151
|
Mesonero-Escuredo S, Morales J, Mainar-Jaime RC, Díaz G, Arnal JL, Casanovas C, Barrabés S, Segalés J. Effect of Edema Disease Vaccination on Mortality and Growth Parameters in Nursery Pigs in a Shiga Toxin 2e Positive Commercial Farm. Vaccines (Basel) 2021; 9:567. [PMID: 34072889 PMCID: PMC8226810 DOI: 10.3390/vaccines9060567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/20/2022] Open
Abstract
Diseases caused by Escherichia coli are recognized as major problems in the swine industry, one of them being edema disease (ED). Importantly, the current decrease in antibiotic use may cause difficulties in controlling the disorders caused by E. coli. Therefore, this study assessed the efficacy of a commercial vaccine against ED in nursery pigs from a farm with previous history of ED. A total of 1344 pigs were monitored; half of them were randomly assigned to a vaccinated group (VG) and the other half to a non-vaccinated group (NVG). The vaccine was administered at 7 days of age. Animals received a pre-starter feed with 2500 ppm of zinc oxide (ZnO) for 2 weeks and a starter feed without ZnO for another 3 weeks. Pen-group weights were recorded at 28 (weaning), 42 (end of pre-starter phase), and 63 days of life (end of nursery phase). Death/culling rates, average daily gain (ADG), and average daily feed intake (ADFI) were calculated for each group at each phase. The overall relative risk of dying/being culled for a pig in the NVG was 5 times higher than that of the VG group but increased to 12 times higher during the starter period. ADG and ADFI were also significantly higher in the VG group for that period. Vaccination against ED significantly reduced pig losses and improved ADG and ADFI, particularly when ZnO was not used.
Collapse
Affiliation(s)
| | - Joaquín Morales
- PigCHAMP Pro Europa SL, 40006 Segovia, Spain; (J.M.); (G.D.)
| | - Raúl Carlos Mainar-Jaime
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain;
| | - Gonzalo Díaz
- PigCHAMP Pro Europa SL, 40006 Segovia, Spain; (J.M.); (G.D.)
| | | | - Carlos Casanovas
- CEVA Salud Animal, 08028 Barcelona, Spain; (S.M.-E.); (C.C.); (S.B.)
| | - Sergio Barrabés
- CEVA Salud Animal, 08028 Barcelona, Spain; (S.M.-E.); (C.C.); (S.B.)
| | - Joaquim Segalés
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain
| |
Collapse
|
152
|
Maria Vasconcelos Queiroz A, Aleksandrovna Yanshina Y, Thays da Silva Rodrigues E, Luciano Neves Santos F, Alejandra Fiorani Celedon P, Maheshwari S, Beatriz Gabelli S, Stephanie Peucelle Rubio C, Durana A, Guérin DMA, Sousa Silva M. Antibodies response induced by recombinant virus-like particles from Triatoma virus and chimeric antigens from Trypanosoma cruzi. Vaccine 2021; 39:4723-4732. [PMID: 34053789 DOI: 10.1016/j.vaccine.2021.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND The infection caused by the protozoan Trypanosoma cruzi affects humans and is called as Chagas disease. Currently, the main measures available to reduce the incidence of this disease are drug treatment and vector control. Traditionally, the development of vaccines occurs mainly through the use of antigenic candidates of the etiologic agent in the form of a vaccine preparation. Virus-like particles (VLPs) are structures analogous to viral capsids composed essentially of structural proteins and are widely used in vaccination protocols because of their immunostimulatory properties. In this context, the objective of this study was to use strategies in a murine immunization model to characterize the immunostimulatory capacity of VLPs from Triatoma virus (TrV-VLPs), analysed in the presence or absence of the aluminium vaccine adjuvant. In parallel, to characterize the immunogenic behaviour of four T. cruzi chimeric recombinant proteins (mix-IBMP) associated with TrV-VLPs or aluminium vaccine adjuvant. METHOD We immunized BALB/c mice once or twice, depending on the strategy, and collected serum samples at 15, 30 and 45 days after the immunization. Subsequently, serum samples from animals immunized with TrV-VLPs were used to determine total IgG, IgG1, IgG2a, IgG2b and IgG3 anti-TrV-VLPs by enzyme-linked immunosorbent assay (ELISA). RESULTS Data obtained demonstrate the ability of TrV-VLPs to preferably induce IgG2b and IgG3 type antibodies in the absence of aluminium adjuvant. In fact, the use of aluminium did not interfere with the total IgG profile of anti-TrV-VLPs. Interestingly, mix-IBMP had a better profile of total IgG, IgG1 and IgG3 subclasses when mixed with TrV-VLPs. CONCLUSION In conclusion, these results suggest the potential of TrV-VLPs as a vaccine adjuvant and the use of T. cruzi chimeric antigens as a rational strategy for the development of vaccines against the experimental model of Chagas disease.
Collapse
Affiliation(s)
- Aline Maria Vasconcelos Queiroz
- Postgraduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Rua Gen, Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil; Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Rua Gen, Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil
| | - Yulia Aleksandrovna Yanshina
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Rua da Juqueira, 100, 1800-166 Lisbon, Portugal
| | - Emily Thays da Silva Rodrigues
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Rua Gen, Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil
| | - Fred Luciano Neves Santos
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Fiocruz, Rua Waldemar Falcão, 121, 40296-710 Salvador, Brazil.
| | | | - Sweta Maheshwari
- School of Medicine, Johns Hopkins University, 725 N Wolfe St, Baltimore, MD 21205, USA
| | | | - Carla Stephanie Peucelle Rubio
- Departamento de Bioquímica y Biología Molecular, Instituto Biofisika, Universidad del País Vasco (UBF, CSIC, UPV-EHU), B° Sarriena S/N, 48940 Leioa, Bizkaia, Spain; Ikosaedrika Biologicals S.L. ZITEK Edificio Rectorado UPV/EHU, B° Sarriena S/N, 48940 Leioa, Vizcaya, Spain
| | - Aritz Durana
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia, B° Sarriena S/N, 48940 Leioa, Vizcaya, Spain
| | - Diego M A Guérin
- Departamento de Bioquímica y Biología Molecular, Instituto Biofisika, Universidad del País Vasco (UBF, CSIC, UPV-EHU), B° Sarriena S/N, 48940 Leioa, Bizkaia, Spain; Ikosaedrika Biologicals S.L. ZITEK Edificio Rectorado UPV/EHU, B° Sarriena S/N, 48940 Leioa, Vizcaya, Spain.
| | - Marcelo Sousa Silva
- Postgraduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Rua Gen, Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil; Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Rua Gen, Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil; Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Rua da Juqueira, 100, 1800-166 Lisbon, Portugal.
| |
Collapse
|
153
|
Guerrini G, Vivi A, Gioria S, Ponti J, Magrì D, Hoeveler A, Medaglini D, Calzolai L. Physicochemical Characterization Cascade of Nanoadjuvant-Antigen Systems for Improving Vaccines. Vaccines (Basel) 2021; 9:vaccines9060544. [PMID: 34064212 PMCID: PMC8224364 DOI: 10.3390/vaccines9060544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 01/25/2023] Open
Abstract
Adjuvants have been used for decades to enhance the immune response to vaccines, in particular for the subunit-based adjuvants. Physicochemical properties of the adjuvant-protein antigen complexes, such as size, morphology, protein structure and binding, influence the overall efficacy and safety of the vaccine. Here we show how to perform an accurate physicochemical characterization of the nanoaluminum-ovalbumin complex. Using a combination of existing techniques, we developed a multi-staged characterization strategy based on measurements of increased complexity. This characterization cascade has the advantage of being very flexible and easily adaptable to any adjuvant-protein antigen combinations. It will contribute to control the quality of antigen-adjuvant complexes and immunological outcomes, ultimately leading to improved vaccines.
Collapse
Affiliation(s)
- Giuditta Guerrini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.G.); (A.V.); (D.M.)
| | - Antonio Vivi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.G.); (A.V.); (D.M.)
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.G.); (J.P.); (D.M.); (A.H.)
| | - Jessica Ponti
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.G.); (J.P.); (D.M.); (A.H.)
| | - Davide Magrì
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.G.); (J.P.); (D.M.); (A.H.)
| | - Arnd Hoeveler
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.G.); (J.P.); (D.M.); (A.H.)
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.G.); (A.V.); (D.M.)
| | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.G.); (J.P.); (D.M.); (A.H.)
- Correspondence:
| |
Collapse
|
154
|
Pahima H, Puzzovio PG, Levi-Schaffer F. A novel mast cell-dependent allergic peritonitis model. Clin Exp Immunol 2021; 205:306-315. [PMID: 33999404 DOI: 10.1111/cei.13619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/04/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022] Open
Abstract
Typical murine models of allergic inflammation are induced by the combination of ovalbumin and aluminum hydroxide. However, accumulating evidence indicates that, in models of asthma and atopic dermatitis, allergic inflammation can be generated in the absence of aluminum hydroxide. Moreover, co-administration of Staphylococcus aureus enterotoxin B with ovalbumin can enhance inflammation. The objective of this study was to establish a rapid and mast cell-dependent murine model of allergic inflammation by inducing allergic peritonitis using ovalbumin and S. aureus enterotoxin B. Allergic peritonitis was induced in C57BL/6 mice by subcutaneous sensitization and intraperitoneal challenge with ovalbumin and S. aureus enterotoxin B. Disease characteristics were assessed by flow cytometry, enzyme-linked immunosorbent assay (ELISA), trypan blue exclusion and colorimetric assays. The time-course of the allergic peritonitis revealed a peak of peritoneal inflammation 48 h after challenge, as assessed by total cells and eosinophil counts. The decrease of cell numbers started 96 h post-challenge, with complete clearance within 168 h. Moreover, significantly higher levels of tryptase and increased vascular permeability were found 30 min following challenge. Allergic inflammation induction by ovalbumin and S. aureus enterotoxin B was impaired in mast cell-deficient mice and partially restored by mice reconstitution with bone marrow-derived mast cells, indicating the mast cell role in this model. We present a novel model of allergic peritonitis that is mast cell-dependent, simple and robust. Moreover, the use of S. aureus enterotoxin B better resembles human allergic inflammation, which is known to be characterized by the colonization of S. aureus.
Collapse
Affiliation(s)
- Hadas Pahima
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
155
|
Ren H, Mou Y, Lin L, Wang L, Hu H. Efficient antigen cross-presentation through coating conventional aluminum adjuvant particles with PEI. Am J Transl Res 2021; 13:4092-4102. [PMID: 34150001 PMCID: PMC8205809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Classical aluminum adjuvant is a deficient antigen carrier for cross-presentation and cross-priming of CD8+ cytotoxic T cells. Our previous research has demonstrated that cross-presentation efficiency significantly increased when antigens are conjugated covalently to α-Al2O3 nanoparticles. Here we found that coating conventional aluminum adjuvants with polyethyleneimine (PEI) could enhance antigen cross-presentation of DCs (dendritic cells) in vitro and in vivo. PEIs exerted differential effects on antigen cross-presentation. These findings provided an alternative approach to promote the rapid translation of alumina nanoparticles adjuvants into clinical application.
Collapse
Affiliation(s)
- Hongyan Ren
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, P. R. China
- Laboratory of Cancer Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer CenterPortland, OR, USA
| | - Yongbin Mou
- Laboratory of Cancer Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer CenterPortland, OR, USA
- Nanjing Stomatological Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Lin Lin
- Laboratory of Cancer Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer CenterPortland, OR, USA
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineChina
| | - Lixin Wang
- School of Medicine, Southeast UniversityNanjing, China
| | - Hongming Hu
- Laboratory of Cancer Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer CenterPortland, OR, USA
| |
Collapse
|
156
|
de Sá-Rocha LC, Demarchi LMMF, Postol E, Sampaio RO, de Alencar RE, Kalil J, Guilherme L. StreptInCor, a Group A Streptococcal Adsorbed Vaccine: Evaluation of Repeated Intramuscular Dose Toxicity Testing in Rats. Front Cardiovasc Med 2021; 8:643317. [PMID: 34046438 PMCID: PMC8144318 DOI: 10.3389/fcvm.2021.643317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/22/2021] [Indexed: 01/18/2023] Open
Abstract
Streptococcus pyogenes infections continue to be a worldwide public health problem, causing various diseases in humans, with rheumatic fever and rheumatic heart disease being the most harmful manifestations. Impetigo and post-streptococcal glomerulonephritis are also important sequelae of skin infections. We have developed a candidate vaccine epitope (StreptInCor) that presents promising results in diverse animal models. To assess whether the StreptInCor alum-adsorbed vaccine could induce undesirable effects, a certified independent company conducted a repeated intramuscular dose toxicity evaluation in Wistar rats, a choice model for toxicity studies. We did not observe significant alterations in clinical, hematological, biochemical, anatomical, or histopathological parameters due to vaccine administration, even when the animals received the highest dose. In conclusion, repeated intramuscular doses did not show signs of macroscopic or other significant changes in the clinical or histopathological parameters, indicating that StreptInCor can be considered a safe candidate vaccine.
Collapse
Affiliation(s)
- Luiz Carlos de Sá-Rocha
- Neuroimmunology Laboratory School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Edilberto Postol
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
| | - Roney Orismar Sampaio
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Raquel Elaine de Alencar
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
| | - Luiza Guilherme
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Immunology Investigation Institute, National Institute for Science and Technology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
157
|
Negm II, Ragab YM, Mohamed AF. Outer membrane proteins of Salmonella typhimurium as an adjuvant in rabies vaccine. Clin Exp Vaccine Res 2021; 10:132-140. [PMID: 34222125 PMCID: PMC8217580 DOI: 10.7774/cevr.2021.10.2.132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/26/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE The objective of the present study was to evaluate the immune-enhancing potential of Salmonella typhimurium outer membrane protein (OMP) and alum as adjuvants towards inactivated Vero cells rabies vaccine (FRV/K2). MATERIALS AND METHODS Six groups of female Sprague Dawley albino rats (10/group) were used in the evaluation of immunogenicity and safety of vaccines and adjuvants. Total immunoglobulin G secreted interferon-gamma (IFN-γ), and the percentage of proliferated CD4+ and CD8+ T cells were measured. Biochemical analysis and histopathological examination were used to test safety profiles. RESULTS OMP adjuvanted rabies vaccine (FRV/K2+OMP) (OMP combined locally prepared vaccine) induced significantly higher neutralizing antibodies on day 21 post-vaccination relative to free (FRV/K2) vaccine and alum adsorbed vaccine (FRV/K2+alum) (alum adsorbed locally prepared vaccine). (FRV/K2+OMP) induced a significantly higher level of IFN-γ on day 14 post-vaccination. CD8+ T cells were significantly higher post-vaccination with reference (RV), free (FRV/K2), and (FRV/K2+OMP) than (FRV/K2+alum). On the contrary, CD4+ T cells were significantly elevated post-vaccination with (FRV/K2+alum) at p<0.05. Biochemical analysis and histopathological examination revealed that OMP could be used safely as an adjuvant for the development of more effective rabies vaccines. CONCLUSION Outer membrane proteins adjuvanted rabies vaccines would be beneficial to induce rapid neutralizing antibodies and essential cytokines.
Collapse
Affiliation(s)
- Iman Ibrahim Negm
- The Egyptian Holding Company for the Production of Vaccines, Sera and Drugs, Cairo, Egypt
| | - Yasser M. Ragab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aly Fahmy Mohamed
- International Center for Training and Advanced Researches (ICTAR-Egypt), Cairo, Egypt
| |
Collapse
|
158
|
Ella R, Vadrevu KM, Jogdand H, Prasad S, Reddy S, Sarangi V, Ganneru B, Sapkal G, Yadav P, Abraham P, Panda S, Gupta N, Reddy P, Verma S, Kumar Rai S, Singh C, Redkar SV, Gillurkar CS, Kushwaha JS, Mohapatra S, Rao V, Guleria R, Ella K, Bhargava B. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2021; 21:637-646. [PMID: 33485468 PMCID: PMC7825810 DOI: 10.1016/s1473-3099(20)30942-7] [Citation(s) in RCA: 261] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND To mitigate the effects of COVID-19, a vaccine is urgently needed. BBV152 is a whole-virion inactivated SARS-CoV-2 vaccine formulated with a toll-like receptor 7/8 agonist molecule adsorbed to alum (Algel-IMDG) or alum (Algel). METHODS We did a double-blind, multicentre, randomised, controlled phase 1 trial to assess the safety and immunogenicity of BBV152 at 11 hospitals across India. Healthy adults aged 18-55 years who were deemed healthy by the investigator were eligible. Individuals with positive SARS-CoV-2 nucleic acid and/or serology tests were excluded. Participants were randomly assigned to receive either one of three vaccine formulations (3 μg with Algel-IMDG, 6 μg with Algel-IMDG, or 6 μg with Algel) or an Algel only control vaccine group. Block randomisation was done with a web response platform. Participants and investigators were masked to treatment group allocation. Two intramuscular doses of vaccines were administered on day 0 (the day of randomisation) and day 14. Primary outcomes were solicited local and systemic reactogenicity events at 2 h and 7 days after vaccination and throughout the full study duration, including serious adverse events. Secondary outcome was seroconversion (at least four-fold increase from baseline) based on wild-type virus neutralisation. Cell-mediated responses were evaluated by intracellular staining and ELISpot. The trial is registered at ClinicalTrials.gov (NCT04471519). FINDINGS Between July 13 and 30, 2020, 827 participants were screened, of whom 375 were enrolled. Among the enrolled participants, 100 each were randomly assigned to the three vaccine groups, and 75 were randomly assigned to the control group (Algel only). After both doses, solicited local and systemic adverse reactions were reported by 17 (17%; 95% CI 10·5-26·1) participants in the 3 μg with Algel-IMDG group, 21 (21%; 13·8-30·5) in the 6 μg with Algel-IMDG group, 14 (14%; 8·1-22·7) in the 6 μg with Algel group, and ten (10%; 6·9-23·6) in the Algel-only group. The most common solicited adverse events were injection site pain (17 [5%] of 375 participants), headache (13 [3%]), fatigue (11 [3%]), fever (nine [2%]), and nausea or vomiting (seven [2%]). All solicited adverse events were mild (43 [69%] of 62) or moderate (19 [31%]) and were more frequent after the first dose. One serious adverse event of viral pneumonitis was reported in the 6 μg with Algel group, unrelated to the vaccine. Seroconversion rates (%) were 87·9, 91·9, and 82·8 in the 3 μg with Algel-IMDG, 6 μg with Algel-IMDG, and 6 μg with Algel groups, respectively. CD4+ and CD8+ T-cell responses were detected in a subset of 16 participants from both Algel-IMDG groups. INTERPRETATION BBV152 led to tolerable safety outcomes and enhanced immune responses. Both Algel-IMDG formulations were selected for phase 2 immunogenicity trials. Further efficacy trials are warranted. FUNDING Bharat Biotech International.
Collapse
Affiliation(s)
| | - Krishna Mohan Vadrevu
- Bharat Biotech, Hyderabad, India,Correspondence to: Dr Krishna Mohan Vadrevu, Bharat Biotech, Genome Valley, Hyderabad 500 078, India
| | | | | | | | | | | | - Gajanan Sapkal
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Pragya Yadav
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Priya Abraham
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Samiran Panda
- Indian Council of Medical Research, New Delhi, India
| | | | | | - Savita Verma
- Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, India
| | | | | | | | | | | | | | - Venkat Rao
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | | | | | | |
Collapse
|
159
|
Ella R, Vadrevu KM, Jogdand H, Prasad S, Reddy S, Sarangi V, Ganneru B, Sapkal G, Yadav P, Abraham P, Panda S, Gupta N, Reddy P, Verma S, Kumar Rai S, Singh C, Redkar SV, Gillurkar CS, Kushwaha JS, Mohapatra S, Rao V, Guleria R, Ella K, Bhargava B. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2021; 21:637-646. [PMID: 33485468 DOI: 10.1101/2020.12.11.20210419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND To mitigate the effects of COVID-19, a vaccine is urgently needed. BBV152 is a whole-virion inactivated SARS-CoV-2 vaccine formulated with a toll-like receptor 7/8 agonist molecule adsorbed to alum (Algel-IMDG) or alum (Algel). METHODS We did a double-blind, multicentre, randomised, controlled phase 1 trial to assess the safety and immunogenicity of BBV152 at 11 hospitals across India. Healthy adults aged 18-55 years who were deemed healthy by the investigator were eligible. Individuals with positive SARS-CoV-2 nucleic acid and/or serology tests were excluded. Participants were randomly assigned to receive either one of three vaccine formulations (3 μg with Algel-IMDG, 6 μg with Algel-IMDG, or 6 μg with Algel) or an Algel only control vaccine group. Block randomisation was done with a web response platform. Participants and investigators were masked to treatment group allocation. Two intramuscular doses of vaccines were administered on day 0 (the day of randomisation) and day 14. Primary outcomes were solicited local and systemic reactogenicity events at 2 h and 7 days after vaccination and throughout the full study duration, including serious adverse events. Secondary outcome was seroconversion (at least four-fold increase from baseline) based on wild-type virus neutralisation. Cell-mediated responses were evaluated by intracellular staining and ELISpot. The trial is registered at ClinicalTrials.gov (NCT04471519). FINDINGS Between July 13 and 30, 2020, 827 participants were screened, of whom 375 were enrolled. Among the enrolled participants, 100 each were randomly assigned to the three vaccine groups, and 75 were randomly assigned to the control group (Algel only). After both doses, solicited local and systemic adverse reactions were reported by 17 (17%; 95% CI 10·5-26·1) participants in the 3 μg with Algel-IMDG group, 21 (21%; 13·8-30·5) in the 6 μg with Algel-IMDG group, 14 (14%; 8·1-22·7) in the 6 μg with Algel group, and ten (10%; 6·9-23·6) in the Algel-only group. The most common solicited adverse events were injection site pain (17 [5%] of 375 participants), headache (13 [3%]), fatigue (11 [3%]), fever (nine [2%]), and nausea or vomiting (seven [2%]). All solicited adverse events were mild (43 [69%] of 62) or moderate (19 [31%]) and were more frequent after the first dose. One serious adverse event of viral pneumonitis was reported in the 6 μg with Algel group, unrelated to the vaccine. Seroconversion rates (%) were 87·9, 91·9, and 82·8 in the 3 μg with Algel-IMDG, 6 μg with Algel-IMDG, and 6 μg with Algel groups, respectively. CD4+ and CD8+ T-cell responses were detected in a subset of 16 participants from both Algel-IMDG groups. INTERPRETATION BBV152 led to tolerable safety outcomes and enhanced immune responses. Both Algel-IMDG formulations were selected for phase 2 immunogenicity trials. Further efficacy trials are warranted. FUNDING Bharat Biotech International.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gajanan Sapkal
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Pragya Yadav
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Priya Abraham
- Indian Council of Medical Research-National Institute of Virology, Pune, India
| | - Samiran Panda
- Indian Council of Medical Research, New Delhi, India
| | | | | | - Savita Verma
- Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, India
| | | | | | | | | | | | | | - Venkat Rao
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | | | | | | |
Collapse
|
160
|
Chen PM, Pan WY, Luo PK, Phung HN, Liu YM, Chiang MC, Chang WA, Tien TL, Huang CY, Wu WW, Chia WT, Sung HW. Pollen-Mimetic Metal-Organic Frameworks with Tunable Spike-Like Nanostructures That Promote Cell Interactions to Improve Antigen-Specific Humoral Immunity. ACS NANO 2021; 15:7596-7607. [PMID: 33760607 DOI: 10.1021/acsnano.1c01129] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The exine capsules of pollen particles exhibit a variety of characteristic surface morphologies that promote their cell interactions; their use as antigen carriers for vaccination has been proposed. However, the allergy-causing substances in pollen particles may not all be removed, even by vigorous chemical treatments. To resolve this issue, this work develops systemic approaches for synthesizing pollen-mimetic metal-organic frameworks (MOFs), which comprise aluminum (Al) ions and an organic linker (2-aminoterephthalic acid), with tunable spike-like nanostructures on their surfaces. The as-synthesized MOFs act not only as a delivery vehicle that carries a model antigen (ovalbumin, OVA) but also as an adjuvant (Al). Scanning and transmission electron microscopies images reveal that the aspect ratio of the nanospikes that are grown on the MOFs can be controlled. A higher aspect ratio of the nanospikes on the MOFs is associated with greater cell attachment and faster and more efficient phagocytosis in cells, which results in greater expressions of pro-inflammatory cytokines. Consequently, a more robust immune response against the antigen of interest is elicited. These findings have broad implications for the rational design of the future antigen/adjuvant-presenting particles for vaccination.
Collapse
Affiliation(s)
- Po-Ming Chen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Wen-Yu Pan
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - Po-Kai Luo
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Hieu Nghia Phung
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Yu-Miao Liu
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Min-Chun Chiang
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Wan-An Chang
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Ting-Lun Tien
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Chih-Yang Huang
- Department of Materials Science and Engineering and Center for Intelligent Semiconductor Nano-System Technology Research, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Wen-Wei Wu
- Department of Materials Science and Engineering and Center for Intelligent Semiconductor Nano-System Technology Research, National Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Wei-Tso Chia
- Department of Orthopedics, National Taiwan University Hospital, Hsinchu Branch, Hsinchu 300, Taiwan, ROC
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| |
Collapse
|
161
|
Mrochen DM, Trübe P, Jorde I, Domanska G, van den Brandt C, Bröker BM. Immune Polarization Potential of the S. aureus Virulence Factors SplB and GlpQ and Modulation by Adjuvants. Front Immunol 2021; 12:642802. [PMID: 33936060 PMCID: PMC8081891 DOI: 10.3389/fimmu.2021.642802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Protection against Staphylococcus aureus is determined by the polarization of the anti-bacterial immune effector mechanisms. Virulence factors of S. aureus can modulate these and induce differently polarized immune responses in a single individual. We proposed that this may be due to intrinsic properties of the bacterial proteins. To test this idea, we selected two virulence factors, the serine protease-like protein B (SplB) and the glycerophosphoryl diester phosphodiesterase (GlpQ). In humans naturally exposed to S. aureus, SplB induces a type 2-biased adaptive immune response, whereas GlpQ elicits type 1/type 3 immunity. We injected the recombinant bacterial antigens into the peritoneum of S. aureus-naïve C57BL/6N mice and analyzed the immune response. This was skewed by SplB toward a Th2 profile including specific IgE, whereas GlpQ was weakly immunogenic. To elucidate the influence of adjuvants on the proteins’ polarization potential, we studied Montanide ISA 71 VG and Imject™Alum, which promote a Th1 and Th2 response, respectively. Alum strongly increased antibody production to the Th2-polarizing protein SplB, but did not affect the response to GlpQ. Montanide enhanced the antibody production to both S. aureus virulence factors. Montanide also augmented the inflammation in general, whereas Alum had little effect on the cellular immune response. The adjuvants did not override the polarization potential of the S. aureus proteins on the adaptive immune response.
Collapse
Affiliation(s)
- Daniel M Mrochen
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Patricia Trübe
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Ilka Jorde
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Grazyna Domanska
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | | | - Barbara M Bröker
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
162
|
Etna MP, Signorazzi A, Ricci D, Severa M, Rizzo F, Giacomini E, Gaggioli A, Bekeredjian-Ding I, Huckriede A, Coccia EM. Human plasmacytoid dendritic cells at the crossroad of type I interferon-regulated B cell differentiation and antiviral response to tick-borne encephalitis virus. PLoS Pathog 2021; 17:e1009505. [PMID: 33857267 PMCID: PMC8078780 DOI: 10.1371/journal.ppat.1009505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/27/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
The Tick-borne encephalitis virus (TBEV) causes different disease symptoms varying from asymptomatic infection to severe encephalitis and meningitis suggesting a crucial role of the human host immune system in determining the fate of the infection. There is a need to understand the mechanisms underpinning TBEV-host interactions leading to protective immunity. To this aim, we studied the response of human peripheral blood mononuclear cells (PBMC) to the whole formaldehyde inactivated TBEV (I-TBEV), the drug substance of Encepur, one of the five commercially available vaccine. Immunophenotyping, transcriptome and cytokine profiling of PBMC revealed that I-TBEV generates differentiation of a sub-population of plasmacytoid dendritic cells (pDC) that is specialized in type I interferon (IFN) production. In contrast, likely due to the presence of aluminum hydroxide, Encepur vaccine was a poor pDC stimulus. We demonstrated I-TBEV-induced type I IFN together with Interleukin 6 and BAFF to be critical for B cell differentiation to plasmablasts as measured by immunophenotyping and immunoglobulin production. Robust type I IFN secretion was induced by pDC with the concerted action of both viral E glycoprotein and RNA mirroring previous data on dual stimulation of pDC by both S. aureus and influenza virus protein and nucleic acid that leads to a type I IFN-mediated sustained immune response. E glycoprotein neutralization or high temperature denaturation and inhibition of Toll-like receptor 7 signalling confirmed the importance of preserving the functional integrity of these key viral molecules during the inactivation procedure and manufacturing process to produce a vaccine able to stimulate strong immune responses. Though vaccination is generally considered effective in reducing tick-borne encephalitis (TBE) incidence, several studies have shown that the antibody response to TBEV vaccination declines with age resulting in more frequent TBE cases among 50+ year-old vaccinees. These observations together with the lack of a specific antiviral drug impose to pinpoint novel host- and pathogen-directed therapies and to improve the control of vaccine efficacy. Thus, we interrogated in vitro human PBMC, whose response to TBEV may provide a picture closer to what occurs in vivo in humans after vaccination or natural infection compared to animal models. The role of E glycoprotein and viral RNA in promoting antiviral and B cell-mediated responses was investigated. Thus, these key viral molecules should be considered, in future, for novel subunit vaccine formulations than the current whole inactivated TBEV-based vaccines, which require laborious manipulation in biosafety level-3 laboratory and animal testing for manufacturing and batch release.
Collapse
Affiliation(s)
- Marilena P. Etna
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Aurora Signorazzi
- Department of Medical Microbiology & Infection Prevention, University of Groningen, Groningen, The Netherlands
| | - Daniela Ricci
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Severa
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabiana Rizzo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Giacomini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Gaggioli
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy
| | | | - Anke Huckriede
- Department of Medical Microbiology & Infection Prevention, University of Groningen, Groningen, The Netherlands
| | - Eliana M. Coccia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
163
|
Pirahmadi S, Zakeri S, Djadid ND, Mehrizi AA. A review of combination adjuvants for malaria vaccines: a promising approach for vaccine development. Int J Parasitol 2021; 51:699-717. [PMID: 33798560 DOI: 10.1016/j.ijpara.2021.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/18/2020] [Accepted: 01/28/2021] [Indexed: 01/16/2023]
Abstract
It is obvious that there is a critical need for an efficient malaria vaccine to accelerate malaria eradication. Currently, recombinant subunit vaccination against malaria using proteins and peptides is gaining attention. However, one of the major drawbacks of this approach is the lack of an efficient and durable immune response. Therefore, subunit vaccines require adjuvants to make the vaccine sufficiently immunogenic. Considering the history of the RTS,S vaccine, it seems likely that no single adjuvant is capable of eliciting all the protective immune responses required in many malarial subunit vaccines and the use of combination adjuvants will be increasingly important as the science of malaria vaccines advances. In light of this, it appears that identifying the most effective mixture of adjuvants with minimal adverse effects offers tremendous opportunities in improving the efficacy of vaccines against malaria. Owing to the importance of a multi-adjuvanted approach in subunit malaria vaccine development, this review paper outlines some of the best known combination adjuvants used in malaria subunit vaccines, focusing on their proposed mechanisms of action, their immunological properties, and their notable results. The aim of the present review is to consolidate these findings to aid the application of these combination adjuvants in experimental malaria vaccines.
Collapse
Affiliation(s)
- Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Navid D Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Akram A Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
164
|
An Overview of Nanocarrier-Based Adjuvants for Vaccine Delivery. Pharmaceutics 2021; 13:pharmaceutics13040455. [PMID: 33801614 PMCID: PMC8066039 DOI: 10.3390/pharmaceutics13040455] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/12/2022] Open
Abstract
The development of vaccines is one of the most significant medical accomplishments which has helped to eradicate a large number of diseases. It has undergone an evolutionary process from live attenuated pathogen vaccine to killed whole organisms or inactivated toxins (toxoids), each of them having its own advantages and disadvantages. The crucial parameters in vaccination are the generation of memory response and protection against infection, while an important aspect is the effective delivery of antigen in an intelligent manner to evoke a robust immune response. In this regard, nanotechnology is greatly contributing to developing efficient vaccine adjuvants and delivery systems. These can protect the encapsulated antigen from the host’s in-vivo environment and releasing it in a sustained manner to induce a long-lasting immunostimulatory effect. In view of this, the present review article summarizes nanoscale-based adjuvants and delivery vehicles such as viral vectors, virus-like particles and virosomes; non-viral vectors namely nanoemulsions, lipid nanocarriers, biodegradable and non-degradable nanoparticles, calcium phosphate nanoparticles, colloidally stable nanoparticles, proteosomes; and pattern recognition receptors covering c-type lectin receptors and toll-like receptors.
Collapse
|
165
|
Chand DJ, Magiri RB, Wilson HL, Mutwiri GK. Polyphosphazenes as Adjuvants for Animal Vaccines and Other Medical Applications. Front Bioeng Biotechnol 2021; 9:625482. [PMID: 33763409 PMCID: PMC7982900 DOI: 10.3389/fbioe.2021.625482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/22/2021] [Indexed: 11/15/2022] Open
Abstract
Polyphosphazenes are a class of experimental adjuvants that have shown great versatility as vaccine adjuvants in many animal species ranging from laboratory rodents to large animal species. Their adjuvant activity has shown promising results with numerous viral and bacterial antigens, as well as with crude and purified antigens. Vaccines adjuvanted with polyphosphazenes can be delivered via systemic and mucosal administration including respiratory, oral, rectal, and intravaginal routes. Polyphosphazenes can be used in combination with other adjuvants, further enhancing immune responses to antigens. The mechanisms of action of polyphosphazenes have not fully been defined, but several systematic studies have suggested that they act primarily by activating innate immunity. In the present review, we will highlight progress in the development of polyphosphazenes as adjuvants in animals and their other medical applications.
Collapse
Affiliation(s)
- Dylan J Chand
- Vaccinology & Immunotherapeutic Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.,Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Royford B Magiri
- Vaccinology & Immunotherapeutic Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.,College of Agriculture, Fisheries and Forestry, Fiji National University, Nausori, Fiji
| | - Heather L Wilson
- Vaccinology & Immunotherapeutic Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.,Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - George K Mutwiri
- Vaccinology & Immunotherapeutic Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.,Vaccine & Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
166
|
Du Y, Xu Y, Feng J, Hu L, Zhang Y, Zhang B, Guo W, Mai R, Chen L, Fang J, Zhang H, Peng T. Intranasal administration of a recombinant RBD vaccine induced protective immunity against SARS-CoV-2 in mouse. Vaccine 2021; 39:2280-2287. [PMID: 33731271 PMCID: PMC7934688 DOI: 10.1016/j.vaccine.2021.03.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/06/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
The emergence of the global Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic underscores the importance of the rapid development of a non-invasive vaccine that can be easily administered. A vaccine administered by nasal delivery is endowed with such characteristics against respiratory viruses. In this study, we generated a recombinant SARS-CoV-2 receptor-binding domain (RBD)-based subunit vaccine. Mice were immunized via intranasal inoculation, microneedle-intradermal injection, or intramuscular injection, after which the RBD-specific immune responses were compared. Results showed that when administrated intranasally, the vaccine elicited a robust systemic humoral immunity with high titers of IgG antibodies and neutralizing antibodies as well as a significant mucosal immunity. Besides, antigen-specific T cell responses were also analyzed. These results indicated that the non-invasive intranasal administration should be explored for the future SARS-CoV-2 vaccine design.
Collapse
Affiliation(s)
- Yingying Du
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuhua Xu
- Guangdong South China Vaccine, Guangzhou, China
| | - Jin Feng
- Guangdong South China Vaccine, Guangzhou, China
| | - Longbo Hu
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yanan Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bo Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Weili Guo
- Guangdong South China Vaccine, Guangzhou, China
| | - Runming Mai
- Guangdong South China Vaccine, Guangzhou, China
| | - Liyun Chen
- Guangdong South China Vaccine, Guangzhou, China
| | - Jianmin Fang
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Tao Peng
- Guangdong South China Vaccine, Guangzhou, China; Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
167
|
Kamecki F, Marcucci C, Ferreira-Gomes M, Sabatier L, Knez D, Gobec S, Monti JLE, Rademacher M, Marcos A, de Tezanos Pinto F, Gavernet L, Colettis N, Marder M. 2’-Hydroxy-4’,5’-dimethyl-4-dimethylaminochalcone, a novel fluorescent flavonoid with capacity to detect aluminium in cells and modulate Alzheimer’s disease targets. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
168
|
Pollet J, Chen WH, Strych U. Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv Drug Deliv Rev 2021; 170:71-82. [PMID: 33421475 PMCID: PMC7788321 DOI: 10.1016/j.addr.2021.01.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/15/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023]
Abstract
With the COVID-19 pandemic now ongoing for close to a year, people all over the world are still waiting for a vaccine to become available. The initial focus of accelerated global research and development efforts to bring a vaccine to market as soon as possible was on novel platform technologies that promised speed but had limited history in the clinic. In contrast, recombinant protein vaccines, with numerous examples in the clinic for many years, missed out on the early wave of investments from government and industry. Emerging data are now surfacing suggesting that recombinant protein vaccines indeed might offer an advantage or complement to the nucleic acid or viral vector vaccines that will likely reach the clinic faster. Here, we summarize the current public information on the nature and on the development status of recombinant subunit antigens and adjuvants targeting SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Jeroen Pollet
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America.
| | - Wen-Hsiang Chen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America
| | - Ulrich Strych
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America
| |
Collapse
|
169
|
Sawant N, Kaur K, Holland DA, Hickey JM, Agarwal S, Brady JR, Dalvie NC, Tracey MK, Velez-Suberbie ML, Morris SA, Jacob SI, Bracewell DG, Mukhopadhyay TK, Love KR, Love JC, Joshi SB, Volkin DB. Rapid Developability Assessments to Formulate Recombinant Protein Antigens as Stable, Low-Cost, Multi-Dose Vaccine Candidates: Case-Study With Non-Replicating Rotavirus (NRRV) Vaccine Antigens. J Pharm Sci 2021; 110:1042-1053. [PMID: 33285182 PMCID: PMC7884052 DOI: 10.1016/j.xphs.2020.11.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022]
Abstract
A two-step developability assessment workflow is described to screen variants of recombinant protein antigens under various formulation conditions to rapidly identify stable, aluminum-adjuvanted, multi-dose vaccine candidates. For proof-of-concept, a series of sequence variants of the recombinant non-replicating rotavirus (NRRV) P[8] protein antigen (produced in Komagataella phaffii) were compared in terms of primary structure, post-translational modifications, antibody binding, conformational stability, relative solubility and preservative compatibility. Based on these results, promising P[8] variants were down-selected and the impact of key formulation conditions on storage stability was examined (e.g., presence or absence of the aluminum-adjuvant Alhydrogel and the preservative thimerosal) as measured by differential scanning calorimetry (DSC) and antibody binding assays. Good correlations between rapidly-generated developability screening data and storage stability profiles (12 weeks at various temperatures) were observed for aluminum-adsorbed P[8] antigens. These findings were extended and confirmed using variants of a second NRRV antigen, P[4]. These case-study results with P[8] and P[4] NRRV variants are discussed in terms of using this vaccine formulation developability workflow to better inform and optimize formulation design with a wide variety of recombinant protein antigens, with the long-term goal of rapidly and cost-efficiently identifying low-cost vaccine formulations for use in low and middle income countries.
Collapse
Affiliation(s)
- Nishant Sawant
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Kawaljit Kaur
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - David A Holland
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Sanjeev Agarwal
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Joseph R Brady
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neil C Dalvie
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mary Kate Tracey
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - M Lourdes Velez-Suberbie
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Stephen A Morris
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Shaleem I Jacob
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Tarit K Mukhopadhyay
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Kerry R Love
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J Christopher Love
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA.
| |
Collapse
|
170
|
Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB, Prado EO. SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. NPJ Vaccines 2021; 6:28. [PMID: 33619260 PMCID: PMC7900244 DOI: 10.1038/s41541-021-00292-w] [Citation(s) in RCA: 445] [Impact Index Per Article: 111.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
The new SARS-CoV-2 virus is an RNA virus that belongs to the Coronaviridae family and causes COVID-19 disease. The newly sequenced virus appears to originate in China and rapidly spread throughout the world, becoming a pandemic that, until January 5th, 2021, has caused more than 1,866,000 deaths. Hence, laboratories worldwide are developing an effective vaccine against this disease, which will be essential to reduce morbidity and mortality. Currently, there more than 64 vaccine candidates, most of them aiming to induce neutralizing antibodies against the spike protein (S). These antibodies will prevent uptake through the human ACE-2 receptor, thereby limiting viral entrance. Different vaccine platforms are being used for vaccine development, each one presenting several advantages and disadvantages. Thus far, thirteen vaccine candidates are being tested in Phase 3 clinical trials; therefore, it is closer to receiving approval or authorization for large-scale immunizations.
Collapse
Affiliation(s)
| | - Andrés López-Cortés
- Centro de Investigacion Genetica y Genomica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | | | | | - Esteban Ortiz Prado
- One Health Research Group, Universidad de Las Américas (UDLA), Quito, Ecuador.
| |
Collapse
|
171
|
Vieira de Araujo AE, Conde LV, da Silva Junior HC, de Almeida Machado L, Lara FA, Chapeaurouge A, Pauer H, Pires Hardoim CC, Martha Antunes LC, D'Alincourt Carvalho-Assef AP, Moreno Senna JP. Cross-reactivity and immunotherapeutic potential of BamA recombinant protein from Acinetobacter baumannii. Microbes Infect 2021; 23:104801. [PMID: 33582283 DOI: 10.1016/j.micinf.2021.104801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022]
Abstract
Acinetobacter baumannii is an important nosocomial pathogen. BamA is a protein that belongs to a complex responsible for organizing the proteins on the bacterial outer membrane. In this work, we aimed to evaluate murine immune responses to BamA recombinant protein (rAbBamA) from A. baumannii in an animal model of infection, and to assess cross-reactivity of this target for the development of anti-A. baumannii vaccines or diagnostics. Immunization of mice with rAbBamA elicited high antibody titers and antibody recognition of native A. baumannii BamA. Immunofluorescence also detected binding to the bacterial surface. After challenge, immunized mice demonstrated a 40% survival increase and better bacterial clearance in kidneys. Immunoblot of anti-rAbBamA against other medically relevant bacteria showed binding to proteins of approximately 35 kDa in Klebsiella pneumoniae and Escherichia coli lysates, primarily identified as OmpA and OmpC, respectively. Altogether, our data show that anti-rAbBamA antibodies provide a protective response against A. baumannii infection in mice. However, the response elicited by immunization with rAbBamA is not completely specific to A. baumannii. Although a broad-spectrum vaccine that protects against various pathogens is an appealing strategy, antibody reactivity against the human microbiota is undesired. In fact, immunization with rAbBamA produced noticeable effects on the gut microbiota. However, the changes elicited were small and non-specific, given that no significant changes in the abundance of Proteobacteria were observed. Overall, rAbBamA is a promising target, but specificity must be considered in the development of immunological tools against A. baumannii.
Collapse
Affiliation(s)
- Anna Erika Vieira de Araujo
- Bio-Manguinhos, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Rio de Janeiro, RJ, Brazil; Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Luis Vidal Conde
- Bio-Manguinhos, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | | | - Lucas de Almeida Machado
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Flavio Alves Lara
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Alex Chapeaurouge
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Heidi Pauer
- National Institute of Science and Technology of Innovation on Diseases of Neglected Populations, Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | | | - Luis Caetano Martha Antunes
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Rio de Janeiro, RJ, Brazil; National Institute of Science and Technology of Innovation on Diseases of Neglected Populations, Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
172
|
Alginate-chitosan microcapsules improve vaccine potential of gamma-irradiated Listeria monocytogenes against listeriosis in murine model. Int J Biol Macromol 2021; 176:567-577. [PMID: 33581203 DOI: 10.1016/j.ijbiomac.2021.02.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/27/2022]
Abstract
Listeria monocytogenes is a cause of infectious food-borne disease in humans, characterized by neurological manifestations, abortion, and neonatal septicemia. It is intracellular bacterium, which limits the development of protective inactivated vacines. Adjuvants capable of stimulating cellular immune response are important tools for developing novel vaccines against intracellular bacteria. The aim of this study was to evaluate the vaccine potential of L. monocytogenes inactivated by gamma irradiation (KLM-γ) encapsulated in alginate microcapsules associated or not with chitosan against listeriosis in the murine model. At the fourth day after challenge there was a reduction in bacterial recovery in mice vaccinated with KLM-γ encapsulated with alginate or alginate-chitosan, with lower bacterial loads in the spleen (10 fold) and liver (100 fold) when compared to non-vaccinated mice. In vitro stimulation of splenocytes from mice vaccinated with alginate-chitosan-encapsulated KLM-γ resulted in lymphocyte proliferation, increase of proportion of memory CD4+ and CD8+ T cell and production of IL-10 and IFN-γ. Interestingly, the group vaccinated with alginate-chitosan-encapsulated KLM-γ had increased survival to lethal infection with lower L. monocytogenes-induced hepatic inflammation and necrosis. Therefore, KLM-γ encapsulation with alginate-chitosan proved to have potential for development of novel and safe inactivated vaccine formulations against listeriosis.
Collapse
|
173
|
Guedes DC, Santiani MH, Carvalho J, Soccol CR, Minozzo JC, Machado de Ávila RA, de Moura JF, Ramos ELP, Castro GR, Chávez-Olórtegi C, Thomaz-Soccol V. In silico and in vitro Evaluation of Mimetic Peptides as Potential Antigen Candidates for Prophylaxis of Leishmaniosis. Front Chem 2021; 8:601409. [PMID: 33520931 PMCID: PMC7843434 DOI: 10.3389/fchem.2020.601409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/08/2020] [Indexed: 01/03/2023] Open
Abstract
Antigen formulation is the main feature for the success of leishmaniosis diagnosis and vaccination, since the disease is caused by different parasite species that display particularities which determine their pathogenicity and virulence. It is desirable that the antigens are recognized by different antibodies and are immunogenic for almost all Leishmania species. To overcome this problem, we selected six potentially immunogenic peptides derived from Leishmania histones and parasite membrane molecules obtained by phage display or spot synthesis and entrapped in liposome structures. We used these peptides to immunize New Zealand rabbits and determine the immunogenic capacity of the chimeric antigen. The peptides induced the production of antibodies as a humoral immune response against L. braziliensis or L. infantum. Next, to evaluate the innate response to induce cellular activation, macrophages from the peptide mix-immunized rabbits were infected in vitro with L. braziliensis or L. infantum. The peptide mix generated the IFN-γ, IL-12, IL-4 and TGF-β that led to Th1 and Th2 cellular immune responses. Interestingly, this mix of peptides also induced high expression of iNOS. These results suggest that the mix of peptides derived from histone and parasites membrane molecules was able to mimic parasites proteins and induce cytokines important to CD4+ T cell Th1 and Th2 differentiation and effector molecule to control the parasite infection. Finally, this peptide induced an immune balance that is important to prevent immunopathological disorders, inflammatory reactions, and control the parasite infection.
Collapse
Affiliation(s)
- Deborah Carbonera Guedes
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Manuel Hospinal Santiani
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Joyce Carvalho
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Carlos Ricardo Soccol
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - João Carlos Minozzo
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil.,Centro de Produção e Pesquisa de Imunobilógicos, Secretaria De Saúde do Estado do Paraná, Piraquara, Brazil
| | | | - Juliana Ferreira de Moura
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Eliezer Lucas Pires Ramos
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Guillermo Raul Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET (CCT La Plata), La Plata, Argentina.,Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Rosario, Argentina
| | - Carlos Chávez-Olórtegi
- Departamento de Bioquímica e Imunologia, Instituto de Ciência Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanete Thomaz-Soccol
- Programa de Pós-Graduação Strictu Sensu em Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
174
|
Kabir MT, Uddin MS, Mathew B, Das PK, Perveen A, Ashraf GM. Emerging Promise of Immunotherapy for Alzheimer's Disease: A New Hope for the Development of Alzheimer's Vaccine. Curr Top Med Chem 2021; 20:1214-1234. [PMID: 32321405 DOI: 10.2174/1568026620666200422105156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the characteristics of this devastating disorder include the progressive and disabling deficits in the cognitive functions including reasoning, attention, judgment, comprehension, memory, and language. OBJECTIVE In this article, we have focused on the recent progress that has been achieved in the development of an effective AD vaccine. SUMMARY Currently, available treatment options of AD are limited to deliver short-term symptomatic relief only. A number of strategies targeting amyloid-beta (Aβ) have been developed in order to treat or prevent AD. In order to exert an effective immune response, an AD vaccine should contain adjuvants that can induce an effective anti-inflammatory T helper 2 (Th2) immune response. AD vaccines should also possess the immunogens which have the capacity to stimulate a protective immune response against various cytotoxic Aβ conformers. The induction of an effective vaccine's immune response would necessitate the parallel delivery of immunogen to dendritic cells (DCs) and their priming to stimulate a Th2-polarized response. The aforesaid immune response is likely to mediate the generation of neutralizing antibodies against the neurotoxic Aβ oligomers (AβOs) and also anti-inflammatory cytokines, thus preventing the AD-related inflammation. CONCLUSION Since there is an age-related decline in the immune functions, therefore vaccines are more likely to prevent AD instead of providing treatment. AD vaccines might be an effective and convenient approach to avoid the treatment-related huge expense.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | | | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
175
|
Kaya A, Kaya SY. A case of recurrent sterile abscesses following tetanus-diphtheria vaccination treated with corticosteroids. BMC Infect Dis 2021; 21:53. [PMID: 33430802 PMCID: PMC7802127 DOI: 10.1186/s12879-020-05756-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Vaccinations have been widely used worldwide since their invention to prevent various diseases, but they can also have some adverse effects ranging from mild local reactions to serious side effects. These adverse effects are generally self-limited and resolve within a short time without any treatment. While a sterile abscess following vaccination is a rare condition in adults, many cases have been reported regarding children in the literature. Here, we report a case of recurrent sterile abscesses, which occurred after a Td vaccination, treated with corticosteroids. CASE PRESENTATION A 22-year old woman was admitted to our department with a complaint of swelling at the site of the vaccination. On physical examination, this mass was about 6 × 6 cm in size and fluctuating, but there were no pain complaints and no redness present. She had received her Td vaccination 3 weeks ago and the swelling had started at the site of the injection 4 days following this immunization. Oral amoxicillin/clavulanic acid and local antibiotic cream were administered for 10 days. The laboratory values were unremarkable. Despite the administration of antibiotics, the swelling did not regress, and on the contrary, continued to increase in size. On ultrasound, two interconnected abscesses were observed in the subcutaneous area, and did not involve the muscle tissue. Later, the abscesses were completely drained, and the samples were cultured. The current antibiotics were continued. The gram staining of the samples revealed abundant leukocytes but no microorganisms. The solid and liquid cultures of the materials remained negative. Despite the administration of multiple drainages and antibiotics, the mass recurred. Finally, the patient was considered to have a sterile abscess due to Td immunization. The antimicrobials were stopped. Local and oral corticosteroids were initiated. The swelling regressed significantly, and the treatments continued for 7 days. The patient has been doing well and has had no recurrence for over a year. CONCLUSIONS Corticosteroids appeared to improve the patient and therefore we suggest that the efficacy and route of administration of steroids in this situation should be explored further.
Collapse
Affiliation(s)
- Abdurrahman Kaya
- Department of Infectious Diseases, İstanbul Training and Research Hospital, Istanbul, Turkey.
| | | |
Collapse
|
176
|
Idris F, Ting DHR, Alonso S. An update on dengue vaccine development, challenges, and future perspectives. Expert Opin Drug Discov 2021. [DOI: 10.1080/17460441.2020.1811675
expr 880867630 + 907120263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Fakhriedzwan Idris
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Donald Heng Rong Ting
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sylvie Alonso
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
177
|
Wu JJ, Zhao L, Han BB, Hu HG, Zhang BD, Li WH, Chen YX, Li YM. A novel STING agonist for cancer immunotherapy and a SARS-CoV-2 vaccine adjuvant. Chem Commun (Camb) 2020; 57:504-507. [PMID: 33331360 DOI: 10.1039/d0cc06959k] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel STING agonist, CDGSF, ipsilaterally modified with phosphorothioate and fluorine, was synthesized. The phosphorothioate in CDGSF might be a site for covalent conjugation. Injection of CDGSF generated an immunogenic ("hot") tumor microenvironment to suppress melanoma, more efficiently than dithio CDG. In particular, immunization with SARS-CoV-2 spike protein using CDGSF as an adjuvant elicited an exceptionally high antibody titer and a robust T cell response, overcoming the drawbacks of aluminum hydroxide. These results highlighted the therapeutic potential of CDGSF for cancer immunotherapy and the adjuvant potential of the STING agonist in the SARS-CoV-2 vaccine for the first time.
Collapse
Affiliation(s)
- Jun-Jun Wu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Sainz-Mejías M, Jurado-Martín I, McClean S. Understanding Pseudomonas aeruginosa-Host Interactions: The Ongoing Quest for an Efficacious Vaccine. Cells 2020; 9:cells9122617. [PMID: 33291484 PMCID: PMC7762141 DOI: 10.3390/cells9122617] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of chronic respiratory infections in people with cystic fibrosis (CF), bronchiectasis or chronic obstructive pulmonary disease (COPD), and acute infections in immunocompromised individuals. The adaptability of this opportunistic pathogen has hampered the development of antimicrobial therapies, and consequently, it remains a major threat to public health. Due to its antimicrobial resistance, vaccines represent an alternative strategy to tackle the pathogen, yet despite over 50 years of research on anti-Pseudomonas vaccines, no vaccine has been licensed. Nevertheless, there have been many advances in this field, including a better understanding of the host immune response and the biology of P. aeruginosa. Multiple antigens and adjuvants have been investigated with varying results. Although the most effective protective response remains to be established, it is clear that a polarised Th2 response is sub-optimal, and a mixed Th1/Th2 or Th1/Th17 response appears beneficial. This comprehensive review collates the current understanding of the complexities of P. aeruginosa-host interactions and its implication in vaccine design, with a view to understanding the current state of Pseudomonal vaccine development and the direction of future efforts. It highlights the importance of the incorporation of appropriate adjuvants to the protective antigen to yield optimal protection.
Collapse
|
179
|
Sharma R, Palanisamy A, Dhama K, Mal G, Singh B, Singh KP. Exploring the possible use of saponin adjuvants in COVID-19 vaccine. Hum Vaccin Immunother 2020; 16:2944-2953. [PMID: 33295829 PMCID: PMC7738204 DOI: 10.1080/21645515.2020.1833579] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/22/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022] Open
Abstract
There is an urgent need for a safe, efficacious, and cost-effective vaccine for the coronavirus disease 2019 (COVID-19) pandemic caused by novel coronavirus strain, severe acute respiratory syndrome-2 (SARS-CoV-2). The protective immunity of certain types of vaccines can be enhanced by the addition of adjuvants. Many diverse classes of compounds have been identified as adjuvants, including mineral salts, microbial products, emulsions, saponins, cytokines, polymers, microparticles, and liposomes. Several saponins have been shown to stimulate both the Th1-type immune response and the production of cytotoxic T lymphocytes against endogenous antigens, making them very useful for subunit vaccines, especially those for intracellular pathogens. In this review, we discuss the structural characteristics, mechanisms of action, structure-activity relationship of saponins, biological activities, and use of saponins in various viral vaccines and their applicability to a SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Rinku Sharma
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Arivukarasu Palanisamy
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Gorakh Mal
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Birbal Singh
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
180
|
Even-Or O, Avniel-Polak S, Barenholz Y, Nussbaum G. The cationic liposome CCS/C adjuvant induces immunity to influenza independently of the adaptor protein MyD88. Hum Vaccin Immunother 2020; 16:3146-3154. [PMID: 32401698 PMCID: PMC8641586 DOI: 10.1080/21645515.2020.1750247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional non-living vaccines are often least effective in the populations that need them most, such as neonates and elderly adults. Vaccine adjuvants are one approach to boost the immunogenicity of antigens in populations with reduced immunity. Ideally, vaccine adjuvants will increase the seroconversion rates across the population, lead to stronger immune responses, and enable the administration of fewer vaccine doses. We previously demonstrated that a cationic liposomal formulation of the commercial influenza split virus vaccine (CCS/C-HA) enhanced cellular and humoral immunity to the virus, increased seroconversion rates, and improved survival after live virus challenge in a preclinical model, as compared to the commercial vaccine as is (F-HA). We now evaluated vaccine efficacy in different strains and sexes of mice and determined the role of innate immunity in the mechanism of action of the CCS/C adjuvant by testing the response of mice deficient in Toll-like receptors or the TLR/IL-1 adaptor protein MyD88 following immunization with CCS/C-HA vs. F-HA. Although TLR2- and TLR4-deficient mice responded to F-HA immunization, F-HA immunization failed to engender a significant immune response in the absence of MyD88. In contrast, immunization with the CCS/C-HA vaccine overcame the requirement for MyD88 in the response to the commercial vaccine and improved the immune responses and seroconversion rates in all strains of mice tested, including those deficient in TLR2 and TLR4.
Collapse
Affiliation(s)
- Orli Even-Or
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shani Avniel-Polak
- Institute of Dental Sciences, The Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Gabriel Nussbaum
- Institute of Dental Sciences, The Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
181
|
A highly immunogenic and effective measles virus-based Th1-biased COVID-19 vaccine. Proc Natl Acad Sci U S A 2020; 117:32657-32666. [PMID: 33257540 PMCID: PMC7768780 DOI: 10.1073/pnas.2014468117] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The COVID-19 pandemic has already caused over 1 million deaths. Therefore, effective vaccine concepts are urgently needed. In search of such a concept, we have analyzed a measles virus-based vaccine candidate targeting SARS-CoV-2. Using this well-known, safe vaccine backbone, we demonstrate here induction of functional immune responses in both arms of adaptive immunity, yielding antiviral efficacy in vivo with the desired immune bias. Consequently, no immunopathologies became evident during challenge experiments. Moreover, the candidate still induces immunity against the measles, recognized as a looming second menace, when countries are forced to stop routine vaccination campaigns in the face of COVID-19. Thus, a bivalent measles-based COVID-19 vaccine could be the solution for two significant public health threats. The COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and has spread worldwide, with millions of cases and more than 1 million deaths to date. The gravity of the situation mandates accelerated efforts to identify safe and effective vaccines. Here, we generated measles virus (MeV)-based vaccine candidates expressing the SARS-CoV-2 spike glycoprotein (S). Insertion of the full-length S protein gene in two different MeV genomic positions resulted in modulated S protein expression. The variant with lower S protein expression levels was genetically stable and induced high levels of effective Th1-biased antibody and T cell responses in mice after two immunizations. In addition to neutralizing IgG antibody responses in a protective range, multifunctional CD8+ and CD4+ T cell responses with S protein-specific killing activity were detected. Upon challenge using a mouse-adapted SARS-CoV-2, virus loads in vaccinated mice were significantly lower, while vaccinated Syrian hamsters revealed protection in a harsh challenge setup using an early-passage human patient isolate. These results are highly encouraging and support further development of MeV-based COVID-19 vaccines.
Collapse
|
182
|
Lee ALZ, Yang C, Gao S, Wang Y, Hedrick JL, Yang YY. Biodegradable Cationic Polycarbonates as Vaccine Adjuvants. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52285-52297. [PMID: 33179910 DOI: 10.1021/acsami.0c09649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, biodegradable cationic polycarbonate and polylactide block copolymers were synthesized and successfully used as novel vaccine adjuvants to provide enhanced anticancer immunity. The polymers formed nanoparticles with the model vaccine, ovalbumin (OVA), and the immunostimulant toll-like receptor 3 agonist poly(I:C) (a synthetic analog of the double-stranded RNA). Higher uptake of poly(I:C) by the bone marrow-derived dendritic cells and macrophages and OVA by dendritic cells was observed when delivered using the polymer adjuvant. In vivo experiments showed that these nanoparticles remained longer in the subcutaneous injection site as compared to OVA alone and led to higher production of anti-OVA specific antibodies with prolonged immunostimulation. When OVA was combined with poly(I:C) that was either co-entrapped in the same particles or as separate particles, a comparable level of anti-OVA IgG1 antibodies and interleukin-6 (IL-6) was produced in mouse blood plasma, and a similar level of cytotoxic T lymphocyte (CTL) response in mice was stimulated as compared to OVA/Alum particles. Furthermore, tumor rejection in the mice that were vaccinated for 9 months with the formulations containing the polymer adjuvant was stronger than the other treatment groups without the polymer. Notably, the cationic polycarbonates were not associated with any adverse in vivo effects. Thus, these biodegradable polymers may be promising substitutes for aluminum-based adjuvants in vaccine formulations.
Collapse
Affiliation(s)
- Ashlynn L Z Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Chuan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- NanoBio Lab, 31 Biopolis Way, #09-01 The Nanos, Singapore 138669, Singapore
| | - Yanming Wang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - James L Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| |
Collapse
|
183
|
Aggregation by peptide conjugation rescues poor immunogenicity of the HA stem. PLoS One 2020; 15:e0241649. [PMID: 33137148 PMCID: PMC7605677 DOI: 10.1371/journal.pone.0241649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/16/2020] [Indexed: 11/19/2022] Open
Abstract
Influenza virus infection is a global public health threat. Current seasonal influenza vaccines are efficacious only when vaccine strains are matched with circulating strains. There is a critical need for developing "universal" vaccines that protect against all influenza viruses. HA stem is a promising target for developing broad-spectrum influenza vaccines due to its relatively conserved feature. However, HA stem is weakly immunogenic when administered alone in a soluble form. Several approaches have been employed to improve the immunogenicity of HA stem, including conjugation of HA stem with a highly immunogenic carrier protein or displaying HA stem on a nanoparticle scaffold. Converting a weakly immunologic protein into a multimer through aggregation can significantly enhance its immunogenicity, with some multimeric protein aggregates previously shown to be more immunogenic than their soluble counterparts in animal models. Here, we show that a chemically coupling a peptide derived from the head domain of PR8 HA (P35) with the poorly immunogenic HA stem protein results in aggregation of the HA stem which significantly increases stem-specific B cell responses following vaccination. Importantly, vaccination with this conjugate in the absence of adjuvant still induced robust B cell responses against stem in vivo. Improving HA stem immunogenicity by aggregation provides an alternative avenue to conjugation with exotic carrier proteins or nanoparticle formulation.
Collapse
|
184
|
Paris S, Chapat L, Martin-Cagnon N, Durand PY, Piney L, Cariou C, Bergamo P, Bonnet JM, Poulet H, Freyburger L, De Luca K. β-Glucan as Trained Immunity-Based Adjuvants for Rabies Vaccines in Dogs. Front Immunol 2020; 11:564497. [PMID: 33162977 PMCID: PMC7580252 DOI: 10.3389/fimmu.2020.564497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
The mechanisms of trained immunity have been extensively described in vitro and the beneficial effects are starting to be deciphered in in vivo settings. Prototypical compounds inducing trained immunity, such as β-glucans, act through epigenetic reprogramming and metabolic changes of innate immune cells. The recent advances in this field have opened new areas for the development of Trained immunity-based adjuvants (TIbAs). In this study, we assessed in dogs the potential immune training effects of β-glucans as well as their capacity to enhance the adaptive immune response of an inactivated rabies vaccine (Rabisin®). Injection of β-glucan from Euglena gracilis was performed 1 month before vaccination with Rabisin® supplemented or not with the same β-glucan used as adjuvant. Trained innate immunity parameters were assessed during the first month of the trial. The second phase of the study was focused on the ability of β-glucan to enhance adaptive immune responses measured by multiple immunological parameters. B and T-cell specific responses were monitored to evaluate the immunogenicity of the rabies vaccine adjuvanted with β-glucan or not. Our preliminary results support that adjuvantation of Rabisin® vaccine with β-glucan elicit a higher B-lymphocyte immune response, the prevailing factor of protection against rabies. β-glucan also tend to stimulate the T cell response as shown by the cytokine secretion profile of PBMCs re-stimulated ex vivo. Our data are providing new insights on the impact of trained immunity on the adaptive immune response to vaccines in dogs. The administration of β-glucan, 1 month before or simultaneously to Rabisin® vaccination give promising results for the generation of new TIbA candidates and their potential to provide increased immunogenicity of specific vaccines.
Collapse
Affiliation(s)
- Simon Paris
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
- Université de Lyon, APCSe, Pulmonary and Cardiovascular Agression in Sepsis, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l’Etoile, France
- Département Biologie, Faculté des Sciences et Techniques, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | | | | | | | - Carine Cariou
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
| | | | - Jeanne-Marie Bonnet
- Université de Lyon, APCSe, Pulmonary and Cardiovascular Agression in Sepsis, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l’Etoile, France
| | - Hervé Poulet
- Boehringer Ingelheim Animal Health, R&D, Lyon, France
| | - Ludovic Freyburger
- Université de Lyon, APCSe, Pulmonary and Cardiovascular Agression in Sepsis, VetAgro Sup-Campus Vétérinaire de Lyon, Marcy l’Etoile, France
| | | |
Collapse
|
185
|
Lameiras JLV, de Moura VM, Dias LC, Pessoa Júnior ER, Mallmann CSY, Costa AG, Lasmar ML, Nunez CV, da Costa OTF, Dos-Santos MC. Neutralization of the edema-forming and myotoxic activities of the venom of Potamotrygon motoro Müller and Henle, 1841 (Chondrichthyes – Potamotrygoninae) by antivenoms and circulating immunoglobulins. Toxicon 2020; 186:126-140. [DOI: 10.1016/j.toxicon.2020.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 11/15/2022]
|
186
|
Jin X, Liu X, Ding J, Zhang L, Yang Y, Wang X, Yang Y, Liu M. Lentinan improved the efficacy of vaccine against Trichinella spiralis in an NLRP3 dependent manner. PLoS Negl Trop Dis 2020; 14:e0008632. [PMID: 32976511 PMCID: PMC7518624 DOI: 10.1371/journal.pntd.0008632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/23/2020] [Indexed: 01/09/2023] Open
Abstract
There is an urgent need for the development of new, improved vaccine adjuvants against T. spiralis infection. Polysaccharides are effective, safe, and biodegradable as adjuvant. In our study, we first observed the protective efficacy of lentinan as adjuvant against helminth T. spiralis infection. Recombinant T. spiralis Serpin (rTs-Serpin) immunoscreened from a cDNA library of T. spiralis, as a vaccine, protect host against Trichinella infection. The reduction rate of helminth burden of rTs-Serpin+lentinan–immunized mice was significantly increased compared with rTs-Serpin+FCA -immunized mice. rTs-Serpin+lentinan induced IgG1-dominant immune response and higher levels of IFN-γ and IL-4. rTs-Serpin+lentinan displayed a lower reduction rate of parasite burden in NLRP3-/- mice than that in WT mice and lower level of IgG1 than that in WT mice. The level of IL-4, but not IFN-γ, from NLRP3-/- mice immunized by rTs-Serpin+lentinan was significantly lower than that from WT mice, suggesting that NLRP3 is associated with rTs-Serpin+lentinan -triggering Th2 protective immunity against T. spiralis infection. In summary, we revealed that lentinan was a novel adjuvant against T. spiralis infection via NLRP3. NLRP3 therefore represents an important target for adjuvant discovery and the control of T. spiralis infection. Trichinella spp., pathogenic agents of trichinellosis, is foodborne zoonotic nematodes cause huge economic burden to the livestock industry. The potential of new adjuvants for improving veterinary vaccines remains largely unexploited to trigger safe and long-lasting immunity in large animals, including livestock. Polysaccharides are effective, safe, and biodegradable as adjuvant. We first observed the protective efficacy of lentinan as a novel adjuvant against helminth T. spiralis infection. NLRP3 is associated with lentinan -triggering Th2 protective immunity against T. spiralis infection. NLRP3 therefore represents an important target for adjuvant discovery and the control of T. spiralis infection.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Antibodies, Helminth
- Antigens, Helminth/genetics
- Antigens, Helminth/immunology
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Immunization
- Lentinan/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Serpins/genetics
- Serpins/immunology
- Trichinella spiralis/drug effects
- Trichinella spiralis/genetics
- Trichinella spiralis/immunology
- Trichinellosis/immunology
- Trichinellosis/prevention & control
- Vaccines/immunology
Collapse
Affiliation(s)
- Xuemin Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jing Ding
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lixiao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yaming Yang
- Yunnan Institute of Parasitic Diseases, Puer, Yunnan, China
| | - Xuelin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- * E-mail: (YY); (ML)
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China
- * E-mail: (YY); (ML)
| |
Collapse
|
187
|
Banstola A, Jeong JH, Yook S. Immunoadjuvants for cancer immunotherapy: A review of recent developments. Acta Biomater 2020; 114:16-30. [PMID: 32777293 DOI: 10.1016/j.actbio.2020.07.063] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy evolved as a new treatment modality to eradicate tumor cells and has gained in popularity after its successful clinical transition. By activating antigen-presenting cells (APCs), and thus, inducing innate or adaptive immune responses, immunoadjuvants have become promising tools for cancer immunotherapy. Different types of immunoadjuvants such as toll-like receptor (TLR) agonists, exosomes, and metallic and plant-derived immunoadjuvants have been studied for their immunological effects. However, the clinical use of immunoadjuvants is limited by short response rates and various side-effects. The rapid progress made in the development of nanoparticle systems as immunoadjuvant carrier vehicles has provided potential carriers for cancer immunotherapy. In this review article, we describe different types of immunoadjuvants, their limitations, modes of action, and the reasons for their clinical adoption. In addition, we review recent progress made in the nanoparticle-based immunoadjuvant field and on the combined use of nanoparticle-based immunoadjuvants and chemotherapy, phototherapy, radiation therapy, and immune checkpoint inhibitor-based therapy. STATEMENT OF SIGNIFICANCE: Cancer immunotherapy emerged as a new hope for treating malignant tumors. Different types of immunoadjuvants serve as an important tool for cancer immunotherapy by activating an innate or adaptive immune response. Limitation of free immunoadjuvant has paved the path for the development of nanoparticle-based immunoadjuvant therapy with the hope of prolonging the therapeutic efficacy. This review highlights the recent advancement made in nanoparticle-based immunoadjuvant therapy in modulating the adaptive and innate immune system. The application of the combinatorial approach of chemotherapy, phototherapy, radiation therapy adds synergy in nanoparticle-based immunoadjuvant therapy. It will broaden the reader's understanding on the recent progress made in immunotherapy with the aid of immunoadjuvant-based nanosystem.
Collapse
Affiliation(s)
- Asmita Banstola
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
188
|
Idris F, Ting DHR, Alonso S. An update on dengue vaccine development, challenges, and future perspectives. Expert Opin Drug Discov 2020; 16:47-58. [PMID: 32838577 DOI: 10.1080/17460441.2020.1811675] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION From both a public health and economic perspective, vaccination is arguably the most effective approach to combat endemic and pandemic infectious diseases. Dengue affects more than 100 countries in the tropical and subtropical world, with 100-400 million infections every year. In the wake of the recent setback faced by Dengvaxia, the only FDA-approved dengue vaccine, safer and more effective dengue vaccines candidates are moving along the clinical pipeline. AREA COVERED This review provides an update of the latest outcomes of dengue vaccine clinical trials. In the light of recent progress made in our understanding of dengue pathogenesis and immune correlates of protection, novel vaccine strategies have emerged with promising second-generation dengue vaccine candidates. Finally, the authors discuss the dengue-specific challenges that remain to be addressed and overcome. EXPERT OPINION The authors propose to explore various adjuvants and delivery systems that may help improve the design of safe, effective, and affordable vaccines against dengue. They also challenge the concept of a 'universal' dengue vaccine as increasing evidence support that DENV strains have evolved different virulence mechanisms.
Collapse
Affiliation(s)
- Fakhriedzwan Idris
- Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore , Singapore, Singapore
| | - Donald Heng Rong Ting
- Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore , Singapore, Singapore
| | - Sylvie Alonso
- Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore , Singapore, Singapore
| |
Collapse
|
189
|
Viger-Gravel J, Paruzzo FM, Cazaux C, Jabbour R, Leleu A, Canini F, Florian P, Ronzon F, Gajan D, Lesage A. Atomic-Scale Description of Interfaces between Antigen and Aluminum-Based Adjuvants Used in Vaccines by Dynamic Nuclear Polarization (DNP) Enhanced NMR Spectroscopy. Chemistry 2020; 26:8976-8982. [PMID: 32428253 DOI: 10.1002/chem.202001141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 11/05/2022]
Abstract
The addition of aluminum-based adjuvants in vaccines enhances the immune response to antigens. The strength of antigen adsorption on adjuvant gels is known to modulate vaccine efficacy. However, a detailed understanding of the mechanisms of interaction between aluminum gels and antigens is still missing. Herein, a new analytical approach based on dynamic nuclear polarization (DNP) enhanced NMR spectroscopy under magic angle spinning (MAS) is implemented to provide a molecular description of the antigen-adjuvant interface. This approach is demonstrated on hepatitis B surface antigen particles in combination with three aluminum gels obtained from different suppliers. Both noncovalent and covalent interactions between the phospholipids of the antigen particles and the surface of the aluminum gels are identified by using MAS DNP NMR 27 Al and 31 P correlation experiments. Although covalent interactions were detected for only one of the formulations, dipolar recoupling rotational echo adiabatic passage double resonance (REAPDOR) experiments reveal significant differences in the strength of weak interactions.
Collapse
Affiliation(s)
- Jasmine Viger-Gravel
- Centre de résonance magnétique à très hauts champs (CRMN), FRE 2034 CNRS, Université Claude Bernard Lyon-1, ENS-Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Federico M Paruzzo
- Institut des Sciences et Ingénierie Chimiques Batochime, École Polytechnique Fédérale de Lausanne (EPFL), 1530, Lausanne, Switzerland
| | - Corine Cazaux
- Sanofi Pasteur, 1541 av. Marcel Mérieux, 69280, Marcy l'Étoile, France
| | - Ribal Jabbour
- Centre de résonance magnétique à très hauts champs (CRMN), FRE 2034 CNRS, Université Claude Bernard Lyon-1, ENS-Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Amandine Leleu
- Sanofi Pasteur, 1541 av. Marcel Mérieux, 69280, Marcy l'Étoile, France
| | - Françoise Canini
- Sanofi Pasteur, 1541 av. Marcel Mérieux, 69280, Marcy l'Étoile, France
| | - Pierre Florian
- CNRS, UPR3079 CEMHTI, 1D ave de la Recherche Scientifique, 45100, Orléans, France
| | - Frédéric Ronzon
- Sanofi Pasteur, 1541 av. Marcel Mérieux, 69280, Marcy l'Étoile, France
| | - David Gajan
- Centre de résonance magnétique à très hauts champs (CRMN), FRE 2034 CNRS, Université Claude Bernard Lyon-1, ENS-Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Anne Lesage
- Centre de résonance magnétique à très hauts champs (CRMN), FRE 2034 CNRS, Université Claude Bernard Lyon-1, ENS-Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| |
Collapse
|
190
|
Zmarowski A, Ballin JD, Sharits J, Carrico K, Novak J, Shearer J, Blauth B, Ionin B, Reece J, Savransky V. Repeat Dose Toxicity Study of the AV7909 Anthrax Vaccine Candidate in Juvenile Rats. Int J Toxicol 2020; 39:1091581820941412. [PMID: 32691648 DOI: 10.1177/1091581820941412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AV7909 is a next-generation anthrax vaccine candidate indicated for post-exposure prophylaxis of exposure to Bacillus anthracis. AV7909 consists of the Anthrax Vaccine Adsorbed (AVA) bulk drug substance and the immunostimulatory Toll-like receptor 9 agonist oligodeoxynucleotide adjuvant, CPG 7909. Safety testing for pediatric population is warranted to support the potential emergency use of AV7909 in children. This study was conducted to investigate the local tolerance and potential systemic toxicity and their reversibility in juvenile rats by repeat intramuscular injections of the AV7909 vaccine candidate. Animals were dosed on postnatal day (PND) 21 (at weaning), PND 28, and PND 35, with the test article (AV7909), the adjuvant alone (Alhydrogel + CPG 7909), or sterile water for injection. Core group animals were necropsied on PND 37 and recovery group on PND 49. Study end points included survival, clinical observations, injection site observations, body weights, clinical pathology (hematology, coagulation, and clinical chemistry), pro-inflammatory biomarker analysis (alpha-2 macroglobulin [A2M] and alpha-1 acid glycoprotein [AGP]), and anatomic pathology. Immune response to vaccination was measured using the high-throughput anthrax lethal toxin neutralization assay (htpTNA). The AV7909 vaccine candidate produced no apparent systemic or local toxicity. The AGP and A2M levels were elevated in both the adjuvant-alone and AV7909 groups at the end of treatment but were comparable to control levels by the end of the recovery period. All animals in the AV7909 group demonstrated a robust neutralizing antibody response. The results indicate that AV7909 has a favorable safety profile in juvenile rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bruna Blauth
- Emergent BioSolutions Inc, Gaithersburg, MD, USA
| | - Boris Ionin
- Emergent BioSolutions Inc, Gaithersburg, MD, USA
| | - Joshua Reece
- Emergent BioSolutions Inc, Gaithersburg, MD, USA
| | | |
Collapse
|
191
|
Macrophagic myofasciitis and subcutaneous pseudolymphoma caused by aluminium adjuvants. Sci Rep 2020; 10:11834. [PMID: 32678281 PMCID: PMC7366910 DOI: 10.1038/s41598-020-68849-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/22/2020] [Indexed: 11/29/2022] Open
Abstract
Aluminium hydroxide is a well-known adjuvant used in vaccines. Although it can enhance an adaptive immune response to a co-administered antigen, it causes adverse effects, including macrophagic myofasciitis (MMF), subcutaneous pseudolymphoma, and drug hypersensitivity. The object of this study is to demonstrate pediatric cases of aluminium hydroxide-induced diseases focusing on its rarity, under-recognition, and distinctive pathology. Seven child patients with biopsy-proven MMF were retrieved from the Seoul National University Hospital (SNUH) pathology archives from 2015 to 2019. The medical records and immunisation history were reviewed, and a full pathological muscle examination was carried out. The mean age was 1.7 years (8.9–40 months), who had records of vaccination against hepatitis B, hepatitis A, and tetanus toxoid on the quadriceps muscle. The chief complaints were muscle weakness (n = 6), delayed motor milestones (n = 6), instability, dysarthria, and involuntary movement (n = 1), swallowing difficulty (n = 1), high myopia (n = 1), and palpable subcutaneous nodules with skin papules (n = 1). Muscle biopsy showed MMF (n = 6) and pseudolymphoma (n = 1) with pathognomic basophilic large macrophage infiltration, which had distinctive spiculated inclusions on electron microscopy. The intracytoplasmic aluminium was positive for PAS and Morin stains. Distinctive pathology and ultrastructure suggested an association with aluminium hydroxide-containing vaccines. To avoid misdiagnosis and mistreatment, we must further investigate this uncommon condition, and pharmaceutical companies should attempt to formulate better adjuvants that do not cause such adverse effects.
Collapse
|
192
|
Varshney R, Varshney R, Chaturvedi VK, Rawat M, Saminathan M, Singh V, Singh R, Sahoo M, Gupta PK. Development of novel iron-regulated Pasteurella multocida B: 2 bacterin and refinement of vaccine quality in terms of minimum variation in particle size and distribution vis-a-vis critical level of iron in media. Microb Pathog 2020; 147:104375. [PMID: 32679244 DOI: 10.1016/j.micpath.2020.104375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 11/29/2022]
Abstract
To enhance the qualitative bacterial biomass per unit of media and to overcome the limitations of the existing haemorrhagic septicaemia (HS) vaccines, a comprehensive study was undertaken encompassing the role of iron on the bacterial biomass of Pasteurella multocida B: 2 to vaccine development. Trypsin digested hydrochloric acid-treated sheep blood (THSB) as a novel iron rich supplement had been devised for the first time for augmenting the qualitative bacterial biomass per unit of media which was evident with growth kinetic study. The higher recovery of iron from THSB became evident via atomic absorbance spectrophotometry. The critical level of iron in the media as well as mode of iron supplementation showed a major impact on the outer membrane protein profile of P. multocida B:2 and variation in droplet size and particle-size distribution of formulated vaccine. Immune response study against iron-regulated bacterin adjuvanted with aluminum hydroxide gel in mouse model showed that 3% THSB supplementation of casein sucrose yeast (CSY) not only augmented the growth of P. multocida B:2 significantly but conferred highest pre-challenged ELISA IgG titer and protection against pasteurellosis. Thus, THSB supplementation of CSY can resolve existing up-scaling and immunogenic potential problems of HS vaccine production.
Collapse
Affiliation(s)
- Rajat Varshney
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Izatnagar, U.P, 243122, India; Department of Veterinary Microbiology, FVAS, IAS, RGSC, BHU, Barkachha, Mirzapur, UP, 231001, India
| | - Ritu Varshney
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Vinod Kumar Chaturvedi
- Division of Biological Products, Indian Veterinary Research Institute, Izatnagar, U.P, 243122, India.
| | - Mayank Rawat
- Division of Biological Standardization, Indian Veterinary Research Institute, Izatnagar, U.P, 243122, India
| | - M Saminathan
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, U.P, 243122, India
| | - Vidya Singh
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, U.P, 243122, India
| | - Rahul Singh
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, U.P, 243122, India
| | - Monalisa Sahoo
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, U.P, 243122, India
| | - Praveen Kumar Gupta
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, U.P, 243122, India
| |
Collapse
|
193
|
Park H, Bang E, Hong JJ, Lee S, Ko HL, Kwak HW, Park H, Kang KW, Kim R, Ryu SR, Kim G, Oh H, Kim H, Lee K, Kim M, Kim SY, Kim J, El‐Baz K, Lee H, Song M, Jeong DG, Keum G, Nam J. Nanoformulated Single‐Stranded RNA‐Based Adjuvant with a Coordinative Amphiphile as an Effective Stabilizer: Inducing Humoral Immune Response by Activation of Antigen‐Presenting Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hyo‐Jung Park
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
| | - Eun‐Kyoung Bang
- Center for Neuro-Medicine Brain Science Institute Korea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Jung Joo Hong
- National Primate Research Center Korea Research Institute of Bioscience and Biotechnology Cheongju 28116 Republic of Korea
| | - Sang‐Myeong Lee
- Division of Biotechnology College of Environmental and Bioresource Sciences Jeonbuk National University Iksan 54596 Republic of Korea
- Korea Zoonosis Research Institute Jeonbuk National University Iksan 54531 Republic of Korea
| | - Hae Li Ko
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
- Present address: Scripps Korea Antibody Institute Chuncheon 24341 Republic of Korea
| | - Hye Won Kwak
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
| | - Hyelim Park
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
| | - Kyung Won Kang
- Division of Biotechnology College of Environmental and Bioresource Sciences Jeonbuk National University Iksan 54596 Republic of Korea
| | - Rhoon‐Ho Kim
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
| | - Seung Rok Ryu
- Division of Biotechnology College of Environmental and Bioresource Sciences Jeonbuk National University Iksan 54596 Republic of Korea
| | - Green Kim
- National Primate Research Center Korea Research Institute of Bioscience and Biotechnology Cheongju 28116 Republic of Korea
| | - Hanseul Oh
- National Primate Research Center Korea Research Institute of Bioscience and Biotechnology Cheongju 28116 Republic of Korea
| | - Hye‐Jung Kim
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
| | - Kyuri Lee
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul 03760 Republic of Korea
| | - Minjeong Kim
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul 03760 Republic of Korea
| | - Soo Young Kim
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul 03760 Republic of Korea
| | - Jae‐Ouk Kim
- Clinical Research Lab International Vaccine Institute, Seoul National University Research Park Seoul 08826 Republic of Korea
| | - Karim El‐Baz
- Center for Neuro-Medicine Brain Science Institute Korea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Hyukjin Lee
- College of Pharmacy Graduate School of Pharmaceutical Sciences Ewha Womans University Seoul 03760 Republic of Korea
| | - Manki Song
- Clinical Research Lab International Vaccine Institute, Seoul National University Research Park Seoul 08826 Republic of Korea
| | - Dae Gwin Jeong
- Infectious Diseases Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon 34141 Republic of Korea
| | - Gyochang Keum
- Center for Neuro-Medicine Brain Science Institute Korea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Jae‐Hwan Nam
- Department of Biotechnology The Catholic University of Korea Bucheon 14662 Republic of Korea
| |
Collapse
|
194
|
Bøgh KL, Andreasen MS, Madsen CB. The use of aluminium hydroxide as adjuvant modulates the specific antibody response—A Brown Norway rat study with native and denatured cow's milk allergens. Scand J Immunol 2020; 92:e12891. [DOI: 10.1111/sji.12891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/22/2020] [Accepted: 04/12/2020] [Indexed: 11/29/2022]
|
195
|
He C, Qin M, Sun X. Highly pathogenic coronaviruses: thrusting vaccine development in the spotlight. Acta Pharm Sin B 2020; 10:1175-1191. [PMID: 32834948 PMCID: PMC7260574 DOI: 10.1016/j.apsb.2020.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 01/03/2023] Open
Abstract
Coronaviruses (CoVs) are a large family of viruses that cause illness ranging from the common cold to more severe diseases such as Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) has caused major public health crises. There have been more than 4,400,000 reported cases of COVID-2019 and more than 300,000 reported deaths to date (16/05/2020). SARS-CoV, MERS-CoV and SARS-CoV-2 have attracted widespread global attention due to their high infectivity and pathogenicity. To date, there is no specific treatment proven effective against these viral infectious diseases. Vaccination is considered one of the most effective strategies to prevent viral infections. Therefore, the development of effective vaccines against highly pathogenic coronaviruses is essential. In this review, we will briefly describe coronavirus vaccine design targets, summarize recent advances in the development of coronavirus vaccines, and highlight current adjuvants for improving the efficacy of coronavirus vaccines.
Collapse
|
196
|
Piestansky J, Barath P, Majerova P, Galba J, Mikus P, Kovacech B, Kovac A. A simple and rapid LC-MS/MS and CE-MS/MS analytical strategy for the determination of therapeutic peptides in modern immunotherapeutics and biopharmaceutics. J Pharm Biomed Anal 2020; 189:113449. [PMID: 32622303 DOI: 10.1016/j.jpba.2020.113449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Modern therapy of metabolic, neurodegenerative, inflammation, or cancer diseases is recently based on an immunotherapeutic approach. The peptide conjugates represent innovative and effective therapeutics that are better tolerated and are much more specific than small molecule-based medicines. The nature and manufacturing process of these therapeutics make their analysis very challenging. Here, two robust analytical methods based on an on-line combination of ultra-high-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) and capillary electrophoresis with tandem mass spectrometry (CE-MS/MS) were developed for fast determination of immunogenic synthetic peptide (peptide sequence CADNLHKVVGQST) in a conjugate with bovine serum albumin (BSA) as a carrier protein and is a peptide, conjugate formulated with a vaccine adjuvant - Alhydrogel® 2 %. An effective non-enzymatic release step of the peptide from the final peptide conjugate based on acid hydrolysis with the use of 2% formic acid was successfully tested and implemented. The proposed methods were validated according to the ICH guideline and parameters such as linearity, precision, and accuracy, the limit of detection (LOD) or limit of quantification (LOQ) were assessed. Calibration curves were linear within the range of 1-30 μg.mL-1 and the correlation coefficients were higher than 0.99. The intraday and interday precisions were 3.2-8.1 % (UHPLC-MS/MS), 1.6-9.3 % (CE-MS/MS) and 3.6-10.3 % (UHPLC-MS/MS), 4.1-10.2 % (CE-MS/MS), respectively. The recovery ranged in the interval of 98.4-107.4 % for UHPLC-MS/MS method and 100.3-103.2 % for CE-MS/MS method. The presented approaches represent an effective tool for simple, rapid and robust quantification of immunogens in modern immunotherapeutics and other biopharmaceuticals with appropriate peptide sequences.
Collapse
Affiliation(s)
- Juraj Piestansky
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovak Republic; Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovak Republic.
| | - Peter Barath
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 38 Bratislava, Slovak Republic.
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovak Republic.
| | - Jaroslav Galba
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovak Republic.
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32 Bratislava, Slovak Republic; Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovak Republic.
| | - Branislav Kovacech
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovak Republic.
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, SK-845 10 Bratislava, Slovak Republic.
| |
Collapse
|
197
|
Sato-Kaneko F, Yao S, Lao FS, Shpigelman J, Messer K, Pu M, Shukla NM, Cottam HB, Chan M, Chu PJ, Burkhart D, Schoener R, Matsutani T, Carson DA, Corr M, Hayashi T. A Novel Synthetic Dual Agonistic Liposomal TLR4/7 Adjuvant Promotes Broad Immune Responses in an Influenza Vaccine With Minimal Reactogenicity. Front Immunol 2020; 11:1207. [PMID: 32636840 PMCID: PMC7318308 DOI: 10.3389/fimmu.2020.01207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
The limited efficacy of seasonal influenza vaccines is usually attributed to ongoing variation in the major antigenic targets for protective antibody responses including hemagglutinin (HA) and neuraminidase (NA). Hence, vaccine development has largely focused on broadening antigenic epitopes to generate cross-reactive protection. However, the vaccine adjuvant components which can accelerate, enhance and prolong antigenic immune responses, can also increase the breadth of these responses. We previously demonstrated that the combination of synthetic small-molecule Toll-like receptor 4 (TLR4) and TLR7 ligands is a potent adjuvant for recombinant influenza virus HA, inducing rapid, and sustained antibody responses that are protective against influenza viruses in homologous and heterologous murine challenge models. To further enhance adjuvant efficacy, we performed a structure-activity relationship study for the TLR4 ligand, N-cyclohexyl-2-((5-methyl-4-oxo-3-phenyl-4,5-dihydro-3H-pyrimido[5,4-b]indol-2-yl)thio)acetamide (C25H26N4O2S; 1Z105), and identified the 8-(furan-2-yl) substituted pyrimido[5,4-b]indole analog (C29H28N4O3S; 2B182C) as a derivative with higher potency in activating both human and mouse TLR4-NF-κB reporter cells and primary cells. In a prime-boost immunization model using inactivated influenza A virus [IIAV; A/California/04/2009 (H1N1)pdm09], 2B182C used as adjuvant induced higher serum anti-HA and anti-NA IgG1 levels compared to 1Z105, and also increased the anti-NA IgG2a responses. In combination with a TLR7 ligand, 1V270, 2B182C induced equivalent levels of anti-NA and anti-HA IgG1 to 1V270+1Z105. However, the combination of 1V270+2B182C induced 10-fold higher anti-HA and anti-NA IgG2a levels compared to 1V270+1Z105. A stable liposomal formulation of 1V270+2B182C was developed, which synergistically enhanced anti-HA and anti-NA IgG1 and IgG2a responses without demonstrable reactogenicity after intramuscular injection. Notably, vaccination with IIAV plus the liposomal formulation of 1V270+2B182C protected mice against lethal homologous influenza virus (H1N1)pdm09 challenge and reduced lung viral titers and cytokine levels. The combination adjuvant induced a greater diversity in B cell clonotypes of immunoglobulin heavy chain (IGH) genes in the draining lymph nodes and antibodies against a broad spectrum of HA epitopes encompassing HA head and stalk domains and with cross-reactivity against different subtypes of HA and NA. This novel combination liposomal adjuvant contributes to a more broadly protective vaccine while demonstrating an attractive safety profile.
Collapse
Affiliation(s)
- Fumi Sato-Kaneko
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Shiyin Yao
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Fitzgerald S. Lao
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Jonathan Shpigelman
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Karen Messer
- Division of Biostatistics, University of California, San Diego, La Jolla, CA, United States
| | - Minya Pu
- Division of Biostatistics, University of California, San Diego, La Jolla, CA, United States
| | - Nikunj M. Shukla
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Howard B. Cottam
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Michael Chan
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Paul J. Chu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | | | | | | | - Dennis A. Carson
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tomoko Hayashi
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
198
|
Abstract
This opinion article discusses the increasing attention paid to the role of activating damage-associated molecular patterns (DAMPs) in initiation of inflammatory diseases and suppressing/inhibiting DAMPs (SAMPs) in resolution of inflammatory diseases and, consequently, to the future roles of these novel biomarkers as therapeutic targets and therapeutics. Since controlled production of DAMPs and SAMPs is needed to achieve full homeostatic restoration and repair from tissue injury, only their pathological, not their homeostatic, concentrations should be therapeutically tackled. Therefore, distinct caveats are proposed regarding choosing DAMPs and SAMPs for therapeutic purposes. For example, we discuss the need to a priori identify and define a context-dependent “homeostatic DAMP:SAMP ratio” in each case and a “homeostatic window” of DAMP and SAMP concentrations to guarantee a safe treatment modality to patients. Finally, a few clinical examples of how DAMPs and SAMPs might be used as therapeutic targets or therapeutics in the future are discussed, including inhibition of DAMPs in hyperinflammatory processes (e.g., systemic inflammatory response syndrome, as currently observed in Covid-19), administration of SAMPs in chronic inflammatory diseases, inhibition of SAMPs in hyperresolving processes (e.g., compensatory anti-inflammatory response syndrome), and administration/induction of DAMPs in vaccination procedures and anti-cancer therapy.
Collapse
|
199
|
Xu C, Soyfoo DM, Wu Y, Xu S. Virulence of Helicobacter pylori outer membrane proteins: an updated review. Eur J Clin Microbiol Infect Dis 2020; 39:1821-1830. [PMID: 32557327 PMCID: PMC7299134 DOI: 10.1007/s10096-020-03948-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori (H. pylori) infection is associated with some gastric diseases, such as gastritis, peptic ulcer, and gastric cancer. CagA and VacA are known virulence factors of H. pylori, which play a vital role in severe clinical outcomes. Additionally, the expression of outer membrane proteins (OMPs) helps H. pylori attach to gastric epithelial cells at the primary stage and increases the virulence of H. pylori. In this review, we have summarized the paralogs of H. pylori OMPs, their genomic loci, and the different receptors of OMPs identified so far. We focused on five OMPs, BabA (HopS), SabA (HopP), OipA (HopH), HopQ, and HopZ, and one family of OMPs: Hom. We highlight the coexpression of OMPs with other virulence factors and their relationship with clinical outcomes. In conclusion, OMPs are closely related to the pathogenic processes of adhesion, colonization, persistent infection, and severe clinical consequences. They are potential targets for the prevention and treatment of H. pylori–related diseases.
Collapse
Affiliation(s)
- Chenjing Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | - Yao Wu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shunfu Xu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China. .,Jiangsu Province Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
200
|
George PJ, Tai W, Du L, Lustigman S. The Potency of an Anti-MERS Coronavirus Subunit Vaccine Depends on a Unique Combinatorial Adjuvant Formulation. Vaccines (Basel) 2020; 8:vaccines8020251. [PMID: 32471056 PMCID: PMC7350031 DOI: 10.3390/vaccines8020251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/17/2020] [Accepted: 05/23/2020] [Indexed: 01/29/2023] Open
Abstract
Vaccination is one of the most successful strategies to prevent human infectious diseases. Combinatorial adjuvants have gained increasing interest as they can stimulate multiple immune pathways and enhance the vaccine efficacy of subunit vaccines. We investigated the adjuvanticity of Aluminum (alum) in combination with rASP-1, a protein adjuvant, using the Middle East respiratory syndrome coronavirus MERS-CoV receptor-binding-domain (RBD) vaccine antigen. A highly enhanced anti-MERS-CoV neutralizing antibody response was induced when mice were immunized with rASP-1 and the alum-adjuvanted RBD vaccine in two separate injection sites as compared to mice immunized with RBD + rASP-1 + alum formulated into a single inoculum. The antibodies produced also significantly inhibited the binding of RBD to its cell-associated receptor. Moreover, immunization with rASP-1 co-administered with the alum-adjuvanted RBD vaccine in separate sites resulted in an enhanced frequency of TfH and GC B cells within the draining lymph nodes, both of which were positively associated with the titers of the neutralizing antibody response related to anti-MERS-CoV protective immunity. Our findings not only indicate that this unique combinatorial adjuvanted RBD vaccine regimen improved the immunogenicity of RBD, but also point to the importance of utilizing combinatorial adjuvants for the induction of synergistic protective immune responses.
Collapse
Affiliation(s)
- Parakkal Jovvian George
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA;
| | - Wanbo Tai
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA; (W.T.); (L.D.)
| | - Lanying Du
- Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA; (W.T.); (L.D.)
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA;
- Correspondence:
| |
Collapse
|