimination. Recent findings indicate that parkin and the phosphatase and tensin homolog-induced putative kinase protein 1 (PINK1), which have been implicated in the pathogenesis of neurodegenerative diseases such as Parkinson’s disease, also regulate mitophagy and function to maintain mitochondrial homeostasis. Here, we survey the molecular mechanisms that govern the process of mitophagy and discuss its involvement in the onset and progression of neurodegenerative diseases during aging.
Collapse
Affiliation(s)
- Konstantinos Palikaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion Crete, Greece
| | | |
Collapse
|
198
|
Vernochet C, Mourier A, Bezy O, Macotela Y, Boucher J, Rardin MJ, An D, Lee KY, Ilkayeva OR, Zingaretti CM, Emanuelli B, Smyth G, Cinti S, Newgard CB, Gibson BW, Larsson NG, Kahn CR. Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance. Cell Metab 2012; 16:765-76. [PMID: 23168219 PMCID: PMC3529641 DOI: 10.1016/j.cmet.2012.10.016] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/08/2012] [Accepted: 10/25/2012] [Indexed: 01/01/2023]
Abstract
Obesity and type 2 diabetes are associated with mitochondrial dysfunction in adipose tissue, but the role for adipose tissue mitochondria in the development of these disorders is currently unknown. To understand the impact of adipose tissue mitochondria on whole-body metabolism, we have generated a mouse model with disruption of the mitochondrial transcription factor A (TFAM) specifically in fat. F-TFKO adipose tissue exhibit decreased mtDNA copy number, altered levels of proteins of the electron transport chain, and perturbed mitochondrial function with decreased complex I activity and greater oxygen consumption and uncoupling. As a result, F-TFKO mice exhibit higher energy expenditure and are protected from age- and diet-induced obesity, insulin resistance, and hepatosteatosis, despite a greater food intake. Thus, TFAM deletion in the adipose tissue increases mitochondrial oxidation that has positive metabolic effects, suggesting that regulation of adipose tissue mitochondria may be a potential therapeutic target for the treatment of obesity.
Collapse
Affiliation(s)
- Cecile Vernochet
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Arnaud Mourier
- Max Planck Institute for Biology of Ageing, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Olivier Bezy
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
- Pfizer, Inc, Cardiovascular Metabolic and Endocrine Diseases (CVMED), 620 Memorial Drive, Cambridge, MA 02139
| | - Yazmin Macotela
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Jeremie Boucher
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Matthew J. Rardin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Ding An
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Kevin Y. Lee
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Olga R. Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704, USA
| | - Cristina M. Zingaretti
- Department Experimental and Clinical Medicine-Diagnostic Electron Microscopy Unit University-United Hospitals of Ancona, Ancona 60020 & Adipose Organ Lab IRCCS San Raffaele Pisana, Rome 00163, Italy
| | - Brice Emanuelli
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Graham Smyth
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Saverio Cinti
- Department Experimental and Clinical Medicine-Diagnostic Electron Microscopy Unit University-United Hospitals of Ancona, Ancona 60020 & Adipose Organ Lab IRCCS San Raffaele Pisana, Rome 00163, Italy
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704, USA
| | - Bradford W. Gibson
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Nils-Göran Larsson
- Max Planck Institute for Biology of Ageing, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - C. Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
199
|
Rakovic A, Shurkewitsch K, Seibler P, Grünewald A, Zanon A, Hagenah J, Krainc D, Klein C. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. J Biol Chem 2012; 288:2223-37. [PMID: 23212910 DOI: 10.1074/jbc.m112.391680] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mutations in the E3 ubiquitin ligase Parkin and the mitochondrial PTEN-induced putative kinase 1 (PINK1) have been identified to cause autosomal recessive forms of familial Parkinson disease, with PINK1 functioning upstream of Parkin in a pathway important for the maintenance of mitochondrial function and morphology. Upon the loss of the mitochondrial membrane potential, Parkin translocates to mitochondria in a PINK1-dependent manner to ubiquitinate mitochondrial proteins. Parkin-mediated polyubiquitination of outer mitochondrial membrane (OMM) proteins recruits the ubiquitin- and LC3-binding adaptor protein p62 to mitochondria and induces mitophagy. Although previous studies examined mitophagy in established cell lines through overexpression approaches, there is an imperative to study the role of endogenous Parkin and PINK1 in human-derived and biologically relevant cell models. Here, we demonstrate in human primary fibroblasts and induced pluripotent stem-derived neurons from controls and PINK1 mutation carriers that endogenous levels of Parkin are not sufficient to initiate mitophagy upon loss of the mitochondrial membrane potential, caused by its (self-)ubiquitination, followed by degradation via the ubiquitin proteasome system. Next, we showed differential PINK1-dependent, Parkin-mediated ubiquitination of OMM proteins, which is Parkin dose-dependent and affects primarily OMM proteins of higher molecular mass. In contrast to the situation fibroblasts, we did not detect mitophagy in induced pluripotent stem-derived neurons even upon overexpression of Parkin. Taken together, our data demonstrate that mitophagy differs between human non-neuronal and neuronal cells and between "endogenous" and "Parkin-overexpressing" cellular models.
Collapse
Affiliation(s)
- Aleksandar Rakovic
- Section of Clinical and Molecular Neurogenetics at the Department of Neurology, University of Lübeck, 23562 Lübeck, Germany
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Mitochondrial quality control turns out to be the principal suspect in parkin and PINK1-related autosomal recessive Parkinson's disease. Curr Opin Neurobiol 2012. [PMID: 23206589 DOI: 10.1016/j.conb.2012.11.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitochondrial dysfunction has long been suspected to play a key role in neurodegeneration in Parkinson's disease. PINK1 and Parkin, the products of two genes responsible for autosomal recessive Parkinsonian syndromes with early onset, act as a quality control system on the outer mitochondrial membrane to preserve mitochondrial integrity. While doing so, they interact with multiple molecular actors in processes regulating mitochondrial biology and cell survival. The physiological conditions that mobilize these processes in neurons, and the mechanisms underlying their integration and spatiotemporal coordination, remain to be elucidated. Understanding how dysfunction of these house-keeping pathways leads to the preferential degeneration of a specific neuronal population in Parkinson's disease is a major challenge for future research.
Collapse
|