151
|
Mantelin S, Peng HC, Li B, Atamian HS, Takken FLW, Kaloshian I. The receptor-like kinase SlSERK1 is required for Mi-1-mediated resistance to potato aphids in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:459-71. [PMID: 21481032 DOI: 10.1111/j.1365-313x.2011.04609.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The plant receptor-like kinase somatic embryogenesis receptor kinase 3 (SERK3)/brassinosteroid insensitive 1-associated kinase 1 (BAK1) is required for pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). Here we show that a distinct member of the SERK family, SERK1, is required for the full functioning of Mi-1, a nucleotide binding leucine-rich repeat (NB-LRR) resistance protein. Mi-1 confers resistance to Meloidogyne spp. (root-knot nematodes, RKNs) and three phloem-feeding insects, including Macrosiphum euphorbiae (potato aphid). SERK1 was identified in a tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) screen in Nicotiana benthamiana. The screen was based on the suppression of a pest-independent hypersensitive response triggered by a constitutively active form of Mi-1, Mi-DS4. To assess the role of SERK1 in Mi-1-mediated resistance, Solanum lycopersicum (tomato) SlSERK genes were cloned. Three SlSERK members were identified with homologies to Arabidopsis AtSERK1 or AtSERK3/BAK1, and were named SlSERK1, SlSERK3A and SlSERK3B. SlSERK1 is ubiquitously expressed in tomato. Reducing SlSERK1 transcript levels in resistant plants, using gene-specific TRV-SERK1 VIGS, revealed a role for SlSERK1 in Mi-1-mediated resistance to potato aphids, but not to RKNs. In addition, Mi-1-dependent SlWRKY72 gene regulation was compromised in SlSERK1-silenced plants, placing SlSERK1 in the Mi-1 signaling pathway. Silencing SlSERK1 in a susceptible tomato background did not reduce the susceptibility to aphids, indicating that SlSERK1 is unlikely to be an essential virulence target. SlSERK1 is an active kinase, mainly localized at the plasma membrane. This work identifies a critical early component of Mi-1 signaling, and demonstrates a role for SlSERK1 in NB-LRR-mediated immunity.
Collapse
Affiliation(s)
- Sophie Mantelin
- Department of Nematology, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | |
Collapse
|
152
|
Wulff BBH, Horvath DM, Ward ER. Improving immunity in crops: new tactics in an old game. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:468-76. [PMID: 21531167 DOI: 10.1016/j.pbi.2011.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/18/2011] [Accepted: 04/05/2011] [Indexed: 05/20/2023]
Abstract
Crop disease remains a major cause of yield loss and emerging diseases pose new threats to global food security. Despite the dearth of commercial development to date, progress in using our rapidly expanding knowledge of plant-pathogen interactions to invent new ways of controlling diseases in crops has been good. Many major resistance genes have now been shown to retain function when transferred between species, and evidence indicates that resistance genes are more effective when deployed in a background containing quantitative resistance traits. The EFR pattern-recognition receptor, present in only the Brassicaceae, functions to provide bacterial disease control in the Solanaceae. Knowledge of how transcription activator-like effectors bind DNA is leading to new methods for triggering disease resistance and broader applications in genome engineering.
Collapse
MESH Headings
- Cloning, Molecular
- Crops, Agricultural/genetics
- Crops, Agricultural/immunology
- Crops, Agricultural/microbiology
- Crops, Agricultural/virology
- Disease Resistance
- Gene Expression Regulation, Plant
- Genes, Plant
- Host-Pathogen Interactions
- Plant Diseases/immunology
- Plant Diseases/microbiology
- Plant Diseases/prevention & control
- Plant Diseases/virology
- Plant Immunity
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/microbiology
- Plants, Genetically Modified/virology
- Receptors, Pattern Recognition/immunology
- Receptors, Pattern Recognition/metabolism
- Transcriptional Activation
- Transgenes
Collapse
Affiliation(s)
- Brande B H Wulff
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.
| | | | | |
Collapse
|
153
|
Bakker E, Borm T, Prins P, van der Vossen E, Uenk G, Arens M, de Boer J, van Eck H, Muskens M, Vossen J, van der Linden G, van Ham R, Klein-Lankhorst R, Visser R, Smant G, Bakker J, Goverse A. A genome-wide genetic map of NB-LRR disease resistance loci in potato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:493-508. [PMID: 21590328 PMCID: PMC3135832 DOI: 10.1007/s00122-011-1602-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 04/26/2011] [Indexed: 05/14/2023]
Abstract
Like all plants, potato has evolved a surveillance system consisting of a large array of genes encoding for immune receptors that confer resistance to pathogens and pests. The majority of these so-called resistance or R proteins belong to the super-family that harbour a nucleotide binding and a leucine-rich-repeat domain (NB-LRR). Here, sequence information of the conserved NB domain was used to investigate the genome-wide genetic distribution of the NB-LRR resistance gene loci in potato. We analysed the sequences of 288 unique BAC clones selected using filter hybridisation screening of a BAC library of the diploid potato clone RH89-039-16 (S. tuberosum ssp. tuberosum) and a physical map of this BAC library. This resulted in the identification of 738 partial and full-length NB-LRR sequences. Based on homology of these sequences with known resistance genes, 280 and 448 sequences were classified as TIR-NB-LRR (TNL) and CC-NB-LRR (CNL) sequences, respectively. Genetic mapping revealed the presence of 15 TNL and 32 CNL loci. Thirty-six are novel, while three TNL loci and eight CNL loci are syntenic with previously identified functional resistance genes. The genetic map was complemented with 68 universal CAPS markers and 82 disease resistance trait loci described in literature, providing an excellent template for genetic studies and applied research in potato.
Collapse
Affiliation(s)
- Erin Bakker
- Laboratory of Nematology, Wageningen University and Research Centre, Droevendaalsesteeg 1, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor. Cell Host Microbe 2011; 9:137-46. [PMID: 21320696 DOI: 10.1016/j.chom.2011.01.010] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/29/2010] [Accepted: 01/21/2011] [Indexed: 11/22/2022]
Abstract
Plants have evolved sophisticated surveillance systems to recognize pathogen effectors delivered into host cells. RPM1 is an NB-LRR immune receptor that recognizes the Pseudomonas syringae effectors AvrB and AvrRpm1. Both effectors associate with and affect the phosphorylation of RIN4, an immune regulator. Although the kinase and the specific mechanisms involved are unclear, it has been hypothesized that RPM1 recognizes phosphorylated RIN4. Here, we identify RIPK as a RIN4-interacting receptor-like protein kinase that phosphorylates RIN4. In response to bacterial effectors, RIPK phosphorylates RIN4 at amino acid residues T21, S160, and T166. RIN4 phosphomimetic mutants display constitutive activation of RPM1-mediated defense responses and RIN4 phosphorylation is induced by AvrB and AvrRpm1 during P. syringae infection. RIPK knockout lines exhibit reduced RIN4 phosphorylation and blunted RPM1-mediated defense responses. Taken together, our results demonstrate that the RIPK kinase associates with and modifies an effector-targeted protein complex to initiate host immunity.
Collapse
|
155
|
Jones JDG. Why genetically modified crops? PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:1807-1816. [PMID: 21464072 DOI: 10.1098/rsta.2010.0345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This paper is intended to convey the message of the talk I gave at the Theo Murphy meeting at the Kavli Centre in July 2010. It, like the talk, is polemical, and conveys the exasperation felt by a practitioner of genetically modified (GM) plant science at its widespread misrepresentation. I argue that sustainable intensification of agriculture, using GM as well as other technologies, reduces its environmental impact by reducing pesticide applications and conserving soil carbon by enabling low till methods. Current technologies (primarily insect resistance and herbicide tolerance) have been beneficial. Moreover, the near-term pipeline of new GM methods and traits to enhance our diet, increase crop yields and reduce losses to disease is substantial. It would be perverse to spurn this approach at a time when we need every tool in the toolbox to ensure adequate food production in the short, medium and long term.
Collapse
|
156
|
Knepper C, Savory EA, Day B. Arabidopsis NDR1 is an integrin-like protein with a role in fluid loss and plasma membrane-cell wall adhesion. PLANT PHYSIOLOGY 2011; 156:286-300. [PMID: 21398259 PMCID: PMC3091050 DOI: 10.1104/pp.110.169656] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/10/2011] [Indexed: 05/18/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1), a plasma membrane-localized protein, plays an essential role in resistance mediated by the coiled-coil-nucleotide-binding site-leucine-rich repeat class of resistance (R) proteins, which includes RESISTANCE TO PSEUDOMONAS SYRINGAE2 (RPS2), RESISTANCE TO PSEUDOMONAS SYRINGAE PV MACULICOLA1, and RPS5. Infection with Pseudomonas syringae pv tomato DC3000 expressing the bacterial effector proteins AvrRpt2, AvrB, and AvrPphB activates resistance by the aforementioned R proteins. Whereas the genetic requirement for NDR1 in plant disease resistance signaling has been detailed, our study focuses on determining a global, physiological role for NDR1. Through the use of homology modeling and structure threading, NDR1 was predicted to have a high degree of structural similarity to Arabidopsis LATE EMBRYOGENESIS ABUNDANT14, a protein implicated in abiotic stress responses. Specific protein motifs also point to a degree of homology with mammalian integrins, well-characterized proteins involved in adhesion and signaling. This structural homology led us to examine a physiological role for NDR1 in preventing fluid loss and maintaining cell integrity through plasma membrane-cell wall adhesions. Our results show a substantial alteration in induced (i.e. pathogen-inoculated) electrolyte leakage and a compromised pathogen-associated molecular pattern-triggered immune response in ndr1-1 mutant plants. As an extension of these analyses, using a combination of genetic and cell biology-based approaches, we have identified a role for NDR1 in mediating plasma membrane-cell wall adhesions. Taken together, our data point to a broad role for NDR1 both in mediating primary cellular functions in Arabidopsis through maintaining the integrity of the cell wall-plasma membrane connection and as a key signaling component of these responses during pathogen infection.
Collapse
|
157
|
Varaud E, Brioudes F, Szécsi J, Leroux J, Brown S, Perrot-Rechenmann C, Bendahmane M. AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp. THE PLANT CELL 2011; 23:973-83. [PMID: 21421811 PMCID: PMC3082276 DOI: 10.1105/tpc.110.081653] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/13/2011] [Accepted: 02/10/2011] [Indexed: 05/18/2023]
Abstract
Plant organ growth and final size are determined by coordinated cell proliferation and expansion. The BIGPETALp (BPEp) basic helix-loop-helix (bHLH) transcription factor was shown to limit Arabidopsis thaliana petal growth by influencing cell expansion. We demonstrate here that BPEp interacts with AUXIN RESPONSE FACTOR8 (ARF8) to affect petal growth. This interaction is mediated through the BPEp C-terminal domain (SD(BPEp)) and the C-terminal domain of ARF8. Site-directed mutagenesis identified an amino acid consensus motif in SD(BPEp) that is critical for mediating BPEp-ARF8 interaction. This motif shares sequence similarity with motif III of ARF and AUXIN/INDOLE-3-ACETIC ACID proteins. Petals of arf8 mutants are significantly larger than those of the wild type due to increased cell number and increased cell expansion. bpe arf8 double mutant analyses show that during early petal development stages, ARF8 and BPEp work synergistically to limit mitotic growth. During late stages, ARF8 and BPEp interact to limit cell expansion. The alterations in cell division and cell expansion observed in arf8 and/or bpe mutants are associated with a change in expression of early auxin-responsive genes. The data provide evidence of an interaction between an ARF and a bHLH transcription factor and of its biological significance in regulating petal growth, with local auxin levels likely influencing such a biological function.
Collapse
Affiliation(s)
- Emilie Varaud
- Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Lyon 1, Ecole Normale Supérieure, 69364 Lyon Cedex, France
| | - Florian Brioudes
- Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Lyon 1, Ecole Normale Supérieure, 69364 Lyon Cedex, France
| | - Judit Szécsi
- Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Lyon 1, Ecole Normale Supérieure, 69364 Lyon Cedex, France
| | - Julie Leroux
- Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Lyon 1, Ecole Normale Supérieure, 69364 Lyon Cedex, France
| | - Spencer Brown
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France
| | - Catherine Perrot-Rechenmann
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France
| | - Mohammed Bendahmane
- Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Lyon 1, Ecole Normale Supérieure, 69364 Lyon Cedex, France
- Address correspondence to
| |
Collapse
|
158
|
Jordan T, Seeholzer S, Schwizer S, Töller A, Somssich IE, Keller B. The wheat Mla homologue TmMla1 exhibits an evolutionarily conserved function against powdery mildew in both wheat and barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:610-21. [PMID: 21208308 DOI: 10.1111/j.1365-313x.2010.04445.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The race-specific barley powdery mildew (Blumeria graminis f. sp. hordei) resistance gene Mla occurs as an allelic series and encodes CC-NB-LRR type resistance proteins. Inter-generic allele mining resulted in the isolation and characterisation of an Mla homologue from diploid wheat, designated TmMla1, which shares 78% identity with barley HvMLA1 at the protein level. TmMla1 was found to be a functional resistance gene against Blumeria graminis f. sp. tritici in wheat, hereby providing an example of R gene orthologs controlling the same disease in two different species. TmMLA1 exhibits race-specific resistance activity and its N-terminal coiled-coil domain interacts with the barley transcription factor HvWRKY1. Interestingly, TmMLA1 was not functional in barley transient assays. Replacement of the TmMLA1 LRR domain with that of HvMLA1 revealed that this fusion protein conferred resistance against B. graminis f. sp. hordei isolate K1 in barley. Thus, TmMLA1 not only confers resistance in wheat but possibly also in barley against an as yet unknown barley powdery mildew race. The conservation of functional R gene orthologs over at least 12 million years is surprising given the observed rapid breakdown of Mla-based resistance against barley mildew in agricultural ecosystems. This suggests a high stability of Mla resistance in the natural environment before domestication.
Collapse
Affiliation(s)
- Tina Jordan
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
159
|
Wang J, Replogle A, Hussey R, Baum T, Wang X, Davis EL, Mitchum MG. Identification of potential host plant mimics of CLAVATA3/ESR (CLE)-like peptides from the plant-parasitic nematode Heterodera schachtii. MOLECULAR PLANT PATHOLOGY 2011; 12:177-86. [PMID: 21199567 PMCID: PMC6640238 DOI: 10.1111/j.1364-3703.2010.00660.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this article, we present the cloning of two CLAVATA3/ESR (CLE)-like genes, HsCLE1 and HsCLE2, from the beet cyst nematode Heterodera schachtii, a plant-parasitic cyst nematode with a relatively broad host range that includes the model plant Arabidopsis. CLEs are small secreted peptide ligands that play important roles in plant growth and development. By secreting peptide mimics of plant CLEs, the nematode can developmentally reprogramme root cells for the formation of unique feeding sites within host roots for its own benefit. Both HsCLE1 and HsCLE2 encode small secreted polypeptides with a conserved C-terminal CLE domain sharing highest similarity to Arabidopsis CLEs 1-7. Moreover, HsCLE2 contains a 12-amino-acid CLE motif that is identical to AtCLE5 and AtCLE6. Like all other plant and nematode CLEs identified to date, HsCLEs caused wuschel-like phenotypes when overexpressed in Arabidopsis, and this activity was abolished when the proteins were expressed without the CLE motif. HsCLEs could also function in planta without a signal peptide, highlighting the unique, yet conserved function of nematode CLE variable domains in trafficking CLE peptides for secretion. In a direct comparison of HsCLE2 overexpression phenotypes with those of AtCLE5 and AtCLE6, similar shoot and root phenotypes were observed. Exogenous application of 12-amino-acid synthetic peptides corresponding to the CLE motifs of HsCLEs and AtCLE5/6 suggests that the function of this class of CLEs may be subject to complex endogenous regulation. When seedlings were grown on high concentrations of peptide (10 µm), root growth was suppressed; however, when seedlings were grown on low concentrations of peptide (0.1 µm), root growth was stimulated. Together, these findings indicate that AtCLEs1-7 may be the target peptides mimicked by HsCLEs to promote parasitism.
Collapse
Affiliation(s)
- Jianying Wang
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|
160
|
Vaghchhipawala Z, Rojas CM, Senthil-Kumar M, Mysore KS. Agroinoculation and agroinfiltration: simple tools for complex gene function analyses. Methods Mol Biol 2011; 678:65-76. [PMID: 20931373 DOI: 10.1007/978-1-60761-682-5_6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Agroinoculation, first developed as a simple tool to study plant-virus interactions, is a popular method of choice for functional gene analysis of viral genomes. With the explosive growth of genomic information and the development of advanced vectors to dissect plant gene function, this reliable method of viral gene delivery in plants, has been recruited and morphed into a technique popularly known as agroinfiltration. This technique was developed to examine the effects of transient gene expression, with applications ranging from studies of plant-pathogen interactions, abiotic stresses, a variety of transient expression assays to study protein localization, and protein-protein interactions. We present a brief overview of literature which document both these applications, and then provide simple agroinoculation and agroinfiltration methods being used in our laboratory for functional gene analysis, as well as for fast-forward and reverse genetic screens using virus-induced gene silencing (VIGS).
Collapse
|
161
|
Alvarenga SM, Caixeta ET, Hufnagel B, Thiebaut F, Maciel-Zambolim E, Zambolim L, Sakiyama NS. In silico identification of coffee genome expressed sequences potentially associated with resistance to diseases. Genet Mol Biol 2010; 33:795-806. [PMID: 21637594 PMCID: PMC3036153 DOI: 10.1590/s1415-47572010000400031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 07/08/2010] [Indexed: 11/22/2022] Open
Abstract
Sequences potentially associated with coffee resistance to diseases were identified by in silico analyses using the database of the Brazilian Coffee Genome Project (BCGP). Keywords corresponding to plant resistance mechanisms to pathogens identified in the literature were used as baits for data mining. Expressed sequence tags (ESTs) related to each of these keywords were identified with tools available in the BCGP bioinformatics platform. A total of 11,300 ESTs were mined. These ESTs were clustered and formed 979 EST-contigs with similarities to chitinases, kinases, cytochrome P450 and nucleotide binding site-leucine rich repeat (NBS-LRR) proteins, as well as with proteins related to disease resistance, pathogenesis, hypersensitivity response (HR) and plant defense responses to diseases. The 140 EST-contigs identified through the keyword NBS-LRR were classified according to function. This classification allowed association of the predicted products of EST-contigs with biological processes, including host defense and apoptosis, and with molecular functions such as nucleotide binding and signal transducer activity. Fisher's exact test was used to examine the significance of differences in contig expression between libraries representing the responses to biotic stress challenges and other libraries from the BCGP. This analysis revealed seven contigs highly similar to catalase, chitinase, protein with a BURP domain and unknown proteins. The involvement of these coffee proteins in plant responses to disease is discussed.
Collapse
|
162
|
Tameling WIL, Nooijen C, Ludwig N, Boter M, Slootweg E, Goverse A, Shirasu K, Joosten MHAJ. RanGAP2 mediates nucleocytoplasmic partitioning of the NB-LRR immune receptor Rx in the Solanaceae, thereby dictating Rx function. THE PLANT CELL 2010; 22:4176-94. [PMID: 21169509 PMCID: PMC3027175 DOI: 10.1105/tpc.110.077461] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/22/2010] [Accepted: 11/29/2010] [Indexed: 05/18/2023]
Abstract
The potato (Solanum tuberosum) nucleotide binding-leucine-rich repeat immune receptor Rx confers resistance to Potato virus X (PVX) and requires Ran GTPase-activating protein 2 (RanGAP2) for effective immune signaling. Although Rx does not contain a discernible nuclear localization signal, the protein localizes to both the cytoplasm and nucleus in Nicotiana benthamiana. Transient coexpression of Rx and cytoplasmically localized RanGAP2 sequesters Rx in the cytoplasm. This relocation of the immune receptor appeared to be mediated by the physical interaction between Rx and RanGAP2 and was independent of the concomitant increased GAP activity. Coexpression with RanGAP2 also potentiates Rx-mediated immune signaling, leading to a hypersensitive response (HR) and enhanced resistance to PVX. Besides sequestration, RanGAP2 also stabilizes Rx, a process that likely contributes to enhanced defense signaling. Strikingly, coexpression of Rx with the Rx-interacting WPP domain of RanGAP2 fused to a nuclear localization signal leads to hyperaccumulation of both the WPP domain and Rx in the nucleus. As a consequence, both Rx-mediated resistance to PVX and the HR induced by auto-active Rx mutants are significantly suppressed. These data show that a balanced nucleocytoplasmic partitioning of Rx is required for proper regulation of defense signaling. Furthermore, our data indicate that RanGAP2 regulates this partitioning by serving as a cytoplasmic retention factor for Rx.
Collapse
Affiliation(s)
- Wladimir I L Tameling
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Orellana S, Yañez M, Espinoza A, Verdugo I, González E, Ruiz-Lara S, Casaretto JA. The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. PLANT, CELL & ENVIRONMENT 2010; 33:2191-208. [PMID: 20807374 DOI: 10.1111/j.1365-3040.2010.02220.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Members of the abscisic acid-responsive element binding protein (AREB)/abscisic acid-responsive element binding factor (ABF) subfamily of basic leucine zipper (bZIP) transcription factors have been implicated in abscisic acid (ABA) and abiotic stress responses in plants. Here we describe two members identified in cultivated tomato (Solanum lycopersicum), named SlAREB1 and SlAREB2. Expression of SlAREB1 and SlAREB2 is induced by drought and salinity in both leaves and root tissues, although that of SlAREB1 was more affected. In stress assays, SlAREB1-overexpressing transgenic tomato plants showed increased tolerance to salt and water stress compared to wild-type and SlAREB1-down-regulating transgenic plants, as assessed by physiological parameters such as relative water content (RWC), chlorophyll fluorescence and damage by lipoperoxidation. In order to identify SlAREB1 target genes responsible for the enhanced tolerance, microarray and cDNA-amplified fragment length polymorphism (AFLP) analyses were performed. Genes encoding oxidative stress-related proteins, lipid transfer proteins (LTPs), transcription regulators and late embryogenesis abundant proteins were found among the up-regulated genes in SlAREB1-overexpressing lines, especially in aerial tissue. Notably, several genes encoding defence proteins associated with responses to biotic stress (e.g. pathogenesis-related proteins, protease inhibitors, and catabolic enzymes) were also up-regulated by SlAREB1 overexpression, suggesting that this bZIP transcription factor is involved in ABA signals that participate in abiotic stress and possibly in response to pathogens.
Collapse
Affiliation(s)
- Sandra Orellana
- Instituto de Biología Vegetal y Biotecnología, Universidad de Talca,Talca, Chile
| | | | | | | | | | | | | |
Collapse
|
164
|
Gayoso C, Pomar F, Novo-Uzal E, Merino F, Martínez de Ilárduya Ó. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BMC PLANT BIOLOGY 2010; 10:232. [PMID: 20977727 PMCID: PMC3095318 DOI: 10.1186/1471-2229-10-232] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 10/26/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Verticillium dahliae is a fungal pathogen that infects a wide range of hosts. The only known genes for resistance to Verticillium in the Solanaceae are found in the tomato (Solanum lycopersicum) Ve locus, formed by two linked genes, Ve1 and Ve2. To characterize the resistance response mediated by the tomato Ve gene, we inoculated two nearly isogenic tomato lines, LA3030 (ve/ve) and LA3038 (Ve/Ve), with V. dahliae. RESULTS We found induction of H2O2 production in roots of inoculated plants, followed by an increase in peroxidase activity only in roots of inoculated resistant plants. Phenylalanine-ammonia lyase (PAL) activity was also increased in resistant roots 2 hours after inoculation, while induction of PAL activity in susceptible roots was not seen until 48 hours after inoculation. Phenylpropanoid metabolism was also affected, with increases in ferulic acid, p-coumaric acid, vanillin and p-hydroxybenzaldehyde contents in resistant roots after inoculation. Six tomato PAL cDNA sequences (PAL1 - PAL6) were found in the SolGenes tomato EST database. RT-PCR analysis showed that these genes were expressed in all organs of the plant, albeit at different levels. Real-time RT-PCR indicated distinct patterns of expression of the different PAL genes in V. dahliae-inoculated roots. Phylogenetic analysis of 48 partial PAL cDNAs corresponding to 19 plant species grouped angiosperm PAL sequences into four clusters, suggesting functional differences among the six tomato genes, with PAL2 and PAL6 presumably involved in lignification, and the remaining PAL genes implicated in other biological processes. An increase in the synthesis of lignins was found 16 and 28 days after inoculation in both lines; this increase was greater and faster to develop in the resistant line. In both resistant and susceptible inoculated plants, an increase in the ratio of guaiacyl/syringyl units was detected 16 days after inoculation, resulting from the lowered amount of syringyl units in the lignins of inoculated plants. CONCLUSIONS The interaction between the tomato and V. dahliae triggered a number of short- and long-term defensive mechanisms. Differences were found between compatible and incompatible interactions, including onset of H2O2 production and activities of peroxidase and PAL, and phenylpropanoid metabolism and synthesis of lignins.
Collapse
Affiliation(s)
- Carmen Gayoso
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de La Coruña, 15071 La Coruña, Spain
- Instituto de Investigaciones Biomédicas de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, As Xubias s/n, 15006 La Coruña, Spain
| | - Federico Pomar
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de La Coruña, 15071 La Coruña, Spain
| | - Esther Novo-Uzal
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de La Coruña, 15071 La Coruña, Spain
| | - Fuencisla Merino
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de La Coruña, 15071 La Coruña, Spain
| | - Óskar Martínez de Ilárduya
- Instituto de Investigaciones Biomédicas de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, As Xubias s/n, 15006 La Coruña, Spain
- Networking Center of Biomedical Research in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 15006 La Coruña, Spain
| |
Collapse
|
165
|
Wang J, Lee C, Replogle A, Joshi S, Korkin D, Hussey R, Baum TJ, Davis EL, Wang X, Mitchum MG. Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins. THE NEW PHYTOLOGIST 2010; 187:1003-1017. [PMID: 20497349 DOI: 10.1111/j.1469-8137.2010.03300.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
*Soybean cyst nematodes (Heterodera glycines) produce secreted effector proteins that function as peptide mimics of plant CLAVATA3/ESR (CLE)-like peptides probably involved in the developmental reprogramming of root cells to form specialized feeding cells called syncytia. *The site of action and mechanism of delivery of CLE effectors to host plant cells by the nematode, however, have not been established. In this study, immunologic, genetic and biochemical approaches were used to reveal the localization and site of action of H. glycines-secreted CLE proteins in planta. *We present evidence indicating that the nematode CLE propeptides are delivered to the cytoplasm of syncytial cells, but ultimately function in the apoplast, consistent with their proposed role as ligand mimics of plant CLE peptides. We determined that the nematode 12-amino-acid CLE motif peptide is not sufficient for biological activity in vivo, pointing to an important role for sequences upstream of the CLE motif in function. *Genetic and biochemical analysis confirmed the requirement of the variable domain in planta for host-specific recognition and revealed a novel role in trafficking cytoplasmically delivered CLEs to the apoplast in order to function as ligand mimics.
Collapse
Affiliation(s)
- Jianying Wang
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Chris Lee
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Amy Replogle
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Sneha Joshi
- Informatics Institute, Department of Computer Science and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Dmitry Korkin
- Informatics Institute, Department of Computer Science and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Richard Hussey
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Thomas J Baum
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | - Eric L Davis
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Xiaohong Wang
- USDA-ARS, Robert W. Holley Center for Agriculture and Health and Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
166
|
Lu L, Nan J, Mi W, Li LF, Wei CH, Su XD, Li Y. Crystal structure of tubulin folding cofactor A from Arabidopsis thaliana and its beta-tubulin binding characterization. FEBS Lett 2010; 584:3533-9. [PMID: 20638386 DOI: 10.1016/j.febslet.2010.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/05/2010] [Accepted: 07/12/2010] [Indexed: 11/19/2022]
Abstract
Microtubules are composed of polymerized alpha/beta-tubulin heterodimers. Biogenesis of assembly-competent tubulin dimers is a complex multistep process that requires sequential actions of distinct molecular chaperones and cofactors. Tubulin folding cofactor A (TFCA), which captures beta-tubulin during the folding pathway, has been identified in many organisms. Here, we report the crystal structure of Arabidopsis thaliana TFC A (KIESEL, KIS), which forms a monomeric three-helix bundle. The functional binding analysis demonstrated that KIS interacts with beta-tubulin in plant. Furthermore, mutagenesis studies indicated that the alpha-helical regions of KIS participate in beta-tubulin binding. Unlike the budding yeast TFC A, the two loop regions of KIS are not required for this interaction suggesting a distinct binding mechanism of TFC A to beta-tubulin in plants.
Collapse
Affiliation(s)
- Lu Lu
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
167
|
Lee C, Park J, Hwang I, Park Y, Cheong H. Expression of G-Ry derived from the potato (Solanum tuberosum L.) increases PVY(O) resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7245-7251. [PMID: 20481626 DOI: 10.1021/jf101037k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In Solanaceae, potato virus Y(O) (PVY(O)) is a widespread virus leading to severe damages such as necrosis, molting, and yield reduction. The resistance Y gene (Ry gene) of potato specifically confers resistance to PVY infection. Previously, potatoes resistant to PVY(O) infection were screened among the 32 Korean cultivars. 'Golden Valley' displayed the most resistance to PVY(O) infection. 'Golden Valley''s Ry gene (G-Ry) was cloned from 'Golden Valley', and the function was investigated. G-Ry protein contains 1134 amino acid residues and is structurally similar to the Y-1, which confers resistance to PVY infection in Solanum tuberosum subsp. andigena. To generate a PVY(O)-resistant potato, the G-Ry gene has been introduced into 'Winter Valley', the cultivar most susceptible to PVY(O) infection among the 32 Korean cultivars. Transgenic 'Winter Valley' ('Winter Valley'-G) showed an increased resistance to PVY infection. This approach may ultimately lead to the development of a virus-resistant plant.
Collapse
Affiliation(s)
- Changsu Lee
- Department of Biotechnology and BK21 Research Team for Protein Activity Control, Chosun University, Gwangju, South Korea
| | | | | | | | | |
Collapse
|
168
|
Candresse T, Marais A, Faure C, Dubrana MP, Gombert J, Bendahmane A. Multiple coat protein mutations abolish recognition of Pepino mosaic potexvirus (PepMV) by the potato rx resistance gene in transgenic tomatoes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:376-83. [PMID: 20192825 DOI: 10.1094/mpmi-23-4-0376] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Despite the fact that Pepino mosaic virus (PepMV) and Potato virus X (PVX) share less than 40% identity in their coat proteins (CP), the known PVX elicitor of Rx, transgenic tomato (cv. Microtom) plants expressing a functional potato Rx resistance gene showed resistance toward PepMV. However, in a low percentage of plants, PepMV accumulation was observed and back inoculation experiments demonstrated that these plants contained resistance-breaking PepMV variants. Sequencing of the CP gene of these variants showed the accumulation of mutations in the amino acid 41 to 125 region the CP, whereas no mutations were observed in the nonevolved isolates. Agroinfiltration-mediated transient expression of the mutant CP demonstrated that they had a greatly attenuated or abolished ability to induce a hypersensitive reaction in Rx-expressing Nicotiana benthamiana leaves. The transient expression of truncated forms of the PepMV CP allowed the identification of a minimal elicitor domain (amino acids 30 to 136). These results demonstrate that the Rx-based sensing system is able to recognize the PepMV CP but, contrary to the situation with PVX, for which only two closely spaced resistance-breaking mutations are known, many mutations over a significant stretch of the PepMV CP allow escape from recognition by Rx.
Collapse
Affiliation(s)
- Thierry Candresse
- Equipe de Virologie, UMR GD2P, IBVM, INRA and Université Victor Ségalen Bordeaux2, BP81, Villenave d'Ornon Cedex, France.
| | | | | | | | | | | |
Collapse
|
169
|
Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 2010; 28:365-9. [PMID: 20231819 DOI: 10.1038/nbt.1613] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 02/09/2010] [Indexed: 01/22/2023]
Abstract
Plant diseases cause massive losses in agriculture. Increasing the natural defenses of plants may reduce the impact of phytopathogens on agricultural productivity. Pattern-recognition receptors (PRRs) detect microbes by recognizing conserved pathogen-associated molecular patterns (PAMPs). Although the overall importance of PAMP-triggered immunity for plant defense is established, it has not been used to confer disease resistance in crops. We report that activity of a PRR is retained after its transfer between two plant families. Expression of EFR (ref. 4), a PRR from the cruciferous plant Arabidopsis thaliana, confers responsiveness to bacterial elongation factor Tu in the solanaceous plants Nicotiana benthamiana and tomato (Solanum lycopersicum), making them more resistant to a range of phytopathogenic bacteria from different genera. Our results in controlled laboratory conditions suggest that heterologous expression of PAMP recognition systems could be used to engineer broad-spectrum disease resistance to important bacterial pathogens, potentially enabling more durable and sustainable resistance in the field.
Collapse
|
170
|
Abstract
A review of type III effectors (T3 effectors) from strains of Xanthomonas reveals a growing list of candidate and known effectors based on functional assays and sequence and structural similarity searches of genomic data. We propose that the effectors and suspected effectors should be distributed into 39 so-called Xop groups reflecting sequence similarity. Some groups have structural motifs for putative enzymatic functions, and recent studies have provided considerable insight into the interaction with host factors in their function as mediators of virulence and elicitors of resistance for a few specific T3 effectors. Many groups are related to T3 effectors of plant and animal pathogenic bacteria, and several groups appear to have been exploited primarily by Xanthomonas species based on available data. At the same time, a relatively large number of candidate effectors remain to be examined in more detail with regard to their function within host cells.
Collapse
Affiliation(s)
- Frank F White
- Department of Plant Pathology, 4024 Throckmorton Hall, Kansas State University, Manhattan, KS 66506-550, USA.
| | | | | | | |
Collapse
|
171
|
Lu SW, Chen S, Wang J, Yu H, Chronis D, Mitchum MG, Wang X. Structural and functional diversity of CLAVATA3/ESR (CLE)-like genes from the potato cyst nematode Globodera rostochiensis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1128-42. [PMID: 19656047 DOI: 10.1094/mpmi-22-9-1128] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant CLAVATA3/ESR-related (CLE) peptides have diverse roles in plant growth and development. Here, we report the isolation and functional characterization of five new CLE genes from the potato cyst nematode Globodera rostochiensis. Unlike typical plant CLE peptides that contain a single CLE motif, four of the five Gr-CLE genes encode CLE proteins with multiple CLE motifs. These Gr-CLE genes were found to be specifically expressed within the dorsal esophageal gland cell of nematode parasitic stages, suggesting a role for their encoded proteins in plant parasitism. Overexpression phenotypes of Gr-CLE genes in Arabidopsis mimicked those of plant CLE genes, and Gr-CLE proteins could rescue the Arabidopsis clv3-2 mutant phenotype when expressed within meristems. A short root phenotype was observed when synthetic GrCLE peptides were exogenously applied to roots of Arabidopsis or potato similar to the overexpression of Gr-CLE genes in Arabidopsis and potato hairy roots. These results reveal that G. rostochiensis CLE proteins with either single or multiple CLE motifs function similarly to plant CLE proteins and that CLE signaling components are conserved in both Arabidopsis and potato roots. Furthermore, our results provide evidence to suggest that the evolution of multiple CLE motifs may be an important mechanism for generating functional diversity in nematode CLE proteins to facilitate parasitism.
Collapse
Affiliation(s)
- Shun-Wen Lu
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | | | |
Collapse
|
172
|
The fractionated orthology of Bs2 and Rx/Gpa2 supports shared synteny of disease resistance in the Solanaceae. Genetics 2009; 182:1351-64. [PMID: 19474202 DOI: 10.1534/genetics.109.101022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comparative genomics provides a powerful tool for the identification of genes that encode traits shared between crop plants and model organisms. Pathogen resistance conferred by plant R genes of the nucleotide-binding-leucine-rich-repeat (NB-LRR) class is one such trait with great agricultural importance that occupies a critical position in understanding fundamental processes of pathogen detection and coevolution. The proposed rapid rearrangement of R genes in genome evolution would make comparative approaches tenuous. Here, we test the hypothesis that orthology is predictive of R-gene genomic location in the Solanaceae using the pepper R gene Bs2. Homologs of Bs2 were compared in terms of sequence and gene and protein architecture. Comparative mapping demonstrated that Bs2 shared macrosynteny with R genes that best fit criteria determined to be its orthologs. Analysis of the genomic sequence encompassing solanaceous R genes revealed the magnitude of transposon insertions and local duplications that resulted in the expansion of the Bs2 intron to 27 kb and the frequently detected duplications of the 5'-end of R genes. However, these duplications did not impact protein expression or function in transient assays. Taken together, our results support a conservation of synteny for NB-LRR genes and further show that their distribution in the genome has been consistent with global rearrangements.
Collapse
|
173
|
Alfenas-Zerbini P, Maia IG, Fávaro RD, Cascardo JCM, Brommonschenkel SH, Zerbini FM. Genome-wide analysis of differentially expressed genes during the early stages of tomato infection by a potyvirus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:352-61. [PMID: 19245329 DOI: 10.1094/mpmi-22-3-0352] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant responses against pathogens cause up- and downward shifts in gene expression. To identify differentially expressed genes in a plant-virus interaction, susceptible tomato plants were inoculated with the potyvirus Pepper yellow mosaic virus (PepYMV) and a subtractive library was constructed from inoculated leaves at 72 h after inoculation. Several genes were identified as upregulated, including genes involved in plant defense responses (e.g., pathogenesis-related protein 5), regulation of the cell cycle (e.g., cytokinin-repressed proteins), signal transduction (e.g., CAX-interacting protein 4, SNF1 kinase), transcriptional regulators (e.g., WRKY and SCARECROW transcription factors), stress response proteins (e.g., Hsp90, DNA-J, 20S proteasome alpha subunit B, translationally controlled tumor protein), ubiquitins (e.g., polyubiquitin, ubiquitin activating enzyme 2), among others. Downregulated genes were also identified, which likewise display identity with genes involved in several metabolic pathways. Differential expression of selected genes was validated by macroarray analysis and quantitative real-time polymerase chain reaction. The possible roles played by some of these genes in the viral infection cycle are discussed.
Collapse
Affiliation(s)
- Poliane Alfenas-Zerbini
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil.
| | | | | | | | | | | |
Collapse
|
174
|
Harvey JJ, Strauss SH. Towards physiological sculpture of plants. 19th New Phytologist Symposium: Physiological sculpture of plants, Mt Hood, Oregon, USA, September 2008. THE NEW PHYTOLOGIST 2009; 181:8-12. [PMID: 19076714 DOI: 10.1111/j.1469-8137.2008.02697.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Jagger Jw Harvey
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom,Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon USA 97331-5752
| | - Steven H Strauss
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom,Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon USA 97331-5752
| |
Collapse
|
175
|
Furutani A, Takaoka M, Sanada H, Noguchi Y, Oku T, Tsuno K, Ochiai H, Tsuge S. Identification of novel type III secretion effectors in Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:96-106. [PMID: 19061406 DOI: 10.1094/mpmi-22-1-0096] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many gram-negative bacteria secrete so-called effector proteins via a type III secretion (T3S) system. Through genome screening for genes encoding potential T3S effectors, 60 candidates were selected from rice pathogen Xanthomonas oryzae pv. oryzae MAFF311018 using these criteria: i) homologs of known T3S effectors in plant-pathogenic bacteria, ii) genes with expression regulated by hrp regulatory protein HrpX, or iii) proteins with N-terminal amino acid patterns associated with T3S substrates of Pseudomonas syringae. Of effector candidates tested with the Bordetella pertussis calmodulin-dependent adenylate cyclase reporter for translocation into plant cells, 16 proteins were translocated in a T3S system-dependent manner. Of these 16 proteins, nine were homologs of known effectors in other plant-pathogenic bacteria and seven were not. Most of the effectors were widely conserved in Xanthomonas spp.; however, some were specific to X. oryzae. Interestingly, all these effectors were expressed in an HrpX-dependent manner, suggesting coregulation of effectors and the T3S system. In X. campestris pv. vesicatoria, HpaB and HpaC (HpaP in X. oryzae pv. oryzae) have a central role in recruiting T3S substrates to the secretion apparatus. Secretion of all but one effector was reduced in both HpaB() and HpaP() mutant strains, indicating that HpaB and HpaP are widely involved in efficient secretion of the effectors.
Collapse
Affiliation(s)
- Ayako Furutani
- National Institute of Agrobiological Sciences, Tsukuba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Stall RE, Jones JB, Minsavage GV. Durability of resistance in tomato and pepper to xanthomonads causing bacterial spot. ANNUAL REVIEW OF PHYTOPATHOLOGY 2009; 47:265-84. [PMID: 19400644 DOI: 10.1146/annurev-phyto-080508-081752] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Both hypersensitive and quantitative forms of resistance to the bacterial spot pathogens (Xanthomonas spp.) occur in pepper and tomato. Five resistance genes involved in hypersensitivity in pepper and four in tomato have been identified so far. The corresponding pathogen avirulence genes have been cloned and characterized, and features, including a propensity for accumulating mutations and at times, loss of plasmid-borne avirulence genes, are known to occur. The frequency of these changes affects race composition among pathogen populations and determines the durability of the corresponding plant resistance. At least four different species of Xanthomonas are known to cause bacterial spot, and these can differ in specific avirulence gene content. Quantitative or multigenic resistance has also more recently been researched and appears to be more durable than the hypersensitive resistance. Two recessive genes have been identified that yield a nonhypersensitive form of resistance in pepper and together can provide strong resistance. More emphasis is being given to transfer of quantitative trait resistance to commercial cultivars of both tomato and pepper.
Collapse
Affiliation(s)
- Robert E Stall
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|
177
|
Sekine KT, Kawakami S, Hase S, Kubota M, Ichinose Y, Shah J, Kang HG, Klessig DF, Takahashi H. High level expression of a virus resistance gene, RCY1, confers extreme resistance to Cucumber mosaic virus in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1398-407. [PMID: 18842090 DOI: 10.1094/mpmi-21-11-1398] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A coiled coil-nucleotide binding site-leucine rich repeat-type resistance gene, RCY1, confers resistance to a yellow strain of Cucumber mosaic virus, CMV(Y), in Arabidopsis thaliana ecotype C24. Resistance to CMV(Y) in C24 is accompanied by a hypersensitive response (HR) that is characterized by the development of necrotic local lesions at the primary infection sites. To further study the HR and resistance to CMV(Y) in ecotype Col-0, which is susceptible to CMV(Y), Col-0 were transformed with RCY1. Systemic spread of CMV(Y) was completely suppressed in RCY1-transformed Col-0 (Col::pRCY1 lines 2 to 6), whereas virulent strain CMV(B2) spread and multiplied systemically in these transgenic lines similar to that in wild-type Col-0. Interestingly, the resistant phenotype of Col::pRCY1 varied among the lines. In lines 3 and 6, in which levels of RCY1 transcript were similar to that in wild-type C24, the HR and resistance to CMV(Y) was induced. Line 4, which expresses moderately elevated levels of RCY1 transcript, exhibited moderately enhanced resistance compared with that in C24 or line 3. In contrast, lines 2 and 5, which highly overexpress the RCY1 gene, did not exhibit either visible lesions or a micro-HR on the inoculated leaves. Moreover, virus coat protein was not detected in either inoculated or noninoculated upper leaves of these two lines, suggesting that extreme resistance (ER) to CMV(Y) was induced by high levels of expression of RCY1. Furthermore, in transgenic lines expressing hemagglutinin (HA) epitope-tagged RCY1 (Col::pRCY1-HA), high levels of accumulation of RCY1-HA protein were also correlated with the ER phenotype. Global gene expression analysis in line 2, which highly overexpresses RCY1, indicated that expression of several defense-related genes were constitutively elevated compared with wild-type Col-0. Despite this, line 2 did not have enhanced resistance to other avirulent and virulent pathogens. Take together, constitutive accumulation of high levels of RCY1 protein appears to regulate the strength of RCY1-conferred resistance in a gene-for-gene manner and implies that ER and HR-associated resistance differ only in the strength of resistance.
Collapse
Affiliation(s)
- Ken-Taro Sekine
- Department of Life Science, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Yang S, Gao M, Xu C, Gao J, Deshpande S, Lin S, Roe BA, Zhu H. Alfalfa benefits from Medicago truncatula: the RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proc Natl Acad Sci U S A 2008; 105:12164-9. [PMID: 18719113 PMCID: PMC2527883 DOI: 10.1073/pnas.0802518105] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Indexed: 12/28/2022] Open
Abstract
Alfalfa is economically the most important forage legume worldwide. A recurrent challenge to alfalfa production is the significant yield loss caused by disease. Although knowledge of molecular mechanisms underlying host resistance should facilitate the genetic improvement of alfalfa, the acquisition of such knowledge is hampered by alfalfa's tetrasomic inheritance and outcrossing nature. However, alfalfa is congeneric with the reference legume Medicago truncatula, providing an opportunity to use M. truncatula as a surrogate to clone the counterparts of many agronomically important genes in alfalfa. In particular, the high degree of sequence identity and remarkably conserved genome structure and function between the two species enables M. truncatula genes to be used directly in alfalfa improvement. Here we report the map-based cloning of RCT1, a host resistance (R) gene in M. truncatula that confers resistance to multiple races of Colletotrichum trifolii, a hemibiotrophic fungal pathogen that causes anthracnose disease of alfalfa. RCT1 is a member of the Toll-interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NBS-LRR) class of plant R genes and confers broad-spectrum anthracnose resistance when transferred into susceptible alfalfa plants. Thus, RCT1 provides a novel resource to develop anthracnose-resistant alfalfa cultivars and contributes to our understanding of host resistance against the fungal genus Colletotrichum. This work demonstrates the potential of using M. truncatula genes for genetic improvement of alfalfa.
Collapse
Affiliation(s)
- Shengming Yang
- *Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546; and
| | - Muqiang Gao
- *Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546; and
| | - Chenwu Xu
- *Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546; and
| | - Jianchang Gao
- *Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546; and
| | - Shweta Deshpande
- Advanced Center for Genome Technology, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73109
| | - Shaoping Lin
- Advanced Center for Genome Technology, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73109
| | - Bruce A. Roe
- Advanced Center for Genome Technology, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73109
| | - Hongyan Zhu
- *Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546; and
| |
Collapse
|
179
|
Borhan MH, Gunn N, Cooper A, Gulden S, Tör M, Rimmer SR, Holub EB. WRR4 encodes a TIR-NB-LRR protein that confers broad-spectrum white rust resistance in Arabidopsis thaliana to four physiological races of Albugo candida. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:757-68. [PMID: 18624640 DOI: 10.1094/mpmi-21-6-0757] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
White blister rust in the Brassicaceae is emerging as a superb model for exploring how plant biodiversity has channeled speciation of biotrophic parasites. The causal agents of white rust across a wide breadth of cruciferous hosts currently are named as variants of a single oomycete species, Albugo candida. The most notable examples include a major group of physiological races that each are economically destructive in a different vegetable or oilseed crop of Brassica juncea (A. candida race 2), B. rapa (race 7), or B. oleracea (race 9); or parasitic on wild crucifers such as Capsella bursa-pastoris (race 4). Arabidopsis thaliana is innately immune to these races of A. candida under natural conditions; however, it commonly hosts its own molecularly distinct subspecies of A. candida (A. candida subsp. arabidopsis). In the laboratory, we have identified several accessions of Arabidopsis thaliana (e.g.,. Ws-3) that can permit varying degrees of rust development following inoculation with A. candida races 2, 4, and 7, whereas race 9 is universally incompatible in Arabidopsis thaliana and nonrusting resistance is the most prevalent outcome of interactions with the other races. Subtle variation in resistance phenotypes is evident, observed initially with an isolate of A. candida race 4, indicating additional genetic variation. Therefore, we used the race 4 isolate for map-based cloning of the first of many expected white rust resistance (WRR) genes. This gene was designated WRR4 and encodes a cytoplasmic toll-interleukin receptor-like nucleotide-binding leucine-rich repeat receptor-like protein that confers a dominant, broad-spectrum white rust resistance in the Arabidopsis thaliana accession Columbia to representative isolates of A. candida races 2, 4, 7, and 9, as verified by transgenic expression of the Columbia allele in Ws-3. The WRR4 protein requires functional expression of the lipase-like protein EDS1 but not the paralogous protein PAD4, and confers full immunity that masks an underlying nonhypersensitive incompatibility in Columbia to A. candida race 4. This residual incompatibility is independent of functional EDS1.
Collapse
Affiliation(s)
- M Hossein Borhan
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, SK., S7N 0X2, Canada
| | | | | | | | | | | | | |
Collapse
|
180
|
Abstract
Genetically modified (or GM) plants have attracted a large amount of media attention in recent years and continue to do so. Despite this, the general public remains largely unaware of what a GM plant actually is or what advantages and disadvantages the technology has to offer, particularly with regard to the range of applications for which they can be used. From the first generation of GM crops, two main areas of concern have emerged, namely risk to the environment and risk to human health. As GM plants are gradually being introduced into the European Union there is likely to be increasing public concern regarding potential health issues. Although it is now commonplace for the press to adopt 'health campaigns', the information they publish is often unreliable and unrepresentative of the available scientific evidence. We consider it important that the medical profession should be aware of the state of the art, and, as they are often the first port of call for a concerned patient, be in a position to provide an informed opinion. This review will examine how GM plants may impact on human health both directly - through applications targeted at nutrition and enhancement of recombinant medicine production - but also indirectly, through potential effects on the environment. Finally, it will examine the most important opposition currently facing the worldwide adoption of this technology: public opinion.
Collapse
Affiliation(s)
- Suzie Key
- Molecular Immunology Unit, Centre for Infection, Department of Cellular and Molecular Medicine, St George's University of London Cranmer Terrace, London SW17 0RE, UK
| | | | | |
Collapse
|
181
|
Dennis ES, Ellis J, Green A, Llewellyn D, Morell M, Tabe L, Peacock W. Genetic contributions to agricultural sustainability. Philos Trans R Soc Lond B Biol Sci 2008; 363:591-609. [PMID: 17656342 PMCID: PMC2610172 DOI: 10.1098/rstb.2007.2172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The current tools of enquiry into the structure and operation of the plant genome have provided us with an understanding of plant development and function far beyond the state of knowledge that we had previously. We know about key genetic controls repressing or stimulating the cascades of gene expression that move a plant through stages in its life cycle, facilitating the morphogenesis of vegetative and reproductive tissues and organs. The new technologies are enabling the identification of key gene activity responses to the range of biotic and abiotic challenges experienced by plants. In the past, plant breeders produced new varieties with changes in the phases of development, modifications of plant architecture and improved levels of tolerance and resistance to environmental and biotic challenges by identifying the required phenotypes in a few plants among the large numbers of plants in a breeding population. Now our increased knowledge and powerful gene sequence-based diagnostics provide plant breeders with more precise selection objectives and assays to operate in rationally planned crop improvement programmes. We can expect yield potential to increase and harvested product quality portfolios to better fit an increasing diversity of market requirements. The new genetics will connect agriculture to sectors beyond the food, feed and fibre industries; agri-business will contribute to public health and will provide high-value products to the pharmaceutical industry as well as to industries previously based on petroleum feedstocks and chemical modification processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - W.J Peacock
- CSIRO Plant IndustryGPO Box 1600, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
182
|
Rentel MC, Leonelli L, Dahlbeck D, Zhao B, Staskawicz BJ. Recognition of the Hyaloperonospora parasitica effector ATR13 triggers resistance against oomycete, bacterial, and viral pathogens. Proc Natl Acad Sci U S A 2008; 105:1091-6. [PMID: 18198274 PMCID: PMC2242713 DOI: 10.1073/pnas.0711215105] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Indexed: 01/01/2023] Open
Abstract
Phytopathogenic oomycetes cause some of the most devastating diseases affecting agricultural crops. Hyaloperonospora parasitica is a native oomycete pathogen of Arabidopsis and is related to other oomycete phytopathogens that include several species of Phytophthora, including the causal agent of potato late blight. Recently, four oomycete effector genes have been isolated, and several oomycete genomes have been sequenced. We have developed an efficient and genetically amenable system to test putative effector genes using the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. The H. parasitica effector protein ATR13 was delivered via P. syringae by fusing the ATR13 gene with the avrRpm1 type three secretion signal peptide, a bacterial sequence that allows transfer of proteins into the host cell through the bacterial type III secretion system. We also inserted ATR13 into the genome of the turnip mosaic virus, a single-stranded RNA virus. Our results show that delivery of ATR13 via the bacterial or viral pathogen triggers defense responses in plants containing the cognate resistance protein RPP13(Nd), which restricts proliferation of both pathogens. Hence, recognition of ATR13 by RPP13 initiates defense responses that are effective against oomycete, bacterial and viral pathogens, pointing to a common defense mechanism. We have characterized regions of the RPP13(Nd) resistance protein that are essential for effector recognition and/or downstream signaling, using transient coexpression in Nicotiana benthamiana.
Collapse
Affiliation(s)
- Maike C. Rentel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3120
| | - Lauriebeth Leonelli
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3120
| | - Douglas Dahlbeck
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3120
| | - Bingyu Zhao
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3120
| | - Brian J. Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3120
| |
Collapse
|
183
|
Abstract
Plant-parasitic nematodes are major pests of both temperate and tropical agriculture. Many of the most damaging species employ an advanced parasitic strategy in which they induce redifferentiation of root cells to form specialized feeding structures able to support nematode growth and reproduction over several weeks. Current control measures, particularly in intensive agriculture systems, rely heavily on nematicides but alternative strategies are required as effective chemicals are withdrawn from use. Here, we review the different approaches that are being developed to provide resistance to a range of nematode species. Natural, R gene-based resistance is currently exploited in traditional breeding programmes and research is ongoing to characterize the molecular basis for the observed resistant phenotypes. A number of transgenic approaches hold promise, the best described being the expression of proteinase inhibitors to disrupt nematode digestion. The application of plant-delivered RNA interference (RNAi) to silence essential nematode genes has recently emerged as a potentially valuable resistance strategy.
Collapse
Affiliation(s)
- Victoria L Fuller
- Centre for Plant Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - Catherine J Lilley
- Centre for Plant Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - Peter E Urwin
- Centre for Plant Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| |
Collapse
|
184
|
Whalen M, Richter T, Zakhareyvich K, Yoshikawa M, Al-Azzeh D, Adefioye A, Spicer G, Mendoza LL, Morales CQ, Klassen V, Perez-Baron G, Toebe CS, Tzovolous A, Gerstman E, Evans E, Thompson C, Lopez M, Ronald PC. Identification of a host 14-3-3 Protein that Interacts with Xanthomonas effector AvrRxv. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2008; 72:46-55. [PMID: 21796232 PMCID: PMC3142867 DOI: 10.1016/j.pmpp.2008.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
AvrRxv is a member of a family of pathogen effectors present in pathogens of both plant and mammalian species. Xanthomonas campestris pv. vesicatoria strains carrying AvrRxv induce a hypersensitive response (HR) in the tomato cultivar Hawaii 7998. Using a yeast two-hybrid screen, we identified a 14-3-3 protein from tomato that interacts with AvrRxv called AvrRxv Interactor 1 (ARI1). The interaction was confirmed in vitro with affinity chromatography. Using mutagenesis, we identified a 14-3-3-binding domain in AvrRxv and demonstrated that a mutant in that domain showed concomitant loss of interaction with ARI1 and HR-inducing activity in tomato. These results demonstrate that the AvrRxv bacterial effector recruits 14-3-3 proteins for its function within host cells. AvrRxv homologues YopP and YopJ from Yersinia do not have AvrRxv-specific HR-inducing activity when delivered into tomato host cells by Agrobacterium. Although YopP itself cannot induce HR, its C-terminal domain containing the catalytic residues can replace that of AvrRxv in an AvrRxv-YopP chimera for HR-inducing activity. Phylogenetic analysis indicates that the sequences encoding the C-termini of family members are evolving independently from those encoding the N-termini. Our results support a model in which there are three functional domains in proteins of the family, translocation, interaction, and catalytic.
Collapse
Affiliation(s)
- Maureen Whalen
- Crop Improvement and Utilization Unit, Western Regional Research Center, ARS USDA, 800 Buchanan Street, Albany, CA 94710, US
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
- Corresponding author. Crop Improvement and Utilization Unit, Western Regional Research Center, ARS USDA, 800 Buchanan Street, Albany, CA 94710, USA. Tel.: +1 510 559 5950; fax: + 1 510 559 5818. (M.C. Whalen), (P.C. Ronald)
| | - Todd Richter
- Department of Plant Pathology, University of California at Davis, One Shields Ave, Davis CA 95616, USA
| | - Kseniya Zakhareyvich
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Masayasu Yoshikawa
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Dana Al-Azzeh
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Adeshola Adefioye
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Greg Spicer
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Laura L. Mendoza
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Christine Q. Morales
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Vicki Klassen
- Department of Biology, City College of San Francisco, 50 Phelan Avenue, San Francisco, CA 94112, USA
| | - Gina Perez-Baron
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Carole S. Toebe
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
- Department of Biology, City College of San Francisco, 50 Phelan Avenue, San Francisco, CA 94112, USA
| | - Ageliki Tzovolous
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Emily Gerstman
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Erika Evans
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Cheryl Thompson
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Mary Lopez
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Pamela C. Ronald
- Department of Plant Pathology, University of California at Davis, One Shields Ave, Davis CA 95616, USA
| |
Collapse
|
185
|
|
186
|
|
187
|
Oh SK, Baek KH, Park JM, Yi SY, Yu SH, Kamoun S, Choi D. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. THE NEW PHYTOLOGIST 2007; 177:977-989. [PMID: 18179600 DOI: 10.1111/j.1469-8137.2007.02310.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants respond to pathogens by regulating a network of signaling pathways that fine-tune transcriptional activation of defense-related genes. The aim of this study was to determine the role of Capsicum annuum WRKY zinc finger-domain transcription factor 1 (CaWRKY1) in defense. In previous studies, CaWRKY1 was found to be rapidly induced in C. annuum (chili pepper) leaves by incompatible and compatible pathogen inoculations, but the complexity of the network of the WRKY family prevented the function of CaWRKY1 in defense from being elucidated. Virus-induced gene silencing of CaWRKY1 in chili pepper leaves resulted in decreased growth of Xanthomonas axonopodis pv. vesicatoria race 1. CaWRKY1-overexpressing transgenic plants showed accelerated hypersensitive cell death in response to infection with tobacco mosaic virus and Pseudomonas syringe pv. tabaci. Lower levels of pathogenesis-related gene induction were observed in CaWRKY1-overexpressing transgenic plants following salicylic acid (SA) treatments. This work suggests that the newly characterized CaWRKY1, which is strongly induced by pathogen infections and the signal molecule SA, acts as a regulator to turn off systemic acquired resistance once the pathogen challenge has diminished and to prevent spurious activation of defense responses at suboptimal concentrations of SA.
Collapse
Affiliation(s)
- Sang-Keun Oh
- Plant Genome Research Center, KRIBB, P.O. Box 115, Yusung, Daejeon 305-600, Korea
| | - Kwang-Hyun Baek
- Department of Plant Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jeong Mee Park
- Plant Genome Research Center, KRIBB, P.O. Box 115, Yusung, Daejeon 305-600, Korea
| | - So Young Yi
- Plant Genome Research Center, KRIBB, P.O. Box 115, Yusung, Daejeon 305-600, Korea
| | - Seung Hun Yu
- Laboratory of Plant Pathology, Chungnam National University, Daejeon 305-764, Korea
| | - Sophien Kamoun
- Department of Plant Pathology, OARDC, The Ohio State University, Wooster, OH 44691-4096, USA
| | - Doil Choi
- Plant Genome Research Center, KRIBB, P.O. Box 115, Yusung, Daejeon 305-600, Korea
- Department of Plant Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
188
|
Sacco MA, Mansoor S, Moffett P. A RanGAP protein physically interacts with the NB-LRR protein Rx, and is required for Rx-mediated viral resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:82-93. [PMID: 17655649 DOI: 10.1111/j.1365-313x.2007.03213.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Race-specific disease resistance in plants is mediated by the products of host disease resistance (R) genes. Plant genomes possess hundreds of R gene homologs encoding nucleotide-binding and leucine-rich repeat (NB-LRR) proteins. NB-LRR proteins induce a disease resistance response following recognition of pathogen-encoded avirulence (Avr) proteins. However, little is known about the general mechanisms by which NB-LRR proteins recognize Avr proteins or how they subsequently induce defense responses. The Rx NB-LRR protein of potato confers resistance to potato virus X (PVX). Using a co-purification strategy, we have identified a Ran GTPase-activating protein (RanGAP2) as an Rx-interacting protein. We show by co-immunoprecipitation that this interaction is mediated in planta through the putative signaling domain at the Rx amino terminus. Overexpression of RanGAP2 results in activation of certain Rx derivatives. Likewise, knocking down RanGAP2 expression in Nicotiana benthamiana by virus-induced gene silencing compromises Rx-mediated resistance to PVX. Thus, we have demonstrated a novel role for a RanGAP in the function of a plant disease resistance response.
Collapse
Affiliation(s)
- Melanie A Sacco
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, 148503, New York, NW, USA
| | | | | |
Collapse
|
189
|
Lewis RS, Linger LR, Wolff MF, Wernsman EA. The negative influence of N-mediated TMV resistance on yield in tobacco: linkage drag versus pleiotropy. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:169-78. [PMID: 17492424 DOI: 10.1007/s00122-007-0552-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 04/10/2007] [Indexed: 05/11/2023]
Abstract
Resistance to tobacco mosaic virus (TMV) is controlled by the single dominant gene N in Nicotiana glutinosa L. This gene has been transferred to cultivated tobacco (N. tabacum L.) by interspecific hybridization and backcrossing, but has historically been associated with reduced yields and/or quality in flue-cured tobacco breeding materials. Past researchers have suggested the role of pleiotropy and/or linkage drag effects in this unfavorable relationship. Introduction of the cloned N gene into a TMV-susceptible tobacco genotype (cultivar 'K326') via plant transformation permitted investigation of the relative importance of these possibilities. On average, yield and cash return ($ ha(-1)) of 14 transgenic NN lines of K326 were significantly higher relative to an isoline of K326 carrying N introduced via interspecific hybridization and backcrossing. The negative effects of tissue culture-induced genetic variation confounded comparisons with the TMV-susceptible cultivar, K326, however. Backcrossing the original transgenic lines to non-tissue cultured K326 removed many of these unfavorable effects, and significantly improved their performance for yield and cash return. Comparisons of the 14 corresponding transgenic NN backcross-derived lines with K326 indicated that linkage drag is the main factor contributing to reduced yields in TMV-resistant flue-cured tobacco germplasm. On average, these transgenic lines outyielded the conventionally-developed TMV-resistant K326 isoline by 427 kg ha(-1) (P < 0.05) and generated $1,365 ha(-1) more (P < 0.05). Although transgenic tobacco cultivars are currently not commercially acceptable, breeding strategies designed to reduce the amount of N. glutinosa chromatin linked to N may increase the likelihood of developing high-yielding TMV-resistant flue-cured tobacco cultivars.
Collapse
Affiliation(s)
- R S Lewis
- Crop Science Department, North Carolina State University, Campus Box 7620, Raleigh, NC 27695, USA.
| | | | | | | |
Collapse
|
190
|
Tameling WIL, Baulcombe DC. Physical association of the NB-LRR resistance protein Rx with a Ran GTPase-activating protein is required for extreme resistance to Potato virus X. THE PLANT CELL 2007; 19:1682-94. [PMID: 17526750 PMCID: PMC1913736 DOI: 10.1105/tpc.107.050880] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/24/2007] [Accepted: 05/03/2007] [Indexed: 05/15/2023]
Abstract
Nucleotide binding leucine-rich repeat (NB-LRR) proteins play an important role in plant and mammalian innate immunity. In plants, these resistance proteins recognize specific pathogen-derived effector proteins. Recognition subsequently triggers a rapid and efficient defense response often associated with the hypersensitive response and other poorly understood processes that suppress the pathogen. To investigate mechanisms associated with the activation of disease resistance responses, we investigated proteins binding to the potato (Solanum tuberosum) NB-LRR protein Rx that confers extreme resistance to Potato virus X (PVX) in potato and Nicotiana benthamiana. By affinity purification experiments, we identified an endogenous N. benthamiana Ran GTPase-Activating Protein2 (RanGAP2) as an Rx-associated protein in vivo. Further characterization confirmed the specificity of this interaction and showed that the association occurs through their N-terminal domains. By specific virus-induced gene silencing of RanGAP2 in N. benthamiana carrying Rx, we demonstrated that this interaction is required for extreme resistance to PVX and suggest that RanGAP2 is part of the Rx signaling complex. These results implicate RanGAP-mediated cellular mechanisms, including nucleocytoplasmic trafficking, in the activation of disease resistance.
Collapse
|
191
|
Palomino C, Satovic Z, Cubero JI, Torres AM. Identification and characterization of NBS-LRR class resistance gene analogs in faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.). Genome 2007; 49:1227-37. [PMID: 17213904 DOI: 10.1139/g06-071] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A PCR approach with degenerate primers designed from conserved NBS-LRR (nucleotide binding site-leucine-rich repeat) regions of known disease-resistance (R) genes was used to amplify and clone homologous sequences from 5 faba bean (Vicia faba) lines and 2 chickpea (Cicer arietinum) accessions. Sixty-nine sequenced clones showed homologies to various R genes deposited in the GenBank database. The presence of internal kinase-2 and kinase-3a motifs in all the sequences isolated confirm that these clones correspond to NBS-containing genes. Using an amino-acid sequence identity of 70% as a threshold value, the clones were grouped into 10 classes of resistance-gene analogs (RGA01 to RGA10). The number of clones per class varied from 1 to 30. RGA classes 1, 6, 8, and 9 were comprised solely of clones isolated from faba bean, whereas classes 2, 3, 4, 5, and 7 included only chickpea clones. RGA10, showing a within-class identity of 99%, was the only class consisting of both faba bean and chickpea clones. A phylogenetic tree, based on the deduced amino-acid sequences of 12 representative clones from the 10 RGA classes and the NBS domains of 6 known R genes (I2 and Prf from tomato, RPP13 from Arabidopsis, Gro1-4 from potato, N from tobacco, L6 from flax), clearly indicated the separation between TIR (Toll/interleukin-1 receptor homology: Gro1-4, L6, N, RGA05 to RGA10)- and non-TIR (I2, Prf, RPP13, RGA01 to RGA04)-type NBS-LRR sequences. The development of suitable polymorphic markers based on cloned RGA sequences to be used in genetic mapping will facilitate the assessment of their potential linkage relationships with disease-resistance genes in faba bean and chickpea. This work is the first to report on faba bean RGAs.
Collapse
Affiliation(s)
- C Palomino
- Departamento de Genética, E.T.S.I.A.M, Universidad de Córdoba, 14071 Córdoba, Spain.
| | | | | | | |
Collapse
|
192
|
Seo YS, Jeon JS, Rojas MR, Gilbertson RL. Characterization of a novel Toll/interleukin-1 receptor (TIR)-TIR gene differentially expressed in common bean (Phaseolus vulgaris cv. Othello) undergoing a defence response to the geminivirus Bean dwarf mosaic virus. MOLECULAR PLANT PATHOLOGY 2007; 8:151-62. [PMID: 20507487 DOI: 10.1111/j.1364-3703.2007.00379.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
SUMMARY Common bean (Phaseolus vulgaris L.) cultivar (cv.) Othello develops a hypersensitive response-associated vascular resistance to infection by Bean dwarf mosaic virus (BDMV), a single-stranded DNA virus (genus Begomovirus, family Geminiviridae). A PCR-based cDNA subtraction approach was used to identify genes involved in this resistance response. Eighteen clones, potentially involved with BDMV resistance, were identified based upon being up-regulated in BDMV-infected tissues and/or having sequence similarity with known resistance-associated genes. Analysis of these clones revealed potential genes involved in pathogen defence, including pathogenesis-related protein genes and resistance gene analogues (RGAs). Further characterization of one RGA, F1-10, revealed that it encodes a predicted protein with a double Toll/interleukin-1 receptor (TIR) motif. Full-length (F1-10) and spliced (F1-10sp) forms of the RGA were strongly up-regulated in BDMV-infected cv. Othello hypocotyl tissues by 4 days post-inoculation, but not in equivalent mock-inoculated tissues. In agroinfiltration experiments, F1-10, but not F1-10sp, mediated resistance to BDMV in the susceptible common bean cv. Topcrop. By contrast, transgenic Nicotiana benthamiana lines expressing F1-10 or F1-10sp were not resistant to BDMV. Interestingly, when these transgenic lines were inoculated with the potyvirus Bean yellow mosaic virus, some F1-10 lines showed a more severe symptom phenotype compared with non-transgenic control plants. Based on these findings, F1-10 was named: Phaseolus vulgaris VIRUS response TIR-TIR GENE 1 (PvVTT1).
Collapse
Affiliation(s)
- Young-Su Seo
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
193
|
Djian-Caporalino C, Fazari A, Arguel MJ, Vernie T, VandeCasteele C, Faure I, Brunoud G, Pijarowski L, Palloix A, Lefebvre V, Abad P. Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:473-86. [PMID: 17136373 DOI: 10.1007/s00122-006-0447-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 10/25/2006] [Indexed: 05/12/2023]
Abstract
The root-knot nematode (Meloidogyne spp.) is a major plant pathogen, affecting several solanaceous crops worldwide. In Capsicum annuum, resistance to this pathogen is controlled by several independent dominant genes--the Me genes. Six Me genes have previously been shown to be stable at high temperature in three highly resistant and genetically distant accessions: PI 322719, PI 201234, and CM334 (Criollo de Morelos 334). Some genes (Me4, Mech1, and Mech2) are specific to certain Meloidogyne species or populations, whereas others (Me1, Me3, and Me7) are effective against a wide range of Meloidogyne species, including M. arenaria, M. javanica, and M. incognita, the most common species in Mediterranean and tropical areas. These genes direct different response patterns in root cells depending on the pepper line and nematode species. Allelism tests and fine mapping using the BSA-AFLP approach showed these genes to be different but linked, with a recombination frequency of 0.02-0.18. Three of the PCR-based markers identified in several genetic backgrounds were common to the six Me genes. Comparative mapping with CarthaGene software indicated that these six genes clustered in a single genomic region within a 28 cM interval. Four markers were used to anchor this cluster on the P9 chromosome on an intraspecific reference map for peppers. Other disease resistance factors have earlier been mapped in the vicinity of this cluster. This genomic area is colinear to chromosome T12 of tomato and chromosome XII of potato. Four other nematode resistance genes have earlier been identified in this area, suggesting that these nematode resistance genes are located in orthologous genomic regions in Solanaceae.
Collapse
Affiliation(s)
- C Djian-Caporalino
- INRA, UMR 1064 Interactions Plantes Microorganismes et Santé Végétale, BP167, F-06903, Sophia Antipolis, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
van Ooijen G, van den Burg HA, Cornelissen BJC, Takken FLW. Structure and function of resistance proteins in solanaceous plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:43-72. [PMID: 17367271 DOI: 10.1146/annurev.phyto.45.062806.094430] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Gene-for-gene resistance in plants is based on the presence of a resistance (R) gene in the host and a matching Avirulence (Avr) gene in the pathogen. Many R genes have been cloned over the past two decades, mostly from the Solanaceae. The gene products, called R proteins, display modular domain structures. R protein function has recently been shown to require dynamic interactions between the various domains. In addition to these intramolecular interactions, R proteins interact with other proteins to form signaling complexes that are able to activate an innate immune response that arrests proliferation of the invading pathogen, thereby conferring disease resistance. In this review, we summarize current understanding of R protein structure and function, as well as the molecular mechanisms underlying the activation of defense signaling processes. As well as being a rich source for R genes, Solanaceae are a leading model system in which to study inter- and intramolecular interactions of R proteins.
Collapse
Affiliation(s)
- Gerben van Ooijen
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GB Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
195
|
Djian-Caporalino C, Lefebvre V, Sage-Daubèze AM, Palloix A. Capsicum. GENETIC RESOURCES, CHROMOSOME ENGINEERING, AND CROP IMPROVEMENT 2006. [DOI: 10.1201/9781420009569.ch6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
196
|
Draper O, Middleton R, Doucleff M, Zambryski PC. Topology of the VirB4 C terminus in the Agrobacterium tumefaciens VirB/D4 type IV secretion system. J Biol Chem 2006; 281:37628-35. [PMID: 17038312 DOI: 10.1074/jbc.m606403200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gram-negative type IV secretion systems (T4SSs) transfer proteins and DNA to eukaryotic and/or prokaryotic recipients resulting in pathogenesis or conjugative DNA transfer. VirB4, one of the most conserved proteins in these systems, has both energetic and structural roles in substrate translocation. We previously predicted a structural model for the large C-terminal domain (residues 425-789) of VirB4 of Agrobacterium tumefaciens. Here we have defined a homology-based structural model for Agrobacterium VirB11. Both VirB4 and VirB11 models predict hexameric oligomers. Yeast two-hybrid interactions define peptides in the C terminus of VirB4 and the N terminus of VirB11 that interact with each other. These interactions were mapped onto the homology models to predict direct interactions between the hexameric interfaces of VirB4 and VirB11 such that the VirB4 C terminus stacks above VirB11 in the periplasm. In support of this, fractionation and Western blotting show that the VirB4 C terminus is localized to the membrane and periplasm rather than the cytoplasm of cells. Additional high resolution yeast two-hybrid results demonstrate interactions between the C terminus of VirB4 and the periplasmic portions of VirB1, VirB8, and VirB10. Genetic studies reveal dominant negative interactions and thus function of the VirB4 C terminus in vivo. The above data are integrated with the existing body of literature to propose a structural, periplasmic role for the C-terminal half of the Agrobacterium VirB4 protein.
Collapse
Affiliation(s)
- Olga Draper
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
197
|
Day B, Dahlbeck D, Staskawicz BJ. NDR1 interaction with RIN4 mediates the differential activation of multiple disease resistance pathways in Arabidopsis. THE PLANT CELL 2006; 18:2782-91. [PMID: 17012600 PMCID: PMC1626609 DOI: 10.1105/tpc.106.044693] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recognition of pathogens by plants involves the coordinated efforts of molecular chaperones, disease resistance (R) proteins, and components of disease resistance signaling pathways. Characterization of events associated with pathogen perception in Arabidopsis thaliana has advanced understanding of molecular genetic mechanisms associated with disease resistance and protein interactions critical for the activation of resistance signaling. Regulation of R protein-mediated signaling in response to the bacterial pathogen Pseudomonas syringae in Arabidopsis involves the physical association of at least two R proteins with the negative regulator RPM1 INTERACTING PROTEIN4 (RIN4). While the RIN4-RPS2 (for RESISTANCE TO P. SYRINGAE2) and RIN4-RPM1 (for RESISTANCE TO P. SYRINGAE PV MACULICOLA1) signaling pathways exhibit differential mechanisms of activation in terms of effector action, the requirement for NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1) is shared. Using a yeast two-hybrid screen, followed by a series of coimmunoprecipitation experiments, we demonstrate that the RIN4-NDR1 interaction occurs on the cytoplasmically localized N-terminal portion of NDR1 and that this interaction is required for the activation of resistance signaling following infection by P. syringae expressing the Cys protease Type III effector protein AvrRpt2. We demonstrate that like RPS2 and RPM1, NDR1 also associates with RIN4 in planta. We suggest that this interaction serves to further regulate activation of disease resistance signaling following recognition of P. syringae DC3000-AvrRpt2 by Arabidopsis.
Collapse
Affiliation(s)
- Brad Day
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94270, USA
| | | | | |
Collapse
|
198
|
Coaker G, Zhu G, Ding Z, Van Doren SR, Staskawicz B. Eukaryotic cyclophilin as a molecular switch for effector activation. Mol Microbiol 2006; 61:1485-96. [PMID: 16968222 DOI: 10.1111/j.1365-2958.2006.05335.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gram-negative phytopathogenic bacteria, such as Pseudomonas syringae, deliver multiple effector proteins into plant cells during infection. It is hypothesized that certain plant and mammalian effector proteins need to traverse the type III secretion system unfolded and are delivered into host cells as inactive enzymes. We have previously identified cyclophilin as the Arabidopsis eukaryotic activator of AvrRpt2, a P. syringae effector that is a cysteine protease. Cyclophilins are general folding catalysts and possess peptidyl-prolyl cis/trans isomerase (PPIase) activity. In this paper, we demonstrate the mechanism of AvrRpt2 activation by the Arabidopsis cyclophilin ROC1. ROC1 mutants lacking PPIase enzymatic activity were unable to activate AvrRpt2. Furthermore, nuclear magnetic resonance spectroscopy revealed a structural change in AvrRpt2 from an unfolded to a folded state in the presence of ROC1. Using in vitro binding assays, ROC1's consensus binding sequence was identified as GPxL, a motif present at four sites within AvrRpt2. The GPxL motifs are located in close proximity to AvrRpt2's catalytic triad and are required for protease activity both in vitro and in planta. These data suggest that after delivery into the plant cell during infection, cyclophilin binds AvrRpt2 at four sites and properly folds the effector protein by peptidyl-prolyl cis/trans isomerization.
Collapse
Affiliation(s)
- Gitta Coaker
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
199
|
Seo YS, Rojas MR, Lee JY, Lee SW, Jeon JS, Ronald P, Lucas WJ, Gilbertson RL. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. Proc Natl Acad Sci U S A 2006; 103:11856-61. [PMID: 16880399 PMCID: PMC1567666 DOI: 10.1073/pnas.0604815103] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Indexed: 01/18/2023] Open
Abstract
Genes involved in a viral resistance response in common bean (Phaseolus vulgaris cv. Othello) were identified by inoculating a geminivirus reporter (Bean dwarf mosaic virus expressing the green fluorescent protein), extracting RNA from tissue undergoing the defense response, and amplifying sequences with degenerate R gene primers. One such gene (a TIR-NBS-LRR gene, RT4-4) was selected for functional analysis in which transgenic Nicotiana benthamiana were generated and screened for resistance to a range of viruses. This analysis revealed that RT4-4 did not confer resistance to the reporter geminivirus; however, it did activate a resistance-related response (systemic necrosis) to seven strains of Cucumber mosaic virus (CMV) from pepper or tomato, but not to a CMV strain from common bean. Of these eight CMV strains, only the strain from common bean systemically infected common bean cv. Othello. Additional evidence that RT4-4 is a CMV R gene came from the detection of resistance response markers in CMV-challenged leaves of RT4-4 transgenic plants, and the identification of the CMV 2a gene product as the elicitor of the necrosis response. These findings indicate that RT4-4 functions across two plant families and is up-regulated in a non-virus-specific manner. This experimental approach holds promise for providing insights into the mechanisms by which plants activate resistance responses against pathogens.
Collapse
Affiliation(s)
| | | | - Jung-Youn Lee
- Section of Plant Biology, University of California, Davis, CA 95616
| | | | | | | | - William J. Lucas
- Section of Plant Biology, University of California, Davis, CA 95616
| | | |
Collapse
|
200
|
Rairdan GJ, Moffett P. Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. THE PLANT CELL 2006; 18:2082-93. [PMID: 16844906 PMCID: PMC1533967 DOI: 10.1105/tpc.106.042747] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant nucleotide binding and leucine-rich repeat (NB-LRR) proteins contain a region of homology known as the ARC domain located between the NB and LRR domains. Structural modeling suggests that the ARC region can be subdivided into ARC1 and ARC2 domains. We have used the potato (Solanum tuberosum) Rx protein, which confers resistance to Potato virus X (PVX), to investigate the function of the ARC region. We demonstrate that the ARC1 domain is required for binding of the Rx N terminus to the LRR domain. Domain-swap experiments with Rx and a homologous disease resistance gene, Gpa2, showed that PVX recognition localized to the C-terminal half of the LRR domain. However, inappropriate pairings of LRR and ARC2 domains resulted in autoactive molecules. Thus, the ARC2 domain is required to condition an autoinhibited state in the absence of elicitor as well as for the subsequent elicitor-induced activation. Our data suggest that the ARC region, through its interaction with the LRR, translates elicitor-induced modulations of the C terminus into a signal initiation event. Furthermore, we demonstrate that physical disruption of the LRR-ARC interaction is not required for signal initiation. We propose instead that this activity can lead to multiple rounds of elicitor recognition, providing a means of signal amplification.
Collapse
Affiliation(s)
- Gregory J Rairdan
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | |
Collapse
|