151
|
Characterization of macrophages from schizophrenia patients. NPJ SCHIZOPHRENIA 2017; 3:41. [PMID: 29138398 PMCID: PMC5686077 DOI: 10.1038/s41537-017-0042-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 02/05/2023]
Abstract
Genetic, epidemiological and post mortem studies have described an association between schizophrenia (SCZ) and the immune system. Microglia, the tissue-resident macrophages of the brain, not only play an essential role in inflammatory processes, but also in neurodevelopment and synapse refinement. It has therefore been hypothesized that aberrant functioning of these myeloid immune cells is involved in SCZ pathogenesis. Until now cellular research into the role of myeloid cells in SCZ has been limited to monocytes and functional assays are lacking. In this study we used monocyte-derived macrophages (mo-MΦs) as a model for macrophages and microglia in the CNS and examined two main functions: Inflammatory responses and expression and regulation of synapse refinement molecules. The expression of 24 genes involved in these key functions was assessed. Mo-MΦs were generated from 15 SCZ patients and 15 healthy controls. The cells were exposed to pro-inflammatory and anti-inflammatory stimuli (LPS, R848, IL-4 and dexamethasone), and the response was measured by qPCR and ELISA analyses. One of the genes of interest, P2RX7 that is associated with psychiatric diseases, was significantly reduced in expression after LPS stimulation in SCZ patients. None of the other assessed characteristics were different in this functional screen between mo-MΦs from SCZ patients compared to controls. Although these data suggest that overall the function of macrophages in SCZ is not impaired, further studies with larger groups that enable the possibility to study clinical subgroups and perform additional screenings to asses the full phenotype of the mo-MΦs are needed to strengthen this conclusion.
Collapse
|
152
|
Li F, Lv B, Liu Y, Hua T, Han J, Sun C, Xu L, Zhang Z, Feng Z, Cai Y, Zou Y, Ke Y, Jiang X. Blocking the CD47-SIRPα axis by delivery of anti-CD47 antibody induces antitumor effects in glioma and glioma stem cells. Oncoimmunology 2017; 7:e1391973. [PMID: 29308321 DOI: 10.1080/2162402x.2017.1391973] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
Tumor initiating cells or cancer stem cells (CSCs) play an important role in the initiation, development, metastasis, and recurrence of tumors. However, traditional therapies have limited effects against CSCs and targeting these cells is crucial when developing new therapeutic strategies against cancer. One potentially targetable factor is CD47, a member of the immunoglobulin superfamily. This protein acts as an anti-phagocytic "don't eat me" signal and is often found expressed by cancer cells, particularly CSCs. CD47 functions by activating signal regulatory protein-α (SIRP-α) expressed on macrophages, preventing phagocytosis. However, the role of CD47 in glioma stem cells (GSCs) has been not been thoroughly investigated. Our study therefore examined the expression and function of this protein in glioma cells and GSCs. We found that CD47 was highly expressed on glioma cells, especially GSCs, and that expression associated with worse clinical outcomes. We also found that CD47+ glioma cells possessed stem/progenitor cell-like characteristics and knocking down CD47 expression resulted in a reduction in these characteristics. Treatment with anti-CD47 antibody led to increased phagocytosis of glioma cells and GSCs by macrophages. We next examined the effects of anti-CD47 antibody on glioma cells/GSCs in an immune competent mouse glioma model, revealing significant inhibition of tumor growth and prolonged survival times. Importantly, there were no apparent side effects in the animal model. In summary, we have shown that CD47 is a potentially safe and effective therapeutic target for glioma.
Collapse
Affiliation(s)
- Feng Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Bingke Lv
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yang Liu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Tian Hua
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Jianbang Han
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Chengmei Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Limin Xu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Zhongfei Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Zhiming Feng
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yingqian Cai
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yuxi Zou
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yiquan Ke
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
153
|
Sneha S, Nagare RP, Priya SK, Sidhanth C, Pors K, Ganesan TS. Therapeutic antibodies against cancer stem cells: a promising approach. Cancer Immunol Immunother 2017; 66:1383-1398. [PMID: 28840297 PMCID: PMC11028654 DOI: 10.1007/s00262-017-2049-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 08/03/2017] [Indexed: 12/18/2022]
Abstract
Monoclonal antibodies have been extensively used to treat malignancy along with routine chemotherapeutic drugs. Chemotherapy for metastatic cancer has not been successful in securing long-term remission of disease. This is in part due to the resistance of cancer cells to drugs. One aspect of the drug resistance is the inability of conventional drugs to eliminate cancer stem cells (CSCs) which often constitute less than 1-2% of the whole tumor. In some tumor types, it is possible to identify these cells using surface markers. Monoclonal antibodies targeting these CSCs are an attractive option for a new therapeutic approach. Although administering antibodies has not been effective, when combined with chemotherapy they have proved synergistic. This review highlights the potential of improving treatment efficacy using functional antibodies against CSCs, which could be combined with chemotherapy in the future.
Collapse
Affiliation(s)
- Smarakan Sneha
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai, Tamil Nadu, 600 036, India
| | - Rohit Pravin Nagare
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai, Tamil Nadu, 600 036, India
| | - Syama Krishna Priya
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai, Tamil Nadu, 600 036, India
| | - Chirukandath Sidhanth
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai, Tamil Nadu, 600 036, India
| | - Klaus Pors
- Institute of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, UK
| | - Trivadi Sundaram Ganesan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai, Tamil Nadu, 600 036, India.
| |
Collapse
|
154
|
Abstract
The hematopoietic stem cell (HSC) is a multipotent stem cell that resides in the bone marrow and has the ability to form all of the cells of the blood and immune system. Since its first purification in 1988, additional studies have refined the phenotype and functionality of HSCs and characterized all of their downstream progeny. The hematopoietic lineage is divided into two main branches: the myeloid and lymphoid arms. The myeloid arm is characterized by the common myeloid progenitor and all of its resulting cell types. The stages of hematopoiesis have been defined in both mice and humans. During embryological development, the earliest hematopoiesis takes place in yolk sac blood islands and then migrates to the fetal liver and hematopoietic organs. Some adult myeloid populations develop directly from yolk sac progenitors without apparent bone marrow intermediates, such as tissue-resident macrophages. Hematopoiesis also changes over time, with a bias of the dominating HSCs toward myeloid development as animals age. Defects in myelopoiesis contribute to many hematologic disorders, and some of these can be overcome with therapies that target the aberrant stage of development. Furthermore, insights into myeloid development have informed us of mechanisms of programmed cell removal. The CD47/SIRPα axis, a myeloid-specific immune checkpoint, limits macrophage removal of HSCs but can be exploited by hematologic and solid malignancies. Therapeutics targeting CD47 represent a new strategy for treating cancer. Overall, an understanding of hematopoiesis and myeloid cell development has implications for regenerative medicine, hematopoietic cell transplantation, malignancy, and many other diseases.
Collapse
|
155
|
Xu MM, Pu Y, Han D, Shi Y, Cao X, Liang H, Chen X, Li XD, Deng L, Chen ZJ, Weichselbaum RR, Fu YX. Dendritic Cells but Not Macrophages Sense Tumor Mitochondrial DNA for Cross-priming through Signal Regulatory Protein α Signaling. Immunity 2017; 47:363-373.e5. [PMID: 28801234 DOI: 10.1016/j.immuni.2017.07.016] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/09/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023]
Abstract
Inhibition of cytosolic DNA sensing represents a strategy that tumor cells use for immune evasion, but the underlying mechanisms are unclear. Here we have shown that CD47-signal regulatory protein α (SIRPα) axis dictates the fate of ingested DNA in DCs for immune evasion. Although macrophages were more potent in uptaking tumor DNA, increase of DNA sensing by blocking the interaction of SIRPα with CD47 preferentially occurred in dendritic cells (DCs) but not in macrophages. Mechanistically, CD47 blockade enabled the activation of NADPH oxidase NOX2 in DCs, which in turn inhibited phagosomal acidification and reduced the degradation of tumor mitochondrial DNA (mtDNA) in DCs. mtDNA was recognized by cyclic-GMP-AMP synthase (cGAS) in the DC cytosol, contributing to type I interferon (IFN) production and antitumor adaptive immunity. Thus, our findings have demonstrated how tumor cells inhibit innate sensing in DCs and suggested that the CD47-SIRPα axis is critical for DC-driven antitumor immunity.
Collapse
Affiliation(s)
- Meng Michelle Xu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA
| | - Yang Pu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Dali Han
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | - Yaoyao Shi
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA
| | - Xuezhi Cao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Hua Liang
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA
| | - Xiang Chen
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiao-Dong Li
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Liufu Deng
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zhijian J Chen
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL 60637, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|
156
|
Matlung HL, Szilagyi K, Barclay NA, van den Berg TK. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Immunol Rev 2017; 276:145-164. [PMID: 28258703 DOI: 10.1111/imr.12527] [Citation(s) in RCA: 402] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immune checkpoint inhibitors, including those targeting CTLA-4/B7 and the PD-1/PD-L1 inhibitory pathways, are now available for clinical use in cancer patients, with other interesting checkpoint inhibitors being currently in development. Most of these have the purpose to promote adaptive T cell-mediated immunity against cancer. Here, we review another checkpoint acting to potentiate the activity of innate immune cells towards cancer. This innate immune checkpoint is composed of what has become known as the 'don't-eat me' signal CD47, which is a protein broadly expressed on normal cells and often overexpressed on cancer cells, and its counter-receptor, the myeloid inhibitory immunoreceptor SIRPα. Blocking CD47-SIRPα interactions has been shown to promote the destruction of cancer cells by phagocytes, including macrophages and neutrophils. Furthermore, there is growing evidence that targeting of the CD47-SIRPα axis may also promote antigen-presenting cell function and thereby stimulate adaptive T cell-mediated anti-cancer immunity. The development of CD47-SIRPα checkpoint inhibitors and the potential side effects that these may have are discussed. Collectively, this identifies the CD47-SIRPα axis as a promising innate immune checkpoint in cancer, and with data of the first clinical studies with CD47-SIRPα checkpoint inhibitors expected within the coming years, this is an exciting and rapidly developing field.
Collapse
Affiliation(s)
- Hanke L Matlung
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katka Szilagyi
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Neil A Barclay
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Cell Biology and Immunology, VU medical Center, Amsterdam, The Netherlands
| |
Collapse
|
157
|
CD47 overexpression is associated with decreased neutrophil apoptosis/phagocytosis and poor prognosis in non-small-cell lung cancer patients. Br J Cancer 2017. [PMID: 28632731 PMCID: PMC5537491 DOI: 10.1038/bjc.2017.173] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: Non-small-cell lung cancer (NSCLC) patients often exhibit neutrophilia, which has been associated with poor clinical outcomes. However, the mechanisms that lead to neutrophilia have not been fully established. CD47 is an antiphagocytic molecule that promotes neutrophil recruitment. Methods: Blood was collected from 50 treatment-naive patients with advanced NSCLC and from 25 healthy subjects. The frequency of CD66b+ cells and the expression of CD47 were determined by flow cytometry. Neutrophil apoptosis was determined by 7-amino-actinomycin D/Annexin V-APC staining. Phagocytosis was assessed by flow cytometry. Reactive oxygen species production after phorbol 12-myristate 13-acetate treatment was quantified by 2′,7′-dichlorofluorescein fluorescence. Pro-inflammatory plasma cytokines were quantified using a cytometric bead array assay. Results: The percentage of circulating neutrophils was significantly higher in patients than in controls (P<0.001). Patient-derived neutrophils had a higher oxidative potential than those of controls (P=0.0286). The number of neutrophils in late apoptosis/necrosis was lower in patients than in controls (P=0.0317). Caspase 3/7 activation was also lower in patients than in controls (P=0.0079). CD47 expression in whole-blood samples and in the neutrophil fraction was higher in NSCLC patients than in controls (P=0.0408 and P<0.001). Patient-derived neutrophils were phagocytosed at a lower rate than those of controls (P=0.0445). CD47 expression in neutrophils negatively correlated with their ingestion by macrophages (P=0.0039). High CD47 expression was associated with a lower overall survival. Conclusions: Increased CD47 expression on the surface of neutrophils was associated with a delay in neutrophil apoptosis and with an impairment in their phagocytic clearance by macrophages, suggesting that CD47 overexpression may be one of the underlying mechanisms leading to neutrophilia in NSCLC patients.
Collapse
|
158
|
Qadri SM, Bissinger R, Solh Z, Oldenborg PA. Eryptosis in health and disease: A paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev 2017; 31:349-361. [PMID: 28669393 DOI: 10.1016/j.blre.2017.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/05/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
Abstract
During the course of their natural ageing and upon injury, anucleate erythrocytes can undergo an unconventional apoptosis-like cell death, termed eryptosis. Eryptotic erythrocytes display a plethora of morphological alterations including volume reduction, membrane blebbing and breakdown of the membrane phospholipid asymmetry resulting in phosphatidylserine externalization which, in turn, mediates their phagocytic recognition and clearance from the circulation. Overall, the eryptosis machinery is tightly orchestrated by a wide array of endogenous mediators, ion channels, membrane receptors, and a host of intracellular signaling proteins. Enhanced eryptosis shortens the lifespan of circulating erythrocytes and confers a procoagulant phenotype; this phenomenon has been tangibly implicated in the pathogenesis of anemia, deranged microcirculation, and increased prothrombotic risk associated with a multitude of clinical conditions. Herein, we reviewed the molecular mechanisms dictating eryptosis and erythrophagocytosis and critically analyzed the current evidence leading to the pathophysiological ramifications of eryptotic cell death in the context of human disease.
Collapse
Affiliation(s)
- Syed M Qadri
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.
| | - Rosi Bissinger
- Department of Internal Medicine, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Ziad Solh
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Medical Services and Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
159
|
Phagocytosis: A Fundamental Process in Immunity. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9042851. [PMID: 28691037 PMCID: PMC5485277 DOI: 10.1155/2017/9042851] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/18/2017] [Indexed: 01/12/2023]
Abstract
One hundred years have passed since the death of Élie Metchnikoff (1845-1916). He was the first to observe the uptake of particles by cells and realized the importance of this process for the host response to injury and infection. He also was a strong advocate of the role of phagocytosis in cellular immunity, and with this he gave us the basis for our modern understanding of inflammation and the innate and acquired immune responses. Phagocytosis is an elegant but complex process for the ingestion and elimination of pathogens, but it is also important for the elimination of apoptotic cells and hence fundamental for tissue homeostasis. Phagocytosis can be divided into four main steps: (i) recognition of the target particle, (ii) signaling to activate the internalization machinery, (iii) phagosome formation, and (iv) phagolysosome maturation. In recent years, the use of new tools of molecular biology and microscopy has provided new insights into the cellular mechanisms of phagocytosis. In this review, we present a general view of our current knowledge on phagocytosis. We emphasize novel molecular findings, particularly on phagosome formation and maturation, and discuss aspects that remain incompletely understood.
Collapse
|
160
|
Abram CL, Lowell CA. Shp1 function in myeloid cells. J Leukoc Biol 2017; 102:657-675. [PMID: 28606940 DOI: 10.1189/jlb.2mr0317-105r] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 01/28/2023] Open
Abstract
The motheaten mouse was first described in 1975 as a model of systemic inflammation and autoimmunity, as a result of immune system dysregulation. The phenotype was later ascribed to mutations in the cytoplasmic tyrosine phosphatase Shp1. This phosphatase is expressed widely throughout the hematopoietic system and has been shown to impact a multitude of cell signaling pathways. The determination of which cell types contribute to the different aspects of the phenotype caused by global Shp1 loss or mutation and which pathways within these cell types are regulated by Shp1 is important to further our understanding of immune system regulation. In this review, we focus on the role of Shp1 in myeloid cells and how its dysregulation affects immune function, which can impact human disease.
Collapse
Affiliation(s)
- Clare L Abram
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, California, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, California, USA
| |
Collapse
|
161
|
Dheilly E, Moine V, Broyer L, Salgado-Pires S, Johnson Z, Papaioannou A, Cons L, Calloud S, Majocchi S, Nelson R, Rousseau F, Ferlin W, Kosco-Vilbois M, Fischer N, Masternak K. Selective Blockade of the Ubiquitous Checkpoint Receptor CD47 Is Enabled by Dual-Targeting Bispecific Antibodies. Mol Ther 2017; 25:523-533. [PMID: 28153099 PMCID: PMC5368402 DOI: 10.1016/j.ymthe.2016.11.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/04/2016] [Accepted: 11/04/2016] [Indexed: 01/05/2023] Open
Abstract
CD47 is a ubiquitously expressed immune checkpoint receptor that is often upregulated in cancer. CD47 interacts with its counter-receptor SIRPα on macrophages and other myeloid cells to inhibit cancer cell phagocytosis and drive immune evasion. To overcome tolerability and “antigen sink” issues arising from widespread CD47 expression, we generated dual-targeting bispecific antibodies that selectively block the CD47-SIRPα interaction on malignant cells expressing a specific tumor-associated antigen; e.g., CD19 or mesothelin. These bispecific κλ bodies are fully human, native IgG1 molecules, combining tumor targeting and selective CD47 blockade with immune activating mechanisms mediated by the Fc portion of the antibody. CD47-neutralizing κλ bodies efficiently kill cancer cells in vitro and in vivo but interact only weakly with healthy cells expressing physiological levels of CD47. Accordingly, a κλ body administered to non-human primates showed a typical IgG pharmacokinetic profile and was well tolerated. Importantly, κλ bodies preserve their tumoricidal capabilities in the presence of a CD47 antigen sink. Thus, dual-targeting κλ bodies allow for efficacious yet safe targeting of CD47 in cancer. Such a bispecific design could be applied to limit the extent of neutralization of other ubiquitously expressed therapeutic targets.
Collapse
Affiliation(s)
- Elie Dheilly
- Novimmune SA, 14 chemin des Aulx, 1228 Plan-les-Ouates, Switzerland
| | - Valéry Moine
- Novimmune SA, 14 chemin des Aulx, 1228 Plan-les-Ouates, Switzerland
| | - Lucile Broyer
- Novimmune SA, 14 chemin des Aulx, 1228 Plan-les-Ouates, Switzerland
| | | | - Zoë Johnson
- Novimmune SA, 14 chemin des Aulx, 1228 Plan-les-Ouates, Switzerland
| | - Anne Papaioannou
- Novimmune SA, 14 chemin des Aulx, 1228 Plan-les-Ouates, Switzerland
| | - Laura Cons
- Novimmune SA, 14 chemin des Aulx, 1228 Plan-les-Ouates, Switzerland
| | | | - Stefano Majocchi
- Novimmune SA, 14 chemin des Aulx, 1228 Plan-les-Ouates, Switzerland
| | - Robert Nelson
- Novimmune SA, 14 chemin des Aulx, 1228 Plan-les-Ouates, Switzerland
| | | | - Walter Ferlin
- Novimmune SA, 14 chemin des Aulx, 1228 Plan-les-Ouates, Switzerland
| | | | - Nicolas Fischer
- Novimmune SA, 14 chemin des Aulx, 1228 Plan-les-Ouates, Switzerland
| | | |
Collapse
|
162
|
Human and murine splenic neutrophils are potent phagocytes of IgG-opsonized red blood cells. Blood Adv 2017; 1:875-886. [PMID: 29296731 DOI: 10.1182/bloodadvances.2017004671] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/30/2017] [Indexed: 11/20/2022] Open
Abstract
Red blood cell (RBC) clearance is known to occur primarily in the spleen, and is presumed to be executed by red pulp macrophages. Erythrophagocytosis in the spleen takes place as part of the homeostatic turnover of RBCs to remove old RBCs. It can be strongly promoted by immunoglobulin G (IgG) opsonization of RBCs, a condition that can occur as a consequence of autoantibody or alloantibody formation. The purpose of our study was to investigate which phagocytes are involved in IgG-mediated RBC clearance in the human spleen. We developed a highly specific in vitro assay to monitor RBC phagocytosis in total human splenocytes. Surprisingly, we have found that whereas homeostatic clearance of RBCs is primarily a task for splenic macrophages, neutrophils and, to a lesser extent, also monocytes can be a major factor in clearance of IgG-opsonized RBCs. Erythrophagocytosis by neutrophils is strongly dependent on the degree of opsonization of the RBCs. Additionally, the process is enhanced after blocking the "do not eat me" signal CD47 on the opsonized RBCs, which binds signal regulatory protein α, a myeloid inhibitory receptor that restricts phagocytosis. Moreover, RBCs isolated from autoimmune hemolytic anemia patients, opsonized by auto-IgGs, were shown to be readily phagocytosed by neutrophils. Finally, priming of neutrophils by inflammatory mediators such as tumor necrosis factor α and lipopolysaccharide further increases the magnitude of erythrophagocytosis. Collectively, our data suggest that neutrophils contribute significantly to the phagocytosis of antibody-opsonized RBCs, especially under inflammatory conditions. This indicates a hereto unanticipated contribution of neutrophils in RBC phagocytosis, especially under pathological conditions such as alloimmunization or autoimmunization.
Collapse
|
163
|
Liu L, Zhang L, Yang L, Li H, Li R, Yu J, Yang L, Wei F, Yan C, Sun Q, Zhao H, Yang F, Jin H, Wang J, Wang SE, Ren X. Anti-CD47 Antibody As a Targeted Therapeutic Agent for Human Lung Cancer and Cancer Stem Cells. Front Immunol 2017; 8:404. [PMID: 28484448 PMCID: PMC5399041 DOI: 10.3389/fimmu.2017.00404] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/22/2017] [Indexed: 12/25/2022] Open
Abstract
Accumulating evidence indicates that a small subset of cancer cells, termed the tumor-initiating cells or cancer stem cells (CSCs), construct a reservoir of self-sustaining cancer cells with the characteristic ability to self-renew and maintain the tumor mass. The CSCs play an important role in the tumor initiation, development, relapse, metastasis, and the ineffectiveness of conventional cancer therapies. CD47 is a ligand for signal-regulatory protein-α expressed on phagocytic cells and functions to inhibit phagocytosis. This study was to explore if the expression of CD47 is the mechanism used by lung cancer cells, especially CSCs, to escape phagocytosis in vitro and in vivo. Here, we selected CD133 as the marker for lung CSCs according to previous reports. We analyzed lung cancer and matched adjacent normal (non-tumor) tissue and revealed that CD47 is overexpressed on lung cancer cells, especially on lung CSCs. The mRNA expression levels of CD47 and CD133 correlated with a decreased probability of survival for multiple types of lung cancer. Blocking CD47 function with anti-CD47 antibodies enabled macrophage phagocytosis of lung cancer cells and lung CSCs. Anti-CD47 antibodies inhibited tumor growth in immunodeficient mouse xenotransplantation models established with lung cancer cells or lung CSCs and improved survival in tumor-bearing animals. These data indicate that CD47 is a valid target for cancer therapies, especially for anti-CSC therapies.
Collapse
Affiliation(s)
- Liang Liu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lin Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lin Yang
- State Key Laboratory of Experimental Hematology, Peking Union Medical College, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Hui Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Runmei Li
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jinpu Yu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Hua Zhao
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Fan Yang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Hao Jin
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Shizhen Emily Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Pathology, University of California, San Diego, CA, USA
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
164
|
Calì B, Molon B, Viola A. Tuning cancer fate: the unremitting role of host immunity. Open Biol 2017; 7:rsob.170006. [PMID: 28404796 PMCID: PMC5413907 DOI: 10.1098/rsob.170006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
Host immunity plays a central and complex role in dictating tumour progression. Solid tumours are commonly infiltrated by a large number of immune cells that dynamically interact with the surrounding microenvironment. At first, innate and adaptive immune cells successfully cooperate to eradicate microcolonies of transformed cells. Concomitantly, surviving tumour clones start to proliferate and harness immune responses by specifically hijacking anti-tumour effector mechanisms and fostering the accumulation of immunosuppressive immune cell subsets at the tumour site. This pliable interplay between immune and malignant cells is a relentless process that has been concisely organized in three different phases: elimination, equilibrium and escape. In this review, we aim to depict the distinct immune cell subsets and immune-mediated responses characterizing the tumour landscape throughout the three interconnected phases. Importantly, the identification of key immune players and molecules involved in the dynamic crosstalk between tumour and immune system has been crucial for the introduction of reliable prognostic factors and effective therapeutic protocols against cancers.
Collapse
Affiliation(s)
- B Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy .,Venetian Institute of Molecular Medicine, Padua, Italy
| | - B Molon
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy
| | - A Viola
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine, Padua, Italy
| |
Collapse
|
165
|
Lopes FB, Bálint Š, Valvo S, Felce JH, Hessel EM, Dustin ML, Davis DM. Membrane nanoclusters of FcγRI segregate from inhibitory SIRPα upon activation of human macrophages. J Cell Biol 2017; 216:1123-1141. [PMID: 28289091 PMCID: PMC5379948 DOI: 10.1083/jcb.201608094] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/20/2016] [Accepted: 01/30/2017] [Indexed: 01/09/2023] Open
Abstract
Lopes et al. use superresolution microscopy to visualize the nanoscale organization of activating and inhibitory receptors on human macrophages. Nanoclusters of inhibitory SIRPα and activating FcγRI associate in the cell’s resting state, but engagement of FcγRI induces their segregation. Signal integration between activating Fc receptors and inhibitory signal regulatory protein α (SIRPα) controls macrophage phagocytosis. Here, using dual-color direct stochastic optical reconstruction microscopy, we report that Fcγ receptor I (FcγRI), FcγRII, and SIRPα are not homogeneously distributed at macrophage surfaces but are organized in discrete nanoclusters, with a mean radius of 71 ± 11 nm, 60 ± 6 nm, and 48 ± 3 nm, respectively. Nanoclusters of FcγRI, but not FcγRII, are constitutively associated with nanoclusters of SIRPα, within 62 ± 5 nm, mediated by the actin cytoskeleton. Upon Fc receptor activation, Src-family kinase signaling leads to segregation of FcγRI and SIRPα nanoclusters to be 197 ± 3 nm apart. Co-ligation of SIRPα with CD47 abrogates nanocluster segregation. If the balance of signals favors activation, FcγRI nanoclusters reorganize into periodically spaced concentric rings. Thus, a nanometer- and micron-scale reorganization of activating and inhibitory receptors occurs at the surface of human macrophages concurrent with signal integration.
Collapse
Affiliation(s)
- Filipa B Lopes
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, England, UK
| | - Štefan Bálint
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, England, UK
| | - Salvatore Valvo
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, England, UK
| | - James H Felce
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, England, UK
| | - Edith M Hessel
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Hertfordshire SG1 2NY, England, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, England, UK
| | - Daniel M Davis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, England, UK
| |
Collapse
|
166
|
Weiskopf K. Cancer immunotherapy targeting the CD47/SIRPα axis. Eur J Cancer 2017; 76:100-109. [PMID: 28286286 DOI: 10.1016/j.ejca.2017.02.013] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/29/2017] [Accepted: 02/05/2017] [Indexed: 12/31/2022]
Abstract
The success of cancer immunotherapy has generated tremendous interest in identifying new immunotherapeutic targets. To date, the majority of therapies have focussed on stimulating the adaptive immune system to attack cancer, including agents targeting CTLA-4 and the PD-1/PD-L1 axis. However, macrophages and other myeloid immune cells offer much promise as effectors of cancer immunotherapy. The CD47/signal regulatory protein alpha (SIRPα) axis is a critical regulator of myeloid cell activation and serves a broader role as a myeloid-specific immune checkpoint. CD47 is highly expressed on many different types of cancer, and it transduces inhibitory signals through SIRPα on macrophages and other myeloid cells. In a diverse range of preclinical models, therapies that block the CD47/SIRPα axis stimulate phagocytosis of cancer cells in vitro and anti-tumour immune responses in vivo. A number of therapeutics that target the CD47/SIRPα axis are under preclinical and clinical investigation. These include anti-CD47 antibodies, engineered receptor decoys, anti-SIRPα antibodies and bispecific agents. These therapeutics differ in their pharmacodynamic, pharmacokinetic and toxicological properties. Clinical trials are underway for both solid and haematologic malignancies using anti-CD47 antibodies and recombinant SIRPα proteins. Since the CD47/SIRPα axis also limits the efficacy of tumour-opsonising antibodies, additional trials will examine their potential synergy with agents such as rituximab, cetuximab and trastuzumab. Phagocytosis in response to CD47/SIRPα-blocking agents results in antigen uptake and presentation, thereby linking the innate and adaptive immune systems. CD47/SIRPα blocking therapies may therefore synergise with immune checkpoint inhibitors that target the adaptive immune system. As a critical regulator of macrophage phagocytosis and activation, the potential applications of CD47/SIRPα blocking therapies extend beyond human cancer. They may be useful for the treatment of infectious disease, conditioning for stem cell transplant, and many other clinical indications.
Collapse
Affiliation(s)
- Kipp Weiskopf
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
167
|
Anti-leukemic activity and tolerability of anti-human CD47 monoclonal antibodies. Blood Cancer J 2017; 7:e536. [PMID: 28234345 PMCID: PMC5386341 DOI: 10.1038/bcj.2017.7] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/05/2017] [Indexed: 01/04/2023] Open
Abstract
CD47, a broadly expressed cell surface protein, inhibits cell phagocytosis via interaction with phagocyte-expressed SIRPα. A variety of hematological malignancies demonstrate elevated CD47 expression, suggesting that CD47 may mediate immune escape. We discovered three unique CD47-SIRPα blocking anti-CD47 monoclonal antibodies (mAbs) with low nano-molar affinity to human and cynomolgus monkey CD47, and no hemagglutination and platelet aggregation activity. To characterize the anti-cancer activity elicited by blocking CD47, the mAbs were cloned into effector function silent and competent Fc backbones. Effector function competent mAbs demonstrated potent activity in vitro and in vivo, while effector function silent mAbs demonstrated minimal activity, indicating that blocking CD47 only leads to a therapeutic effect in the presence of Fc effector function. A non-human primate study revealed that the effector function competent mAb IgG1 C47B222-(CHO) decreased red blood cells (RBC), hematocrit and hemoglobin by >40% at 1 mg/kg, whereas the effector function silent mAb IgG2σ C47B222-(CHO) had minimal impact on RBC indices at 1 and 10 mg/kg. Taken together, our findings suggest that targeting CD47 is an attractive therapeutic anti-cancer approach. However, the anti-cancer activity observed with anti-CD47 mAbs is Fc effector dependent as are the side effects observed on RBC indices.
Collapse
|
168
|
Klei TRL, Meinderts SM, van den Berg TK, van Bruggen R. From the Cradle to the Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis. Front Immunol 2017; 8:73. [PMID: 28210260 PMCID: PMC5288342 DOI: 10.3389/fimmu.2017.00073] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
Erythropoiesis is a highly regulated process where sequential events ensure the proper differentiation of hematopoietic stem cells into, ultimately, red blood cells (RBCs). Macrophages in the bone marrow play an important role in hematopoiesis by providing signals that induce differentiation and proliferation of the earliest committed erythroid progenitors. Subsequent differentiation toward the erythroblast stage is accompanied by the formation of so-called erythroblastic islands where a central macrophage provides further cues to induce erythroblast differentiation, expansion, and hemoglobinization. Finally, erythroblasts extrude their nuclei that are phagocytosed by macrophages whereas the reticulocytes are released into the circulation. While in circulation, RBCs slowly accumulate damage that is repaired by macrophages of the spleen. Finally, after 120 days of circulation, senescent RBCs are removed from the circulation by splenic and liver macrophages. Macrophages are thus important for RBCs throughout their lifespan. Finally, in a range of diseases, the delicate interplay between macrophages and both developing and mature RBCs is disturbed. Here, we review the current knowledge on the contribution of macrophages to erythropoiesis and erythrophagocytosis in health and disease.
Collapse
Affiliation(s)
- Thomas R L Klei
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Sanne M Meinderts
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
169
|
Horrigan SK. Replication Study: The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. eLife 2017; 6. [PMID: 28100392 PMCID: PMC5245970 DOI: 10.7554/elife.18173] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022] Open
Abstract
In 2015, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Chroscinski et al., 2015) that described how we intended to replicate selected experiments from the paper "The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors "(Willingham et al., 2012). Here we report the results of those experiments. We found that treatment of immune competent mice bearing orthotopic breast tumors with anti-mouse CD47 antibodies resulted in short-term anemia compared to controls, consistent with the previously described function of CD47 in normal phagocytosis of aging red blood cells and results reported in the original study (Table S4; Willingham et al., 2012). The weight of tumors after 30 days administration of anti-CD47 antibodies or IgG isotype control were not found to be statistically different, whereas the original study reported inhibition of tumor growth with anti-CD47 treatment (Figure 6A,B; Willingham et al., 2012). However, our efforts to replicate this experiment were confounded because spontaneous regression of tumors occurred in several of the mice. Additionally, the excised tumors were scored for inflammatory cell infiltrates. We found IgG and anti-CD47 treated tumors resulted in minimal to moderate lymphocytic infiltrate, while the original study observed sparse lymphocytic infiltrate in IgG-treated tumors and increased inflammatory cell infiltrates in anti-CD47 treated tumors (Figure 6C; Willingham et al., 2012). Furthermore, we observed neutrophilic infiltration was slightly increased in anti-CD47 treated tumors compared to IgG control. Finally, we report a meta-analysis of the result.
Collapse
|
170
|
Tolerogenic interactions between CD8 + dendritic cells and NKT cells prevent rejection of bone marrow and organ grafts. Blood 2017; 129:1718-1728. [PMID: 28096089 DOI: 10.1182/blood-2016-07-723015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022] Open
Abstract
The combination of total lymphoid irradiation and anti-T-cell antibodies safely induces immune tolerance to combined hematopoietic cell and organ allografts in humans. Our mouse model required host natural killer T (NKT) cells to induce tolerance. Because NKT cells normally depend on signals from CD8+ dendritic cells (DCs) for their activation, we used the mouse model to test the hypothesis that, after lymphoid irradiation, host CD8+ DCs play a requisite role in tolerance induction through interactions with NKT cells. Selective deficiency of either CD8+ DCs or NKT cells abrogated chimerism and organ graft acceptance. After radiation, the CD8+ DCs increased expression of surface molecules required for NKT and apoptotic cell interactions and developed suppressive immune functions, including production of indoleamine 2,3-deoxygenase. Injection of naive mice with apoptotic spleen cells generated by irradiation led to DC changes similar to those induced by lymphoid radiation, suggesting that apoptotic body ingestion by CD8+ DCs initiates tolerance induction. Tolerogenic CD8+ DCs induced the development of tolerogenic NKT cells with a marked T helper 2 cell bias that, in turn, regulated the differentiation of the DCs and suppressed rejection of the transplants. Thus, reciprocal interactions between CD8+ DCs and invariant NKT cells are required for tolerance induction in this system that was translated into a successful clinical protocol.
Collapse
|
171
|
Totino PRR, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Evidencing the Role of Erythrocytic Apoptosis in Malarial Anemia. Front Cell Infect Microbiol 2016; 6:176. [PMID: 28018860 PMCID: PMC5145864 DOI: 10.3389/fcimb.2016.00176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/21/2016] [Indexed: 01/06/2023] Open
Abstract
In the last decade it has become clear that, similarly to nucleated cells, enucleated red blood cells (RBCs) are susceptible to programmed apoptotic cell death. Erythrocytic apoptosis seems to play a role in physiological clearance of aged RBCs, but it may also be implicated in anemia of different etiological sources including drug therapy and infectious diseases. In malaria, severe anemia is a common complication leading to death of children and pregnant women living in malaria-endemic regions of Africa. The pathogenesis of malarial anemia is multifactorial and involves both ineffective production of RBCs by the bone marrow and premature elimination of non-parasitized RBCs, phenomena potentially associated with apoptosis. In the present overview, we discuss evidences associating erythrocytic apoptosis with the pathogenesis of severe malarial anemia, as well as with regulation of parasite clearance in malaria. Efforts to understand the role of erythrocytic apoptosis in malarial anemia can help to identify potential targets for therapeutic intervention based on apoptotic pathways and consequently, mitigate the harmful impact of malaria in global public health.
Collapse
Affiliation(s)
- Paulo R R Totino
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz Rio de Janeiro, Brazil
| | - Cláudio T Daniel-Ribeiro
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz Rio de Janeiro, Brazil
| | | |
Collapse
|
172
|
Sosale NG, Ivanovska II, Tsai RK, Swift J, Hsu JW, Alvey CM, Zoltick PW, Discher DE. "Marker of Self" CD47 on lentiviral vectors decreases macrophage-mediated clearance and increases delivery to SIRPA-expressing lung carcinoma tumors. Mol Ther Methods Clin Dev 2016; 3:16080. [PMID: 28053997 PMCID: PMC5148596 DOI: 10.1038/mtm.2016.80] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 02/08/2023]
Abstract
Lentiviruses infect many cell types and are now widely used for gene delivery in vitro, but in vivo uptake of these foreign vectors by macrophages is a limitation. Lentivectors are produced here from packaging cells that overexpress "Marker of Self" CD47, which inhibits macrophage uptake of cells when prophagocytic factors are also displayed. Single particle analyses show "hCD47-Lenti" display properly oriented human-CD47 for interactions with the macrophage's inhibitory receptor SIRPA. Macrophages derived from human and NOD/SCID/Il2rg-/- (NSG) mice show a SIRPA-dependent decrease in transduction, i.e., transgene expression, by hCD47-Lenti compared to control Lenti. Consistent with known "Self" signaling pathways, macrophage transduction by control Lenti is decreased by drug inhibition of Myosin-II to the same levels as hCD47-Lenti. In contrast, human lung carcinoma cells express SIRPA and use it to enhance transduction by hCD47-Lenti- as illustrated by more efficient gene deletion using CRISPR/Cas9. Intravenous injection of hCD47-Lenti into NSG mice shows hCD47 prolongs circulation, unless a blocking anti-SIRPA is preinjected. In vivo transduction of spleen and liver macrophages also decreases for hCD47-Lenti while transduction of lung carcinoma xenografts increases. hCD47 could be useful when macrophage uptake is limiting on other viral vectors that are emerging in cancer treatments (e.g., Measles glycoprotein-pseudotyped lentivectors) and also in targeting various SIRPA-expressing tumors such as glioblastomas.
Collapse
Affiliation(s)
- Nisha G Sosale
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Irena I Ivanovska
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard K Tsai
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joe Swift
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jake W Hsu
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cory M Alvey
- Pharmacological Sciences Graduate Group, University of Pennsylvania, Pennsylvania, USA
| | - Philip W Zoltick
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Dennis E Discher
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Pharmacological Sciences Graduate Group, University of Pennsylvania, Pennsylvania, USA
| |
Collapse
|
173
|
Bener G, J. Félix A, Sánchez de Diego C, Pascual Fabregat I, Ciudad CJ, Noé V. Silencing of CD47 and SIRPα by Polypurine reverse Hoogsteen hairpins to promote MCF-7 breast cancer cells death by PMA-differentiated THP-1 cells. BMC Immunol 2016; 17:32. [PMID: 27671753 PMCID: PMC5037635 DOI: 10.1186/s12865-016-0170-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/19/2016] [Indexed: 03/13/2023] Open
Abstract
Background Methods Results Conclusions
Collapse
|
174
|
Gebremeskel S, Johnston B. Concepts and mechanisms underlying chemotherapy induced immunogenic cell death: impact on clinical studies and considerations for combined therapies. Oncotarget 2016; 6:41600-19. [PMID: 26486085 PMCID: PMC4747176 DOI: 10.18632/oncotarget.6113] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/22/2015] [Indexed: 01/12/2023] Open
Abstract
Chemotherapy has historically been thought to induce cancer cell death in an immunogenically silent manner. However, recent studies have demonstrated that therapeutic outcomes with specific chemotherapeutic agents (e.g. anthracyclines) correlate strongly with their ability to induce a process of immunogenic cell death (ICD) in cancer cells. This process generates a series of signals that stimulate the immune system to recognize and clear tumor cells. Extensive studies have revealed that chemotherapy-induced ICD occurs via the exposure/release of calreticulin (CALR), ATP, chemokine (C–X–C motif) ligand 10 (CXCL10) and high mobility group box 1 (HMGB1). This review provides an in-depth look into the concepts and mechanisms underlying CALR exposure, activation of the Toll-like receptor 3/IFN/CXCL10 axis, and the release of ATP and HMGB1 from dying cancer cells. Factors that influence the impact of ICD in clinical studies and the design of therapies combining chemotherapy with immunotherapy are also discussed.
Collapse
Affiliation(s)
- Simon Gebremeskel
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Brent Johnston
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| |
Collapse
|
175
|
Bian Z, Shi L, Guo YL, Lv Z, Tang C, Niu S, Tremblay A, Venkataramani M, Culpepper C, Li L, Zhou Z, Mansour A, Zhang Y, Gewirtz A, Kidder K, Zen K, Liu Y. Cd47-Sirpα interaction and IL-10 constrain inflammation-induced macrophage phagocytosis of healthy self-cells. Proc Natl Acad Sci U S A 2016; 113:E5434-43. [PMID: 27578867 PMCID: PMC5027463 DOI: 10.1073/pnas.1521069113] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rapid clearance of adoptively transferred Cd47-null (Cd47(-/-)) cells in congeneic WT mice suggests a critical self-recognition mechanism, in which CD47 is the ubiquitous marker of self, and its interaction with macrophage signal regulatory protein α (SIRPα) triggers inhibitory signaling through SIRPα cytoplasmic immunoreceptor tyrosine-based inhibition motifs and tyrosine phosphatase SHP-1/2. However, instead of displaying self-destruction phenotypes, Cd47(-/-) mice manifest no, or only mild, macrophage phagocytosis toward self-cells except under the nonobese diabetic background. Studying our recently established Sirpα-KO (Sirpα(-/-)) mice, as well as Cd47(-/-) mice, we reveal additional activation and inhibitory mechanisms besides the CD47-SIRPα axis dominantly controlling macrophage behavior. Sirpα(-/-) mice and Cd47(-/-) mice, although being normally healthy, develop severe anemia and splenomegaly under chronic colitis, peritonitis, cytokine treatments, and CFA-/LPS-induced inflammation, owing to splenic macrophages phagocytizing self-red blood cells. Ex vivo phagocytosis assays confirmed general inactivity of macrophages from Sirpα(-/-) or Cd47(-/-) mice toward healthy self-cells, whereas they aggressively attack toward bacteria, zymosan, apoptotic, and immune complex-bound cells; however, treating these macrophages with IL-17, LPS, IL-6, IL-1β, and TNFα, but not IFNγ, dramatically initiates potent phagocytosis toward self-cells, for which only the Cd47-Sirpα interaction restrains. Even for macrophages from WT mice, phagocytosis toward Cd47(-/-) cells does not occur without phagocytic activation. Mechanistic studies suggest a PKC-Syk-mediated signaling pathway, to which IL-10 conversely inhibits, is required for activating macrophage self-targeting, followed by phagocytosis independent of calreticulin Moreover, we identified spleen red pulp to be one specific tissue that provides stimuli constantly activating macrophage phagocytosis albeit lacking in Cd47(-/-) or Sirpα(-/-) mice.
Collapse
Affiliation(s)
- Zhen Bian
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Shi
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Ya-Lan Guo
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Zhiyuan Lv
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Cong Tang
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Shuo Niu
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Alexandra Tremblay
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Mahathi Venkataramani
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Courtney Culpepper
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Limin Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zhen Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ahmed Mansour
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Life Science Institute (LSI) Immunology Programme, National University of Singapore, Singapore 117456
| | - Andrew Gewirtz
- Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303
| | - Koby Kidder
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302; Department of Cell Biology, Rutgers University, New Brunswick, NJ 08901
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yuan Liu
- Program of Immunology and Cell Biology, Department of Biology, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302; Center for Inflammation, Immunity and Infection, Georgia State University, Atlanta, GA 30303;
| |
Collapse
|
176
|
CD47-SIRPα Interactions Regulate Macrophage Uptake of Plasmodium falciparum-Infected Erythrocytes and Clearance of Malaria In Vivo. Infect Immun 2016; 84:2002-2011. [PMID: 27091932 DOI: 10.1128/iai.01426-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/15/2016] [Indexed: 01/02/2023] Open
Abstract
CD47 engagement by the macrophage signal regulatory protein alpha (SIRPα) inhibits phagocytic activity and protects red blood cells (RBCs) from erythrophagocytosis. The role of CD47-SIRPα in the innate immune response to Plasmodium falciparum infection is unknown. We hypothesized that disruption of SIRPα signaling may enhance macrophage uptake of malaria parasite-infected RBCs. To test this hypothesis, we examined in vivo clearance in CD47-deficient mice infected with Plasmodium berghei ANKA and in vitro phagocytosis of P. falciparum-infected RBCs by macrophages from SHP-1-deficient (Shp-1(-/-)) mice and NOD.NOR-Idd13.Prkdc(scid) (NS-Idd13) mice, as well as human macrophages, following disruption of CD47-SIRPα interactions with anti-SIRPα antibodies or recombinant SIRPα-Fc fusion protein. Compared to their wild-type counterparts, Cd47(-/-) mice displayed significantly lower parasitemia, decreased endothelial activation, and enhanced survival. Using macrophages from SHP-1-deficient mice or from NS-Idd13 mice, which express a SIRPα variant that does not bind human CD47, we showed that altered SIRPα signaling resulted in enhanced phagocytosis of P. falciparum-infected RBCs. Moreover, disrupting CD47-SIRPα engagement using anti-SIRPα antibodies or SIRPα-Fc fusion protein also increased phagocytosis of P. falciparum-infected RBCs. These results indicate an important role for CD47-SIRPα interactions in innate control of malaria and suggest novel targets for intervention.
Collapse
|
177
|
Caston SS, Cooper EE, Chandramani-Shivalingappa P, Sponseller BA, Hostetter JM, Sun Y. CD47 expression in cryopreserved equine cutaneous masses and normal skin. J Vet Diagn Invest 2016; 28:408-13. [PMID: 27154320 DOI: 10.1177/1040638716643352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We investigated CD47 expression in cryopreserved sections of equine cutaneous masses and normal skin. CD47 is a cell surface protein expressed on many cell types and overexpressed in some tumors. Interaction of CD47 and signal regulatory protein-alpha (SIRPα) inhibits phagocytosis by macrophages. Formalin-fixed tissues from horses prospectively enrolled in the study were used to establish a histologic diagnosis. Immunohistochemical assays were performed on cryopreserved tissues using anti-CD47 antibodies or IgG control antibodies. CD47 was not expressed on equine normal skin but positivity to CD47 was present in 13 of 24 (54%) masses. Immunotherapy with anti-CD47 antibodies for equine cutaneous tumors that express CD47 warrants further investigation.
Collapse
Affiliation(s)
- Stephanie S Caston
- Departments of Veterinary Clinical Sciences (Caston, Cooper), Iowa State University, Ames, IAVeterinary Microbiology and Preventive Medicine (Chandramani-Shivalingappa, Sponseller), Iowa State University, Ames, IAVeterinary Pathology (Hostetter), Iowa State University, Ames, IACollege of Veterinary Medicine, and Department of Statistics (Sun), Iowa State University, Ames, IA
| | - Elizabeth E Cooper
- Departments of Veterinary Clinical Sciences (Caston, Cooper), Iowa State University, Ames, IAVeterinary Microbiology and Preventive Medicine (Chandramani-Shivalingappa, Sponseller), Iowa State University, Ames, IAVeterinary Pathology (Hostetter), Iowa State University, Ames, IACollege of Veterinary Medicine, and Department of Statistics (Sun), Iowa State University, Ames, IA
| | - Prashanth Chandramani-Shivalingappa
- Departments of Veterinary Clinical Sciences (Caston, Cooper), Iowa State University, Ames, IAVeterinary Microbiology and Preventive Medicine (Chandramani-Shivalingappa, Sponseller), Iowa State University, Ames, IAVeterinary Pathology (Hostetter), Iowa State University, Ames, IACollege of Veterinary Medicine, and Department of Statistics (Sun), Iowa State University, Ames, IA
| | - Brett A Sponseller
- Departments of Veterinary Clinical Sciences (Caston, Cooper), Iowa State University, Ames, IAVeterinary Microbiology and Preventive Medicine (Chandramani-Shivalingappa, Sponseller), Iowa State University, Ames, IAVeterinary Pathology (Hostetter), Iowa State University, Ames, IACollege of Veterinary Medicine, and Department of Statistics (Sun), Iowa State University, Ames, IA
| | - Jesse M Hostetter
- Departments of Veterinary Clinical Sciences (Caston, Cooper), Iowa State University, Ames, IAVeterinary Microbiology and Preventive Medicine (Chandramani-Shivalingappa, Sponseller), Iowa State University, Ames, IAVeterinary Pathology (Hostetter), Iowa State University, Ames, IACollege of Veterinary Medicine, and Department of Statistics (Sun), Iowa State University, Ames, IA
| | - Yaxuan Sun
- Departments of Veterinary Clinical Sciences (Caston, Cooper), Iowa State University, Ames, IAVeterinary Microbiology and Preventive Medicine (Chandramani-Shivalingappa, Sponseller), Iowa State University, Ames, IAVeterinary Pathology (Hostetter), Iowa State University, Ames, IACollege of Veterinary Medicine, and Department of Statistics (Sun), Iowa State University, Ames, IA
| |
Collapse
|
178
|
Sun FJ, Zhang CQ, Chen X, Wei YJ, Li S, Liu SY, Zang ZL, He JJ, Guo W, Yang H. Downregulation of CD47 and CD200 in patients with focal cortical dysplasia type IIb and tuberous sclerosis complex. J Neuroinflammation 2016; 13:85. [PMID: 27095555 PMCID: PMC4837553 DOI: 10.1186/s12974-016-0546-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/11/2016] [Indexed: 12/20/2022] Open
Abstract
Background Focal cortical dysplasia type IIb (FCD IIb) and tuberous sclerosis complex (TSC) are well-recognized causes of chronic intractable epilepsy in children. Accumulating evidence suggests that activation of the microglia/macrophage and concomitant inflammatory response in FCD IIb and TSC may contribute to the initiation and recurrence of seizures. The membrane glycoproteins CD47 and CD200, which are highly expressed in neurons and other cells, mediate inhibitory signals through their receptors, signal regulatory protein α (SIRP-α) and CD200R, respectively, in microglia/macrophages. We investigate the levels and expression pattern of CD47/SIRP-α and CD200/CD200R in surgically resected brain tissues from patients with FCD IIb and TSC, and the potential effect of soluble human CD47 Fc and CD200 Fc on the inhibition of several proinflammatory cytokines associated with FCD IIb and TSC in living epileptogenic brain slices in vitro. The level of interleukin-4 (IL-4), a modulator of CD200, was also investigated. Methods Twelve FCD IIb (range 1.8–9.5 years), 13 TSC (range 1.5–10 years) patients, and 6 control cases (range 1.5–11 years) were enrolled. The levels of CD47/SIRP-α and CD200/CD200R were assessed by quantitative real-time polymerase chain reaction and western blot. The expression pattern of CD47/SIRP-α and CD200/CD200R was investigated by immunohistochemical analysis, and the cytokine concentrations were measured by enzyme-linked immune-sorbent assays. Results Both the messenger RNA and protein levels of CD47, SIRP-α, and CD200, as well as the mRNA level of IL-4, were downregulated in epileptogenic lesions of FCD IIb and TSC compared with the control specimens, whereas CD200R levels were not significantly changed. CD47, SIRP-α, and CD200 were decreasingly expressed in dysmorphic neuron, balloon cells, and giant cells. CD47 Fc and CD200 Fc could inhibit IL-6 release but did not suppress IL-1β or IL-17 production. Conclusions Our results suggest that microglial activation may be partially caused by CD47/SIRP-α- and CD200/CD200R-mediated reductions in the immune inhibitory pathways within FCD IIb and TSC cortical lesions where chronic neuroinflammation has been established. Upregulation or activation of CD47/SIRP-α and CD200/CD200R may have therapeutic potential for controlling neuroinflammation in human FCD IIb and TSC. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0546-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fei-Ji Sun
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 2-V Xinqiao Street, Chongqing, 400037, China
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 2-V Xinqiao Street, Chongqing, 400037, China
| | - Xin Chen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 2-V Xinqiao Street, Chongqing, 400037, China
| | - Yu-Jia Wei
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 2-V Xinqiao Street, Chongqing, 400037, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 2-V Xinqiao Street, Chongqing, 400037, China
| | - Shi-Yong Liu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 2-V Xinqiao Street, Chongqing, 400037, China
| | - Zhen-le Zang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 2-V Xinqiao Street, Chongqing, 400037, China
| | - Jiao-Jiang He
- Department of Neurosurgery, Lanzhou General Hospital of Chinese People's Liberation Army, Lanzhou, China
| | - Wei Guo
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xian, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 2-V Xinqiao Street, Chongqing, 400037, China.
| |
Collapse
|
179
|
Larsson A, Hult A, Nilsson A, Olsson M, Oldenborg PA. Red blood cells with elevated cytoplasmic Ca2+are primarily taken up by splenic marginal zone macrophages and CD207+ dendritic cells. Transfusion 2016; 56:1834-44. [DOI: 10.1111/trf.13612] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 02/23/2016] [Accepted: 03/03/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Anders Larsson
- Department of Integrative Medical Biology and the; Umeå University; Umeå Sweden
| | - Andreas Hult
- Department of Community Medicine and Rehabilitation, Section for Sports Medicine; Umeå University; Umeå Sweden
| | - Anna Nilsson
- Department of Integrative Medical Biology and the; Umeå University; Umeå Sweden
| | - Mattias Olsson
- Department of Integrative Medical Biology and the; Umeå University; Umeå Sweden
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology and the; Umeå University; Umeå Sweden
| |
Collapse
|
180
|
CD47: a potential immunotherapy target for eliminating cancer cells. Clin Transl Oncol 2016; 18:1051-1055. [DOI: 10.1007/s12094-016-1489-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/18/2016] [Indexed: 01/10/2023]
|
181
|
Interplay between Cellular and Molecular Inflammatory Mediators in Lung Cancer. Mediators Inflamm 2016; 2016:3494608. [PMID: 26941482 PMCID: PMC4749813 DOI: 10.1155/2016/3494608] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/10/2016] [Indexed: 01/09/2023] Open
Abstract
Inflammation is a component of the tumor microenvironment and represents the 7th hallmark of cancer. Chronic inflammation plays a critical role in tumorigenesis. Tumor infiltrating inflammatory cells mediate processes associated with progression, immune suppression, promotion of neoangiogenesis and lymphangiogenesis, remodeling of extracellular matrix, invasion and metastasis, and, lastly, the inhibition of vaccine-induced antitumor T cell response. Accumulating evidence indicates a critical role of myeloid cells in the pathophysiology of human cancers. In contrast to the well-characterized tumor-associated macrophages (TAMs), the significance of granulocytes in cancer has only recently begun to emerge with the characterization of tumor-associated neutrophils (TANs). Recent studies show the importance of CD47 in the interaction with macrophages inhibiting phagocytosis and promoting the migration of neutrophils, increasing inflammation which can lead to recurrence and progression in lung cancer. Currently, therapies are targeted towards blocking CD47 and enhancing macrophage-mediated phagocytosis. However, antibody-based therapies may have adverse effects that limit its use.
Collapse
|
182
|
Discovering Molecules That Regulate Efferocytosis Using Primary Human Macrophages and High Content Imaging. PLoS One 2015; 10:e0145078. [PMID: 26674639 PMCID: PMC4686065 DOI: 10.1371/journal.pone.0145078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/28/2015] [Indexed: 12/20/2022] Open
Abstract
Defective clearance of apoptotic cells can result in sustained inflammation and subsequent autoimmunity. Macrophages, the “professional phagocyte” of the body, are responsible for efficient, non-phlogistic, apoptotic cell clearance. Controlling phagocytosis of apoptotic cells by macrophages is an attractive therapeutic opportunity to ameliorate inflammation. Using high content imaging, we have developed a system for evaluating the effects of antibody treatment on apoptotic cell uptake in primary human macrophages by comparing the Phagocytic Index (PI) for each antibody. Herein we demonstrate the feasibility of evaluating a panel of antibodies of unknown specificities obtained by immunization of mice with primary human macrophages and show that they can be distinguished based on individual PI measurements. In this study ~50% of antibodies obtained enhance phagocytosis of apoptotic cells while approximately 5% of the antibodies in the panel exhibit some inhibition. Though the specificities of the majority of antibodies are unknown, two of the antibodies that improved apoptotic cell uptake recognize recombinant MerTK; a receptor known to function in this capacity in vivo. The agonistic impact of these antibodies on efferocytosis could be demonstrated without addition of either of the MerTK ligands, Gas6 or ProS. These results validate applying the mechanism of this fundamental biological process as a means for identification of modulators that could potentially serve as therapeutics. This strategy for interrogating macrophages to discover molecules regulating apoptotic cell uptake is not limited by access to purified protein thereby increasing the possibility of finding novel apoptotic cell uptake pathways.
Collapse
|
183
|
Abstract
Macrophages are innate immune cells that derive from circulating monocytes, reside in all tissues, and participate in many states of pathology. Macrophages play a dichotomous role in cancer, where they promote tumor growth but also serve as critical immune effectors of therapeutic antibodies. Macrophages express all classes of Fcγ receptors, and they have immense potential to destroy tumors via the process of antibody-dependent phagocytosis. A number of studies have demonstrated that macrophage phagocytosis is a major mechanism of action of many antibodies approved to treat cancer. Consequently, a number of approaches to augment macrophage responses to therapeutic antibodies are under investigation, including the exploration of new targets and development of antibodies with enhanced functions. For example, the interaction of CD47 with signal-regulatory protein α (SIRPα) serves as a myeloid-specific immune checkpoint that limits the response of macrophages to antibody therapies, and CD47-blocking agents overcome this barrier to augment phagocytosis. The response of macrophages to antibody therapies can also be enhanced with engineered Fc variants, bispecific antibodies, or antibody-drug conjugates. Macrophages have demonstrated success as effectors of cancer immunotherapy, and further investigation will unlock their full potential for the benefit of patients.
Collapse
Key Words
- ADC, antibody-drug conjugate
- ADCC, antibody-dependent cell-mediated cytotoxicity
- ADCP
- ADCP, antibody-dependent cellular phagocytosis
- AML, acute myelogenous leukemia
- BTK, Bruton's tyrosine kinase
- CD, cluster of differentiation
- CD47
- CLL, chronic lymphocytic leukemia
- EGFR, epidermal growth factor receptor
- Fc receptor
- Fc, fragment crystallizable
- FcγR, Fcγ receptors
- GM-CSF, granulocyte-macrophage colony stimulating factor
- HER2, human epidermal growth factor receptor 2
- HSC, haematopoietic stem cell
- ITAM, immunoreceptor tyrosine-based activation motif
- ITIM, immunoreceptor tyrosine-based inhibitory motif
- IgG, immunoglobulin G
- M-CSF, macrophage colony stimulating factor
- NK, natural killer
- SHP, Src homology 2 domain-containing phosphatase
- SIRPα
- SIRPα, signal-regulatory protein α
- antibodies
- cancer
- immune checkpoint
- immunotherapy
- macrophages
- phagocytosis
Collapse
Affiliation(s)
- Kipp Weiskopf
- a Institute for Stem Cell Biology and Regenerative Medicine ; Stanford University School of Medicine ; Stanford , CA USA
| | | |
Collapse
|
184
|
Tanaka M, Shimamura S, Kuriyama S, Maeda D, Goto A, Aiba N. SKAP2 Promotes Podosome Formation to Facilitate Tumor-Associated Macrophage Infiltration and Metastatic Progression. Cancer Res 2015; 76:358-69. [DOI: 10.1158/0008-5472.can-15-1879] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/04/2015] [Indexed: 11/16/2022]
|
185
|
Yi T, Li J, Chen H, Wu J, An J, Xu Y, Hu Y, Lowell CA, Cyster JG. Splenic Dendritic Cells Survey Red Blood Cells for Missing Self-CD47 to Trigger Adaptive Immune Responses. Immunity 2015; 43:764-75. [PMID: 26453377 DOI: 10.1016/j.immuni.2015.08.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/29/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023]
Abstract
Sheep red blood cells (SRBCs) have long been used as a model antigen for eliciting systemic immune responses, yet the basis for their adjuvant activity has been unknown. Here, we show that SRBCs failed to engage the inhibitory mouse SIRPα receptor on splenic CD4(+) dendritic cells (DCs), and this failure led to DC activation. Removal of the SIRPα ligand, CD47, from self-RBCs was sufficient to convert them into an adjuvant for adaptive immune responses. DC capture of Cd47(-/-) RBCs and DC activation occurred within minutes in a Src-family-kinase- and CD18-integrin-dependent manner. These findings provide an explanation for the adjuvant mechanism of SRBCs and reveal that splenic DCs survey blood cells for missing self-CD47, a process that might contribute to detecting and mounting immune responses against pathogen-infected RBCs.
Collapse
Affiliation(s)
- Tangsheng Yi
- Department of Microbiology and Immunology, University of California, San Francisco and Howard Hughes Medical Institute, CA 94143, USA
| | - Jianhua Li
- Department of Microbiology and Immunology, University of California, San Francisco and Howard Hughes Medical Institute, CA 94143, USA
| | - Hsin Chen
- Department of Microbiology and Immunology, University of California, San Francisco and Howard Hughes Medical Institute, CA 94143, USA
| | - Jiaxi Wu
- Department of Microbiology and Immunology, University of California, San Francisco and Howard Hughes Medical Institute, CA 94143, USA
| | - Jinping An
- Department of Microbiology and Immunology, University of California, San Francisco and Howard Hughes Medical Institute, CA 94143, USA
| | - Ying Xu
- Department of Microbiology and Immunology, University of California, San Francisco and Howard Hughes Medical Institute, CA 94143, USA
| | - Yongmei Hu
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94141, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94141, USA
| | - Jason G Cyster
- Department of Microbiology and Immunology, University of California, San Francisco and Howard Hughes Medical Institute, CA 94143, USA.
| |
Collapse
|
186
|
Liu J, Wang L, Zhao F, Tseng S, Narayanan C, Shura L, Willingham S, Howard M, Prohaska S, Volkmer J, Chao M, Weissman IL, Majeti R. Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer Therapeutic Potential. PLoS One 2015; 10:e0137345. [PMID: 26390038 PMCID: PMC4577081 DOI: 10.1371/journal.pone.0137345] [Citation(s) in RCA: 362] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/14/2015] [Indexed: 12/25/2022] Open
Abstract
CD47 is a widely expressed cell surface protein that functions as a regulator of phagocytosis mediated by cells of the innate immune system, such as macrophages and dendritic cells. CD47 serves as the ligand for a receptor on these innate immune cells, SIRP-alpha, which in turn delivers an inhibitory signal for phagocytosis. We previously found increased expression of CD47 on primary human acute myeloid leukemia (AML) stem cells, and demonstrated that blocking monoclonal antibodies directed against CD47 enabled the phagocytosis and elimination of AML, non-Hodgkin’s lymphoma (NHL), and many solid tumors in xenograft models. Here, we report the development of a humanized anti-CD47 antibody with potent efficacy and favorable toxicokinetic properties as a candidate therapeutic. A novel monoclonal anti-human CD47 antibody, 5F9, was generated, and antibody humanization was carried out by grafting its complementarity determining regions (CDRs) onto a human IgG4 format. The resulting humanized 5F9 antibody (Hu5F9-G4) bound monomeric human CD47 with an 8 nM affinity. Hu5F9-G4 induced potent macrophage-mediated phagocytosis of primary human AML cells in vitro and completely eradicated human AML in vivo, leading to long-term disease-free survival of patient-derived xenografts. Moreover, Hu5F9-G4 synergized with rituximab to eliminate NHL engraftment and cure xenografted mice. Finally, toxicokinetic studies in non-human primates showed that Hu5F9-G4 could be safely administered intravenously at doses able to achieve potentially therapeutic serum levels. Thus, Hu5F9-G4 is actively being developed for and has been entered into clinical trials in patients with AML and solid tumors (ClinicalTrials.gov identifier: NCT02216409).
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibody Affinity
- Antineoplastic Agents/immunology
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/therapeutic use
- CD47 Antigen/immunology
- Female
- Haplorhini
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Macaca fascicularis
- Mice
- Mice, Inbred BALB C
- Phagocytosis/drug effects
- Rituximab/therapeutic use
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jie Liu
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lijuan Wang
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Feifei Zhao
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Serena Tseng
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Cyndhavi Narayanan
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lei Shura
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stephen Willingham
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Maureen Howard
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Susan Prohaska
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jens Volkmer
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mark Chao
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (ILW); (RM)
| | - Ravindra Majeti
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (ILW); (RM)
| |
Collapse
|
187
|
CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat Med 2015; 21:1209-15. [PMID: 26322579 PMCID: PMC4598283 DOI: 10.1038/nm.3931] [Citation(s) in RCA: 602] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/23/2015] [Indexed: 12/14/2022]
Abstract
Macrophage phagocytosis of tumor cells mediated by CD47-specific blocking antibodies has been proposed to be the major effector mechanism in xenograft models. Here, using syngeneic immunocompetent mouse tumor models, we reveal that the therapeutic effects of CD47 blockade depend on dendritic cell but not macrophage cross-priming of T cell responses. The therapeutic effects of anti-CD47 antibody therapy were abrogated in T cell-deficient mice. In addition, the antitumor effects of CD47 blockade required expression of the cytosolic DNA sensor STING, but neither MyD88 nor TRIF, in CD11c+ cells, suggesting that cytosolic sensing of DNA from tumor cells is enhanced by anti-CD47 treatment, further bridging the innate and adaptive responses. Notably, the timing of administration of standard chemotherapy markedly impacted the induction of antitumor T cell responses by CD47 blockade. Together, our findings indicate that CD47 blockade drives T cell-mediated elimination of immunogenic tumors.
Collapse
|
188
|
Prins M, Schul E, Geurts J, van der Valk P, Drukarch B, van Dam AM. Pathological differences between white and grey matter multiple sclerosis lesions. Ann N Y Acad Sci 2015. [PMID: 26200258 DOI: 10.1111/nyas.12841] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a debilitating disease characterized by demyelination of the central nervous system (CNS), resulting in widespread formation of white matter lesions (WMLs) and grey matter lesions (GMLs). WMLs are pathologically characterized by the presence of immune cells that infiltrate the CNS, whereas these immune cells are barely present in GMLs. This striking pathological difference between WMLs and GMLs raises questions about the underlying mechanism. It is known that infiltrating leukocytes contribute to the generation of WMLs; however, since GMLs show a paucity of infiltrating immune cells, their importance in GML formation remains to be determined. Here, we review pathological characteristics of WMLs and GMLs, and suggest some possible explanations for the observed pathological differences. In our view, cellular and molecular characteristics of WM and GM, and local differences within WMLs and GMLs (in particular, in glial cell populations and the molecules they express), determine the pathway to demyelination. Further understanding of GML pathogenesis, considered to contribute to chronic MS, may have a direct impact on the development of novel therapeutic targets to counteract this progressive neurological disorder.
Collapse
Affiliation(s)
| | | | | | - Paul van der Valk
- Department of Pathology, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
189
|
Sosale NG, Spinler KR, Alvey C, Discher DE. Macrophage engulfment of a cell or nanoparticle is regulated by unavoidable opsonization, a species-specific 'Marker of Self' CD47, and target physical properties. Curr Opin Immunol 2015; 35:107-12. [PMID: 26172292 DOI: 10.1016/j.coi.2015.06.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/24/2015] [Indexed: 02/04/2023]
Abstract
Professional phagocytes of the mononuclear phagocyte system (MPS), especially ubiquitous macrophages, are commonly thought to engulf or not a target based strictly on 'eat me' molecules such as Antibodies. The target might be a viable 'self' cell or a drug-delivering nanoparticle, or it might be a cancer cell or a microbe. 'Marker of Self' CD47 signals into a macrophage to inhibit the acto-myosin cytoskeleton that makes engulfment efficient. In adhesion of any cell, the same machinery is generally activated by rigidity of target surfaces, and recent results confirm phagocytosis is likewise driven by the rigidity typical of microbes and many synthetics. Basic insights are already being applied in order to make macrophages eat cancer or to delay nanoparticle clearance for better drug delivery and imaging.
Collapse
Affiliation(s)
- Nisha G Sosale
- Molecular & Cell Biophysics and NanoBioPolymers Labs, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Kyle R Spinler
- Molecular & Cell Biophysics and NanoBioPolymers Labs, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Cory Alvey
- Molecular & Cell Biophysics and NanoBioPolymers Labs, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Dennis E Discher
- Molecular & Cell Biophysics and NanoBioPolymers Labs, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
190
|
Galli S, Zlobec I, Schürch C, Perren A, Ochsenbein AF, Banz Y. CD47 protein expression in acute myeloid leukemia: A tissue microarray-based analysis. Leuk Res 2015; 39:749-56. [DOI: 10.1016/j.leukres.2015.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/13/2015] [Indexed: 12/16/2022]
|
191
|
Ho CCM, Guo N, Sockolosky JT, Ring AM, Weiskopf K, Özkan E, Mori Y, Weissman IL, Garcia KC. "Velcro" engineering of high affinity CD47 ectodomain as signal regulatory protein α (SIRPα) antagonists that enhance antibody-dependent cellular phagocytosis. J Biol Chem 2015; 290:12650-63. [PMID: 25837251 DOI: 10.1074/jbc.m115.648220] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Indexed: 12/12/2022] Open
Abstract
CD47 is a cell surface protein that transmits an anti-phagocytic signal, known as the "don't-eat-me" signal, to macrophages upon engaging its receptor signal regulatory protein α (SIRPα). Molecules that antagonize the CD47-SIRPα interaction by binding to CD47, such as anti-CD47 antibodies and the engineered SIRPα variant CV1, have been shown to facilitate macrophage-mediated anti-tumor responses. However, these strategies targeting CD47 are handicapped by large antigen sinks in vivo and indiscriminate cell binding due to ubiquitous expression of CD47. These factors reduce bioavailability and increase the risk of toxicity. Here, we present an alternative strategy to antagonize the CD47-SIRPα pathway by engineering high affinity CD47 variants that target SIRPα, which has restricted tissue expression. CD47 proved to be refractive to conventional affinity maturation techniques targeting its binding interface with SIRPα. Therefore, we developed a novel engineering approach, whereby we augmented the existing contact interface via N-terminal peptide extension, coined "Velcro" engineering. The high affinity variant (Velcro-CD47) bound to the two most prominent human SIRPα alleles with greatly increased affinity relative to wild-type CD47 and potently antagonized CD47 binding to SIRPα on human macrophages. Velcro-CD47 synergizes with tumor-specific monoclonal antibodies to enhance macrophage phagocytosis of tumor cells in vitro, with similar potency as CV1. Finally, Velcro-CD47 interacts specifically with a subset of myeloid-derived cells in human blood, whereas CV1 binds all myeloid, lymphoid, and erythroid populations interrogated. This is consistent with the restricted expression of SIRPα compared with CD47. Herein, we have demonstrated that "Velcro" engineering is a powerful protein-engineering tool with potential applications to other systems and that Velcro-CD47 could be an alternative adjuvant to CD47-targeting agents for cancer immunotherapy.
Collapse
Affiliation(s)
- Chia Chi M Ho
- From the Department of Bioengineering, Stanford University School of Engineering, Departments of Molecular and Cellular Physiology, Pathology, and Structural Biology, Institute for Stem Cell Biology and Regenerative Medicine, and
| | - Nan Guo
- Pathology, and Institute for Stem Cell Biology and Regenerative Medicine, and
| | | | - Aaron M Ring
- Departments of Molecular and Cellular Physiology, Structural Biology
| | - Kipp Weiskopf
- Pathology, and Institute for Stem Cell Biology and Regenerative Medicine, and
| | - Engin Özkan
- Departments of Molecular and Cellular Physiology, Structural Biology, Howard Hughes Medical Institute
| | - Yasuo Mori
- Pathology, and Institute for Stem Cell Biology and Regenerative Medicine, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305
| | - Irving L Weissman
- Pathology, and Institute for Stem Cell Biology and Regenerative Medicine, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305 Ludwig Center for Cancer Stem Cell Research and Medicine
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology, Structural Biology, Howard Hughes Medical Institute,
| |
Collapse
|
192
|
Soto-Pantoja DR, Kaur S, Roberts DD. CD47 signaling pathways controlling cellular differentiation and responses to stress. Crit Rev Biochem Mol Biol 2015; 50:212-30. [PMID: 25708195 DOI: 10.3109/10409238.2015.1014024] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CD47 is a widely expressed integral membrane protein that serves as the counter-receptor for the inhibitory phagocyte receptor signal-regulatory protein-α (SIRPα) and as a signaling receptor for the secreted matricellular protein thrombospondin-1. Recent studies employing mice and somatic cells lacking CD47 have revealed important pathophysiological functions of CD47 in cardiovascular homeostasis, immune regulation, resistance of cells and tissues to stress and chronic diseases of aging including cancer. With the emergence of experimental therapeutics targeting CD47, a more thorough understanding of CD47 signal transduction is essential. CD47 lacks a substantial cytoplasmic signaling domain, but several cytoplasmic binding partners have been identified, and lateral interactions of CD47 with other membrane receptors play important roles in mediating signaling resulting from the binding of thrombospondin-1. This review addresses recent advances in identifying the lateral binding partners, signal transduction pathways and downstream transcription networks regulated through CD47 in specific cell lineages. Major pathways regulated by CD47 signaling include calcium homeostasis, cyclic nucleotide signaling, nitric oxide and hydrogen sulfide biosynthesis and signaling and stem cell transcription factors. These pathways and other undefined proximal mediators of CD47 signaling regulate cell death and protective autophagy responses, mitochondrial biogenesis, cell adhesion and motility and stem cell self-renewal. Although thrombospondin-1 is the best characterized agonist of CD47, the potential roles of other members of the thrombospondin family, SIRPα and SIRPγ binding and homotypic CD47 interactions as agonists or antagonists of signaling through CD47 should also be considered.
Collapse
Affiliation(s)
- David R Soto-Pantoja
- a Laboratory of Pathology , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | | | | |
Collapse
|
193
|
Overdijk MB, Verploegen S, Bögels M, van Egmond M, van Bueren JJL, Mutis T, Groen RWJ, Breij E, Martens ACM, Bleeker WK, Parren PWHI. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs 2015; 7:311-21. [PMID: 25760767 PMCID: PMC4622648 DOI: 10.1080/19420862.2015.1007813] [Citation(s) in RCA: 405] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/14/2014] [Accepted: 12/01/2014] [Indexed: 01/14/2023] Open
Abstract
Daratumumab (DARA) is a human CD38-specific IgG1 antibody that is in clinical development for the treatment of multiple myeloma (MM). The potential for IgG1 antibodies to induce macrophage-mediated phagocytosis, in combination with the known presence of macrophages in the tumor microenvironment in MM and other hematological tumors, led us to investigate the contribution of antibody-dependent, macrophage-mediated phagocytosis to DARA's mechanism of action. Live cell imaging revealed that DARA efficiently induced macrophage-mediated phagocytosis, in which individual macrophages rapidly and sequentially engulfed multiple tumor cells. DARA-dependent phagocytosis by mouse and human macrophages was also observed in an in vitro flow cytometry assay, using a range of MM and Burkitt's lymphoma cell lines. Phagocytosis contributed to DARA's anti-tumor activity in vivo, in both a subcutaneous and an intravenous leukemic xenograft mouse model. Finally, DARA was shown to induce macrophage-mediated phagocytosis of MM cells isolated from 11 of 12 MM patients that showed variable levels of CD38 expression. In summary, we demonstrate that phagocytosis is a fast, potent and clinically relevant mechanism of action that may contribute to the therapeutic activity of DARA in multiple myeloma and potentially other hematological tumors.
Collapse
Key Words
- ADCC, antibody-dependent cellular cytotoxicity
- BL, Burkitt's lymphoma
- BM, bone marrow
- Burkitt's lymphoma
- CCS, cosmic calf serum
- CD38
- CDC, complement-dependent cytotoxicity
- DARA, daratumumab
- DP, double positive
- E:T, effector to target ratio
- FcγR, Fc-gamma receptor
- IMiD, immunomodulatory drug
- MM, multiple myeloma
- MNC, mononuclear cells
- Mϕ, macrophage
- PBMC, peripheral blood mononuclear cells
- daratumumab
- mAb, monoclonal antibody
- macrophage
- multiple myeloma
- phagocytosis
- therapeutic antibody
Collapse
Affiliation(s)
| | | | - Marijn Bögels
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Surgery; VU University Medical Center; Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Surgery; VU University Medical Center; Amsterdam, The Netherlands
| | | | - Tuna Mutis
- Department of Clinical Chemistry and Hematology; University Medical Center; Utrecht, The Netherlands
| | - Richard WJ Groen
- Department of Cell Biology; University Medical Center; Utrecht, The Netherlands
| | | | - Anton CM Martens
- Department of Cell Biology; University Medical Center; Utrecht, The Netherlands
- Department of Immunology; University Medical Center; Utrecht, The Netherlands
| | | | - Paul WHI Parren
- Genmab; Utrecht, The Netherlands
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden, The Netherlands
| |
Collapse
|
194
|
Plasmodium falciparum avoids change in erythrocytic surface expression of phagocytosis markers during inhibition of nitric oxide synthase activity. Mol Biochem Parasitol 2014; 198:29-36. [PMID: 25454716 DOI: 10.1016/j.molbiopara.2014.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 10/05/2014] [Accepted: 11/20/2014] [Indexed: 01/11/2023]
Abstract
Nitric oxide (NO) accumulates in Plasmodium falciparum-infected erythrocytes. It may be produced by a parasite NO synthase (NOS) or by nitrate reduction. The parasite's benefit of NO accumulation is not understood. We investigated if inhibiting the P. falciparum NOS with specific and unspecific NOS inhibitors led to a decrease in intraerythrocytic NO accumulation and if this was associated with a change in surface expression of the phagocytosis markers CD47 and phosphatidyl serine. The specific inducible NOS inhibitors l-canavanine and GW274150 dose-dependently decreased intraerythrocytic NO while l-NMMA (an unspecific NOS inhibitor) and caveolin-1 scaffolding domain peptide (a specific endothelial NOS inhibitor) did not affect NO levels. Phosphatidyl serine externalization markedly increased upon P. falciparum infection. l-canavanine did not modify this whereas caveolin-1 scaffolding domain peptide increased the fraction of phosphatidyl serine exposing cells significantly. The infection did not change the level of expression of neither total CD47 nor its oxidized form. Unrelated to NOS inhibition, incubation with caveolin-1 scaffolding domain peptide lead to a decrease in oxidized CD47. In conclusion, the data imply that NOS inhibitors decrease NO accumulation in P. falciparum-infected erythrocytes but this does not correlate with the level of two major erythrocytic phagocytosis markers.
Collapse
|
195
|
Cell rigidity and shape override CD47's "self"-signaling in phagocytosis by hyperactivating myosin-II. Blood 2014; 125:542-52. [PMID: 25411427 DOI: 10.1182/blood-2014-06-585299] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A macrophage engulfs another cell or foreign particle in an adhesive process that often activates myosin-II, unless the macrophage also engages "marker of self" CD47 that inhibits myosin. For many cell types, adhesion-induced activation of myosin-II is maximized by adhesion to a rigid rather than a flexible substrate. Here we demonstrate that rigidity of a phagocytosed cell also hyperactivates myosin-II, which locally overwhelms self-signaling at a phagocytic synapse. Cell stiffness is one among many factors including shape that changes in erythropoiesis, in senescence and in diseases ranging from inherited anemias and malaria to cancer. Controlled stiffening of normal human red blood cells (RBCs) in different shapes does not compromise CD47's interaction with the macrophage self-recognition receptor signal regulatory protein alpha (SIRPA). Uptake of antibody-opsonized RBCs is always fastest with rigid RBC discocytes, which also show that maximal active myosin-II at the synapse can dominate self-signaling by CD47. Rigid but rounded RBC stomatocytes signal self better than rigid RBC discocytes, highlighting the effects of shape on CD47 inhibition. Physical properties of phagocytic targets thus regulate self signaling, as is relevant to erythropoiesis, to clearance of rigid RBCs after blood storage, clearance of rigid pathological cells such as thalassemic or sickle cells, and even to interactions of soft/stiff cancer cells with macrophages.
Collapse
|
196
|
Single-molecule-force spectroscopy study of the mechanism of interactions between TSP-1 and CD47. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5232-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
197
|
Snauwaert S, Vandekerckhove B, Kerre T. Can immunotherapy specifically target acute myeloid leukemic stem cells? Oncoimmunology 2014; 2:e22943. [PMID: 23526057 PMCID: PMC3601163 DOI: 10.4161/onci.22943] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence supports the role of leukemic stem cells (LSCs) in the high relapse rate of acute myeloid leukemia (AML) patients. The clinical relevance of LSCs, which were originally characterized in xenograft models, has recently been confirmed by the finding that stem cell-like gene expression signatures can predict the clinical outcome of AML patients. The targeted elimination of LSCs might hence constitute an efficient therapeutic approach to AML. Here, we review immunotherapeutic strategies that target LSC-associated antigens, including T cell-mediated and monoclonal antibody-based regimens. Attention is given to the issue of antigen specificity because this is relevant to the therapeutic window and determines the superiority of LSC-targeting immunotherapy.
Collapse
Affiliation(s)
- Sylvia Snauwaert
- Department of Clinical Chemistry, Microbiology and Immunology; Ghent University Hospital; Ghent, Belgium
| | | | | |
Collapse
|
198
|
Hu X, Liou AKF, Leak RK, Xu M, An C, Suenaga J, Shi Y, Gao Y, Zheng P, Chen J. Neurobiology of microglial action in CNS injuries: receptor-mediated signaling mechanisms and functional roles. Prog Neurobiol 2014; 119-120:60-84. [PMID: 24923657 PMCID: PMC4121732 DOI: 10.1016/j.pneurobio.2014.06.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 12/28/2022]
Abstract
Microglia are the first line of immune defense against central nervous system (CNS) injuries and disorders. These highly plastic cells play dualistic roles in neuronal injury and recovery and are known for their ability to assume diverse phenotypes. A broad range of surface receptors are expressed on microglia and mediate microglial 'On' or 'Off' responses to signals from other host cells as well as invading microorganisms. The integrated actions of these receptors result in tightly regulated biological functions, including cell mobility, phagocytosis, the induction of acquired immunity, and trophic factor/inflammatory mediator release. Over the last few years, significant advances have been made toward deciphering the signaling mechanisms related to these receptors and their specific cellular functions. In this review, we describe the current state of knowledge of the surface receptors involved in microglial activation, with an emphasis on their engagement of distinct functional programs and their roles in CNS injuries. It will become evident from this review that microglial homeostasis is carefully maintained by multiple counterbalanced strategies, including, but not limited to, 'On' and 'Off' receptor signaling. Specific regulation of theses microglial receptors may be a promising therapeutic strategy against CNS injuries.
Collapse
Affiliation(s)
- Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| | - Anthony K F Liou
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Mingyue Xu
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Chengrui An
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Jun Suenaga
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yejie Shi
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
199
|
Goto H, Kojima Y, Matsuda K, Kariya R, Taura M, Kuwahara K, Nagai H, Katano H, Okada S. Efficacy of anti-CD47 antibody-mediated phagocytosis with macrophages against primary effusion lymphoma. Eur J Cancer 2014; 50:1836-1846. [PMID: 24726056 DOI: 10.1016/j.ejca.2014.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/20/2013] [Accepted: 03/04/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Recently, the critical role of CD47 on the surface of resistant cancer cells has been proposed in their evasion of immunosurveillance. Primary effusion lymphoma (PEL) is a subtype of aggressive non-Hodgkin lymphoma that shows serous lymphomatous effusion in body cavities, especially in advanced acquired immunodeficiency syndrome (AIDS). PEL is resistant to conventional chemotherapy and has a poor prognosis. In this study, we evaluated the effect of anti-CD47 antibody (Ab) on PEL in vitro and in vivo. METHODS Surface CD47 of PEL cell lines was examined by flow cytometry. Efficacy of knocking down CD47 or anti-CD47 Ab-mediated phagocytosis against PEL was evaluated using mouse peritoneal macrophages and human macrophages in vitro. Primary PEL cells were injected intraperitoneally into NOD/Rag-2/Jak3 double-deficient (NRJ) mice to establish a direct xenograft mouse model. RESULTS Surface CD47 of PEL cell lines was highly expressed. Knocking down CD47 and anti-CD47 Ab promoted phagocytic activities of macrophages in a CD47 expression-dependent manner in vitro. Treatment with anti-CD47 Ab inhibited ascite formation and organ invasion completely in vivo compared with control IgG-treated mice. CONCLUSION CD47 plays the pivotal role in the immune evasion of PEL cells in body cavities. Therapeutic antibody targeting of CD47 could be an effective therapy for PEL.
Collapse
MESH Headings
- Adult
- Animals
- Antibodies/pharmacology
- Antineoplastic Agents/pharmacology
- CD47 Antigen/immunology
- CD47 Antigen/metabolism
- Cell Line
- Coculture Techniques
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Gene Knockdown Techniques
- Humans
- Janus Kinase 3/deficiency
- Janus Kinase 3/genetics
- Lymphoma, Primary Effusion/drug therapy
- Lymphoma, Primary Effusion/genetics
- Lymphoma, Primary Effusion/immunology
- Lymphoma, Primary Effusion/metabolism
- Lymphoma, Primary Effusion/pathology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Knockout
- Neoplasm Invasiveness
- Phagocytosis/drug effects
- RNA Interference
- Transfection
- Tumor Escape/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hiroki Goto
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Yuki Kojima
- Department of Hematology, National Hospital Organization Nagoya Medical Center, Nagaoya, Japan
| | - Kouki Matsuda
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Manabu Taura
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Kazuhiko Kuwahara
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirokazu Nagai
- Department of Hematology, National Hospital Organization Nagoya Medical Center, Nagaoya, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
200
|
Abstract
Microglia, a unique type of myeloid cell, play a key role in the inflammation-mediated neurodegeneration occurring during both acute and chronic stages of multiple sclerosis (MS). These highly specialized cells trigger neurotoxic pathways, producing pro-inflammatory cytokines, reactive oxygen and nitrogen species and proteolytic enzymes, causing progressive neurodegeneration. Microglia have also been associated with development of cortical lesions in progressive MS, as well as with alterations of synaptic transmission in experimental autoimmune encephalomyelitis (EAE). However, they also play an important role in the promotion of neuroprotection, downregulation of inflammation, and stimulation of tissue repair. Notably, microglia undergo changes in morphology and function with normal aging, resulting in a decline of their ability to repair central nervous system damage, making axons and neurons more vulnerable with age. Modulation of microglial activation for therapeutic purposes must consider suppressing deleterious effects of these cells, while simultaneously preserving their protective functions.
Collapse
Affiliation(s)
- Jorge Correale
- Raúl Carrea Institute for Neurological Research, FLENI, Montañeses 2325, (1428) Buenos Aires, Argentina
| |
Collapse
|